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Abstract

The Eulerian description of dispersed two-phase flows results in a system of
partial differential equations describing characteristics of the flow, namely volume
fraction, density and velocity of the two phases, around any point in space over
time. When pressure forces are neglected or a same pressure is considered for both
phases, the resulting system is weakly hyperbolic and solutions may exhibit vacuum
states (regions void of the dispersed phase) or localized unbounded singularities (delta
shocks) that are not physically desirable. Therefore, it is crucial to find a physical
way for preventing the formation of such undesirable solutions in weakly hyperbolic
Eulerian two-phase flow models.

This thesis focuses on the mathematical analysis of an Eulerian model for air-
droplet flows, here called the Eulerian droplet model. This model can be seen as the
sticky particle system with a source term and is successfully used for the prediction
of droplet impingement and more recently for the prediction of particle flows in air-
ways. However, this model includes only one-way momentum exchange coupling, and
develops delta shocks and vacuum states. The main goal of this thesis is to improve
this model, especially for the prevention of delta shocks and vacuum states, and the
adjunction of two-way momentum exchange coupling. Using a characteristic anal-
ysis, the condition for loss of regularity of smooth solutions of the inviscid Burgers
equation with a source term is established. The same condition applies to the droplet
model. The Riemann problems associated, respectively, to the Burgers equation with
a source term and the droplet model are solved. The characteristics are curves that
tend asymptotically to straight lines. The existence of an entropic solution to the
generalized Rankine-Hugoniot conditions is proven. Next, a way for preventing the
formation of delta shocks and vacuum states in the model is identified and a new
Eulerian droplet model is proposed. A new hierarchy of two-way coupling Eulerian
models is derived. Each model is analyzed and numerical comparisons of the models
are carried out. Finally, 2D computations of air-particle flows comparing the new
Eulerian droplet model with the standard Eulerian droplet model are presented.
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Résumé

La description eulérienne des écoulements diphasiques dispersés donne lieu à un
système d’équations aux dérivées partielles décrivant les caractéristiques de l’écoule-
ment, à savoir la fraction volumique, la densité et la vitesse des deux phases, autour
de tout point de l’espace en fonction du temps. Lorsque les forces de pression sont
négligées ou qu’une même pression est considérée pour les deux phases, le système
résultant est faiblement hyperbolique et les solutions peuvent présenter des zones de
vacuum (régions dépourvues de la phase dispersée) ou des singularités non bornées
localisées (delta chocs) physiquement indésirables. Par conséquent, il est crucial de
trouver un moyen physique d’empêcher la formation de telles solutions indésirables
dans les modèles eulériens faiblement hyperboliques pour les écoulements diphasiques.

Cette thèse porte sur l’analyse mathématique d’un modèle eulérien pour les
écoulements d’air chargés de goutellettes, appelé ici le modèle eulérien de gouttelettes.
Ce modèle peut être vu comme le système des particules collantes avec un terme
source. Il a été utilisé avec succès pour la prédiction de l’impact de gouttelettes et
plus récemment pour la prédiction du transport de particules dans les voies respira-
toires. Cependant, ce modèle comprend un terme de couplage décrivant seulement
le transfert de moment unidirectionnel. Sa solution développe aussi des delta chocs
et des vacuums. L’objectif principal de cette thèse est d’améliorer ce modèle, en
particulier pour prévenir les delta chocs et les vacuums, et pour inclure un trans-
fert bidirectionnel du moment entre les phases. Via une analyse par caractéristiques,
une condition de perte de régularité des solutions régulières de l’équation de Burgers
avec terme source est établie. La même condition s’applique au modèle de gout-
telettes. Les problèmes de Riemann associés respectivement à l’équation de Burgers
avec terme source et au modèle de gouttelettes sont résolus. L’existence d’une solution
entropique aux conditions généralisées de Rankine-Hugoniot est prouvée. Ensuite, un
moyen d’empêcher la formation de delta chocs et de vacuums dans les solutions du
modèle est identifié et un nouveau modèle eulérien de gouttelettes est proposé. Une
nouvelle hiérarchie de modèles eulériens comprenant un transfert bidirectionnel du
moment est dérivée. Chaque modèle est analysé et des comparaisons numériques
des modèles sont présentées. Enfin, des calculs en 2D d’écoulements d’air chargés
de particles sont présentés et permettent de comparer le nouveau modèle eulérien de
gouttelettes au modèle eulérien de gouttelettes standard.
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Chapter 1

Introduction

Flows of air carrying particles or droplets commonly occur in nature, for in-
stance, convective flows within clouds [92, 48], atmospheric wind charged with par-
ticle aerosols [3, 58] and flows charged with ash during volcanic eruptions [94]. The
prediction of such flows is also useful in industrial and medical applications. For in-
stance, predicting the propagation and deposition of particles in the mouth-throat or
the inner lung airways helps for designing inhalers [42, 88]. The prediction of in-flight
icing droplet impingement can help to anticipate and prevent aircraft crashes [7, 2].
Applications in engineering also include diesel injection into engines [72] and coating
spray processes [83].

There are two common approaches for describing a fluid in motion containing
particles: Lagrangian and Eulerian. With the Lagrangian approach, the particles are
individually tracked along their trajectories through the computational domain. The
trajectory of each particle is established from the balance of forces exerted on the
particle by using the fundamental dynamic relations. With the Eulerian approach,
the particles are treated as a continuum interacting with the fluid phase. The motion
of particles is described in function of their concentration and velocity on small control
volumes around each point of the domain at any time. Of course, the particles are
subject to the same dynamical relations with both approaches.

There are several mathematical models for air-particle flows proposed in the
literature for both approaches. For a general presentation of models for two-phase
flows, we refer to [57, 33, 44] and the references therein. Many numerical models
for air flows charged with particles rely on the Lagrangian approach [98, 73, 4, 19].
Some comparisons of the Lagrangian and Eulerian approaches are available for specific
applications [89, 47]. Recent works [89, 41, 99] suggest that the Eulerian approach
may be a natural choice for the numerical prediction of air flows charged with particles.

In this thesis, we consider one of these Eulerian models for air-particle flow,
which was used for the prediction of droplet impingement during in-flight icing [15].
The model corresponds to a dispersed phase subsystem, for instance a multi-phase
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1. INTRODUCTION 2

system for droplets or particles suspended in a carrier fluid. This model is known as
the Eulerian droplet model, and will be introduced in the next section.

1.1 The Eulerian droplet model

Let Vx be a region of volume vol(Vx), containing the point x ∈ Rq. This region is
filled with spherical particles p. The volume fraction α = α(x, t) ∈ R and the velocity
field u = u(x, t) ∈ Rq of particles at position x and time t are defined as follows:

α = lim
vol(Vx)→ε

total volume of the particles in Vx
vol(Vx)

= lim
vol(Vx)→ε

1

vol(Vx)
∑
p⊂Vx

vol(p),

u = lim
vol(Vx)→ε

∑
p⊂Vx vol(p)up∑
p⊂Vx vol(p)

,

(1.1.1)

where vol(p) and up ∈ Rq are the volume and velocity of particle p, respectively,
and ε is a small positive number such that Vx contains a sufficiently large number
(103 − 104) of particles for α and u to be representative statistical averages.

1.1.1 Mass conservation

In fluid mechanics, the conservation of mass can be described by the continuity
equation in different forms: conservative, non-conservative or integral form. The
conservative form is the most used. The mass conservation equation for the particles
can be written as

Dρl
Dt

=
∂ρl
∂t

+∇ · (ρlu) = 0, (1.1.2)

where ρl represents the density of the particles, i.e. the mass of the material consti-
tuting the particles per unit volume.

1.1.2 Momentum conservation

A particle moving in a fluid experiences a drag force FD. The drag force acts as
a mechanism by which a particle tries to catch up with the changing velocities of the
surrounding fluid. For a spherical particle moving in air flow, the drag force can be
expressed (see [47]) as

FD =
π

8
CdRedµd(ua − u), (1.1.3)

where µ is the dynamic viscosity of air; d is the diameter of the particle; ua is the air
velocity field; Red = ρd|ua − u|/µ is the Reynolds number of the particle; ρ is the
air density; and Cd is the drag coefficient. This coefficient depends on the particle
Reynolds number, and will be defined later.
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A particle in a gravitational field experiences a gravitational force in the direc-
tion of the gravitational acceleration g. The particle also experiences another force
in the opposite direction. This latter force is called buoyancy force. According to
Archimedes’ principle, the buoyancy force is equal to the weight of the displaced fluid
volume. The net force FG (the gravitational and buoyancy forces) for a spherical
particle is given by (see [47])

FG = (1− ρ

ρl
)g. (1.1.4)

To simplify, we assume that the drag, gravitational and buoyancy forces are the
only forces that act on the particles. For others types of forces that a particle in
motion in a fluid can experience, we refer to [47]. Newton’s second law states that

m
du

dt
= FD + FG (1.1.5)

where m is the mass of the particle. An averaging procedure is performed on the
equation (1.1.5) to get an Eulerian expression for momentum conservation. Details
on the averaging procedure for these equations are given in [54]. After simplification,
the mass and momentum conservation equations may be rewritten in their final non-
dimensional form [15]:

∂α

∂t
+∇ · (αu) = 0,

∂u

∂t
+ u · ∇u =

CDRed
24K

(ua − u) + (1− ρ

ρl
)

1

Fr2
g,

(1.1.6)

where K = ρld
2U∞/18Lµ is an inertia parameter; Fr = U∞/

√
Lg0 is the Froude

number; U∞ is the speed of air at infinity; g0 is a characteristic external field; and L
is a characteristic length.

System (1.1.6) constitutes the Eulerian droplet model for air-particle flows [15].
It is important to notice that this model applies to particles with the same diameter.
For particles of different sizes, one should consider the mean volume diameter (MVD)
of the particles, or repeat system (1.1.6) for every particle diameter considered.

1.2 Some applications of the Eulerian droplet model

The Eulerian droplet model (1.1.6) yields volume fraction α and velocity field u
of the particles in any specific location x in space at time t. The collection efficiency
measures the fraction of particles approaching a surface, that actually deposit on this
surface. The collection efficiency, denoted by β, can be then calculated as

β = αu · n, (1.2.1)
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where n is the outward normal of the domain. In [17], the collection efficiency profiles
for a MVD of 16µm and a Langmuir-D distribution with a MVD of 16µm of droplets
are computed with the Eulerian droplet model (1.1.6). Figure 1.1 (images are taken
from [17]) shows the plot of the collection efficiency on the surface of a circular cylin-
der for both cases and the experimental data. One can see that the solution with a
Langmuir-D distribution stays within the experimental repeatability range. Numeri-

Figure 1.1: Comparison of the collection efficiency on the surface of a circular
cylinder for the Langmuir-D distribution of droplet size and the MVD solu-
tion together with experimental data. The abscissa S is the distance along
the circular arc from the stagnation point (reproduced from [17]).

cal computations using the Eulerian droplet model (1.1.6) were also conducted on the
nose and cockpit of an aircraft [17]. Figure 1.2 shows the surface collection efficiency
for a MVD of 400µm. These numerical results show that the Eulerian droplet model
can provide accurate droplet impingement predictions when an adequate droplet size
distribution is provided.

The Eulerian droplet model (1.1.6) was also applied to particle flows in airways.
Numerical computations of air-particle flows in a 2D prototype airway, computed with
the Eulerian droplet model (1.1.6), were first presented in [14]. The model was also
applied to aerosol propagation in a 3D patient-based geometry of the airway tract [16].
The air flow was obtained by solving the Navier-Stokes equations. Numerical results
for aerosol propagation in this geometry were obtained by coupling the Eulerian
droplet model (1.1.6) with the air flow solutions. Figure 1.3 shows the time-evolution
of the aerosol volume fraction on a vertical cross-section of the airway tract. Figure 1.4
shows the collection efficiency computed on the walls of the airways. These numerical
test cases show that the Eulerian droplet model could provide a viable approach to
compute internal air-particle flows, even in the presence of recirculations.
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Figure 1.2: Collection efficiency on the nose and cockpit of a Convair-580 for
droplets with MVD of 400µm (reproduced from [17]).

2500 time steps 5000 time steps

7500 time steps 10000 time steps

Figure 1.3: Volume fraction of aerosols at various times (reproduced from
[16]).
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Right branch Endoscopic view

Figure 1.4: Collection efficiency on the walls of the airways (reproduced from
[16]).

1.3 Problem statement and outline of the thesis

As most of the equations in fluid mechanics, the Eulerian droplet model (1.1.6)
is a hyperbolic system that contains a nonlinear advection term (i.e. the advection
velocity depends on the solution). The resolution of such problems encounters many
difficulties among which we can mention:

• The loss of regularity for smooth initial data: For instance, considering the one-
dimensional case, the second equation of (1.1.6) reduces to the inviscid Burgers
equation (see [66, 46, 81, 64, 67]) with a zeroth order source term. It is well
known that the solution of the inviscid Burgers equation develops discontinuities
in finite time provided that the initial condition has negative slope somewhere
in the domain. This is a difficulty for solving (1.1.6).

• The choice for the form of the equations, i.e. conservative versus non-conservative
form: This choice is fundamental when dealing with solutions involving trav-
elling waves with discontinuities. It also influences the choice of the numerical
methods. For instance, equations in conservative form are usually solved with
conservative schemes to avoid solutions that are not physically acceptable (e.g.
solutions that violate the Rankine-Hugoniot conditions for shock waves). The
presence of an advection term requires stabilized finite element methods for
numerical stability. Such methods introduce numerical diffusion.

The numerical results shown in the previous section are obtained with smooth initial
data. They show the usefulness of the Eulerian droplet model. Nevertheless, this
model raises some concerns, particularly when discontinuities occur in the solutions.
The main difficulties with the Eulerian droplet model are listed in the following.
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i) The main drawback with the Eulerian droplet model lies in the fact that it may
develop delta shocks, i.e. discontinuous unbounded solutions in the form of the Dirac
delta function, within finite time, even with smooth initial conditions. For illustration,
we solve system (1.1.6) in the one-dimensional case on the interval [0, 3] using an
upwind scheme. We take the initial conditions α(x, 0) = 0.5 × exp(−80(x − 0.5)2)
and u(x, 0) = exp(−80(x − 0.5)2), and impose Dirichlet boundary conditions α =
0.5 × exp(−80(−0.5)2) and u = exp(−80(−0.5)2) on the inlet boundary (x = 0)
of the domain. The outlet boundary (x = 1) is left free. To simplify, we take
a constant drag coefficient (CDRed

24K
= 1), a constant air velocity ua = 1, and we

neglect the gravity force (g = 0). Numerical results are shown in Figure 1.5. We see

t = 0 t = 0.9

Figure 1.5: Formation of a delta shock in the solution of the Eulerian droplet
model. CDRed

24K
= 1, ua = 1, g = 0, ∆x = 5× 10−4 and ∆t = 3× 10−4.

the formation and propagation of a delta shock centered at the discontinuity in the
velocity. Besides being problematic for numerical computations, this solution is not
physically meaningful since the volume fraction should remain bounded.

ii) The momentum conservation equation (the second equation of (1.1.6)) is
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written in non-conservative form. The conservative form of this equation, derived
using the principles of continuum mechanics, reads as

∂(αu)

∂t
+∇ · (αu⊗ u) =

CDRed
24K

α(ua − u) + α(1− ρa
ρp

)
1

Fr2
g, (1.3.1)

where the tensor product αu⊗u is defined as (αu⊗u)i,j = αuiuj, i, j = 1, ..., d. The
passage from (1.3.1) to the second equation of (1.1.6) can be done first by subtracting
α times the first equation of (1.1.6) from (1.3.1) and second, by dividing the so
obtained equation by α. The Eulerian droplet model in conservative form is then
written as

∂α

∂t
+∇ · (αu) = 0,

∂(αu)

∂t
+∇ · (αu⊗ u) =

CDRed
24K

α(ua − u) + α(1− ρa
ρp

)
1

Fr2
g.

(1.3.2)

In case CD = 0 and g = 0, the conservative form (1.3.2) of the Eulerian droplet model
can be seen as the pressureless gas equations [9] or as the sticky particle system that
arises in the modeling of particles hitting and sticking to each other to explain the
formation of large scale-structures in the universe [36, 18]. The numerical results
shown in section 1.2 are all computed with the non-conservative form (1.1.6). The
use of the conservative form (1.3.2) has many advantages. For instance, it gives more
possibilities for the choice of the numerical methods, including all conservative or
kinetic schemes that were developed for hyperbolic conservation laws. However, the
conservative form presents a main shortcoming: the velocity field is not defined in
vacuum regions (for α = 0). From the numerical point of view, the computation of
the velocity field remains a challenge when the volume fraction tends to zero. The
same problem is encountered with the pressureless gas equations when the particle
density tends to zero. Some authors looked at this particular problem which is usually
hard to handle. Boudin [13] suggested to take any value for the vector field when the
particle density is null, for instance, by imposing a null velocity when the density of
the particle tends to zero. This potentially leads to discontinuous solutions at the
interface between the vacuum/non-vacuum regions. These discontinuities are artificial
and create undesirable numerical difficulties. The conservative and non-conservative
forms are equivalent for smooth solutions outside vacuum states. However, they may
differ when discontinuities occur in the solution, as illustrated in Figure 1.6 for a
delta shock wave computed with the two forms. A fundamental choice between the
conservative and non-conservative forms must thus be made when using the Eulerian
droplet model.

iii) Another weakness of the Eulerian droplet model is that it assumes one-way
momentum transfer from the carrier fluid to the droplets but not vice-versa. The
carrier fluid (air) is simply considered as a physical body acting on the droplets, and
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Figure 1.6: Delta shock wave with the conservative and non-conservative
forms at t = 0.9. CDRed

24K
= 1, ua = 1, g = 0, ∆x = 5×10−4 and ∆t = 3×10−4.

is modelled separately from the particle equations, by Euler or Navier-Stokes equa-
tions. To be more realistic, the effects of the droplets on the carrier fluid should also
be taken into account, particularly when the particle mass loading is important.

The following questions are raised: 1) Should one use the conservative or the
non-conservative form? 2) What is the cause of the formation of delta shocks? 3)
How can one improve the Eulerian droplet model to avoid delta shocks from occur-
ring? 4) How can one couple the Eulerian droplet model with the equations for the
carrier fluid in order to take into account the effects of the droplets on the carrier fluid?

As far as we know, there is no theoretical study related to the pressureless gas
equations including explicitly a zeroth-order source term as in the Eulerian droplet
model. In this thesis, we are interested in the theoretical study of the Eulerian droplet
model. The objective is to find an answer for each of the above questions. Our main
goal is the improvement of the Eulerian droplet model, in particular preventing the
formation of delta shocks without affecting its usefulness. We address these issues in
the thesis as follows.

• Chapter 2: We first briefly recall the main mathematical tools for hyperbolic
conservation laws, which are used throughout this thesis. We then introduce the
hierarchy of Eulerian models for dispersed two-phase flows proposed by Bouchut
in [10]. Finally, we discuss some numerical schemes proposed in the past for the
simulation of hyperbolic conservation laws.

• Chapter 3: This chapter is devoted to the mathematical analysis of the Eule-
rian droplet model. The condition for loss of regularity of smooth solutions is
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established. This partially answers the second question. The Riemann problem
associated to the Eulerian droplet model is solved. The generalized Rankine-
Hugoniot conditions for delta shocks are established and the existence of a so-
lution to the generalized Rankine-Hugoniot conditions is proven. These results
partially answer the first question when discontinuities occur in the solutions.

• Chapter 4: The responses to the second and third questions require a under-
standing of the process of delta shocks formation. We also want to find a way
to prevent their occurrence. It is known that the formation of delta shocks and
vacuum states in the pressureless gas system results from the vanishing pressure
limit of the Euler equations for gas dynamics [23]. Due to the similarity between
the Eulerian droplet model and the pressureless gas system, the isentropic Euler
equations for gas dynamics and the process of formation of delta shocks in the
vanishing limit pressure are reviewed in chapter 4. This gives a better under-
standing of the formation of delta shocks and vacuum states in pressureless gas
system, and thus in the Eulerian droplet model. We also propose a proof of a
result mentioned (but not proven) by Chen et Liu [23] in the vanishing pressure
limit of the isentropic Euler equations.

• Chapter 5: Based on the results from the previous chapters, we propose an
Eulerian droplet model with particle pressure. This new model is briefly ana-
lyzed. Numerical results illustrating the prevention of the formation of delta
shocks and vacuum states in the solutions of the model are presented.

• Chapter 6: Starting from the hierarchy of two-phase models, which is pre-
sented in chapter 2, and using the same idea as in chapter 5, we propose a new
hierarchy of Eulerian models for dispersed two-phase flows. Each model of this
hierarchy is analyzed. A way of coupling the equations of the droplets with the
equations modelling the carrier fluid is presented. This partially answers the
fourth equation. Numerical comparisons of the different models are performed
and the validity of each model is discussed.

• Chapter 7: This chapter is devoted to 2D numerical air-particle flow compu-
tations using the Eulerian droplet model proposed in chapter 5. The first goal
of this chapter is to present theoretical arguments for the use of this model and
the finite element methods for its simulation. The second goal is to compare the
usefulness of this new model with the more standard Eulerian droplet model
(1.1.6).

• Appendix A: All the models studied in this thesis are listed in the appendix.



Chapter 2

Literature review on hyperbolic
systems and dispersed two-phase
flow models

This chapter is devoted to a short review of the theory of conservation laws,
hyperbolic systems, and dispersed two-phase flow models. We start by recalling the
main mathematical tools used in the study of systems of conservation laws. Then,
we present a hierarchy of Eulerian models for dispersed two-phase flows proposed by
Bouchut [10]. Numerical schemes proposed for the simulation of conservation laws
are discussed.

2.1 Conservation laws and hyperbolic systems

This section concerns the general form of systems of conservation laws and the
main mathematical notions for such systems.

A system of conservation laws is a time-dependent system of partial differential
equations (PDE) expressing conservation of mass, momentum, energy, charge, etc. In
one space dimension, it takes the form (see [81])

∂

∂t
u(x, t) +

∂

∂x
f
(
u(x, t)

)
= 0, (2.1.1)

where u : R × (0,∞) → Rp is a p-dimensional vector of conserved quantities and
f : Rp → Rp is a smooth vector-valued function called the flux function. Equation
(2.1.1) must be augmented by some initial conditions

u(x, 0) = u0(x) (2.1.2)

and eventually by boundary conditions if (2.1.1) is expressed on a bounded spatial
domain.

11
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System (2.1.1)-(2.1.2) may admit discontinuous solutions in some cases. There-
fore, one needs to define what a solution with lower regularity is. To do that, one
considers a test function ψ ∈ C∞0 (R× R+). Multiplying (2.1.1) by ψ and integrating
by parts, one obtains the weak form of problem (2.1.1)-(2.1.2):∫ ∞

0

∫ ∞
−∞

(
uψt + f(u)ψx

)
dxdt = −

∫ ∞
−∞

ψ(x, 0)u(x, 0) dx. (2.1.3)

Note that a function u does not need to be differentiable or even continuous to satisfy
(2.1.3). One has the following definition:

Definition 2.1.1. A function u is a weak solution of the conservation law (2.1.1)
if it satisfies (2.1.3) for all test functions ψ ∈ C∞0 (R× R+).

Let Γ = {(x, t) : x = ξ(t), t ≥ 0} be a smooth curve with σ(t) = ξ′(t) and u be a
function defined as

u(x, t) =

{
ul(x, t), x < ξ(t),

ur(x, t), x > ξ(t),
(2.1.4)

where ul and ur are smooth functions. The following result characterizes a weak
solution of the problem (2.1.1)-(2.1.2):

Theorem 2.1.2. A function u defined as in (2.1.4) is a weak solution of the problem
(2.1.1)-(2.1.2) if and only if the following properties are satisfied:

• i) ul and ur satisfies (2.1.1) in the classical sense;

• ii) u(x, 0) = u0(x) for all x ∈ R;

• iii)
(
f(u−(t))− f(u+(t))

)
= σ(t)

(
u−(t)− u+(t)

)
,

where u−(t) and u+(t) are the limit of u as (x, t) approaches (ξ(t), t) from the
left and right, respectively.

Proof: See [81, 64, 63].

The relations (iii) are called Rankine-Hugoniot conditions. They reflect the exact
relationship between the limit states on the two sides of the discontinuity curve Γ and
the speed of propagation of this curve.

A weak solution to (2.1.1) is not necessarily unique. Hence, we need to find some
criterion that enables us to choose the “physically relevant” solution among the weak
solutions of (2.1.1). The criterion will be based on the concept of entropy.

Definition 2.1.3. A pair of smooth functions (U, F ) is called entropy pair if any
continuously differentiable solution of (2.1.1) satisfies the additional conservation law

U(u)t + F (u)x = 0. (2.1.5)

The functions U and F are called entropy and entropy flux, respectively.
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Definition 2.1.4. A weak solution u is an entropy solution of (2.1.1) if, for all
convex entropy functions and corresponding entropy fluxes, the inequality

U(u)t + F (u)x 6 0 (2.1.6)

is satisfied in the weak sense.

The inequality (2.1.6) is called the entropy inequality. Let us introduce some other
entropy conditions for scalar conservations laws:
Entropy condition I : A discontinuity propagating with speed σ given by the relations
(iii) satisfies the entropy condition if

f ′(u+) < σ < f ′(u−). (2.1.7)

The criterion (2.1.7) is known as Lax’s entropy condition [64].

Entropy condition II : u(x, t) is an entropy solution if all discontinuities satisfy

f(u)− f(u+)

u− u+

6 σ 6
f(u)− f(u−)

u− u−
(2.1.8)

for all u between u− and u+. The condition (2.1.8) is due to Oleinik [66]. For convex
f , this requirement reduces to (2.1.7)

Entropy condition III : u(x, t) is an entropy solution if there is a constant E > 0
such that for all a > 0, t > 0 and x ∈ R,

u(x+ a, t)− u(x, t)

a
<
E

t
. (2.1.9)

The condition (2.1.9) is also due to Oleinik [77].

For smooth solutions, system (2.1.1) can be written as

ut + A(u)ux = 0, (2.1.10)

where A(u) is the Jacobian matrix of the flux function f and is called Jacobian
matrix associated to the conservation laws (2.1.1). System (2.1.1) written as in
(2.1.10), is said to be in quasilinear form.

Definition 2.1.5. A system of conservation laws is said hyperbolic if, for any
u ∈ Rp, the eigenvalues of the Jacobian matrix are real and the Jacobian matrix is
diagonalizable, i.e. there is a complete set of p linearly independent eigenvectors. If,
in addition, the eigenvalues are all distinct, the system is said strictly hyperbolic.
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Definition 2.1.6. A system of conservation laws is said weakly hyperbolic if the
Jacobian matrix has real eigenvalues but is not diagonalizable.

Let λk, k = 1, ..., p, the set of eigenvalues of the Jacobian matrix of a system of
conservation laws (2.1.1), and rk, k = 1, ..., q, the corresponding eigenvectors. We
have the following definitions:

Definition 2.1.7. The curve χk(x, t; .) defined by
dχk
ds

(x, t; s) = λk(u(χ(x, t; s), s)), s ∈ [0, T ],

χ(x, t; t) = x,
(2.1.11)

is called a k-characteristic field.
A k-characteristic field is said to be genuinely nonlinear if

∇λk(u) · rk(u) 6= 0, ∀u ∈ Rp. (2.1.12)

A k-characteristic field is said to be linearly degenerate if

∇λk(u) · rk(u) = 0, ∀u ∈ Rp. (2.1.13)

Here, the differential ∇ is defined as ∇ = (∂u1 , ∂u2 , ..., ∂up)
T .

Definition 2.1.8. A smooth function Rk : Rp → R is called a k-Riemann invari-
ant if it satisfies

∇Rk(u) · rk(u) = 0, ∀u ∈ Rp. (2.1.14)

These are the main mathematical tools for conservation laws that we will use
throughout this thesis.

2.2 Dispersed two-phase flows

Under normal conditions, there are four states of matter: gas, liquid, solid and
plasma. Two-phase flows occur when two of gas, liquid and solid are mixed together
and flow subject to forces. There are several classifications of two-phase flows in the
literature [57, 33, 44]. This is due to the variety of the problems involving these
phenomena. Ishii [57] proposed a general classification by dividing the two-phase
flows in four groups based on the components of the flow: gas-solid flows, gas-liquid
flows, solid-liquid flows and the flows of two immiscible liquids.

Ishii [57] also proposed another classification depending on the flow topology,
distinguishing three categories: separated two-phase flows, mixed two-phase flows
and dispersed two-phase flows. We are interested here in this latter category. A
dispersed two-phase flow corresponds to a simple configuration in which one of the
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two phases is dispersed in the other continuous phase. In this situation, the continuous
phase contains a large number of inclusions (discontinuous interfaces) of small size
compared with the characteristic length of the flow domain. For example, the flow of
dust in air, or the flow of droplets resulting from the disintegration of a jet of liquid
in sprays.

There are two common approaches to model dispersed two-phases flows using
differential equations based on the physical phenomenon of interest: Lagrangian and
Eulerian. With the Lagrangian approach, the carrier fluid is modelled with Euler or
Navier-Stokes equations while particles or groups of particles are tracked individually
along their trajectory through the domain. For dispersed two-phase flows, the struc-
ture and the position of the interfaces of the two phases are in general very difficult
to monitor and in many cases not so relevant for understanding the global behaviour
of the system. In such cases, one can use an Eulerian approach based on averaging
techniques, either in space, or in time, or both. Eulerian approach describes average
characteristics of the flow around any point in space over time.

The general idea for deriving Eulerian models for dispersed two-phase flows is to
formulate for each phase the conservation of mass, momentum and, if needed, energy,
over a small control volume. The latter should contain a sufficiently large number of
particles of the dispersed phase so that the conserved quantities are representative
statistical averages. This conservation must be satisfied around any point of the con-
trol volume and at any time. This gives two types of local equations: an expression
for the instantaneous local variation of each phase and another representing the in-
teractions between the two phases at the interfaces. In general, this introduces more
unknowns than equations in the system. So, closure laws are required for removing
the indeterminacy of the system of equations.

2.2.1 Eulerian models for dispersed two-phase flows

In this subsection, we perform a brief literature review on Eulerian models for
dispersed two-phase flow. This literature review is based on the hierarchy of Eulerian
models proposed by Bouchut in [10]. We have chosen this particular hierarchy because
it is composed of the most common Eulerian models for dispersed two-phase flow
presented in the literature.

We consider a dispersed two-phase flow in a domain Ω, i.e. the flow of a mixture
of gas and liquid particles (it could be solid particles). Around each point x of the
domain Ω and at each time t, we define, using a control volume (as in (1.1.1)), the
volume fractions α for the liquid phase and 1 − α for the gas phase, satisfying the
condition

0 6 α 6 1. (2.2.1)

The velocity of the liquid and gas phases are denoted by u and v, respectively. Assume
that there is no exchange of mass between the two phases. The mass conservation
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for each phase (liquid and gas) gives rise to the pair of continuity equations [57]{
∂t((1− α)ρg) + ∂x((1− α)ρgv) = 0,

∂t(αρl) + ∂x(αρlu) = 0,
(2.2.2)

where ρg and ρl are the gas and liquid density, respectively. The conservation of
momentum can be written as [57]{

∂t((1− α)ρgv) + ∂x((1− α)ρgv
2) + (1− α)∂xp+ τg = Dg,

∂t(αρlu) + ∂x(αρlu
2) + α∂xp+ τl = Dl,

(2.2.3)

where p is the common pressure; Dg and Dl represent the expressions of the drag force
for the gas and liquid phases, respectively; and τg and τl are called pressure correction
terms. The exact form of the equations for the conservation of momentum depends
on the constitutive relations expressing the interaction between the two phases. The
two most common constitutive relations are Stokes’ and Newton’s laws. In the first
case, the drag force is taken linear with respect to the relative velocity v−u of the two
phases. For Newton’s law, the friction force is quadratic with respect to the relative
velocity, an assumption usually valid for larger relative velocities. Here, we will use
Stokes’ law in which the expression of the drag force is given by (see [57])

Dl = −Dg = µα(1− α)ρl(v − u), (2.2.4)

where µ is called the drag coefficient.
System (2.2.2)-(2.2.3) contains more unknowns than equations. Therefore, we

need closure relations. The common pressure evolution is assumed to be governed by
an equation of state

p = p(ρg) = κργg , κ > 0, γ > 1. (2.2.5)

The pressure correction terms are differential terms which are mathematically relevant
because they affect the well-posed nature of the system. Several pressure correction
terms are developed in the literature. We consider here those proposed in [61], given
by

τg = 0, τl = Cpρl(v − u)2∂xα, (2.2.6)

where Cp ≥ 0 is a constant. We could have considered any alternative pressure
correction terms satisfying

lim
v→u

τg = lim
v→u

τl = 0. (2.2.7)

This property is of physical relevance and many expressions for pressure correction
used in industry satisfy (2.2.7) (for more details, see [10]).

The density perturbation method introduced in [28] provides a convenient way
to analyze the well-posed nature of two-phase flow models. This method consists of
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introducing two characteristic densities ρ0
g and ρ0

l for the gas and liquid phases. These
characteristic densities allow to define the new variables

ρ̃g =
ρg
ρ0
g

and ρ̃l =
ρl
ρ0
l

. (2.2.8)

To simplify, one assumes that the liquid density ρl is constant, and one takes ρ0
l = ρl.

System (2.2.2)-(2.2.3) and (2.2.6) reads in term of the new variables (the subscript ∼
is omitted) as

∂t((1− α)ρg) + ∂x((1− α)ρgv) = 0,

∂t((1− α)ρgv) + ∂x((1− α)ρgv
2) + (1− α)∂xp =

µ

ε
α(1− α)(u− v),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) + εα∂xp+ Cp(v − u)2∂xα = µα(1− α)(v − u),

(I)

where ε =
ρ0
g

ρl
is a density ratio. System (I) with unknowns ρg, v, α and u is referred

to as Model I by Bouchut [10].
The source term in Model I contains a relaxation term µ

ε
α(1−α)(u−v). Several

authors [22, 71] showed that the long behaviour of hyperbolic systems with relaxation
terms is governed by local equilibrium systems. Carrying out the Chapman-Enskog
expansion for system (I), i.e. one seeks solution v in the form

v = u+ εw, (2.2.9)

one obtains (see details of the derivation in Appendix B)
∂t((1− α)ρg) + ∂x((1− α)ρgu) = ε∂x(

ρg
µα

(1− α)∂xp),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2 + εp) = 0.

(II)

System (II) with unknowns ρg, α and u is referred to as Model II by Bouchut [10].
Considering only the two last equation of system (II) and ignoring the terms

with the density ratio ε, one gets{
∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) = 0.

(III)

System (III) with unknowns α and u is referred to as Model III by Bouchut [10].
System (III) is also known as the pressureless gas system [9] or the sticky particles
system [36, 18]. It has been studied by several authors, for instance, see [10, 13, 18,



2. LITERATURE REVIEW ON HYPERBOLIC SYSTEMS AND DISPERSED
TWO-PHASE FLOW MODELS 18

82, 23, 9, 11]. It is well known that Model III may develop delta shock solutions
within finite time [10, 82].

Instead of ignoring the terms with the density ratio in Model II, Bouchut [10]
proposed the following modification to resolve issues with unbounded α in Model III:

lim
ε→0

εp = Π, with Π = 0 if 0 6 α 6 1. (2.2.10)

Under the hypothesis (2.2.10), the last two equations of system (II) give rise to
∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2 + Π) = 0,

lim
ε→0

εp = Π, with Π = 0 if 0 6 α 6 1.

(IV)

System (IV) with unknowns α and u is referred to as Model IV by Bouchut [10].

2.2.2 Nature and well-posedness of the models

Model I is written in non-conservative form. Its hyperbolicity and well-posedness
have been discussed in [28]. It can be shown [28] by using perturbation theory for
linear operators that for ε small, v 6= u and Cp > 0, the Jacobian matrix of Model I
has four distinct real eigenvalues, and thus it is diagonalizable. In this case, Model I
is strictly hyperbolic and is expected to be well-posed. However, if v = u or Cp = 0,
i.e. there is no pressure correction term, then Model I is ill-posed under some regimes
for instance for subsonic flows because its Jacobian matrix has complex eigenvalues
[28]. For more details on the eigenstructure of Model I, we refer to [28].

Model II is written in conservative form, perturbed with a second order differen-
tial term in ρg. For smooth solutions with 0 < α < 1, it can be written in quasilinear
form as

ρgα
u


t

+


u 0

ρg
1− α

0 u α
εp′(ρg)

α
0 u


ρgα
u


x

=


ε

1− α
∂x
( ρg
µα

(1− α)∂xp
)

0
0

 . (2.2.11)

Its Jacobian matrix has three distinct real eigenvalues

u−

√
εp′(ρg)ρg
α(1− α)

, u and u+

√
εp′(ρg)ρg
α(1− α)

, (2.2.12)

and is diagonalizable. Thus, Model II is a strictly hyperbolic system in conservative
form perturbed with a second order term. With this perturbation, the first equation
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of the system can be seen as an advection-diffusion equation in ρg, with the diffusion
term leading to extra dissipation.

Model III is also written in conservative form. For smooth solutions, it can be
written in quasilinear form as(

α
u

)
t

+

(
u α
0 u

)(
α
u

)
x

=

(
0
0

)
. (2.2.13)

Its Jacobian matrix has one double real eigenvalue u and is not diagonalizable. Thus,
Model III is weakly hyperbolic.

For the properties of Model IV, we refer to [10].

2.3 Numerical methods for conservation laws

A numerical method for a conservation law may converge to a non-suitable so-
lution. A simple and natural requirement one can impose on a numerical scheme to
avoid this inconvenience is to be conservative (see [66, 46, 67]). In this section, we
recall some important notions for numerical schemes, and present some numerical
methods proposed in the literature for conservation laws, particularly for Model III.

We discretize the x-t plane by choosing a mesh width h = ∆x and a time step
k = ∆t, and define the discrete mesh points (xi, tn) in the x-t plane by

xi = ih, i = ...,−2,−1, 0, 1, 2, ...

tn = nk, n = 0, 1, 2, ...
(2.3.1)

We denote xi+ 1
2

= xi+xi+1

2
. Recall that the general form of a conservative finite

difference scheme can be written as

Un+1
i = Un

i −
k

h

(
F (Un

i−p, U
n
i−p+1, ..., U

n
i+q)− F (Un

i−p−1, U
n
i−p, ..., U

n
i+q−1)

)
(2.3.2)

for some function F of p+ q + 1 arguments, called the numerical flux function.
There are several ways to build a conservative numerical scheme for conservation laws
(2.1.1). A common approach is based on the integration of (2.1.1) in space over the
control cell Ci = [xi− 1

2
, xi+ 1

2
] and in time from tn to tn+1. This gives∫

Ci

u(x, tn+1) dx =

∫
Ci

u(x, tn) dx+

∫ tn+1

tn

f(u(xi− 1
2
, t)) dt−

∫ tn+1

tn

f(u(xi+ 1
2
, t)) dt.

(2.3.3)
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Equation (2.3.3) is based on the integral form of the conservation laws (2.1.1). Di-
viding (2.3.3) by the mesh width h, one gets

1

h

∫
Ci

u(x, tn+1) dx =
1

h

∫
Ci

u(x, tn) dx− 1

h

∫ tn+1

tn

f(u(xi+ 1
2
, t)) dt

+
1

h

∫ tn+1

tn

f(u(xi− 1
2
, t)) dt.

(2.3.4)

This latter equation can be written as

Un+1
i = Un

i −
k

h

(
F (Un

i , U
n
i+1)− F (Un

i−1, U
n
i )
)
, (2.3.5)

where F (Un
i , U

n
i+1) and Un

i are the average of f(u(xi− 1
2
, t)) on [tn, tn+1] and u on Ci,

respectively. The scheme (2.3.5) is in the form (2.3.2), with p = 0 and q = 1. Hence,
it is conservative.

Another important notion for a numerical scheme is consistency. Given a partial
differential equation Pu = f and a finite difference scheme, Pk,hv = f , we say that
the finite difference scheme is consistent with the partial differential equation if for
any smooth function φ

Pφ− Pk,hφ→ 0 as ∆t,∆x→ 0. (2.3.6)

Consistency is a very important property for a numerical scheme. In fact, the Lax-
Wendroff theorem [63] states that if a solution of a conservative and consistent numer-
ical scheme converges when h → 0 and k → 0, then it converges to a weak solution
of the conservation law. However, the theorem does not guarantee the convergence
which requires some notion of stability. It also does not guarantee the uniqueness
which requires some entropy condition.

There are several conservative and consistent numerical methods proposed in the
literature for the numerical simulation of conservation laws. Among these methods,
one has the Modified Lax-Friedrichs method proposed in [87]. This scheme reads for
the conservation laws (2.1.1) as

un+1
i =

1

4
(uni−1 + 2uni + uni+1)− k

h

(
f(uni+1)− f(uni−1)

)
. (2.3.7)

It is shown in [87] that this scheme is consistent with the PDE (2.1.1) and it satisfies
the entropy inequality.

Bouchut [12] introduced a numerical scheme for the simulation of the pressuleress
gas system, i.e. Model III in Bouchut’s hierarchy [10]. The same scheme was investi-
gated by Boudin [13] in the form of an upwind scheme for the simulation of the same
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problem. This scheme reads for (III) as

αn+1
i =αni −

k

h

(
αni (uni )+ − αni−1(uni−1)+

)
− k

h

(
αni+1(uni+1)− − αni (uni )−

)
,

qn+1
i =qni −

k

h

(
qni (uni )+ − qni−1(uni−1)+

)
− k

h

(
qni+1(uni+1)− − qni (uni )−

)
,

un+1
i =

qn+1
i

αn+1
i

, if αn+1
i 6= 0,

(2.3.8)

where qhi = αhi u
h
i , a+=max(0, a) and a−=min(0, a) for a real a.

Another numerical scheme based on the Transport-Collapse technique is intro-
duced in [9] for system (III). The Transport-Collapse method is introduced by Brenier
[18] for the numerical resolution of conservation laws (2.1.1) with conservative and
monotone schemes. It writes for system (III) as

αn+1
i = αni −

k

h

(
− αni+1(uni+1)− + αni (uni )+ + αni (uni )− − αni−1(uni−1)+

)
,

αn+1
i un+1

i = αni u
n
i −

k

h

(
αni+1(uni+1)2

− + αni (uni )2
+ − αni (uni )2

− − αni−1(uni−1)2
+

)
,

un+1
i = uni +

k

h

(αni+1(uni+1)−

αn+1
i

(uni+1 − uni ) +
αni−1(uni−1)+

αn+1
i

(uni−1 − uni )
)
.

(2.3.9)

Note that in (2.3.8) and (2.3.9) the discrete velocity uni is defined for αni 6= 0.
Boudin [13] proposed to take u = 0 if α = 0. In practice, one can compute u by using
the relation

uni =


qni
αni

if |αni | > eps,

0 otherwise,

(2.3.10)

where eps is taken very small (10−10 to 10−15 ). Under the discrete Courant-Friedrichs-
Levy (CFL) condition |uni |k 6 h, the schemes (2.3.8) and (2.3.9) preserve the posi-
tivity of the volume fraction α, satisfy the maximum principle, the total diminishing
property and the entropy inequality [13, 9].



Chapter 3

Eulerian droplet model: Delta
shocks and solution of the
Riemann problem

In this chapter, we focus on the mathematical analysis of the Eulerian droplet
model in its simplest form. We first discuss its hyperbolicity and the mechanisms
of blowup in its solution. We then solve the Riemann problems associated to the
non-conservative and conservative forms. Finally, numerical tests are performed for
comparison with theoretical results.

3.1 Droplet model: mathematical analysis

We consider the Eulerian model for air-particle flow in the one-dimensional case:{
∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) = KDα(ua − u),

(E)

where α > 0 and u are the volume fraction and velocity of the particles, respectively;
KD is the drag coefficient between the air and the particles; and ua is the velocity of
the air. For smooth solutions, the second equation of (E) is equivalent to

α(∂tu+ u∂xu) + u(∂tα + ∂x(αu)) = KDα(ua − u). (3.1.1)

Using the first equation of (E) in (3.1.1) and simplifying by α 6= 0, one obtains

∂tu+ u∂xu = KD(ua − u). (3.1.2)

This latter equation can be written as

∂tu+ ∂x

(
u2

2

)
= KD(ua − u). (B)

22
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Hence, a smooth solution (α, u) with α 6= 0 of (E) is also a solution to the problem
∂tα + ∂x(αu) = 0,

∂tu+ ∂x

(
u2

2

)
= KD(ua − u).

(E’)

One easily shows that any smooth solution (α, u) of (E’) is also a solution to (E).
In case KD ≡ 0, equation (B) reduces to the classical inviscid Burgers equation.

This latter is studied in most textbooks on conservation laws [66, 46, 81, 64, 67]. It is
well known that the solution of the inviscid Burgers equation develops discontinuities
in finite time provided that the initial condition has negative slope somewhere in the
domain. The characteristic curves associated to the inviscid Burgers equation are
straight lines and the solution u is constant along these characteristic curves. The
solution of the Riemann problem is either a shock wave separating two constant states
or a rarefaction wave.

Still regarding the case KD ≡ 0, system (E) can be seen as the pressureless gas
equations [9] or as the sticky particle system that arises in the modelling of particles
hitting and sticking to each other to explain the formation of large scale structures
in the universe [36, 18]. The pressureless gas equations have been studied by several
authors [10, 9, 23, 11, 82, 70]. In particular, the existence of measure solutions for the
Riemann problem, was first presented by Bouchut in [9]. The characteristic curves
associated to the pressureless gas equations are straight lines. The solution of the
Riemann problem is either a delta shock wave, a two-contact-discontinuity solution
with vacuum state or a contact discontinuity [82]. The Rankine-Hugoniot conditions
are linear ordinary differential equations (ODEs) [82] instead of algebraic equations
as in classical bounded shocks.

In case KD > 0, system (E) is known as the Eulerian droplet model [15]. Note
that here the gravity and buoyancy forces are neglected since they are three orders
of magnitude lower than the drag force for droplets or solid particles solid in air
[15]. These forces could be important in some others cases. The Eulerian droplet
model corresponds to a dispersed phase subsystem in its simplest form, for instance a
multi-phase system for droplets or particles suspended in a carrier fluid. This model
is successfully used for the prediction of droplets impingement on airfoils and ice
accretion on airplane wings during in-flight icing events [15, 17, 75, 6, 50]. Extension
to particle flows in airways was more recently attempted [14, 16].

In the present study, we are interested in the theoretical analysis of equation
(B) and systems (E’) and (E). In reality, the drag coefficient KD is a function of
the droplet (particle) Reynolds number (see [15]) but for performing the analysis, we
assume that KD and the air velocity ua are constant. In the following, system (E)
will also be referred to as Model E, and equation (B) as the inviscid Burgers equation
with source term.
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3.1.1 Hyperbolicity and shortcomings

The Eulerian droplet model (E) is a first-order system of conservation laws for
the volume fraction α and the momentum αu. For smooth solutions, it is equivalent
to system (E’) which can be written in quasilinear form as(

α
u

)
t

+

(
u α
0 u

)(
α
u

)
x

=

(
0

KD(ua − u)

)
. (3.1.3)

The Jacobian matrix (see section 2.1 for the definition) has one double eigenvalue λ =
u and is not diagonalizable. Hence, the Eulerian droplet model is weakly hyperbolic.
Solutions of weakly hyperbolic systems can encounter many difficulties, particularly
in terms of boundedness. To illustrate one recurrent difficulty with boundedness,
consider the following linear first-order system of PDEs

(
α
u

)
t

+

(
µ β
0 µ

)(
α
u

)
x

= 0, (x, t) ∈ R× R+,

(α, u)(x, 0) = (α0, u0)(x), ∀x ∈ R,
(3.1.4)

where µ, β 6= 0, are constant. System (3.1.4) is weakly hyperbolic with one double
eigenvalue λ = µ. One can first solve the second equation of (3.1.4) by the method
of characteristics to find

u(x, t) = u0(x− µt) (3.1.5)

and then, considering −β∂xu as a source term, we calculate the solution of the first
equation

α(x, t) = α0(x− µt)− βtu′0(x− µt). (3.1.6)

We immediately note that α is not defined in the classical sense at points where the
initial condition u0 is not differentiable. For instance, if u0 is a Heaviside function
then α would contain a Dirac mass. These kind of shortcomings are often present in
the solution of weakly hyperbolic problems, such as the pressureless gas system [82].

3.1.2 Loss of regularity for a smooth initial solution

Another difficulty with the solution of hyperbolic systems is the loss of regularity
for smooth initial solution. Here, we analyze the loss of regularity for a smooth
solution (α, u) of system (E), satisfying the initial condition

(α, u)(x, 0) = (α0, u0)(x), α0, u0 ∈ C1(R). (3.1.7)

Characteristic curves χ = χ(x, t; s) associated to system (E) are the solutions of
the ODE 

dχ

ds
(x, t; s) = u

(
χ(x, t; s), s

)
, s > 0,

χ(x, t; t) = x.
(3.1.8)
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Recall that for a smooth solution (α, u) with α 6= 0, the second equation of (E) is
equivalent to (3.1.2), which can be written along the characteristics χ = χ(x, t; s) as

Du

dt
+KD(u− ua) = 0, (3.1.9)

where D
dt

= ∂
∂t

+ u ∂
∂x

is the material derivative. An integration with respect to t of
(3.1.9) from 0 to s gives

u
(
χ(x, t; s), s

)
= ua +

(
u0(χ(x, t; 0))− ua

)
e−KDs, (3.1.10)

in particular for s = t, we get

u
(
χ(x, t; t), t

)
= u(x, t) = ua +

(
u0(χ(x, t; 0))− ua

)
e−KDs. (3.1.11)

By substituting (3.1.10) in (3.1.8) and then integrating from 0 to s, we get

χ(x, t; s) = χ(x, t; 0) + uas+
(u0(χ(x, t; 0))− ua)(1− e−KDs)

KD

. (3.1.12)

We denote χ(x, t; 0) by x0 (foot of the characteristic χ(x, t; s)). Equations (3.1.11)
and (3.1.12) can be written now as

u
(
χ(x, t; t), t

)
= u(x, t) = ua +

(
u0(x0))− ua

)
e−KDt (3.1.13)

and

χ(x, t; s) = x0 + uas+
u0(x0)− ua

KD

(1− e−KDs), (3.1.14)

respectively. The first equation of (E) reads along the characteristics χ = χ(x, t; s)
as

Dα

dt
= −α∂xu. (3.1.15)

Using (3.1.14) and the initial condition in (3.1.8), we get

x = χ(x, t; t) = x0 + uat+
u0(x0)− ua

KD

(1− e−KDt). (3.1.16)

Hence, x can be viewed as a function of the foot x0 of the characteristic and time t.
Thus, ∂xu can be written as

∂xu =
∂u

∂x0

∂x0

∂x
+
∂u

∂t

∂t

∂x
. (3.1.17)

Now, consider the map h from R× R+
0 to R× R+

0 , defined by

h : (χ(x, t; 0), t) = (x0, t) 7→ (χ(x, t; t), t) = (x, t).
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This function is bijective as long as the characteristics do not intersect. Its Jacobian
is given by

Jh(x0, t) =

( ∂x
∂x0

∂x
∂t

∂t
∂x0

∂t
∂t

)
=

(
∂x
∂x0

∂x
∂t

0 1

)
. (3.1.18)

The inverse of the Jacobian Jh is given by(
Jh(x0, t)

)−1
=

1
∂x
∂x0

(
1 −∂x

∂t

0 ∂x
∂x0

)
. (3.1.19)

The Jacobian of the inverse of h is given by

Jh−1(x, t) =

(
∂x0

∂x
∂x0

∂t
∂t
∂x

∂t
∂t

)
=

(
∂x0

∂x
∂x0

∂t
∂t
∂x

1

)
(3.1.20)

As
(
Jh(x0, t)

)−1
= Jh−1(x, t), we obtain by identification that

∂t

∂x
= 0 and

∂x0

∂x
=

1
∂x
∂x0

.

Hence, (3.1.17) reduces to

∂xu =
∂u

∂x0

1
∂x
∂x0

. (3.1.21)

From (3.1.13) and (3.1.16), we get

∂u

∂x0

= u′0(x0)e−KDt and
∂x

∂x0

=
KD + u′0(x0)(1− e−KDt)

KD

, (3.1.22)

respectively. Hence, (3.1.21) gives

∂xu =
KDe

−KDtu′0(x0)

KD + (1− e−KDt)u′0(x0)
. (3.1.23)

Substituting (3.1.23) in (3.1.15), we obtain

Dα

dt
= − KDαe

−KDtu′0(x0)

KD + (1− e−KDt)u′0(x0)
. (3.1.24)

For α 6= 0, one can divide by α and integrate (3.1.24) on both sides in time from 0
to t to obtain

log
(
α(x, t)

)
= − log

(
KD + (1− e−KDt)u′0(x0)

)
+ log(KD) + log

(
α0(x0)

)
.

This last equality leads to

α(x, t) =
KDα0(x0)

KD + (1− e−KDt)u′0(x0)
. (3.1.25)

We have the following result:
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Proposition 3.1.1. (Loss of regularity)
Let (α, u) be a smooth solution of (E), satisfying the initial conditions (3.1.7). Then
α and ∂xu blow up if and only if there exists x0 in the domain such that

u′0(x0) < −KD. (3.1.26)

Moreover, the blowup occurs at

t = inf
u′0(x0)<−KD

{
−

log(1 + KD
u′0(x0)

)

KD

}
. (3.1.27)

Proof: As α0 ∈ C1(R) then α and ∂xu blow up if and only if

KD + (1− e−KDt)u′0(x0) = 0, for some x0 ∈ R. (3.1.28)

As KD > 0 and 1− e−KDt ≥ 0 for any t ≥ 0, then (3.1.28) holds if and only if

u′0(x0) < 0 and 1− e−KDt =
−KD

u′0(x0)
⇐⇒ t = −

log(1 + KD
u′0(x0)

)

KD

. (3.1.29)

Since 1 − e−KDt < 1 for any t ≥ 0, we obtain u′0(x0) < −KD. The smallest time
satisfying (3.1.29) is given by (3.1.27).

Remark 3.1.2. i) Proposition 3.1.1 stipulates that the volume fraction α and the
gradient of the velocity ∂xu blow up simultaneously if and only if (3.1.26) holds.
Inequality (3.1.26) is also a necessary and sufficient condition for the characteristics
to intersect. In fact, two characteristics χ1(x, t; s) and χ2(x, t; s) with distinct foots
x1 and x2, respectively, intersect if and only if there is s∗ > 0 such that χ1(x, t; s∗) =
χ2(x, t; s∗). Using (3.1.14), the equality χ1(x, t; s∗) = χ2(x, t; s∗) gives

x2 − x1 +
(1− e−KDs)(u0(x2)− u0(x1))

KD

= 0

which implies (since x1 6= x2 and 1− e−KDs 6= 0 for all s > 0) that

u0(x2)− u0(x1)

x2 − x1

=
−KD

1− e−KDs
.

Using the fact that 0 < 1 − e−KDs < 1 for all s > 0 and KD > 0, this last equation
reduces to

u0(x2)− u0(x1)

x2 − x1

< −KD. (3.1.30)
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As u0 ∈ C1(R), the mean value theorem ensures the existence of a point x0 between
x1 and x2 such that

u′0(x0) =
u0(x2)− u0(x1)

x2 − x1

< −KD. (3.1.31)

ii) The condition (3.1.26) for loss of regularity also applies to system (E’) and equa-
tion (B).

The blowup of ∂xu leads to a discontinuity in the velocity. The blowup of α
leads to an unbounded volume fraction. Hence, the solution of (E) is not bounded in
regions where the characteristic curves meet.

3.2 Riemann problem for the inviscid Burgers equa-

tion with source term

Recall that the inviscid Burgers equation with source term reads as

∂tu+ ∂x

(
1

2
u2

)
= KD(ua − u), (B)

with an initial condition
u(x, 0) = u0(x), (3.2.1)

where u0 is a piecewise smooth function. Equation (B) can be written along char-
acteristics curves (3.1.8) as in (3.1.9). The latter has solution given by (3.1.13). We
showed in subsection 3.1.2 that a solution of (B) loses its regularity if and only if
(3.1.26) is satisfied. To better understand the propagation of discontinuities in the
solution, we look for the solution of the Riemann problem, i.e. the solution of problem
(B) and (3.2.1), where u0 satisfies

u0(x) =

{
u−, x < 0,

u+, x > 0,
(3.2.2)

with constants u−, u+ ∈ R. Substituting (3.2.2) in (3.1.14), one obtains

χ(x, t; s) =


x0 + uas+

(ua − u−)(e−KDs − 1)

KD

, x0 < 0,

x0 + uas+
(ua − u+)(e−KDs − 1)

KD

, x0 > 0.

(3.2.3)

Hence, the characteristic curves for (B) are no longer straight lines, but only asymp-
totic to straight lines, and the solution u given by (3.1.13) is no longer constant along
these characteristic curves, as opposed to the classical Burgers equation.
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3.2.1 Shock waves

We first assume that u− > u+. In this case, the characteristics intersect since
(3.1.26) is satisfied. Some characteristic curves are represented in Figure 3.1 for three
different values of the air velocity ua. The solution is discontinuous. By the method

Figure 3.1: Characteristic curves on the x-t plane for u− = 1.0, u+ = 0.5 and
KD = 1.0. Left: ua = 1.5, middle: ua = 0.75 and right: ua = 0.2.

of characteristics, the solution is a shock wave, i.e. a smooth curve Γ = {(x, t) :
x = ξ(t), t ≥ 0} in the x-t plane moving at some speed σ(t) = ξ′(t), separating left

and right states denoted by ul(x, t) and ur(x, t), respectively. As we are considering
solutions that may be discontinuous, these should be taken in the weak sense. We
have the following definition.

Definition 3.2.1. We say that u is a weak solution of (B) and (3.2.1) if∫ ∞
0

∫ ∞
−∞

(
uψt +

u2

2
ψx +KD(ua − u)ψ

)
dxdt = −

∫ ∞
−∞

u0(x)ψ(x, 0) dx, (3.2.4)

for all test functions ψ ∈ C∞0 (R× R+).

Notice that a weak solution u need not be differentiable or even continuous to sat-
isfy (3.2.4). Let u be a function regular on both sides of the curve Γ, while being
discontinuous across Γ. We have the following result.

Theorem 3.2.2. The function u is a weak solution of (B) and (3.2.1) if and only if
the following properties hold:

i) u satisfies (B) in the classical sense on both sides of the curve x = ξ(t);

ii) u(x, 0) = u0(x) for all x ∈ R;

iii) the following Rankine-Hugoniot condition is satisfied:(
ur(t)− ul(t)

)
σ(t) =

1

2

(
ur(t)

2 − ul(t)2
)
, (3.2.5)

where ul(t) and ur(t) are the limit of the solution u when (x, t) approaches
(ξ(t), t) from the left and the right, respectively.
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Proof: Let ψ ∈ C∞0 (R× R+). We have∫ ∞
0

∫ ∞
−∞

(
uψt +

1

2
u2ψx +KD(u− ua)ψ

)
dxdt =∫ ∞

0

∫ ξ(t)

−∞

(
(uψ)t +

1

2
(u2ψ)x

)
dxdt+

∫ ∞
0

∫ ∞
ξ(t)

(
(uψ)t +

1

2
(u2ψ)x

)
dxdt

−
∫ ∞

0

∫ ξ(t)

−∞

(
ut +

1

2
(u2)x)−KD(u− ua)

)
ψ dxdt

−
∫ ∞

0

∫ ∞
ξ(t)

(ut +
1

2
(u2)x)−KD(u− ua)

)
ψ dxdt.

Applying Green’s formula in the first two integrals on the r.h.s, we obtain∫ ∞
0

∫ ∞
−∞

(
uψt +

1

2
u2ψx +KD(u− ua)ψ

)
dxdt =∫

x=ξ(t)

ψ(ξ(t), t)
(
− ul(t) dx+

1

2
ul(t)

2 dt
)
−
∫ ∞
−∞

u(0, x)ψ(x, 0) dx

−
∫
x=ξ(t)

ψ(ξ(t), t)
(
− ur(t) dx+

1

2
ur(t)

2 dt
)

−
∫ ∞

0

∫ ξ(t)

−∞

(
ut +

1

2
(u2)x)−KD(u− ua)

)
ψ dxdt

−
∫ ∞

0

∫ ∞
ξ(t)

(ut +
1

2
(u2)x)−KD(u− ua)

)
ψ dxdt.

Using the fact that dx = ξ′(t)dt = σ(t)dt on the curve x = ξ(t) and reorganizing this
last equation, we end up with∫ ∞

0

∫ ∞
−∞

(
uψt +

1

2
u2ψx +KD(u− ua)ψ

)
dxdt =∫ ∞

0

(1

2

(
ul(t)

2 − ur(t)2
)

+
(
ur(t)− ul(t)

)
σ(t)

)
ψ(ξ(t), t) dt

−
∫ ∞

0

∫ ξ(t)

−∞

(
ut +

1

2
(u2)x)−KD(u− ua)

)
ψ dxdt

−
∫ ∞

0

∫ ∞
ξ(t)

(ut +
1

2
(u2)x)−KD(u− ua)

)
ψ dxdt

−
∫ ∞
−∞

u(0, x)ψ(x, 0) dx. (3.2.6)

1) If u is a weak solution of (B) and (3.2.1) then for all ψ ∈ C∞0 (R× R+) we get,
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by substituting (3.2.6) in (3.2.4), that

−
∫ ∞
−∞

u0(x)ψ(x, 0) dx =

∫
x=ξ(t)

(1

2

(
ul(t)

2 − ur(t)2
)

+ ur(t)− ul(t))σ(t)
)
ψ(ξ(t), t) dt

−
∫ ∞

0

∫ ξ(t)

−∞

(
ut +

1

2
(u2)x)−KD(u− ua)

)
ψ dxdt

−
∫ ∞

0

∫ ∞
ξ(t)

(ut +
1

2
(u2)x)−KD(u− ua)

)
ψ dxdt

−
∫ ∞
−∞

u(0, x)ψ(x, 0) dx. (3.2.7)

Case 1: if ψ(x, 0) = ψ(ξ(t), t) = 0, then (3.2.7) reduces to

0 =

∫ ∞
0

∫ ξ(t)

−∞

(
ut +

1

2
(u2)x −KD(u− ua)

)
ψ dxdt

+

∫ ∞
0

∫ ξ(t)

−∞

(
ut +

1

2
(u2)x −KD(u− ua)

)
ψ dxdt,

which implies property (i) because ψ is arbitrary.
Case 2: if ψ(ξ(t), t) = 0 for all t ≥ 0 then by using (i), (3.2.7) reduces to

−
∫ ∞
−∞

u0(x)ψ(x, 0) dx = −
∫ ∞
−∞

u(x, 0)ψ(x, 0) dx

which implies that u0(x) = u(x, 0) for all x ∈ R. Hence, (ii) holds.
Case 3: if ψ(x, 0) = 0 for all x ∈ R then by using (i), (3.2.7) reduces to

0 =

∫ ∞
0

((
ur(t)− ul(t)

)
σ(t)− 1

2

(
u2
r(t)− u2

l (t)
))
ψ(ξ(t), t) dt

which implies that (iii) is satisfied.
2) Conversely, if (i), (ii) and (iii) are satisfied then (3.2.6) gives rise to∫ ∞

0

∫ ∞
−∞

(
uψt +

1

2
u2ψx +KD(u− ua)ψ

)
dxdt = −

∫ ∞
−∞

u0(x)ψ(x, 0) dx,

for any ψ ∈ C∞0 (R× R+), i.e. the function u is a week solution of (B) and (3.2.1).
This completes the proof of the theorem.

We now return to the Riemann problem. A solution of the Riemann problem satisfies
(B) in the classical sense on both sides of Γ. Hence, the left and right states are
determined from (3.1.13), that is

ul(x, t) = ua + (u− − ua)e−KDt, (3.2.8)
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ur(x, t) = ua + (u+ − ua)e−KDt, (3.2.9)

respectively. These left and right states depend only on time. Therefore, the limit
states are given by ul(t) = ul(x, t) and ur(t) = ur(x, t). The propagation speed σ
calculated from the Rankine-Hugoniot conditions (3.2.5) is given by

σ(t) =
1

2

(
ul(t) + ur(t)

)
= ua +

1

2

(
u− + u+ − 2ua

)
e−KDt, (3.2.10)

and satisfies

ul(t)− σ(t) = σ(t)− ur(t) =
u− − u+

2
e−KDt > 0, ∀t ≥ 0, (3.2.11)

which leads to the inequality

ul(t) > σ(t) > ur(t). (3.2.12)

Remark 3.2.3. i) Inequality (3.2.12) is nothing else but the Lax entropy condi-
tion for the inviscid Burgers equation.
ii) We have that

lim
t→∞

(
ul(t)− σ(t)

)
= lim

t→∞

(
σ(t)− ur(t)

)
= 0. (3.2.13)

This means that the Lax entropy condition (3.2.12) for the inviscid Burgers equation
with source term degenerates as time goes to infinity. This degeneracy is not observed
with the classical inviscid Burgers equation.

The shock curve for the inviscid Burgers equation with source term (B) is then given
by

ξ(t) =

∫ t

0

σ(s)ds = uat+

(
2ua − (u− + u+)

)(
e−KDt − 1

)
2KD

. (3.2.14)

We reach the following result.

Corollary 3.2.4. If u− > u+ the entropy solution of the Riemann problem for the
inviscid Burgers equation with source term (B) and (3.2.2) is given by

u(x, t) =


ul(x, t), x < ξ(t),

σ(t), x = ξ(t),

ur(x, t), x > ξ(t),

(3.2.15)

where ul, ur are given by (3.2.8) and (3.2.9), respectively, σ is given by (3.2.10) and
ξ is given by (3.2.14).
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Figure 3.2: Characteristic curves on the x-t plane for u− = 0.5, u+ = 1.0 and
KD = 1.0. Left: ua = 1.5, middle: ua = 0.75 and right: ua = 0.2.

3.2.2 Rarefaction waves

We now assume that u− < u+. We draw some characteristic curves. They are
represented in Figure 3.2. In this case, the characteristics do not intersect but do not
cover the whole x-t plane. The uncovered region S is delimited by the curves

X1(t) =

∫ t

0

ul(s)ds = uat+
(ua − u−)(e−KDt − 1)

KD

(3.2.16)

and

X2(t) =

∫ t

0

ur(s)ds = uat+
(ua − u+)(e−KDt − 1)

KD

. (3.2.17)

The characteristics fill the whole domain except the region S. By the method of
characteristics, the solution of the Riemann problem outside S is given by (3.2.8) if
x < X1(t) and by (3.2.9) if x > X2(t). To find the solution inside S, we have to cover
this region by a family of characteristics starting at the origin, i.e. to solve (3.1.8)
with the initial condition χ(x, t; 0) = 0. Figure 3.3 shows the region S (delimited
by x = X1(t) (in blue) and x = X2(t) (in red)) filled with characteristics (in black)
starting all at the origin. From (3.1.10), we obtain the following value of u at the foot
x0 of the characteristics

u0(x0) = u0(χ(x, t; 0)) = ua +
(
u(χ(x, t; s), s)− ua

)
eKDs. (3.2.18)

Substituting (3.2.18) in (3.1.14) (recall that all the characteristics belonging to S
start from the origin x0 = 0), one obtains

χ(x, t; s) = uas+
ua +

(
u(χ(x, t; s), s)− ua

)
eKDs − ua

KD

(
1− e−KDs

)
= uas+

(
u(χ(x, t; s), s)− ua

)
KD

(
eKDs − 1

)
.

(3.2.19)
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Figure 3.3: Region S filled with characteristic curves stating at the origin.
u− = 0.5, u+ = 1.0, KD = 1.0 and ua = 0.2.

Hence,

u(χ(x, t; s), s) = ua +
KD

(
χ(x, t; s)− uas

)
eKDs − 1

. (3.2.20)

At s = t, we obtain

u(x, t) = ua +
KD

(
x− uat

)
eKDt − 1

. (3.2.21)

We define the smooth function u on R× R+ by

u(x, t) = ua +
KD(x− uat)
eKDt − 1

. (3.2.22)

The following result holds.

Theorem 3.2.5. If u− < u+ then the solution of Riemann problem for the inviscid
Burgers equation with source term (B) is given by

u(x, t) =


ul(x, t), x < X1(t),

u(x, t), X1(t) ≤ x ≤ X2(t),

ur(x, t), x > X2(t),

(3.2.23)

where ul, ur are given by (3.2.8) and (3.2.9), respectively, X1, X2 are given by (3.2.16)
and (3.2.17), respectively, and u is given by (3.2.22).

Proof: The functions ul, ur are smooth and satisfy (B). The function u(x, t) is
continuous at points X1(t) and X2(t) for t > 0. In fact, by replacing X1(t) (resp.
X2(t)) in (3.2.22), one gets ul (resp. ur(t)). Furthermore u(x, t) is differentiable for
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t > 0 and we have

∂tu+ ∂x(
1

2
u2) =

−KDua
(
eKDt − 1

)
−KD

2
(
x− uat

)
eKDt(

eKDt − 1
)2 +

KD

eKDt − 1

(
ua +

KD

(
x− uat

)
eKDt − 1

)
=
−KDua

(
eKDt − 1

)
−KD

2
(
x− uat

)
eKDt(

eKDt − 1
)2 +

KDua
(
eKDt − 1

)
+KD

2
(
x− uat

)(
eKDt − 1

)2

=
−KD

2
(
x− uat

)(
eKDt − 1

)(
eKDt − 1

)2

= KD

(
ua −

(
ua +

KD(x− uat)
eKDt − 1

))
= KD

(
ua − u

)
.

Hence, the function u defined in (3.2.23) satisfies (B) and (3.2.2).

In summary, the inviscid Burgers equation with source term (B) develops discon-
tinuities if and only if the slope of the initial condition u0 is sufficiently negative with
respect to the drag coefficient KD somewhere in the domain. This is a generalization
of the condition of loss of regularity for the classical inviscid Burgers equation. The
characteristic curves associated to the inviscid Burgers equation with source term are
no longer straight lines but are curves that tend asymptotically to straight lines, as
time goes to infinity. The solution of the Riemann problem is still a shock or rarefac-
tion wave, depending on the sign of u+−u−. The Lax entropy condition degenerates
as time goes to infinity. The left and right states are no longer constant. Instead,
the states ul and ur depend on time (only) while asymptotically approaching ua as
time goes to infinity on both sides of the shock. These are the main differences with
the inviscid Burgers equation where the strength of the shock does not weaken and
the Lax entropy condition remains satisfied as time goes to infinity. Thus, the zeroth
order source term acts as a relaxation force preventing shocks from occurring if the
slope of u is not sufficiently negative, and weakening shocks as time grows.

3.3 Riemann problem for system E’

In this section, we are interested in system (E’) which can be written as
∂tα + ∂x(αu) = 0,

∂tu+ ∂x

(
u2

2

)
= KD(ua − u),

(E’)
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satisfying the following initial condition(
α, u

)
(x, 0) =

(
α0, u0

)
(x), (3.3.1)

where α0 and u0 are piecewise smooth functions. We are interested in system (E’)
because any smooth solution of it is also a solution to the Eulerian droplet model (E).
This implication is an equivalence when one is far away vacuum states, i.e. for α 6= 0.
Note that the second equation of (E’) is exactly the inviscid Burgers equation with
source term (B). This is one of the reasons why we studied the latter equation in the
previous section. Recall that a solution of (E’) develops discontinuities if and only
if (3.1.26) is satisfied. To understand the propagation of discontinuities in (E’), we
look for the solution of the Riemann problem, i.e. the solution of problem (E’) and
(3.3.1), where (α0, u0) satisfies

(
α0, u0

)
(x) =

{
(α−, u−), x < 0,

(α+, u+), x > 0,
(3.3.2)

with constants α−, α+ ∈ R+ and u−, u+ ∈ R.
Recall that the solution u of the second equation of (E’) is given along the

characteristics (3.1.8) by

u(x, t) = ua +
(
u0(x0)− ua

)
e−KDt, (3.3.3)

where x0 (foot of the characteristic χ(x, t; s)) can be determined from (3.1.16) and is
given by the implicit equation

x0 = x− uat+

(
u0(x0)− ua

)(
e−KDt − 1

)
KD

. (3.3.4)

3.3.1 Contact discontinuity

Assume that u− = u+ = u∗. Then u0(x) = u∗ for all x ∈ R, and (3.3.4) reduces
to

x0 = x− uat+
(u∗ − ua)(e−KDt − 1)

KD

. (3.3.5)

Using this last equality in (3.3.3), we get the solution u given by

u(x, t) = ua +
(
u∗ − ua

)
e−KDt. (3.3.6)

The first equation of (E’) then becomes

∂tα + ∂x(αu) = ∂tα + u∂xα = 0, (3.3.7)
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which can be written along the characteristics as Dα
dt

= 0, has the solution

α(x, t) = α0(x0). (3.3.8)

Again, using (3.3.2) and (3.3.5), we find

α(x, t) =


α−, if x < uat+

(
ua − u∗

)(
e−KDt − 1

)
KD

,

α+, if x > uat+

(
ua − u∗

)(
e−KDt − 1

)
KD

.

(3.3.9)

Hence, if u− = u+ the solution of the Riemann problem (E’) and (3.3.2) is given by

(α, u)(x, t) =


(
α−, ua +

(
u− − ua

)
e−KDt

)
, if x < uat+

(
ua − u−

)(
e−KDt − 1

)
KD

,

(
α+, ua +

(
u− − ua

)
e−KDt

)
, if x > uat+

(
ua − u−

)(
e−KDt − 1

)
KD

.

(3.3.10)
Note that u is continuous across the curve

x = ξ(t) = uat+
(ua − u∗)(e−KDt − 1)

KD

, (3.3.11)

while α might be discontinuous across this curve. This type of solution is called a
contact discontinuity.

3.3.2 Delta shock waves

Now assume that u− > u+. In this case, the characteristics intersect. As pointed
out at the end of the section 3.1.2, the solution u is discontinuous and α is not
bounded. As in [82], we look for a solution (α, u) of the form

α(x, t) = α0(x, t) + ω(t)δ(x− ξ(t)), u(x, t) = u0(x, t), (3.3.12)

where α0, u0 are smooth functions on both sides of a curve

Γ = {(x, t) : x = ξ(t), t ≥ 0},

while being discontinuous across Γ, and ω is a smooth function defined on R+
0 and

satisfying the initial condition

ω(0) = ω0 ∈ R+
0 . (3.3.13)
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We call δ-shock, a pair of distributions (α, u) as given in (3.3.12). As in [82], we
define a weighted δ-function ω(t)δξ supported on the curve Γ as follows

〈ω(t)δξ, ψ〉 =

∫ ∞
0

ω(t)ψ(ξ(t), t)dt, (3.3.14)

for all test function ψ ∈ C∞0 (R× R+). We also define the following duality products
between the δ-shock (α, u) and test functions in C∞0 (R× R+):

〈α, ψ〉 =

∫ ∞
0

∫ ∞
−∞

α0ψ dxdt+ 〈ω(t)δξ, ψ〉,

〈αu, ψ〉 =

∫ ∞
0

∫ ∞
−∞

α0u0ψ dxdt+ 〈ω(t)ξ′(t)δξ, ψ〉.
(3.3.15)

We introduce the following definition.

Definition 3.3.1. We say that a δ-shock (α,u) is a weak solution of (E’) and
(3.3.1) if
〈α, ψt〉+ 〈αu, ψx〉 = −

∫ ∞
−∞

α0(x)ψ(x, 0) dx− ω0ψ(ξ(0), 0),∫ ∞
0

∫ ∞
−∞

(uψt +
1

2
u2ψx) dxdt = −

∫ ∞
0

∫ ∞
−∞

KD(ua − u)ψ dxdt−
∫ ∞
−∞

u0(x)ψ(x, 0) dx,

(3.3.16)
hold for all test functions ψ ∈ C∞0 (R× R+).

The above definition of δ-shock was first used by Sheng [82] to construct δ-shock
solutions of the Riemann problem for the pressureless gas system. The classical
Rankine-Hugoniot conditions of shocks have been generalized to those of δ-shocks to
describe the relationship among the propagation speed, the location and the weight of
δ-shocks. The Lax entropy condition is used to ensure the uniqueness of the solution
[82]. Since the volume fraction may develop a Dirac measure in finite time, it is natural
to seek for solution of (E’) and (3.3.1) in the sense of measures, i.e. in the sense of
distributions which are signed measures. The Cauchy problem for the pressureless
gas system was solved in [26] using measure solutions in the space of signed Borel
measures on R, denotedM(R). The entropy inequality is not sufficient to obtain the
uniqueness of measure solutions. For initial conditions taken in the space of bounded
measurable functions, the uniqueness of measure solutions to the pressureless gas
system was proven in [93] with the Oleinik entropy condition. For initial data in the
space of measures, it was proven in [68] that the Oleinik condition is not sufficient
to ensure uniqueness for measure solutions but it has to be complemented with a
cohesion condition. The δ-shock solutions are particular measure solutions defined in
[26], and belong toM(R). We use the approach of Sheng [82] to construct a δ-shock
solution of the Riemann problem for (E’). We have the following result.
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Theorem 3.3.2. A δ-shock (α, u) is a weak solution of (E’) and (3.3.1) if and only
if the following properties are satisfied:

i) (α0, u0) satisfies (E’) in the classical sense on both sides of the curve Γ;

ii)
(
α, u

)
(x, 0) =

(
α0, u0

)
(x) for all x ∈ R;

iii) the following system of differential-algebraic equation (DAE) in (ω, σ) is satis-
fied on Γ:

dω

dt
(t) =

(
αr(t)− αl(t)

)
σ(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
,(

ur(t)− ul(t)
)
σ(t) =

1

2

(
ur(t)

2 − ul(t)2
)
,

(3.3.17)

where αl(t) and αr(t) are the limit of the solution α when (x, t) approaches
(ξ(t), t) from the left and the right, respectively;

iv)
ω(0) = ω0. (3.3.18)

Proof: By Theorem 3.2.2, the function u = u0 is a weak solution of the second
equation of (E’) and the second equation of (3.3.1) if and only if u0 satisfies the
second equation of (E’) in the classical sense on both sides of the curve Γ, the initial
condition u(x, 0) = u0(x, 0) = u0(x) and the second equation of (3.3.17) is satisfied
at the discontinuity. It remains to prove the properties (i)-(iv) for the first equation
of (3.3.16). Let ψ ∈ C∞0 (R× R+). We have

〈α, ψt〉+ 〈αu, ψx〉 =

∫ ∞
0

∫ ∞
−∞

α0ψt dxdt+ 〈ω(t)δξ, ψt〉+

∫ ∞
0

∫ ∞
−∞

α0u0ψx dxdt

+ 〈ω(t)ξ′(t)δξ, ψx〉

=

∫ ∞
0

∫ ∞
−∞

α0ψt dxdt+

∫ ∞
0

ω(t)ψt(ξ(t), t) dt+

∫ ∞
0

∫ ∞
−∞

α0u0ψx dxdt

+

∫ ∞
0

ω(t)ξ′(t)ψx(ξ(t), t) dt

=

∫ ∞
0

∫ ∞
−∞

(α0ψt + α0u0ψx) dxdt+

∫ ∞
0

ω(t)
dψ

dt
(ξ(t), t) dt.

Integrating by parts the right-hand side integrals, we obtain

〈α, ψt〉+ 〈αu, ψx〉 = −
∫ ∞

0

∫ ξ(t)

−∞

(
α0
t + (α0u0)x

)
ψ dxdt−

∫ ∞
0

∫ ∞
ξ(t)

(
α0
t + (α0u0)x

)
ψ dxdt

+

∫ ∞
0

((
αr(t)− αl(t)

)
σ(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
− dω

dt
(t)
)
ψ(ξ(t), t) dt
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−
∫ ∞
−∞

α0(x, 0)ψ(x, 0) dx− ω(0)ψ(ξ(0), 0). (3.3.19)

1) If a δ-shock (α, u) is a weak solution of (E’) and (3.3.1), then (3.3.19) implies
that

−
∫ ∞
−∞

α0(x)ψ(x, 0)dx− ω0ψ(ξ(0), 0) = −
∫ ∞

0

∫ ξ(t)

−∞

(
α0
t + (α0u0)x

)
ψ dxdt

−
∫ ∞

0

∫ ∞
ξ(t)

(
α0
t + (α0u0)x

)
ψ dxdt−

∫ ∞
−∞

α0(x, 0)ψ(x, 0) dx− ω(0)ψ(ξ(0), 0)

+

∫
x=ξ(t)

((
αr(t)− αl(t)

)
σ(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
− dω

dt
(t)
)
ψ(ξ(t), t) dt.

(3.3.20)

Firstly, we need to prove that (α0, u0) satisfies the first equation of (E) in the classical
sense in both sides of the shock curve x = ξ(t). To do this, we consider ψ ∈ C∞0 (R×
R+) satisfying ψ(ξ(t), t) = 0 for all t ≥ 0. Equation (3.3.20) becomes

0 = −
∫ ∞

0

∫ ξ(t)

−∞

(
α0
t + (α0u0)x

)
ψ dxdt−

∫ ∞
0

∫ ∞
ξ(t)

(
α0
t + (α0u0)x

)
ψ dxdt.

Since ψ is arbitrary, this last equation implies that (α0, u0) satisfies the first equation
of (E) in the classical sense on both sides of the curve Γ.
Secondly, we have to show that α0 satisfies the initial condition (3.4.2), i.e. α0(x, 0) =
α0(x). To achieve this, we consider ψ ∈ C∞0 (R× R+) satisfying ψ(ξ(t), t) = 0 for all
t ≥ 0. Using (i) then (3.3.20) becomes

−
∫ ∞
−∞

α0(x)ψ(x, 0)dx = −
∫ ∞
−∞

α0(x, 0)ψ(x, 0)dx. (3.3.21)

which is equivalent to α0(x, 0) = α0(x) since ψ is arbitrary.
Next, we have to prove that the first equation of (3.3.17) is satisfied. For that, we
take an arbitrary ψ ∈ C∞0 (R× R+). Using (i), (3.3.20) becomes

0 =

∫ ∞
0

((
αr(t)− αl(t)

)
σ(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
− dω

dt
(t)
)
ψ(ξ(t), t) dt.

Since ψ is arbitrary, the first equation of (3.3.17) is satisfied.
It remains to show that the initial condition ω(0) = ω0 holds. To prove this, we
consider ψ ∈ C∞0 (R× R+). Using (i), (ii) and (iii) then (3.3.20) becomes

− ω0ψ(ξ(0), 0) = −ω(0)ψ(ξ(0), 0),

which implies, by taking ψ(ξ(0), 0) 6= 0, that (iv) holds.
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2) Conversely, if (i), (ii), (iii) and (iv) are satisfied then it is easy to deduce
form (3.3.19) that

〈α, ψt〉+ 〈αu, ψx〉 = −
∫ ∞
−∞

α0(x)ψ(x, 0) dx− ω0ψ(ξ(0), 0).

for all ψ ∈ C∞0 (R× R+). This completes the proof of the theorem.

We now return to the Riemann problem. Theorem 3.2.4 states that the solution u of
the second equation of (E’) is given by (3.2.15). This solution depends only on time,
which implies, as

Dα

dt
= α∂xu = 0, (3.3.22)

that the solution α = α0(x0) is constant on both sides of the curve (3.2.14). Hence,
the left and right states for α are determined by the Riemann data, that is

αl(x, t) ≡ α−, (3.3.23)

αr(x, t) ≡ α+. (3.3.24)

The limit states for the solution α are then given by αl(t) = α− and αr(t) = α+.
Substituting (3.2.8), (3.2.9), (3.2.10), (3.3.23) and (3.3.24) in the first equation of
(3.3.17) and integrating the latter, we obtain

ω(t) = ω0 +
(
α+ − α−

)(
uat+

(ua − u− + ua − u+)(e−KDt − 1)

2KD

)
+ α−

(
uat+

(ua − u−)(e−KDt − 1)

KD

)
− α+

(
uat+

(ua − u+)(e−KDt − 1)

KD

)
. (3.3.25)

Reorganizing this last equation, we end up with

ω(t) = ω0 +
(α+ + α−)(u− − u+)(1− e−KDt)

2KD

. (3.3.26)

For the solution of the Riemann problem (E’) and (3.3.2), we take ω0 = 0 since the
initial condition (3.3.2) stipulates that α does not initially contain a Dirac mass. In
general, one can start with a δ-shock as an initial condition. In such case, ω0 is not
necessarily zero. We can now state the following result.

Corollary 3.3.3. If u− > u+ then the entropy solution of the Riemann problem (E’)
and (3.3.2) is given by

(α, u)(x, t) =


(
α−, ul(t)

)
, x < ξ(t),(

ω(t)δ(x− ξ(t)), σ(t)
)
, x = ξ(t),(

α+, ur(t)
)
, x > ξ(t),

(3.3.27)

where ω is given by (3.3.26) with ω0 = 0, ul, ur are given by (3.2.8) and (3.2.9),
respectively, σ is given by (3.2.10) and ξ is given by (3.2.14).
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In the following of this thesis, a solution to a PDE problem that takes the form given
in (3.3.27) will also be called a delta shock wave.

3.3.3 Two contact discontinuities with a vacuum state

Assume that u− < u+. Then the solution u of the second equation of (E’) is given
by (3.2.23). This solution only depends on time t outside the region S delimited by
the curves X1(t) and X2(t) defined in subsection 3.2.2. Hence, ∂xu ≡ 0 for (x, t) 6∈ S.
As the first equation of (E’) can be written along characteristics as

Dα

dt
= −α∂xu, (3.3.28)

we see that α is constant outside the region S, and thus it is equal to its initial value
on the foot of characteristic curves, that is

α(x, t) = α0(x0) =

{
α−, x0 < 0,

α+, x0 > 0,
(x, t) 6∈ S. (3.3.29)

As u is given by (3.2.23) outside region S, we get from (3.1.8) that

x = χ(x, t; t) = χ(x, t; 0) +

∫ t

0

u(χ(x, t; s), s) ds

= x0 +


∫ t

0

ul(x, s)ds, if x < X1(t),∫ t

0

ur(x, s)ds, if x > X1(t)

=

{
x0 +X1(t), if x < X1(t),

x0 +X2(t), if x > X2(t).

(3.3.30)

Hence,

x0 =

{
x−X1(t), if x < X1(t),

x−X2(t), if x > X2(t).
(3.3.31)

Therefore, by substituting (3.3.31) in (3.3.29), one obtains the solution α outside the
region S:

α(x, t) =

{
α−, x < X1(t),

α+, x > X2(t).
(x, t) 6∈ S. (3.3.32)

Inside the region S, the solution u of the second equation of (E’) is given by (3.2.22).
So, equation (3.3.28) can be written on S as

Dα

dt
= −α∂xu, ∀(x, t) ∈ S. (3.3.33)
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The function α = 0 satisfies (3.3.33). Let ε > 0 and assume α 6= 0. Ones divides
(3.3.33) by α and integrates on both sides from s = ε to s = t to obtain

log(α(x, t)) = −
∫ t

ε

∂xu(x, s)ds+ log(α(x, ε))

= −
∫ t

ε

KDds

eKDs − 1
+ log

(
α(x, ε)

)
= −

∫ t

ε

(KDe
KDs

eKDs − 1
−KD

)
ds+ log

(
α(x, ε)

)
= − log

(
eKDt − 1

)
+KDt+ log

(
eKDε − 1

)
−KDε+ log

(
α(x, ε)

)
= log

((eKDε − 1
)
α(x, ε)

eKDt − 1

)
+KD

(
t− ε

)
.

This last equation gives

α(x, t) =
(1− e−KDε)eKDtα(x, ε)

eKDt − 1
, ∀(x, t) ∈ S. (3.3.34)

Taking ε→ 0 in (3.3.34), one obtains

α(x, t) ≡ 0, ∀(x, t) ∈ S, (3.3.35)

leading to a contradiction. Hence, α = 0 inside the region S. We reach the following
result.

Corollary 3.3.4. If u− < u+ then the solution of the Riemann problem (E’) and
(3.3.2) is given by

(α, u)(x, t) =


(
α−, ul(x, t)

)
, x < X1(t),(

0, u(x, t)
)
, X1(t) ≤ x ≤ X2(t),(

α+, ur(x, t)
)
, x > X2(t),

(3.3.36)

where ul and ur are given by (3.2.8) and (3.2.9), respectively, u is given by (3.2.22),
and X1 and X2 are given by (3.2.16) and (3.2.17), respectively.

Note that u is continuous while α might be discontinuous across each of the two curves
x = X1(t) and x = X2(t). This type of solution is called a two-contact-discontinuity.

In summary, the solution of the Riemann problem for system (E’) is either a
δ-shock solution or a two-contact-discontinuity with a vacuum state or a contact
discontinuity, depending on the sign of u− − u+. The Rankine-Hugoniot conditions
are given by a differential-algebraic equation. The solution α is constant outside of
the shock trajectory Γ and is uniquely determined by the initial Riemann data, and
u is given by the solution of the inviscid Burgers equation with source term (B).
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3.4 Riemann problem for the Eulerian droplet model

Recall that the Eulerian droplet model in conservative form in the one-dimensional
case reads as {

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) = KDα(ua − u),

(E)

with the initial conditions (
α, u

)
(x, 0) =

(
α0, u0

)
(x), (3.4.1)

where α0 and u0 are piecewise smooth functions. Recall that any smooth solution
to system (E’) is also a solution to system (E). As in system (E’), the solution of
(E) develops discontinuities if and only if (3.1.26) is satisfied (see subsection 3.1.2).
To investigate the propagation of discontinuities in (E), we consider the Riemann
problem, i.e. we look for the solution of problem (E) and (3.4.1), where (α0, u0)
satisfies

(
α0, u0

)
(x) =

{
(α−, u−), x < 0,

(α+, u+), x > 0,
(3.4.2)

with constants α−, α+ ∈ R+ and u−, u+ ∈ R.

3.4.1 Contact discontinuity

Assume that u− = u+. In this case, the characteristics do not intersect and fill
the whole domain. From Remark 3.1.2, the velocity u is continuous and the volume
fraction α does not blow up, i.e. the solution (α, u) is bounded. A bounded and
eventual discontinuous (in α) solution across a curve satisfies the classical Rankine-
Hugoniot conditions given by

σ(t) =
αl(t)ul(t)− αr(t)ur(t)

αl(t)− αr(t)
=
αl(t)ul(t)

2 − αr(t)ur(t)2

αl(t)ul(t)− αr(t)ur(t)
= u∗(t), (3.4.3)

where u∗(t) is the common limit state of the solution u when (x, t) approaches the
discontinuity curve. Equation (3.4.3) means the discontinuity curve moves at speed
equal to the common limit state u∗(t). We proved in subsection 3.3.1 that if u− = u+

then the Riemann solution of system (E’) is a contact discontinuity, i.e. u is continuous
and an eventual discontinuity in α moves at speed σ(t) = ξ′(t), where ξ is given by
(3.3.11). As the systems (E) and (E’) are equivalent on both sides of the discontinuity
curve and u is continuous across this curve, then u∗(t) = σ(t) = ξ′(t). Thus, if
u− = u+ then the solution of the Riemann problem (E) and (3.4.2) is given by
(3.3.10).
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3.4.2 Delta shock waves

Assume that u− > u+. The characteristics overlap and as pointed out in subsec-
tion 3.1.2, a bounded solution of (E) does not exist. We seek for δ-shock solutions
for system (E). Recall that a δ-shock (α, u) is as follows:

α(x, t) = α0(x, t) + ω(t)δξ, u(x, t) = u0(x, t), (x, t) ∈ R× R+, (3.4.4)

where α0, u0 are piecewise smooth functions on both sides of a smooth curve

Γ = {(x, t) : x = ξ(t), t ≥ 0}, (3.4.5)

while being discontinuous across Γ and ω is a smooth function defined on [0,∞) and
satisfying the initial condition

ω(0) = ω0 ∈ R+
0 . (3.4.6)

As in the previous section, we define the following duality products between δ-shock
(seen as distributions) and test functions in C∞0 (R× R+):

〈α, ψ〉 =

∫ ∞
0

∫ ∞
−∞

α0ψdxdt+ 〈ω(t)δξ, ψ〉,

〈αu, ψ〉 =

∫ ∞
0

∫ ∞
−∞

α0u0ψdxdt+ 〈ω(t)ξ′(t)δξ, ψ〉,

〈αu2, ψ〉 =

∫ ∞
0

∫ ∞
−∞

α0(u0)2ψdxdt+ 〈σ(t)ω(t)ξ′(t)δξ, ψ〉,

〈α(ua − u), ψ〉 =

∫ ∞
0

∫ ∞
−∞

α0(ua − u0)ψdxdt+ 〈(ua − σ(t))ω(t)δξ, ψ〉,

(3.4.7)

where σ(t) = ξ′(t) satisfies σ(0) = σ0 ∈ R.

Definition 3.4.1. We say that a δ-shock (α, u) is a weak solution of (E) and
(3.4.1) if

〈α, ψt〉+ 〈αu, ψx〉 = −
∫ ∞
−∞

α0(x)ψ(x, 0)dx− ω0ψ(ξ(0), 0),

〈αu, ψt〉+ 〈αu2, ψx〉+KD〈α(ua − u), ψ〉 = −
∫ ∞
−∞

α0(x)u0(x)ψ(x, 0)dx

− σ0ω0ψ(ξ(0), 0),

(3.4.8)

hold for all test functions ψ ∈ C∞0 (R× R+).

We have the following result.
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Theorem 3.4.2. A δ-shock (α, u) is a weak solution of (E) and (3.4.1) if and only
if the following properties are satisfied:

i) (α0, u0) satisfies (E) in the classical sense on both sides of the curve Γ;

ii) α(x, 0) = α0(x) and α0(x, 0)u0(x, 0) = α0(x)u0(x) for all x ∈ R;

iii) the following ODEs are satisfied on the curve Γ:
dω

dt
(t) =

(
αr(t)− αl(t)

)
σ(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
,

d
(
ω(t)σ(t)

)
dt

=
(
αr(t)ur(t)− αl(t)ul(t)

)
σ(t)−

(
αr(t)ur(t)

2 − αl(t)ul(t)2
)

+KD

(
ua − σ(t)

)
ω(t);

(3.4.9)

iv) the following initial conditions are satisfied:

ω(0) = ω0, ω(0)σ(0) = ω0σ0. (3.4.10)

Proof: Let ψ ∈ C∞0 (R× R+). Proceeding as in the proof of theorem 3.3.2, we get

〈α, ψt〉+ 〈αu, ψx〉 = −
∫ ∞

0

∫ ξ(t)

−∞

(
α0
t + (α0u0)x

)
ψ dxdt−

∫ ∞
0

∫ ∞
ξ(t)

(
α0
t + (α0u0)x

)
ψ dxdt

+

∫
x=ξ(t)

((
αr(t)− αl(t)

)
σ(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
− dω

dt
(t)
)
ψ(ξ(t), t) dt

−
∫ ∞
−∞

α0(x, 0)ψ(x, 0) dx− ω(0)ψ(ξ(0), 0). (3.4.11)

We also have

〈αu, ψt〉+ 〈αu2, ψx〉+ 〈KDα(ua − u), ψ〉 =

∫ ∞
0

∫ ∞
−∞

α0u0ψtdxdt+ 〈ω(t)ξ′(t)δξ, ψt〉

+

∫ ∞
0

∫ ∞
−∞

α0(u0)2ψxdxdt+ 〈σ(t)ω(t)ξ′(t)δξ, ψx〉+

∫ ∞
0

∫ ∞
−∞

KDα
0(ua − u0)ψdxdt

+ 〈KD(ua − σ(t))ω(t)δξ, ψ〉

=

∫ ∞
0

∫ ∞
−∞

(
α0u0ψt + α0(u0)2ψx

)
dxdt+

∫ ∞
0

∫ ∞
−∞

KDα
0(ua − u0)ψdxdt

+

∫ ∞
0

σ(t)ω(t)
dψ

dt
(ξ(t), t)dt+

∫ ∞
0

KD(ua − σ(t))ω(t)ψ(ξ(t), t)dt. (3.4.12)

Integrating by part the first and the third terms in this last expression, we obtain

〈αu, ψt〉+ 〈αu2, ψx〉+ 〈KDα(ua − u), ψ〉 = −
∫ ∞
−∞

α0(x, 0)u0(x, 0)ψ(x, 0) dx
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−
∫ ∞

0

∫ ξ(t)

−∞

(
(α0u0)t + (α0(u0)2)x −KDα

0(ua − u0)
)
ψ dxdt

−
∫ ∞

0

∫ ∞
ξ(t)

(
(α0u0)t + (α0(u0)2)x −KDα

0(ua − u0)
)
ψ dxdt

+

∫
x=ξ(t)

[(
αr(t)ur(t)− αl(t)ul(t)

)
σ(t)−

(
αr(t)ur(t)

2 − αl(t)ul(t)2
)

+KD

(
ua − σ(t)

)
ω(t)− d(ω(t)σ(t))

dt

]
ψ(ξ(t), t) dt

− ω(0)σ(0)ψ(ξ(0), 0). (3.4.13)

1) If the δ-shock (α, u) is a weak solution of (E) and (3.4.1) then (3.4.11) and (3.4.13)
can be written as

−
∫ ∞
−∞

α0(x)ψ(x, 0)dx− ω0ψ(ξ(0), 0) = −
∫ ∞

0

∫ ξ(t)

−∞

(
α0
t + (α0u0)x

)
ψ dxdt

−
∫ ∞

0

∫ ∞
ξ(t)

(
α0
t + (α0u0)x

)
ψ dxdt−

∫ ∞
−∞

α0(x, 0)ψ(x, 0) dx− ω(0)ψ(ξ(0), 0)

+

∫
x=ξ(t)

((
αr(t)− αl(t)

)
σ(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
− dω

dt
(t)
)
ψ(ξ(t), t) dt,

(3.4.14)

−
∫ ∞
−∞

α0(x)u0(x)ψ(x, 0) dx− σ0ω0ψ(ξ(0), 0) = −
∫ ∞
−∞

α0(x, 0)u0(x, 0)ψ(x, 0) dx

−
∫ ∞

0

∫ ξ(t)

−∞

(
(α0u0)t + (α0(u0)2)x −KDα

0(ua − u0)
)
ψ dxdt

−
∫ ∞

0

∫ ∞
ξ(t)

(
(α0u0)t + (α0(u0)2)x −KDα

0(ua − u0)
)
ψ dxdt

+

∫
x=ξ(t)

((
αr(t)ur(t)− αl(t)ul(t)

)
σ(t)−

(
αr(t)ur(t)

2 − αl(t)ul(t)2
)

+KD

(
ua − σ(t)

)
ω(t)− d(ω(t)σ(t))

dt

)
ψ(ξ(t), t) dt

− ω(0)σ(0)ψ(ξ(0), 0), (3.4.15)

respectively.
Case 1: If ψ(x, 0) = 0, ∀x ∈ R and ψ(ξ(t), t) = 0, ∀t ∈ R+ then (3.4.14) and (3.4.15)
reduce to

0 = −
∫ ∞

0

∫ ξ(t)

−∞

(
α0
t + (α0u0)x

)
ψ dxdt−

∫ ∞
0

∫ ∞
ξ(t)

(
α0
t + (α0u0)x

)
ψ dxdt,
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0 = −
∫ ∞

0

∫ ξ(t)

−∞

(
(α0u0)t + (α0(u0)2)x −KDα

0(ua − u0)
)
ψ dxdt

−
∫ ∞

0

∫ ∞
ξ(t)

(
(α0u0)t + (α0(u0)2)x −KDα

0(ua − u0)
)
ψ dxdt,

respectively. These two equalities imply that (i) is satisfied because ψ is arbitrary.
Case 2: If ψ(ξ(t), t) = 0 for all t ≥ 0 then by using (i) , the equations (3.4.14) and
(3.4.15) reduce to

−
∫ ∞
−∞

α0(x)ψ(x, 0) dx = −
∫ ∞
−∞

α0(x, 0)ψ(x, 0) dx,

−
∫ ∞
−∞

α0(x)u0(x)ψ(x, 0) dx = −
∫ ∞
−∞

α0(x, 0)u0(x, 0)ψ(x, 0) dx,

respectively. So, (ii) is satisfied.
Case 3: If ψ(x, 0) = 0 for all x ∈ R then by using (i), the equations (3.4.14) and
(3.4.15) reduce to

0 =

∫ ∞
0

((
αr(t)− αl(t)

)
σ(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
− dω

dt
(t)
)
ψ(ξ(t), t) dt,

0 =

∫
x=ξ(t)

((
αr(t)ur(t)− αl(t)ul(t)

)
σ(t)−

(
αr(t)ur(t)

2 − αl(t)ul(t)2
)

+KD

(
ua − σ(t)

)
ω(t)− d(ω(t)σ(t))

dt

)
ψ(ξ(t), t) dt,

respectively. These two last equations imply (iii) .
Case 4: Combining (i), (ii) and (iii), the equations (3.4.14) and (3.4.15) give rise to

−σ0ψ(ξ(0), 0) = −σ(0)ψ(ξ(0), 0), (3.4.16)

−σ0ω0ψ(ξ(0), 0) = −ω(0)σ(0)ψ(ξ(0), 0), (3.4.17)

respectively. By taking ψ(ξ(0), 0) 6= 0, we obtain (iv).
2) Conversely, if (i), (ii), (iii) and (iv) are satisfied then (3.4.11) and (3.4.13) imply
that (3.4.8) holds. This completes the proof of the theorem.

Remark 3.4.3. The initial value problem (3.4.9)-(3.4.10) reflects the exact relation-
ship between the limit states (αl(t), ul(t)), (αr(t), ut(t)) on the two sides of the delta
shock curve Γ, the weight ω and propagation speed σ of the delta shock, as the classical
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Rankine-Hugoniot conditions do for a bounded shock wave. It is called generalized
Rankine-Hugoniot (GRH) conditions for delta shock waves. It is a nonlinear
system of ordinary differential equations of first order. We will prove in the next
subsection, at least for the solution of the Riemann problem (E) and (3.4.2), the ex-
istence of a solution (ω, σ) to the GRH conditions (3.4.9)-(3.4.10) satisfying the Lax
entropy condition (3.2.12).

The solution of the Riemann problem (E’) and (3.3.2) is smooth on both sides of
the curve given by the differential-algebraic equation (3.3.17)-(3.3.18) (see corollary
3.3.3). In theorem 3.4.2, the solution of (E) is smooth on both sides of the curve
(3.4.5). The systems (E) and (E’) are equivalent for smooth solutions. According to
the above discussion, we have the following result.

Corollary 3.4.4. If u− > u+ then a solution of the Riemann problem (E) and (3.4.2)
is given by

(α, u)(x, t) =


(
α−, ul(x, t)

)
, x < ξ(t),(

ω(t)δ(x− ξ(t)), σ(t)
)
, x = ξ(t),(

α+, ur(x, t)
)
, x > ξ(t),

(3.4.18)

where ul, ur are given by (3.2.8) and (3.2.9), respectively, (ω, σ) is the solution of the
GRH conditions (3.4.9) with the initial conditions (3.4.48), and

ξ(t) =

∫ t

0

σ(s)ds. (3.4.19)

3.4.3 Two contact discontinuities with a vacuum state

Assume that u− < u+. The characteristics do not intersect nor fill the region S
(see subsection 3.3.3). The Riemann solution is constructed as in subsection 3.3.3.
Therefore, it is given by the two-contact-discontinuity solution with a vacuum state
in (3.3.36).

In summary, the characteristic curves for the Eulerian droplet model (E) (seen
as the pressureless gas system with zeroth-order source term) are curves (due to the
presence of the source term) tending asymptotically to straight lines. The GRH
conditions are given by a nonlinear system of ODEs which might be hard to solve
analytically. As system (E’), the solution of the Riemann problem for system (E)
is either a δ-shock solution, a two-contact-discontinuity with a vacuum state or a
contact discontinuity.
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3.4.4 Existence of an entropy solution to the GRH conditions
for the Eulerian droplet model

Recall that the generalized Rankine-Hugoniot conditions for system (E) can be
written as

dω

dt
(t) =

(
αr(t)− αl(t)

)
σ(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
,

d(ωσ)

dt
(t) =

(
αr(t)ur(t)− αl(t)ul(t)

)
σ(t) +KD

(
ua − σ(t)

)
ω(t)

−
(
αr(t)ur(t)

2 − αl(t)ul(t)2
)
,

(3.4.20)

satisfying the initial conditions

ω(0) = ω0, ω(0)σ(0) = ω0σ0, (3.4.21)

where (αl, ul) and (αr, ur) are the left and right limits of the solution (α, u) of system
(E) when (x, t) approaches the shock curve (3.4.5). We look for the existence of a
solution to (3.4.20)-(3.4.21). The following results hold.

Lemma 3.4.5. (Growth of the weight ω of the δ-shock)
Assume that αl(t), αr(t) > 0 and ul(t) > ur(t) for all t ≥ 0. Suppose that there exists

a solution (ω, σ) ∈ C1(R+)× C1(R+) to the initial value problem (3.4.20)-(3.4.21). If
σ satisfies

ur(t) < σ(t) < ul(t), ∀t ≥ 0, (3.4.22)

then
ω(t2) > ω(t1) ∀t2 > t1. (3.4.23)

In particular, for the solution of the Riemann problem (E) and (3.4.2), we have

ω(t) ≥ ω0 +
C(1− e−KDt)

KD

, ∀t ≥ 0, (3.4.24)

where C is a positive constant.

Proof: We proceed by cases. Let t ≥ 0.
Case 1: Assume that αl(t) = αr(t). The first equation of (3.4.20) reduces to

dω

dt
(t) = αl(t)

(
ul(t)− ur(t)

)
> 0.

Case 2: Assume that αl(t) < αr(t). Using the first inequality from (3.4.22) in the
first equation of (3.4.20), we obtain

dω

dt
(t) =

(
αr(t)− αl(t)

)
σ(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
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>
(
αr(t)− αl(t)

)
ur(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
> αl(t)

(
ul(t)− ur(t)

)
> 0.

Case 3: Assume that αl(t) > αr(t). Using the second inequality from (3.4.22) in the
first equation of (3.4.20), we obtain

dω

dt
(t) =

(
αr(t)− αl(t)

)
σ(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
>
(
αr(t)− αl(t)

)
ul(t)−

(
αr(t)ur(t)− αl(t)ul(t)

)
> αr(t)

(
ul(t)− ur(t)

)
> 0.

Combining these three cases, we obtain

dω

dt
(t) > 0, ∀t ≥ 0. (3.4.25)

Hence, ω is an increasing function, and thus (3.4.23) holds. In particular, for the
solution of the Riemann problem (E) and (3.4.2), the limit states are given by αl(t) =
α−, αr(t) = α+, ul(t) = ua + (u− − ua)e−KDt and ul(t) = ua + (u+ − ua)e−KDt. By
setting C = min{α−, α+}(u− − u+) > 0, one obtains

dω

dt
(t) ≥ Ce−KDt, ∀t ≥ 0. (3.4.26)

Integrating this last inequality on both sides from 0 to t, we get

ω(t) ≥ ω(0) + C

∫ t

0

e−KDs ds = ω0 +
C(1− e−KDt)

KD

, ∀t ≥ 0. (3.4.27)

Inequality (3.4.22) is nothing else but the Lax entropy condition (3.2.12).

Proposition 3.4.6. (Entropic δ-shock speed)
Assume that αl(t), αr(t) > 0, ul(t) > ur(t) for all t ≥ 0 and σ0 ∈ (ur(0), ul(0)). If

(ω, σ) ∈ C1(R+) × C1(R+) is a solution to the initial value problem (3.4.20)-(3.4.21)
then σ satisfies the Lax entropy condition (3.4.22) for all t ≥ 0.

Proof: We proceed by contradiction. Suppose that there exists t ≥ 0 such that
(3.4.22) is not satisfied. From σ(0) = σ0 ∈ (ur(0), ul(0)) and the continuity of σ,
there exists a smallest t > 0, denoted by t∗, such that

σ(t∗) = ul(t
∗) or σ(t∗) = ur(t

∗) and σ satisfies (3.4.22), ∀t ∈ [0, t∗). (3.4.28)

By lemma 3.4.5, ω satisfies (3.4.23) on [0, t∗). Combining this with the continuity of
ω, we get

ω(t∗) > ω(0) = ω0 > 0. (3.4.29)
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Assume that σ(t∗) = ul(t
∗). Substituting σ(t∗) by ul(t

∗) in the first equation of
(3.4.20), we get

dω

dt
(t∗) =

(
αr(t

∗)− αl(t∗)
)
ul(t

∗)−
(
αr(t

∗)ur(t
∗)− αl(t∗)ul(t∗)

)
= αr(t

∗)
(
ul(t

∗)− ur(t∗)
)
.

(3.4.30)

Substituting σ(t∗) by ul(t
∗) in the second equation of (3.4.20), we obtain

d(ωσ)

dt
(t∗) =

(
αr(t

∗)ur(t
∗)− αl(t∗)ul(t∗)

)
ul(t

∗) + αl(t
∗)u2

l (t
∗)

− αr(t∗)ur(t∗)2 +KD

(
ua − ul(t∗)

)
ω(t∗)

= αr(t
∗)ur(t

∗)
(
ul(t

∗)− ur(t∗)
)

+KD

(
ua − ul(t∗)

)
ω(t∗).

(3.4.31)

From (3.4.30) and (3.4.31), one calculates

ω(t∗)
dσ

dt
(t∗) =

d(ωσ)

dt
(t∗)− σ(t∗)

dω

dt
(t∗)

=
d(ωσ)

dt
(t∗)− ul(t∗)

dω

dt
(t∗)

= −αr(t∗)
(
ul(t

∗)− ur(t∗)
)2

+KD

(
ua − ul(t∗)

)
ω(t∗).

(3.4.32)

Using this last equation, one calculates

ω(t∗)
d(σ − ul)

dt
(t∗) = ω(t∗)

dσ

dt
(t∗)− ω(t∗)

dul
dt

(t∗)

= −αr(t∗)
(
ul(t

∗)− ur(t∗)
)2 −

(dul
dt

(t∗)−KD(ua − ul(t∗))
)
ω(t∗)

= −αr(t∗)
(
ul(t

∗)− ur(t∗)
)2
< 0,

(3.4.33)
since ul satisfies (E) in the classical sense. Using (3.4.29), we deduce from (3.4.33)
that

d(σ − ul)
dt

(t∗) < 0.

By the continuity of the function t 7→ d(σ − ul)
dt

(t), there exists ε > 0 such that

d(σ − ul)
dt

(t) < 0, ∀t ∈]t∗ − ε, t∗[.

Integrating, this last inequality from t∗ − ε to t∗ on both sides, we obtain

0 ≥
∫ t∗

t∗−ε

d(σ − ul)
ds

(s)ds = (σ − ul)(t∗)− (σ − ul)(t∗ − ε) = −σ(t∗ − ε) + ul(t
∗ − ε).
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This last inequality implies that σ(t∗ − ε) ≥ ul(t
∗ − ε) which contradicts (3.4.28).

Assume that σ(t∗) = ur(t
∗). A similar reasoning as above also leads to a contradiction

of (3.4.28). Hence, such t∗ > 0 does not exist. Thus, the shock speed σ satisfies
(3.4.22) for all t ≥ 0.

To simplify notations, we set

a(t) = αr(t)− αl(t), b(t) = αr(t)ur(t)− αl(t)ul(t),
c(t) = αr(t)ur(t)

2 − αl(t)ul(t)2, θ(t) = ω(t)σ(t).
(3.4.34)

The functions a, b and c are continuous and bounded for all t > 0 since the limit
states (αl, ul) and (αr, ur) are continuous and bounded. Substituting a, b, c and θ in
(3.4.20), this system can be written as

dω

dt
(t) = a(t)

θ(t)

ω(t)
− b(t),

dθ

dt
(t) = b(t)

θ(t)

ω(t)
+KD

(
uaω(t)− θ(t)

)
− c(t).

(3.4.35)

The initial value problem (3.4.20)-(3.4.21) can then be written in the following con-
densed form 

dz

dt
= f(z, t),

z(0) = (ω0, θ0)T , with θ0 = ω0σ0,
(3.4.36)

where

z(t) =

(
ω(t)
θ(t)

)
and f(z, t) =

(
f1(z, t)
f2(z, t)

)
=

 a(t)
θ(t)

ω(t)
− b(t)

b(t)
θ(t)

ω(t)
+KD

(
uaω(t)− θ(t)

)
− c(t)

 .

(3.4.37)
We have the following result for the existence of a solution to the GRH conditions
(3.4.20)-(3.4.21) in case of a δ-shock solution for the Riemann problem (E) and(3.4.2):

Theorem 3.4.7. (Existence of a solution to the GRH)
If α−, α+ > 0, u− > u+ and σ0 ∈ (u+, u−) then the generalized Rankine-Hugoniot

conditions (3.4.20)-(3.4.21) for the solution of the Riemann problem (E) and (3.4.2)
have a C1-solution (ω, σ) which satisfies the Lax entropy condition (3.4.22).

Proof: If α−, α+ > 0 and u− > u+ then the limit states αl, αr, ul and ur of
the solution to the Riemann problem (E) and (3.4.2) satisfy αl(t), αr(t) > 0 and
ul(t) > ur(t) for all t ≥ 0.

i) Let us first suppose that ω0 > 0. As the functions a, b and c are continuous
for all t > 0, the functions fi, i = 1, 2, are continuous at t = 0. The Cauchy-Péano
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theorem (see [29], p.59) ensures the existence of a C1-solution (ω, θ) to (3.4.36) on
some interval [0, t1]. From Proposition 3.4.6 and Lemma 3.4.5, ω satisfies (3.4.24) on
[0, t1]. This implies that

ω(t) = ω0 +
C(1− e−KDt)

KD

> 0 ∀t ∈ [0, t1].

The partial derivatives ∂fi
∂zi

exist and are continuous on R+×R× [0, t1]. The Cauchy-
Lipschitz existence theorem (see [29], p.65) ensures the uniqueness of the solution
(ω, θ) on the interval [0, t1]. We define

σ(t) =
θ(t)

ω(t)
∀t ∈ [0, t1].

Clearly, the pair (ω, σ) is a C1-solution of (3.4.20)-(3.4.21) on [0, t1]. Uniqueness of
(ω, σ) follows from the uniqueness of (ω, θ). From Lemma 3.2 in [29], there exists
a maximal solution extending the local solution (ω, σ). We claim that this maximal
solution is global, i.e. it is defined for all t ≥ 0. In fact, if this maximal solution is not
global then lemma 3.3 in [29] stipulates that it is defined on an interval of the form
[0, T0), for some 0 < T0 < ∞. Then, using Proposition 3.4.6 and lemma 3.4.5, this
maximal solution could be extended beyond T0 since limt→T0 ω(t) > 0, contradicting
the maximality of the solution.

ii) Now suppose that ω0 = 0. Take any finite T > 0. Let F1 = {(ωn, θn)}n≥1 be a
family of functions such that (ωn, θn) is a C1-solution to (3.4.36) on the interval [0, T ]
satisfying the initial conditions ωn(0) = 1

n
and θn(0) = σ0

n
. Moreover, the functions

ωn satisfy (3.4.23) and (3.4.24). The existence of the family F1 follows from part
(i). Let us prove that F1 is a family of bounded and equicontinuous functions on the
interval [0, T ]. For all n ≥ 1, we have

dωn
dt

(t) = a(t)σn(t)− b(t),

dθn
dt

(t) = b(t)σn(t) +KD

(
ua − σn(t)

)
ωn(t)− c(t).

(3.4.38)

Taking the absolute value in the first equation of (3.4.38), we get∣∣∣∣dωndt (t)

∣∣∣∣ =
∣∣a(t)σn(t)− b(t)

)∣∣
6 |a(t)| |ul(t)|+ |b(t)|
6M, where M = max

s∈[0,T ]
{|a(s)||ul(s)|+ |b(s)|}. (3.4.39)

Integrating ω′n from 0 to t, taking the absolute value and using (3.4.39), we get

|ωn(t)| =
∣∣∣∣ωn(0) +

∫ t

0

ω′n(s) ds

∣∣∣∣



3. EULERIAN DROPLET MODEL: DELTA SHOCKS AND SOLUTION OF
THE RIEMANN PROBLEM 55

6
1

n
+

∫ t

0

|ω′n(s)| ds

6 1 +MT, ∀t ∈ [0, T ].

Hence, the functions ωn and their first derivative are uniformly bounded on [0, T ].
For all n ≥ 1, θn = ωnσn is bounded as a product of two bounded functions since
σn satisfies (3.4.22) and ur(t), ul(t) are bounded. Furthermore, θ′n(t) is also bounded
since∣∣∣∣dθndt (t)

∣∣∣∣ =
∣∣b(t)σn(t) +KD

(
ua − σn(t)

)
ωn(t)− c(t)

∣∣
6 |b(t)| |ul(t)|+KD|ωn(t)|

(
|ua|+ |ul(t)|

)
+ |c(t)|

6 |b(t)| |ul(t)|+KD

(
1 +MT

)(
|ua|+ |ul(t)|

)
+ |c(t)|

6 Q = max
t∈[0,T ]

{|b(t)| |ul(t)|+KD

(
1 +MT

)(
|ua|+ |ul(t)|

)
+ |c(t)|} <∞.

Hence, F1 is a family of bounded and equicontinuous functions at every point of the
interval [0, T ]. The Arzelà-Ascoli theorem ensures the existence of a subsequence
{(ωnk , θnk)} ⊂ F1 that converges uniformly to a continuous functions (ω, θ) on the
interval [0, T ]. Since ωnk satisfies (3.4.24), we have

ω(t) = lim
nk→∞

ωnk(t) ≥ lim
nk→∞

(
ωnk(0) +

C(1− e−KDt)
KD

)
≥ lim

nk→∞

( 1

nk
+
C(1− e−KDt)

KD

)
≥ C(1− e−KDt)

KD

> 0, ∀t ∈ (0, T ].

(3.4.40)

Inequality (3.4.40) means that the limit function ω is positive on any interval of the
form [η, T ], with 0 < η 6 T . Now, we define the sequence of functions

σnk(t) =
θnk(t)

ωnk(t)
, ∀t ∈ [0, T ], (3.4.41)

and the function

σ(t) =
θ(t)

ω(t)
, ∀t ∈ [η, T ]. (3.4.42)

Clearly, σ is a continuous function on the interval [η, T ] as a quotient of two continuous
functions. Let us prove that σnk converges uniformly to σ on the interval [η, T ]. Let



3. EULERIAN DROPLET MODEL: DELTA SHOCKS AND SOLUTION OF
THE RIEMANN PROBLEM 56

t ∈ [η, T ]. We have

|σnk(t)− σ(t)| =
∣∣∣∣ θnk(t)ωnk(t)

− θ(t)

ω(t)

∣∣∣∣ =

∣∣∣∣θnk(t)ω(t)− ωnk(t)θ(t)
ωnk(t)ω(t)

∣∣∣∣
6

∣∣∣∣θnk(t)ω(t) + θ(t)ω(t)− θ(t)ω(t)− ωnk(t)θ(t)
ωnk(η)ω(η)

∣∣∣∣ (from (3.4.23))

6
KD

2|θ(t)|
C2(1− e−KDη)2

|ωnk(t)− ω(t)|

+
KD

2 |ω(t)|
C2(1− e−KDη)2

|θnk(t)− θ(t)| (from (3.4.24))

6
KD

2

C2(1− e−KDη)2

(
|θ(t)| |ωnk(t)− ω(t)|+ |ω(t)| |θnk(t)− θ(t)|

)
.

(3.4.43)
Set

P =
maxt∈[η,T ]{|θ(t)|, |ω(t)|}KD

2

C2(1− e−KDη)2
<∞.

Taking the supremum in (3.4.43), we get

sup
t∈[η,T ]

|σnk(t)− σ(t)| 6 P
(

sup
t∈[η,T ]

|ωnk(t)− ω(t)|+ sup
t∈[η,T ]

|θnk(t)− θ(t)|
)
. (3.4.44)

Hence, the sequence σnk converges uniformly to σ on the interval [η, T ] since ωnk and
θnk uniformly converge to ω and θ, respectively, on the interval [0, T ].
Let us prove that (ω, σ) is a C1-solution to (3.4.20) on the interval [η, T ]. For all
nk ≥ 1, we have

dωnk
dt

(t) = a(t)σnk(t)− b(t),

d(ωnkσnk)

dt
= b(t)σnk(t) +KD

(
ua − σnk(t)

)
ωnk(t)− c(t).

(3.4.45)

As ωnk and σnk converge uniformly to ω and σ, respectively, on the interval [η, T ]
then the terms on the r.h.s of each equation of (3.4.45) also converge uniformly on

the interval [η, T ], i.e. the sequence {(dωnk
dt
,
d(ωnkσnk )

dt
)}k≥1 converges uniformly on the

interval [η, T ]. Take nk →∞ in (3.4.45). Then, using Theorem 7.17 in [80], we obtain
dω

dt
(t) = lim

nk→∞

dωnk
dt

(t) = lim
nk→∞

(
a(t)σnk(t)− b(t)

)
= a(t)σ(t)− b(t),

d(ωσ)

dt
(t) = lim

nk→∞

d(ωnkσnk)

dt
(t) = lim

nk→∞

(
b(t)σnk(t) +KD

(
ua − σnk(t)

)
ωnk(t)− c(t)

)
= b(t)σ(t) +KD

(
ua − σ(t)

)
ω(t)− c(t).

(3.4.46)
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As the terms on the r.h.s of each equation of (3.4.46) are continuous then dω
dt

and
dθ
dt

are continuous on the interval [η, T ]. Hence, the pair (ω, σ) is a C1-solution to
(3.4.20) on the interval [η, T ]. Since η > 0 is arbitrary then the C1-solution (ω, σ)
can be extended to all t in (0, T ]. From the uniform convergence of ωnk to ω on the
interval [0, T ], we get

ω(0) = lim
nk→∞

ωnk(0) = lim
nk→∞

1

nk
= 0 = ω0. (3.4.47)

We set
σ(0) = σ0 ∈ (u+, u−) = (ur(0), ul(0)).

Thus, the C1 functions (ω, σ) satisfy the initial value problem (3.4.20)-(3.4.21) for all
t ∈ (0, T ]. Since T > 0 is arbitrary then this solution can be extended to all t > 0.
By proposition 3.4.6, σ satisfies the Lax entropy condition (3.4.22) for all t > 0.

We also have the following result for existence of a solution to the GRH conditions
(3.4.20)-(3.4.21) in case of a contact discontinuity or a two-contact-discontinuity so-
lution for the Riemann problem (E) and (3.4.2):

Corollary 3.4.8. If u− = u+ then (ω, σ) = (0, ul) is a solution to the problem
(3.4.20).

Proof: If u− = u+ then the solution u is continuous, and thus ul(t) = ur(t) for
all t > 0. Substituting ur, ω and σ by ul, 0 and ul, respectively, we obtain 0 on both
sides of equation (3.4.20). Hence, (0, ul) satisfies (3.4.20).

Remark 3.4.9. The generalized Rankine-Hugoniot conditions (3.4.20) reduce to the
classical Rankine-Hugoniot conditions for a contact discontinuity or a two-contact-
discontinuity-solution. In fact, if u− = u+ then the solution of the Riemann problem
(E) and (3.4.2) is bounded and thus, ω ≡ 0. Applying the classical Rankine-Hugoniot

conditions for (E), we get σ = αrur−αlul
αr−αl

=
αru2

r−αlu2
l

αrur−αlul
= ul. Hence, we recover the

solution of the classical Rankine-Hugoniot conditions (3.4.20) from the generalized
Rankine-Hugoniot conditions.

Proposition 3.4.6 stipulates that the initial delta shock speed σ0 should belong to the
interval (u+, u−). A choice for an entropic σ0 is given by the following result.

Proposition 3.4.10. Assume that αl(0), αr(0) > 0. Let (ω, σ) ∈ C1(R+
0 )×C1(R+

0 ) be
a solution to the GRH conditions (3.4.20)-(3.4.21). If ω0 = 0 then an entropic initial
shock speed σ0 satisfying the GRH conditions and the Lax entropy condition (3.4.22)
at the origin is given by

σ0 =

√
αr(0)ur(0) +

√
αl(0)ul(0)√

αr(0) +
√
αl(0)

. (3.4.48)
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Proof: By using the first equation of (3.4.20), the second equation can be written
as

ω(t)
dσ

dt
(t) =− a(t)σ(t)2 + 2b(t)σ(t)− c(t) +KD

(
ua − σ(t)

)
ω(t). (3.4.49)

At t = 0, ω(0) = ω0 = 0 and (3.4.49) reduces to

−a(0)σ(0)2 + 2b(0)σ(0)− c(0) = 0. (3.4.50)

If a(0) = 0, i.e. αl(0) = αr(0) then (3.4.50) has one solution given by

σ(0) =
c(0)

2b(0)
=

αr(0)ur(0)2 − αl(0)ul(0)2

2(αr(0)ur(0)− αl(0)ul(0))
=
ur(0) + ul(0)

2
∈ (ur(0), ul(0)),

(3.4.51)
If a(0) 6= 0, i.e. αl(0) 6= αr(0) then (3.4.50) has two roots given by

σ(0)1 =
b(0)−

√
b(0)2 − a(0)c(0)

a(0)
=

√
αr(0)ur(0)−

√
αl(0)ul(0)√

αr(0)−
√
αl(0)

, (3.4.52)

σ(0)2 =
b(0) +

√
b(0)2 − a(0)c(0)

a(0)
=

√
αr(0)ur(0) +

√
αl(0)ul(0)√

αr(0) +
√
αl(0)

. (3.4.53)

The first root σ(0)1 does not always satisfy the Lax entropy condition at the origin.
In fact,

σ01 − ul(0) =

√
αr(0)ur(0)−

√
αl(0)ul(0)√

αr(0)−
√
αl(0)

− ul(0)

=

√
αr(0)ur(0)−

√
αl(0)ul(0)−

√
αr(0)ul(0) +

√
αl(0)ul(0)√

αr(0)−
√
αl(0)

=

√
αr(0)(ur(0)− ul(0))√
αr(0)−

√
αl(0)

> 0, if αl(0) > αr(0).

(3.4.54)

The second root σ(0)2 ∈ (ur(0), ul(0)) for all αl(0), αr(0) > 0. Moreover, if αl(0) =
αr(0) then σ(0)2 reduces to (3.4.51). Thus, an initial shock speed σ0 satisfying the
Lax entropy condition (3.4.22) at the origin is given by (3.4.48).

We proved the existence of a solution to the generalized Rankine-Hugoniot con-
ditions (3.4.9)-(3.4.10) for the Riemann problem (E) and (3.4.2), satisfying the Lax
entropy condition. In general, it might be hard to find the analytical solution of the
initial value problem associated to the GRH conditions. At least for the Riemann
problem, one can solve numerically this initial value problem since the limit states
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(αl(t), ul(t)) and (αr(t), ur(t)) are known. The systems (E’) and (E) are equivalent
for smooth, two-contact-discontinuity or contact discontinuity solutions but they dif-
fer for δ-shock solutions. In fact, one can, by a tedious substitution, check that the
solution (given in (3.3.26) and (3.2.10)) of the GRH conditions (3.3.17) for system
(E’) does not satisfy the GRH conditions (3.4.9)-(3.4.10) for the Eulerian droplet
model (E). Hence, the conservative form of the Eulerian droplet model is to be used
when discontinuous traveling waves (shocks, contact discontinuities) are present in
the solutions.

3.5 Droplet model with non constant air velocity

Consider again the Eulerian droplet model{
∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) = KDα(ua − u),

(E)

with the initial condition

(α, u)(x, 0) = (α0, u0)(x), α0, u0 ∈ C1(R), (3.5.1)

where now the air velocity ua = ua(x, t) is no longer constant. The hyperbolicity
of the system is not affected by the air velocity function since this latter is in the
zeroth-order right-hand side term. All the properties from subsection 3.1.1 are still
valid. Recall that for smooth solutions, the second equation of (E) is equivalent to

∂tu+ u∂xu = KD(ua − u) (3.5.2)

which can be written along characteristics χ(x, t; s) (solution of (3.1.8)) as

Du

dt
= KD(ua − u). (3.5.3)

We have

D(eKDsu)

ds
= eKDs

Du

ds
+KDe

KDsu. (3.5.4)

Using (3.5.3) in this last equation, we get

D(eKDsu)

ds
= eKDsKD(ua − u) +KDe

KDsu,

= KDe
KDsua.

(3.5.5)



3. EULERIAN DROPLET MODEL: DELTA SHOCKS AND SOLUTION OF
THE RIEMANN PROBLEM 60

Integrating (3.5.5) from 0 to s on both sides, we obtain

u(χ(x, t; s), s) = u0(x0)e−KDs +

∫ s

0

KDe
KD(r−s)ua(χ(x, t; r), r) dr, (3.5.6)

where x0 = χ(x, t; 0). By substituting (3.5.6) in the characteristic equation (3.1.8)
and integrating the latter equation on both sides from 0 to t, we obtain an equation
for the characteristic curves

x = χ(x, t; t) = x0 +

∫ t

0

u(χ(x, t; s), s)ds

= x0 +
u0(x0)

KD

(1− e−KDt) +

∫ t

0

g(χ(x, t; s), s) ds, (3.5.7)

where

g(χ(x, t; s), s) =

∫ s

0

KDe
KD(r−s)ua(χ(x, t; r), r) dr. (3.5.8)

As in section 3.1.2, g can be seen as a function of x0. In section 3.1.2, we proved that
∂xu can be written along the characteristics as

∂xu =
∂u

∂x0

1
∂x
∂x0

(3.5.9)

as long as the characteristics do not intersect. From (3.5.6), we get

∂u

∂x0

(χ(x, t; s), s) = u′0(x0)e−KDt + ∂x0

(∫ s

0

KDe
KD(r−s)ua(χ(x, t; r), r)dr

)
= u′0(x0)e−KDt +

∂g

∂x0

(χ(x, t; s), s).

(3.5.10)

From (3.5.7), we calculate

∂x

∂x0

= 1 +
u′0(x0)

KD

(1− e−KDt) + ∂x0

(∫ t

0

g(χ(x, t; s), s)ds
)

= 1 +
u′0(x0)

KD

(1− e−KDt) +

∫ t

0

∂g

∂x0

(χ(x, t; s), s)ds.

(3.5.11)

Thus, (3.5.9) gives

∂xu =
∂u

∂x0

1
∂x
∂x0

=
u′0(x0)e−KDt + ∂g

∂x0
(χ(x, t; s), s)

1 +
u′0(x0)

KD
(1− e−KDt) + h(x0, t)

, (3.5.12)
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where

h(x0, t) =

∫ t

0

∂g

∂x0

(χ(x, t; s), s) ds. (3.5.13)

Recall also that the first equation of (E) can be written along the characteristics as

Dα

dt
= −α∂xu. (3.5.14)

Substituting (3.5.12) in (3.5.14), this latter equation leads to

Dα

dt

(
χ(x, t; s), s

)
= −α

u′0(x0)e−KDt +
∂g

∂x0

(
χ(x, t; s), s

)
1 +

u′0(x0)

KD
(1− e−KDt) + h(x0, t)

. (3.5.15)

Assuming α 6= 0 and for s = t, we divide by α and integrate (3.5.15) on both sides
from 0 to t to obtain

log
(
α(x, t)

)
= log

(
α0(x0)

)
− log

(
1+

u′0(x0)

KD

(1−e−KDt)+h(x0, t)
)

+log
(
1+h(x0, 0)

)
.

This last equation gives rise to

α
(
x, t
)

=

(
1 + h(x0, 0)

)
α0(x0)

1 +
u′0(x0)

KD
(1− e−KDt) + h(x0, t)

. (3.5.16)

We show in the same way as in the proof of proposition 3.1.1 that α and ∂xu blow
up simultaneously if and only if

u′0(x0) = −
KD

(
1 + h(t, x0)

)
1− e−KDt

(3.5.17)

for some x0 in the domain. In particular, if the air velocity ua is constant then h ≡ 0
and we recover all the results that we have established in proposition 3.1.1 for ua
constant.

In general, equation (3.5.17) states that the loss of regularity for a smooth initial
solution of the Eulerian droplet model (E) and (3.5.1) depends on the slope of the
initial velocity with respect to the air velocity and the drag coefficient. For a non
constant air velocity, it is hard to integrate along the characteristics and we are
not able to derive an explicit expression for this condition. The solution of the
Riemann problem can also not be established for the same reason. These are some
difficulties encountered when studying the Eulerian droplet model with a non-constant
air velocity. This explains why we have assumed the air velocity to be constant in
the previous sections.
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3.6 Numerical results

In this section, we present some numerical results to illustrate the theoretical
analysis of delta shock waves and vacuum states for the Eulerian droplet model (E).
All the numerical solutions are computed using the Transport-Collapse method (see
section 2.3).

3.6.1 Riemann problem for (E): Exact vs numerical solutions

This test case is devoted to the comparison of the numerical and exact solutions
of the Riemann problem for (E). We look at the solution on the whole real line.
However, we solve (E) on the bounded domain [−0.5, 2.5]. We impose a zero slope
for each variable on the inlet boundary x = −0.5 and the outlet boundary x = 2.5
of the computational domain. The drag coefficient is KD = 0.2 and the air velocity
ua = 1.

Firstly, we take the following Riemann initial conditions:

(
α, u

)
(x, 0) =

{
(0.8, 1.5), x 6 0,

(0.3, 0.5), x > 0,
(3.6.1)

which correspond to the physical case where initially the droplets at the left of the
origin move faster. We numerically solve the GRH conditions (3.4.9) satisfying the
initial conditions ω0 = 0 and σ0 given by (3.4.48) with the forward Euler time-stepping
scheme with a small time step to ensure accuracy and stability. This allows us to get a
numerical approximation for the weighted ω, the speed σ and the location x = ξ of the
delta shock wave, and thus to calculate the “exact solution” for the Riemann problem.
Exact and numerical solutions are shown in Figure 3.4. The droplets behind catch
those in front resulting in a huge concentration of particles on the shock trajectory.
This corresponds theoretically to the formation of a delta shock wave.

Secondly, we consider the Riemann initial data:

(
α, u

)
(x, 0) =

{
(0.3, 1.0), x 6 0,

(0.8, 2.0), x > 0,
(3.6.2)

which corresponds to the physical case where initially the droplets downstream of the
origin move faster. The exact and numerical solutions are presented in Figure 3.5.
We observe a left and right non-vacuum states of droplets delimiting a vacuum state
and moving at a continuous velocity. This corresponds theoretically to two-contact-
discontinuity solution with a vacuum state.

In both cases, the exact and numerical solutions match very well. This shows
the efficiency of the numerical scheme for computing solutions involving delta shock
waves.
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t = 0.4 t = 1

Figure 3.4: A delta shock wave of Model E: exact and numerical solutions in
time. KD = 0.2, ua = 1, ∆x = 10−3 and ∆t = 10−4.

3.6.2 Impact of the source term on the solution

If there is no source term, i.e. KD ≡ 0, system (E) reduces to the pressureless
gas system for which the Riemann problem was solved in [82]. In this second test
case, we compare the numerical solution of model (E) with/without the zeroth-order
source term in order to highlight the impact of the zeroth-order source term on the
solution. The computational domain and the boundary conditions are the same as in
first test case. We take the air velocity ua = 5, the drag coefficient KD = 1.5 and the
following Riemann initial data:(

α, u
)
(x, 0) =

{
(0.3, 2), x 6 0

(0.8, 1), x > 0.
(3.6.3)

Numerical results for KD = 0 and KD = 1.5 are displayed in Figure 3.6. The solutions
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t = 0.4 t = 1

Figure 3.5: A two-contact-discontinuity solution with a vacuum state of
Model E: exact and numerical solutions in time. KD = 0.2, ua = 1,
∆x = 10−3 and ∆t = 10−4.

shown are obtained numerically, hence delta shocks can only have limited amplitude.
The amplitude of the delta shocks goes to infinity as the mesh is refined. We notice
that the zeroth-order source term has significant impact on the solution. It acts as a
relaxation term by weakening the weighted of the delta shock (seen as the difference
in amplitude in the numerical solutions), affecting the propagation speed, and thus
the location of the delta shock. It also affects the velocity solution. As one can see in
Figure 3.7, the left and right states of the velocity are no longer constant over time
and tend to the air velocity, which behaves as an equilibrium point.
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t = 0.1 t = 0.5

Figure 3.6: Evolution of a delta shock wave in Model E. Solution
with/without the zeroth order source term. ua = 5, ∆x = 10−4 and
∆t = 10−5.

3.7 Conclusion

In this chapter, we generalized the condition for loss of regularity for the inviscid
Burgers equation and solved the Riemann problem associated to the Burgers equation
with a zeroth-order source term. As for the classical inviscid Burgers equation, the
solution of the Riemann problem is either a shock wave or a rarefaction wave but
the characteristic curves are no longer straight lines. The left and right states are no
longer constant and the Lax entropy condition degenerates as time goes to infinity.

It is already known that delta shock waves and vacuum states appear in the
solution of the Riemann problem for the pressureless gas system [82]. The Rankine-
Hugoniot conditions are no longer algebraic equations as for bounded shock waves
but they form a system of linear ODEs of first order, which one can solve to obtain
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Figure 3.7: Numerical solution of the GRH conditions (3.4.9) with the initial
conditions ω0 = 0 and σ0 given (3.4.48) and the Riemann data (3.6.3). At
left: weight of the delta shock. At right: velocities as a functions of time.
KD = 1.5 and ∆t = 10−4.

the shock speed and the weight of the delta shock [82]. In this chapter, we showed
that delta shock waves and vacuum states also appear in the solution of the Riemann
problem for system (E), which can be seen as the pressureless gas system with a
zeroth-order linear source term. The Rankine-Hugoniot conditions for (E) are given
by a nonlinear system of ODEs of first order that is hard or impossible to solve
analytically. The difficulty in the analysis comes from the contribution of the source
term which leads to characteristic curves that are no longer straight lines. The zeroth-
order source term acts as a relaxation term by weakening the delta shocks.

In practice, α represents the volume fraction of droplets (or solid particles) and,
therefore, it should be nonnegative and bounded. We showed that the volume fraction
blows up for some choices of the initial velocity with respect to the air velocity and the
drag coefficient. This blowup leads to unbounded volume fraction solution, and thus
nonphysical solutions. Improvements are required in Model E to prevent nonphysical
solutions to occur.



Chapter 4

Note on the isentropic Euler
equations

The one-dimensional isentropic Euler equations of gas dynamics read as{
∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + p) = 0,

(IE)

where ρ > 0, v and p are the density, velocity and pressure of the gas, respectively.
The pressure p is a function of the density and is determined from the constitutive
thermodynamic relation of the gas under consideration. We restrict ourselves to
polytropic perfect gases for which the state equation for the pressure is given by

p = p(ρ) = κργ, κ > 0, γ > 1. (4.0.1)

System (IE) describes the isentropic flow of compressible fluids. There has been
a great interest in the analysis of the isentropic Euler equation of gas dynamics
[84, 25, 81, 31, 46, 23, 65]. In 2003, Chen and Liu [23] analyzed the behaviour of
the solutions of the Riemann problem for the Euler equations (IE) and (4.0.1) when
the pressure vanishes. The first goal of this chapter is to review the mechanisms
of formation of delta shocks and vacuum states in the vanishing pressure limit of
the isentropic Euler equations which can be seen as the Eulerian droplet model (E)
without a source term. This helps to better understand the formation of delta shocks
and vacuum states in the Eulerian droplet model, and thus to find a way of preventing
the formation of delta shocks and vacuum states in the solutions of (E). Two cases
were only partially covered by the analysis of Chen and Liu [23] in the vanishing
pressure limit of the isentropic Euler equations, namely the 1-shock combined with
the 2-rarefaction and the 1-rarefaction combined with the 2-shock wave. As far as we
know, the proof and complete analysis of these two cases have not been discussed in
the literature. The second goal of this chapter is to analyze the behaviour of these
two cases in the vanishing pressure limit.

67
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This chapter is organized as follows. In section 4.1, we establish the characteristic
variables of system (IE) and (4.0.1). In section 4.2, we recall the relations for shock
and rarefaction waves for the Riemann problem of (IE) and(4.0.1). In section 4.3,
we analyze the behaviour of a solution composed of a 1-shock wave combined with
a 2-rarefaction wave and a solution composed of a 1-rarefaction wave combined with
a 2-shock wave, when the pressure coefficient vanishes. Numerical illustrations are
carried out in section 4.4.

4.1 Hyperbolicity and characteristic variables

The isentropic Euler equations of gas dynamics (IE) and (4.0.1) can be written
in quasilinear form as

∂tv + JIE(v)∂xv = 0, (4.1.1)

where v = (ρ, ρv)T and the Jacobian matrix JIE is given by

JIE =

(
0 1

−v2 + p′(ρ) 2v

)
. (4.1.2)

The eigenvalues of the Jacobian matrix are given by

λ1(ρ, ρv) = v − c and λ2(ρ, ρv) = v + c, (4.1.3)

where
c = c(ρ) =

√
p′(ρ) =

√
κγργ−1 (4.1.4)

is called the speed of sound. A general set of eigenvectors associated to the eigenvalues
(4.1.3) is given by

r1(ρ, ρv) = β1

(
1
λ1

)
and r2(ρ, ρv) = β2

(
1
λ2

)
, (4.1.5)

where β1 = β1(ρ, ρv) and β2 = β2(ρ, ρv) are nonzero scalar functions. The Jacobian
matrix (4.1.2) can be diagonalized by using the transformation matrix whose columns
are given by the eigenvectors in (4.1.5), i.e. the Jacobian matrix can be written as
JIE = PIEΛIEPIE

−1, where

PIE =

(
β1 β2

β1λ1 β2λ2

)
and ΛIE =

(
λ1 0
0 λ2

)
. (4.1.6)

Thus, the isentropic Euler equations (IE) and (4.0.1) form a strictly hyperbolic system
(see Definition 2.1.5).
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Assume that there exists φ = (φ1, φ2) such that

dφ = PIE
−1dv, (4.1.7)

where d is a differential operator that can be used as dφj = ∂xφj or dφj = ∂tφj. On
one hand, if we substitute the Jacobian matrix JIE in (4.1.1) by PIEΛIEPIE

−1 and
take the differential operator dφj = ∂xφj in (4.1.7) we obtain

∂tv + PIEΛIE∂xφ = 0. (4.1.8)

We multiple equation (4.1.8) by PIE
−1 from the left and take the differential operator

dφj = ∂tφj in (4.1.7). This leads to the diagonalized system

∂tφ+ ΛIE(v)∂xφ = 0. (4.1.9)

On the other hand, expanding (4.1.7) directly gives rise to

dφ1 =
1

2cβ1β2

(
(v + c)β2dρ− β2d(ρv)

)
=

1

2cβ1

(
cdρ− ρdv

)
,

dφ2 =
1

2cβ1β2

(
(c− v)β1dρ+ β1d(ρv)

)
=

1

2cβ2

(
cdρ+ ρdv

)
.

(4.1.10)

In particular, for β1(ρ, ρv) = −β2(ρ, ρv) = − ρ

2c
, these two last equations reduce to

dφ1 = dv − c

ρ
dρ and dφ2 = dv +

c

ρ
dρ, (4.1.11)

respectively. Rewrite the term c
ρ
dρ as dg with

g : ρ 7→
∫
c(ρ)

ρ
dρ. (4.1.12)

Equation (4.1.11) gives rise to

dφ1 = dv − dg = d(v − g) and dφ2 = dv + dg = d(v + g). (4.1.13)

These equations are easy to integrate. By using (4.1.4), we find

φ1 = v − g = v − 2

γ − 1
c and φ2 = v + g = v +

2

γ − 1
c. (4.1.14)

We check by a straightforward calculation that φ = (φ1, φ2) given by (4.1.14) satisfies
(4.1.7). The variables φj are called characteristic variables [64]. Finally, the isentropic
Euler equations for gas dynamics (IE) and (4.0.1) can be rewritten as{

∂tφ1 + (v − c)∂xφ1 = 0,

∂tφ2 + (v + c)∂xφ2 = 0.
(4.1.15)

System (4.1.15) means that each characteristic variable φj = (−1)j 2
γ−1

c+ v is simply
advected at speed λj as time evolves, i.e. the quantity φj is constant along the j-
characteristic field χj(x, t; .) (see definition 2.1.7).
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4.2 Solution of the Riemann problem

The Riemann problem for the isentropic Euler equation for gas dynamics consists
of system (IE) and (4.0.1) with the Riemann initial data

(ρ, v)(x, 0) =

{
(ρ−, v−), x < 0,

(ρ+, v+), x > 0,
(4.2.1)

where ρ−, ρ+ ∈ R+ and v−, v+ ∈ R, are given constants. The solution of this problem
was established in [84, 25]. We recall this solution since it is needed below.

4.2.1 Rarefaction wave curves

We seek a solution of the form
(
ρ, ρv

)
(x, t) =

(
ρ, ρv

)
(ξ), where ξ =

x

t
. A solution

of this form is called self-similar solution. The system (IE) can be written in term of
the new variables ρ(ξ) and ρ(ξ)v(ξ) as{

− ξρξ + (ρv)ξ = 0,

− ξ(ρv)ξ + (ρv2 + p)ξ = 0,
(4.2.2)

which can be written in the condensed form

(JIE − ξI)vξ = 0. (4.2.3)

This last equation leads either to the general solution

vξ = 0 =⇒ v(ξ) =
(
ρ, ρv

)
(ξ) = const, (4.2.4)

or to the relation
JIEvξ = ξvξ, (4.2.5)

which means that ξ is an eigenvalue of the Jacobian matrix JIE with a corresponding
eigenvector vξ. From (4.1.3), we have

ξ = λj = (−1)jc+ v, j = 1, 2. (4.2.6)

A continuous self-similar solution
(
ρ(ξ), v(ξ)

)
, where ξ satisfies (4.2.6), is called a

j-rarefaction wave [81].
Given a state (ρ−, v−), we look for the set of states (ρ∗, v∗) that can be connected

from the left to the state (ρ−, v−) by a 1-rarefaction wave. The states (ρ∗, v∗) de-
pend on the pressure p which is parametrized by the parameter κ. Therefore, in the
following, these states are denoted by (ρκ∗ , v

κ
∗ ). A straightforward calculation shows

that
∇φ2 · r1 = ∇φ1 · r2 = 0, (4.2.7)
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where φj is given in (4.1.14), rj is given in (4.1.5) with β1 = −β2 = − ρ

2c
. Note that in

this section, the gradient operator is with respect to the conservative variables ρ and
ρv. Hence, from Definition 2.1.8, a j-Riemann invariant ϕj for the isentropic Euler
equations (IE) and (4.0.1) is given by

ϕj = φj+(−1)j+1 , j = 1, 2. (4.2.8)

Recall that in a j-rarefaction wave, a j-Riemann invariant is constant (see [81], the-
orem 3.2). Hence, we have ϕ1(ρ−, ρ−v−) = ϕ1(ρκ∗ , ρ

κ
∗v

κ
∗ ) which implies that

vκ∗ = v− +
2

γ − 1
(c− − cκ∗), (4.2.9)

where c− = c(ρ−) and cκ∗ = c(ρκ∗). For a 1-rarefaction, we get from (4.2.6) that
ξ = x

t
= λ1. As ξ increases from the left to the right, λ1 also increases in this way.

Therefore,
λ1(ρ−, ρ−v−) < λ1(ρκ∗ , ρ

κ
∗v

κ
∗ )⇐⇒ v− − c− < vκ∗ − cκ∗ . (4.2.10)

Combining (4.2.9) and (4.2.10), we get

γ + 1

γ − 1
c− >

γ + 1

γ − 1
cκ∗ , (4.2.11)

which implies that ρκ∗ < ρ− since the function ρ 7→ c(ρ) is increasing due to condition
(4.0.1). Hence, the state (ρκ∗ , v

κ
∗ ) satisfies

vκ∗ = v− +
2

γ − 1
(c− − cκ∗) = v− +

2
√
κγ

γ − 1

(
ρ
γ−1

2
− − (ρκ∗)

γ−1
2

)
, ρκ∗ < ρ−. (4.2.12)

In the same way, we find the set of states (ρκ∗ , v
κ
∗ ) that can be connected from the

right to a given state (ρ+, v+) by a 2-rarefaction wave. We obtain

vκ∗ = v+ −
2
√
κγ

γ − 1

(
ρ
γ−1

2
+ − (ρκ∗)

γ−1
2

)
, ρκ∗ < ρ+. (4.2.13)

4.2.2 Shock wave curves

Now we look for discontinuous solutions, particularly for shock waves. A j-shock
wave is characterized by a curve x = ξj(t) in the x-t plane across which the variables
are discontinuous with finite jump. The eigenvalues (4.1.3) of system (IE) and (4.0.1)
satisfy

∇λ1 · r1 = −
(
c′ +

c

ρ

)
β1 = −(γ + 1)β1

2

√
κγργ−3 6= 0,

∇λ2 · r2 =
(
c′ +

c

ρ

)
β2 =

(γ + 1)β2

2

√
κγργ−3 6= 0.

(4.2.14)
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Hence, the two characteristics fields of the isentropic Euler equations are genuinely
nonlinear (see Definition 2.1.7). Recall that for conservation laws with genuinely
nonlinear characteristic fields, discontinuous solutions are shock waves [64]. An ad-
missible j-shock wave solution will satisfy the Rankine-Hugoniot conditions [64] which
are given for (IE) and (4.0.1) by

σj =
ρrvr − ρlvl
ρr − ρl

, σj =
ρrv

2
r + κρr

γ − ρlv2
l − κρlγ

ρrvr − ρlvl
, (4.2.15)

where (ρl, vl) and (ρr, vr) are the limit of the solution (ρ, v) when x approaches the
shock curve ξj(t) from the left and right, respectively, and σj = ξ′j(t) is the propagation
speed of the j-shock wave. In addition, this shock speed σj satisfies the Lax entropy
conditions [64]

λj(ρr, ρrvr) < σj < λj(ρl, ρlvl). (4.2.16)

Given a state (ρ−, v−), we look for the set of states (ρκ∗ , v
κ
∗ ) that can be connected

from the left to the state (ρ−, v−) by a 1-shock wave. On one hand, the Rankine-
Hugoniot conditions (4.2.15) lead to

vκ∗ = v− ±

√
κ
(
(ρκ∗)

γ − ρ−γ
)

ρκ∗ρ−(ρκ∗ − ρ−)
(ρκ∗ − ρ−). (4.2.17)

On the other hand, the Lax entropy condition (4.2.16) leads to

vκ∗ − cκ∗ <
ρκ∗v

κ
∗ − ρ−v−
ρκ∗ − ρ−

< v− − c− =⇒ − c
κ
∗
ρ−

<
vκ∗ − v−
ρκ∗ − ρ−

< −c−
ρκ∗

=⇒ ρκ∗c
κ
∗ >

ρκ∗ρ−(v− − vκ∗ )
ρκ∗ − ρ−

> ρ−c−, (4.2.18)

which implies that ρκ∗ > ρ− since the function ρ 7→ ρc(ρ) is positive and strictly
increasing. Hence, (4.2.17) reduces to

vκ∗ = v− −

√
κ
(
(ρκ∗)

γ − ρ−γ
)

ρκ∗ρ−(ρκ∗ − ρ−)
(ρκ∗ − ρ−), ρκ∗ > ρ−. (4.2.19)

In an analogous way, we find that the state (ρκ∗ , v
κ
∗ ) that can be connected from the

right to a given state (ρ+, v+) by a 2-shock, is given by

vκ∗ = v+ +

√
κ
(
ρ+

γ − (ρκ∗)
γ
)

ρ+ρκ∗(ρ+ − ρκ∗)
(ρκ∗ − ρ+), ρκ∗ > ρ+. (4.2.20)
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4.2.3 Intermediate states of the Riemann solution

A solution of the Riemann problem for the isentropic Euler equation (IE) is com-
posed of three constant states connected by either rarefaction or shock waves. The
left and right states are uniquely determined by the initial data. There are four pos-
sible configurations for a solution of the Riemann problem, depending on the initial
data. For more details, we refer to [84, 25]. We shall be content here to determine
the intermediate state (ρκ∗ , v

κ
∗ ) between the left and right states for each of the four

possible configurations of the solution which are listed below:

1) 1-rarefaction and 2-rarefaction waves:
For a 1-rarefaction and 2-rarefaction waves Riemann solution, the intermediate state
for the velocity vκ∗ satisfies both (4.2.12) and (4.2.13). Combining these two equations,
we get the intermediate state for the density

ρκ∗ =
( γ−1

2
(v− − v+) +

√
κγ(ρ

γ−1
2
− + ρ

γ−1
2

+ )

2
√
κγ

) 2
γ−1

. (4.2.21)

From this, one can determine vκ∗ from (4.2.12) or (4.2.13).

2) 1-rarefaction and 2-shock waves:
For a 1-rarefaction and 2-shock wave Riemann solution, the intermediate state for
the velocity vκ∗ satisfies both (4.2.12) and (4.2.20). Combining these two equations,
we obtain the following nonlinear equation for the intermediate state for the density

v− − v+ +
2

γ − 1

√
κγ
(
ρ
γ−1

2
− − (ρκ∗)

γ−1
2

)
−

√
κ
(
ρ+

γ − (ρκ∗)
γ)

ρκ∗ρ+(ρ+ − ρκ∗
) (ρκ∗ − ρ+) = 0. (4.2.22)

Once ρκ∗ is found then vκ∗ can be calculated using either (4.2.12) or (4.2.20).

3) 1-shock and 2-shock waves:
For a 1-shock and 2-shock wave Riemann solution, the intermediate state for the ve-
locity vκ∗ satisfies both (4.2.19) and (4.2.20) leading to the nonlinear equation for the
intermediate state for the density

v− − v+ −

√
κ
(
(ρκ∗)

γ − ργ−
)

ρκ∗ρ−(ρκ∗ − ρ−)
(ρκ∗ − ρ−)−

√
κ
(
ρ+

γ − (ρκ∗)
γ
)

ρκ∗ρ+(ρ+ − ρκ∗)
(ρκ∗ − ρ+) = 0. (4.2.23)

Once ρκ∗ is obtained, one can calculate vκ∗ using (4.2.19) or (4.2.20).

4) 1-shock and 2-rarefaction waves:
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For a 1-shock and a 2-rarefaction wave solution, the intermediate state for the veloc-
ity vκ∗ satisfies both (4.2.13) and (4.2.19) leading to the nonlinear equation for the
intermediate state for the density

v− − v+ −

√
κ
(
(ρκ∗)

γ − ργ−
)

ρκ∗ρ−(ρκ∗ − ρ−)
(ρκ∗ − ρ−)− 2

γ − 1

√
κγ
(
(ρκ∗)

γ−1
2 − ρ+

γ−1
2

)
= 0. (4.2.24)

Once ρκ∗ is determined, vκ∗ can be calculated from (4.2.19) or (4.2.13).

Thus, the intermediate state (except for a 1-rarefaction and 2-rarefaction situa-
tion) is given by a nonlinear equation which is usually solved numerically, for instance
using Newton’s method.

4.3 Behaviour of solutions of the Riemann prob-

lem in the vanishing pressure limit

Formally, the limit system of the isentropic Euler equations as the pressure van-
ishes forms the pressureless gas system{

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2) = 0.

(4.3.1)

This system models the motion of free particles that stick under collision [10, 9, 82,
23, 11, 70]. It has been extensively analyzed, see for instance [9, 18, 82, 69, 11, 70,
36]. Bouchut [9] first established the existence of measure solutions of the Riemann
problem. The problem with the Riemann data (4.2.1) was solved by Sheng and Zhang
[82]. In the case v− < v+, the Riemann solution consists of two contact discontinuities
and a vacuum state, that is

(ρ, v)(x, t) = (ρ, v)(
x

t
) =


(ρ−, v−), −∞ <

x

t
6 v−,

(0, v(
x

t
)), v− 6

x

t
6 v+,

(ρ+, v+), v+ 6
x

t
<∞,

(4.3.2)

where v(x
t
) is any smooth function satisfying v(v±) = v±. In the case v− > v+, the

Riemann solution is given by a δ-shock wave, that is

(ρ, v)(x, t) =


(ρ−, v−), −∞ < x < σt,

(ω(t)δ(x− σt), σ), x = σt,

(ρ+, v+), σt < x <∞,
(4.3.3)
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where

σ =

√
ρ−v+ +

√
ρ+v+√

ρ− +
√
ρ+

, ω(t) =
t√

1 + σ2

(
(ρ+v+ − ρ−v−)− σ(ρ+ − ρ−)

)
and δ is the Dirac delta distribution centered at the origin. For more details, we refer
to the previous chapter and [82].

In 2003, Chen and Liu [23] identified and analyzed the formation of δ-shock
waves and vacuum states in Riemann solutions to the system (IE) and (4.0.1) as the
pressure vanishes. They considered vanishing viscosity solutions and established the
two following results.

Theorem 4.3.1. Let v− > v+. For sufficiently small and positive κ > 0, assume
that (ρκ, ρκvκ) is a 1-shock wave and 2-shock wave solution of (IE) and (4.0.1) with
Riemann data (4.2.1). Then, when κ → 0, ρκ and ρκvκ converge in the sense of
distributions, and the limit solutions ρ and ρv are sums of a step function and a
δ-measure with weights

t

1 + σ2

(
σ(ρ+−ρ−)−(ρ+v+−ρ−v−)

)
and

t

1 + σ2

(
σ(ρ+v+−ρ−v−)−(ρ+v

2
+−ρ−v2

−)
)
,

respectively, which form the δ-shock solution (4.3.3) of the pressureless gas system
(4.3.1) with the same Riemann data.

Proof: See the proof of theorem 3.1 in [23].

Theorem 4.3.2. Let v− < v+ and ρ± > 0. Assume that (ρκ, ρκvκ) is a 1-rarefaction
wave and 2-rarefaction wave solution of (IE) and (4.0.1) with Riemann data (4.2.1).
Then, when κ→ 0, the solution (ρκ, ρκvκ) tends to a two-contact discontinuity solu-
tion (4.3.2) of the pressureless gas system (4.3.1) with the same initial data.

Proof: See section 4, in [23].

These two results show rigorously that any two-shock Riemann solution of the Eu-
ler equations for isentropic fluids (IE) and (4.0.1) tends to a δ-shock solution of the
Euler equations for pressureless fluids (4.3.1), and the intermediate density between
the two shocks tends to a weighted δ-measure that forms a δ-shock. By contrast,
any two-rarefaction Riemann solution of the Euler equations for isentropic fluids (IE)
and (4.0.1) tends to a two-contact-discontinuity solution of the Euler equations for
pressureless fluids (4.3.1), whose intermediate state between the two contact discon-
tinuities is a vacuum state even when the initial data stays away from the vacuum.

These results were also extended to nonisentropic flows [24], to the relativistic
Euler equations for polytropic gases [96], and recently to the modified Chaplygin gas



4. NOTE ON THE ISENTROPIC EULER EQUATIONS 76

pressure law [95]. These papers only cover solutions that contain two shocks or two
rarefactions waves.

Without giving details, Chen and Liu [23] also mentioned that the behaviour of
the Riemann solution for the two others possible configurations of the Riemann prob-
lem, namely a 1-shock wave combined with a 2-rarefaction wave and a 1-rarefaction
wave combined with a 2-shock wave, can be deduced from the two above cases. Since
the proofs in these situations are non trivial, we provide a complete proof.

4.3.1 Behaviour of a 1-shock and 2-rarefaction solution in the
vanishing pressure limit

Let v− > v+ and ρ± > 0. For κ > 0, let (ρκ∗ , ρ
κ
∗v

κ
∗ ) be the intermediate state of a

solution (ρκ, ρκvκ) of the system (IE) and (4.0.1) with Riemann data (4.2.1), in the
sense that v− and vκ∗ are connected by a 1-shock wave, and vκ∗ and u+ are connected
by a 2-rarefaction wave. Then, this intermediate state is determined by (4.2.13) and
(4.2.19), from which we immediately deduce that ρ+ > ρ−. The following results also
hold.

Lemma 4.3.3.

v− > vκ∗ > v+,∀κ ∈ (0, κsr), with vκ∗ = v+ ⇔ κ = κsr :=
ρ−ρ+(v− − v+)2

(ργ+ − ρ
γ
−)(ρ+ − ρ−)

.

(4.3.4)

Proof: Let κ > 0. We first prove the equivalence in (4.3.4). Assume that vκ∗ = v+.
From (4.2.13), we get ρκ∗ = ρ+. Using the equalities vκ∗ = v+ and ρκ∗ = ρ+ in (4.2.19),
we obtain

v+ − v− = −

√
κ
(
ργ+ − ρ−γ

)
ρ+ρ−(ρ+ − ρ−)

(ρ+ − ρ−) = −

√
κ
(
ργ+ − ρ−γ

)
(ρ+ − ρ−)

ρ+ρ−

which implies, by taking the square on both sides, that

(v+ − v−)2 =
κ
(
ργ+ − ρ−γ

)
(ρ+ − ρ−)

ρ+ρ−
.

This last relation gives rise to κ = κsr. Conversely, suppose that κ = κsr. Then

v− − v+ =

√
κsr
(
ργ+ − ρ−γ

)
ρ+ρ−(ρ+ − ρ−)

(ρ+ − ρ−). (4.3.5)

We claim that ρκsr∗ = ρ+. In fact, assume that ρκsr∗ < ρ+. By combining (4.2.13) and
(4.2.19), we obtain

v− − v+ =

√
κsr
(
(ρκsr∗ )γ − ργ−

)
ρκsr∗ ρ−(ρκsr∗ − ρ−)

(ρκsr∗ − ρ−)−
2
√
κsrγ

γ − 1

(
ρ+

γ−1
2 − (ρκsr∗ )

γ−1
2

)
, (4.3.6)
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with ρ− < ρκsr∗ < ρ+. Consider the function h1 : ρ → (ργ − ργ−)(1 − ρ−
ρ

) which is

strictly increasing since its derivative h′1(ρ) = γργ−1(1− ρ−
ρ

) + (ργ − ργ−)ρ−
ρ2 > 0 for all

ρ > ρ−. We have:

h1(ρ+) > h1(ρκsr∗ ) =⇒(
ργ+ − ρ−γ

)
(ρ+ − ρ−)

ρ+

>

(
(ρκsr∗ )γ − ρ−γ

)
(ρκsr∗ − ρ−)

ρκsr∗
=⇒

κsr
(
ργ+ − ρ−γ

)
(ρ+ − ρ−)

ρ+ρ−
>
κsr
(
(ρκsr∗ )γ − ρ−γ

)
(ρκsr∗ − ρ−)

ρκsr∗ ρ−
=⇒√

κsr
(
ργ+ − ρ−γ

)
ρ+ρ−(ρ+ − ρ−)

(ρ+ − ρ−) >

√
κsr
(
(ρκsr∗ )γ − ρ−γ

)
ρκsr∗ ρ−(ρκsr∗ − ρ−)

(ρκsr∗ − ρ−)

>

√
κsr
(
(ρκsr∗ )γ − ρ−γ

)
ρκsr∗ ρ−(ρκsr∗ − ρ−)

(ρκsr∗ − ρ−)−
2
√
κsrγ

γ − 1

(
ρ+

γ−1
2 − (ρκsr∗ )

γ−1
2

)
.

This last inequality implies that (4.3.5) and (4.3.6) cannot both be true. Hence,
ρκsr∗ = ρ+. Using this equality in (4.2.19), we obtain

v− − vκsr∗ =

√
κsr
(
ργ+ − ρ−γ

)
ρ+ρ−(ρ+ − ρ−)

(ρ+ − ρ−), (4.3.7)

which combined with (4.3.5) implies that vκsr∗ = vκ∗ = v+. So, the equivalence in
(4.3.4) holds.

From (4.2.19), we get

vκ∗ − v− = −

√
κ
(
(ρκ∗)

γ − ρ−γ
)

ρκ∗ρ−(ρκ∗ − ρ−)
(ρκ∗ − ρ−) < 0.

It remains to prove that vκ∗ > v+ for all κ ∈ (0, κsr). We proceed by contradic-
tion. Suppose there exists κ1 ∈ (0, κsr) such that vκ1

∗ and v+ are connected by a
2-rarefaction wave. On the one hand, as κ1 < κsr then from the definition of κsr in
(4.3.4), we get

v− − v+ >

√
κ1

(
ργ+ − ρ−γ

)
ρ+ρ−(ρ+ − ρ−)

(ρ+ − ρ−). (4.3.8)

On the other hand, as the intermediate state (ρκ1
∗ , v

κ1
∗ ) satisfies both (4.2.13) and

(4.2.19), then

v− − v+ =

√
κ1

(
(ρκ1
∗ )γ − ρ−γ

)
ρκ1
∗ ρ−(ρκ1

∗ − ρ−)
(ρκ1
∗ − ρ−)−

2
√
κ1γ

γ − 1

(
ρ+

γ−1
2 − (ρκ1

∗ )
γ−1

2

)
, (4.3.9)
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with ρ− < ρκ1
∗ < ρ+. We have:

h1(ρ+) > h1(ρκ1
∗ ) =⇒√

κ1

(
ργ+ − ρ−γ

)
ρ+ρ−(ρ+ − ρ−)

(ρ+ − ρ−) >

√
κ1

(
(ρκ1
∗ )γ − ρ−γ

)
ρκ1
∗ ρ−(ρκ1

∗ − ρ−)
(ρκ1
∗ − ρ−)

>

√
κ1

(
(ρκ1
∗ )γ − ρ−γ

)
ρκ1
∗ ρ−(ρκ1

∗ − ρ−)
(ρκ1
∗ − ρ−)−

2
√
κ1γ

γ − 1

(
ρ+

γ−1
2 − (ρκ1

∗ )
γ−1

2

)
.

This last inequality implies that (4.3.8) and (4.3.9) cannot both be true. Hence, for
all κ ∈ (0, κsr) then vκ∗ and v+ are connected by a 2-shock wave. This implies that
vκ∗ > v+ for all κ ∈ (0, κsr).

Theorem 4.3.4. Let v− > v+ and ρ± > 0. For some κ > 0, assume that (ρκ, ρκvκ) is
a 1-shock wave and 2-rarefaction wave solution of (IE) and (4.0.1) with the Riemann
data (4.2.1). Then, when κ→ 0, the solution (ρκ, ρκvκ) tends to the δ-shock solution
(4.3.3) of the pressureless gas system (4.3.1) with the same Riemann data.

Proof: Lemma 4.3.3 says that the solution (ρκ, ρκvκ) gives rise to a 1-shock wave
and 2-shock wave solution of (IE) and (4.0.1) when κ gets smaller than κsr. From
theorem 4.3.1, we conclude that, when κ → 0, the solution (ρκ, ρκvκ) tends to the
δ-shock solution of (4.3.1) with the same initial data.

Remark 4.3.5. The coefficient κsr defined in (4.3.4) represents the critical value for
which a 1-shock wave and 2-rarefaction wave solution of the isentropic Euler equa-
tion (IE) and (4.0.1) converts to a two-shock solution when the pressure coefficient
κ decreases. We use the index sr for referring to the shock wave at the left and the
rarefaction wave at the right.

4.3.2 Behaviour of a 1-rarefaction and 2-shock solution in the
vanishing pressure limit

Let v− < v+ and ρ± > 0. For κ > 0, let (ρκ∗ , ρ
κ
∗v

κ
∗ ) be the intermediate state of a

solution (ρκ, ρκvκ) of (IE) and (4.0.1) with Riemann data (4.2.1) in the sense that
v− and vκ∗ are connected by a 1-rarefaction wave, and vκ∗ and u+ are connected by a
2-shock wave. Then this intermediate state is determined by (4.2.12) and (4.2.20),
which imply that ρ− > ρ+. The following results also hold.
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Lemma 4.3.6.

v− < vκ∗ < v+,∀κ ∈ (0, κrs), with vκ∗ = v+ ⇔ κ = κrs :=

 (v+ − v−)(γ − 1)

2
√
γ(ρ

γ−1
2
− − ρ

γ−1
2

+ )

2

.

(4.3.10)

Proof: Let κ > 0. We first prove the equivalence in (4.3.10). Assume that
vκ∗ = v+. Using this equality in (4.2.20), we get ρκ∗ = ρ+. Now take vκ∗ = v+ and
ρκ∗ = ρ+ in (4.2.12), we obtain

v+ = v− +
2
√
κγ

γ − 1
(ρ

γ−1
2
− − ρ

γ−1
2

+ ), (4.3.11)

which implies that κ = κrs. Conversely, suppose that κ = κrs. Then

v+ − v− =
2
√
κrsγ

γ − 1
(ρ

γ−1
2
− − ρ

γ−1
2

+ ). (4.3.12)

We claim that ρκrs∗ = ρ+. In fact, assume that ρ+ < ρκrs∗ . Combining (4.2.12) and
(4.2.20), we obtain

v+ − v− =
2
√
κrsγ

γ − 1

(
ρ−

γ−1
2 − (ρκrs∗ )

γ−1
2

)
−

√
κrs
(
(ρκrs∗ )γ − ργ+

)
ρκrs∗ ρ+(ρκrs∗ − ρ+)

(ρκrs∗ − ρ+) (4.3.13)

with ρ+ < ρκrs∗ < ρ−. Consider the function h2 : ρ → ρ
γ−1

2 − ρ
γ−1

2
− which is strictly

increasing since its derivative h′2(ρ) = γ−1
2
ρ
γ−3

2 > 0 for all ρ > 0. We have:

h2(ρ+) < h2(ρκrs∗ ) =⇒(
ρ
γ−1

2
+ − ρ

γ−1
2
−
)
<
(
(ρκrs∗ )

γ−1
2 − ρ

γ−1
2
−
)

=⇒(
ρ
γ−1

2
− − ρ

γ−1
2

+

)
>
(
ρ
γ−1

2
− − (ρκrs∗ )

γ−1
2

)
=⇒

2
√
κrsγ

γ − 1

(
ρ
γ−1

2
− − ρ

γ−1
2

+

)
>

2
√
κrsγ

γ − 1

(
ρ
γ−1

2
− − (ρκrs∗ )

γ−1
2

)
>

2
√
κrsγ

γ − 1

(
ρ
γ−1

2
− − (ρκrs∗ )

γ−1
2

)
−

√
κrs
(
(ρκrs∗ )γ − ρ+

γ
)

ρκrs∗ ρ+(ρκrs∗ − ρ+)
(ρκrs∗ − ρ+).

This last inequality implies that (4.3.12) and (4.3.13) cannot both be true. Hence,
ρκrs∗ = ρ+. Taking this equality in (4.2.12), we obtain

vκrs∗ − v− =
2
√
κrsγ

γ − 1
(ρ

γ−1
2
− − ρ

γ−1
2

+ ), (4.3.14)
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which, combined with (4.3.12), implies that vκ∗ = vκsr∗ = v+. So, the equivalence in
(4.3.10) holds.

From (4.2.12), we get

vκ∗ − v− =
2
√
κγ

γ − 1

(
ρ−

γ−1
2 − (ρκ∗)

γ−1
2

)
> 0.

It remains to prove that vκ∗ < v+ for all κ ∈ (0, κrs). We proceed by contradiction.
Suppose that there exists κ2 ∈ (0, κrs) such that vκ2

∗ and v+ are connected by a
2-shock wave. As κ2 < κrs then from the definition of κrs in (4.3.10), we get

v+ − v− >
2
√
κ2γ

γ − 1
(ρ

γ−1
2
− − ρ

γ−1
2

+ ). (4.3.15)

As the intermediate state (ρκ2
∗ , v

κ2
∗ ) satisfies both (4.2.12) and (4.2.20) then

v+ − v− =
2
√
κ2γ

γ − 1

(
ρ−

γ−1
2 − (ρκ2

∗ )
γ−1

2

)
−

√
κ2

(
(ρκ2
∗ )γ − ρ+

γ
)

ρκ2
∗ ρ+(ρκ2

∗ − ρ+)
(ρκ2
∗ − ρ+) (4.3.16)

with ρ+ < ρκ2
∗ < ρ−. We have:

h2(ρ+) < h2(ρκ2
∗ ) =⇒

2
√
κ2γ

γ − 1

(
ρ
γ−1

2
− − ρ

γ−1
2

+

)
>

2
√
κ2γ

γ − 1

(
ρ
γ−1

2
− − (ρκ2

∗ )
γ−1

2

)
>

2
√
κ2γ

γ − 1

(
ρ
γ−1

2
− − (ρκ2

∗ )
γ−1

2

)
−

√
κ2

(
(ρκ2
∗ )γ − ρ+

γ
)

ρκ2
∗ ρ+(ρκ2

∗ − ρ+)
(ρκ2
∗ − ρ+).

This last inequality implies that (4.3.15) and (4.3.16) cannot both be true. Hence,
for all κ2 ∈ (0, κrs), the states vκ2

∗ and v+ are connected by a 2-rarefaction wave. This
implies that vκ∗ < v+ for all κ ∈ (0, κrs).

Theorem 4.3.7. Let v− < v+ and ρ± > 0. For some κ > 0, assume that (ρκ, ρκvκ) is
a 1-rarefaction wave and 2-shock wave solution of (IE) and (4.0.1) with the Riemann
initial data (4.2.1). Then, when κ → 0, the solution (ρκ, ρκvκ) tends to the two-
contact-discontinuity solution (4.3.2) of the pressureless gas system (4.3.1) with the
same Riemann data.

Proof: Lemma 4.3.6 says that the solution (ρκ, ρκvκ) gives rise to a 1-rarefaction
wave and 2-rarefaction wave solution of (IE) and (4.0.1) when κ gets smaller than
κrs. From theorem 4.3.2, we conclude that, when κ→ 0, the solution (ρκ, ρκvκ) tends
to the two-contact-discontinuity solution of (4.3.1) with the same initial data.
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Remark 4.3.8. The coefficient κrs defined in (4.3.10) represents the critical value for
which a 1-rarefaction wave and 2-shock wave solution of the isentropic Euler equation
(IE) and (4.0.1) converts to a two-rarefaction solution when the pressure coefficient
κ decreases. We use the index rs for referring to the rarefaction wave at the left and
the shock wave at the right.

The two news results (Theorems 4.3.4 and 4.3.7) show how one can deduce in
the vanishing pressure limit, the behaviour of a 1-shock wave and 2-rarefaction wave
solution and a 1-rarefaction wave and 2-shock wave solution from the behaviour of
a two-shock solution and a two-rarefaction solution, respectively, as mentioned by
Chen and Liu [23] without proof. Now, one can state that any Riemann solution of
the isentropic Euler equations of gas dynamics (IE) and (4.0.1) tends to the Riemann
solution of the pressureless Euler equations (4.3.1) with the same Riemann data as
the pressure tends to zero.

4.4 Numerical illustrations

This section is devoted to some numerical illustrations of the theoretical results
mentioned in the previous sections of this chapter. We use the modified Lax-Friedrich
scheme (see section 2.3) to discretize equations (IE) and (4.0.1). We look at the
solution on the whole real line. However, we solve (IE) and (4.0.1) in the bounded
domain [−1, 3]. So, we impose a zero slope for each variable on the inlet boundary
x = −1 of the computational domain.

We first illustrate the four possible configurations of the Riemann solution to
(IE) and (4.0.1), depending on the initial data. The initial conditions for each con-
figuration are listed below:

(a) 1-rarefaction and 2-rarefaction:

(ρ, v)(x, 0) =

{
(1.2, 0.5) for x < 0,

(1.0, 1.5) for x > 0,

(b) 1-rarefaction and 2-shock:

(ρ, v)(x, 0) =

{
(1.0, 0.8) for x < 0,

(0.5, 1.0) for x > 0,

(c) 1-shock and 2-shock:

(ρ, v)(x, 0) =

{
(1.0, 1.5) for x < 0,

(1.2, 0.5) for x > 0,

(d) 1-shock and 2-rarefaction:

(ρ, v)(x, 0) =

{
(0.2, 1.5) for x < 0,

(0.7, 1.0) for x > 0.

The intermediate state for the 1-rarefaction and 2-rarefaction solution is calculated
from (4.2.12) and (4.2.21) and is given by (ρκ∗ , v

κ
∗ ) = (0.62, 1.08). Note that the in-

termediate states for the others configurations are computed numerically from their
corresponding nonlinear equations using the function fsolve in Matlab [74]. They
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are given by (ρκ∗ , v
κ
∗ ) = (0.63, 1.19), (ρκ∗ , v

κ
∗ ) = (1.80, 0.91) and (ρκ∗ , v

κ
∗ ) = (0.52, 0.75)

for the 1-rarefaction and 2-shock solution, the 1-shock and 2-shock solution and the
1-shock and 2-rarefaction solution, respectively. These numerical approximations are
used to calculate solutions called “exact solutions”. Numerical and exact solutions
are represented in Figure 4.1.

Next, we illustrate the formation of vacuum state starting with the 1-rarefaction
wave and 2-shock wave solution from Figure 4.1(b), when the pressure vanishes.
Numerical results are represented in Figure 4.2. We notice that for κ = κrs ≈ 0.68
(calculated from (4.3.10) by using the initial data for the 1-rarefaction and 2-shock
wave solution) the 2-shock wave disappears. For κ < κrs, the solution gives rise to
a 1-rarefaction and 2-rarefaction that tends to a two-contact-discontinuity solution,
whose intermediate state between the two contact discontinuities tends to a vacuum
state.

The process of delta shock formation when the pressure vanishes is illustrated
starting with the 1-shock and 2-rarefaction wave solution from Figure 4.1(d). Numeri-
cal solutions are shown in Figure 4.3. We see that that for κ = κsr ≈ 0.14 (calculated
form (4.3.4) by using the initial data for the 1-shock wave and 2-rarefaction wave
solution) the 2-rarefaction wave disappears. For κ < κrs, the solution gives rise to a
1-shock and 2-shock solution that tends to a delta shock wave.

4.5 Conclusion

In this chapter, we reviewed the work of Chen and Liu [23] on the behaviour of the
solution to the Riemann problem for the isentropic Euler equations in the vanishing
pressure limit. It is also shown that any Riemann solution composed of a 1-shock
wave combined with a 2-rarefaction wave tends to two-shock waves when the pres-
sure coefficient gets smaller than a fixed value determined by the Riemann data. In
contrast, any Riemann solution composed of a 1-rarefaction wave combined with a
2-shock wave converts to a two-rarefaction waves when the pressure coefficient gets
smaller than a fixed value determined by the Riemann data. These new results show
how one can deduce, in the vanishing pressure limit, the behaviour of a 1-shock wave
and 2-rarefaction wave solution, or a 1-rarefaction wave and 2-shock wave solution
from the work of Chen and Liu [23]. Our analysis completes the picture on the
degeneracy of the isentropic Euler equations to the pressureless Euler equations.
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(a): 1-rarefaction and 2-rarefaction (b): 1-rarefaction and 2-shock

(c): 1-shock and 2-shock (d): 1-shock and 2-rarefaction

Figure 4.1: Exact and numerical Riemann solutions of the isentropic Euler
equations at t = 0.63, κ = 0.6, γ = 1.4, ∆x = 10−4 and ∆t = 2× 10−5.
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κ = 0.6 κ = κrs ≈ 0.068

κ = 0.005 κ = 0.001

Figure 4.2: Formation of a vacuum state in the isentropic Euler equations as
the pressure vanishes. t = 0.63, γ = 1.4, ∆x = 10−4 and ∆t = 2× 10−5.
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κ = 0.6 κ = κsr ≈ 0.14

κ = 0.01 κ = 0.001

Figure 4.3: Formation of a delta shock wave in the isentropic Euler equations
as the pressure vanishes. t = 0.63, γ = 1.4, ∆x = 10−4 and ∆t = 2× 10−5.



Chapter 5

A new Eulerian droplet model

The non-conservative form of Model E was successfully used for the prediction
of droplets impingement on airfoils and ice accretion on airplane wings during in-
flight icing events [15, 17, 75, 6, 50]. Extension to particle flows in airways was more
recently attempted [14, 16]. However, we saw in chapter 3 that this model may
develop vacuum states and delta shocks. Moreover, the conservative form should be
used when discontinuous solutions appear. In vacuum states, the velocity field is
not defined. From the numerical point of view, the computation of the velocity field
with the conservative form remains a challenge when the volume fraction approaches
zero. In the presence of delta shocks, the solution is physically undesirable since the
volume fraction violates the primordial saturation constraint 0 6 α 6 1. A natural
question arises: How can one improve Model E to avoid vacuum states and delta
shocks without affecting its usefulness? We saw in chapter 4 that the formation of
delta shocks and vacuum states in the pressureless gas system (which can be seen as
Model E without the zeroth-order source term) results from the vanishing pressure
in the Euler equations for gas dynamics (Model IE). This motivates the introduction
of a new Eulerian droplet model with particle pressure:{

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(α(u2 + π)) = KDα(ua − u),
(EP)

where α > 0, u and π are the volume fraction, velocity and pressure of the droplets,
respectively; ua is the air velocity; KD is the drag coefficient between the droplets
and the air. Here, the droplet density ρl (density of the material constituting the
droplets) is assumed to be constant, and thus is factorized from the second equation
of (EP). There is a ratio 1

ρl
(coming from this factorization) that multiplies the

particle pressure π and the drag coefficient KD. To simplify the notation, this ratio
is included in the particle pressure and the drag coefficient. In the following, system
(EP) will also be referred to as Model EP.

86
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This chapter is divided as follows. In section 5.1, we give some theoretical justifi-
cations for adding a particle pressure in Model E. In section 5.2, the hyperbolicity and
the characteristic variables of Model EP are discussed. In section 5.3, the difficulties
encountered in the analysis of model EP are highlighted. Numerical illustrations are
carried out in section 5.4.

5.1 Theoretical arguments for the use of a particle

pressure

Consider again the linear first-order system of PDEs given in (3.1.4). We saw
in subsection 3.1.1 that this system is weakly hyperbolic and develops delta shock
solutions when the initial condition u0 is not differentiable at some point x0. We
modify this system by adding the differential term ε∂xα in the second equation. We
obtain the new system

(
α
u

)
t

+

(
µ β
ε µ

)(
α
u

)
x

= 0, (x, t) ∈ R× R+,

(α, u)(x, 0) = (α0, u0)(x), ∀x ∈ R,
(5.1.1)

where ε > 0 is constant. The Jacobian matrix of system (5.1.1) has two distinct real
eigenvalues

λ1 = µ− cε and λ2 = µ+ cε, (5.1.2)

where cε =
√
εβ > 0. Corresponding eigenvectors are given by r1 = (cε,−ε)T and r2 =

(cε, ε)
T , respectively. System (5.1.2) is diagonalizable, and thus is strictly hyperbolic.

By the change of variable (
w1

w2

)
=

(
cε cε
−ε ε

)−1(
α
u

)
, (5.1.3)

system (5.1.1) transforms into two independent linear transport equations(
w1

w2

)
t

+

(
µ− cε 0

0 µ+ cε

)(
w1

w2

)
x

= 0, (5.1.4)

that can be solved by the method of characteristics to obtain

w1(x, t) = w0
1(x− (µ− cε)t), w2(x, t) = w0

2(x− (µ+ cε)t). (5.1.5)
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Using again (5.1.3), one retrieves the solution

α(x, t) =
α0

(
x− (µ− cε)t

)
+ α0

(
x− (µ+ cε)t

)
2

− βt
u0

(
x− (µ− cε)t

)
− u0

(
x− (µ+ cε)t

)
2cεt

,

u(x, t) =
u0

(
x− (µ− cε)t

)
+ u0

(
x− (µ+ cε)t

)
2

− εt
α0

(
x− (µ− cε)t

)
− α0

(
x− (µ+ cε)t

)
2cεt

,

(5.1.6)

of system (5.1.1). We see that this solution remains bounded as long as the initial
condition (α0, u0) is bounded. Formally, system (3.1.4) is the limit system of (5.1.1)
as the term ε∂xα vanishes. Now take ε → 0. This implies that cε =

√
εβ → 0. On

the one hand, the two eigenvalues (5.1.2) of system (5.1.1) degenerate to the double
eigenvalue λ = u of system (3.1.4). On the other hand, solution (5.1.6) of system
(5.1.1) gives rise to

α(x, t) = α0(x−µt)− βtu′0(x−µt), u(x, t) = u0(x−µt)− lim
ε→0

εtα′0(x−µt) (5.1.7)

which, if α′0 is bounded, reduces to

α(x, t) = α0(x− µt)− βtu′0(x− µt), u(x, t) = u0(x− µt). (5.1.8)

This equation is nothing else but the solution of system (3.1.4). The introduction of
ε∂xα in (3.1.4) eliminates delta shocks.

The same phenomenon also occurs with nonlinear systems. In fact, we saw in
chapter 4 that the occurrence of delta shocks and vacuum states in the pressureless
gas system (4.3.1) results from the vanishing pressure limit of the isentropic Euler
equations (IE).

Based on the above considerations, we speculate that adding a suitable term in
the basic equation of the Eulerian droplet model (E) may prevent delta shocks and
vacuum states formation. A simple and physically acceptable way to add such differ-
ential term in Model E is to consider a pressure that depends on the droplet volume
fraction. Hence, we introduce a new Eulerian droplet model with a pressure gradient.
Such a pressure is called particle pressure and could be seen as generated by particles,
for instance during particle-particle collisions or through particle-particle interaction
by the carrier fluid when particles get close to each other without necessarily collid-
ing. There are several formulations for adding a pressure gradient in the momentum
equation for a phase. The formulation that we have adopted here and the reason
behind our choice will be discussed later.
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5.2 Hyperbolicity and characteristic variables

In this section, we assume that the particle pressure π satisfies

π = π(α) > 0, π′(α) > 0, π′′(α) > 0. (5.2.1)

We will give the reason behind these assumptions later. To simplify notation, we set

π̃(α) = απ(α). (5.2.2)

For smooth solutions, the Jacobian matrix of system (EP) and (5.2.1) is given by

JEP (α, αu) =

(
0 1

−u2 + π̃′(α) 2u

)
, (5.2.3)

and has two eigenvalues

λ1(α, αu) = u− cπ, and λ2(α, αu) = u+ cπ, (5.2.4)

where
cπ = cπ(α) =

√
π̃′(α) =

√
π(α) + απ′(α) > 0, (5.2.5)

since we assume that α > 0 and π satisfies (5.2.1). A general set of eigenvectors
associated to the eigenvalues (5.2.4) is given by

r1(α, αu) = b1

(
1
λ1

)
and r2(α, αu) = b2

(
1
λ2

)
, (5.2.6)

respectively, where b1 = b1(α, αu) and b2 = b2(α, αu) are nonzero scalar functions.
The Jacobian matrix (5.2.3) is diagonalizable. Hence, Model EP is strictly hyperbolic.

To find the characteristic variables of Model EP, we proceed as we did with the
isentropic Euler equations (IE) in section 4.1. We assume there exists ψ = (ψ1, ψ2)
such that

dψ = (PEP )−1du, (5.2.7)

where u = (α, αu)T , d is a differential operator that satisfies dψj = ∂xψj or dψj =
∂tψj, and PEP is the transformation matrix

PEP =

(
b1 b2

b1λ1 b2λ2

)
. (5.2.8)

We rewrite system (EP) and (5.2.1) in the diagonalized form

∂tψ + ΛEP (u)∂xψ = (PEP )−1F (u), (5.2.9)
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where

ΛEP (u) =

(
λ1(u) 0

0 λ2(u)

)
, F (u) =

(
0

KDα(ua − u)

)
. (5.2.10)

Then, by the particular choice b1 = −b2 = − α
2cπ

, we find the characteristic variables

ψ1 = u− gπ, ψ2 = u+ gπ, (5.2.11)

where gπ is defined as

gπ =

∫
cπ(α)

α
dα. (5.2.12)

Finally, system (EP) and (5.2.1) can be written as

∂ψ1

∂t
+ (u− cπ)

∂ψ1

∂x
= KD(ua − u),

∂ψ2

∂t
+ (u+ cπ)

∂ψ2

∂x
= KD(ua − u).

(5.2.13)

Equation (5.2.13) means that the characteristic variable ψj is not constant along the
characteristic field χj(x, t; .). We are not able to find an analytical solution of the
corresponding nonlinear system ODEs. This is a difficulty in the analysis of Model
EP. Others difficulties will be discussed in the next section.

If λj(u) > 0 then the characteristics emanate from a point on either the initial
line t = 0 or the left boundary of the domain. This means that we have to prescribe
the characteristic variable ψj at time t = 0 and at the left boundary. Similarly, if
λj(u) < 0 then the characteristics emanate from a point on either the initial line t = 0
or the right boundary, and thus we have to prescribe the characteristic variable ψj at
t = 0 and at the right boundary. In most applications cπ is small since the volume
fraction is small, and thus we fall in a supersonic regime, i.e. u > cπ. In this case,
we only need boundary conditions on the inflow boundaries. Table 5.1 summarizes
the location and the characteristic variables for which a boundary condition should
be prescribed. The characteristic variables can be written as (ψ1, ψ2) = H(α, u).
Formally, inverting this function H, we find the boundary conditions for the physical
variables α and u.

u ≥ cπ |u| < cπ u 6 −cπ
left boundary ψ1, ψ2 ψ2 not required

right boundary not required ψ1 ψ1, ψ2

Table 5.1: Boundary conditions for Model EP.

Remark 5.2.1. The above results are valid provided that cπ > 0. This explains the
assumption (5.2.1) on the particle pressure π to ensure the positivity of cπ.
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5.3 Difficulties with the analysis of Model EP

In this section, we highlight the difficulties encountered in the analysis of Model
EP, particularly with the solution of the Riemann problem, i.e. problem (EP) and
(5.2.1) augmented with the initial conditions

(α, u)(x, 0) =

{
(α−, u−), x < 0,

(α+, u+), x > 0,
(5.3.1)

where α−, α+ ∈ R+ and u−, u+ ∈ R are given constants.

5.3.1 Rarefaction waves

The characteristic variables of Model EP are not constant along their correspond-
ing characteristic fields. This is due to the zeroth-order source term. We do not have
Riemann invariants for system (EP), and thus we cannot establish its rarefaction
curves as we did for the isentropic Euler equations. This is another difficulty in the
analysis of the Riemann problem for Model EP.

5.3.2 Shock waves

We are looking for a shock wave, i.e. a solution that is discontinuous across
a continuous curves x = ξj(t). The eigenvalues (5.2.4) and eigenvectors (5.2.6) of
system (EP) and (5.2.1) satisfy

∇λ1 · r1 = −b1

(
c′π(α) +

cπ(α)

α

)
= −b1

(
2π′(α) + απ′′(α)

2
√
π(α) + απ′(α)

+
cπ(α)

α

)
6= 0,

∇λ2 · r2 = b2

(
c′π(α) +

cπ(α)

α

)
= b2

(
2π′(α) + απ′′(α)

2
√
π(α) + απ′(α)

+
cπ(α)

α

)
6= 0,

(5.3.2)

since π satisfies (5.2.1). Note that here the gradient operator is taken with respect to
the conservative variables α and αu. Hence, the two characteristic fields of (EP) and
(5.2.1) are genuinely nonlinear. Thus, discontinuous solutions of problem (EP) and
(5.2.1) are shock waves [64]. Such solutions satisfy the Rankine-Hugoniot conditions
[64] given by

σj(t) =
α(ξ+

j , t)u(ξ+
j , t)− α(ξ−j , t)u(ξ−j , t)

α(ξ+
j , t)− α(ξ−j , t)

,

σj(t) =
α(ξ+

j , t)u(ξ+
j , t)

2 + π̃(α(ξ+
j , t))− α(ξ−j , t)u(ξ−j , t)

2 − π̃(α(ξ−j , t))

α(ξ+
j , t)u(ξ+

j , t)− α(ξ−j , t)u(ξ−j , t)
,

(5.3.3)
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where
(
α(ξ−j , t), u(ξ−j , t)

)
and

(
α(ξ+

j , t), u(ξ+
j , t)

)
denote the limits of the solution

(α, u) when x approaches the j-shock curve ξj from the left and right, respectively,
and σj = ξ′j(t) is the speed of propagation of the j-shock curve. Note that for
classical shock wave solutions, the zeroth-order source term disappears in the Rankine-
Hugoniot conditions as we have shown in the proof of theorem 3.2.2 for the Burgers
equation with source term (B). In addition, the j-shock speed σj also satisfies the
Lax entropy conditions [64]

λj−1

(
α(ξ−j , t), α(ξ−j , t)u(ξ−j , t)

)
< σj(t) < λj

(
α(ξ−j , t), α(ξ−j , t)u(ξ−j , t)

)
,

λj
(
α(ξ+

j , t), α(ξ+
j , t)u(ξ+

j , t)
)
< σj(t) < λj+1

(
α(ξ+

j , t), α(ξ+
j , t)u(ξ+

j , t)
)
,

(5.3.4)

where λ0 = −∞ and λ3 =∞.
Suppose that (α, u) is a solution of (EP) and (5.2.1) that contains a 1-shock

wave. We want to establish a relation between a given left state (αl, ul) and a right
state (α, u), separated by the 1-shock curve. On the one hand, the Rankine-Hugoniot
conditions (5.3.3) lead to

u(ξ+
1 , t) = ul(ξ

−
1 , t)±

√
π̃(α(ξ+

1 , t))− π̃(αl(ξ
−
1 , t))

α(ξ+
1 , t)αl(ξ

−
1 , t)(α(ξ+

1 , t)− αl(ξ−1 , t))
(
α(ξ+

1 , t)− αl(ξ−1 , t)
)
.

(5.3.5)
On the other hand, the Lax entropy conditions (5.3.4) lead to

cπ(α(ξ+
1 , t))α(ξ+

1 , t) >
α(ξ+

1 , t)αl(ξ
−
1 , t)

(
ul(ξ

−
1 , t)− u(ξ+

1 , t)
)

α(ξ+
1 , t)− αl(ξ−1 , t)

> cπ(αl(ξ
−
1 , t))αl(ξ

−
1 , t).

(5.3.6)

Since the function α 7→ αcπ(α) is positive and strictly increasing (from assump-
tion (5.2.1)), then condition (5.3.6) implies that α(ξ+

1 , t) > αl(ξ
−
1 , t) and u(ξ+

1 , t) <
ul(ξ

−
1 , t). Hence, (5.3.5) reduces to

u(ξ+
1 , t) = ul(ξ

−
1 , t)−

√(
π̃(α(ξ+

1 , t))− π̃(αl(ξ
−
1 , t))

)(
α(ξ+

1 , t)− αl(ξ−1 , t)
)

α(ξ+
1 , t)αl(ξ

−
1 , t)

, (5.3.7)

with α(ξ+
1 , t) > αl(ξ

−
1 , t).

In an analogous way, we establish a relation between a left state (α, u) and a
given right state (αr, ur), separated by a 2-shock wave, that is

u(ξ−2 , t) = ur(ξ
+
2 , t) +

√(
π̃(αr(ξ

+
2 , t))− π̃(α(ξ−2 , t))

)(
αr(ξ

+
2 , t)− α(ξ−2 , t)

)
αr(ξ

+
2 , t)α(ξ−2 , t)

, (5.3.8)

with α(ξ−2 , t) > αr(ξ
+
2 , t).
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The presence of the zeroth-order source term combined with the particle pressure
makes the analysis of Model EP very challenging since they leads to non-constant
states for the Riemann solution on both sides of the shock trajectory. In particular,
we could not find an analytical expression for the intermediate state between the two
shocks. From the numerical results in the next section there is no reason to think
that the intermediate state is constant for a given time t (as with the left and right
states) or has trivial limits while approaching the shock curves at fixed t.

5.4 Numerical illustrations

This section is devoted to the numerical illustration that a particle pressure
prevents the formation of delta shocks and vacuum states in Model EP. The test cases
performed in subsection 3.6.1 showed the formation of delta shocks and vacuum states
in Model E. We repeat these test cases with Model EP to highlight the prevention of
delta shocks and vacuum states formation. We use the modified Lax-Friedrich scheme
(see section 2.3) to discretize the balance laws (EP). We take π = κ0α, where κ0 is a
constant coefficient. We will see in the next chapter the reason behind this particular
choice of the particle pressure.

We first solve (EP) for the initial data (3.6.1). Numerical results for different
values of the particle pressure coefficient κ0 are represented in Figure 5.1. We obtain
a delta shock wave centered on the velocity discontinuity with the solution without
particle pressure (Model E). In the presence of a particle pressure, i.e. for κ0 > 0,
the discontinuity in the velocity breaks down in two discontinuities. This gives rise
to a left, intermediate and right states. The amplitude of the volume fraction for the
intermediate state between these two discontinuities becomes bounded and decreases
as the particle pressure coefficient κ0 increases. Note that here the variables are
scaled. This explains why the displayed volume fraction is bigger than one in some
cases. Moreover, for a particle pressure coefficient κ0 big enough, the volume fraction
remains smaller than one. The particle pressure prevents the formation of a delta
shock by giving rise to a two-shock solution.

Secondly, we solve (EP) for the initial conditions (3.6.2). Numerical results for
different values of the particle pressure coefficient κ0 are represented in Figure 5.2.
We obtain a two-contact discontinuity solution with a vacuum state with the solution
without particle pressure (Model E). In presence of a particle pressure, the solution
turns into a two-rarefaction solution without vacuum state.

We clearly see from these two test cases that particle pressure can prevent delta
shocks and vacuum states formation. These results show the mathematical and phys-
ical relevance of including a particle pressure gradient in Model E.
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5.5 Conclusion

In this chapter we proposed a new Eulerian model for air-droplets flows. This model
is written in conservative form and is strictly hyperbolic as opposed to the standard
Eulerian droplet model, which is weakly hyperbolic with one double eigenvalue. We
tried to perform for the new Eulerian droplet model, an analysis similar to the one we
did for the isentropic Euler equations of gas dynamics in chapter 4, but the zeroth-
order source term leads to a more complicated analysis. The classical theory for
hyperbolic conservation laws do not apply to the conservation laws with zeroth-order
source (EP). We have illustrated numerically how delta shocks and vacuum states
formation is prevented in this new Eulerian droplet model. These results show the
mathematical and physical relevance of a particle pressure gradient in the momentum
equation of the particulate phase. Model EP could extend the validity range of model
(E) to those situations where delta shocks could appear in model (E). However,
mathematical proofs are needed to confirm these numerical observations.
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κ0 = 0 κ0 = 0.02

κ0 = 0.1 κ0 = 0.5

Figure 5.1: Delta shock prevention in Model EP. t = 0.4, ua = 1.0, KD = 0.2,
∆x = 10−3 and ∆t = 10−4.
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κ0 = 0 κ0 = 0.1

κ0 = 0.3 κ0 = 0.5

Figure 5.2: Vacuum state prevention in Model EP. t = 0.4, ua = 1.0, KD =
0.2, ∆x = 10−3 and ∆t = 10−4.



Chapter 6

A new hierarchy of two-phase flow
models

In chapter 3, we analysed an Eulerian droplet model (Model E). It turns out that
this model may develop delta shocks and vacuum states. In chapter 5, we proposed an
Eulerian droplet model with particle pressure (Model EP) that could be an extension
of Model E in order to avoid delta shocks and vacuum states. These two models
are one-way coupling, i.e. momentum transfer is assumed from the carrier fluid to
the particles but not vice-versa. The carrier fluid is simply considered as a physical
body acting on the particles (droplets), and is modeled separately from the particles,
for instance by Euler or Navier-Stokes equations. To be more realistic, the effects of
the particles on the carrier fluid should also be taken into account. In this chapter,
we derive a hierarchy of two-phase flow models including two-way coupling (i.e. the
carrier fluid and the particles interact with each other) and two-pressure modelling
(i.e. one for the carrier fluid and one for the dispersed phase).

This chapter is divided as follows. The first three sections are devoted to the
derivation and brief analysis of the different models. Section 6.4 summarizes the con-
nections between the models. A brief literature review on particle pressure modelling
is performed in section 6.5. Numerical comparisons are carried out in section 6.6.

6.1 A two-way coupling Eulerian droplet model

In 2000, Bouchut [10] proposed a hierarchy of Eulerian models (see chapter 2,
subsection 2.2.1) for gas-liquid flows. In this section, we derive a two-way coupling
Eulerian model from Model I of Bouchut [10]. Then, we discuss its advantages with
respect to the Model I and Model E.

97
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The first model in the hierarchy of Bouchut [10], referred to as Model I, reads as

∂t((1− α)ρ) + ∂x((1− α)ρv) = 0,

∂t((1− α)ρv) + ∂x((1− α)ρv2) + (1− α)∂xp = −1

ε
µα(1− α)(v − u),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) + εα∂xp+ Cp(v − u)2∂xα = µα(1− α)(v − u),

(I)

where ρ > 0, 1− α and v are the density, volume fraction and velocity of the carrier
fluid, respectively; α > 0 and u are the volume fraction and velocity of the particles,
respectively; p is the common pressure for the two phases and satisfies the state
equation for isentropic gas flow (4.0.1); and µ is the drag coefficient. The density

ratio ε = ρref

ρref
l

, where ρref and ρref
l are the reference densities for the carrier fluid and

the particles, respectively. The differential term Cpρl(v − u)2∂xα is called pressure
correction term, where Cp is a positive constant. Note that in this model, the density
ρl of the material constituting the particles is assumed to be constant and equal to
ρref
l . It is then factorized from the third and fourth equations.

Remark 6.1.1. The density ratio ε comes from the density perturbation method [28]
applied to the reduced two-fluid model. This method is a convenient way to describe
the behaviour and well-posedness of two-phase flow models. For more details, see
[28, 10].

A necessary condition (at least in the linear case) for the Cauchy problem to be
well-posed is that it be stable in the sense of von Neumann. Stability of a system of
partial differential equations of first order in the sense of von Neumann is equivalent
to the hyperbolicity of the system, i.e. all the eigenvalues of the Jacobian matrix of
the system are real [79].

If there is no pressure correction term, i.e. Cp ≡ 0, model (I) is known as the basic
equal pressure model for two-phase flows [85]. This latter is known to possess complex
eigenvalues [28]. Several modifications to the equations of the basic equal pressure
model have been proposed to remedy this shortcoming. The most common technique
is the addition of first-order differential terms called pressure correction terms in the
momentum equation. These differential terms are mathematically relevant, as they
make the system hyperbolic by transforming the complex eigenvalues into real ones.
Several variants of pressure correction terms were proposed in the past [28]. The one
derived in [61] for bubbly flows, is used in Model I.

We now derive, starting from Model I, a new model which is an intermediate
between the models (I) and (E). Assume that 0 < α < 1. By expanding the first and
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second equations of (I), this system can be written as

∂tρ+ ∂x
(
ρv
)

=
ρ

1− α
(
∂tα + v∂xα

)
,

∂t(ρv) + ∂x(ρv
2) + ∂xp = −1

ε
µα(v − u) +

ρv

1− α
(
∂tα + v∂xα

)
,

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) + Cp(v − u)2∂xα = µα(1− α)(v − u)− εα∂xp.

(6.1.1)

In many industrial applications on gas-particle flows, the particles are water droplets
carried by air. Hence, the reference density for droplets is around 1000kg/m3 and the
reference density for the carrier fluid is around 1kg/m3. This gives a density ratio ε
of order 10−3. We denote Dvα

dt
= ∂tα+v∂xα and make the two following assumptions:∣∣∣Dvα

dt

∣∣∣ ≈ 0, i.e. the variation of the volume fraction α along the characteristic

curves defined by the gas velocity v is negligible; (6.1.2)

εα|∂xp| is negligible with respect to the other terms in the fourth equation of

system (6.1.1). (6.1.3)

By neglecting the terms Dvα
dt

and εα∂xp, system (6.1.1) reduces to

∂tρ+ ∂x
(
ρv
)

= 0,

∂t
(
ρv
)

+ ∂x
(
ρv2 + p

)
= −1

ε
µα
(
v − u

)
,

∂tα + ∂x
(
αu
)

= 0,

∂t
(
αu
)

+ ∂x
(
αu2
)

+ Cp(v − u)2∂xα = µα(1− α)(v − u),

(6.1.4)

which can be written in quasilinear form with respect to the primitive variables
(ρ, v, α, u) as


ρ
v
α
u


t

+


v ρ 0 0

p′(ρ)

ρ
v 0 0

0 0 u α

0 0
Cp(u− v)2

α
u



ρ
v
α
u


x

=


0

−1

ε

µα

ρ
(v − u)

0
µ(1− α)(v − u)

 . (6.1.5)

The Jacobian matrix of this system has four distinct real eigenvalues

λ1 = v− c, λ2 = v+ c, λ3 = u−
√
Cp|v−u| and λ4 = u+

√
Cp|v−u|, (6.1.6)
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where c = c(ρ) =
√
p′(ρ). Hence, system (6.1.4) is stable in the sense of von Neumann.

Recall that these pressure correction terms are added in Model I in order to achieve
well-posedness. There is some questioning on the physical relevance of the pressure
corrections. In fact, some studies argued that pressure correction terms can introduce
nonphysical effects [90, 78] and lead to non-conservative system (as with Model I).
To avoid these drawbacks, we simply remove the pressure correction term (i.e. we set
Cp ≡ 0) from system (6.1.4) and the latter reduces to

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + p) = −1

ε
µα(v − u),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) = µα(1− α)(v − u).

(IA)

System (IA) is a new two-way coupling Eulerian droplet model. In the following, this
model will also be referred to as Model IA.

6.1.1 Advantages of Model IA versus the models (I) and (E)

Model IA is a two-way coupling model for gas-particle flows. It is a system
of conservation laws with zeroth-order linear source terms and can be written in
quasilinear form as

ρ
v
α
u


t

+


v ρ 0 0
p′

ρ
v 0 0

0 0 u α
0 0 0 u



ρ
v
α
u


x

=


0

−1

ε

µα

ρ
(v − u)

0
µ(1− α)(v − u)

 . (6.1.7)

The Jacobian matrix is composed of two blocks (one for each phase) with zero off-
diagonal blocks and has three real eigenvalues given by

λ1 = v − c, λ2 = v + c and λ3 = u. (6.1.8)

Model IA has many advantages compared to Model I. In fact, it is written naturally
in conservative form as opposed to Model I, which cannot be written in conservative
form. Classical theories for conservation laws may be applied to Model IA, while
Model I requires less standard theories for non-conservative hyperbolic systems, for
instance, see [32]. Model IA is a common-pressure two-phase model which does
not require any additional pressure correction term for stability in the sense of von
Neumann as opposed to Model I, which does need a pressure correction term.

In many air-particle flow applications, the particle volume fraction α is very
small. For instance, during in-flight icing, the volume fraction of water droplets is



6. A NEW HIERARCHY OF TWO-PHASE FLOW MODELS 101

of order 10−6 [15] and the density ratio ε is around 10−3. Therefore, for small drag
coefficient µ, the term on the r.h.s of the second equation of Model IA can be neglected
with respect to the terms on the l.h.s. The first and the second equation of (IA) can
be written as {

∂tρ+ ∂x
(
ρv
)

= 0,

∂t
(
ρv
)

+ ∂x
(
ρv2 + p

)
= 0,

(6.1.9)

which are nothing but the isentropic Euler equations (IE) studied in chapter 4. For
α small, 1−α can be approximated by 1, and thus the term on the r.h.s of the fourth
equation of (IA) reduces to µα(v− u). The third and fourth equation of (IA) can be
written as {

∂tα + ∂x
(
αu
)

= 0,

∂t
(
αu
)

+ ∂x
(
αu2
)

= µα(v − u),
(6.1.10)

which form the Eulerian droplet model (E) studied in chapter 3. Hence, Model IA
leads to Model E while predicting air-droplet flows with low concentration of droplets.
A variant of Model E, where the carrier fluid is modeled separately using Navier-
Stokes equations, is used in [15, 75, 6, 50, 14]. To our knowledge, Model IA has
not yet been proposed in the literature. Whence, the denomination “a new Eulerian
droplet model”.

6.1.2 Shortcomings of Model IA

Model IA is a system of conservation laws with zeroth-order linear source term.
The Jacobian matrix has three distinct real eigenvalues given by (6.1.8) and is not
diagonalizable. Therefore, it is a weakly hyperbolic system of conservation laws. While
this is better than systems with complex eigenvalues, weakly hyperbolic systems still
lead to difficulties, particularly the occurrence of delta shocks and vacuum states
which are usually nonphysical and very hard to solve numerically. These difficulties
restrict their use in some applications. Model IA is no more valid in presence of
delta shocks since the primordial saturation constraint 0 6 α 6 1 for the mixture is
violated.

6.2 A two-way coupling two-pressure Eulerian droplet

model

In the previous section, we saw that Model IA purports to be more realistic than
Model E in the sense that it takes into account two-way momentum transfer between
the carrier fluid and the particles, however it is weakly hyperbolic and may develop
delta shocks and vacuum states. In chapter 5, we saw that adding a particle pressure
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gradient in the momentum equation of the particulate phase prevents the occurrence
of delta shocks and vacuum states. Combining these results, we introduce a two-way
coupling two-pressure Eulerian model

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + p) = −1

ε
µα(v − u),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(α(u2 + π)) = µα(1− α)(v − u),

(IAP)

where π is the pressure of the carrier fluid and satisfies (5.2.1). The other variables
and parameters in (IAP) have the same meaning as in Model IA.

Remark 6.2.1. Model IAP is obtained by including a particle pressure in the mo-
mentum equation for the dispersed phase in Model IA. Therefore, we refer to this
model as Model IAP. We use the formulation adopted in Model EP to add the par-
ticle pressure. This will be discussed in the next section. Note that in (IAP), the
density ρl of particles is assumed to be constant and factorized from the third and
fourth equations. There is a ratio 1

ρl
(coming from this factorization) that multiplies

the pressure π. To simplify the notation, we include this ratio in the particle pressure
coefficient. The denomination “two-pressure” comes from the fact that the pressures
of the two phases are different.

Model IAP can be written in the conservative variables (ρ, r, α, q) as

∂tρ+ ∂xr = 0,

∂tr + ∂x

(
r2

ρ
+ p

)
= −1

ε
µα

(
r

ρ
− q

α

)
,

∂tα + ∂xq = 0,

∂tq + ∂x

(
q2

α
+ απ

)
= µα(1− α)

(
r

ρ
− q

α

)
,

(6.2.1)

where r = ρv and q = αu. The Jacobian matrix of (6.2.1) rewritten using primitive
variables (ρ, v, α, u) gives

0 1 0 0
p′ − v2 2v 0 0

0 0 0 1
0 0 π + απ′ − u2 2u

 . (6.2.2)

It is composed of two blocks (one for each phase) with zero off-diagonal blocks, and
has four distinct real eigenvalues

λ1 = v − c, λ2 = v + c, λ3 = u− cπ, λ4 = u+ cπ, (6.2.3)
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where c =
√
p′ > 0 and cπ =

√
π + απ′ > 0 since the pressures p and π satisfy

(4.0.1) and (5.2.1), respectively. Hence, Model IAP is a strictly hyperbolic system in
conservative form.

6.3 A general Eulerian gas-particle model

Model IA and Model IAP are derived under the assumption that the variation
of the particle volume fraction is slow. This condition is not always satisfied, for
instance when discontinuous solutions occur. This is a weakness in the two models.
Recall that the basic equal-pressure model (Model I with Cp ≡ 0) is an ill-posed
problem since it can have complex eigenvalues [28]. Several modifications have been
proposed to remedy this ill-posedness. Some authors proposed to add a pressure
correction term in the momentum equation of the particulate phase as it is done
in Model I [10]. Gidaspow [43] suggested to modify the common pressure gradient
terms (1 − α)∂xp and α∂xp in the momentum equations to read ∂x((1 − α)p) and
∂x(αp), respectively. This modification has two main advantages. It makes the system
hyperbolic without additional pressure correction term. Moreover, it allows to write
the system in conservative form. This is the reason behind the formulation that we
have adopted to add a particle pressure in the models (IAP) and (EP). Following this
idea, but with different pressures for the two phases and without any assumption on
the variation of the particle volume fraction, we derive the gas-particle flow model

∂t
(
(1− α)ρ

)
+ ∂x

(
(1− α)ρv

)
= 0,

∂t
(
(1− α)ρv

)
+ ∂x

(
(1− α)(ρv2 + p)

)
= −µρlα(1− α)(v − u),

∂t(αρl) + ∂x(αρlu) = 0,

∂t(αρlu) + ∂x
(
α(ρlu

2 + π)
)

= µρlα(1− α)(v − u),

(6.3.1)

where the variables and parameters have the same meaning as in Model IAP. Here,
the pressures p and π are taken more general, i.e. both may depend on the carrier fluid
density and the particle volume fraction. To simplify, we assume that the particle
density ρl is constant and is equal to the particle reference density ρref

l . The pressures
are assumed to satisfy

p(ρ, α) > 0, ∂ρp > 0, ∂αp ≥ 0, π(ρ, α) > 0, ∂ρπ ≥ 0, ∂απ > 0. (6.3.2)

These assumptions are physically acceptable and ensure hyperbolicity in most cases
as we will see later. With these assumptions, system (6.3.1) reduces to

∂t
(
(1− α)ρ

)
+ ∂x

(
(1− α)ρv

)
= 0,

∂t
(
(1− α)ρv

)
+ ∂x

(
(1− α)(ρv2 + p)

)
= −1

ε
µα(1− α)(v − u),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x
(
α(u2 + π)

)
= µα(1− α)(v − u).

(G)
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In the following, system (G) is also referred to as Model G.

Remark 6.3.1. (i) As in model (IAP), the factorization of ρl from the fourth equa-
tion of (6.3.1) gives rise to a ratio 1

ρl
that multiplies the pressure π. This ratio is

simply included in the pressure π.
(ii) The density ratio ε comes from the nondimensionalization of the carrier fluid
density as it is done in Model I.
(iii) We will see later that the models studied in the previous sections can all be de-
rived from Model G. Hence, the denomination “general Eulerian gas-particle model”.

System (G) can be written in the conservative variables (w, r, α, q) as

∂tw + ∂xr = 0,

∂tr + ∂x

(
r2

w
+ (1− α)p

)
= −1

ε
µα(1− α)

( r
w
− q

α

)
,

∂tα + ∂xq = 0,

∂tq + ∂x

(
q2

α
+ απ

)
= µα(1− α)

( r
w
− q

α

)
,

(6.3.3)

where w = (1 − α)ρ, r = (1 − α)ρv and q = αu. The Jacobian matrix of this last
system, rewritten in the primitive variables (ρ, v, α, u), is given by

0 1 0 0
∂ρp− v2 2v ρ∂ρp+ (1− α)∂αp− p 0

0 0 0 1
1

1−αα∂ρπ 0 π + αρ
1−α∂ρπ + α∂απ − u2 2u

 . (6.3.4)

The characteristic polynomial Υ of the Jacobian matrix (6.3.4) can be written as

Υ(λ) =
(
λ−V−

)(
λ−V+

)(
λ−U−

)(
λ−U+

)
− α∂ρπ

1− α
(
ρ∂ρp+ (1−α)∂αp− p

)
, (6.3.5)

where

V− = v −
√
∂ρp, V+ = v +

√
∂ρp,

U− = u−
√(

π +
αρ∂ρπ

1− α
+ α∂απ

)
, U+ = u+

√(
π +

αρ∂ρπ

1− α
+ α∂απ

)
.

(6.3.6)

The terms in (6.3.6) are all well defined in R since the pressures p and π satisfy
(6.3.2). If |α∂ρπ

1−α

(
ρ∂ρp + (1 − α)∂αp − p

)
| is small compared to the constant term in

the characteristic polynomial, then the last expression in the r.h.s of (6.3.5) can be
considered as a small perturbation of the characteristic polynomial Υ. In this case,
the latter has real roots, i.e. the Jacobian matrix (6.3.4) has real eigenvalues.
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Lemma 6.3.2. If the particle pressure π only depends on the particle volume fraction
α then Model G is hyperbolic.

Proof: If the particle pressure π only depends on the particle volume fraction
α then ∂ρπ = 0, which implies that α∂ρπ

1−α (ρ∂ρp + (1 − α)∂αp − p) = 0. Hence, the
characteristic polynomial (6.3.5) has real eigenvalues.

We are not able to find analytic expressions for the eigenvalues of the Jacobian matrix
(6.3.4). We generated values randomly and calculated numerically the corresponding
eigenvalues with different forms for the pressures, but we never saw a case with a
complex eigenvalue. We therefore conjecture that Model G is at least conditionally
hyperbolic.

6.4 Summary of the new hierarchy

Model G is a two-way coupling two-pressure model for two-phase flows, written
in conservative form. We conjecture that it is conditionally hyperbolic but we are not
able to show that the eigenvalues are always real. However, it is hyperbolic when the
particle pressure π only depends on the volume fraction.

Model I [10] is a two-way coupling common-pressure model for two-phase flows,
written in non-conservative form. This model is conditionally hyperbolic since it may
have complex eigenvalues [28].

Model IAP is a two-way coupling two-pressure model for two-phase flows. It is
a strictly hyperbolic system in conservative form. This model can be derived from
Model G under the assumption (6.1.2) and for p

1−α |∂xα| ≈ 0.
Model IA is a two-way coupling one-pressure model written in conservative form.

It is a weakly hyperbolic system. This model can be derived from Model I (under
the assumptions (6.1.2), (6.1.3), and Cp ≡ 0) or from Model IAP (by neglecting the
particle pressure π).

Model EP-IE is composed of the Eulerian droplet model with particle pressure
(EP) and the isentropic Euler equation (IE) with a zeroth order source term. It is a
one-way coupling two-pressure model for two-phase flows and is strictly hyperbolic.
This model can be derived from Model IAP for µα

ε
� 1.

Model E-IE is composed of the Eulerian droplet model (E) and the isentropic
Euler equation (IE) with a zeroth order source term. It is a one-way coupling one-
pressure model for two-phase flows and is weakly hyperbolic. This model can be
derived from Model IA (for µα

ε
� 1) or Model EP-IE (by neglecting the particle

pressure π).
Figure 6.1 summarises the connections between the different models, the main

properties of the models and the hypothesis for the derivation of some models from
others.
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Model G Model I

Model IAP Model IA

Model EP-IE Model E-IE

+
Dvα

dt

+ p
1−α ∂xα

Conservative
Cond. Hyper.

Two-way coupling
No Delta Shocks

Non-Conservative
Cond. Hyper.

Two-way coupling
Nonphysical effects

Conservative
Strictly Hyper.

Two-way coupling
No Delta Shocks

Conservative
Weakly Hyper.

Two-way coupling
Delta Shocks

Conservative
Strictly Hyper.

One-way coupling
No Delta Shocks

Conservative
Weakly Hyper.

One-way coupling
Delta Shocks

∣∣∣Dvα
dt

∣∣∣ ≈ 0

εα|∂xp| ≈ 0

τ = 0

+π

µα

ε
� 1

µα

ε
� 1

+π

Figure 6.1: Connections between the different models of the new hierarchy.

6.5 Particle pressure modelling

When modelling multiphase flows, a separated set of equations for the conser-
vation of mass, momentum and, if needed, energy, is written for each phase. The
individual phase equations are then coupled to each other through interaction terms.
Pressures are defined and the pressure gradient of each phase is included in the cor-
responding momentum conservation equation. When modelling gas-particle flows,
the equations that describe the motion of the dispersed phase should contain terms
involving a particle pressure gradient. In some mathematical models for gas-particle
flows, the particle pressure is ignored. This assumption is made in Model E. In other
models, the particle pressure is taken equal to the pressure from the gas phase. This
is done in Model I [10]. However, neither of these arguments seems correct. In fact,
theoretical and experimental works related to the stability of fluidized beds have
shown that a particle pressure gradient has significant effects on the behaviour of
multiphase flow models [35, 76, 38, 5]. In chapter 4, we saw that a particle pressure
gradient may prevent delta shocks and vacuum states occurring in the solutions of
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two-phase flow models. This shows the interest of considering a pressure gradient
from the particulate phase .

Particle or granular pressure can be defined as a pressure generated by the action
of particles and their interactions in a particulate multiphase flow. This pressure
could be generated, for instance, during particle collisions or through interaction by
the carrier fluid when particles get close to each other without necessarily colliding.
A particle pressure should be positive and increasing as the particle volume volume
fraction increases [35]. There are several attempts to measure the pressure generated
by particles [35, 76, 38, 5].

In 1983, Needham and Merkin [76] proposed, as a first approximation for a
particle pressure, the simple linear function

π = κ0α, (6.5.1)

where κ0 is a constant, having dimensions of pressure. This choice is based on the
suggestion from Drew and Segel [35], saying that the pressure generated from particle
interactions is an increasing function of the volume fraction of the dispersed phase.

Foscolo and Gilibaro [38] introduced a force that is applied to the particles in a
control volume and calculated from fluid dynamics considerations. This force repre-
sents a fluid dynamics phenomenon that arises from the dispersed phase and corre-
sponds to the particle pressure gradient. Their particle pressure, also used in [97], is
expressed as

π = ρlu
2
eα

2, (6.5.2)

where ue is called the “elastic wave velocity” and is given by

ue =
(
3.2gd

ρl − ρ
ρl

) 1
2 , (6.5.3)

where g is the gravity acceleration, d is the uniform particle diameter and ρl is the
density of the particle material.

In the work of Batchelor [5], the particle pressure is assumed to approach zero
for two limiting cases: as the volume fraction of the particles approaches zero, and as
the volume fraction of the particles approaches the close-packed limit. The first limit
is due the absence of velocity fluctuations when the number of particle goes to zero,
and the second limit is due to the decrease of fluctuations when particles approach
a dense state. Batchelor’s [5] expression for the particle pressure in an homogeneous
bed is

π = αρlF (α)u2
m, (6.5.4)

where F is a function satisfying the above two limiting cases and um is the superficial
fluid velocity (referred to by Batchelor as the local mean velocity according to the
frame of reference used in his paper). Batchelor suggested the following representation

F (α) ≈ α

αcp
(1− α

αcp
), (6.5.5)
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where αcp is the closed-packed solid fraction (αcp ≈ 0.62 for a randomly packed bed
of uniform sized particles).

Besides these theoretical studies, some authors tried to experimentally measure
the particle pressure. In [62], Kumar et al. described their experiment to measure the
particle pressure in solid-liquid flows in fluidized beds. They noticed that the particle
pressure increases to a maximum and then decreases to zero as the volume fraction
of the solid phase increases. For dilute flow, the increase of particle pressure with
particle volume fraction can be ascribed to an enhanced collision rate and granular
temperature, while the decrease of particle pressure at high volume fraction is due
the increase of energy dissipation due to particle-particle collisions.

In 1991, Campbell and Wang [21] used an experimental system that measures
the sum of the particle and fluid forces in a gas-particle mixture and then cancels the
fluid contribution. From this, one measures the average pressure generated by the
particles. They found that the particle pressure varies as

π

ρlgde
≈ 0.08, (6.5.6)

where de is the equivalent particle diameter, i.e. the diameter of a spherical par-
ticle of the same volume as the observed particle, and can be determined through
experiments.

Some studies on turbulent dispersed fluid-solid flows also involved particle pres-
sure modeling. In 1995, Abu-Zaid and Ahmadi [1] proposed a particle pressure for a
dispersed mixture when particles are not in direct contact except during the relatively
short period of collision, and when surface tension and Brownian motion effects are
negligible. Their particle pressure is expressed as

π = αpf , (6.5.7)

where pf is the mean pressure in the carrier fluid phase.
In [97], Zenit et al. described a new technique for measuring the collisional par-

ticle pressure in a solid-liquid system using a fluidized bed. In their experiment, they
found that the magnitude of the measured particle pressure increases from low con-
centrations (< 10% particle volume fraction), reaches a maximum for intermediate
value of the volume fraction (30-40%), and decreases for more concentrated mixtures
(> 40%). Kumar et al. observed a similar behaviour in their experiment [62].

Remark 6.5.1. The particle pressures obtained from experiments in fluidized beds
(see [62], [97] and [21]), and Batchelor’s pressure (6.5.4) do not satisfy our assump-
tion ∂απ > 0. We will not use them.

From the above literature review on particle pressure modelling, it clearly appears
that particle pressure force can be expressed as a function of the density of the carrier
fluid and the volume fraction of the particulate phase.
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6.6 Numerical comparisons

This section is devoted to the numerical comparison of the different models in the
new hierarchy of two-phase flow models presented in this chapter. We use the modified
Lax-Friedrichs scheme (see section 2.3) from [87] to discretize all the models. This
scheme is conservative and satisfies the discrete entropy inequality for conservation
law equations. While the scheme is diffusive, it is less so than the classical Lax-
Friedrichs scheme. In our context, it is not crucial since we only want to see the
general behaviour of the solutions. For all the test cases in this section, the pressure
of the carrier fluid satisfies the state equation (4.0.1). As we did in the previous
chapters, quantities with different units should be represented in different graphs.
However, in this section, different variables are represented in a same graph to avoid
having a considerable number of figures. This is possible since these variables are
non-dimensional. On all graphs, variables are plotted using the same scale shown at
the left on the y-axis.

Suppose that we have a pipe of length 1 that initially contains air (the carrier
fluid) at rest, i.e. v0(x) = 0, and almost no particle, i.e. α0(x) = 10−15 (we take this
positive small value to avoid vacuum states). The air has a constant initial density
ρ0(x) = 1. Then, we start injecting particles with initial velocity u0(x) = 0.8 at the
inlet (x = 0) of the pipe. The boundary conditions on the inlet boundary of the pipe
are set as follows:

ρ(0, t) = 1, v(0, t) = 0, α(0, t) = αmax(1− e−Rt), u(0, t) = 0.8, (6.6.1)

where αmax is the maximal particle volume fraction allowed at the inlet and R is a
positive constant that sets the rate of variation of the particle volume fraction at
the inlet. The flow is left free at the outlet (x = 1) of the pipe, i.e. no condition is
imposed on the outlet boundary of the pipe. We take the reference density ρref = 1
for the carrier fluid (air). This test case will be referred to as the particle jet test case.
With this test case, we want to highlight the general behaviour of the solutions of the
different models when solid particles are injected into air at rest, usually resulting in
large momentum transfer from the particles to the carrier fluid. The particle jet test
case will allow us to see how the different models behave for different particle volume
fractions, different rates of variation of the particle volume fraction, different particle
densities, and important momentum transfer between the two phases.

6.6.1 Comparison of Model I and Model IA

We firstly want to compare the numerical predictions of the models (I) and (IA)
when heavy particles are injected at the inlet of the pipe at a low variation rate. For
that, we use the particle jet test case. We suppose that the particles are droplets of
water with reference density ρref

l = 1000 (quite heavy) carried by air (ρref = 1). The
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density ratio calculated from the reference densities is given by ε = 0.001. We take a
maximal droplet volume fraction αmax = 0.1 and a slow rate of variation R = 0.1 of
the droplet volume fraction at the inlet. We look at the numerical predictions of the
two models as time evolves. Numerical solutions for both models at different times
are displayed in Figure 6.2. We notice that the two models give almost the same

t = 0.8 t = 7

t→∞ Legend

Figure 6.2: Evolution of the solutions of Model I and Model IA for a slow
variation of the inlet droplet volume fraction. αmax = 0.1, R = 0.1, ε = 10−3,
κ = 1, γ = 1.4, µ = 0.01, Cp = 10−4, ∆x = 10−3 and ∆t = 10−4.

transition phase solution and stationary solution. This solution is characterized by
a momentum transfer from the droplets to the air. In fact, the droplets induce an
inertia force that accelerates the air, which was initially at rest. This acceleration
stops when the velocity of the air reaches the velocity of the droplets, and thus we
reach the stationary state. The boundary layer observed in the solution near the inlet
is due to the Dirichlet conditions (6.6.1) imposed on the inlet of the pipe. The flow
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quickly settles in this boundary layer with the two models since they both include
two-way momentum transfer source terms.

We now want to see the behaviour of the two models for large rates of variation of
the droplet volume fraction at the inlet. We repeat the above experiment by increasing
the rate of variation R at the inlet. Numerical results are shown in Figure 6.3. The

R = 1 R = 10

t = 0.8 t = 0.8

t→∞ t→∞ Legend

Figure 6.3: Solutions of Model I and Model IA for large rates of variation
of the inlet droplet volume fraction. αmax = 0.1, ε = 10−3, κ = 1, γ = 1.4,
µ = 0.01, Cp = 10−4, ∆x = 10−3 and ∆t = 10−4.

solutions of the two models are no longer similar during the transition phase. The
differences lie in the air phase, are more important as the rate of variation R increases,
and are due to the fact that condition (6.1.2) (|Dvα

dt
| ≈ 0) of derivation of Model IA

fails since the variation of the volume fraction is no longer negligible. However, we
get the same stationary solution for both models. This stationary solution is the
same as the one obtained with a slow rate of variation of the droplet volume fraction
(compare with the stationary solution in Figure 6.2).

We next want to see how the two models behave when light particles are injected
at the large rate of variation R = 10. For that, we consider two categories of particles:



6. A NEW HIERARCHY OF TWO-PHASE FLOW MODELS 112

solid particles that are hundred times lighter than droplets of water, i.e. we take
the reference density ρref

l = 10 (which implies ε = 0.1), and solid particles that
are twice heavier than the air, i.e. we take the reference density ρref

l = 2 (which
implies ε = 0.5). Numerical results for both models with both categories of particles
are represented in Figure 6.4. Model I predicts an acceleration/deceleration of the

ε = 0.1 ε = 0.5 Legend

Figure 6.4: Solutions of Model I and Model IA at t = 0.55 for two particle
densities. αmax = 0.1, R = 10, κ = 1, γ = 1.4, µ = 0.01, Cp = 10−4,
∆x = 10−3 and ∆t = 10−4.

particles in the pressure drop/pressure rise area during the transition phase. The
particles are light, so that they react to small variations in the fluid pressure. This
acceleration/deceleration is not observed with heavier particles (droplets of water, see
Figure 6.3). The variation in the particle velocity is also not observed with Model IA
because the term εα∂xp that induces this variation is neglected in Model IA. We do
not show the stationary solution for these test cases because it is the same as for the
above two first experiments.

We saw from these three experiments that Model IA can be used in place of
Model I when looking for stationary solutions or dealing with flows that involve slow
rates of variation of the particle volume fraction. The two models may differ during
transition phases for flows involving light particles (ε closer to 1) or large rates of
variation of the particle volume fraction.

6.6.2 Comparison of Model IA and Model E-IE

Here, we highlight the limitations of Model E-IE. In fact, we want to show
that Model E-IE is not valid when momentum transfer from the dispersed phase to
the carrier fluid becomes important. For that, we consider the particle jet test case
because this test case involves a strong momentum transfer from the particles to the
air as we already have seen with Model IA in the previous subsection.
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We first suppose that the particles are droplets of water with reference density
ρref
l = 1000. We compute the solutions of both models with two different inlet volume

fractions αmax of droplets. Stationary solutions at the middle of the pipe (x = 0.5) are
displayed in Table 6.1. Next, we consider two categories of particles: solid particles

αmax = 1.000× 10−4 αmax = 0.01
ρ v α u ρ v α u

Model IA 0.999 0.001 0.993× 10−4 0.795 0.459 0.797 0.010 0.799
Model E-IE 1.000 0.000 0.993× 10−4 0.795 1.000 0.000 0.010 0.795

Table 6.1: Stationary solutions of Model IA and Model E-IE at the middle
of the pipe (x = 0.5) for different droplet volume fractions. ε = 10−3, κ = 1,
γ = 1.4, µ = KD = 0.01, ∆x = 10−3 and ∆t = 10−4.

with reference density ρref
l = 500, and solid particles with reference density ρref

l = 2.
The solutions for both categories of particles are computed with the same particle
inlet volume fraction αmax = 0.01. Stationary solutions computed at the middle of
the pipe (x = 0.5) are displayed in Table 6.2. The rate of variation of the droplet

ε = 0.002 (ρl = 500) ε = 0.5 (ρl = 2)
ρ v u α ρ v u α

Model IA 0.465 0.784 0.010 0.799 0.995 0.005 0.010 0.795
Model E-IE 1.000 0.000 0.010 0.795 1.000 0.000 0.010 0.795

Table 6.2: Stationary solutions of Model IA and Model E-IE at the middle
of the pipe (x = 0.5) for two particle densities. αmax = 0.01, κ = 1, γ = 1.4,
µ = KD = 0.01, ∆x = 10−3 and ∆t = 10−4.

volume fraction is R = 1 for all these experiments. The two models give almost the
same solution when the quantity µα

ε
is small (6 10−3). However, the two solutions

are different when µα
ε

is big enough(> 10−3). Momentum transfer from particles to
air progressively increases when the quantity µα

ε
gets larger than 10−3.

These experiments show that Model E-IE is not valid when momentum transfer
occurs from the dispersed phase to the carrier fluid because it is a one-way coupling
model that only takes into account the effects of the carrier fluid on the dispersed
phase and not vice versa.

6.6.3 Model IA: Evolution of discontinuous solutions

Here, we are interested in how discontinuous solutions of Model IA evolve in
time. For that, we consider three cases corresponding to Riemann problems on the
line, and choose initial velocities as follows:
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Case 1: the fluid initially moves faster than the particles:

v0(x) =

{
1.7, x 6 0.1,

0.7, x > 0.1,
u0(x) =

{
1.5, x 6 0,

0.5, x > 0.

Case 2: the fluid and the particles have the same initial velocity:

v0(x) = u0(x) =

{
1.5, x 6 0,

0.5, x > 0.

Case 3: the fluid initially moves slower than the particles:

v0(x) =

{
1.5, x 6 0,

0.5, x > 0,
u0(x) =

{
1.7, x 6 0.1,

0.7, x > 0.1.

We take an initial fluid density ρ0(x) = 0.6 and an initial particle volume fraction
α0(x) = 0.001.

This test case will allow us to see how initial discontinuous (in velocities) solutions
of Model IA evolve in time. We look at the solution on the whole real line. However,
we solve (IA) in the bounded domain [−0.5, 3.5]. We impose a zero slope for each
variable on the inlet boundary x = −0.5 of the computational domain. Numerical
results are displayed in Figure 6.5. The displayed volume fraction α is rescaled (×100).
The solution is composed of a 1-shock and 2-shock waves for the continuous phase,
and a delta shock wave for the dispersed phase. It has the same general configuration
as if we solve separately the continuous phase using the Euler equation (IE), and the
dispersed phase using the Eulerian droplet model (E). However, the intermediate
state between the 1-shock and 2-shock waves is no longer constant, as opposed to
the model (IE), where this intermediate state is constant. The left and right states
of the delta shock depend on both space and time, as opposed to Model E, where
these states only depend on time. The difference is due to the two-way coupling. The
delta shock wave either catches up with the 1-shock wave (Case 1 ) or is caught up by
the 2-shock wave (Case 3 ), depending on its initial position with respect to the two
shock waves. In the three cases, the delta shock wave lies between the 1-shock and 2-
shock waves for larger times (see right column of Figure 6.5). The Rankine-Hugoniot
conditions for the two shocks are determined in the classical way. It is a challenge
to derive the generalized Rankine-Hugoniot conditions for the delta shock wave. The
difficulty lies in the r.h.s of the momentum equation for the dispersed phase. In fact,
this term should be considered as a product of distributions since α evolves as a Dirac
delta distribution.

The same experiment with Model I (without pressure correction term) gives
qualitatively the same solution as for Model IA. This confirms that Model IA can be
used in place of Model I even if the conditions (6.1.2) and (6.1.3) fail for some points
in the domain.
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Case 1: v0(x) > u0(x)

t = 0 t = 0.14 t = 2

Case 2: v0(x) = u0(x)

t = 0 t = 0.14 t = 2

Case 3: v0(x) < u0(x)

t = 0 t = 0.14 t = 2

Figure 6.5: Model IA: Evolution in time of a 1-shock and 2-shock waves for
the fluid phase, and a delta shock wave for the particulate phase. ε = 10−3,
κ = 0.5, γ = 1.4, µ = 1, ∆x = 2× 10−4 and ∆t = 4× 10−5.

6.6.4 Model IAP: Comparison of different particle pressures

In section 6.5, we reviewed the most common particle pressure expressions pro-
posed in the literature for gas-particle flows. Here, we are interested in the effects of
a particle pressure gradient on particles in movement.
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We consider a cloud of droplets of water (ρref
l = 1000) represented by an initial

volume fraction α0(x) = αmax exp(−50(x− 0.5)2), where αmax is the maximal droplet
volume fraction allowed. This cloud moves at a uniform initial velocity u0(x) = 0.5 in
a fluid (air) with the same initial velocity as the droplets, and initial density ρ0(x) = 1.
The computational domain is [0, 3]. We impose the following Dirichlet conditions on
the inflow boundary (x = 0):

ρ(0, t) = 1, v(0, t) = u(0, t) = 0.5, α(0, t) = αmax exp(−50(−0.5)2). (6.6.2)

The flow is left free at the outflow boundary (x = 3). This test case will be referred
to as particle cloud test case. This test case will allow us to see and compare the
effects of different particle pressure gradients on droplets in movement.

We take αmax = 0.005. Numerical predictions of Model IAP with different par-
ticle pressure functions ((6.5.7), (6.5.1) and (6.5.2)) are represented in Figure 6.6.
The displayed droplet volume fraction is scaled (×100). We observe a dispersion
of the cloud of droplets as time evolves. This dispersion is more important as the
particle pressure gradient is important. We also notice an acceleration (resp. decel-
eration) of the particles when the particle pressure decreases (resp. increases). The
fluid phase remains almost constant with respect to its initial state. With the same
experiment, Model IA predicts an uniform translation of the cloud of droplets. There
is no dispersion, acceleration or deceleration of the particles. Hence, the particle
pressure gradients are responsible of the dispersion, acceleration or deceleration of
the particles.

6.6.5 Model IA versus Model IAP: effects of a particle pres-
sure gradient on a delta shock wave

We saw from numerical simulations in the previous subsection that a particle
pressure acts on particles by dispersing the latters. Here, we illustrate how a particle
pressure prevents the formation of a huge concentration of particles at a specific point
(delta shock wave) as it may happen with Model I and Model IA (see Figure 6.5.)

We repeat the test case from Figure 6.5 with Model IAP using Needham’s parti-
cle pressure given in (6.5.1). Numerical results for Case 2 at t = 2, are displayed in
Figure 6.7. In Model IAP, the presence of a particle pressure gradient prevents the
accumulation of droplets at the point of discontinuity of the droplet velocity, as op-
posed to Model IA, where this accumulation is observed. In fact, the particle pressure
gradient breaks the initial discontinuity in the particle velocity into two discontinu-
ities (shocks waves). The droplet volume fraction between these two discontinuities
then remains bounded.

This shows the importance of taking into account pressure resulting from the
dispersed phase when modeling gas-particle flows. Note that a pressure coming only
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t = 0 t = 1.5

t = 3 Legend

Figure 6.6: Model IAP: Evolution of a cloud of droplets with different particle
pressures. αmax = 0.005, ε = 10−3, κ = 1, γ = 1.4, µ = 0.01, κ0 = 0.5,
d = 1µm, g = 9.8m/s2, ∆x = 10−3 and ∆t = 10−4.

from the continuous phase cannot prevent from the accumulation of particles as we
checked with Model I.

6.6.6 Comparison of Model G and the others models

This subsection is devoted to the numerical comparison of the general two-phase
flow model (G) with some others models in the new hierarchy of two-phase flow
models.

We first consider the particle cloud test case. This test case allows a comparison of
the models (IAP) and (G) for a flow of droplets of water with a small particle pressure
coefficient (we take the particle pressure in (6.5.1), with κ0 = 0.1), moving in a fluid
with a high fluid pressure coefficient κ = 20. Numerical results for both models with
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Model IA Model IAP

Figure 6.7: Solutions of Model IA and Model IAP at t = 2. ε = 10−3,
κ = 0.5, γ = 1.4, µ = 1, κ0 = 1, ∆x = 2× 10−4 and ∆t = 4× 10−5.

different volume fractions are shown in Figure 6.8. The displayed droplet volume
fraction is rescaled (×5). The two models predict that the droplets are advected with
a progressive dispersion of the cloud (due to the particle pressure gradient) as time
evolves. The droplets accelerate (resp. decelerate) in particle pressure drop (resp.
rise) zones. The fluid phase solutions of the two models are very similar for the low
droplet volume fraction αmax = 0.01. However, they slightly differ for the larger
droplet volume fraction αmax = 0.1. The difference is due to the contribution of the
terms Dvα

dt
and p

1−α∂xα, which are neglected in the equations for the fluid phase in
Model IAP. Hence, Model G should be used for large particle volume fractions.

We finally consider the test case from Figure 6.3, again to compare Model G and
Model IAP. We take Needham’s particle pressure (6.5.1), with κ0 = 0.2. Numerical
results for the models (IAP) and (G) are shown in Figure 6.9. Looking at figures
6.3 and 6.9, on can compare the models (I), (IA), (IAP) and (G) for large rates of
variation of the particle volume fraction at the inlet of the computational domain. We
see that all the models predict the same stationary solution. However, they slightly
differ during the transition phase. The difference is more important as the rate R of
variation of the particle volume fraction increases. This is due to the fact that the
terms Dvα

dt
and p

1−α∂xα are not negligible when the variation of the particle volume
fraction is important. We picked αmax = 0.1 to see what happens at very high volume
fraction of particles. However, in most applications, the particle volume fraction is
small (less than 0.01). In this range of particle volume fractions, all the models give
very similar solutions.
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αmax = 0.01

t = 0.05 t = 3 Legend

αmax = 0.1

t = 0.05 t = 3 Legend

Figure 6.8: Model IAP vs Model G: Evolution of a cloud of droplets for
different droplet volume fraction. ε = 10−3, κ = 20, γ = 1.4, µ = 0.01,
κ0 = 0.1, ∆x = 10−3 and ∆t = 10−4.

6.7 Conclusion

In this chapter, we derived a new hierarchy of Eulerian models for two-phase flows
starting from two relatively general models. The first general model (the first model
in the hierarchy of Bouchut [10]) is stated as a two-way common pressure, condition-
ally hyperbolic non-conservative model with a pressure correction term. For small
variations of the volume fraction, no pressure correction term, and if the quantity
εα∂xp is small, we could reduce this model to a two-way one-pressure, conservative
and weakly hyperbolic model (Model IA). If the quantity µα

ε
is small then Model

IA could be reduced to a one-way one-pressure, conservative and weakly hyperbolic
model (Model E-IE). The second general model (Model G) is stated as a two-way
coupling two-pressure, conditionally hyperbolic conservative model. For small varia-
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R = 1 R = 10

t = 0.8 t = 0.8

t→∞ t→∞ Legend

Figure 6.9: Solutions of Model G and Model IAP for large rates of variation
of the inlet droplet volume fraction. αmax = 0.1, ε = 10−3, κ = 1, γ = 1.4,
µ = 0.01, κ0 = 0.2, ∆x = 10−3 and ∆t = 10−4.

tions of the volume fraction, we could reduce this model to a two-way two-pressure,
conservative and strictly hyperbolic model (Model IAP). The latter reduces to Model
IA when the pressure from the dispersed phase is neglected. If the quantity µα

ε
is

small then Model IAP could be reduced to a one-way two-pressure, conservative and
strictly hyperbolic model (Model EP-IE).

We also reviewed particle pressure modelling in gas-particle flows and examined
the eigenstructures of two-pressure models for two-phase flows. This study provides
a better understanding of the impact of particle pressure gradients in the momentum
equation of models for two-phase flows, and allows to identify a physical mechanism
to avoid delta shocks from occurring in Eulerian two-phase flow models.

The main conclusion of this chapter is that two-way coupling two-pressure models
should be used in general, for instance Model IAP or, even better, Model G.



Chapter 7

Applications to two-dimensional
air-particle flows

The non-conservative form of the Eulerian droplet model (E) was used for in-
flight icing simulations [15, 75, 6, 50, 17] and recently for air-particle flows in airways
[14, 16]. However, we showed in chapter 3 that this model may develop delta shock
waves that are not physical since the volume fraction should remain bounded. More-
over, the conservative form should be used when discontinuous travelling waves are
present in the solutions. In chapters 5 and 6, we saw that a particle pressure prevents
the formation of delta shocks. In this chapter, we use an Eulerian droplet model with
a particle pressure (EP) for the prediction of air-particle flows. This model is written
in conservative form and does not develop the non desirable delta shocks.

The chapter is organized as follows. In section 7.1, we present theoretical ar-
guments leading to the use of Model EP for the proposed applications. In section
7.2, we discuss a finite element method for the numerical solution of Model EP for
two-dimensional applications. Numerical results are carried out in section 7.3.

7.1 Mathematical model

Eulerian models for air-particle flows are based on a set of partial differential
equations that express the conservation of mass, momentum and, if needed, of en-
ergy for the continuous air phase and the dispersed particulate phase. We make the
following assumptions regarding the behaviour of the particles and the air flow:

1) The air phase flow is incompressible;

2) Particle mass loading is small, i.e. the bulk density (mass of the phase in the
mixture per unit volume of mixture) of the particle over the bulk density of the
gas is small enough so that two-way coupling is not needed;

121
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3) The particles are spherical with same diameter and without any deformation;

4) No heat and mass exchange between the particles and the carrier fluid;

5) The only forces acting on the particles are due to air drag and particle pressure.

As we already have seen in chapter 6, no modifications of the carrier fluid equations is
needed for small particle mass loading (see also [30]). Therefore, the air phase is kept
independent from the particulate phase. The classical incompressible Navier-Stokes
equations are the basis of incompressible flow computations. These equations are
expressed as

∂tv + v · ∇v − ν∆v +∇p = 0,

∇ · v = 0,
(7.1.1)

where v is the fluid velocity field; p is the pressure; and ν is the kinematic viscosity.
The Navier-Stokes equations (7.1.1) are used to model the air phase.

Remark 7.1.1. The Euler equations can also be used to model the air phase. Here,
we use Navier-Stokes equations since the air flow is assumed to be incompressible and
we will consider internal flows where viscous effects are important. This was also
done in [15, 17, 75, 6, 50, 14, 16].

The equations for the particulate phase are derived using an averaging procedure
as in [34]. They can be written as{

∂t(αρl) +∇ · (αρlu) = 0,

∂t(αρlu) +∇ · (α(ρlu⊗ u + πI)) = KCDRedα
(
v − u

)
,

(7.1.2)

where 0 < α < 1, ρl, u and π are the volume fraction, density, velocity field and
pressure of the particles, respectively, and I is the identity matrix. The momentum
transfer between the two phases is due to the drag force given by the term on the
r.h.s of the second equation, where

Red =
ρd|v − u|

µ
(7.1.3)

is the particle Reynolds number; ρ is the air density; d is the diameter of the particles;
µ is the dynamic viscosity of the air; and CD is a dimensionless drag coefficient which
depends on the particle Reynolds number. We will use the widely accepted correlation
for spherical particles [49]:

CD =


24

Red

(
1 + 0.15Red

0.687
)
, if Red < 1000,

0.44, if Red > 1000.
(7.1.4)
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The inertia parameter K comes from the averaging procedure and is given by (see
[49])

K =
3µ

4d2
. (7.1.5)

Remark 7.1.2. The air density ρ is constant since the air flow is assumed to be
incompressible.

In the following, we also assume that the particle mass density ρl is constant. With
this simplification, model (7.1.2) can be written as{

∂tα +∇ · (αu) = 0,

∂t(αu) +∇ · (α(u⊗ u + πI)) = KDα
(
v − u

)
,

(7.1.6)

where KD = KCDRed
ρl

. For smooth solutions with no vacuum state (α > 0), system

(7.1.6) can be written in the non-conservative form ∂tα +∇ · (αu) = 0,

∂tu + (u · ∇)u +
1

α
∇ · (απI) = KD(v − u).

(7.1.7)

Remark 7.1.3. i) There is a ratio 1
ρl

(coming from the simplification of ρl) that
multiplies the particle pressure π. To simplify the notation, this ratio is included in
the particle pressure as a coefficient.
ii) System (7.1.6) is nothing else but Model EP (with a non constant drag coefficient)
in the multi-dimensional case.
iii) If the particle pressure π = 0, systems (7.1.6) and (7.1.7) reduce to Model E
in the multi-dimensional case, written in conservative and non-conservative form,
respectively.

7.2 Finite element methods

Finite element methods have been introduced in the early 1950s and are known to
be useful for solving many problems arising in engineering, physics and mathematics.
Finite element methods are capable of solving complex PDEs and handling physical
problems with complex geometries. Finite element methods are based on a weak
formulation of the PDE. This section is devoted to finite element methods for air
phase equations (7.1.1) and particulate phase equations (7.1.6).

Let Ω ⊂ R2 be an open and bounded domain. The boundary ∂Ω of the domain
Ω is split in three parts:

Γ− =
{

(x, y) ∈ ∂Ω : u · n < 0
}
, (7.2.1)
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Γ0 =
{

(x, y) ∈ ∂Ω : u · n = 0
}
, (7.2.2)

Γ+ =
{

(x, y) ∈ ∂Ω : u · n > 0
}
, (7.2.3)

where n is outward unit normal of the domain. We consider a regular triangulation
Th (see [37]) of this domain, consisting of a finite number of triangles K,

Ω =
⋃
K∈Th

K. (7.2.4)

The discretization parameter h is the maximal element length (generally h is taken
as the maximum of the diameters of the triangles K). The time interval [0, T ] is
discretized as

∆t =
T

N
, tn = n∆t, n = 0, 1, 2, ..., N, (7.2.5)

where ∆t is the time step used.

7.2.1 Finite element methods for the air phase equations

To solve the Navier-Stokes equations (7.1.1), we use the Taylor-Hood finite ele-
ment discretization in space (continuous piecewise quadratic polynomial for velocity
and linear polynomial for pressure). The Taylor-Hood element satisfies the well-
known inf-sup condition required for stability [8]. Let VΦih and Mh be the following
spaces of piecewise continuous finite element functions satisfying

VΦih =
{
vh ∈ C0(Ω,R) : vh|K ∈ P2, ∀K ∈ Th, vh|∂Ω

= Φi

}
,

Mh =
{
vh ∈ C0(Ω,R) : vh|K ∈ P1, ∀K ∈ Th

}
,

(7.2.6)

where Pk denotes the vector space of polynomials in two variables of degree less thant
or equal to k on any element K, and Φi is a given function that belongs to the
trace space of the finite element functions on the boundary ∂Ω. We approximate the
unknowns v = (v1, v2) and p by the finite element functions vh = (v1h, v2h) and ph
from VΦ1h × VΦ2h and Mh, respectively. For the time derivative discretization, we
use the characteristic method [45], which is already implemented in FreeFem++ [51]
and gives good numerical results for the incompressible Navier-Stokes equations. The
Taylor-Hood finite element formulation for the incompressible Navier-Stokes (7.1.1)
with the characteristic method reads:

Find vnh ∈ VΦ1h × VΦ2h and pnh ∈Mh such that∫
Ω

vnh ·ψh dx+ ν∆t

∫
Ω

∇vnh · ∇ψh dx−∆t

∫
Ω

pnh∇ ·ψh dx =

∫
Ω

vn−1
h ◦ χn−1 ·ψh dx,∫

Ω

βpnhϕh dx−
∫

Ω

∇ · vnhϕh dx = 0,

(7.2.7)
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for all ψh ∈ V0h × V0h and ϕh ∈Mh, where χn−1 is an approximation of the charac-
teristic χ(x, tn; tn−1) solution of

dχ

ds
(x, tn; s) = vnh(χ(x, tn; s), s), s ∈ [tn, tn−1],

χ(x, tn; tn) = x,
(7.2.8)

on the time interval [tn−1, tn]. For more details on the characteristic method and its
use to solve Navier-Stokes equations, see [45, 39].

Remark 7.2.1. The matrix from the discretization (7.2.7) may be singular from the
unspecified average pressure in Navier-Stokes equations with boundary conditions on
the velocity v only. To avoid this drawback, one can force the average pressure or
add a small term

∫
Ω
βpnhϕh dx, with 0 < β � 1, in the variational formulation. This

explains the presence of this term in the variational formulation.

7.2.2 Finite element methods for the particle equations

The particulate phase equations (7.1.6) form a pure convection problem with a
zeroth-order linear source term. It is known that the classical Galerkin discretization
of convective terms generally produces spurious oscillations, also known as wiggles.
Moreover, explicit time-stepping schemes applied to classical Galerkin methods are
usually unstable. Various stabilization techniques mimicking “upwinding” methods,
have been developed [52, 53, 86]. These stabilized finite element methods help to
remove the unwanted oscillations but very often introduce too much numerical dif-
fusion, leading to poor accuracy. Another drawback with these methods is the loss
of consistency, reducing the order of accuracy and convergence rate. An important
improvement came with the streamline upwind/Petrov-Galerkin (SUPG) method de-
veloped by Brooks and Hughes [55, 20], which substantially eliminates almost all the
difficulties mentioned above. The SUPG method only introduces numerical diffusion
along streamlines in a consistent manner. Consequently, stability is obtained without
compromising the order of accuracy. The SUPG method is one of the most widely
used stabilized methods in finite element computations of compressible flows, how-
ever, it still struggles to remove unwanted oscillations (known as undershoots and
overshoots) in the neighbourhood of sharp layers and shock waves. This deficiency of
the SUPG method comes from the lack of monotonicity of the resulting scheme. As a
remedy, researchers proposed to add an isotropic artificial diffusion term in the SUPG
formulation in a proper way so that the resulting scheme satisfies the discrete maxi-
mum principle, at least in some problems. The maximum principle is very important
since it ensures monotonicity of the solution near shocks and sharp layers, and thus
no oscillation is observed. To ensure high accuracy, this artificial diffusion should
depend on the discrete solution in a nonlinear way since linear monotone schemes can
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be at most first order accurate. This additional term is known as discontinuity shock-
capturing term [56]. The idea behind the shock capturing stabilization technique is
to add artificial diffusion only in the direction in which oscillations are observed in
the solution from the SUPG method.

Stabilized finite element methods

LetWΨih be the space of continuous piecewise linear finite element functions satisfying

WΨih =
{
uh ∈ C0(Ω,R) : uh|K ∈ P1, ∀K ∈ Th, and uh|Γ− = Ψi

}
, (7.2.9)

where Ψi is a given function that belongs to the trace space of the finite element
functions on the boundary ∂Ω. Set q = αu = (αu1, αu2). We approximate the
solutions α and q by the finite element functions αh from Wωh and qh = (q1h, q2h)
fromWΨ1h×WΨ2h, respectively. We use the backward Euler formulation for the dis-
cretization of the time derivative. We define the residual of the differential equations
(7.1.6) at time tn as

Rn
αh

=
αnh − αn−1

h

∆t
+∇ · qnh,

Rn
qih

=
qi
n
h − qin−1

h

∆t
+∇ · (qi

n
h

αnh
qnh) + ∂xi(α

n
hπ

n
h) +KD(qi

n
h − αnhvinh), i = 1, 2.

(7.2.10)

We set Rn
qh

= (Rn
q1h
,Rn

q2h
). The variational formulation of (7.1.6) with the SUPG

method [20] combined with a shock-capturing term is given as follows:
Find αnh ∈ Wωh and qnh ∈ WωΦ1h ×WωΦ2h such that∫
Ω

Rn
αh
ϕh dx+

∫
Ω

Rn
αh
τ(unh · ∇)ϕh dx︸ ︷︷ ︸

SUPG formulation for the continuity equation

+

∫
Ω

Rn
αh
σαh(ûnαh · ∇)ϕh dx︸ ︷︷ ︸

Shock-capturing term

= 0,

∫
Ω

Rn
qh
·ψh dx+

∫
Ω

Rn
qh
· τ(unh · ∇)ψh dx︸ ︷︷ ︸

SUPG formulation for the momentum equation

+

∫
Ω

Rn
qh
· (σqhû

n
qh
· ∇)ψh dx︸ ︷︷ ︸

Shock-capturing term

= 0,

(7.2.11)

for all ϕh ∈ W0h and ψh ∈ W0h ×W0h, where the scalars τ and σαh , and the matrix
σqh are stabilization parameters. The vector ûnαh and the matrix ûnqh will be defined

in the next subsection. The advection velocity unh =
qnh
αnh

. It is well defined since we

assume there is no vacuum state.
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Brief review of Petrov-Galerkin finite element methods

Consider the scalar convection-diffusion problem

∂tu+ b · ∇u− η∆u = f, in Ω, u = ub on ∂Ω, (7.2.12)

where b, ub and f are given functions and η is a positive constant. The SUPG
formulation combined with a shock-capturing term for (7.2.12) is as follows:

Find uh ∈ Vubh such that∫
Ω

Ruhϕdx+

∫
Ω

Ruhτ(bh · ∇)ϕdx+

∫
Ω

Ruhσ(b̂uh · ∇)ϕdx = 0, (7.2.13)

for all ϕ ∈ Vubh. Here, Ruh = ∂tuh + bh · ∇uh − η∆uh − f is the residual of (7.2.12)
computed on each element, τ is the SUPG stabilization parameter, σ is the shock-
capturing stabilization parameter. The vector b̂uh will be defined later.

A big challenge with the SUPG method is the choice of the stabilization pa-
rameter τ . An “optimal” value is not yet known in the case of a general advection-
diffusion system. The judicious selection of the stabilization parameter τ plays an
important role in determining the accuracy of the SUPG formulation. Christie et al.
[27] showed for the one-dimensional stationary problem associated to (7.2.12) that
the SUPG method with piecewise linear finite elements on a uniform mesh (equally
spaced nodes) gives exact values at the nodes of the mesh if

τ =
h

2|b|
ζ(Pe), (7.2.14)

where ζ(Pe) = coth(Pe) − 1
Pe

and Pe = |b|h
2η

is the numerical Péclet number for
element size h. The generalization in the multidimensional case takes the form

τ =
h

2|b|
ζ(Pe). (7.2.15)

In practice, the stabilization parameter τ is locally computed as

τK =
hK

2|bh|
ζ(PeK), (7.2.16)

where K is any element of the triangulation Th, hK is the local element size of K and
PeK = |bh|hK

2η
is the local Péclet number. Note that for the pure advection problem,

i.e. η = 0, the Péclet number goes to infinity, and thus ζ(PeK) goes to one.
For the shock-capturing term, the key point is also the judicious selection of the

stabilization parameter σ and the vector b̂uh . Various expressions for σ and b̂uh have
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been proposed in the literature [56, 60, 59, 40]. In case of a scalar advection-diffusion
equation as in (7.2.12), Hughes et al. [56] first proposed to take

σ = max
{

0, τ̂(b̂h)− τ
}
, (7.2.17)

where

τ̂(b̂h) =
h

2‖b̂h‖
and b̂h =

(
bh · ∇uh
‖∇uh‖2

)
∇uh. (7.2.18)

The vector b̂h is the projection of the advection velocity bh into the direction ∇uh.
It corresponds to the direction in which oscillations in SUPG solutions are often
observed. With this choice, the shock-capturing term in (7.2.13) can be written as∫

Ω

σ
(bh · ∇uh)Ruh

‖∇uh‖2
∇uh · ∇ϕdx. (7.2.19)

We immediately see that this last term becomes negative and may destabilize the
finite element discretization (7.2.13) if (bh · ∇uh)Ruh < 0. Galẽao and do Carmo

[40] redefine the corresponding vector b̂h using the residual of the governing equation
instead of the convective derivative

b̂h =

(
Ruh

‖∇uh‖2

)
∇uh. (7.2.20)

This was also suggested in [60, 59] and turns out to be the best choice currently

available for b̂h. For vector equations, the shock-capturing parameters σ and b̂uh are
matrices. The theoretical results to guide their selection are less obvious.

We now return to the formulation (7.2.11). The advection velocity is given by
uh. According to the above discussion, we choose the SUPG stabilization parameter

τ =
h

2‖unh‖
(7.2.21)

and the shock-capturing stabilization parameter

σαh = max
{

0, τ̂(ûnαh)− τ
}
, (7.2.22)

where τ̂ is defined as in (7.2.18) and ûnαh =
(
Rnαh
‖∇αnh‖2

)
∇αnh. For the momentum

equation, we calculate the shock-capturing parameter σqih and the vector ûnqih for
each component of the vector equation as above. We obtain

σqih = max
{

0, τ̂(ûnqih)− τ
}
, i = 1, 2, (7.2.23)
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where ûnqih =
( Rnqih
‖∇qinh‖2

)
∇qinh. Then we construct the shock-capturing parameter σqh

and the matrix ûnqh by setting

σqh = diag(σq1h
, σq2h

) and ûn
qh

=

(
ûn

T

q1h

ûn
T

q2h

)
. (7.2.24)

In a similar fashion, we obtain the SUPG formulation with a shock capturing
term for the non-conservative form (7.1.7):

Find αnh ∈ Wωh and unh ∈ WΦ1h ×WΦ2h such that∫
Ω

Rn
αh
ϕdx+

∫
Ω

Rn
αh
τ(unh · ∇)ϕdx+

∫
Ω

Rn
αh
σαh(ûnαh · ∇)ϕdx,∫

Ω

Rn
uh
·ψ dx+

∫
Ω

Rn
uh
· τ(unh · ∇)ψ dx+

∫
Ω

Rn
uh
· (σuhû

n
uh
· ∇)ψ dx = 0,

(7.2.25)

for all ϕ ∈ Vh0 and ψ ∈ Vh0 × Vh0 , where σuh is a stabilization matrix for the shock-
capturing term and Rn

uh
= (Rn

u1h
,Rn

u2h
) with

Rn
αh

=
αnh − αn−1

h

∆t
+∇ · (αnhunh),

Rn
uih

=
ui
n
h − uin−1

h

∆t
+ (unh · ∇)ui

n
h +

1

αnh
∂xi(α

n
hπ

n
h) +KD(ui

n
h − vinh).

(7.2.26)

Again here, the stabilization matrix is constructed as σuh = diag(σu1h
, σu2h

), where

σuih = max
{

0, τ̂(ûnuih)− τ
}
, ûnuih =

( Rn
uih

‖∇uinh‖2

)
∇uinh, i = 1, 2, (7.2.27)

and the matrix ûnqh as

ûnqh =

(
ûn

T

u1h

ûn
T

u2h

)
. (7.2.28)

Note that here each component of the advection velocity unh is discretized with P1

finite elements, as opposed to the conservative form weak formulation (7.2.11), where
each component of the advection velocity is a quotient of two P1 functions on each
element.

7.3 Numerical results

This section is devoted to two-dimensional test cases. All the finite element
formulations are solved using the FreeFem++ software [51]. The numerical results
are displayed and analyzed with the Paraview software [91].
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7.3.1 2D plug flow in a channel

We start with a simple computational domain Ω1 = [0, 5]× [0, 1] represented in
Figure 7.1. This domain is a rectangular channel composed of inflow Γ− and outflow
Γ+ boundaries, and two walls Γ0,1 and Γ0,2.

Γ− Γ+

Γ0,1

Γ0,2

Figure 7.1: Rectangular channel (domain Ω1).

The air flow in this domain is computed with the formulation (7.2.7) of the
Navier-Stokes equations using a kinematic viscosity ν = 0.01. We take an initial air
velocity v0(x, y) = (1, 0) and set the boundary conditions v = (1, 0) on the inflow
boundary Γ−, v = (0, 0) on the walls Γ0,1 and Γ0,2. The outflow boundary Γ+ is left
free, i.e. (−pI + µ∇v) · n = 0 on Γ+. We consider a triangular mesh of the domain
Ω1, composed of 50 elements along the inflow and outflow boundaries, and 250 ele-
ments along each of the walls Γ0,1 and Γ0,2. This gives a mesh with 27794 triangles
and 14198 nodes. The solution is computed with a time step ∆t = 0.02 till a steady
solution is reached. Figure 7.2 shows the steady air flow in the channel. The air flow

Figure 7.2: Plug flow in the channel.

streamlines are represented in Figure 7.3. Starting from a uniform velocity field at
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Figure 7.3: Air flow streamlines in the channel.

the inlet, the velocity field progressively settles to a parabolic profile, characteristic
of Poiseuille flows.

We are interested in the time-evolution of a jet of droplets (spherical particles
with density ρl = 1000kg/m3) injected at the inflow boundary Γ− and advected by
the air flow that is assumed to be in its steady state by the time the particles enter
the channel. A particle volume fraction α = 0.5× exp(−50(y − 0.5)2) and a particle
velocity equal to the air velocity (u = v = (1, 0)) are imposed on the inflow boundary
Γ−. The rest of the domain initially contains a volume fraction α0 = 10−10 of droplets
at rest, i.e. u0 = (0, 0). We choose Needham’s particle pressure given in (6.5.1), with
a particle pressure coefficient κ0 = 0.2. To compute the solution of the Eulerian
droplet model, we use a finer mesh. We consider a triangular mesh composed of 100
elements on the inflow and outflow boundaries, and 500 elements on each of the walls
Γ0,1 and Γ0,2. This gives a mesh with 106578 triangles and 53890 nodes.

Remark 7.3.1. i) We have chosen a very small initial volume fraction α0 = 10−10

to avoid vacuum state (α = 0) since the particle velocity u = q
α

is not defined in a
vacuum state.
ii) The particle volume fraction α = 0.5× exp(−50(y − 0.5)2) imposed on the inflow
boundary is sufficiently large that it may not satisfy the assumption on small particle
loading made for one-way coupling (see assumption 2 at the beginning of section 7.1).
However, it is not crucial for this test case since we only want to test the numerical
method and highlight the effect of a particle pressure on droplets in 2D computations.

Figure 7.4 shows the time-evolution of the volume fraction with/without particle
pressure for droplets with diameter d = 1µm. The small droplets injected at the
inflow boundary are simply transported by the air towards the outflow boundary.
The droplet velocity field adjusts rapidly to the air velocity field as one can see by
comparing the Figures 7.2 and 7.5. The inertia parameter K which determines the
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κ0 = 0 κ0 = 0.2

t = 0.4 t = 0.4

t = 2 t = 2

t = 4 t = 4

t = 6 t = 6

Figure 7.4: Particle volume fraction as a function of time for droplets with
diameter d = 1µm. At left: solution without particle pressure (κ0 = 0). At
right: solution with particle pressure (κ0 = 0.2). ∆t = 0.02.

amplitude of the drag force between the air and the droplets, is inversely proportional
to the square of the particle diameter. For small particles (d 6 1µm), the drag force
is so important that the contribution of the particle pressure force (κ0 6 0.2) in the
resulting force acting on the droplets is negligible. The drag force and the inertia are
the leading forces acting on the droplets.

Figure 7.6 shows the time-evolution of the volume fraction with/without particle
pressure for droplets with diameter d = 100µm. On can see a progressive dispersion
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Figure 7.5: Velocity of droplets with diameter d = 1µm after t = 0.4. At left:
solution without particle pressure (κ0 = 0). At right: solution with particle
pressure (κ0 = 0.2). ∆t = 0.02.

of the droplets in the presence of a particle pressure (see solution on the right col-
umn of Figure 7.6). Figure 7.7 shows the velocity field for droplets with diameter
d = 100µm. Comparing the Figures 7.2 and 7.7 (for velocities) and Figure 7.8 (for
streamlines), on can see small differences in the droplet velocity field with respect to
the air velocity field in the solution with a particle pressure. These small differences
are due to the particle pressure, which affects the droplet velocity field. As the droplet
diameter reaches 100µm, inertial forces are in equilibrium with both the drag force
and particle pressure gradient as opposed to only the dominant drag force for small
droplets. The effects of the particle pressure on the droplets cause the progressive
dispersion of the droplets away from the centerline of the jet.

Comparing the left columns of the Figures 7.4 and 7.6 (for volume fractions) and
the left columns of the Figures 7.5 and 7.7 (for velocities), it can be seen that small
(d = 1µm) and large (d = 100µm) droplets behave in the same way when there is no
particle pressure force. In this case, the drag force between the air and the droplets
and the inertia are the leading forces acting on the droplets and the latter are simply
advected by the air flow. In presence of a pressure particle force, larger droplets pro-
gressively disperse as time evolves. This was also observed in the 1D computations
performed in the previous chapters.

We repeated all the above test cases using the non-conservative formulation
(7.2.25). We get exactly the same solutions as with the conservative formulation
(7.2.11) since these solutions are smooth. For instance, some plots of the solutions
for both forms for droplets with diameter d = 100µm and a particle pressure coeffi-
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t = 0.4 t = 0.4

t = 2 t = 2

t = 4 t = 4
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Figure 7.6: Particle volume fraction as a function of time for droplets with
diameter d = 100µm. At left: solution without particle pressure (κ0 = 0).
At right: solution with particle pressure (κ0 = 0.2). ∆t = 0.02.

cient κ0 = 0.2 are represented in Figure 7.9.

The test cases performed in this subsection show that the SUPG method com-
bined with a shock-capturing term can be used to discretize the droplet equations
(7.1.6) for 2D computations. However, as is true for many stabilized finite element
methods, this method is diffusive, which calls for finer grid resolution.
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Figure 7.7: Velocity of droplets with diameter d = 100µm at t = 6. At left:
solution without particle pressure (κ0 = 0). At right: solution with particle
pressure (κ0 = 0.2). ∆t = 0.02.

Figure 7.8: Streamlines of the particle velocity field for droplets with diameter
d = 100µm. Top: solution without particle pressure. Bottom: solution with
particle pressure.
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Figure 7.9: Conservative vs non-conservative form: Plot of the solution along
vertical cuts for different values of x. At left: solution near the inflow bound-
ary Γ− (x = 0.1). At right: solution near the outflow boundary Γ+ (x = 4.9).
t = 6, d = 100µm, κ0 = 0.2, ∆t = 0.02.
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7.3.2 2D flow in the upper airways

Here, we use another domain, noted Ω2, represented in Figure 7.10. This 2D

Γ−

mouth-nose
(45mm)

trachea
(60mm)

primary bronchi
(22mm)

Cut C1

Cut C2

Section S2

Section S1

Γ+,1 Γ+,2

Figure 7.10: Upper airways geometry (domain Ω2).

domain mimicks the geometry of the upper airways including a nose-mouth region
and the trachea down to the first generation bronchi. The trachea has a length of
60mm and a diameter of 10mm. The primary bronchi have a length of 23mm and a
diameter of 4mm. This geometry includes an inflow boundary Γ− and two outflow
boundaries Γ+,1 and Γ+,2.
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The air flow in this domain is computed using the finite element formulation
(7.2.7) of the Navier-Stokes (7.1.1) with a kinematic viscosity ν = 1

Re
. The Reynolds

number defined by Re = ρUD/µ is calculated using a typical velocity during in-
halation of U = 1m/s, a characteristic length of D = 0.01m (diameter of the upper
airways), an air density ρ = 1.3kg/m3, and a dynamic viscosity of air at ambient
temperature µ = 1.65× 10−5Pa · s. With these parameters, the Reynolds number is
about 788. We set the boundary condition v = (0,−1)m/s on the inflow boundary
Γ−, the outflow boundaries Γ+,1 and Γ+,2 are left free, and we assume no-slip velocity
v = (0, 0)m/s on the rest of the boundary of the domain. We take an initial air
velocity v0 = (0,−1)m/s. We consider a triangular mesh of the domain, composed
of 60 elements on the inflow boundary Γ−, 180 elements on the boundary of the
nose-mouth region, 240 elements along the trachea, 80 elements along each primary
bronchi, 30 elements on each outflow boundary Γ+,1 and Γ+,2, and 30 elements on the
curve connecting the two primary bronchi. This gives a mesh with 51227 elements
and 26362 nodes. The solution is computed with a time step ∆t = 0.018 till a steady
solution is reached. Figure 7.11 shows the stationary solution for the air flow field.
With a Reynolds number Re = 788, the air flow presents several recirculations near

Figure 7.11: Steady air flow field in the upper airways.

the left down boundary of the nose-mouth and the right boundary of the trachea as
one can see from the streamlines shown in Figure 7.12.
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Figure 7.12: Air flow streamlines in the upper airways (left). Zoom near the
junction of the nose-mouth and the trachea (right).

We are interested in the time-evolution of particles injected at the inflow bound-
ary Γ− and advected by the air flow. Here also, to solve the Eulerian droplet model,
we have to use a finer mesh. We consider a triangular mesh of the domain, composed
of 100 elements on the inflow boundary Γ−, 300 elements on the boundary of the nose-
mouth region, 400 elements along the trachea, 150 element each primary bronchi, 40
elements on each outflow boundary Γ+,i, 50 elements on the corner connecting the two
primary bronchi. This gives a mesh with 155064 triangles and 78838 nodes. We take
an initial particle volume fraction α0 = 10−10 and particle velocity u0 = (0, 0)m/s.
We choose Needham’s particle pressure given in (6.5.1).

We first suppose that the particles are droplets of water with density ρl =
1000kg/m3. A particle volume fraction α = 10−5 × exp(−2(x − 1.5)2) and a par-
ticle velocity u = v = (0,−1)m/s are imposed on the inflow boundary Γ−. The rest
of the boundary of the domain is left free. The numerical solutions are computed with
the finite element formulation (7.2.11). Figure 7.13 shows the time-evolution of the
volume fraction computed with a particle pressure coefficient κ0 = 10 for droplets with
diameter d = 1µm. As time evolves, the droplets advected by the air progressively fill
the domain. It takes about t = 8.4 for the jet of particles to first reach the primary
bronchi and t = 10 to exit from these primary bronchi. Some particles progressively
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t = 2 t = 6 t = 8.4 t = 20

t = 30 t = 60 t = 100 t = 180

Figure 7.13: Model EP: Particle volume fraction as a function of time. ρl =
1000kg/m3, κ0 = 10, d = 1µm, ∆t = 0.02.
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enter in the air flow recirculations (near the left down boundary of the nose-mouth
region and the right boundary of the trachea). After t = 140, the whole domain is
filled assuming a steady inflow of particles. The droplet velocity field is shown in Fig-
ure 7.14. Comparing the Figures 7.11 and 7.14, one can see that the droplet velocity

Figure 7.14: Model EP: Particle velocity field after t = 0.1. ρl = 1000kg/m3,
d = 1µm, κ0 = 10, ∆t = 0.02.

field is very close to the air velocity field. The velocity of the droplets, that was ini-
tially null, adjusts rapidly to the air velocity. Small droplets (d = 1µm) with density
ρl = 1000kg/m3 do not have enough inertia to cross boundary layers and impinge on
walls. They are simply advected by the air flow from the nose to the primary bronchi.

We repeat this test case but without a particle pressure, i.e. we set the particle
pressure coefficient κ0 = 0. Note that this corresponds to solving Model E with a
non constant drag coefficient. The time-evolution (not shown here) of the droplet
volume fraction computed with Model E is similar to the one computed with Model
EP with a particle pressure coefficient κ0 = 10. Figure 7.15 shows a plot of the solu-
tions for both models, along the horizontal cut C1 (see Figure 7.10), at t = 100. The
effects of the particle pressure on the droplets are not seen because for small particles
(d = 1µm), the drag force between the droplets and the air is much more important
than the particle pressure force for small mass loading. The drag force and the inertia
are the leading forces acting on the droplets.
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Figure 7.15: Plot of the solutions with/without particle pressure along the
horizontal cut C1. t = 100, d = 1µm, ρl = 1000kg/m3, ∆t = 0.02.

We repeat again the first test case but for droplets with diameter d = 100µm.
The time-evolution of the droplet volume fraction computed with a particle pressure
coefficient κ0 = 10 is shown in Figure 7.16. It can be seen by comparing the solutions
in Figures 7.13 and 7.16 that large droplets (d = 100µm) are less deviated by the
air flow than small droplets (d = 1µm). Most of the large droplets are advected
towards the left side of the trachea and exit by the left primary bronchi, as opposed
to small droplets for which the repartition of particles between the left and right
primary bronchi is more even. Large particles also take more time to entirely fill the
recirculation zones since their larger inertia to some extent prevents them from being
trapped by the recirculations.

The previous test case is repeated but without a particle pressure, i.e. with
κ0 = 0. Here also, the solution computed without particle pressure is the same as
the one obtained with a particle pressure coefficient κ0 = 10. Figure 7.17 shows a
plot of the solutions with/without particle pressure over along the horizontal cut C1.
Comparing figures 7.15 and 7.17, differences are seen on the volume fraction while
varying the diameter of the particles. Differences are minor on the particle velocity
which remains almost the same and is identical to the air velocity.

These test cases show that the models (E) and (EP) give similar results for par-
ticles with diameter in the range 1−100µm and density ρl = 1000kg/m3 advected by
air in movement inside the domain Ω2. There is no a significant effect of the particle
pressure force on the droplets because the particle mass loading is small. The drag
force between the air and the droplets and the inertia are the leading forces acting
on the droplets.
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t = 2 t = 6 t = 8.4 t = 20

t = 30 t = 60 t = 100 t = 180

Figure 7.16: Model EP: Particle volume fraction as a function of time. ρl =
1000kg/m3, κ0 = 10, d = 100µm, ∆t = 0.02.
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Figure 7.17: Plot of the solutions with/without particle pressure along the
horizontal cut C1. t = 100, d = 100µm, ρl = 1000kg/m3, ∆t = 0.02.

Next, we consider heavier particles with density ρl = 4000kg/m3. A particle
volume fraction α = 10−4 × exp(−2(x− 1.5)2) and a particle velocity u = v are im-
posed on the inflow boundary Γ−. The rest of the boundary of the domain is left free.
The numerical solutions are computed with the finite element formulation (7.2.25).
Figure 7.18 shows the time-evolution of the particle volume fraction computed with a
particle pressure coefficient κ0 = 10 for particles with diameter d = 100µm. One can
see that heavier particles are less deviated by the air flow. Most of the particles are
advected along the left wall of the trachea and exit through the left primary bronchi.

This test case is repeated but without a particle pressure, i.e. by setting κ0 = 0.
Figure 7.19 shows the time-evolution of the particle volume fraction without particle
pressure. Comparing Figures 7.18 and 7.19, one can see a slow dispersion of the
particles in the solution with particle pressure. This dispersion is more important
in the recirculation zones, namely near the lower left boundary of the nose-mouth
region and the right boundary of the trachea. A plot of the solutions with/without
particle pressure along the horizontal cut C2 (see Figure 7.10) is represented in Fig-
ure 7.20. One can see that the particle volume fraction is larger near the left and
right boundaries of the trachea and slightly smaller in between for the solution with
particle pressure. There is a smaller difference on the velocity field between the so-
lutions with/without particle pressure. Nevertheless, the difference on velocities is
consistent with the difference between the volume fractions, given the smaller magni-
tude of this latter variable. These results show that for heavier (ρl = 4000kg/m3) and
larger (d = 100µ) particles, the drag force and the particle pressure gradient become
equally important for inducing variations of the particle inertia.
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Figure 7.18: Model EP: Particle volume fraction as a function of time. ρl =
4000kg/m3, d = 100µm, κ0 = 10, ∆t = 0.02.



7. APPLICATIONS TO TWO-DIMENSIONAL AIR-PARTICLE FLOWS 146

t = 2 t = 6 t = 8.4 t = 20

t = 30 t = 60 t = 100 t = 180

Figure 7.19: Model E: Particle volume fraction as a function of time. ρl =
4000kg/m3, d = 100µm, ∆t = 0.02.
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Figure 7.20: Plot of the solutions with/without particle pressure along the
horizontal cut C2 at t = 180. ρl = 4000kg/m3, d = 100µm, ∆t = 0.02.

Finally, we are interested in the collection efficiency. The Eulerian droplet model
yields volume fraction α and velocity field u of the particles at any specific loca-
tion in space over time. The collection efficiency on walls can then be calculated as
β = αu · n, where n is the outward normal of the domain. This expression measures
the quantity of particles that deposit on the walls. The present approach elimi-
nates the well-known limitations of the Lagrangian tracking method which requires
elaborate algorithms and large computational resources for computing the collection
efficiency on complex geometries. The Eulerian droplet model (E) can provide accu-
rate droplet impingement predictions when an adequate droplet size distribution is
provided [17, 16]. Here, we compare the collection efficiency profiles computed with
the models (E) and (EP). Considering the second test case, we compute the collec-
tion efficiency on the right boundary of the nose-mouth region (section S1 in Figure
7.10) and on the circular arc connecting the primary bronchi (section S2 in Figure
7.10). Figure 7.21 shows the collection efficiency with/without particle pressure. The
abscissa x is the horizontal distance along the considered sections. The two models
give similar collection efficiency profiles. Minor differences are noticed due to the
effects of the particle pressure. In fact, the latter disperses the particles, and thus
affects the particle volume fraction, particularly in regions where particles accumulate
or recirculations occur. Overall, the differences are small. This shows the potential of
Model EP since it can recover predictions from Model E that is already validated for
smooth solutions against experimental data in aerodynamics [17], but also extends
the validity range of Model E to those situations where particle pressure matters.
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Figure 7.21: Collection efficiency β = αu · n computed for the solutions
with/without particle pressure at t = 180. At left: collection efficiency
along the section S1. At right: collection efficiency along the section S2 .
ρl = 4000kg/m3, d = 100µm, ∆t = 0.02.

7.4 Conclusion

The standard non-conservative form of the Eulerian droplet model (E) has been
used in the past for the prediction of droplets impingement on airfoils and ice accretion
on airplane wings during in-flight icing events [15, 17, 75, 6, 50] and more recently
for the prediction of air-particle flows in airways [14, 16]. As far as we know, the
conservative Eulerian droplet model with particle pressure (EP) was never used. Some
theoretical justifications for the use of this new model have been given here and in
the previous chapters. The 2D computations performed here show that the SUPG
method combined with a shock capturing term can be used to solve the conservative
form of the particle equations with/without particle pressure. However, it is diffusive.
The models (E) and (EP) give almost identical solutions for the test cases presented
in this chapter. Small differences between the two models can be noticed in the
recirculation regions for heavier and larger particles. These differences are due to
the particle pressure. The results in this chapter show that Model EP can recover
predictions from Model E. Model EP could also be used as an extension of Model E
in situations where particle pressure has larger impact (e.g. discontinuous travelling
waves, large particle loading, high-speed flows, etc). Of course, a extensive validation
of Model EP is needed in such cases. Moreover, the limitation on the smallness of
the particle mass loading for the one-way coupling to be valid could be removed by
adding momentum transfer terms in the Navier-Stokes equations.



Chapter 8

Conclusion and perspectives

In this thesis, we considered Eulerian models for dispersed two-phase flows. We
focused on the mathematical analysis of a one-way coupling Eulerian model for air-
particle flows, which can be seen as the pressureless gas system with a zeroth-order
source term. We also worked on the improvement of Eulerian models for dispersed
two-phase flows, as well as the use of such models for numerical predictions of air-
particle flows in airways.

8.1 Contributions

The condition for the loss of regularity of smooth solutions of the inviscid Burgers
equation with a zeroth-order source term is established. The same condition applies
to the Eulerian droplet model. The Riemann problems associated, respectively, to
the Burgers equation with a source term and the Eulerian droplet model are solved.
As far as we know, this had not been done before for the inviscid Burgers equation
and the pressureless gas system, both including a zeroth-order source term as the one
in Model E. As for the pressureless gas system, the solution of the Riemann problem
for the Eulerian droplet model is either a contact discontinuity, or a delta shock, or
a two-contact discontinuity with a vacuum state, but the left and right states are no
longer constant. The zeroth-order source term acts as a relaxation term by weakening
the delta shocks as time evolves. The generalized Rankine-Hugoniot conditions are
given by a nonlinear system of ODEs of first order that is hard or impossible to solve
analytically. The difficulty in the solution comes from the contribution of the source
term, which also leads to characteristic curves that are no longer straight lines, but
curves that tend asymptotically to straight lines. The existence of an entropic solution
to the generalized Rankine-Hugoniot conditions is proven. However, all this analysis
is carried out in one-dimensional space and for a drag coefficient and air velocity that
are both constant.

149
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Chen and Liu [23] analyzed the behaviour of the solutions of the Riemann prob-
lem for the isentropic Euler equations when the pressure vanishes. They showed
that the formation of delta shocks and vacuum states in the pressureless gas system
results from an asymptotically vanishing pressure in the isentropic Euler equations.
Two cases were only partially covered by their analysis, namely the 1-shock com-
bined with the 2-rarefaction and the 1-rarefaction combined with the 2-shock wave.
We performed a complete analysis of these two cases and showed that any Riemann
solution composed of a 1-shock wave combined with a 2-rarefaction wave converts
to a two-shock waves when the pressure coefficient gets smaller than a fixed value
determined by the Riemann data. In contrast, any Riemann solution composed of a
1-rarefaction wave combined with a 2-shock wave converts to a two-rarefaction waves
when the pressure coefficient gets smaller than a fixed value determined by the Rie-
mann data. These results were mentioned by Chen and Liu [23] without proof. Our
analysis completes the picture on the degeneracy of the isentropic Euler equations to
the pressureless gas system.

Based on the results from chapters 3 and 4, we proposed an Eulerian droplet
model with a particle pressure. This new model is written in conservative form
and is strictly hyperbolic. The conservative form should be used when traveling
waves with discontinuities appear in the solution and propagate as time evolves. We
illustrated numerically that this new Eulerian model does not develop the undesirable
delta shocks and vacuum states. Nevertheless, we are not able to solve the Riemann
problem associated to this model and analyze the behaviour of the solutions in the
vanishing pressure limit. The difficulty lies in the presence of the source term which
makes the standard theory for strictly hyperbolic conservation laws not applicable.

We discussed the mathematical and physical relevance of particle pressures in
Eulerian models for dispersed two-phase flows. The usual approach in the litera-
ture is to consider the pressure coming from the carrier phase as a common pressure
for the two phases. The gradient of this pressure times the volume fraction is in-
cluded in the momentum equation of the corresponding phase. Neither of these two
modeling assumptions seems correct. In fact, this requires additional pressure cor-
rection terms for well-posedness and leads to non-conservative systems as the general
common-pressure two-fluid model (the starting model in the hierarchy of Bouchut
[10]). Different pressures (one for each phase) should be considered and the gradi-
ent of the product of the pressure and the volume fraction is to be included in the
momentum equation of the corresponding phase. This has two main advantages. It
makes the system hyperbolic without additional pressure correction term. Moreover,
it allows us to write the system in conservative form. The idea of including the pres-
sure gradients in such way was proposed in the 70s [43], but not considered further in
the literature. Following these ideas, we derived a new hierarchy of two-way coupling
two-pressure models for dispersed two-phase flows and discussed the validity of each
model. However, mathematical analysis and numerical validations are still needed for
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some models.
Much of the literature on the propagation and deposition of aerosols in airways

relies on the Lagrangian tracking approach. A common justification for the use of
the Lagrangian approach is that air flows in airways are internal and pulsatile, and
present recirculation regions which potentially lead to crossing particle trajectories.
One major concern of the Lagrangian approach is the large computational expense
that may be experienced because of the requirement to track a substantial number
of particles to attain good statistical information of the dispersed phase. The com-
putations conducted in this thesis show that the Eulerian formulation could provide
a viable approach to compute internal dilute gas-particle flows, even in the presence
of reverse flow regions. Our test cases for internal flows representative of airways
showed that crossing trajectories are unlikely to happen since the particle velocity
remains close to the air velocity, even for very large and heavy particles. On the one
hand, these results confirm that Model E could be used for smooth solutions of dilute
gas-particle flows. On the other hand, they show the potential of Model EP, which
should be used in situations where particle pressure matters (large particle loading,
discontinuous traveling waves, etc). The implementation of the Eulerian approach is
simple and results in relatively small computational time to get the volume fraction,
velocity and collection efficiency for aerosol flows. No particle tracking has to be done.
These advantages make the Eulerian model very attractive. Nevertheless, there are
some difficulties in the use of Eulerian models for air-particle flows. A major concern
is the modeling of the boundary conditions for the dispersed phase, as the current ap-
proach assumes that the particles hitting the walls just vanish (basically stick to the
walls). A proper treatment of the particle-wall impaction at wall boundaries is still
far from adequate for more complex physical situations, e.g. splash-back of particles,
particle breakup, etc.

8.2 Future work

In the future, it would be desirable to provide a rigorous mathematical proof
of the non-occurrence of delta shocks and vacuum states Model EP. A good deal of
work needs to go into solving the Riemann problem for the isentropic Euler equations
with a zeroth-order source term as the one in Model E. The primary difficulty stems
from the presence of this zeroth order source term which renders the characteristic
variables non constant along the characteristic curves that are no longer straight lines.
Additionally, in this thesis we only performed the analysis in the one-dimensional case.
A challenging problem would be to extend this analysis to multi-dimensional cases to
see how travelling waves evolve in multi-dimensional space.

The comparison of the models in chapter 6 shows that the one-way coupling
assumption is only valid for dilute gas-particle flows. Two-way momentum transfer
should be considered for large particle loading. This can be achieved by adding
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a momentum transfer term in the carrier fluid equations (Euler or Navier-Stokes
equations). A way of adding such term in the Euler equations is known. Navier-Stokes
equations are commonly used for internal flows where viscous effects are important.
In the future, it would be interesting to investigate how momentum transfer terms can
be added in the Navier-Stokes equations. Another direction of improvement would
be the use of a more sophisticated droplet model that could account for the size of
the droplets, droplet splashing and droplet-wall impaction at boundary surfaces.

The numerical methods used in chapter 7 are clearly not the “optimal” ones
to solve the Navier-Stokes and particle equations, respectively. More accurate and
efficient methods should be considered for the Navier-Stokes equations, as well as for
the droplet equations. The numerical solution of these equations requires accurate
methods that are efficient to handle advective terms and singular problems since the
computation of the particle velocity vector field using the conservative form of the
particle equations leads to singular equations in regions where the particle volume
fraction tends to zero.



Appendix A

List of the models

Model I from Bouchut [10] (introduced on page 17):
∂t((1− α)ρg) + ∂x((1− α)ρgv) = 0,

∂t((1− α)ρgv) + ∂x((1− α)ρgv
2) + (1− α)∂xp =

µ

ε
α(1− α)(u− v),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) + εα∂xp+ Cp(v − u)2∂xα = µα(1− α)(v − u),

(I)

Model II from Bouchut [10] (introduced on page 17):
∂t((1− α)ρg) + ∂x((1− α)ρgu) = ε∂x(

ρg
µα

(1− α)∂xp),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2 + εp) = 0.

(II)

Model III from Bouchut [10] (introduced on page 17):{
∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) = 0.

(III)

Model IV from Bouchut [10] (introduced on page 18):
∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2 + Π) = 0,

lim
ε→0

εp = Π, with (1− α)Π = 0.

(IV)

Model E (introduced on page 22):{
∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) = KDα(ua − u),

(E)
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Equation (B) (introduced on page 22):

∂tu+ ∂x(
u2

2
) = KD(ua − u). (B)

System E’ (introduced on page 23):
∂tα + ∂x(αu) = 0,

∂tu+ ∂x(
u2

2
) = KD(ua − u).

(E’)

Model IE (introduced on page 67):{
∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + p) = 0,

(IE)

Model EP (introduced on page 86):{
∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(α(u2 + π)) = KDα(ua − u),
(EP)

Model IA (introduced on page 100):

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + p) = −1

ε
µα(v − u),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) = µα(1− α)(v − u).

(IA)

Model IAP (introduced on page 102):

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + p) = −1

ε
µα(v − u),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(α(u2 + π)) = µα(1− α)(v − u),

(IAP)

Model G (introduced on page 103):

∂t
(
(1− α)ρ

)
+ ∂x

(
(1− α)ρv

)
= 0,

∂t
(
(1− α)ρv

)
+ ∂x

(
(1− α)(ρv2 + p)

)
= −1

ε
µα(1− α)(v − u),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x
(
α(u2 + π)

)
= µα(1− α)(v − u).

(G)



Appendix B

Derivation of Model II

Consider Model I
∂t((1− α)ρg) + ∂x((1− α)ρgv) = 0,

∂t((1− α)ρgv) + ∂x((1− α)ρgv
2) + (1− α)∂xp =

µ

ε
α(1− α)(u− v),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) + εα∂xp+ Cp(v − u)2∂xα = µα(1− α)(v − u).

(I)

We carry out the Chapman-Enskog expansion for Model I, i.e. we seek solution v of
Model I in the form

v = u+ εw. (B.0.1)

Substituting v by u+ εw in (I) leads to
∂t((1− α)ρg) + ∂x((1− α)ρgu) = −ε∂x((1− α)ρgw),

∂t((1− α)ρgu) + ∂x((1− α)ρg(u+ εw)2) + (1− α)∂xp = −µα(1− α)w,

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) + εα∂xp+ Cp(εw)2∂xα = εµα(1− α)w.

(B.0.2)

which can be written in term of O(ε) as
∂t((1− α)ρg) + ∂x((1− α)ρgu) = O(ε),

∂t((1− α)ρgu) + ∂x((1− α)ρgu
2) + (1− α)∂xp+O(ε) = −µα(1− α)w,

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2) = O(ε).

(B.0.3)

Developing the fourth equation of (B.0.3) and using the third equation of the latter
lead to

∂tu+ u∂xu = O(ε). (B.0.4)
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Developing the second equation in (B.0.3) leads to

u
(
∂t((1−α)ρg)+∂x((1−α)ρgu)

)
+(1−α)ρg

(
∂tu+u∂xu

)
+(1−α)∂xp+O(ε) = −µα(1−α)w.

(B.0.5)
Substituting the first equation of (B.0.3) and (B.0.4) in (B.0.5), one gets

−µα(1− α)w = (1− α)∂xp+O(ε). (B.0.6)

In one hand, assuming µα > 0, on can divide (B.0.6) by αµ to obtain

−(1− α)w =
1

µα
(1− α)∂xp+O(ε). (B.0.7)

Multiplying (B.0.7) by ρg, taking the x-derivative and multiplying again by ε, one
obtains

−ε∂x((1− α)ρgw) = ε∂x(
ρg
µα

(1− α)∂xp) +O(ε2). (B.0.8)

Substituting (B.0.8) in the first equation of (B.0.2), the latter equation reduces to

∂t((1− α)ρg) + ∂x((1− α)ρgu) = ε∂x(
ρg
µα

(1− α)∂xp) +O(ε2). (B.0.9)

In the other hand, multiplying (B.0.6) by ε leads to

−εµα(1− α)w − ε(1− α)∂xp = O(ε2). (B.0.10)

Rewritting α in the third term on the l.h.s of the fourth equation of (B.0.2) as
1− (1− α), the latter equation gives rise to

∂t(αu) + ∂x(αu
2) + ε∂xp− ε(1− α)∂xp− εµα(1− α)w + Cp(εw)2∂xα = 0. (B.0.11)

Using (B.0.10) in (B.0.12), the latter reduces to

∂t(αu) + ∂x(αu
2) + ε∂xp = O(ε2). (B.0.12)

Using (B.0.9) and (B.0.12), system (B.0.2) gives rise to
∂t((1− α)ρg) + ∂x((1− α)ρgu) = ε∂x(

ρg
µα

(1− α)∂xp) +O(ε2),

∂t((1− α)ρgu) + ∂x((1− α)ρg(u+ εw)2) + (1− α)∂xp = −µα(1− α)w,

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2 + εp) = O(ε2).

(B.0.13)

Note that the second equation of (B.0.2) gives rises to (B.0.8) which is used in the oth-
ers equations of (B.0.2) to get the system (B.0.13). By ignoring this second equation
in (B.0.13) and the terms in O(ε2), one obtains

∂t((1− α)ρg) + ∂x((1− α)ρgu) = ε∂x(
ρg
µα

(1− α)∂xp),

∂tα + ∂x(αu) = 0,

∂t(αu) + ∂x(αu
2 + εp) = 0.

(II)
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