
Methods for parameter identification in the
Mitchell-Schaeffer model

by

Jacob Pearce-Lance

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Mathematics1

Department of Mathematics and Statistics

Faculty of Science

University of Ottawa

c© Jacob Pearce-Lance, Ottawa, Canada, 2019

1The M.Sc. program is a joint program with Carleton University, administered by the Ottawa-

Carleton Institute of Mathematics and Statistics

Abstract

This thesis focusses on the development and testing of optimization methods for param-

eter identification in cardiac electrophysiology models. Cardiac electrophysiology models

are systems of differential equations representing the evolution of the trans-membrane

potential of cardiac cells. The Mitchell-Schaeffer model is chosen for this thesis. The

parameters included in the Mitchell-Schaeffer model are optimally adjusted so that the

solution of the model has desired properties. Two optimization problems are formu-

lated using least-square functions to identify parameters that match phase durations

and parameters that fit entire potential recordings of swine heart tissue acquired via

optical imaging techniques at different stimulation frequencies. The non-differentiable

optimization methods (Compass Search and three other variants) are applied to solving

both optimization problems for two reasons; First, the methods are studied to evaluate

performance and second, the optimization process is evaluated to confirm its ability to

identify parameters for the Mitchell-Schaeffer model.

ii

Résumé

Cette thèse se concentre sur le développement et l’analyse de méthodes d’optimisation

pour l’identification de paramètres dans les modèles d’électrophysiologie cardiaque. Un

modèle d’électrophysiologie cardiaque est un système d’équations différentielles qui repré-

sente l’évolution du potentiel transmembranaire de cellules cardiaques. Le modèle de

Mitchell-Shaeffer sera utilisé pour cette thèse. Les paramètres inclus dans le modèle

de Mitchell-Shaeffer sont ajustés optimalement pour que la solution du modèle satis-

fasse des propriétés désirées. Deux problèmes d’optimisation sont formulés en utilisant

des fonctions de moindres carrés pour identifier des paramètres qui font correspondre

les durées de phases et des paramètres qui font correspondre le potentiel prédit par le

modèle avec celui provenant d’enregistrements faits sur des coeurs de cochons avec des

techniques d’imagerie optique à différentes fréquences de stimulation. Des méthodes

d’optimisation non différentiables (Compass Search et trois autres variantes) sont ap-

pliquées à la résolution des deux problèmes d’optimisation. Deux raisons motivent

notre travail: 1) les méthodes sont étudiées pour évaluer leur performance et 2) le

procédé d’optimisation est évalué pour confirmer sa capacité à identifier correctement

les paramètres pour le modèle de Mitchell-Shaeffer.

iii

Acknowledgements

First and foremost, I would like to thank my thesis supervisor Yves Bourgault for the

guidance he has provided over the past two years. Our weekly meetings contributed

greatly towards the progression of the research project and I am very happy to have had

Yves as my supervisor, as he was very patient and pedagogical in introducing me to the

academic world. I also thank Mihaela Pop and her team at the Sunnybrook research

institute for providing me with the experimental data I used for my work. I thank all my

colleagues also working with Yves for the small pointers and discussions on how things

are done in this field. I thank the thesis defence examiners Dr. Dave Amundsen and Dr.

Abdelaziz Beljadid for reading and evaluating my thesis. A big thanks goes out to my

parents, Stéphane Lance and Stéphanie Pearce, for supporting me throughout my studies

and without whom I would not be the person I am today. Finally, a special thank you

is given to my girlfriend Émilie, who keeps me motivated and makes me blissful every

day.

iv

Contents

1 Introduction 1

1.1 Electrophysiological context . 1

1.2 Mathematical models . 3

1.3 Scope of the thesis . 4

2 Mathematical background 6

2.1 The Mitchell-Schaeffer model . 6

2.2 Behaviour of the solution . 7

2.2.1 Restitution . 10

2.3 Numerical methods . 12

2.3.1 Solution of the model . 14

2.3.2 Phase durations . 16

2.3.3 Cubic Spline . 18

3 Parameter identification 22

3.1 Optimization Problems . 22

3.1.1 General problem . 22

3.1.2 Optimization problem I . 22

3.1.3 Optimization problem II . 23

3.2 Optimization methods . 24

3.2.1 Compass Search . 27

3.2.2 Golden Compass Search . 30

3.2.3 Hybrid Compass Search . 32

3.2.4 Front-track Compass Search . 34

3.3 Proof of convergence . 37

vi

4 Results for problem I 43

4.1 ode45 parameters . 43

4.2 Sample numerical test case . 46

4.3 Contraction factor . 48

4.4 Comparison of the optimization methods 50

5 Results for Problem II 56

5.1 Data acquisition and preparation . 56

5.2 Verification fittings . 60

5.3 Single data fittings . 62

5.4 Multiple data fittings . 65

vii

List of Tables

2.1 Butcher tableau of coefficients for fourth (bi) and fifth (b̂i) order Dormand-

Prince method . 15

4.1 Values of τfinal and Pfinal for various ftol 48

4.2 Errors on t∗ and P ∗ for various ftol . 48

4.3 Test 1 . 49

4.4 Test 2 . 49

4.5 Test 3 . 49

4.6 Comparison of four methods: Test case 1 51

4.7 Comparison of four methods: Test case 2 52

4.8 Experimental durations (ms) . 52

4.9 Comparison of four methods: LV . 53

4.10 Comparison of four methods: PF . 53

4.11 Comparison of four methods: RA . 54

5.1 Verification of method: single BCL . 60

5.2 Verification of method: multiple BCL . 61

5.3 Properties of the six datasets . 62

5.4 Single dataset fittings . 63

5.5 Triple dataset fittings . 66

5.6 Fittings of all six datasets . 68

5.7 Fit values of all six datasets using parameters obtained for three datasets 70

viii

List of Figures

2.1 Typical profile of solutions u and v of (2.1)-(2.3) plotted in time (taken

from [28]). 8

2.2 The phase diagram of u and v, with the nullclines in dashed or dotted lines

and each phase of the AP associated to a section of the phase diagram.

u = h1(v) = 0 is a nullcline, u = h2(v) and u = h3(v) are the u− and u+

of (2.5), respectively, and the dotted line is the nullcline given in (2.6).

Points A, B, C and D roughly represent the start of each phase (taken

from [28]). 9

2.3 The solution of the MS model with τ = [0.3, 6, 130, 150] stimulated every

500 ms, where u is the solid blue line, v is the dashed red line. The black

dash-dotted line is drawn at the peak of the first AP to show that the

following AP have smaller amplitudes. 11

2.4 The solution of the MS model (u in blue, solid, v in red, dashed) with

τ = [0.3, 6, 130, 150] stimulated every 400 ms. 12

2.5 The solution of the MS model (u in blue, v in red) with τ = [0.6, 10, 70, 190]

stimulated every 380 ms. The black line is the peak of the highest AP. . 13

2.6 Zoomed version of figure 2.5 to emphasize that consecutive APs have

slightly different peak values. 13

2.7 Restitution curve for MS model with parameters τ = [0.3, 6, 130, 150]

starting at BCL= 800 . 13

2.8 Solutions u and v of (2.1)-(2.3) with thresholds γ1 through γ5 and times

T1 through T5 at which the solution cross the thresholds (taken from [24]). 17

3.1 Three different generating sets in R2, centered at the point x = (5, 2) . . 26

3.2 An example of the first 3 iterations of Compass Search in R2. 28

3.3 An example of the hybrid creation step in Hybrid Compass Search 33

ix

3.4 An example of work done by FCS during the inner while loop. The black

dots are the x obtained for each step, with the last two points labeled x∗

and x∗∗ to illustrate the moment when the function starts growing (i.e.

f(x∗) < f(x∗∗)) . 35

3.5 An example of the word done by FCS during an inner while loop where

the expansion factor w is large. The black dots are the x obtained for each

step, with the last two points labeled x∗ and x∗∗ to illustrate the moment

the function starts growing (i.e. f(x∗) < f(x∗∗)) 36

4.1 Graphs of J(τ) as a function of τin (top left), τout (top right), τopen (bottom

left) and τclose (bottom right) using ode45 parameters given in (4.1). . . . 44

4.2 Graphs of J(τ) as a function of τin (top left), τout (top right), τopen (bottom

left) and τclose (bottom right) using ode45 parameters given in (4.2). . . . 45

4.3 A sample of the output of Compass Search for the sample test case . . . 46

4.4 Value of the cost function plotted with respect to the number of function

evaluations for the sample test case. The red dots mark the points where

the cost function reaches a specified tolerance: (A) 10−3, (B) 10−5 and

(C) 10−7. The blue dot (D) marks the point where the algorithm stagnates. 47

4.5 Value of the cost function plotted with respect to the number of function

evaluations for test 2 with different c values: 0.95 in blue, 0.85 in red, 0.75

in green, 0.65 in black, 0.55 in cyan and 0.45 in magenta. 51

5.1 a) Snapshot of the optical experiment to record epicardial AP wave prop-

agation using a fast CCD camera (C), where the pig heart (H) was stim-

ulated via an electrode (E). (b) Examples of waves recorded at one pixel

in the heart without the uncoupler (top) as well as after the uncoupler

(bottom) was injected. Note that the inverse of the relative loss of flu-

orescence signal ∆F/F (arbitrary units) gives the AP. The waves were

displayed with BV-Ana software (BrainVision, Japan). 57

5.2 Inverted raw data . 58

5.3 Results of fitting datasets individually. Top: reformatted dataset 5 (blue)

and solution of the MS model with τ found by FCS stimulated at BCL =

575 ms (orange). Bottom: reformatted dataset 4 (blue) and solution of

the MS model with τ found by FCS stimulated at BCL = 802 ms (orange) 64

5.4 Reformatted dataset 5 (blue) and solution of MS model with τfinal fitted

with dataset 2 (orange). 65

x

5.5 Results of fitting datasets 2-1-3. Top: reformatted dataset 2 (blue). Mid-

dle: reformatted dataset 1 (blue). Bottom: reformatted dataset 3 (blue).

All: solution of the MS model with τ found by FCS (orange) 67

5.6 Results of fitting datasets 2-1-6. Top: reformatted dataset 2 (blue). Mid-

dle: reformatted dataset 1 (blue). Bottom: reformatted dataset 6 (blue).

All: solution of the MS model with τ found by FCS, stimulated at corre-

sponding BCL (orange) . 67

5.7 Results of fitting datasets 2-1-3-4-5-6. Top to bottom: reformatted datasets

2, 1, 3, 4, 5 and 6, respectively (blue). All: solution of the MS model with

τ found by HCS, stimulated at corresponding BCL (orange) 69

xi

Chapter 1

Introduction

Heart disease is the second leading cause of death for Canadians [23]. Therefore, a

lot of research is dedicated to understanding how the heart works and, by extension,

what can hinder the heart from functioning normally. It is one thing to know what

kind of pathologies the heart can succumb to, but it is also important to be able to

identify said pathologies in patients. Diagnosis and treatment must be implemented in

a reasonably fast manner so as to effectively heal or prevent damage from being done.

Using mathematical models and methods, it is possible to visualize the electrical activity

in the heart in order to understand or to predict healthy or pathological behaviour.

1.1 Electrophysiological context

This section briefly reviews cardiac electrophysiology concepts. References [8, 12, 31]

provide a broader presentation of the subject. The heart is a large network of individual

cardiac cells interacting with one another via electrical currents. The cell membrane

acts as an isolating layer between the intra-cellular and extra-cellular domains, both of

which are Ohmic conductors. This separation leads to a difference of electrical potential

between the two domains, due to differences in the concentrations of the ions mostly

responsible for the conduction of the electrical wave (sodium, calcium and potassium

ions). The difference of potential, denoted u and often referred to as the trans-membrane

potential (the potential, for short), is by convention calculated as u = ui−ue, where ui is

the intra-cellular potential and ue is the extra-cellular potential. In their natural state,

cardiac cells have a “rest potential”, which varies depending on the cell type. However,

when subjected to an outside stimulation (i.e. an electrical current generated from a

1

2

difference of potential with neighbouring cells or by a stimulation electrode), the trans-

membrane potential increases rapidly before returning to its rest value. This process of

increase-decrease is called an action potential (AP) and is characterized by four phases:

• Phase 1: Due to the external current, the flux of potential raising ions (primar-

ily calcium and sodium) coming into the cell dominates the outward, potential

diminishing flux (primarily potassium) which leads to a rapid increase of the trans-

membrane potential up to its maximal value. Ventricular cells, for example, have

a resting value of roughly −80 mV which goes up to around 40 mV after phase 1

[8]. This phase is called “depolarization”.

• Phase 2: In response to the previous unbalancing of inward and outward movement

of ions, the outward flux increases to recreate equilibrium. The potential starts

decaying back very slowly to its rest value, hence the name of this phase being

“plateau”.

• Phase 3: The outward current now dominates the inward current, which has been

restored to its initial, non-excited rate, and so the potential drops more drastically

than during phase 2, but not quite as fast as the increase in phase 1. By the

end of this phase, potential will be very near rest value and the cell has become

repolarized, giving phase 3 the name “repolarization”.

• Phase 4: The channels through which the ionic fluxes pass are now inactive, so

no further unbalancing of flows may occur. The cell is no longer susceptible to

external current fluctuations and must recover before being able to begin a new

depolarization-repolarization cycle. This phase is called “recovery”.

In summary, when a region of the heart is sufficiently stimulated, each cell is excited

in turn resulting in a rapid increase of the potential, a relatively long period of maintained

elevated potential, a moderately fast decrease back to resting state and a relatively long

recovery period. Since the APs of each cell are happening one after the other, there is

a sort of “depolarization wave” that traverses the whole heart, normally starting from

the sinoatrial node. The sinoatrial node is composed of self-excitable cells, usually called

the “natural pacemaker” of the heart. The electrical wave starts from the sinoatrial

node and is propagated to both atria, first right than left, causing them to contract (the

function of the heart is to pump blood, so the increase of potential causes the necessary

contraction). The wave continues through the atria to reach the atrioventricular node,

3

which is the relay between the atria and the ventricles. Elsewhere, the atria and ventricles

are separated by a non-conductive layer. The atrioventricular node conducts the current

rather slowly from one medium to the other which causes a delay between the contraction

of the atria and that of the ventricles, allowing the latter to properly fill up with blood.

Once through this node, the current follows the Purkinje fibres that run all through the

ventricles, leading to the depolarization and contraction of the right and left ventricles,

completing the entire heartbeat.

It is worth noting that there is a variety of different cardiac cells, which react dif-

ferently to stimulating currents. Hence, the AP described above, although accurately

representing the general shape of APs for cardiac cells, can look a bit different depend-

ing on where the cell is found in the heart (e.g. the proportions between the durations

of the phases will differ from cell type to cell type). The differences in shape and delays

between activations of the APs of each individual cell are all synchronized together to

assure that the heart beats effectively and consistently. This also means that irregulari-

ties or “unexpected” behaviours of different heart regions can cause irregular conduction

patterns that lead to pathological heart conditions.

1.2 Mathematical models

Over the years, electrophysiologists have developed ways of recreating experimental data

in order to predict changes or evolution of the electrical activity in the heart. Mathe-

matical models are systems of differential equations (DEs) putting physical quantities

in relation with each other. For cardiac electrophysiology models, the trans-membrane

potential u, or more precisely its time derivative du
dt

, is the main property represented.

There are many different models that have been created to predict the shape of the

AP, with each model having its own intrinsic properties. Ionic models characterize the

electrical activity of the heart by considering the main flows of ions in and out of the

cell. There are two categories of ionic models: physiological models and phenomenologi-

cal models. Physiological models typically include many variables and consider the ionic

currents and concentrations to represent the underlying physiology. The Hodgkin-Huxley

model [10] and the Beeler-Reuter model [2] are examples of physiological models. Phe-

nomenological models are simpler models used to reproduce the macroscopic behaviour

of the cell, including the evolution of the trans-membrane potential and one or two vari-

ables representing globally the “slow” behaviour of ions. The Fitzhugh-Nagumo model

[6, 17] and the Mitchell-Schaeffer model [16] are examples of phenomenological models.

4

The model studied throughout this thesis is the Mitchell-Schaeffer model, introduced by

Colleen Mitchell and David Schaeffer in 2003. A precise statement of the model is found

in section 2.1.

The models usually have many adjustable parameters which can affect the predicted

AP. The adjustment of these parameters becomes important when trying to personalize

the models using medical data, as is done in [26, 27]. Varying the parameters affects the

predicted AP in many ways and often this effect is difficult to characterize, especially

when many parameters vary simultaneously. Some simpler models, such as the Mitchell-

Schaeffer model, may be analyzed using asymptotic methods to connect the parameters to

some properties, such as the phase durations [16, 26, 29]. However, addressing parameter

adjustment in fully non-linear models is not as easy, especially when complex properties

such as restitution properties must be observed. Some work has been done on this subject,

such as the use of simulated annealing to compare ionic models [14] and the use of genetic

algorithms to build a cell-specific electrophysiology model [9] or to adjust conductances

among other parameters in non-linear models using direct voltage recordings [11, 32]. The

work done in [32] resembles the work done in this thesis as recorded APs are included

in a least-square function to match restitution properties with a model. However, this

thesis strays away from that work by exploring different optimization methods (i.e. non

genetic methods), by studying a different model and by utilizing different cost functions,

both in the formulation and type of data input to the functions.

Another work [24] that closely relates to this one makes use of the Nelder-Mead op-

timization method [18] to adjust parameters in the Mitchell-Schaeffer model to match

phase durations and to fit a single AP recording. This thesis explores different opti-

mization methods in search of a better alternative to the Nelder-Mead algorithm while

also extending the model-to-data fitting process to multiple AP recordings to account

for restitution properties.

1.3 Scope of the thesis

The work done in this thesis is separated into four chapters. The second chapter presents

the Mitchell-Schaeffer model and the numerical methods used throughout the thesis. The

model is recalled from previous works and some of its properties are recalled and clarified.

The numerical methods used to solve the model and to analyze its solution are presented

in detail. These methods are implemented in the open-source computation software

Octave [20] (version 4.2.2), which is used for all computations throughout the thesis.

5

The third chapter introduces two optimization problems and presents the optimiza-

tion methods that are developed to solve them. The optimization problems are designed

to help identify parameters for which the chosen mathematical model predicts certain

properties for the trans-membrane potential, ranging from phase durations to the full

shape of the APs and restitution properties. The optimization methods, of which one is

standard and three others are our original variants, are presented along with theoretical

concepts that support their validity, such as a proof of convergence.

The fourth chapter consists of an analysis, using numerical test cases, of the per-

formance of the previously mentioned optimization methods. One of the optimization

problems is used to study how the algorithms perform compared to each other and how

the algorithms perform under certain modifications, such as changing the algorithm pa-

rameters.

The fifth chapter also contains an analysis using numerical tests of the performance

of the optimization methods, but this time in a more practical setting. Experimental

data obtained on pigs at the Sunnybrook Research Institute are reformatted so that

the optimization process can fit the model to real-life data. Many different scenarios

are considered, such as fitting the model to multiple recordings at once, to validate this

optimization process.

Chapter 2

Mathematical background

This chapter presents the mathematical background for the thesis. Sections 2.1 and 2.2

introduce the mathematical model used for this work and the behaviour of its solution,

respectively. The numerical methods used to compute this solution and other useful

properties are exhibited in section 2.3.

2.1 The Mitchell-Schaeffer model

The work done in this thesis focuses on the Mitchell-Schaeffer model [16], which describes

the electrical activity of a single cell. It is a system of two ODEs that relate to two

variables, namely the difference of potential across the cell membrane and what is called

a “gating variable”, denoted by u and v, respectively. The MS model reads as

du

dt
= f(u, v) + Istim(t), with f(u, v) = − 1

τin
vu2(u− 1)− 1

τout
u, (2.1)

dv

dt
= g(u, v), with g(u, v) =

 1−v
τopen

if u < ugate,

−v
τclose

if u ≥ ugate.
(2.2)

Both u and v are functions of time. The gating variable represents, in a way, how

“open” the ionic channels of the cell membrane are and how enabled the inward flux of

ions is. A high value of v means that the ions are coming into the cell quite easily while

a low value means that the exterior ions are somewhat denied passage through the cell

membrane. In this model, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 , with t ≥ 0 in ms. The variable u

is a rescaled trans-membrane potential which should normally vary so that the AP has

an amplitude of approximately 100 mV [12]. As seen in section 1.1, there are mainly

6

7

three currents that affect u: the inward currents of Ca2+ and Na+ ions and the outward

current of K+ ions. Calling the sum of the inward currents Iin and the outward current

Iout, f can be rewritten f(u, v) = Iin + Iout with Iin = − 1
τin
vu2(u− 1) and Iout = − 1

τout
u.

The other term in equation (2.1), Istim = Istim(t), is the stimulating current, which would

come from either a neighbouring cell or a stimulation electrode. The choice of Istim is

discussed in section 2.2. The function g has a discontinuity at u = ugate: it is positive

when u < ugate, meaning v is increasing and it is negative when u ≥ ugate, meaning v

is decreasing. The effect of this discontinuity on the regularity of u and v is taken into

account when working with this model, as mentioned in section 3.2. The model involves

5 parameters: τin, τout, τopen, τclose and ugate. Roughly, each τi affects the time scale of a

different phase of the AP. τin mostly governs the duration of phase 1, τclose phase 2, τout

phase 3 and τopen phase 4. ugate however does not affect AP significantly, it is controlling

the excitability threshold of the cell. The influence of each of the parameters on the

evolution of the AP is analyzed in more detail in [24]. Typical values for each of these

five parameters are [16, 24]

τin = 0.3, τout = 6, τopen = 130, τclose = 150 and ugate = 0.13.

To find solutions of (2.1)-(2.2) numerically and plot them like in figure 2.1, an initial

condition is needed. Unless stated otherwise, the equilibrium state is used as the initial

condition:

[u(0), v(0)] = [0, 1]. (2.3)

2.2 Behaviour of the solution

In order to analyze the behaviour of the solution of (2.1)-(2.3), similar steps as in [16]

are taken. First assume that τin � τout � τopen, τclose. Then, assuming Istim(t) ≡ 0, the

nullclines are given by:

f(u, v) = 0 and g(u, v) = 0, i.e.

− 1

τin
vu2(u− 1)− 1

τout
u = 0 and 0 =

 1−v
τopen

if u < ugate,

−v
τclose

if u ≥ ugate.

From the first equation, if u 6= 0, v is expressed as a function of u

v =
τin
τout

1

u(1− u)
(2.4)

8

Figure 2.1: Typical profile of solutions u and v of (2.1)-(2.3) plotted in time (taken from

[28]).

or u as a function of v

u = u± =
1

2
±
√

1

4
− τin
τoutv

(2.5)

and from the second equation,

v =

1 if u < ugate,

0 if u ≥ ugate.
(2.6)

Equations (2.4), (2.6) and the equation u = 0 describe the nullclines in the u-v plane.

The AP and phase portrait in figures 2.1 and 2.2, respectively, show what is going on.

Starting from the equilibrium state in (2.3), stimulus causes u to increase while v changes

very little, so the trajectory of the solution moves horizontally to the nullcline (2.4). This

corresponds to phase 1 of the AP. Since u has now surpassed ugate, v starts to decrease

and the trajectory follows the nullcline downwards. This is phase 2. When v reaches

its minimal value of 4 τin
τout

(minimum that can be found by minimizing (2.4) over the

interval (0, 1)), u starts decreasing more rapidly. The trajectory “falls off” the nullcline

and continues left, representing phase 3. Finally, since u is now smaller than ugate again,

v rises again and the solution returns towards its equilibrium, signaling that the cell may

be excited again, which corresponds to phase 4.

Since the system starts at an equilibrium state, external stimulus is needed in order

to observe an AP. Istim(t) plays this role, hence it is important to specify how Istim is

chosen. Near the equilibrium point, Iin and Iout are essentially zero and the change in v

9

Figure 2.2: The phase diagram of u and v, with the nullclines in dashed or dotted lines

and each phase of the AP associated to a section of the phase diagram. u = h1(v) = 0

is a nullcline, u = h2(v) and u = h3(v) are the u− and u+ of (2.5), respectively, and the

dotted line is the nullcline given in (2.6). Points A, B, C and D roughly represent the

start of each phase (taken from [28]).

is negligible. So (2.1) can be seen as a separable ODE and solved to get

u(t) ≈
∫ t

0

Istim(r)dr. (2.7)

If Istim is a piecewise constant function (i.e. zero everywhere except on a certain

intervals where it is constant and non-zero), then (2.7) becomes

u(∆t) ≈ ∆t · A,

where ∆t is the length of a short time interval near t = 0 when Istim is non-zero and A is

the amplitude of the stimulus. If ∆t is fixed, then A must be large enough so that after

∆t, u has crossed the nullcline (2.5) and an AP is initiated. So

u(∆t) ≈ ∆t · A ≥ 1

2
−
√

1

4
− τin
τoutv

= u−,

which gives

A ≥ 1

∆t

(
1

2
−
√

1

4
− τin
τoutv

)
. (2.8)

In practice, to ensure that (2.8) is satisfied, it suffices to choose some safety factor

β > 0 (β is small as to not overstimulate) and to set

A =
1

∆t

(
1

2
−
√

1

4
− τin
τoutv∗

)
· (1 + β), (2.9)

10

with v∗ being the maximum of v near the time of stimulation (e.g. v∗ = 1 at t = 0).

Istim is then written

Istim(t) =

A if t ∈ [n ·BCL, n ·BCL+ ∆t], n = 0, 1, 2, . . .

0 otherwise,
(2.10)

where BCL is the Basic Cycle Length (i.e. the delay between stimulations). BCL is

specified when results are given. By restricting n to only 0, Istim only stimulates once

and a single AP is observed.

2.2.1 Restitution

When Istim is defined as in equation (2.10) with no restriction on n, multiple consecutive

AP can be observed. Depending on the values of the parameters τ = [τin, τout, τopen, τclose]

and the basic cycle length BCL, different behaviours are possible. The different be-

haviours and the conditions under which they occur are explored more deeply in [16].

Recalled here are only a few notions from that paper that are of interest in the context

of the work presented in later sections.

“Restitution properties” is a catchall term referring to the behaviour of the model

subject to multiple stimulations. Examples of restitution properties are whether or not

each stimulation induces an AP, the relative length of the different phases of the APs

and the relative “peak” values of the APs when the BCL is varied. Peak values are the

values of the local maxima of u.

When observing the solution of the model for multiple AP, as in figure 2.3, it is

noticeable that the first AP in particular differs from the rest. It peaks at a higher value

and last a bit longer than the others. This is because the first stimulation is applied

at equilibrium (2.3), while the following stimulations occur before the system is back to

equilibrium. This is seen by the fact that v has not reached its equilibrium value 1 when

the following stimulation is applied. In fact, v = v∗ as defined in section 2.2. Since v

starts at a smaller value for the subsequent AP, the inward current Iin in (2.1) is smaller

throughout the AP and u starts decreasing sooner, so u can not reach as high a value

as in the first AP. In general, the larger the value of v at the time of stimulation, the

higher the potential u peaks. Usually, the first few APs differ a bit before the solution

stabilizes into a periodic pattern where every AP are essentially the same (peak value

and duration), but the most notably different AP is often the first. Even though the APs

in figure 2.3 do not seem too different, the difference between the APs is accentuated

11

Figure 2.3: The solution of the MS model with τ = [0.3, 6, 130, 150] stimulated every

500 ms, where u is the solid blue line, v is the dashed red line. The black dash-dotted

line is drawn at the peak of the first AP to show that the following AP have smaller

amplitudes.

when BCL gets smaller.

This last remark leads to another notion that counts as a restitution property. Re-

ducing BCL can lead to a shift in the behaviour of the solution. In figure 2.3, there

is an AP every 500 ms, so every stimulation induces an AP. In particular, the solution

seems to have fallen into a stable pattern as soon as the second AP. As in [16], this is

called 1:1 response. However, 1:1 response does not happen for all stimulation periods

BCL. For smaller BCL, it is possible that only every other stimulation induces an AP.

If a stimulation is applied too soon, it is possible that v has not yet increased enough

for the cell to be excitable again and no AP is observed for that stimulation. Figure 2.4

illustrates this phenomenon. After a stimulation that fails to induce an AP, v continues

to increase and in all likelihood the next stimulation will come at a time where v is now

large enough to permit an AP to happen. This is known as 2:1 response [16]. Of course,

it can happen that BCL is so small that multiple consecutive stimulations fails to induce

an AP, leading to what could perhaps be called n:1 response, but the 2:1 response would

be observed before, so this case is not considered. Finally, the MS model exhibits a third

kind of behaviour, known as 2:2 response [16]. This happens when each stimulation in-

duces an AP, but there is an alternation between shorter APs and longer ones. Figures

2.5 and 2.6 show this behaviour. In these figures, there is an alternation between APs

lasting approximately 307 ms and others lasting approximately 296 ms. Also, the peaks

12

Figure 2.4: The solution of the MS model (u in blue, solid, v in red, dashed) with

τ = [0.3, 6, 130, 150] stimulated every 400 ms.

alternate between approximately 0.907 for longer APs and 0.901 for shorter APs.

Along these lines, the final restitution property of interest here can explain in part

why some APs would be shorter than others. Since the peak potential and duration of

an AP depend on the value v∗ at which the gating variable v recovered after a previous

AP, there is a relation between the duration of the AP and the duration of the previous

recovery period, also called the diastolic interval DI. Without going into much details

(more are found in [16]), shorter DI lead to shorter AP. A graph of this relation as in

figure 2.7 is called a restitution curve. For this particular restitution curve, the duration

of the ninth AP (APD), which is the sum of durations of phases 1, 2 and 3, is plotted

against the duration of the eight DI, which is the duration between the end of phase 3

of the eight AP and the beginning of phase 1 of the ninth AP. The way the duration of

the phases is found is explained in section 2.3. The ninth AP is considered so that the

system has had time to stabilize after the first few stimulations. Each pair (APD,DI) for

a certain BCL gives one point on the restitution curve, so the BCL is gradually reduced

to get multiple points.

2.3 Numerical methods

Since the MS model cannot be solved analytically, numerical approximations of the

solution are used. The following section details the numerical methods used to solve

the MS model, explains how phase durations are extracted from numerical solutions and

exhibits a method of polynomial approximation that can be applied on the solution.

13

Figure 2.5: The solution of the MS model (u in blue, v in red) with τ = [0.6, 10, 70, 190]

stimulated every 380 ms. The black line is the peak of the highest AP.

Figure 2.6: Zoomed version of figure 2.5 to emphasize that consecutive APs have slightly

different peak values.

Figure 2.7: Restitution curve for MS model with parameters τ = [0.3, 6, 130, 150] starting

at BCL= 800

14

2.3.1 Solution of the model

The first step is solving (2.1)-(2.3) given a set of parameters τ = [τin, τout, τopen, τclose].

This is done using the computing software Octave, which shares many similarities with

MATLAB. Within Octave, the ODE solver ode45 is a function that solves ODEs using

an explicit Dormand-Prince method of order 4 [21]. Although a quick description of this

method follows, one can consult [5, 31] for more ample details. This method is a type of

Runge-Kutta method. Consider the following ODEdy
dt

= f(y, t), t > t0

y(t0) = y0.
(2.11)

Assuming the value y(tn) is known, the ODE (2.11) can be integrated to get

y(tn+1) = y(tn) +

∫ tn+1

tn

f(y, t) dt. (2.12)

Most of the time, the integral term in (2.12) can not be calculated exactly, so an

approximation is needed. For Runge-Kutta methods, the approximation is made by

computing a certain number of intermediate values of f(y, t) for t ∈ [tn, tn+1] and using

a weighted sum of these: ∫ tn+1

tn

f(y, t) dt ≈ ∆t
s∑
i=1

biki, (2.13)

where ∆t = tn+1− tn, s is the chosen number of stages, ki are the intermediate values of

f(y, t), which are calculated using

ki = f(tn + ci∆t, y(tn) + ∆t
s∑
i=1

aijkj) for i = 1, 2, . . . , s, (2.14)

and aij, bi, ci are specific to each method. For the Dormand-Prince method of order 4

implemented in ode45, these coefficients are listed in table 2.1 (using the first row bi)

[5]. So equations (2.12)-(2.14) give a way of approximating the value of y one time step

further, but it must be ensured that this approximation is accurate enough. To do this,

the method also calculates a fifth order approximation using the coefficients in table 2.1

(using the second row b̂i) and uses the difference between both solutions as an error

estimate err for the fourth order solution. If err ≤ tol, with tol a chosen tolerance, the

calculation is considered a success and the method can proceed to y(tn+2). If the error

is too large, then the calculation has failed and a smaller step-size must be taken in the

15

Table 2.1: Butcher tableau of coefficients for fourth (bi) and fifth (b̂i) order Dormand-

Prince method
ci aij

0 0 0 0 0 0 0
1
5

1
5

0 0 0 0 0
3
10

3
40

9
40

0 0 0 0
4
5

44
45

−56
15

32
9

0 0 0
8
9

19372
6561

−25360
2187

64448
6561

−212
729

0 0

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

0

1 35
384

0 500
1113

125
192

−2187
6784

11
84

bi
5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

b̂i
35
384

0 500
1113

125
192

−2187
6784

11
84

0

hope of satisfying the error tolerance. The step-size ∆t is adjusted after each calculation,

success or failure. This step-size adjustment is called adaptive step-size control and is

done using the integrate adaptive subroutine in Octave [7], which uses the formula

∆t← ∆t

(
tol

err

) 1
5

. (2.15)

Observing equation (2.15) confirms that the step-size gets smaller after failed steps

(tol
err

< 1) and gets larger after successful ones (tol
err
≥ 1).

The ode45 routine is applied to the system (2.1)+(2.2) with initial condition (2.3).

Additional options are specified in the input of ode45 to assure the accuracy of the

solution [21, 30]. “MaxStep” is the maximal step length allowed (if an adjustment

would make the step-size larger, this value is chosen instead). “InitialStep” is the size

of the first step. “RelTol” is used to calculate the above mentioned error tolerance that

a step must satisfy in order to be successful. “AbsTol” is also a tolerance for the error.

In short, the error err must be smaller than tol = max(RelTol· |y(tn+1)|, AbsTol) [15].

These parameters are all changed from their default values to values given in section 4.1.

The solution is calculated on the interval [0, T] for a chosen value of T . The output is a

set of tj ∈ [0, T] and the values of u and v at those t values. It is worth noting that the

value of u or v for any other t is not given.

16

2.3.2 Phase durations

Once the solution of (2.1)-(2.3) is computed, the duration of each of the four phases

can be calculated. Phase durations are calculated based on when u and v cross certain

thresholds. These are denoted by γi, for i = 1, 2, 3, 4, 5. If only one AP is considered

(there is no periodic stimulation), the four phases may be defined in this way:

• Since u starts at 0 and increases, phase 1 starts when u reaches γ1 and ends when

it reaches γ2.

• Phase 2 then starts and lasts until u decreases to γ3.

• Phase 3 then starts and lasts until u, still decreasing, reaches γ4.

• Phase 4 then starts and lasts until v, which had gone down from its rest value of

1 but is now increasing again, reaches γ5.

Figure 2.8 illustrates this definition of the four phases. The times at which these

events happen must be determined using the output of ode45. In all likelihood, u(tj) 6= γj

for any tj given by ode45. However, there are two consecutive values of t, say tj−1 and

tj for which u(tj−1) ≤ γi and u(tj) > γi, or vice-versa. This means that the time Ti at

which u crosses γi (i.e. u(Ti) = γi) is in [tj−1, tj). Once such an interval is found, linear

interpolation is used to find Ti:
Ti = tj−1 +

tj−tj−1

u(tj)−u(tj−1)
(γi − u(tj−1)), with i = 1, 3, 4,

T2 = arg max
t∈[tj−1,tj)

u(t).
(2.16)

The first formula also applies to finding T5, which is the time when v crosses γ5

(replace u by v and γi by γ5). Hence, finding T1 through T5 consists of going through

the array of times tj given by ode45 to identify the five intervals on which to do linear

interpolation using (2.16). In particular, Ti < Ti+1. Calling Pi the length of phase i,

Pi = Ti+1 − Ti, i = 1, 2, 3, 4, (2.17)

gives the length of each phase.

Since phases 1 through 4 are meant to represent the different periods of the AP, it

is necessary to choose the γi meaningfully. The parameter γ1 is set to ugate, so phase 1

starts when u has reached the threshold potential for depolarization. The parameter γ2

17

Figure 2.8: Solutions u and v of (2.1)-(2.3) with thresholds γ1 through γ5 and times T1

through T5 at which the solution cross the thresholds (taken from [24]).

is set equal to the local maximum around the peak of the AP, so that phase 2 starts when

u has stopped increasing. This means that when going through the process described

above to determine T2, it is necessary to find the first time interval following T1 on

which u is smaller at the end than at the beginning of the interval. The parameter γ3

is an intermediate value for which it is considered that the plateau phase is over and

repolarization has begun. The parameter γ4 is a small value for which u is considered

close enough to its resting value of 0. Finally, The parameter γ5 is chosen so that the cell

is seen as “excitable” again when v crosses this value (i.e. the channels are open enough

for depolarization to start again). Unless specified otherwise, the following values of γi

are used for this work

[γ1, γ2, γ3, γ4, γ5] = [0.13, γ2, 0.5, 0.05, 0.9].

The parameter γ2 has a variable value since the local max of u can change slightly

depending on the parameters and the stimulating current, but usually γ2 ≈ 0.95 for a

single AP.

In the case that phase durations are needed for the solution of (2.1)-(2.3) stimulated

periodically, the same calculations are done to identify T1, T2, T3 and T4 for each AP,

denoting by Ti,j the time u crosses the ith threshold of the jth AP. Using similar notation,

18

the phase durations Pi,j are obtained viaPi,j = Ti+1,j − Ti,j, i = 1, 2, 3 , j = 1, 2, . . . ,

P4,j = T1,j+1 − T4,j, j = 1, 2,

The time T5 is no longer considered because there is no way of guaranteeing that v

crosses the threshold γ5 for reasons explained in section 2.2.1. The phase duration P4,j

is the duration of the diastolic interval (DI) of the jth AP or jth diastolic interval.

2.3.3 Cubic Spline

As explained in section 2.3.1, the solution of the model is computed for specific points

tj. However, it will be necessary in certain scenarios to have u(t) for values of t 6= tj for

all values of j. The method described in this section is called cubic spline interpolation

with not-a-knot boundary conditions [1] and it is implemented in Octave using the spline

routine [22]. The method is used to find a continuous function that will approximate

u(t) for all values t ∈ [0, T].

Let (x0, y0),...,(xn, yn) be a set of n + 1 points in R2, called “knots”, with a = x0 <

x1 < . . . < xn = b. The goal of cubic spline interpolation is to find a function s ∈ C2[a, b]

which is a piece-wise cubic polynomial si on each interval [xi, xi+1], for i = 0, . . . , n − 1

such that s(xi) = yi for i = 0, . . . , n.

To construct the function s, define the cubic pieces si as

si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di, for i = 0, . . . , n− 1. (2.18)

By identifying the 4n coefficients ai, bi, ci and di, s is completely determined by

s(x) = si(x) if x ∈ [xi, xi+1].

The following conditions are set on the si:

si(xi) = yi for i = 0, . . . , n− 1, (2.19)

sn−1(xn) = yn, (2.20)

si(xi+1) = si+1(xi+1) for i = 0, . . . , n− 2, (2.21)

s′i(xi+1) = s′i+1(xi+1) for i = 0, . . . , n− 2, (2.22)

and

s′′i (xi+1) = s′′i+1(xi+1) for i = 0, . . . , n− 2. (2.23)

19

Conditions (2.19) and (2.20) ensure that s passes through each of the knots. Con-

ditions (2.21), (2.22) and (2.23) ensure that s ∈ C2[a, b] by forcing the si and their

derivatives to match at the knots. There are now 4n− 2 equations for 4n unknowns, so

two more conditions are required. The way of choosing these two extra conditions varies

from method to method. Octave’s spline implements the not-a-knot conditions, which

are

s′′′0 (x1) = s′′′1 (x1) and s′′′n−2(xn−1) = s′′′n−1(xn−1). (2.24)

The not-a-knot conditions (2.24) essentially force the x1 and xn−1 knots to not really

be knots after all, since s0 ≡ s1 and sn−2 ≡ sn−1 under these conditions.

With conditions (2.19)-(2.24), it is possible to uniquely determine the coefficients

ai, bi, ci and di. Let hi = xi+1 − xi, for i = 0, . . . , n − 1. Remembering that si(x) =

ai(x−xi)3+bi(x−xi)2+ci(x−xi)+di, one obtains the following values for the derivatives:

s′i(xi+1) = 3aih
2
i + 2bihi + ci, (2.25)

s′′i (xi+1) = 6aihi + 2bi. (2.26)

From condition (2.19), di = yi is clear. Introducing new variables, let

σi = s′′(xi) =

s′′i (xi) = 2bi, for i = 0, . . . , n− 1,

s′′n−1(xn) = 6an−1hn−1 + 2bn−1, for i = n.
(2.27)

From this definition,

bi =
σi
2
, for i = 0, . . . , n− 1. (2.28)

From definition (2.27), condition (2.23) and equation (2.26),

σi+1 = s′′i+1(xi+1) = s′′i (xi+1) = 6aihi + 2bi, for i = 0, . . . , n− 2,

which, combined with the second case of definition 2.27, gives

ai =
σi+1 − σi

6hi
, for i = 0, . . . , n− 1. (2.29)

From conditions (2.19), (2.20) and (2.21), and using di = yi,

yi+1 = aih
3
i + bih

2
i + cihi + yi, for i = 0, . . . , n− 1. (2.30)

Inserting (2.28) and (2.29) into (2.30) gives

yi+1 =
σi+1 − σi

6hi
h3
i +

σi
2
h2
i + cihi + yi, for i = 0, . . . , n− 1,

20

which is rearranged to get

ci =
yi+1 − yi

hi
− hi

2σi + σi+1

6
, for i = 0, . . . , n− 1. (2.31)

Condition (2.22) and equation (2.25) relate ci and ci+1 by

ci+1 = s′i+1(xi+1) = s′i(xi+1) = 3aih
2
i + 2bihi + ci, for i = 0, . . . , n− 2. (2.32)

Inserting (2.28), (2.29) and (2.31) into (2.32) gives

yi+2 − yi+1

hi+1

− hi+1
2σi+1 + σi+2

6
= 3

σi+1 − σi
6hi

h2
i + σihi +

yi+1 − yi
hi

− hi
2σi + σi+1

6
,

which simplifies to

hiσi + 2hiσi+1 + 2hi+1σi+1 + hi+1σi+2 = 6

(
yi+2 − yi+1

hi+1

− yi+1 − yi
hi

)
. (2.33)

Equation (2.33) is valid for i = 0, . . . , n− 2, yielding n− 1 equations.

Using the not-a-knot conditions (2.24),

s′′′0 (x1) = 6a0 = 6a1 = s′′′1 (x1)⇒ a0 = a1

(2.29) ⇒ σ1 − σ0

6h0

=
σ2 − σ1

6h1

⇒ σ0 =

(
1 +

h0

h1

)
σ1 −

h0

h1

σ2.

A similar reasoning yields σn =
(

1 + hn−1

hn−2

)
σn−1 − hn−1

hn−2
σn−2. Thus one can write the

following tridiagonal system of n− 1 equations:
h2
0

h1
+ 3h0 + 2h1 −h2

0
h1

+ h1 0 . . . 0

h1 2h1 + 2h2 h2 . . . 0

0 h2 2h2 + 2h3

. hn−3

0 0 . . . hn−2 −
h2
n−1

hn−2
2hn−2 + 3hn−1 +

h2
n−1

hn−2




σ1

σ2

σ3

. . .

σn−1

 = 6


y2−y1

h1
− y1−y0

h0
y3−y2

h2
− y2−y1

h1

. . .

. . .
yn−yn−1

hn−1
− yn−1−yn−2

hn−2


Solving this system gives the values of σi for i = 1, . . . , n − 1, thus also giving the

value for σ0 . With these σi, equations (2.29), (2.28) and (2.31) are used to find the

values of ai, bi and ci for i = 0, . . . , n−1, respectively, so all 4n coefficients are identified.

The spline s(x) can be used as an approximation for a function f which passes through

the points (x0, y0),...,(xn, yn). This approximation is fourth order accurate, so the error

is bounded as follows [1]:

max
a≤x≤b

| f(x)− s(x) |≤ c max
a≤x≤b

| f ′′′′(x) | max
0≤i≤n−1

h4
i

21

for some constant c.

For the spline approximation of the trans-membrane potential u, the output of ode45

(tj, u(tj, τ)) are used as knots. Having set a maximal step-size for ode45, which is usually

quite small, the term max
0≤i≤n−1

h4
i is very small so the approximation is very accurate.

Chapter 3

Parameter identification

In this chapter, the parameter identification problem is presented. Section 3.1 exhibits

the optimization problems that are to be solved. Section 3.2 presents in detail four

different optimization methods that are used to solve the optimization problems. A

proof of the convergence of the four methods is found in section 3.3.

3.1 Optimization Problems

3.1.1 General problem

The parameters found in mathematical models are variable and have effects on the prop-

erties of the solutions. Therefore, the problem of identifying which set of parameters

yields desired properties, like matching experimental data for example, can be formu-

lated as

Find τ ∗ that minimizes J, (3.1)

where τ ∈ Rn is the vector containing the values of the parameters in a chosen model

and J = J(τ) is the function that represents how well the solution y(τ) of the model

with parameters τ satisfy the target properties. Problem (3.1) is a minimization problem.

What distinguishes one problem from another is how J , which is called the cost function,

is defined.

3.1.2 Optimization problem I

Based on what is covered in chapter 2, the MS model can be used to predict the durations

of each phase of the AP. Experimental data is available for these durations, so the

22

23

following J can be considered:

J(τ) =
4∑
i=1

ωi(Pi − P ∗i)2, (3.2)

where Pi is the duration of phase i in the solution y(τ) = [u(t, τ), v(t, τ)] of (2.1)-

(2.3) with parameters τ = [τin, τout, τopen, τclose] ∈ R4 and Istim restricted to only one

stimulation. The Pi are computed as in section 2.3.2. P ∗i is the target duration of phase

i, often given by experimental data, and ωi is a weight assigned to scale the error on

the different phase durations. It is convenient to write P ∗ = [P ∗1 , P
∗
2 , P

∗
3 , P

∗
4]. Since the

phases have significantly different durations, a difference of 0.5 ms between P1 and P ∗1
should be more impactful than that same difference between P4 and P ∗4 , for example.

Setting ωi = 1
(P ∗i)2

makes the differences (Pi − P ∗i)2 relative to P ∗i . This choice makes

accuracy for shorter phases more important than for longer ones.

An important observation on the problem associated with (3.2) (abbreviated as prob-

lem (3.2) for the remainder of the thesis) is that there are no explicit constraints on τ .

However, not all τ actually induce an AP for which phase durations can be calculated

(e.g. oddly shaped or non-existent AP). This points towards the need for constraints on

the values of τ , but such bounds are unknown. A slight modification to (3.2) takes care

of this ambiguity:

J(τ) =


4∑
i=1

(Pi−P ∗i)2

(P ∗i)2
if the Pi are successfully computed

∞ otherwise.

(3.3)

The alternate value ∞ for J is chosen because the cost function is to be minimized,

so τ for which no phase durations are found are not minimizer candidates.

Optimization problem I is chosen for a few reasons. Firstly, problem I was used and

shown to be efficient in [24], so a comparison can be made with the results in that work for

testing and calibrating of the optimization methods presented in section 3.2. Secondly,

work done in [29] shows that there is essentially a one to one relationship between the

phase durations and the parameters τ , so it is a natural choice to use the phase durations

as a way of identifying τ .

3.1.3 Optimization problem II

The MS model can be used to match multiple consecutive APs. Consider a trans-

membrane potential ũi = ũi(t), t ∈ [0, Ti], for some i ∈ N, measured experimentally and

24

normalized in a certain way. Consider also a scaling factor si > 0. Define Ji = Ji(τ, si)

by

Ji(τ, si) =

∫ Ti
0
| ui(t, τ)− siũi(t) |2 dt∫ Ti

0
| siũi(t) |2 dt

, (3.4)

where yi(τ) = [ui(t, τ), vi(t, τ)] is the solution of (2.1)-(2.3) with parameters τ and Istim,i

is adjusted to match the stimulation pattern of ũi. The normalization and use of scaling

factors are discussed further in section 5.1. Consider multiple different ũi, i = 1, . . . , N ,

obtained by stimulating the same heart at different frequencies and find [τ ∗, S∗] mini-

mizing

J(τ, S) =
N∑
i=1

Ji(τ, si), (3.5)

where S = (s1, . . . , sN) are the scaling factors for the ũi.

This problem differs from (3.3) and is more challenging to solve. Firstly, instead

of only considering one AP, problem (3.5) tries to match data that includes multiple

consecutive APs so that restitution properties may be accounted for. Since Istim is

adjusted to stimulate the cardiac cell more than once, each AP beyond the first does not

start from equilibrium (2.3). This affects the shape of the AP. Secondly, this problem

takes into account the entire shape of the AP given by the model, not just the time

between certain threshold values. Thirdly, this problem introduces N new variables into

J in the form of the scaling factors S, increasing the number of variables from 4 to 4+N .

The choice of optimization problem II is also inspired by work done in [24], where

a similar problem is used to fit a single AP of recorded data. Problem II on the other

hand accounts for multiple APs across multiple frequencies in order to better capture

restitution properties in the identification of the parameters τ . The formulation of the

cost function (3.4)-(3.5) resembles what is done in [32] and is the usual least-square

function used to fit a curve to another. The inclusion of the denominator in (3.4) scales

each term in (3.5), which is needed because the datasets ũi have different lengths Ti over

which a varying number of APs is observed.

3.2 Optimization methods

Many methods already exist to optimize functions. Usually, a standard route to explore is

derivative-based methods such as the gradient method (steepest descent). However, work

done in [24] shows that this method does not converge when applied to this parameter

25

identification problem. To summarize, continuity and differentiability of J in τ could

not be proven, which is not unreasonable as J depends on equation (2.2) which contains

a discontinuity. Also, J is a composite function, so any of the inner functions might be

causing problems. For example, J in (3.3) is of the form

τ 7→ [u(t), v(t)] 7→ P = [P1, P2, P3, P4] 7→ J(τ),

where the dependence on τ is implicit through u, v and P . Attempts to remedy the

discontinuity by using a continuous right-hand-side in (2.2) for the model still did not

work. This remark hints towards making use of non-differentiable optimization strategies.

One such strategy and three of its variations of our own design are considered.

The idea behind the methods explored in this work is that even though the gradient

of an objective function can be hard or costly to compute, the fact that it exists can

be useful. Even in the case where the gradient does not exist everywhere, the following

notions could still be useful to analyze the convergence of the proposed methods. A few

definitions are in order.

Definition 3.2.1. Given a real function f of x ∈ Rn, a vector d is called a descent

direction for f at x if there exists αmax > 0 such that for all α ∈ R with 0 < α < αmax,

the following inequality holds:

f(x+ αd) < f(x).

Simply, a descent direction is a direction for which small enough steps along this one

always yield decrease in f . Finding a descent direction for f at a point x instead of using

−∇f(x) is another way of decreasing the value of the function. The following property

can be used:

Lemma 3.2.2. For a function f and a point x ∈ Rn at which f is differentiable, the

following are equivalent:

−∇f(x)Td > 0⇔ d is a descent direction for the function f at x.

This says that if d is within 90◦ of the negative of the gradient of a function at a

point, it is a descent direction for that function at that point. In this spirit, to find a

descent direction, one can consider a set of directions for which any vector is within 90◦

of at least one of those directions. This leads to the following definition (taken from

[13]):

26

1

1

(a) Orthonormal set

1

1

(b) Orthogonal set

1

1

(c) Non-orthogonal set

Figure 3.1: Three different generating sets in R2, centered at the point x = (5, 2)

Definition 3.2.3. A set D = {d(1), d(2), . . . , d(p)} of p vectors in Rn is called a generating

set of Rn if for any v ∈ Rn, there exist ci ≥ 0 such that

v =

p∑
i=1

cid
(i).

In other words, a generating set is like a spanning set with the added restriction

that the coefficients for the linear combination must be positive. Figure 3.1 shows three

examples of generating sets in R2. In particular, the following result [4] illustrates why

generating sets are important in this context:

Lemma 3.2.4. D is a generating set of Rn if and only if for any v ∈ Rn, there exists

d ∈ D such that

vTd > 0.

If a generating set is found, it is hence guaranteed that one of its elements is a descent

direction, since it will be within 90◦ of −∇f(x). The way of choosing this set is the main

ingredient of the optimization strategies described below.

Finally, in order to avoid ambiguity on the meaning of the word “direction”, it is

understood throughout the rest of the thesis that “direction” and vector are synonyms.

So, unlike the standard definition of the word “direction” in linear algebra, in this context

a direction has an orientation.

27

3.2.1 Compass Search

Algorithm 3.2.5 (Compass Search-CS). Given a function f , an initial guess x ∈ Rn,

an initial direction-size δ > 0, a contraction factor c ∈ (0, 1) and a stopping criterion

stop, the following is applied:

while stop is not met

let D = {pδei | p = −1,+1 and ei is an element of the canonical basis for Rn}
let x∗ = x+ arg min

d∈D
f(x+ d)

if f(x∗) < f(x), then

set x← x∗

else

set δ ← cδ

Taken from [13], this method is the simplest and the foundation for the three other

methods introduced here. Given a point x ∈ Rn, a “canonical” generating set is consid-

ered. This canonical generating set is obtained by using ±ei, where ei are the elements

of the canonical basis for Rn. Denoting the length of the directions by δ, the canonical

generating set D is constructed. Once again, it is understood that a direction is simply a

vector in this context and so the direction-size is simply the length of the vector. Figure

3.1 (a) shows an example of D in R2. f is then evaluated at the points resulting from

taking a step of size α = 1 in a direction d ∈ D. The point that yields the smallest

value of f , noted x∗, is considered. If f(x∗) < f(x), then x is moved to the new point

x∗. Otherwise, no step of size 1 for all d ∈ D made the function decrease. However,

being a generating set, D contains at least one descent direction for f at x if ∇f(x) 6= 0.

So the only problem is that the steps are too large (i.e. 1 > αmax in definition 3.2.1).

The direction-size δ used in creating D is reduced by a factor of c, making the directions

d ∈ D shorter for the next iteration.

Figure 3.2 shows examples of three consecutive iterations of Compass Search in R2.

The initial guess x or its modified position is the blue dot. The set D of four directions

d ∈ D is illustrated by the black arrows. The D for the previous iteration is illustrated

by the shaded arrows. The red dots are the points x+d for which the function is greater

than f(x) and the green ones are those where the function is smaller. The yellow dot is

the minimizer CS is looking for. In subfigure (a), the set D yields a green dot, so x is

moved there for the next iteration. In subfigure (b), no direction results in a decrease of

f , so the direction-size is contracted for the next iteration. In subfigure (c), two points

yield decrease so the algorithm will choose the one with the smallest value of f .

28

(a) initial D (b) next iteration (c) contraction

Figure 3.2: An example of the first 3 iterations of Compass Search in R2.

The algorithm repeats the process of constructing D and moving x, if possible, as

long as the stopping criterion is not met. Options for the stopping criterion include

f(x) ≤ ftol for a chosen tolerance ftol on the value of f , δ ≤ δtol for a chosen tolerance

δtol on the direction-size, the number of iterations k ≥ kmax and the number of function

evaluations fevals ≥ fevalsmax among many others. The different parameters that

appear in CS, such as the contraction factor c and the stopping criterion stop, can be

modified to make the algorithm better adapted to a specific minimization problem.

In the context of minimizing problem (3.3), certain details about Compass Search

need clarification or modification. Here, τ ∈ R4, so the generating set D will contain

8 directions. However, τ = [τin, τout, τopen, τclose] has components with different scales

(τin � τout � τopen, τclose). Hence, a direction-size δ that is comparable to τin is too

small for τopen, for example. Conversely, a δ comparable to τclose is too large for τout.

Simply taking the same δ for each coordinate can lead to either insignificant changes in

one direction or exaggerated changes in another, hence affecting the performance of the

algorithm. For this reason, δ is taken to be relative to the coordinate it is changing. D

then looks like

D = {pδτiei | p = −1,+1 and ei is an element of the standard basis for R4}, (3.6)

where τi is understood to be one on the four coordinates of τ (typically, [τ1, τ2, τ3, τ4] =

[τin, τout, τopen, τclose]). The direction-size δ now represents the percentage by which each

coordinate is changed instead of the absolute size of the change itself. The choice 0 <

δ < 1 is appropriate, since τi > 0 is required in this context. If δ ≥ 1, the four directions

that decrease τi would yield points that have τi ≤ 0, which is not permitted.

Figure 3.1 (b) shows how this modification changes the way D looks. In this figure,

29

x = (5, 2) and δ = 0.5. Hence, D contains two longer directions and two shorter ones,

since the coordinates of x have different values.

The contraction factor c is originally chosen to be 1
2

in [13], but in this work, some

effort was put in to see the effect of varying c. The conclusion of this analysis is that

choosing c closer to 1 offers more reliable results than choosing c closer to 0, such as

better minimizers or faster computation times. Details on this are found in section 4.3.

For all tests, the value for c is specified when results are given.

For problem (3.3), the stopping criterion is chosen so that it is met when either

the total number of function evaluations exceeds a given maximum or the value of the

function is smaller than a given tolerance. Since the function J to be minimized involves

solving the model (2.1)-(2.3) numerically, each function evaluation takes considerably

more time than other tasks in the algorithm. Thus, the number of function evaluations

is a good estimate for the total computational time and the stopping criterion limits this

number. Also, the goal of parameter identification is to find parameters τ for which the

solution of the model has phase durations equal to some target values. The stopping

criterion reflects when this goal is reached. When each phase has the desired duration,

then J = 0. Since it is not reasonable to expect the algorithm to find the exact τ ∗ for

which J(τ ∗) = 0, either because it simply does not exist or because finding the exact

right direction-size to land on this τ ∗ is unlikely, the minimizer is considered to be found

if J(τ ∗) ≤ ftol with ftol very small.

For problem (3.5), the same comments as above apply, subject to changing a few

sentences so that they makes sense in the new context (e.g. the goal is no longer to

match phase durations, but to fit the whole curve).

30

3.2.2 Golden Compass Search

Algorithm 3.2.6 (Golden Compass Search-GCS). Given a function f , an initial guess

x ∈ Rn, an initial direction-size δ > 0, a contraction factor c ∈ (0, 1), a stopping

criterion stop and a one-dimensional, non-differentiable optimization method 1-DOM,

the following is applied:

while stop is not met

let D = {pδei | p = −1,+1 and ei is an element of the canonical basis for Rn}
let x∗ = x+ arg min

d∈D
f(x+ d)

if f(x∗) < f(x), then

let d∗ = arg min
d∈D

f(x+ d)

Consider φ(α) = f(x+ αd∗)

Apply 1-DOM to φ on [0, 1] to find α∗ = arg min
[0,1]

φ(α)

if f(x+ α∗d∗) < f(x∗), then

set x← x+ α∗d∗

else

set x← x∗

else

set δ ← cδ

The Compass Search algorithm gives a way of finding a descent direction, but it

makes no attempt at dealing with the step-size α (see definition 3.2.1). It simply takes

α = 1 once a descent direction is found. Choosing the right value for α is a way to greatly

increase the efficiency of each step taken. The Golden Compass Search is a variant of

CS that attempts to pick the optimal step-size α∗ or at least a better one.

The initial step for constructing the set D is the same as in CS. As before, whether

or not D contains a direction that creates a point where f is smaller is determined,

but the difference (highlighted in red in the GCS algorithm) lies in the case where D

contains a direction that yields decrease in f . The direction d∗ that leads to the largest

decrease in f is considered and the function φ(α) is minimized for smaller steps along

d∗. An optimization method, called 1-DOM, is used on φ(α) to find an optimal step-

size α∗ ∈ [0, 1]. Any one-dimensional, non-differentiable optimization method 1-DOM

can be used to do the one-dimensional minimization, but the one chosen for GCS is the

Golden-Section Search, which explains the name Golden Compass Search.

31

Algorithm 3.2.7 (Golden-Section Search-GSS). Given a function φ : [a, b] → R, an

interval [a, b] and a stopping criterion stop, the following is applied

while stop is not met

let c = a+ b−a
ρ2

let d = a+ b−a
ρ

if φ(c) < φ(d), then

set b← d

else

set a← c

Note that ρ = 1+
√

5
2

is the golden ratio (hence the name of the algorithm). Golden-

Section Search is a well known method for minimizing a function over an interval [3].

Given an initial interval, GSS shrinks the interval at each iteration progressively enclos-

ing the minimizer within closer lower and upper bounds. When the interval length is

sufficiently small or the maximum number of iterations is reached (this is the usual stop-

ping criterion stop), any value in the interval is assumed to be a good approximation for

the minimizer. The standard choice is α∗ = a+b
2

.

Given that GSS finds an approximation of the minimizer and that φ may lack uni-

modality [3], the point x+α∗d∗ might not be the actual minimizer (there are pathological

cases that can arise). As a precaution, both the points x + α∗d∗ and x∗ are considered.

x is moved to whichever one has a smaller value for f and then the process can repeat

itself as in CS.

Coming back to the problems (3.3) and (3.5), the same comments made about Com-

pass Search apply to Golden Compass Search. The rescaled way of constructing D given

in (3.6), the choice of stopping criterion and the choice of contraction factor are all the

same as before. The goal of GCS is to make every step better at reducing the function,

so in terms of iterations of the method, it should do better than CS. This means that

D will be generated less often and there will be less function evaluations in that regard.

However, each of these better steps is now more cpu-intensive, since the function must

be re-evaluated many times during the GSS. For this work, the stopping criterion for

GSS limits the number of iterations to 3. Whether this is an efficient trade-off in terms

of total function evaluations is seen with the results in section 4.4.

32

3.2.3 Hybrid Compass Search

Algorithm 3.2.8 (Hybrid Compass Search-HCS). Given a function f , an initial guess

x ∈ Rn, an initial direction-size δ > 0, a contraction factor c ∈ (0, 1) and a stopping

criterion stop, the following is applied:

while stop is not met

let D = {pδei | p = −1,+1 and ei is an element of the canonical basis for Rn}
let x∗ = x+ arg min

d∈D
f(x+ d)

if f(x∗) < f(x), then

set ∆f = 0

let D′ = {d ∈ D | f(x+ d) < f(x)}
for d ∈ D′

set ∆f ← ∆f + (f(x)− f(x+ d))

for d ∈ D′

let d∗d = f(x)−f(x+d)
∆f

d

let x∗∗ = x+
∑
d∈D′

d∗d

if f(x∗∗) < f(x∗), then

set x← x∗∗

else

set x← x∗

else

set δ ← cδ

The principle behind the computation of a generating set is to find a set which is

guaranteed to contain a descent direction, but a generating set can be arbitrarily large.

Once a generating set is found, adding any vectors to it does not change the fact that it

still contains at least one descent direction. Hybrid Compass Search focuses on improving

the generating set so that more efficient directions are considered.

Once again, the algorithm starts as for Compass Search. The idea is to take the

subset D′ of D that contains the directions along which a step of size 1 reduces the

function and take a “hybrid” of them to create a new, hopefully better direction along

which a larger decrease of f is observed. With this in mind, it is advantageous to try

to make a smart choice so that more often than not, the hybrid is the best option and

the algorithm did not “waste time” by adding a new direction in D. For this work, the

hybrid is created by taking an element of the cone generated by the directions in D′. The

hybrid is a weighted average of all the directions in D′. The weight that each d ∈ D′ has

33

is the decrement of f by taking that direction divided by the sum ∆f of the decrements

of f for all d ∈ D′. The weights hence lie in [0, 1] and sum up to 1. The larger decrease

in f a direction leads to, the more that direction contributes to the weighted sum to

build the hybrid. In the special case where there is only one direction in D′, the hybrid

is the same as that direction, since its weight is 1. In this case, the algorithm could skip

the step of creating the hybrid to save time, but the principle remains.

There are pathological cases where the hybrid chosen is not actually a better choice

than the initial directions in D. For example, if the current x is a saddle point and D′

contains a direction that increases coordinate and a direction that decreases that same

coordinate, their hybrid could end up being ~0. To account for this uncertainty, the hybrid

is added to the directions in D and the direction yielding the largest decrease is chosen

(the hybrid is not chosen if it is not the best option).

Figure 3.3 shows an example of how this method creates a hybrid direction in R2.

Since both the left and down directions yield decrease (green dots), the hybrid (light

gray) of those two directions is also considered. The light gray diamond shape is a

guideline for all the possible hybrids. In this case, it is supposed for example that going

down makes the function decrease twice as much as going left, so the hybrid is 2/3 of a

step down and 1/3 of a step left.

The parameters included in Hybrid Compass Search (δ, c, the rescaled D, etc.) take

the same values as for Compass Search when applied to both problems (3.3) and (3.5).

Compared to CS, HCS focuses on making a better guess at the optimal descent direction,

so each iteration is more effective and the set D needs to be generated fewer times.

However, each iteration now costs one extra function evaluation (to check if the hybrid

direction is better). The results in section 4.4 show if this is a good compromise or not.

34

Figure 3.3: An example of the hybrid creation step in Hybrid Compass Search

3.2.4 Front-track Compass Search

Algorithm 3.2.9 (Front-track Compass Search-FCS). Given a function f , an initial

guess x ∈ Rn, an initial direction-size δ > 0, a contraction factor c ∈ (0, 1), an expansion

factor w > 1 and a stopping criterion stop, the following is applied:

while stop is not met

let D = {pδei | p = −1,+1 and ei is an element of the canonical basis for Rn}
let x∗ = x+ arg min

d∈D
f(x+ d)

if f(x∗) < f(x), then

let d∗ = arg min
d∈D

f(x+ d)

set x∗∗ = x∗

while f(x∗∗) ≤ f(x∗)

set x∗ ← x∗∗

set d∗ ← wd∗

set x∗∗ ← x∗∗ + d∗

set x← x∗

else

set δ ← cδ

An issue that the three previous methods may have arises when checking D for

directions that yield decrease. The points x+d for d ∈ D are used to determine whether

d is potentially a descent direction. However, as mentioned before, it is possible that step

of size α = 1 may be too large and yield increase in the value of f , even though d could

be a descent direction. This may lead to δ becoming too small too quickly and since

35

the three other methods do not consider taking step of size larger than 1, the algorithm

might make very minimal progress because the directions are too small. There is hence

a need to separate the length of the directions used to check for decrease and the length

of the step taken to create a new point x∗ = x+ αd.

There are ways of ensuring that an algorithm does not take steps that are too small,

such as imposing a sufficient decrease criterion like the Armijo condition [19] or using

backtracking. Backtracking consists of taking a larger step than necessary and then

progressively shortening the step until an acceptable step length is found. Acceptable

could mean satisfying the Armijo condition, for example, or it could also mean that the

chosen step length is just large enough so that a smaller step would not decrease the

function as much. Front-track Compass Search tries to remedy the problem of small

steps in a different way.

Front-track Compass Search is somewhat similar to Golden Compass Search in that

it does a sort of one-dimensional minimization, but it goes about it differently. It allows

choosing α∗ > 1. Once the direction d∗ is found, the same way it is in CS, FCS makes the

largest progress possible along d∗ by taking increasingly larger steps in that direction until

taking another step would make f start increasing. A point of the form x∗ = x + α∗d∗

with α∗ ≥ 1 is found as the minimizer along the direction d∗. The algorithm gets its

name from the fact that instead of the standard method of backtracking, FCS takes

progressively larger steps and “front-tracks” to the minimizer, as illustrated in figure 3.4.

Technically, all three of the previous methods employ a backtracking method in the form

of the last line of the while loop (set δ ← cδ). Note that this is the same last line for

FCS, so it too can be considered a backtracking method, but it has the added novelty of

doing front-tracking first.

The expansion factor w is chosen larger than 1 so that the front-tracking steps get

larger and hopefully the process ends sooner, but not so much larger than 1 that only a few

steps can be taken before the process ends and the minimizer is not as well approximated.

An example of front-tracking with a large w is shown in figure 3.5.

The rescaled way of constructingD in (3.6) is also used in Front-track Compass Search

for problems (3.3) and (3.5), but other modifications are included. The innermost while

loop of FCS consists of repeatedly taking larger steps using the chosen direction d∗. With

a rescaled D, d∗ is now relative to the current x. This remains true during the innermost

while loop. Each additional step rescales d∗ to the current x∗∗. The FCS algorithm with

36

Figure 3.4: An example of work done by FCS during the inner while loop. The black

dots are the x obtained for each step, with the last two points labeled x∗ and x∗∗ to

illustrate the moment when the function starts growing (i.e. f(x∗) < f(x∗∗))

Figure 3.5: An example of the word done by FCS during an inner while loop where the

expansion factor w is large. The black dots are the x obtained for each step, with the

last two points labeled x∗ and x∗∗ to illustrate the moment the function starts growing

(i.e. f(x∗) < f(x∗∗))

37

the rescaled D proceeds as follows, with changes highlighted in blue:

Algorithm 3.2.10 (Front-track Compass Search with rescaled D-FCS). Given a func-

tion f , an initial guess x ∈ Rn, an initial direction-size δ > 0, a contraction factor

c ∈ (0, 1), an expansion factor w > 1 and a stopping criterion stop, the following is

applied:

while stop is not met

let D = {pδxiei | p = −1,+1 and ei is an element of the canonical basis for Rn}
let x∗ = x+ arg min

d∈D
f(x+ d)

if f(x∗) < f(x), then

let d∗ = arg min
d∈D

f(x+ d)

set x∗∗ = x∗

set δ∗ = δ

while f(x∗∗) ≤ f(x∗)

set x∗ ← x∗∗

set δ∗ ← wδ∗

set x∗∗ ← x∗∗ + pδ∗x∗∗i ei for the appropriate p and i

set x← x∗

else

set δ ← cδ

There are also notable differences between FCS and the other three variants of CS

when it comes to applying them to solve problems (3.3) and (3.5). The stopping criterion

remains unchanged, but the values of δ and c are quite different. Keeping in mind the

comment about the length of the directions used to check for decrease made earlier, δ

is chosen to be smaller than with other CS methods. While this smaller δ leads to D

covering less of the parameter space with FCS, taking larger step with front-tracking

should compensate. Also, c is much smaller than in CS so that FCS has more space

to work with. FCS takes a small initial step to find the potential descent direction

and then takes multiple steps along it. If the new direction length cδ is too close to δ,

there would be too little space for FCS to take multiple steps. The increased number

of step-sizes tested at each iteration will increase the number of function evaluations,

but more progress is made at each iteration so D should be generated fewer times, thus

decreasing the number of function evaluations. Again, the results in section 4.4 illustrate

the efficiency of FCS in comparison with other CS methods.

38

3.3 Proof of convergence

The goal of the four methods presented is to find a minimizer of a function and the results

in chapters 4 and 5 show that they are reliable in doing so, at least for the parameter

identification problems (3.3) and (3.5). However, it is desirable for these methods to be

guaranteed to work if a given set of conditions is satisfied.

The terms “global convergence” and “local convergence” in the context of this work,

following [13] describe the ability that an optimization method has to converge to a

stationary point of a function (i.e. the ability to find point where the gradient vanishes).

A method is said to converge globally if the values of x at each iteration of the method,

denoted by xk, converge to a stationary point regardless of the initial guess. In symbols,

limk→∞ x
k = x∗ with ∇f(x∗) = 0. A method converges locally if the xk converge to a

stationary point when the initial guess is “close enough”.

The article [13] from which Compass Search is taken provides a lengthy discussion

on global and local convergence of what is referred to as generating set search methods.

Generating set search methods represent a larger class of methods that have a similar

structure. CS, as well as the three other variations presented in section 3.2, are examples

of generating set search methods. The implementation of these methods differs a bit

from the implementation described in the article, mostly due to the modification done

to D in equation (3.6). Because of this different implementation, some of the results

on convergence require slightly modified proofs while some proofs simply do not apply.

What follows is a rewriting of some proofs and some explanations on why other proofs

do not work. For more details and a comparison of the approaches, one can read this

section in conjunction with chapters 2 and 3 of [13].

Firstly, some notations are required, most of which are taken from [13]. As eluded

to in the description of the methods, an iteration consists in building D for the point x,

checking to see if decrease is found using directions in D, possibly doing some extra steps

to make a better choice for the next point and finally either moving x or contracting δ.

An iteration is said to be successful if x is moved to a point with a smaller function value

and it is said to be unsuccessful if δ is contracted because no better point was found. If

the kth iteration is successful, k ∈ S and if the kth iteration is unsuccessful, k ∈ U. S
and U are thus disjoint, possibly infinite subsets of N.

The values of x and δ at the beginning of iteration k are denoted xk and δk. x0 is the

initial guess and δ0 is the initial direction-size.

Let D = {±ei | ei is an element of the canonical basis for Rn}. For many of the

39

proofs in [13] as well as lemma 3.3.1 and theorem 3.3.2, it is required that the generating

set remain fixed. To account for the fact that D is chosen as in (3.6), let ∆k
i = δkxki .

With this notation, D = {z |z = ∆k
i d, d = ±ei ∈ D, i = 1, 2, . . . , n}. Also, the points

resulting from a step of size α = 1 along directions in D can all be written as xk + ∆k
i d

for the corresponding d. This differs from [13], where ∆k was the same for all d ∈ D.

The differences between the four methods presented arise during successful iterations

in the way the next iterate xk+1 is chosen, but for unsuccessful iteration, they are all the

same. Fortunately, the behaviour at unsuccessful iterations is the key for convergence.

Lemma 3.3.1. Let f be a continuously differentiable, real-valued function on Rn with

∇f Lipschitz with constant M . Then for unsuccessful iterations of CS, GCS, HCS and

FCS,

‖∇f(xk)‖ ≤
√
nM∆k

i , for k ∈ U and for some i = i(k) ∈ {1, . . . , n}. (3.7)

Proof. Let k ∈ U. Then

f(xk) ≤ f(xk + ∆k
i d), for all d ∈ D. (3.8)

Lemma 6.3 in [33] states that, for any value of ∇f(x), there exists at least one d ∈ D,

say d = ±ei, i = i(k), such that

1√
n
‖∇f(xk)‖ ‖d‖ ≤ −∇f(xk)Td. (3.9)

From (3.8) and the mean value theorem, there exists an αk ∈ [0, 1] such that

0 ≤ f(xk + ∆k
i d)− f(xk) = ∇f(xk + αk∆k

i d)T∆k
i d.

Subtracting ∆k
i∇f(xk)Td from both sides gives

−∆k
i∇f(xk)Td ≤ ∆k

i (∇f(xk + αk∆k
i d)−∇f(xk))Td.

Dividing both sides by ∆k
i and applying (3.9) gives

1√
n
‖∇f(xk)‖ ‖d‖ ≤ (∇f(xk + αk∆k

i d)−∇f(xk))Td. (3.10)

Using the fact that ∇f is Lipschitz with constant M and taking the norm of the

right-hand side of (3.10),

‖(∇f(xk + αk∆k
i d)−∇f(xk))Td‖ ≤M‖xk + αk∆k

i d− xk‖ ‖d‖ ≤M∆k
i ‖d‖2. (3.11)

40

Combining (3.11) with (3.10) and using the fact that ‖d‖ = 1,

‖∇f(xk)‖ ≤
√
nM∆k

i .

Lemma 3.3.1 gives a bound on the norm of the gradient at unsuccessful iterations that

is proportional to ∆k
i . If it can be shown that limk→∞∆k

i = 0, k ∈ U, then the conclusion

is that the gradient also goes to zero and so the method converges to a stationary point.

Three different ways of showing that limk→∞∆k
i = 0, k ∈ U, are presented in [13].

Thus, it is shown that, under certain conditions, the generating set search methods con-

verge globally. But upon closer inspection, the three ways of ensuring global convergence

(sufficient decrease, rational lattice and moving grids [13]) do not apply to CS and the

other methods as implemented in this thesis. Presented here are a few comments on why

the globalization techniques do not carry over. These comments are not meant to be

specific, just general guidelines as to where the proofs in [13] fail for the CS methods.

Firstly, the sufficient decrease globalization in section 3.7.1 of [13] does not apply be-

cause it requires a sufficient decrease criterion to be considered when updating x whereas

the CS methods only use a simple decrease criterion.

Secondly, the rational lattice globalization in section 3.7.2 of [13] requires that the

set of all directions considered throughout the algorithm is finite and that the length of

the steps to check for decrease in the value of f is of the form ‖d‖ = ΛΓδ0, for a fixed

rational Λ and an integer Γ. By considering the set of directions to be fixed to D, which

is finite, the first requirement is fulfilled, but the second requirement fails. The length

of the steps is of the form ‖d‖ = cΓδ0xki = ∆k
i in this case. Because of this difference,

xk+1 − x0 is no longer a positive integral linear combination of the search directions. It

is a now a rational linear combination which renders an argument about finiteness of a

certain set invalid and the proof no longer applies.

Thirdly, the moving grids globalization in section 3.7.3 of [13] requires that D only

be updated after unsuccessful iterations to ensure that a lattice (grid) structure is main-

tained, which is not the case here. Considering D as the fixed set of directions still causes

similar problems as in the rational lattice case because the ∆k
i change the grid at each

iteration, not only the unsuccessful ones.

Even though the global convergence result can not be proved with these three glob-

alization techniques, another proof may eventually be obtained for the CS methods.

However, a more modest result is proved here instead. The following theorem guarantees

41

the local convergence of CS, GCS, HCS and FCS under certain conditions. This theorem

is analogous to theorem 3.15 of [13].

Theorem 3.3.2. Let f be a twice differentiable, real-valued function of Rn. Suppose that

x∗ is a local minimizer of f and that ∇2f(x∗) is positive definite. For the CS methods,

if x0 is sufficiently close to x∗, δ0 is sufficiently small and limk→∞ δ
k = 0, then it is

guaranteed that

lim
k→∞

xk = x∗.

Proof. Let η > 0 be such that

x ∈ B(x∗, η)⇒ spectrum∇2f(x) ⊂ [
φmin

2
, 2φmax], (3.12)

where φmin and φmax are the minimum and maximum eigenvalues of ∇2f(x∗), respec-

tively. Let ξ = max
x∈B(x∗,η)

{| xi | | i = 1, . . . , n}. From (3.12), as in the proof of theorem

3.15 in [13], the following inequality is obtained

φmin
2
‖xk − x∗‖ ≤ ‖∇f(xk)‖.

Using lemma 3.3.1, for k ∈ U and some i = i(k) ∈ {1, . . . , n},

‖xk − x∗‖ ≤ 2

φmin

√
nM∆k

i ≤
2

φmin

√
nMξδk. (3.13)

Next, exactly as in the proof of theorem 3.15 in [13], it can be shown that there exist

c such that

‖x− x∗‖ ≤ c ‖y − x∗‖ for any x, y ∈ B(x∗, η) with f(x) ≤ f(y). (3.14)

Assume that x0 ∈ B(x∗, η) is close enough to x∗ so that

‖x0 − x∗‖ ≤ η

2c
.

For CS, GCS and HCS (FCS is dealt with later), assume δ0 small enough so that

| δ0 |≤ η

2ξ
.

With these assumptions, if xk ∈ B(x∗, η), then xk+1 ∈ B(x∗, η) as well. Indeed,

‖xk+1 − x∗‖ ≤ ‖xk+1 − xk‖+ ‖xk − x∗‖. (3.15)

42

From the updating formulae

xk+1 = xk + ∆k
i d for CS,

xk+1 = xk + α∗∆k
i d, 0 ≤ α∗ ≤ 1 for GCS and

xk+1 = xk + z, z ∈ D′ ∪ {hybrid} for HCS,

an upper bound for the first term in (3.15) is found in all cases:

‖xk+1 − xk‖ ≤ ∆k
i ≤ δ0ξ ≤ η

2
(3.16)

and since f(xk) ≤ f(x0) and x0, xk ∈ B(x∗, η), (3.14) is applied to get an upper bound

for the second term in (3.15):

‖xk − x∗‖ ≤ c ‖x0 − x∗‖ ≤ η

2
. (3.17)

Thus, (3.15),(3.16) and (3.17) combine to say that xk+1 ∈ B(x∗, η) for all k =

0, 1, 2, Let k ∈ S and ω(k) denote the most recent unsuccessful iteration. Then

by (3.13) and (3.14),

‖xk − x∗‖ ≤ c ‖xω(k) − x∗‖ ≤ c
2

φmin

√
nMξδω(k). (3.18)

(3.13) and (3.18) together with the assumption limk→∞ δ
k = 0 give xk → x∗.

For FCS, it is necessary to enforce a maximal number q of steps during each inner

while loop. Assume δ0 small enough so that

| δ0 |≤ η

2qwqξ
.

where w is the expansion factor used in FCS. The updating formula, which is dependent

on the number of front-tracking steps made, generally looks something like

xk+1
i = xki (1± w0δk)(1± w1δk) . . . (1± wrδk), for some integer r < q.

The idea is that if a maximum of q front-tracking steps are taken and each of those

steps gets progressively bigger, than the entire change on xk is bounded above by q times

the biggest possible step, i.e.

‖xk+1 − xk‖ ≤ qwqδ0ξ ≤ η

2
.

43

Having found an upper bound analogous to (3.16), the proof continues as before. One

should notice that the assumption that δ0 be small enough is more restrictive for FCS

than for CS, GCS and HCS. The upper bound on δ0 is smaller for FCS. This corroborates

the choice of a smaller δ0 for FCS, as mentioned in section 3.2.4.

Chapter 4

Results for problem I

In order to test the efficiency of the optimization methods presented in section 3.2, the

optimization problem (3.3) is used. In section 4.1, the methods are first calibrated by

studying the effect of the parameters used in ode45 on the cost function (3.3). Section

4.2 contains an in-depth look at a typical numerical test. In section 4.3, the effect of the

contraction factor c on the performance of the methods is investigated. Finally, section

4.4 presents numerical results for a selection of numerical tests to compare the methods

with each other.

A few remarks are in order before showing numerical results. As previously men-

tioned, for problem (3.3), Istim is restricted to stimulate the cell only once. The param-

eter A in equation (2.9) was calculated with v∗ = 0.7 and β = 0.05. The choice v∗ = 0.7

instead of v∗ = 1 was made at the time to try to adjust Istim to work for both a single

and multiple stimulations. By analyzing equation (2.9), it is seen that setting v∗ to be

smaller than it actually should be leads to an increase in A, which can affect the duration

of phase I or even overstimulate. However, since the tests are done only for verification

purposes, the former concern is overlooked while the latter did not seem to occur. The

stimulation is applied for ∆t = 2 ms.

4.1 ode45 parameters

Upon conducting preliminary tests to compare the performance of the four methods

presented in section 3.2, the accuracy of the minimizers was questioned. The parameters

τ and the phase durations P recovered from the optimization methods were not as close

to τ ∗ and P ∗ as expected. Some effort was put in to find ways of improving the accuracy

44

45

of the minimizer. In particular, adjusting the tolerances was considered. The function

tolerance was initially set to ftol = 10−4 in preliminary tests. It was sometimes possible

to reach this tolerance using the methods while other times the tolerance was not reached.

Suspecting that this was a problem with the cost function rather than a problem with

the optimization methods, the smoothness of the cost function was investigated.

The goal was to see how the function was behaving in the standard directions used

by the algorithms. One property that was especially looked at was the presence of

“noise” or “jaggedness” that would cause a multitude of local minima to be present,

eventually resulting in the method to terminate at any local minimizer rather than the

global minimizer.

Figure 4.1 shows the cost function for P ∗ = [7.021, 251.091, 34.322, 270.350] obtained

from τ ∗ = [0.3, 6, 130, 150] using the following ode45 parameters:

MaxStep = 0.5, InitialStep = 0.01, RelTol = 10−4 and AbsTol = 10−4. (4.1)

Figure 4.1: Graphs of J(τ) as a function of τin (top left), τout (top right), τopen (bottom

left) and τclose (bottom right) using ode45 parameters given in (4.1).

46

The cost function is indeed very noisy, at least in two directions (along the τin-

axis and the τout-axis). Varying the ode45 parameters to smooth-out the cost function

yielded figure 4.2, which shows the cost function for P ∗ = [6.892, 251.283, 34.313, 270.427]

obtained from τ ∗ = [0.3, 6, 130, 150] using the following ode45 parameters:

MaxStep = 0.5, InitialStep = 0.01, RelTol = 10−12 and AbsTol = 10−12. (4.2)

Figure 4.2: Graphs of J(τ) as a function of τin (top left), τout (top right), τopen (bottom

left) and τclose (bottom right) using ode45 parameters given in (4.2).

For this set of ode45 parameters, the cost function is smoother. Of course, zooming

in reveals the same noisy behaviour as before, but the noise occurs on a smaller scale.

Setting RelTol and AbsTol to smaller values give more accurate numerical solutions of

the ODE and values of the cost function, but at the expense of an increased computing

time. Smaller tolerances could have been used, but the results obtained using values from

(4.2) were deemed satisfactory for soling the parameter identification problem. Hence, for

other results presented in further sections, unless specified otherwise, ode45 parameters

given in (4.2) are used.

47

4.2 Sample numerical test case

Presented here in detail is a typical numerical test case for solving problem (3.3). A

similar careful analysis is done for all test cases in the thesis.

One of the tests presented in section 4.4, whose results appear in table 4.7, is con-

sidered. This test involves using Compass Search to identify parameters that give

phase durations matching P ∗ = [8.685, 251.840, 48.734, 205.919] obtained from param-

eters τ ∗ = [0.4, 10, 100, 130]. The initial guess is τ = [0.3, 6, 130, 150]. The stopping

criterion is f ≤ 10−8 or fevals ≥ 1500.

In addition to outputting the final values of the parameters τfinal, the values of the

phase durations Pfinal, the value of the cost function J(τfinal) and the total amount of

function evaluations fevals, CS also outputs information at each iteration. A sample of

the output of CS for this test is found in figure 4.3.

Iteration Action CostFunction FEvals

0 Initial 0.22832220128602 1

1 Decrease parameter 3 0.13091466094901 9

2 Increase parameter 1 0.10210503463520 17

3 Increase parameter 2 0.04135031344045 25

Figure 4.3: A sample of the output of Compass Search for the sample test case

To illustrate the convergence of the method, a convergence graph (see figure 4.4) is

created by plotting the value of the cost function on a logarithmic scale with respect to

the number of function evaluations. Also featured on this graph are red dots marking

the points where certain tolerances on the value of J are reached to illustrate where the

algorithm would terminate if the function tolerance criterion was less demanding. The

actual function tolerance criterion used for this test is f ≤ 10−8 (indicated by a dashed

line on the graph).

A characteristic feature of the optimization methods used in this thesis is the mono-

tonic decrease of the value of the cost function with iterations. This is due to fact that

the algorithms only change the value of the variable, in this case τ , if doing so reduces

the cost function. This is called a simple decrease criterion [13].

Another advantage of seeing the progress made at each iteration of the algorithm is

being able to see when progress has stopped or is not significant. The term “stagnate”

is introduced and used whenever the algorithm continues to adjust parameters and to

48

Figure 4.4: Value of the cost function plotted with respect to the number of function

evaluations for the sample test case. The red dots mark the points where the cost function

reaches a specified tolerance: (A) 10−3, (B) 10−5 and (C) 10−7. The blue dot (D) marks

the point where the algorithm stagnates.

decrease δ while only making minimal progress on diminishing the cost function. An

algorithm will be said to have stagnated at an iteration when all iterations beyond it

do not affect the cost functions first three significant digits. On the convergence graph,

stagnation occurs when the graph becomes almost horizontal until the maximal number

of function evaluations is reached. Looking at figure 4.4 and the entire output of CS shows

that, in the sample test, CS stagnates at iteration 162, after 1297 function evaluations.

To have a better understanding of the impact of the function tolerance criterion

on the quality of the minimizer τfinal, tables 4.1 and 4.2 show the statistics of this

sample test for different tolerance values. Note that the points A, B and C in figure

4.4 correspond to the stopping points for the tolerances 10−3 (A), 10−5 (B) and 10−7

(C). For a function tolerance of 10−3, the Pi,final found are accurate to around 1-2%.

Lower function tolerances such as 10−5 lead to much better minimizers where Pi,final are

accurate to around 0.1-0.2%. A tolerance on the cost function of about 10−5-10−6 is thus

sufficient to get accurate values of τ and P for most test cases.

49

Table 4.1: Values of τfinal and Pfinal for various ftol

tolerance fevals τfinal Pfinal J(τfinal)

10−3 281 [0.405, 10.11, 101.78, 127.39] [8.788, 246.636, 48.826, 209.804] 9.26e−4

10−5 633 [0.401, 9.97, 99.82, 130.33] [8.692, 251.664, 48.658, 205.474] 7.79e−6

10−7 905 [0.401, 10.00, 99.99, 130.16] [8.686, 251.807, 48.739, 205.873] 8.88e−8

10−8 1500 [0.401, 10.00, 100.01, 130.17] [8.686, 251.831, 48.739, 205.920] 1.47e−8

Table 4.2: Errors on t∗ and P ∗ for various ftol
tolerance Difference | τ ∗ − τfinal | Difference | P ∗ − Pfinal | Difference | (P ∗ − Pfinal)/P ∗ | (%)

10−3 [0.005, 0.11, 1.78, 2.61] [0.103, 5.204, 0.092, 3.885] [1.19, 2.07, 0.19, 1.88]

10−5 [0.001, 0.03, 0.18, 0.33] [0.007, 0.176, 0.076, 0.445] [0.08, 0.07, 0.16, 0.22]

10−7 [0.001, 0.00, 0.01, 0.16] [0.001, 0.033, 0.005, 0.046] [0.012, 0.013, 0.010, 0.022]

10−8 [0.001, 0.00, 0.01, 0.17] [0.001, 0.009, 0.005, 0.001] [0.012, 0.004, 0.010, 0.000]

4.3 Contraction factor

The optimal choice of the contracting factor c is investigated. Preliminary tests were

conducted using Compass Search to find τ ∗ that minimizes (3.3) for P ∗i obtained from

the solution of (2.1)-(2.3) for chosen parameters and for some experimental P ∗i . The

initial direction-size is δ = 0.2 and the stopping criterion is f ≤ 10−4 or fevals ≥ 1000.

The values of the parameters for ode45 given in (4.1) are used. As discussed in section

4.1, these parameter values are not the best choice when evaluating the cost function.

However, for the purpose of exploring the effect of c, it was judged unnecessary to demand

a higher quality cost function. The idea is only to have a general sense of which values

of c give convergence of the CS method.

For test 1 (see table 4.3), the target durations P ∗ = [12.409, 208.555, 41.848, 243.092]

are obtained using parameters τ ∗ = [0.5, 8, 120, 145]. CS uses the initial guess τ0 =

[0.7, 6.5, 108, 160]. For test 2 (see table 4.4), the target durations P ∗ =

[12.125, 190.390, 36.323, 244.685] are obtained using parameters τ ∗ = [0.46, 6.6, 122, 145].

CS uses the initial guess τ0 = [0.3, 6, 140, 175]. For test 3 (see table 4.5), the target

durations are P ∗ = [8, 380, 65, 320] taken from table 4.8, so τ ∗ is unknown. The initial

guess is τ0 = [0.35, 9, 155, 210].

By looking at these three tables in conjunction with the output of CS, a few con-

clusions were made. In general, using larger values for c slows the algorithm down a

50

Table 4.3: Test 1
c fevals τfinal Pfinal J(τfinal)

0.95 1001 [0.507, 7.86, 120.08, 149.08] [12.336, 209.584, 41.605, 242.356] 1.016e−4

0.85 353 [0.508, 7.84, 121.12, 149.99] [12.398, 209.905, 41.597, 244.193] 9.928e−5

0.75 305 [0.509, 7.83, 120.98, 150.19] [12.438, 209.665, 41.568, 243.904] 9.002e−5

0.65 289 [0.507, 7.83, 120.82, 149.73] [12.395, 209.611, 41.553, 243.528] 7.997e−5

0.55 1001 [0.500, 7.55, 120.87, 152.89] [12.408, 210.122, 40.712, 243.029] 7.931e−4

0.45 1001 [0.501, 7.57, 120.90, 153.06] [12.409, 210.322, 40.783, 243.031] 7.199e−4

Table 4.4: Test 2
c fevals τfinal Pfinal J(τfinal)

0.95 1001 [0.463, 6.21, 123.01, 154.65] [12.152, 192.441, 35.383, 244.136] 7.961e−4

0.85 529 [0.462, 6.46, 122.45, 148.42] [12.142, 190.624, 35.977, 244.556] 9.462e−5

0.75 1001 [0.494, 6.19, 124.77, 163.32] [13.012, 190.792, 35.796, 244.665] 5.569e−3

0.65 1001 [0.495, 6.19, 124.79, 163.50] [13.012, 191.025, 35.820, 244.666] 5.556e−3

0.55 1001 [0.490, 6.14, 124.80, 164.11] [13.012, 191.643, 35.640, 244.659] 5.749e−3

0.45 1001 [0.497, 6.22, 124.79, 163.38] [13.012, 190.947, 35.933, 244.670] 5.477e−3

Table 4.5: Test 3
c fevals τfinal Pfinal J(τfinal)

0.95 1001 [0.377, 13.61, 152.48, 162.17] [8.035, 378.146, 65.694, 321.079] 1.684e−4

0.85 1001 [0.376, 13.60, 152.07, 162.48] [8.030, 379.099, 65.709, 320.207] 1.395e−4

0.75 289 [0.371, 13.56, 151.87, 162.02] [8.001, 379.611, 65.627, 319.710] 9.634e−5

0.65 1001 [0.387, 12.96, 152.05, 170.13] [7.969, 382.574, 63.893, 319.736] 3.521e−4

0.55 1001 [0.370, 13.16, 151.90, 164.93] [8.007, 381.351, 64.362, 319.823] 1.102e−4

0.45 113 [0.375, 13.24, 152.18, 164.94] [7.956, 380.578, 64.590, 320.442] 7.493e−5

51

bit. This is seen by comparing cases where the function tolerance criterion was met,

since smaller c values tended to make the algorithm reach the stopping criterion in fewer

function evaluations. For example, c values of 0.85, 0.75 and 0.65 each enabled CS to

reach the tolerance in test 1, with CS using c = 0.65 requiring the smallest number of

function evaluations.

The cases where the algorithm failed to reach the tolerance in the allotted maximal

number of function evaluations also reveal a trend. A closer look at the progress made

at each iteration revealed that once again, in most cases, smaller c values tended to

enable faster progress even though the algorithm would eventually stagnate short of the

tolerance criterion. For test 1 in table 4.3, the algorithm did not stagnate for c = 0.95,

as progress was still being made when the maximum number of evaluations was reached.

The algorithm did stagnate for c = 0.55 and c = 0.45, stagnating after 329 evaluations

and 345 evaluations respectively. For test 2 in table 4.4, the algorithm using c values of

0.95, 0.75, 0.65, 0.55 and 0.45 stagnated after 937, 561, 337, 353 and 425 evaluations,

respectively. The convergence graph of test 2 in figure 4.5 shows a comparison of the

progress of CS for each value of c.

While smaller c values enabled faster initial progress, larger c values showed more

reliability in reaching the function tolerance criterion, which is indicative of the ability

of the algorithm to find the best minimizer possible. When using c = 0.95, CS did not

stagnate in the first and third tests, perhaps only needing more evaluations to reach the

goal, and stagnated close to the goal in test 2. In particular, c = 0.85 showed promising

results, with CS reaching the tolerance in two test cases and falling just short in the

third (J(τfinal) = 0.0001395 instead of 0.0001).

Keeping in mind that a choice is made between speed and reliability, the value c = 0.85

is chosen as the default when testing Compass Search, Hybrid Compass Search and

Golden Compass Search. Front-track Compass Search uses a different c value for reasons

already explained in section 3.2.4.

4.4 Comparison of the optimization methods

The four methods presented in section 3.2 were applied to problem (3.3). For all results

presented in this section, the methods use the following values: For Compass Search,

Golden Compass Search and Hybrid Compass Search, the initial direction-size is δ = 0.2

and the contraction factor is c = 0.85 and for Front-track Compass Search, δ = 0.02,

52

Figure 4.5: Value of the cost function plotted with respect to the number of function

evaluations for test 2 with different c values: 0.95 in blue, 0.85 in red, 0.75 in green, 0.65

in black, 0.55 in cyan and 0.45 in magenta.

c = 0.25 and w = 1.25. Different test cases, where P ∗ were found using chosen τ ∗, were

used to verify how well the methods perform. Since the global minimizer is known for

these test cases, performance is more easily evaluated.

The first test case results are shown in table 4.6. Here, the target phase durations are

P ∗ = [6.892, 251.283, 34.313, 270.427], obtained from parameters τ ∗ = [0.3, 6, 130, 150].

The initial guess is τ0 = [0.27, 5.8, 127, 140]. The stopping criterion is f ≤ 10−6 or

fevals ≥ 1000.

Table 4.6: Comparison of four methods: Test case 1
Method Stagnation fevals τfinal Pfinal J(τfinal)

CS None 577 [0.2998, 6.003, 129.903, 149.931] [6.893, 251.357, 34.320, 270.248] 5.747e−7

GCS None 493 [0.3003, 5.989, 130.030, 150.311] [6.895, 251.327, 34.284, 270.420] 8.668e−7

HCS None 421 [0.3003, 5.995, 129.964, 150.179] [6.895, 251.581, 34.305, 270.303] 4.043e−7

FCS None 148 [0.3003, 5.992, 130.025, 150.189] [6.897, 251.239, 34.591, 270.428] 7.846e−7

The second test case results are shown in table 4.7. Here, the target phase durations

are P ∗ = [8.685, 251.840, 48.734, 205.919], obtained from parameters τ ∗ = [0.4, 10, 100, 130].

The initial guess is τ0 = [0.3, 6, 130, 150]. The stopping criterion is f ≤ 10−8 or

53

fevals ≥ 1500.

Table 4.7: Comparison of four methods: Test case 2
Method Stagnation fevals τfinal Pfinal J(τfinal)

CS After 1297 1505 [0.4009, 9.999, 100.012, 130.166] [8.686, 251.831, 48.739, 205.920] 1.472e−8

GCS None 1116 [0.4012, 9.994, 100.016, 130.256] [8.686, 251.845, 48.730, 205.919] 9.381e−9

HCS None 831 [0.4012, 9.997, 100.017, 130.215] [8.685, 251.824, 48.737, 205.923] 8.339e−9

FCS After 579 1505 [0.4013, 9.993, 100.017, 130.277] [8.685, 251.850, 48.729, 205.918] 1.497e−8

Test case 1 shows that each method was able to meet the function tolerance stopping

criterion, so each method was successful in finding a suitable minimizer. Comparing the

τfinal found by the algorithms to the actual τ ∗ confirms this, the maximal relative error

on the τ ∗i for any τfinal being 0.21%. Also, the maximal relative error on the P ∗i for any

Pfinal is 0.82%. Looking at the number of function evaluations needed reveals that FCS

performed the best, followed by HCS, then GCS and finally CS.

Test case 2 had an initial guess that was not as good as the one in test case 1 and also

demanded higher accuracy on J(τ), so it was expected that more function evaluations

would be required. GCS and HCS were successful in meeting the tolerance while CS and

FCS stagnated not too far from reaching the required tolerance. The maximal relative

error on the τ ∗i for any τfinal is 0.33% while the maximal relative error on the P ∗i for any

Pfinal is 0.012%. For comparison’s sake, considering that CS and FCS did almost reach

the tolerance, the same performance ranking can be observed where FCS performed best

while CS was the worst (if the stagnation point is considered to be the stopping point).

One could also argue that HCS did better than FCS in the sense that a better minimizer

was found, so it is understood that for this test, FCS and HCS are very close in terms

of performance.

The four methods were also used to identify parameters that would match the ex-

perimental phase durations of the AP for different cardiac cells (see table 4.8). In these

cases, the global minimizer τ ∗ is not known.

Table 4.8: Experimental durations (ms)

Tissues P ∗1 P ∗2 P ∗3 P ∗4
Left ventricle (LV) 8 250 30 260

Purkinje fibers (PF) 8 380 65 320

Right atria (RA) 4− 5 100 20 250

54

Table 4.9 shows the results of the four methods applied to matching P ∗ for a LV

cell. The initial guess is τ0 = [0.3, 6, 130, 140] and the stopping criterion is f ≤ 10−6 or

fevals ≥ 500. CS and HCS both successfully found a minimizer satisfying the function

tolerance, but HCS required the smallest number of function evaluations. GCS failed

to meet the function tolerance before reaching the maximum number of evaluations,

but did not show signs of stagnation. Perhaps a higher number of function evaluations

would permit GCS to find a suitable minimizer. FCS made its significant progress in 356

evaluations, which would have been quicker than HCS if FCS would not have stagnated.

Still, FCS stagnated roughly at one order of magnitude above the tolerance and looking

at the resulting Pfinal shows that it was still close to matching P ∗ (the largest relative

error for any of the Pi,final is ≈ 0.28%). For all methods, the maximal relative error on

the P ∗i for any Pfinal is 0.6%.

Table 4.9: Comparison of four methods: LV
Method Stagnation fevals τfinal Pfinal J(τfinal)

CS None 481 [0.3118, 4.606, 129.529, 185.740] [7.998, 249.823, 30.001, 260.158] 9.169e−7

GCS None 507 [0.3130, 4.656, 129.106, 184.455] [8.003, 249.500, 30.178, 259.566] 4.198e−5

HCS None 405 [0.3118, 4.607, 129.544, 185.745] [8.003, 249.867, 30.005, 260.198] 9.962e−7

FCS After 356 503 [0.3106, 4.584, 129.472, 186.173] [7.998, 250.171, 29.917, 259.997] 8.108e−6

Table 4.10 shows the results of the four methods applied to matching P ∗ for a PF

cell. The initial guess is τ0 = [0.35, 9, 155, 210] and the stopping criterion is f ≤ 10−6 or

fevals ≥ 500. HCS and FCS both succeeded in finding a suitable minimizer, but FCS

was roughly twice as fast, needing 269 fewer function evaluations. CS and GCS failed,

but, with no stagnation, it is possible a bit more function evaluations were required. CS

performed a bit better than GCS, yielding a final cost function value that is roughly 3

times smaller. For all methods, the maximal relative error on the P ∗i for any Pfinal is

0.28%.

Table 4.10: Comparison of four methods: PF
Method Stagnation fevals τfinal Pfinal J(τfinal)

CS None 505 [0.3819, 13.345, 152.295, 165.244] [7.999, 379.413, 64.941, 320.513] 5.787e−6

GCS None 501 [0.3813, 13.306, 151.778, 166.100] [7.990, 381.039, 64.892, 319.360] 1.592e−5

HCS None 501 [0.3814, 13.354, 151.992, 165.337] [7.996, 379.982, 65.003, 319.830] 5.213e−7

FCS None 232 [0.3806, 13.346, 152.090, 165.350] [7.998, 380.230, 64.978, 320.072] 6.173e−7

Table 4.11 shows the results of the four methods applied to matching P ∗ for a RA

55

cell. The initial guess is τ = [0.15, 5, 75, 120] and the stopping criterion is f ≤ 10−5 or

fevals ≥ 1000. Each method succeeded, but FCS was the fastest, followed by HCS,

then GCS and finally CS. Compared to the LV and PF cases, the RA case tolerance

criterion was less demanding and the maximal number of evaluations was larger. This is

because P ∗ has notably smaller values, so that an error of the same magnitude increases

the value of J(τ) more than in the previous two cases. Nevertheless, looking at the Pfinal

values shows that the methods matched P ∗ well (a maximal relative error of 0.25%). The

increased amount of available function evaluations compared to the LV and PF tests was

chosen to observe if CS and GCS could find suitable minimizers given enough function

evaluations.

Table 4.11: Comparison of four methods: RA
Method Stagnation fevals τfinal Pfinal J(τfinal)

CS None 593 [0.1822, 4.214, 117.001, 54.003] [4.001, 100.119, 19.988, 250.479] 5.593e−6

GCS None 549 [0.1825, 4.239, 116.698, 53.757] [3.993, 99.935, 20.049, 249.890] 9.281e−6

HCS None 340 [0.1820, 4.227, 116.571, 53.827] [3.999, 100.022, 20.016, 249.603] 3.341e−6

FCS None 268 [0.1822, 4.237, 116.967, 53.710] [3.998, 99.901, 20.039, 250.499] 9.049e−6

Based on the results of the five test cases presented as well as numerous other tests,

whose results are omitted to avoid redundancy, the following observations are made:

• Given enough functions evaluations, each of the four methods is capable of identi-

fying a set a parameters yielding phase durations that match experimental phase

durations P ∗ within a prescribed tolerance (< 1% relative error on each P ∗i is

expected).

• FCS is most often the fastest of the four methods, requiring considerably less

function evaluations to reach a certain function tolerance. However, FCS stagnates

short of the goal in a few test cases where other methods do not.

• HCS is almost always successful in meeting the function tolerance criterion and

very rarely stagnates. It is also most often the second fastest method after FCS.

• GCS does not perform consistently. It is sometimes successful where other methods

are not while other times it performs worse than every other method. Compared

to HCS and FCS, GCS often requires considerably more function evaluations to

reach a certain tolerance.

56

• CS is more consistent than GCS, often being able to reach a function tolerance,

but also requiring many function evaluations to do so. CS is reliable albeit slow.

These observations lead to this conclusion: in most cases, FCS is the best method,

followed by HCS in second place and GCS and CS are considered to be very close in

terms of performance. This ranking of the methods is considered when moving on to

different problems such as problem (3.5). FCS is the method of choice to be used first

when confronting a new problem with HCS being the backup method should FCS yield

unsatisfactory results.

Finally, it is worth noting that, while inspired by CS and generating set searches as

described in [13], the three variations GCS, HCS and FCS are an original contribution

and represent in most cases a significant improvement over CS.

Chapter 5

Results for Problem II

The Front-track Compass Search optimization method is used to identify parameters for

which the MS model matches experimentally recorded APs. Section 5.1 details how the

data is recorded as well as how the data and the trans-membrane potential given by the

model are reformatted to be used in the cost function (3.5). In section 5.2, the method

is verified by using the MS model to generate target data in various numerical tests. In

section 5.3, the experimental datasets acquired as explained in section 5.1 are matched

individually while in section 5.4, they are matched simultaneously using either three or

six different pacing frequencies at a time.

5.1 Data acquisition and preparation

Problem (3.5) requires experimental data showing the entire AP of a cardiac cell. For

the results presented in this section, the experimental data used were recorded at the

Sunnybrook Research Institute. The following description on how data is recorded is

provided by Mihaela Pop, with more details available in [25]. AP waves are recorded us-

ing voltage-based optical fluorescence imaging. The fluorescence dye (di4-ANEPPS) and

uncoupler to block contraction (2,3 BDM) are injected into the coronary circulation of a

healthy explanted swine heart perfused by a Langendorff system. The optical dye is ex-

cited with green light (∼530nm) while the emitted epicardial signals is filtered (>610nm)

and captured by a high-speed CCD camera (MICAM02, BrainVision Inc. Japan) at 256

frames/second (Figure 5.1). The field of view is 184×124 pixels (12×10cm), yielding an

∼0.7mm spatial resolution. Several different stimulation frequencies are used to study

the restitution properties. The relative change in fluorescence signal intensity (∆F/F)

57

58

Figure 5.1: a) Snapshot of the optical experiment to record epicardial AP wave prop-

agation using a fast CCD camera (C), where the pig heart (H) was stimulated via an

electrode (E). (b) Examples of waves recorded at one pixel in the heart without the un-

coupler (top) as well as after the uncoupler (bottom) was injected. Note that the inverse

of the relative loss of fluorescence signal ∆F/F (arbitrary units) gives the AP. The waves

were displayed with BV-Ana software (BrainVision, Japan).

recorded at each pixel, gives directly the AP waves. For model fitting, the AP waves

recorded at one pixel selected from an area in the left ventricle (LV) where tissue was

homogeneously illuminated, and also both fluorescence signal and tissue perfusion were

homogeneous are used.

Once the AP waves are recorded, a set of points (tl,
∆Fl

Fl
), tl ∈ [0, T], for each stimulat-

ing frequency is saved. These sets of points, denoted (tl, ûi(tl)), are the raw experimental

data that are used to define the ũi(t) for the cost function (3.5). However, a normalization

process must be applied to the data before matching the model.

Firstly, as mentioned in the caption of figure 5.1, the inverse of ∆F
F

gives the AP, so

the first operation done on the raw data is to “invert” it by doing

ûi(tl)← max
l

(ûi(tl))−min
l

(ûi(tl))− ûi(tl).

Secondly, the model gives values ui(t) ∈ [0, 1], so the data must be normalized to be

in that same range. Figure 5.2 shows that the raw data is not. In order to normalize

the data, the “average” extrema must be calculated. The average values are considered,

since taking the absolute minimum or maximum of a set of noisy values would not make

sense when trying to normalize for this problem. The average minimum amin is found

59

Figure 5.2: Inverted raw data

by taking the average of the values during a single recovery phase. Since the data is very

noisy, automatically determining which values are to be considered to be in the recovery

phase presents some challenges, so this is done manually. A representative recovery phase

is identified by looking at the graphed, raw data (figure 5.2) and noting the approximate

times at which the recovery phase starts and ends. A similar logic is used when finding

the average maximum amax. The maximum is taken manually to be approximately the

value at which each action potential peaks. Once the average extrema are found, the

data is normalized by doing

ûi(tl)←
ûi(tl)− amin
amax− amin

.

Lastly, it is convenient for the data to start with an upstroke, so the first part of

most of the data sets is ignored (data acquisition does not always start in sync with the

stimulation, it can start mid AP as in figure 5.2). To do so, the time t∗i when the first

complete AP of a dataset starts is identified manually and the data is shifted by doing

ũi(tl)← ûi(tl − t∗i).

These three transformations (inversion, normalization and shifting) take the raw data

ûi and convert it into data ũi that can be matched with the model using problem (3.5).

However, one last operation must be done in order to be able to adequately compare

ũi with ui. The trans-membrane potential ui(t, τ) obtained by solving the model peaks

at values that are less than 1. As explained in section 2.2.1, these peak values depend

60

on the parameters τ as well as the stimulating frequency. Since the values of τ change

throughout the optimization process, these peak values change as well. The scaling factor

si scales ũi so the experimental trans-membrane potential peaks at values different than

1. Leaving si as a control variable permits the optimization algorithms to adjust si with

τ to account for the changes in peak values.

There is also a transformation to be done on ui(t, τ). As explained in section 2.2.1,

when considering multiple stimulations, the first few AP differ from the following ones.

There is a transitory period before the solution stabilizes into a stable periodic response.

The data is not always recorded from the start of the stimulations, so it may happen

that the first recorded AP did not start from rest. Hence, to better match the data ũi,

the following is done to disregard the first five AP of ui(t, τ):

ui(t, τ)← ui(t− 5 ·BCLi, τ),

where BCLi is the basic cycle length chosen to match the stimulation pattern of ũi. More

than five APs could have been disregarded in order to leave more time for the solution to

stabilize, but five is deemed a sufficient amount of transitory APs and some computation

time is saved.

Once the data and solution of the model are reformatted, they can be used to evaluate

J(τ, S), which involves terms of the form
∫ T ∗i

0
| ui(t, τ)−siũi(t) |2 dt and

∫ T ∗i
0
| siũi(t) |2 dt.

Note that the upper bound on time is now T ∗i = Ti − t∗i since the data is shortened via

a shifting by t∗i . Since both ũi and ui are only defined for certain discrete times, which

may not coincide, evaluating these integral terms exactly is not possible. To approximate

these terms, it is first necessary to have times at which the values of both ũi and ui are

known. Denoting the times where the value of ũi is known by t̃l, l = 1, 2, . . . , ki, t̃1 = 0,

t̃ki = T ∗i , the values ui(t̃l, τ) are required. To obtain these, the cubic spline of ui(t, τ)

is found as explained in section 2.3.3, using the points (tj, ui(tj, τ)) from the numerical

solution of the model as knots of the spline. The spline is then evaluated at the times

t̃l to find ui(t̃l, τ). Finally, the following approximations of the integrals are done, using

the fact that each t̃l is evenly spaced:∫ T ∗i

0

| ui(t, τ)− siũi(t) |2 dt ≈
T ∗i
ki

ki∑
l=1

(ui(t̃l, τ)− siũi(t̃l))2,

∫ T ∗i

0

| siũi(t) |2 dt ≈
T ∗i
ki

ki∑
l=1

(siũi(t̃l))
2.

61

If the t̃l were not evenly spaced, there would be a term inside the sums to account for

the length of each interval [t̃l, t̃l+1].

5.2 Verification fittings

As in chapter 4, a few remarks are in order. Once again, the ode45 parameters given

in (4.2) are used for all test in this chapter. Since multiple beats are the target of

the optimization problem, Istim stimulates the cell periodically, using a BCL that is

dependent on the target data. The value v∗ of v at the time of stimulation is used when

calculating A in equation (2.9), as opposed to a fixed value of v∗ as in chapter 4. Also,

β = 0.25 and ∆t = 2 ms are used for A and Istim in equations (2.9) and (2.10).

The Front-track Compass Search (FCS) method is used to solve the optimization

problem (3.5) and is implemented the same way as in section 4.4 (δ = 0.02, c = 0.25 and

w = 1.25).

Some tests were conducted to verify if using FCS to solve problem (3.5)) is a process

capable of identifying parameters that fit multiple APs. For these tests, three consecutive

APs obtained by the MS model with given target parameters are used as the “experi-

mental data”. FCS is then fitting the model to itself, hence a perfect match is expected.

At first, a single “dataset” is considered (i.e. N = 1 in (3.5)). The first tests results are

shown in table 5.1. The target APs are obtained by solving the model with parameters

τ ∗ = [0.3, 6, 130, 150], a first test case using BCL = 600 ms for Istim and a second test

case using BCL = 900 ms. This target “dataset” is reformatted in a similar way as the

ui(t, τ) is; the first five APs are discarded, so the target APs are actually the 6th, 7th

and 8th AP. Also, it follows that the optimal scaling factor is S = 1. The initial guess is

[τ0, S0] = [0.4, 8, 100, 120, 1.1] for the 600 ms case and it is [τ0, S0] = [0.4, 8, 100, 120, 0.9]

for the 900 ms case. Note that only the scaling factors differ in these initial guesses. The

stopping criterion is first set to fevals ≥ 500 and then it set to fevals ≥ 2000.

Table 5.1: Verification of method: single BCL

Target BCL (ms) fevals τfinal Sfinal J(τfinal, Sfinal)

600 502 [0.346, 6.34, 91.30, 152.10] 0.993 1.868e− 4

900 509 [0.358, 6.56, 80.84, 155.91] 0.990 3.931e− 4

600 2002 [0.327, 5.95, 86.20, 154.34] 0.996 1.010e− 6

900 2008 [0.329, 5.95, 76.83, 159.11] 0.991 4.99e− 6

62

The small value of the cost function and the quasi-superposed graphs of the target

and the matched trans-membrane potentials (not shown) reveal that the fitting of the

potential was successful in both cases. After 500 function evaluations, there is only

a very small discrepancy seen between the target and the model potentials and after

2000 function evaluations, there is virtually no difference. However, it is worth noting

that after 500 evaluations, while the fit is good in both cases, the two τfinal differ a bit

from each other and differ a great amount from τ ∗, especially in τopen. As mentioned

in chapter 2, this parameter controls the evolution of the recovery variable v so it also

affects the restitution properties during the recovery phase. Letting FCS do 2000 function

evaluations instead of 500 did not remedy the problem. Keeping in mind that the goal

of the parameter identification is to find a single set of parameters that fits multiple

datasets, it is desirable for the two τfinal to be as close to τ ∗ as possible. This warrants

the inclusion of more than one “dataset” in the cost function (i.e. N ≥ 2), so that FCS

finds τfinal that fit both (or more) datasets.

Table 5.2 shows the result of tests where both sets of APs, obtained from the so-

lution of the model with τ ∗ = [0.3, 6, 130, 150] using BCL = 600 ms and BCL =

900 ms, are included in the cost function (N = 2). The initial guess is [τ0, S0] =

[0.4, 8, 100, 120, 1.1, 0.9]. The stopping criterion is fevals ≥ 500 in the first case and

fevals ≥ 2000 in the second.

Table 5.2: Verification of method: multiple BCL

Target BCL (ms) fevals τfinal Sfinal J(τfinal, Sfinal)

600− 900 507 [0.327, 6.54, 118.57, 147.43] [0.998, 0.990] 6.751e− 4

600− 900 2010 [0.301, 6.01, 129.74, 150.07] [1.000, 1.000] 1.097e− 7

Comparing the results in table 5.1 and table 5.2 shows that the multiple BCL fitting

gives τfinal closer to τ ∗ after 500 function evaluations and τfinal almost exact after 2000

function evaluations (a maximal relative error of 0.34%). The Sfinal are also correct.

To compare the value of the cost function from single BCL fittings to the value of the

cost function for multiple BCL fittings, one can simply divide J(τfinal, Sfinal) by N . It

is thus seen that the fits are of similar quality after 500 evaluations when using a single

BCL (J = 3.931e−4 for 900 ms case) and multiple BCL (J
2

= 3.376e−4 for 600 ms−900

ms case). However, the fit is of significantly better quality after 2000 evaluations when

using multiple BCL (J
2

= 5.485e− 8 for 600 ms−900 ms case) rather than a single BCL

(J = 1.01e− 6 for 600 ms case).

63

The verification fittings give satisfying results in the sense that the potential is very

well fitted. However, the results suggest the need for multiple datasets to be included

in the cost function if one hopes to find the right and unique τfinal matching data at

different frequencies. Including multiple frequencies gives more information on the target

restitution properties and thus better dictates the target value for τopen, which is the main

parameter controlling recovery.

5.3 Single data fittings

For this thesis, six different potential recordings, acquired as explained in section 5.1,

are considered. The datasets, labeled with numbers 1 through 6, are recordings from

the same explanted swine heart stimulated at various frequencies. Table 5.3 shows the

properties of each dataset.

Table 5.3: Properties of the six datasets

Dataset Heart rate (bpm/Hz) BCL (ms) Length of dataset T ∗i (ms)

2 59.17/0.99 1014 2534.5

1 62.37/1.04 962 2911.9

3 72.29/1.20 830 3215.3

4 74.81/1.25 802 3108

5 104.35/1.74 575 3082.1

6 145.63/2.43, 157.48/2.62 412, 381 3263.4

Dataset 6 has two different BCLs because of its observed stimulation pattern: The

BCLs alternate between longer (412 ms) and shorter (381 ms) ones. When fitting the

model to this dataset, Istim is adjusted to take this alternation into account. The reason

for this alternation is unknown, but it is suspected that the increased stimulation fre-

quency causes delays in the electric wave propagation to the left ventricle as described in

chapter 1. The response of each individual cell is delayed due to the fact that it has not

had time to recover entirely from the previous stimulation, so a sort of chain reaction

from the pacing site to the actual recording site causes an alternation (large 31 ms gap)

in the activation of the observed cell. This phenomenon is akin to the 2-2 behaviour that

the MS model exhibits at high stimulating frequencies, but on the organ level instead of

the cellular level.

64

Similarly to the verification process in section 5.2, the datasets are first fitted indi-

vidually. In each case, one dataset is chosen to be the target data for the cost function

(3.5) with N = 1. Table 5.4 shows the results of these fittings. The initial guess varies

from dataset to dataset, a result of each case having its own tailored initial guess. The

initial guesses are chosen according to results of preliminary tests, which are not shown.

The stopping criterion varies from fevals ≥ 500 to fevals ≥ 1000.

Table 5.4: Single dataset fittings
Dataset fevals [τ0, S0] τfinal Sfinal J(τfinal, Sfinal)

2 1001 [0.3, 6, 130, 150, 0.95] [0.358, 9.24, 153.98, 177.95] 0.96779 8.62e− 3

1 509 [0.5, 9, 200, 200, 0.90] [0.595, 10.83, 211.39, 198.44] 0.91763 8.06e− 3

3 1002 [0.7, 8, 300, 300, 0.91] [0.632, 6.51, 287.48, 325.83] 0.85545 1.20e− 2

4 1004 [0.55, 7, 215, 190, 0.87] [0.448, 5.31, 207.84, 202.22] 0.87435 2.05e− 2

5 804 [0.6, 9, 80, 180, 0.89] [0.584, 8.86, 81.41, 168.39] 0.91417 6.52e− 3

6 1010 [0.7, 4, 120, 300, 0.85] [0.700, 7.61, 48.16, 207.68] 0.86944 8.65e− 3

It is expected that the value of J be higher for the fitting of experimental data

compared to the value of J when fitting the model to itself for two reasons. The first

reason is that the data is very noisy (see figure 5.2 for an example). The model cannot

reproduce this noisy behaviour, so the measured potential and the potential given by the

model will always somewhat differ. The second reason to expect a larger J value is that

there is a possibility that the model is simply unable to match a particular dataset. There

might be an issue where the behaviour of the dataset is fundamentally different from the

behaviour of the potential given by the model. The fitting process is thus adjusting τ

and S so that the discrepancy between the data and the trans-membrane potential is

minimized, but it is impossible for J to eventually reach 0.

The results in table 5.4 show that the fitting of dataset 5 is the best, followed closely

by those of datasets 1 and 2, while the fits of datasets 3 and 4 are less successful. To

illustrate the quality of fit for a smaller J value compared to a larger one, figure 5.3

shows the results of fitting dataset 5 and dataset 4, respectively.

Even in the worst case (dataset 4), the fit is still good. A few areas are less well fitted

for this case, such as the plateau phases of the first and third APs as well as the last two

recovery phases. For dataset 5, there is no specific area that is a source of discrepancy.

In cases where the initial guess is “bad”, such as for the fittings of datasets 2 and

6, FCS reduces the value of J a great amount. For dataset 2, J(τ0, S0) = 0.177 and

65

Figure 5.3: Results of fitting datasets individually. Top: reformatted dataset 5 (blue) and

solution of the MS model with τ found by FCS stimulated at BCL = 575 ms (orange).

Bottom: reformatted dataset 4 (blue) and solution of the MS model with τ found by

FCS stimulated at BCL = 802 ms (orange)

J(τfinal, Sfinal) = 0.00862. FCS thus reduces J by a factor of roughly 20. For dataset

6, J(τ0, S0) = 0.404 and J(τfinal, Sfinal) = 0.00865. FCS thus reduces J by a factor of

roughly 47. Hence, the optimization method seems to perform well even with relatively

bad initial guesses.

On the other hand, in cases where the initial guess is better, such as for the fitting of

datasets 1 and 5, FCS still manages to reduce J enough to get a great fit. For dataset

1, J(τ0, S0) = 0.0141 and J(τfinal, Sfinal) = 0.00806. FCS thus reduces J by a factor of

roughly 1.75. For dataset 5, J(τ0, S0) = 0.0145 and J(τfinal, Sfinal) = 0.00652. FCS thus

reduces J by a factor of roughly 2.2. These factors seem small compared to the those

for datasets 2 and 6, but the initial guesses were already very good, so there was less

progress to be made. Still, FCS manages to find parameters that fit the data as well or

in a better way than for the cases where the reduction factor is large.

One last remark is that the τfinal vary immensely from dataset to dataset. As men-

tioned before, it is desirable to find a single τ that fits all datasets, which is not the case

for these τfinal. Fitting a single dataset is not enough to guarantee that the model will

fit other datasets with different frequencies. To illustrate this fact, figure 5.4 compares

66

Figure 5.4: Reformatted dataset 5 (blue) and solution of MS model with τfinal fitted

with dataset 2 (orange).

dataset 5 to the solution of the model stimulated using the BCL = 575, but using τfinal

that match dataset 2. S = 0.945 is manually chosen to better match the peaks of the

data and the solution of the model, since Sfinal = 0.968 is the scaling factor for dataset

2, not 5. Clearly, this τfinal does not yield a potential that fits dataset 5. The next step,

as in the verification process, is then to fit multiple datasets at once.

5.4 Multiple data fittings

For the next fittings, the cost function (3.5) includes N = 3 chosen datasets ordered

from largest to smallest BCL. Table 5.5 shows results for five such fittings. Again, the

initial guess varies from case to case as it is chosen based on the τfinal in table 5.4.

For example, for the fitting of datasets 2-1-3, τin,0 = 0.5 is chosen since τin,final varied

between 0.358 and 0.632 for the fittings of 2, 1 and 3 individually. The stopping criterion

is fevals ≥ 1000.

The values of J(τfinal, Sfinal) show that the fitting of datasets 2-1-3 is the best, being

slightly better than the 4-5-6, 2-1-6 and 1-3-6 cases, and the fitting of 2-4-5 is the worst,

having a J value more than twice as large as any other case.

As before, to compare multiple dataset fitting with single dataset ones, J(τfinal, Sfinal)

can be divided by N = 3. For the 2-1-3 case, J
3

= 0.0174, which is a similar value as for

the worst single dataset fitting. Another comparison is to add up the three J(τfinal, Sfinal)

67

Table 5.5: Triple dataset fittings
Datasets [τ0, S0] τfinal Sfinal J(τfinal, Sfinal)

2− 1− 3 [0.5, 9, 200, 200, 0.95, 0.90, 0.85] [0.500, 9.36, 538.54, 244.59] [0.890, 0.913, 0.923] 5.23e− 2

4− 5− 6 [0.6, 5, 90, 250, 0.86, 0.84, 0.83] [0.651, 6.32, 53.66, 245.33] [0.877, 0.857, 0.872] 6.09e− 2

2− 4− 5 [0.4, 7, 120, 150, 0.92, 0.89, 0.86] [0.405, 8.04, 612.26, 239.70] [0.889, 1.068, 0.834] 1.68e− 1

2− 1− 6 [0.5, 8, 150, 200, 0.92, 0.89, 0.86] [0.535, 9.06, 251.15, 224.97] [0.906, 0.936, 0.822] 7.02e− 2

1− 3− 6 [0.65, 8, 170, 200, 0.89, 0.88, 0.86] [0.621, 9.04, 183.05, 219.20] [0.884, 0.927, 0.827] 7.72e− 2

for the fittings of 2, 1 and 3 individually, which gives 0.0287 (roughly half of J = 0.0523

for case 2-1-3). For the 2-4-5 case, J
3

= 0.056, which is much worse than any of the single

dataset fittings. Adding up the three J values for the individual fittings of 2, 4 and 5

gives 0.0356 (roughly one sixth of J = 0.168 for case 2-4-5).

As expected, fitting multiple datasets at once is more challenging, with fittings being

roughly 2 to 6 times worse statistically. Figures 5.5 and 5.6 illustrate the quality of the

fits graphically for the best (2-1-3) and average (2-1-6) multiple data fittings. These two

cases share two datasets (2 and 1). Comparing the top and middle graphs of figures 5.5

and 5.6 shows that datasets 2 and 1 are as well fitted in case 2-1-3 as in case 2-1-6. The

difference in the values of J for these two cases seems to come from the difference in

fit of the third dataset (dataset 3 in one case and dataset 6 in the other). Graphically,

it is observable that dataset 3 is better fitted than dataset 6, especially since the fit of

dataset 6 deteriorates after the first few APs. This highlights a trend for the five fittings

considered in table 5.5: cases where the range of the BCLs is smaller (2-1-3 and 4-5-6)

lead to better fits than cases where the BCLs vary more (2-4-5, 2-1-6 and 1-3-6).

The next tests attempt to fit all six datasets simultaneously (N = 6 in (3.5)). Table

5.6 shows the results for 3 such tests. The initial guess varies from test to test in an at-

tempt to obtain better results ([τ0, S0] = [0.5, 8, 200, 225, 0.89, 0.91, 0.92, 0.90, 0.85, 0.84]

for the first and third test, and [τ0, S0] = [0.3, 6, 130, 150, 0.93, 0.92, 0.91, 0.89, 0.86, 0.84]

for the second). The first two tests are done with FCS while the third is done with HCS

(using search parameters δ = 0.2 and c = 0.85 as in section 4.4). The stopping criterion

is fevals ≥ 2000.

Once again, the results in table 5.6 are compared to previous tests. For the first fit

with FCS, J(τfinal, Sfinal) = 0.273, so J
6

= 0.0455 which is a value similar to the value
J
3

for the worst of the triple data fittings. Simply put, the fit is not very good. With

similar J values, the two other test did not fare much better, i.e. changing the initial

68

Figure 5.5: Results of fitting datasets 2-1-3. Top: reformatted dataset 2 (blue). Middle:

reformatted dataset 1 (blue). Bottom: reformatted dataset 3 (blue). All: solution of the

MS model with τ found by FCS (orange)

Figure 5.6: Results of fitting datasets 2-1-6. Top: reformatted dataset 2 (blue). Middle:

reformatted dataset 1 (blue). Bottom: reformatted dataset 6 (blue). All: solution of the

MS model with τ found by FCS, stimulated at corresponding BCL (orange)

69

Table 5.6: Fittings of all six datasets
Method τfinal Sfinal J(τfinal, Sfinal)

FCS [0.500, 8.45, 298.79, 215.05] [0.884, 0.905, 0.932, 1.101, 0.893, 0.796] 0.273

FCS [0.239, 7.54, 392.88, 156.96] [0.935, 0.957, 0.980, 1.156, 0.963, 0.872] 0.289

HCS [0.528, 8.385, 288.02, 223.54] [0.879, 0.899, 0.926, 1.093, 0.886, 0.793] 0.273

guess or changing the optimization method does not help much.

Figure 5.7 show the fits of all six datasets for the third test of table 5.6. The fit

looks good for datasets 1, 3 and 5, with only small discrepancies being openly visible.

The fit is average for dataset 2 (the repolarization phases are shorter for the model than

for the data). The fit for dataset 6 is a bit worse, with several mismatches between

the plateau and repolarization phases being visible. Finally, the fit of dataset 4 is very

bad. A closer investigation of each of the Ji(τfinal, si,final) for each of the datasets reveals

that J1 = 0.0381, J2 = 0.0195, J3 = 0.0191, J4 = 0.141, J5 = 0.0076 and J6 = 0.0483.

Comparing these Ji to the results in table 5.4 confirms the above assessment of the

quality of the fits. It is also noticeable that J4 is contributing more than half of the total

J , so the poor performance of the algorithm can be mostly explained by the bad fit of

dataset 4.

One might suggest decreasing the scaling factor s4 as a way of improving the fit,

since figure 5.7 clearly shows that the data peaks much higher than the trans-membrane

potential. While this modification would yield a better match in terms of peak potential,

the discrepancy between the data and the model would increase for the plateau and

repolarization phases because the potential given by the model would start decreasing

far later than the data. It must be trusted that the s4 found by HCS is the best choice

of scaling factor for the τfinal.

As with the single data fittings, it is investigated whether using τfinal obtained for

some datasets yields a good fit for different datasets. Table 5.7 shows the values of the

cost function for all six datasets when using (τfinal, Sfinal) obtained for triple dataset

fittings. For example, the first row shows the value of J for all six datasets using the

τfinal from the source case, fitting 2-1-3 (the missing three scaling factors s4, s5, and s6

are chosen manually to best match the peaks of the APs). The manually chosen scaling

factors are in bold.

70

Figure 5.7: Results of fitting datasets 2-1-3-4-5-6. Top to bottom: reformatted datasets

2, 1, 3, 4, 5 and 6, respectively (blue). All: solution of the MS model with τ found by

HCS, stimulated at corresponding BCL (orange)

71

Table 5.7: Fit values of all six datasets using parameters obtained for three datasets
Source case τ S J(τ, S)

2-1-3 [0.500, 9.36, 538.54, 244.59] [0.890, 0.913, 0.923,0.890,0.857,0.800] 0.344

4-5-6 [0.651, 6.32, 53.66, 245.33] [0.870,0.870,0.870, 0.877, 0.857, 0.872] 0.541

2-4-5 [0.405, 8.04, 612.26, 239.70] [0.889,0.910,0.910, 1.068, 0.834,0.800] 0.301

2-1-6 [0.535, 9.06, 251.15, 224.97] [0.906, 0.936,0.921,0.919,0.890, 0.822] 0.398

1-3-6 [0.621, 9.04, 183.05, 219.20] [0.918, 0.884, 0.927,0.914,0.890, 0.827] 0.330

From the results in table 5.7, it is seen that in some cases, the value of the fit on all six

datasets is similar whether all six datasets are included in the cost function (J = 0.273)

or only three are (J = 0.301 for 2-4-5 case).

Because the scaling factors in bold are chosen manually so that the peaks of the

potentials match the data, it is expected that there exists a better choice of scaling

factors for the τfinal that could reduce J . This is a phenomenon similar to the one

highlighted previously for the scaling factor s4 of the six dataset fitting. The point is

that the J values in table 5.7 could be a bit lower if the optimal scaling factors were

chosen.

The previous remark suggests that the fit for all six datasets is indeed essentially of

the same quality with either N = 3 or N = 6 datasets included in the cost function.

If that is the case, including many datasets rather than a few would not be worth the

increased computational time due to the larger number of solutions computed for each

cost function evaluation and the larger number of directions to check at each iteration

of FCS, since more scaling factors are needed.

However, it is worth considering that perhaps the value of the cost function might

not be the only indicator of a good fit. As is seen with many of the previous tests, the

values for τ in table 5.7 vary substantially, especially τopen which varies from 53.66 to

612.26. Different τ values can thus give similar cost function values, so identifying the

correct τ is difficult. Strategically choosing the pacing frequencies for the target data is

something that could help, but further investigation is required on the optimal choice of

representative frequencies as it is difficult to extract definitive conclusions from the small

sample size of tests presented here.

Conclusion

In this thesis, four different non-differentiable optimization methods are presented, of

which three are original variants of the standard Compass Search (CS) method. The

methods are tested and compared with each other by applying them to two optimiza-

tion problems with applications in cardiac electrophysiology. The results of these tests

led to the following conclusions about the four algorithms. The Front-track Compass

Search and Hybrid Compass Search methods represented a significant improvement in

performance when compared to the standard Compass Search method in this context.

The Golden Compass Search method, while not vastly better than CS, still performed

adequately, thus providing a total of three new non-differentiable optimization meth-

ods. The non-standard implementation of the CS methods (compared to the article from

which CS is taken [13]) also proved useful in the electrophysiological context. A com-

parison of the performance of the CS methods with the Nelder-Mead method as used

in [24] shows that the CS methods are capable of finding minimizers of similar or far

superior quality in a comparable amount of time/function evaluations. If anything, the

CS methods performed more reliably, obtaining very good minimizers in every test case.

An interesting avenue for future research is to study the CS methods, particularly

the three original variations, in a more general way. Applying them to a broader set of

optimization problems and going more in depth in the study of various effects like varying

the search parameters, changing the implementation, such as changing the generating set

D as is proposed in this thesis, or the sensibility to the initial guess could help further

determine the viability of the CS methods.

When used in the electrophysiological context, the CS methods paired with the choice

of cost functions gave good results. For the first problem consisting in matching phase

durations, the optimization methods worked very well and consistently found parameters

for which the MS model matches phase durations to within 1% or less in most cases.

When considering the second problem (matching the potential directly), it is seen

that the primary optimization method used, FCS, is capable of identifying parameters

72

73

and scaling factors that make the MS model fit optical imaging data reasonably well. For

single stimulation frequencies, the fit of the trans-membrane potential to the noisy data

is very good, which is corroborated by the small value of the cost function and the small

visual discrepancy observed when the potential and the data are graphed together. When

trying to fit data from multiple stimulation frequencies, the quality of the fit deteriorates

as the complexity of the problem is increased, but the resulting fits are still reasonable,

with most datasets being well fitted while only a few datasets suffer from an sub-optimal

fit. The fit of the datasets could perhaps be improved, but before suggesting that it is

the methods that are ill-equipped to perfect the fit, a word must be said on the data

that is being fitted. The optical imaging used for data acquisition does present some

drawbacks when used to fit single-cell models like the MS model. The resolution of the

camera does not permit the acquisition of single-cell data as it captures the electrical

activity of a small area of tissue that contains a multitude of cells. The behaviour of

tissue differs from the behaviour of single cells, so it is perhaps impossible for a single

cell model to replicate the tissue data. Also, the lack of appropriate scaling for the data

forces extra pre-processing of the data before matching models. Moreover, there is an

increase in complexity, due to the inclusion of scaling factors, that can hinder the quality

of the fit. Nonetheless, the inclusion of the scaling factors as control variables seemed to

be a good way of fitting the MS model to the optical data.

One last remark on the performance of FCS for the fitting of the trans-membrane

potential is that FCS did a reasonably good job while only requiring roughly 1000 func-

tion evaluations. Also worth noting is that, in some cases, most of the progress was

observed in the first 500 evaluations. Compared to genetic algorithms, which can re-

quire thousands and thousands of evaluations (10000+ evaluations over 100 generations

in [32]), FCS offers a less computationally costly alternative for problems in which few

parameters must be identified, given that a suitable initial guess can be found.

Future work on recorded potential fitting could include using direct, single-cell po-

tential recordings with the FCS method to eliminate the need for scaling factors, trying

to match more sophisticated models to the optical data or investigating further into the

development and applications of better optimization algorithms, eventually leading to

global minimizers.

Bibliography

[1] U.M. Ascher and C. Greif. A First Course in Numerical Methods, volume 1. SIAM,

2011.

[2] G. W. Beeler and H. Reuter. Reconstruction of the action potential of ventricular

myocardial fibres. The Journal of Physiology, 268(1):177–210, 1977.

[3] E.K.P Chong and S.H. Żak. An Introduction to Optimization, volume 1. Wiley-

Interscience, second edition, 2001.

[4] C. Davis. Theory of positive linear dependance. American Journal of Mathematics,

76(4):733–746, 1954.

[5] J.R. Dormand and P.J. Prince. A family of embedded Runge-Kutta formulae. Jour-

nal of Computational and Applied Mathematics, 6(1):19–26, 1980.

[6] R. FitzHugh. Impulses and physiological states in theoretical models of nerve mem-

brane. Biophysical Journal, 1:445–466, 1961.

[7] Source Forge. Octave forge: integrate adaptive.m. https://sourceforge.net/p/

octave/odepkg/ci/5e10fde2a5e64d76997f579466007cfc0f0091b0/tree/inst/

integrate_functions/integrate_adaptive.m. Accessed: 2019-05-09.

[8] P.C. Franzone, L.F. Pavarino, and S. Scacchi. Mathematical Cardiac Electrophysi-

ology, volume 13. Springer International Publishing, first edition, 2014.

[9] W. Groenendaal, F.A. Ortega, A.R. Kherloplan, A.C. Zygmunt, T. Krogh-Madsen,

and D.J. Christini. Cell-specific cardiac electrophysiology models. PLOS Com-

putational Biology https://journals.plos.org/ploscompbiol/article?id=10.

1371/journal.pcbi.1004242. 22 pages (2015) Accessed: 2019-07-04.

74

https://sourceforge.net/p/octave/odepkg/ci/5e10fde2a5e64d76997f579466007cfc0f0091b0/tree/inst/integrate_functions/integrate_adaptive.m
https://sourceforge.net/p/octave/odepkg/ci/5e10fde2a5e64d76997f579466007cfc0f0091b0/tree/inst/integrate_functions/integrate_adaptive.m
https://sourceforge.net/p/octave/odepkg/ci/5e10fde2a5e64d76997f579466007cfc0f0091b0/tree/inst/integrate_functions/integrate_adaptive.m
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004242
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004242

75

[10] A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and

its application to conduction and excitation in nerve. The Journal of Physiology,

117(4):500–544, 1952.

[11] J. Kaur, A. Nygren, and E.J. Vigmond. Fitting membrane resistance along

with action potential shape in cardiac myocytes improves convergence: applica-

tion of a multi-objective parallel genetic algorithm. PLOS ONE 9(9) https://

journals.plos.org/plosone/article?id=10.1371/journal.pone.0107984. 10

pages (2014) Accessed: 2019-07-04.

[12] J. Keener and J. Sneyd. Mathematical Physiology: Systems Physiology, volume 8.

Springer, second edition, 2009.

[13] T.G. Kolda, R.M Lewis, and V. Torczon. Optimization by direct search: New

perspectives on some classical and modern methods. SIAM Review, 45(3):385–482,

2003.

[14] D.M. Lombardo, F.H. Fenton, S.M. Narayan, and W.J. Rappel. Comparison of

detailed and simplified models of human atrial myocytes to recapitulate patient

specific properties. PLOS Computational biology https://journals.plos.org/

ploscompbiol/article?id=10.1371/journal.pcbi.1005060. 15 pages (2016) Ac-

cessed: 2019-07-09.

[15] Mathworks. odeset. https://www.mathworks.com/help/matlab/ref/odeset.

html#bu2m9z6-2. Accessed: 2019-05-09.

[16] C.C. Mitchell and D.G. Schaeffer. A two-current model for the dynamics of cardiac

membrane. Bulletin of Mathematical Biology, 65(5):767–793, 2003.

[17] J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simu-

lating nerve axon. Proceedings of the IRE, 50(10):2061–2070, 1962.

[18] J.A. Nelder and R. Mead. A simplex method for function minimization. The Com-

puter Journal, 7(4):308–313, 1965.

[19] J. Nocedal and S.J. Wright. Numerical Optimization, volume 1. Springer, second

edition, 2006.

[20] Octave.org. https://www.gnu.org/software/octave/. Accessed: 2019-07-09.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107984
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107984
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005060
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005060
https://www.mathworks.com/help/matlab/ref/odeset.html#bu2m9z6-2
https://www.mathworks.com/help/matlab/ref/odeset.html#bu2m9z6-2
https://www.gnu.org/software/octave/

76

[21] Octave.org. 24.1.1 matlab-compatible solvers. https://octave.org/doc/

interpreter/Matlab_002dcompatible-solvers.html. Accessed: 2019-05-09.

[22] Octave.org. 29.1 one-dimensional interpolation. https://octave.org/doc/v4.0.

1/One_002ddimensional-Interpolation.html. Accessed: 2019-05-09.

[23] Government of Canada. Heart disease in canada. https://www.canada.

ca/en/public-health/services/publications/diseases-conditions/

heart-disease-canada.html. Accessed: 2019-07-02.

[24] D.V. Pongui Ngoma. Identification des paramètres dans les modèles ioniques en

électrophysiologie cardiaque [Parameter identification in ionic models for cardiac

electrophysiology]. PhD thesis, Université Marien Ngouabi, 2016.

[25] M. Pop, M. Sermesant, D. Lepiller, M.V. Truong, E.R. McVeigh, E. Crytal, A. Dick,

H. Delingette, N. Ayache, and G.A. Wright. Fusion of optical imaging and MRI for

the evaluation and adjustment of macroscopic models of cardiac electrophysiology:

a feasibility study. Med Image Anal, 13(2):370–380, 2009.

[26] J. Relan, P. Chinchapatnam, M. Sermesant, K. Rhode, M. Ginks, H. Delingette,

C.A. Rinaldi, R. Razavi, and N. Ayache. Coupled personalization of cardiac elec-

trophysiology models for prediction of ischaemic ventricular tachycardia. Interface

Focus, 1(3):396–407, 2011.

[27] J. Relan, M. Pop, H. Delingette, GA. Wright, N. Ayache, and M. Sermesant. Per-

sonalization of a cardiac electrophysiology model using optical mapping and mri for

prediction of changes with pacing. IEEE Trans. Biomed. Eng., 58(12):3339–3349,

2011.

[28] M. Rioux. Numerical computations of action potentials for theheart-torso coupling

problem. PhD thesis, University of Ottawa, 2011.

[29] M. Rioux and Y. Bourgault. A predictive method allowing the use of a single ionic

model in numerical cardiac electrophysiology. ESAIM: Mathematical Modelling and

Numerical Analysis, 47(4):987–1016, 2013.

[30] L.F. Shampine and M.W. Reichlet. The Matlab ODE suite. SIAM Journal on

Scientific Computing, 18(1):1–22, 1997.

https://octave.org/doc/interpreter/Matlab_002dcompatible-solvers.html
https://octave.org/doc/interpreter/Matlab_002dcompatible-solvers.html
https://octave.org/doc/v4.0.1/One_002ddimensional-Interpolation.html
https://octave.org/doc/v4.0.1/One_002ddimensional-Interpolation.html
https://www.canada.ca/en/public-health/services/publications/diseases-conditions/heart-disease-canada.html
https://www.canada.ca/en/public-health/services/publications/diseases-conditions/heart-disease-canada.html
https://www.canada.ca/en/public-health/services/publications/diseases-conditions/heart-disease-canada.html

77

[31] J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.A. Mardal, and A. Tveito. Comput-

ing the Electrical Activity in the Heart, volume 1. Springer Berlin Heidelberg, first

edition, 2006.

[32] Z. Syed, E. Vigmond, S. Nattel, and L.J. Leon. Atrial cell action potential parameter

fitting using genetic algorithms. Medical and Biological Engineering and Computing,

43(5):561–571, 2005.

[33] V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on

Optimization, 7(1):1–25, 1997.

	Introduction
	Electrophysiological context
	Mathematical models
	Scope of the thesis

	Mathematical background
	The Mitchell-Schaeffer model
	Behaviour of the solution
	Restitution

	Numerical methods
	Solution of the model
	Phase durations
	Cubic Spline

	Parameter identification
	Optimization Problems
	General problem
	Optimization problem I
	Optimization problem II

	Optimization methods
	Compass Search
	Golden Compass Search
	Hybrid Compass Search
	Front-track Compass Search

	Proof of convergence

	Results for problem I
	ode45 parameters
	Sample numerical test case
	Contraction factor
	Comparison of the optimization methods

	Results for Problem II
	Data acquisition and preparation
	Verification fittings
	Single data fittings
	Multiple data fittings

