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Abstract

In this thesis we investigate time-stepping methods having both high order of accuracy
and a good stability, for the numerical analysis of reaction-diffusion equations. The
approach consists in a generalization and improvement of a time-stepping method
introduced by Gustafson & Kress (2002). The time-stepping schemes from Gustafsson
and Kress are built via a deferred correction (DC) strategy consisting in a successive
correction (perturbation) of the trapezoidal rule, leading to a scheme of order 2j + 2
of accuracy at the stage j = 0, 1, 2, · · · of the correction. However, this method
addresses only linear initial-value problems (IVP) satisfying a monotonicity condition
while it has an issue for the starting procedure, and it does not take advantage of an
exhaustive convergence analysis for its applicability to stiff problems. Our approach
is executed into three essential steps, leading to three submitted articles. First, we
introduce general formulae to derive suitable arbitrary high order finite difference
approximations of analytic functions. New forms of finite difference formulae suited
to various approaches of DC time-stepping schemes and the computation of their
starting values, complying with the high order requirement, are constructed. Second,
we introduce a general idea for the construction of different DC schemes, and we
present our time-stepping method. The time-stepping method consists in a sequence
{DC2j}j of self-starting schemes built recursively from the implicit midpoint rule
via the DC strategy. A complete analysis of convergence of the method, in the case
of general ordinary differential equations (ODE), is given using a deferred correction
condition which guarantees an improvement by two of the order of accuracy while
each scheme DC2j is corrected to get the scheme DC(2j + 2). We prove that each
DC2j is A-stable. Finally, we apply our DC method to an initial boundary value
problem (IBVP) related to a large class of reaction-diffusion system. The IBVP is
first discretized in the time variable via the DC method, and it follows a discretization
in space by the Galerkin finite element method. We prove that the resulting schemes
are unconditionally and strongly stable with order 2j + 2 of accuracy in time (at
the stage j of the correction). The order of accuracy in space is at least equal to the
degree of the finite element used. All the theories, for ODEs and IBVP, are supported
by numerical tests on various standard problems with the schemes DC2, · · · , DC10.
The numerical experiments comply with the theory and show that the theoretical
orders of accuracy are always achieved together with a satisfactory stability.

ii



Résumé

Cette thèse porte sur la recherche de méthodes de résolution en temps d’ordre de con-
vergence élevé ayant de bonnes propriétés de stabilité pour la résolution numérique des
équations de réaction-diffusion. L’approche adoptée consiste à améliorer et étendre
les schémas en temps d’ordre arbitraire introduits par Gustafsson & Kress (2001).
Les schémas de Gustafsson et Kress sont construits via une technique de correction
différée appliquée à la méthode du trapèze et s’adressent uniquement aux problèmes
de Cauchy linéaires satisfaisant une condition de positivité. L’analyse des propriétés
de convergence de ces schémas n’est pas exhaustive, pour des applications à des
problèmes d’évolution plus généraux. Notre étude pour l’amélioration et la générali-
sation des schémas de Gustafsson et Kress est faite en trois étapes, correspondant à
trois articles de journaux. Premièrement, nous avons introduit une méthode générale
pour la construction de diverses formules de différence finie pour des approximations
d’ordre quelconque des dérivées des fonctions analytiques. Des formules de différence
finie sont construites, lesquelles sont favorables à diverses variantes de schémas en
temps par la méthode de correction différée et leur procédure de démarrage. Deuxiè-
mement, nous avons introduit notre méthode de résolution en temps qui donne lieu à
une suite récurrente , {DC2j}j≥1, de schémas en temps à procédure de démarrage au-
tomatique dont le schéma initial DC2 est la règle du point milieu implicite. L’analyse
complète de la convergence de ces schémas, pour le cas des problèmes de Cauchy, est
basée sur une condition de correction différée qui assure un incrément de 2 de l’ordre
de convergence d’un schéma DC2j corrigé pour obtenir DC(2j + 2). Nous avons
prouvé que chaque schéma DC2j est A-stable. Enfin, nous avons appliqué notre
méthode de résolution en temps à un problème de Cauchy-Dirichlet associé à une
large classe d’équations de réaction-diffusion. Le problème est tout d’abord discrétisé
en temps par la méthode de correction différée pour donner une famille de problèmes
elliptiques. Chacun des problèmes elliptiques est ensuite discrétisé en espace par la
méthode des éléments finis. Nous avons prouvé que les schémas totalement discrétisés
sont inconditionnellement stables. L’ordre de convergence en temps est 2j + 2 (pour
l’étage j de la correction) tandis que l’ordre de convergence en espace est au moins
égal au degré des éléments finis considérés. La théorie est appuyée de façon satis-
faisante par des résultats numériques sur des problèmes standards avec les schémas
DC2, · · · , DC10.
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pour leur convivialité.

Mes vifs remerciements aux enseignants du Département de mathématiques et infor-
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General Introduction

Reaction-diffusion equations model various physical phenomena. The theory emerged
in the first half of the XXth century with the work of physicists and chemists Semenov
and Frank-Kamenetskii describing the temperature evolution in a closed vessel with
a reacting gas, Kolmogorov-Petrovskii-Piskunov (KPP) and Fisher about the propa-
gation of dominant genes, and Alan Turing (in 1952) modelling morphogenesis (see
[19, 28] and references therein). Since the second half of the last century, these
equations have attracted much interest due to applications in combustion, chemical
reactions, population dynamics and biomedical science (cancer modeling and other
physiological processes).

In the simplest models, the reaction-diffusion equations take the form

u′ = M∆u+ f(u), x ∈ Ω ⊂ Rd, t > 0 (0.0.1)

where u : Ω× [0,+∞[→ RJ is the unknown, M is an J ×J matrix, and f = f(u) is a
smooth function [24]. Among examples of scalar reaction-diffusion equations, (0.0.1)
for f(u) = αu(1 − u), where α is a constant, gives the Fisher’s equation originally
used to describe the spreading of biological populations, for f(u) = αu(1 − u)2 we
have the KPP equations for planar model of advance of advantageous genes, and, for
f(u) = −au(u − θ)(u − 1), with a > 0 and θ ∈ [0, 1/2], we have a reduction to one
variable of the FitzHugh-Nagumo model for the propagation of the depolarisation
front through a nerve axon. The reference [20] reviews important models which are
described by reaction-diffusion equations.

As particular cases of semi-linear parabolic equations, the mathematical analysis
of the existence of solutions for reaction-diffusion equations is widely investigated.
In [15, 24, 28], for example, the existence of local and global solution for particular
cases of reaction-diffusion equations is proven using fixed point theorems, the notion
of invariant regions and maximum principles (an explicit solution of Fisher equation
is constructed in [1]).

On the other hand, the numerical analysis of reaction-diffusion equations takes
advantage of many results available from the numerical analysis of semi-linear parabolic
partial differential equations (PDEs). The method of lines (MOL) is commonly used.
By this method the PDE is first discretized in space by finite element or finite dif-
ference methods, leading to a system of ordinary differential equations (ODEs). The
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GENERAL INTRODUCTION 2

resulting system of ODEs is then discretized by fully implicit or implicit-explicit
(IMEX) time-stepping methods (see for instance [2, 3, 4, 12, 14, 21, 27, 30]). In
[2, 3, 4], linear implicit-explicit multistep methods in time together with finite el-
ement methods in space are analysed for a class of abstract semi-linear parabolic
equations that includes a large class of reaction-diffusion systems. The approaches in
[2, 3, 4] are the same. The authors investigate approximate solutions expected to be
in a tube around the exact solution. They proceeded by induction by adapting the
time step k and the space step h and established that if k and k−1h2r, r ≥ 2, are small
enough then the global error of the scheme is of order p (p = 1, 2, ..., 5) in time and
r in space. IMEX schemes using finite difference in space and Runge-Kutta methods
of order 1 and 2 in time are also analysed in [13, 5] for a class of reaction-diffusion
systems. Otherwise, references [18, 27, 30] introduced fully implicit numerical meth-
ods for reaction-diffusion equations with restrictive conditions on the nonlinear term,
combining finite elements in space and backward Euler, Crank-Nicolson or fractional-
step θ methods in time. The resulting schemes are unconditionally stable (the time
step is independent from the space step) with order 1 or 2 of accuracy in time.

In practice, the space-discretization of time-evolution PDEs leads to stiff initial
value problems (IVP) of large dimension (we recall that a stiff problem is a problem
extremely hard to solve by standard explicit step-by-step methods [25]). To avoid
overly small time steps, accurate approximate solutions for these IVP require high
order time-stepping methods having good stability properties (A-stable methods are
of great interest). Backward differentiation formulae (BDF) of order 1 and 2 are
commonly used according to their A-stability. However, BDF methods of order 3 and
higher lack stability properties (e.g. for systems with complex eigenvalues). Moreover,
Runge-Kutta methods applied to such IVPs have an order of convergence reduced to
1 or 2 (see, e.g., [22]) and are inefficient when the IVPs are stiffer.

The aim of this thesis is to investigate high order time-stepping methods with
satisfactory stability properties for the numerical approximation of an initial bound-
ary value problems (IBVP) related to the reaction-diffusion equation (0.0.1). The
general form of the problem is,

u′ −M∆u+ f(u) = S in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u(., 0) = u0 in Ω.

(0.0.2)

Here Ω is a bounded domain with smooth boundary ∂Ω, and S : Ω× (0, T )→ RJ is
a given smooth function called source term. We suppose that M is positive definite
with constant coefficients, and the function f satisfies the following two monotonicity
conditions

(f(x)− f(y), x− y) ≥ α|x− y|q + τ(y)|x− y|2,∀x, y ∈ RJ , for some α ≥ 0, q ≥ 1,
(0.0.3)
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and
(df(x)y) · y ≥ −µ0|y|2, ∀x, y ∈ RJ , (0.0.4)

where µ0 is a nonnegative real constant, and τ is an arbitrary continuous real-valued
function. These conditions guarantee the existence of a solution of problem (0.0.2)
in L2 (0, T ;H1

0 (Ω) ∩H2(Ω)) (see for instance [9, 17, 26]), and uniqueness and high
order regularity can be deduced. The conditions (0.0.3)-(0.0.4) are at least satisfied
by any polynomial of odd degree with positive leading coefficient, and the Dirichlet
boundary condition can be substituted by Neumann boundary conditions. Since effi-
cient classical time-stepping methods for problems (0.0.2) have order of convergence
limited to 1 or 2, we are interested in applying deferred correction method to build
high order time-stepping schemes.

The deferred correction (DC) method is used to improve the order of accuracy
of numerical methods of lower order. This method is explored by many authors, e.g.
[6, 7, 8, 10, 11, 16, 23, 29]. The method in [7] is an application of iterative deferred cor-
rection (IDC). The authors proved that an asymptotic improvement of order p can be
accomplished, from a scheme of order p, at each step of the IDC procedure, provided
suitable finite difference operators are employed. Numerical experiments are per-
formed with the IDC applied to the trapezoidal rule, Taylor-2 and Adams-Bashforth
of order 2. The results are promising even though they point out some difficulties
of the proposed algorithms: inacuracy for “large” time step and no asymptotic im-
provement for high levels of correction. The approaches in [6, 8, 10, 11, 16, 29] are
quite similar and consist in a linear perturbation of a low order scheme. However,
these methods are not suitable for stiff problems. For example, the method in [16],
concerning a highly accurate solver for stiff ODEs and reaching order up to 14, re-
quires sufficiently small time steps for moderately stiff problems while convergence is
reduced to order 2 for “very stiff” problems. The method in [10, 14] addresses linear
IVP for which a monotonicity condition is enforced, that is an IVP taking the form{

w′ = Aw + F in [0, T ]
w(0) = w0

(0.0.5)

where the unknown w is defined from [0, T ] into an Hilbert space H with inner product
( ., .), A is a square matrix satisfying

(Aw,w) ≤ 0, for any w ∈ H,

and F : [0, T ] → H and w0 ∈ H are given. The method consists in a successive
correction (perturbation) of the trapezoidal rule (Crank-Nicholson) via asymptotic
expansions of the linear IVP by central finite difference approximations. The order
of accuracy increases by two per stage of the correction. Numerical experiments
with one-dimensional linear parabolic and hyperbolic equations were performed and
showed that the method is effective (orders 2, 4 and 6 of accuracy are achieved).
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Our approach for the numerical analysis of the reaction-diffusion problem (0.0.2)
consists in an extension and improvement of the deferred correction strategy from
[10, 14] which concerns only linear IVP satisfying a monotonicity condition. The idea
is motivated by the following observations:

1. The schemes from [10, 14] have an issue for the starting values when order 4
and higher are investigated. Indeed, even though these schemes can be consid-
ered as one step, the centered finite difference approximations employed lead to
the computation of approximate solutions for t < t0 = 0 to make a correction.
This procedure is impossible for reaction-diffusion equations, as for number of
IVPs and IBVPs, since the exact solutions exist only for t ≥ t0. The alterna-
tives proposed in [10, 14] are the use of Runge-Kutta time-stepping methods of
high order or a forward/backward finite difference approximation to compute
starting values. However, high order Runge-Kutta methods as other standard
time-stepping methods are inefficient for stiff problems, and both forward and
backward finite difference approximations are not stable when high order ap-
proximation is needed. To overcome this difficulty new centered finite difference
approximations able to compute approximate solutions inside the solution in-
terval [0, T ] are needed.

2. The monotonicity condition enforced on the linear IVP analysed in [10, 14] im-
plies that the exact solution w for this IVP is bounded independently of the
operator A. The approximate solution of this problem by a trapezoidal rule
preserves this property which guarantees the A-stability of the corresponding
scheme (there is a proof of A-stability in [10] for the initial stage of the cor-
rection). Therefore, the extension of the deferred correction to more general
nonlinear PDEs satisfying a monotonicity condition should be compatible with
this monotonicity condition so that the stability of the schemes is guaranteed
together with an optimal a priori error estimate. Unfortunately, we remark
that the trapezoidal rule is not compatible with monotonicity conditions in the
case of nonlinear problems. Therefore, a starting scheme preserving monotonic-
ity conditions in the case of nonlinear IVPs is needed for building efficient DC
schemes.

3. The analysis of convergence for the DC method in [10, 14], even though it con-
cerns only linear IVPs, is not sufficient to guarantee an unconditional stability
when this DC method is applied, via the MOL, to obtain a full discretization of
a time-evolution PDE. In fact, if the IVP (0.0.5) results from a MOL then the
matrix A is equivalent to a stiffness matrix. Therefore, A is in norm propor-
tional to h−2, where h is the space step. Since, from the convergence analysis
in [10, 14], the global error constant for an approximate solution of order 2j+ 2
of the problem (0.0.5) depends on Aj, an unconditional stability result can not
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be obtained from this analysis. More generally, a semi-discrete approximation
in space for a time-evolution PDE, which is a function uh : [0, T ] → Vh, is not
regular enough in space since the approximation spaces Vh are often generated
by functions in the Sobolev space H1

0 . As a consequence, it is difficult to bound
high order derivatives of uh with respect to time independently from h−1, and
then the MOL can not lead to unconditional stability when sufficiently high
order is investigated. Therefore, a complete analysis of an extension of the de-
ferred correction from [10, 14] to high order unconditionally stable time-stepping
methods for more general nonlinear PDEs requires original arguments for the
proofs.

These observations lead to three submitted articles which constitute chapters 1,
2 and 3 of this thesis. The thesis is organized into three chapters as follows:

• Chapter 1: Corresponding to the paper “Finite difference and numerical differ-
entiation: General formulae from deferred corrections”, this chapter introduces
a new approach to derive various finite difference formulae of arbitrary high or-
der. We start by recalling basic finite difference operators and prove their main
properties for the numerical analysis of DC schemes. Formulae for first and
second order approximations of derivatives of analytic functions are given with
error terms explicitly expanded in terms of Taylor series. These lower order
approximations are successively improved by one or two (order two for centered
formulae) to arbitrary high order finite difference formulae. A general theorem
showing how to build arbitrary high order finite difference approximation of
the derivative of any order of analytic functions is proven. Among examples of
finite difference formulae constructed (for new variants of DC schemes), a new
form of centered finite difference formula of arbitrary high order is given and
can be used for the computation of starting values of high order time-stepping
methods via DC method. The new approach recovers the standard centered,
forward and backward finite difference formulae that were originally obtained
in an heuristic way as formal power series of finite difference operators.

• Chapter 2: This chapter corresponds to the paper “Arbitrary order A-stable
method for ordinary differential equations via deferred correction”. It presents
a general idea for the construction of DC schemes. For our DC time-stepping
method, we choose the implicit midpoint rule as starting scheme. The implicit
midpoint rule is successively corrected (perturbed) to obtain, at the stage j =
0, 1, 2, · · · of the correction, a self-starting scheme DC(2j + 2), expected to be
of order 2j + 2 of accuracy. The analysis is restricted to the case of ODEs, in
order to show the properties of the numerical method. We introduce a deferred
correction condition (DCC) which guarantees the improvement of the order of
accuracy by two from a scheme DC2j, j = 1, 2, · · · , to a scheme DC(2j + 2),
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and we prove that each scheme DC2j inherits the A-stable property of the
implicit midpoint rule. Numerical tests from standard stiff and non-stiff IVPs
are performed with the schemes DC2, DC4 ..., DC10.

• Chapter 3: This chapter consists in an application of the DC method to the
IBVP (0.0.2), and corresponds to the paper “Arbitrary high-order uncondition-
ally stable methods for reaction-diffusion equations via Deferred Correction:
Case of the implicit midpoint rule”. We do not use the method of line. The
IBVP is first discretized with respect to the time variable via the DC method,
leading to a family of time-stepping schemes. Each semi-discrete scheme in
time, corresponding to the stage j = 0, 1, 2, · · · of the correction, gives an el-
liptic boundary value problem (BVP) for which the existence of a solution is
proven using the Schaefer fixed point theorem. The elliptic BVP is in turn
discretized in space by the Galerkin finite element method, leading to a fully
discrete scheme for an approximate solution of (0.0.2). We prove that each
fully discretized scheme, corresponding to the stage j of the correction, is un-
conditionally stable and converges with order 2j + 2 of accuracy in time and
an order of accuracy in space at least equal to the degree of the finite element
used. The improvement of the order of accuracy in time is, as in the case of
IVPs, guaranteed by a DCC. The theory is supported by a numerical test on a
bistable reaction-diffusion equation having a strong stiffness ratio.



Chapter 1

Finite difference and numerical
differentiation via deferred
correction: Case of uniformly
spaced points

This chapter is presented in terms of a journal article that will be shortly submitted.
Please see the attached paper for the content.
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Finite difference and numerical differentiation via deferred
correction: Case of uniformly spaced pointsI

Saint-Cyr E.R. Koyaguerebo-Imé, Yves Bourgault

Department of Mathematics and Statistics, University of Ottawa, STEM Complex,
150 Louis-Pasteur Pvt, Ottawa, ON, Canada, K1N 6N5, Tel.: +613-562-5800x2103

Abstract

This paper provides a new approach to derive explicitly different arbitrary high order finite dif-
ference formulae for the numerical differentiation of analytic functions on uniformly spaced grid
points. With this approach, various first and second order formulae for the numerical differenti-
ation of analytic functions are given with error terms explicitly expanded as Taylor series of the
analytic function. These lower order approximations are successively improved by one or two
(two order improvement for centered formulae) to give finite difference formulae of arbitrary
high order or simply a discrete Taylor serie. The new approach allows to recover all the existing
finite difference formulae on uniformly spaced grid points, and the standard backward, forward,
and central finite difference formulae which are usually only given heuristically in terms of for-
mal power series of finite difference operators. Examples of new formulae suited for deferred
correction methods are given.

Keywords: finite difference formulae, numerical differentiation

1. Introduction

Finite differences (FD) are commonly used for discrete approximations of derivatives. Large
classess of schemes for the numerical approximation of ordinary differential equations (ODEs)
and partial differential equations (PDEs) are derived from finite differences. Formulae for nu-
merical differentiations are generally deduced from a finite combination of Taylor series, which
leads to solving a system of linear equations, or a derivative of interpolating polynomials (for
instance see [1, 2, 3, 4, 5]). References [6, 7, 8] give a number of finite difference formulae,
for high order approximation of derivatives, in term of formal power series of finite difference
operators. The approaches in [1, 2, 3, 5] are similar. Given a set of arbitrary spaced grid points
t0 < t1 < · · · < tn and a function u ∈ Cn+1 ([0, tn]), it provides a unique approximation of order

IThe authors would like to acknowledge the financial support of the Discovery Grant Program of the Natural Sciences
and Engineering Research Council of Canada (NSERC) and a scholarship to the first author from the NSERC CREATE
program “Génie par la Simulation”.
∗Corresponding author: ybourg@uottawa.ca
Email addresses: skoya005@uottawa.ca (Saint-Cyr E.R. Koyaguerebo-Imé), ybourg@uottawa.ca (Yves

Bourgault)

Preprint submitted to Elsevier August 19, 2020

8



n − j + 1 for the derivative u( j)(ti) on the interpolating points t0 < t1 < · · · < tn, by solving the
system of n equations

u(t j) − u(ti) =

n∑

m=1

(t j − ti)m

m!
u(m)(ti) + O(|t j − ti|n+1), j , i,

with n unknowns u′(ti), · · · , u(n)(ti). This approach is introduced by the authors in [1, 2, 3] which
consider only the case of backward, forward and central approximations on uniformly spaced
grid points while reference [5] treats the general case. Reference [9] provides a closed form of
the finite difference formulae from [5] in term of Lagrangian numerical differentiation formula,
and the approach in [10] differs from [5] only by the treatment of error terms. The reference [11]
proposes simplified analytical expressions for the numerical differentiation formulae in [5] and
provides an advanced analysis of the errors for the difference formulae. Reference [12] proposes
an algorithm for the finite difference approximation of derivatives that avoids dealing with a
Vandermonde determinant.

Although the results in [5] adress only the numerical approximation of order n − j + 1 for
the j-th derivative of a smooth function u at a point ti taken from a set of distinct interpolating
points t0 < t1 < · · · < tn, the method can be extended to the case where the point ti is replaced
by a point t∗ outside the interpolating points t0 < t1 < · · · < tn. The later approach gives a FD
formula for the approximation of u( j)(t∗), j = 0, 1, 2, · · · n. However, this method, as other FD
methods, is not suited for deferred correction (DC) methods which, for instance, is a wonderful
approach to derive high order and stable time-stepping schemes for the numerical approximation
of ODEs and time-evolution PDEs (see, e.g., [13, 14, 15, 16]). Indeed, finite difference formulae
for DC methods should be able to provide an explicit approximation of linear combinations of
derivatives with error terms explicitly expressed as Taylor series [13, 14, 17]. The errors terms
for the finite difference in [5], even if it can be written as a Lagrange remainder, is implicit and
cannot satisfy requirements for building DC methods.

The purpose of this paper is to provide some basic results on finite difference approximations,
which results are required for the numerical analysis of higher order time-stepping schemes for
ODEs and PDEs. We introduce a new approach to derive arbitrary high order finite difference
formulae which avoids the need for solving a system of linear equations. We provide various
formulae for the discrete approximation of any order p derivative of an analytic function u at a
point t∗ using p + 1 arbitrary points t0 < t1 < · · · < tp evenly spread around t∗. These discrete
approximations are of order 1 or 2 (order 2 for centred formulae), with error terms explicitly
expanded in terms of Taylor series with the derivatives u(p+i)(t∗), i = 1, 2, · · · . Substituting
successively u(p+1)(t∗), u(p+2)(t∗), · · · by their finite difference approximations in the error term for
the discrete approximation of u(p)(t∗), we improve successively by 1 or 2 the order of the discrete
approximation of u(p)(t∗). An efficient choice of the discrete points minimizes the number of
points needed for a given order of accuracy of the discrete approximation of u(p)(t∗). We give a
general theorem for the derivation of finite difference approximations of any derivative of analytic
functions in term of discrete Taylor series. Our approach recovers all possible finite difference
formulae resulting from the method introduced by Li [5], for uniformly spaced grids points,
and the standard backward, forward, and centered finite difference formulae which are given in
terms of formal power series of finite difference operators. Moreover, it gives rise to various
new FD formulae and constitutes a useful tool for developing new stable time-stepping methods
and quadrature rules . We give three new finite difference formulae which are useful for the
construction of high order time-stepping schemes and their efficient starting procedures via DC

2
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strategy. In fact, the use of standard backward and central finite differences in building high order
time-stepping schemes via the DC method leads to the computation of starting values for these
schemes outside the solution interval while the standard forward finite difference formula leads
to unstable schemes (see, e.g., [17, 15, 16, 13, 14]).

The paper is organized as follows: in section 2 we recall the main finite difference operators
and prove some of their main properties; section 3 presents general first and second order ap-
proximations of derivatives with error terms explicitly expressed as Taylor series; section 4 gives
many results for arbitrary high order finite difference approximations and show how to recovers
standard existing finite difference formulae from the new approach, and section 5 deals with a
numerical test.

2. Properties of finite difference operators

In this section we recall the standard finite difference operators and provided some of their
useful properties.

For a given spacing k > 0 and a real t0 ∈ R, we denote tn = t0 +nk and tn+1/2 = t0 + (n+1/2)k,
for each integer n. The centered, forward and backward difference operators D, D+ and D−,
respectively, related to k, and applied to a function u from R into a Banach space X, are defined
as follows:

Du(tn+1/2) =
u(tn+1) − u(tn)

k
,

D+u(tn) =
u(tn+1) − u(tn)

k
,

and
D−u(tn) =

u(tn) − u(tn−1)
k

.

The average operator is denoted by E:

Eu(tn+1/2) = û(tn+1) =
u(tn+1) + u(tn)

2
.

The composition of D+ and D− are defined recursively. They commute, that is

(D+D−)u(tn) = (D−D+)u(tn) = D−D+u(tn),

and satisfy the identities

(D+D−)mu(tn) = k−2m
2m∑

j=0

(−1) j
(
2m

j

)
u(tn+m− j), (1)

D−(D+D−)mu(tn) = k−2m−1
2m+1∑

j=0

(−1) j
(
2m + 1

j

)
u(tn+m− j), (2)

and

Dm1
+ Dm2− u(tn) = k−m1−m2

m1+m2∑

j=0

(−1) j
(
m1 + m2

j

)
u(tn+m1− j), (3)

3
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for each nonnegative integer m, m1, and m2 such that these sums exist. Formulae (1)-(3) can be
proven by a straightforward induction argument.

We introduce the double index αm = (αm
1 , α

m
2 ) ∈ {0, 1, ...,m} × {0, 1, ...,m} such that

Dαm
u(tn) = Dαm

1
+ Dαm

2− u(tn). (4)

Remark 1. If |αm| = αm
1 + αm

2 is even, then we have

Dαm
u(tn) = (D+D−)|α

m |/2u(tm′ ), (5)

for some integer m′. For example,

D+D3
−u(tn) = (D+D−)2u(tn−1),

and
D4
−u(tn) = (D+D−)2u(tn−2).

Theorem 1 (Finite difference approximation of a product). Suppose that X is a Banach algebra.
Then, for any functions f , g : R→ X, we have

D−( f g)(tn) = D− f (tn)g(tn) + f (tn)D−g(tn) − kD− f (tn)D−g(tn), (6)

D+( f g)(tn) = D+ f (tn)g(tn) + f (tn)D+g(tn) + kD+ f (tn)D+g(tn), (7)

and

D+D−( f g)(tn) =D+D− f (tn)g(tn) + f (tn)D+D−g(tn) + D+ f (tn)D−g(tn) + D− f (tn)D+g(tn)

+ k2D+D− f (tn)D+D−g(tn).
(8)

More generally, for each integer m = 1, 2, ..., such that (D+D−)m( f g)(tn) exists, we have the
formula

(D+D−)m( f g)(tn) =

m∑

j=0

(
m
j

)
k2 j

∑

αm+βm=(m+ j,m+ j)

Dαm
f (tn)Dβm

g(tn). (9)

Proof. The formulae (6)-(8) can be obtained by a straightforward calculation, so we just need
to establish (9). We proceed by induction on the positive integer m. From the index notation
introduced in (4), we can write

D+D− f (tn)g(tn) + f (tn)D+D−g(tn) + D+ f (tn)D−g(tn) + D− f (tn)D+g(tn)

=
∑

α1+β1=(1,1)

Dα1
f (tn)Dβ1

g(tn),

and
D+D− f (tn)D+D−g(tn) = Dα1

f (tn)Dβ1
g(tn), with α1 + β1 = (2, 2).

These two identities combined with (8) yield

D+D−( f g)(tn) =

1∑

j=0

(
1
j

)
k2 j

∑

α1+β1=(1+ j,1+ j)

Dα1
f (tn)Dβ1

g(tn),

4
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that is formula (9) holds for m = 1. Now suppose that (9) holds until some rank m ≥ 1. We are
going to show that it remains true for m + 1. By the induction hypothesis, we can write

(D+D−)m+1( f g)(tn) =

m∑

j=0

(
m
j

)
k2 j

∑

αm+βm=(m+ j,m+ j)

D+D−[Dαm
f (tn)Dβm

g(tn)]. (10)

Expanding D+D−[Dαm
f (tn)Dβm

g(tn)] as in the formula (8), we deduce that
∑

αm+βm=(m+ j,m+ j)

D+D−[Dαm
f (tn)Dβm

g(tn)] = S ( j) + k2S ( j + 1), (11)

where
S ( j) =

∑

αm+1+βm+1=(m+1+ j,m+1+ j)

Dαm+1
f (tn)Dβm+1

g(tn).

We have

m∑

j=0

(
m
j

)
k2 j[S ( j)+k2S ( j + 1)] = S (0) +

m∑

j=1

k2 j
[(

m
j − 1

)
+

(
m
j

)]
S ( j) + k2m+2S (m + 1),

and deduce from (10), (11) and the identity
(

m
j

)
+

(
m

j−1

)
=

(
m+1

j

)
that the formula (9) holds for

m + 1. Finally, we conclude by induction that this formula is true for each suitable positive
integer m.

Theorem 2 (Finite difference approximation of a composite). Consider two functions f and u
with values into Banach spaces such that f is differentiable, and the composite f ◦ u is defined
on R. Then

D− f (u(tn)) =

∫ 1

0
d f (u(tn−1) + τkD−u(tn)) (D−u(tn))dτ (12)

and

D+ f (u(tn)) =

∫ 1

0
d f (u(t) + ∆tD+u(t)τ) (D+u(t))dτ (13)

Proof. As in standard mean value theorem.

3. First and second order discrete approximation of derivatives

In this section we provide various formulae for the finite difference approximation of arbitrary
high order derivatives of analytic functions. The approximations are of order one or two, and the
error terms are explicitly expanded in terms of Taylor series. We need the following lemma
whose proof is an easy induction.

Lemma 1. For positive integers m and p and for any real r, we have

m∑

j=0

(−1) j
(
m
j

)
(m + r − j)p =

{
0, if 1 ≤ p < m,

m!, if p = m. (14)
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In particular, for any nonnegative integer p, we have

2m∑

j=0

(−1) j
(
2m

j

)
(m − j)2p+1 = 0, (15)

2m+1∑

j=0

(−1) j
(
2m + 1

j

)
(m − j + 1/2)2p = 0, (16)

and
2m∑

j=0

(−1) j
(
2m

j

) [
(m − j + 1/2)2p+1 + (m − j − 1/2)2p+1

]
= 0. (17)

Theorem 3. Suppose that the function u : [0,T ] → X is analytic on an open interval contaning
[0,T ]. Let 0 = t0 < t1 < ... < tN = T, tn = nk, be a partition of the interval [0,T ]. For each
positive integer m, we have

Dm
+u(tn) = u(m)(tn) +

∞∑

i=m+1

ki−m

i!
u(i)(tn)

m∑

j=0

(−1) j
(
m
j

)
(m − j)i, (18)

Dm
−u(tn) = u(m)(tn) +

∞∑

i=m+1

ki−m

i!
u(i)(tn)

m∑

j=0

(m − 1) j
(
m
j

)
(− j)i, (19)

D−(D+D−)mu(tn) = u(2m+1)(tn)

+

∞∑

i=2m+2

ki−2m−1

i!
u(i)(tn)

2m+1∑

j=0

(−1) j
(
2m + 1

j

)
(m − j)i,

(20)

(D+D−)mu(tn) = u(2m)(tn) +

∞∑

i=m+1

k2i−2m

(2i)!
u(2i)(tn)

2m∑

j=0

(−1) j
(
2m

j

)
(m − j)2i, (21)

D(D+D−)mu(tn+1/2) = u(2m+1)(tn+1/2)

+

∞∑

i=m+1

k2i−2m

(2i + 1)!
u(2i+1)(tn+1/2)

2m+1∑

j=0

(−1) j
(
2m + 1

j

)
(m − j − 1/2)2i+1,

(22)

and

(D+D−)mEu(tn+1/2) = u(2m)(tn+1/2) +

∞∑

i=m+1

ami
k2i−2m

(2i)!
u(2i)(tn+1/2), (23)

where

ami =
1
2

2m∑

j=0

(−1) j
(
2m

j

) [
(m − j + 1/2)2i + (m − j − 1/2)2i

]
.

Proof. We only prove formula (22). The other formulae can be proven similarly. By Taylor
expansion series we have

u(tn+m− j) = u(tn+s) +

∞∑

i=1

ki

i!
(m − s − j)iu(i)(tn+s).

6

13



Choosing s = 1/2 in this formula, we deduce from (2) that

D(D+D−)mu(tn+1/2) =k−2m−1
2m+1∑

j=0

(−1) j
(
2m + 1

j

)
u(tn+m− j)

= k−2m−1
∞∑

i=1

ki

i!
u(i)(tn+1/2)

2m+1∑

j=0

(−1) j
(
2m + 1

j

)
(m − j − 1/2)i,

and (22) follows from (14) and (16).

Theorem 4. Let u be Cm([0,T ], X), m = 1, 2, ..., and 0 = t0 < t1 < ... < tN = T, tn = nk, be a
partition [0,T ]. Let m1 and m2 be two positive integers such that m1 + m2 ≤ m. Then, for each
integer n such that m2 ≤ n ≤ N − m1, Dm1

+ Dm2− u(tn) is bounded independently of n, and we have
the estimate ∥∥∥Dm1

+ Dm2− u(tn)
∥∥∥ ≤ C max

tn−m2≤t≤tn+m1

∥∥∥u(m1+m2)(t)
∥∥∥ ,

where C is a constant depending only on the integer m.

Proof. According to Remark 1, it is enough to just prove the theorem for (D+D−)p f (tn) or
D−(D+D−)p f (tn), for suitable positive integer p (the case p = 0 is trivial). As in the previ-
ous proof, Taylor expansion of order (2p− 1) with integral remainder together with formulae (1)
and (14) yields

(D+D−)pu(tn) =

2p∑

j=0

(−1) j

(2p − 1)!

(
2p
j

)
(p − j)2p

∫ 1

0
(1 − s)2p−1u(2p)(tn + (p − j)ks)ds.

It follows that

‖(D+D−)pu(tn)‖ ≤ 1
(2p)!

2p∑

j=0

(
2p
j

)
(p − j)2p max

tn−p≤t≤tn+p

∥∥∥u(2p)(t)
∥∥∥ .

Similar reasoning can be applied in the case of D−(D+D−)pu(tn).

4. Arbitrary high order finite difference approximations

Theorem 5. There exists a sequence {ci}i≥2 of real numbers such that for any function u ∈
C2p+3 ([0,T ], X), where p is a positive integer, and a partition 0 = t0 < t1 < ... < tN = T, tn = nk,
of [0,T ], we have

u′(tn+1/2) =
u(tn+1) − u(tn)

k
−

p∑

i=1

c2i+1k2iD(D+D−)iu(tn+1/2) + O(k2p+2), (24)

and

u(tn+1/2) =
u(tn+1) + u(tn)

2
−

p∑

i=1

c2ik2i(D+D−)iEu(tn+1/2) + O(k2p+2), (25)

for p ≤ n ≤ N − 1− p. The error constants for the formulae (24) and (25) are, respectively, c2p+3
and c2p+2. Table 1 gives the first ten coefficients ci.
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Table 1: Ten first coefficients of central difference approximations (24) and (25)

c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

1
8

1
24 − 18

4!25 − 18
5!25

450
6!27

450
7!27 − 22050

8!29 − 22050
9!29

1786050
10!211

1786050
11!211

Proof. By Taylor expansion we can write

u(tn+1) = u(tn) + ku′(tn+1/2) +

p∑

i=1

d1,2i+1

(2i + 1)!
k2i+1u(2i+1)(tn+1/2) + O(k2p+3) (26)

and

u(tn+1) = −u(tn) + 2u(tn+1/2) +

p∑

i=1

d1,2i

(2i)!
k2iu(2i)(tn+1/2) + O(k2p+2), (27)

with d1,i = 21−i, for i = 2, 3, ..., 2p + 1. Therefore, substituting successively the derivatives
u(3)(un+1/2), u(5)(tn+1/2), ... and u(2)(tn+1/2), u(4)(tn+1/2), ... by their expansion given by the formu-
lae (22) and (23), respectively, into (26) and (27), we deduce the identities

u(tn+1) = u(tn) + ku′(tn+ 1
2
) +

d1,3

3!
k3DD+D−u(tn+ 1

2
) + ...

+
dq,2q+1

(2q + 1)!
k2q+1D(D+D−)qu(tn+ 1

2
) +

p∑

i=q+1

dq+1,2i+1

(2i + 1)!
k2i+1u(2i+1)(tn+ 1

2
) + O(k2p+3)

and

u(tn+1) = −u(tn) + 2u(tn+1/2) +
d1,2

2!
k2D+D−Eu(tn+1/2) + ...

+
dq,2q

(2q)!
k2q(D+D−)qEu(tn+1/2) +

p∑

i=q+1

dq+1,2i

(2i)!
k2iu(2i)(tn+1/2) + O(k2p+2)

where, for q = 1, ..., p − 1, and i = q + 1, q + 2, ..., p, we have

dq+1,2i+1 = dq,2i+1 −
dq,2q+1

(2q + 1)!

2q+1∑

j=0

(−1) j
(
2q + 1

j

)
(q − j − 1/2)2i+1,

and

dq+1,2i = dq,2i −
dq,2q

(2q)! × 2

2q∑

j=0

(−1) j
(
2q
j

)
[(q − j − 1/2)2i + (q − j − 3/2)2i].

Finally, the identities (24 ) and (25) follow by setting c2i = di,2i/((2i)!×2) and c2i+1 = di,2i+1/(2i+
1)!, for i = 1, 2, ..., p.

Remark 2. The approximations (24) and (25) are, from the coefficients ci computed in Table 1,
equivalent to the central-difference approximation of the first derivative and the centered Bessel’s
formulae (see [6, p.142 & p.183] or [7, 8]).
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Remark 3. Formula (24) gives the finite difference approximations in [2], writing

u′(tn) =
u(tn+1/2) − u(tn−1/2)

k
−

p∑

i=1

c2i+1k2iD(D+D−)iu(tn) + O(k2p+2), (28)

where
p∑

i=1

c2i+1k2iD(D+D−)iu(tn) = k−1
p∑

i=1

c2i+1

2i+1∑

j=0

(−1) j
(
2i + 1

j

)
u(tn+i− j+1/2)

 .

- For p = 1 we have

u′(tn) =
u(tn+1/2) − u(tn−1/2)

k
− 1

24
k2D(D+D−)u(tn) + O(k4)

=
u(tn+1/2) − u(tn−1/2)

k
− u(tn+3/2) − 3u(tn+1/2) + 3u(tn−1/2) − u(tn−3/2)

24k
+ O(k4).

- For p = 2 we have

u′(tn) =
u(tn+1/2) − u(tn−1/2)

k
− 1

24
k2D(D+D−)u(tn) +

18
255!

k4D(D+D−)2u(tn)

+ O(k6),

and then

u′(tn) =
u(tn+1/2) − u(tn−1/2)

k
+

1
1920k

[
9 −125 330 −330 125 −9

]
UT

n,5 + O(k6),

where UT
n,5 is the transpose of the vector

Un,5 =
[
u(tn+5/2) u(tn+3/2) u(tn+1/2) u(tn−1/2) u(tn−3/2) u(tn−5/2)

]
.

The following theorem gives a new form of centered finite difference formulae which is use-
ful for efficient starting procedures of high order time-stepping schemes via deferred correction
strategy [13, 14].

Theorem 6 (Interior centered approximations). Let u ∈ C2p+3 ([a, b], X), where p is a positive
integer and [a, b], a < b, is a real interval. Given a uniform partition a = τ0 < τ1 < ... < τ2p+1 =

b of [a, b], that is τn = a + nk with k = (b − a)/(2p + 1), and τp+1/2 = (a + b)/2, there exist reals
cp

2 , c
p
3 , · · · , cp

2p+1 such that

u′(τp+1/2) =
u(b) − u(a)

b − a
− 1

b − a

p∑

i=1

cp
2i+1k2i+1D(D+D−)iu(τp+1/2) + O(k2p+2). (29)

and

u(τp+1/2) =
u(b) + u(a)

2
−

p∑

i=1

cp
2ik

2i(D+D−)iEu(τp+1/2) + O(k2p+2), (30)

Table 2 gives the coefficients cp
i for p = 1, 2, 3, 4.
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Table 2: Coefficients of the approximations (29)-(30) for p = 1, 2, 3, 4

p cp
2 cp

3 cp
4 cp

5 cp
6 cp

7 cp
8 cp

9

1 9
8

9
8

2 25
8

125
24

125
128

125
128

3 49
8

343
24

637
128

13377
1920

1029
1024

1029
1024

4 81
8

243
8

1917
128

17253
640

7173
1024

64557
7168

32733
32768

32733
32768

Proof. By Taylor expansion we have

u(b) = u(a) − (b − a)u′(τp+1/2) +

p∑

i=1

(b − a)2i+1

22i(2i + 1)!
u(2i+1)(τp+1/2),+O((b − a)2p+3),

and

u(b) = −u(a) + 2u(τp+1/2) +

p∑

i=1

(b − a)2i

22i−1(2i)!
u(2i)(τp+1/2) + O((b − a)2p+2).

Substituting b − a by (2p + 1)k in the summations, we deduce that

u(b) = u(a) + (b − a)u′(τp+1/2) +

p∑

i=1

dp
1,2i+1

(2i + 1)!
k2i+1u(2i+1)(τp+1/2) + O(k2p+3),

and

u(b) = −u(a) + 2u(τp+1/2) +

p∑

i=1

dp
1,2i

(2i)!
k2iu(2i)(tp+1/2) + O(k2p+2),

where
dp

1,i = 21−i(2p + 1)i, for i = 1, · · · , 2p + 1.

Proceeding exactly as in Theorem 5, we obtain the real dp
q,i such that, for q = 1, ..., p − 1 and

i = q + 1, q + 2, ..., p, we have

dp
q+1,2i+1 = dp

q,2i+1 −
dp

q,2q+1

(2q + 1)!

2q+1∑

j=0

(−1) j
(
2q + 1

j

)
(q − j − 1/2)2i+1,

and

dp
q+1,2i = dp

q,2i −
dp

q,2q

(2q)! × 2

2q∑

j=0

(−1) j
(
2q
j

) [
(q − j − 1/2)2i + (q − j + 1/2)2i

]
.

Finally, cp
2i = dp

i,2i/((2i)! × 2) and cp
2i+1 = dp

i,2i+1/(2i + 1)!, for i = 1, 2, ..., p.

The following finite difference formulae are useful for the construction of new time-stepping
methods by applying the deferred correction method to first order backward or forward schemes.
These formulae agree with those given in [5] but differ by their special form suited for DC
methods.
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Theorem 7. (Forward-centered and backward-centered approximations)
There exist two sequences {ai}i≥2 and {bi}i≥2 of real numbers such that, for any function u ∈
Cp+1 ([0,T ], X) and a partition 0 = t0 < t1 < ... < tN = T, tn = nk, of [0,T ], we have

u′(tn) =
u(tn+1) − u(tn)

k
−

p∑

i=2

aiki−1Dτ(i)
− (D+D−)µ(i)u(tn) + O(kp), (31)

and

u′(tn+1) =
u(tn+1) − u(tn)

k
+

p∑

i=2

biki−1Dτ(i)
− (D+D−)µ(i)u(tn+1) + O(kp), (32)

for µ(p)+τ(p) ≤ n ≤ N−µ(p), where µ(i) and τ(i) are, respectively, the quotient and the remain-
der of the Euclidean division of the integer i by 2, that is i = 2µ(i)+τ(i), τ(i) = 0 or 1. The errors
constants for the finite differences approximations (31)-(32) are ap+1 and bp+1, respectively, and
we have the relation a2 = b2, and ai = −bi, for i = 3, 4, · · · .

Table 3 gives the coefficients ai, for i = 2, 3, · · · , 11.

Table 3: Table of coefficients, for differed correction backward Euler method.

a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

1
2

1
3!

2
4! − 4

5! − 12
6!

36
7!

144
8! − 576

9! − 2880
10!

14400
11!

Proof. Taylor expansion of the function u at order p around t = tn gives

u(tn+1) = u(tn) + A1,1ku′(tn) +

p∑

i=2

A1,i
ki

i!
u(i)(tn) + O(kp+1), (33)

where A1,i = 1, for i = 1, 2, 3, ..., p. Suppose that

u(tn+1) = u(tn) + A1,1ku′(tn) + A2,2k2D+D−u(tn) + A3,3k3D−(D+D−)u(tn) + ...

+ Aq−1,q−1kq−1Dτ(q−1)
− (D+D−)µ(q−1)u(tn) +

p∑

i=q

Aq−1,ikiu(i)(tn) + O(kp+1),
(34)

for an arbitrary integer q ≥ 2, where (33) is the formula for q = 2. From (20)-(21) and (15) we
have

u(q)(tn) = Dτ(q)
− (D+D−)µ(q)u(tn) −

∞∑

i=q+1

ki−q

i!
u(i)(tn)

q∑

j=0

(−1) j
(
q
j

)
(µ(q) − j)i ,

and it follows that

p∑

i=q

Aq−1,ikiu(i)(tn) = Aq−1,q
kq

q!
u(q)(tn) +

p∑

i=q+1

Aq−1,i
ki

i!
u(i)(tn) = Aq−1,q

kq

q!
Dτ(q)
− (D+D−)µ(q)u(tn)

+

p∑

i=q+1

Aq−1,i −
Aq−1,q

q!

q∑

j=0

(−1) j
(
q
j

)
(µ(q) − j)i


ki

i!
u(i)(tn) + O(kp+1).
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Substituting the last identity in (34), we deduce that

u(tn+1) = u(tn) + ku′(tn) + A2,2k2D+D−u(tn) + A3,3k3D−(D+D−)u(tn) + ...

+ Aq,qkqDτ(q)
− (D+D−)µ(q)u(tn) +

p∑

i=q+1

Aq,ikiu(i)(tn) + O(kp+1),

where, for q = 2, 3, · · · , p we have
Aq,q = Aq−1,q

and

Aq,i = Aq−1,i −
Aq,q

q!

q∑

j=0

(−1) j
(
q
j

)
(µ(q) − j)i , for i = q + 1, q + 2, ..., p.

We can then deduce by induction on q that formula (31) holds with ai = Ai,i, for i = 2, ..., p. The
sequence {bi}i≥2 can be obtained similarly.

Remark 4. The standard forward formula writes

u′(tn) =
u(tn+1) − u(tn)

k
−

p∑

i=2

(−1)i

i
ki−1Di

+u(tn) + O(kp). (35)

It can be obtained by substituting successively the derivative u(2)(tn), u(3)(tn), ..., in (33) by the
expansion (18), and the standard backward formula writes

u′(tn+1) =
u(tn+1) − u(tn)

k
+

p∑

i=2

1
i

ki−1Di
−u(tn+1) + O(kp), (36)

and can be obtained from (19). The errors constants in the new forward-centered and backward-
centered formulae are smaller than for the standard forward and backward formulae (35) and
(36), respectively. For example, the error constant for an approximation of order 10 for u′(tn) by
the formulae (35)-(36) is 1/11 while the corresponding error constant for (31)-(32) is 14400/11!.

More generally, we have the following result:

Theorem 8 (General finite difference formulae). For an analytic function u : R −→ X, given an
integer m and a real k > 0, we can write, for any integer p ≥ m and a real t,

u(m)(t) = k−m
p∑

i=m

∑

|αi |=i

Cαi (ki)iDαi
u(t) + O(kp+1−m), (37)

where Cαi are constants, km = k, ki = εik (for i ≥ m + 1, where εi > 0 is arbitrarily chosen), and
each finite difference operator Dαi

is related to ki in the sense that

(ki)iDαi
u(t) =

i∑

j=0

(−1) j
(
i
j

)
u
(
t + (αi

1 − j)ki

)
, for |αi| = i. (38)
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Proof. For a double index αi = (αi
1, α

i
2) such that |αi| = i and a spacing ki > 0, since Dαi

is
related to ki > 0, we deduce from (38) and Theorem 3 that

u(i)(t) = Dαi
u(t) −

∞∑

l=i+1

(ki)l−i

l!
u(l)(t)

i∑

j=0

(−1) j
(
i
j

) (
αi

1 − j
)l
. (39)

Therefore, we can choose one double index αm such that |αm| = m and deduce that

kmu(m)(t) = kmDαm
u(t) −

∞∑

l=m+1

kl

l!
u(l)(t)

m∑

j=0

(−1) j
(
m
j

) (
αm

1 − j
)l
.

This identity can be written

kmu(m)(t) = kmDαm
u(t) +

∞∑

l=m+1

Cm+1,l
(km+1)l

l!
u(l)(t), (40)

where km+1 = εm+1k, for a real εm+1 > 0 arbitrarily chosen, and

Cm+1,l = −(εm+1)−l
m∑

j=0

(−1) j
(
m
j

) (
αm

1 − j
)l
, for l ≥ m + 1.

Next, we choose one double index αm+1 such that |αm+1| = m + 1 and substitute the identity (39)
for i = m + 1 into (40) to obtain

kmu(m)(t) = kmDαm
u(t) + Cm+1,m+1(km+1)m+1Dαm+1

u(t) +

∞∑

l=m+2

Cm+2,l
(km+2)l

l!
u(l)(t), (41)

where km+2 = εm+2km+1, for a real εm+2 > 0 arbitrarily chosen, and, for l ≥ m + 2,

Cm+2,l = (εm+2)−l

Cm+1,l − Cm+1,m+1

(m + 1)!

m+1∑

j=0

(−1) j
(
m + 1

j

) (
αm+1

1 − j
)l
 .

This procedure is repeated until obtaining the expected order of accuracy.

Remark 5. As a simple application of Theorem 8, the standard central difference for the second
derivative (see, e.g., [7, Formulae (3.3.10)-(3.3.11)]) can be obtained as follows: We choose
m = 1 in formula (21) and obtain

k2u”(tn) = k2(D+D−)u(tn) − 2
∞∑

i=2

k2i

(2i)!
u(2i)(tn), (42)

which is the second order approximation of u”(tn) with error constant K2 = −1/12. The same
formula for m = 2 gives

k4u(4)(tn) = k4(D+D−)2u(tn) −
∞∑

i=3

k2i

(2i)!
u(2i)(tn)

4∑

j=0

(−1) j
(
4
j

)
(2 − j)2i.
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Substituting the last identity in (42), we deduce that

k2u”(tn) =k2(D+D−)u(tn) − 2k4

4!
(D+D−)2u(tn) +

∞∑

i=3

−2 +
2
4!

4∑

j=0

(−1) j
(
4
j

)
(2 − j)2i


k2i

(2i)!
u(2i)(tn).

The last formula gives the approximation of order 4 for u”(tn) with error constant

K4 =

−2 +
2
4!

4∑

j=0

(−1) j
(
4
j

)
(2 − j)6


1
6!

=
1

90
.

The arbitrary high order central difference can be obtained by continuing the procedure.

Remark 6. The finite differences introduced by Li (see [5]), for uniformly spaced grid points
t0 < t1 < · · · < tn, tn = t0 + nk, can be recovered by the following formulae:
- For the boundary points t0 and tn, the approximations for u(p)(tn) and u(p)(t0), 1 ≤ p ≤ n, are
obtained by the formulae

kpDp
−u(tn) = kpu(p)(tn) +

n∑

m=p+1

αp,n,mkmDm
−u(tn) + O(kn+1),

and

kpDp
+u(t0) = kpu(p)(t0) +

n∑

m=p+1

αp,0,mkmDm
+u(t0) + O(kn+1).

- For 1 ≤ j < n, the approximation for u′(t j) can be deduced from the formulae

kD−u(t j) = ku′(t j) +

j∑

m=2

α1, j,mkmDm
−u(t j) +

n∑

m= j+1

α1, j,mkmDm− j
+ D j

−u(t j) + O(kn+1)

- The approximation for u”(t j), 1 ≤ j < n, can be deduced from the following formulae. For
j = 1 we have

k2D+D−u(t1) = k2u”(t1) +

n∑

m=3

α2,1,mkmDm−1
+ D−u(t1) + O(kn+1),

and for 2 ≤ j < n,

k2D2
−u(t j) = k2u”(t j) +

j∑

m=3

α2, j,mkmDm
−u(t j) +

n∑

m= j+1

α2, j,mkmDm− j
+ D j

−u(t j) + O(kn+1).

The approximation for u(i)(t j), 1 ≤ j < n and i = 3, 4, · · · n can be obtained similarly, and the
coefficients α j,i,m result from Theorem 8.

Remark 7. To obtain a FD formula for the numerical approximation u′(ti+1/2), 0 ≤ i < n, for
example, using the interpolating points t0 < t1 < · · · < tn, tn = t0 + nk, one can use formula (22)
and obtains

Du(ti+1/2) = ku′(ti+1/2) +

∞∑

m=1

k2m+1

(2m + 1)! · 22m u(2m+1)(ti+1/2).
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Then, an application of Theorem 8 provides coefficients β3, · · · , βn such that

Du(ti+1/2) = ku′(ti+1/2) +

i∑

m=3

βmkmDm−1
− Du(ti+1/2)

+

n∑

m=max{3,i+1}
βmkmDm−i

+ Di−1
− Du(ti+1/2) + O(kn+1).

Different forms of the last formula are possible.

5. Numerical test

This section deals with a comparison between the standard finite difference formulae and the
new formulae obtained in Theorem 6 and 7. The comparisons address the numerical differenti-
ation of the functions u(x) = sin(100πx) and u(x) = sin(1000πx) which are taken from the list
of tests functions in [2]. For the classical finite difference formulae we just select the backward
formulae of order 6 and 10, denoted B6 and B10, respectively. For the new finite difference
formulae we choose the backward-centered formulae of order 6 and 10, denoted BC6 and BC10,
respectively, and the interior-centered formulae of order 6 and 10, denoted IC6 and IC10, respec-
tively. We drop the standard forward finite difference formula since it reaches the same accuracy
as the backward formula (for a same order of approximation). The standard centered finite dif-
ference formula has the accuracy of the interior-centered formula so that we choose to not show
it. Finally, the forward-centered formula reaches the same accuracy as the backward-centered
formula.

Figure 1 shows that each of the finite difference formulae choosen gives a good approximate
derivative of the functions considered. The accuracy of the approximations are related to both
the order of accuracy of the corresponding formula and its error constant. Moreover, the new
formulae are less prone to floating point error when the approximation reaches machine accuracy.
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Figure 1: Graphs of absolute error for the numerical derivative of u(x) = sin(100πx) (left) and u(x) = sin(1000πx) (right)
at x = 0 with B6, B10, BC6, BC10, IC6 and IC10.
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Chapter 2

Arbitrary order A-stable methods
for ordinary differential equations
via deferred correction

This chapter is presented in terms of a journal article and submitted to BIT Numerical
Mathematics (BIT), carrying the same title as mentioned above. Please see the
attached paper for the content.
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1 Introduction

In [9, 18], Gustafsson and Kress introduced a new version of deferred correction
strategy for the numerical solution of linear systems of ODEs [9] and initial bound-
ary value problems [18], under a monotonicity condition. Numerical experiments
with one-dimensional linear parabolic and hyperbolic equations were performed and
showed that the method is effective (orders 2, 4 and 6 of accuracy are achieved). We
propose to extend the method from [9,18] to the time-discretization of more general
time-evolution partial differential equations (PDEs). In this paper, we restrict to the
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2

case of the initial value problem (IVP)
{

du

dt
= F (t,u), t ∈ [0,T ],

u(0) = u0,
(1)

where the unknown u is from [0,T ] into a Banach space X, u0 is a given data
and F is a sufficiently differentiable function such that u exists and is sufficiently
differentiable. The main objective is to show the properties of the numerical method
(consistency, stability, convergence and order of accuracy). A complete analysis of
the DC method applied to reaction-diffusion equations leads to an arbitrary high
order and unconditionally stable method (see [17]).

The deferred correction (DC) method is used to improve the order of accuracy
of numerical methods of lower order. This method is explored by many authors,
e.g. [1, 2, 6, 7, 9, 11, 19, 21]. The method in [6] is an application of iterative deferred
correction (IDC). The authors proved that an asymptotic improvement of order p
can be accomplished, from a scheme of order p, at each step of the IDC procedure,
provided suitable finite difference operators are employed. Numerical experiments
are performed with the IDC applied to the trapezoidal rule, Taylor-2 and Adams-
Bashforth of order 2. The results are promising even though they point out some
difficulties of the proposed algorithms: inacuracy for “large” time step and no asymp-
totic improvement for high levels of correction. The approaches in [1,2,7,9,11,19] are
quite similar and consist in a linear perturbation of a low order scheme. However,
solving stiff problems (problems extremely hard to solve by standard explicit step-
by-step methods [23]) is a challenge unfavorable for these methods. In particular,
the method in [19], concerning a highly accurate solver for stiff ODEs, requires suf-
ficiently small time steps for moderately stiff problems while convergence is reduced
to order 2 for “very stiff” problems.

Our schemes are based on nonlinear perturbations (corrections) of the implicit
midpoint rule and inherit the A-stable property of the trapezoidal rule [5] at any
stage of the correction. Starting from an approximation

{
u2,n}N

n=0 of the exact solu-
tion u by the implicit midpoint rule on a uniform partition 0 = t0 < t1 < · · ·< tN = T
of [0,T ], at the stage j = 1,2, · · · of the correction we obtain an approximation{
u2j+2,n}N

n=0 of u, expected to be of order 2j+2 of accuracy, on the same partition.
Each approximate solution

{
u2j,n}N

n=0 to be corrected is subject to a deferred cor-
rection condition (DCC) which guarantees the improvement of the order of accuracy.
We prove that if

{
u2j,n}N

n=0 satisfies the DCC and its correction
{
u2j+2,n}N

n=0 con-
verges to u at the discrete points 0 = t0 < t1 < · · · < tN = T (or is simply bounded,
when X is finite dimensional) then

{
u2j+2,n}N

n=0 approximates u with order 2j+2.
Moreover, provided the function F is Lipschitz with respect to its second variable
or satisfies a one-sided Lipschitz condition, each

{
u2j,n}N

n=0 satisfies the DCC and
then converges with order 2j of accuracy, for arbitrary positive integer j. The theory
is illustrated by numerical tests, for the schemes of order 2, 4, ..., 10.

The paper is organized as follows: in section 2 we recall some basic results from
finite difference approximations and present the DC schemes; section 3 deals with
the consistency of the method; the analysis of convergence and order of accuracy is
given in section 4; absolute stability is proved is section 5, and section 6 is devoted
to numerical experiments.
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3

2 Deferred correction schemes for the implicit midpoint rule

We suppose that F ∈ C2p+2 ([0,T ]×X,X), for a positive integer p, so that (1) has
a unique solution u ∈ C2p+3 ([0,T ],X). We simply denote by ‖ · ‖, the norm in the
Banach space X. For a time step k > 0, we denote tn = nk and tn+1/2 = (n+1/2)k,
for each integer n. This implies that t0 = 0. We consider the time steps k such that
0 = t0 < t1 < · · ·< tN = T is a partition of [0,T ], for a non-negative integer N . The
centered, forward and backward difference operators D, D+ and D−, respectively,
related to k and applied to u, are defined as follows:

Du(tn+1/2) = u(tn+1)−u(tn)
k

,

D+u(tn) = u(tn+1)−u(tn)
k

,

and
D−u(tn) = u(tn)−u(tn−1)

k
,n≥ 1.

The average operator is denoted by E:

Eu(tn+1/2) = û(tn+1) = u(tn+1) +u(tn)
2 .

The composition of D+ and D− is defined recursively. They commute, that is
(D+D−)u(tn) = (D−D+)u(tn) =D−D+u(tn), and satisfy the identities

(D+D−)mu(tn) = k−2m
2m∑

i=0
(−1)i

(
2m
i

)
u(tn+m−i), (2)

and

D−(D+D−)mu(tn) = k−2m−1
2m+1∑

i=0
(−1)i

(
2m+ 1
i

)
u(tn+m−i), (3)

for each integer m≥ 1 such that 0≤ tn−m−1 ≤ tn+m ≤ T . We have the estimate
∥∥Dm1

+ Dm2
− u(tn)

∥∥≤ max
0≤t≤T

∥∥∥∥
dm1+m2u

dtm1+m2
(t)
∥∥∥∥ , (4)

provided [tn−m2 , tn+m1 ]⊂ [0,T ] and m1 +m2 ≤ 2p+ 3 (see [14, p.249] or [16]).
If {un}n is a sequence of approximation of u at the discrete points tn, the finite

difference operators apply to {un}n, and we define

Dun+1/2 =D+u
n =D−un+1 = un+1−un

k
,

and
Eun+1/2 = ûn+1 = un+1 +un

2 .

From the centered finite difference approximation (see [16, Thm 5] or [3, 4, 12])
we have

du

dt
(tn+1/2) = u(tn+1)−u(tn)

k
−

j∑

i=1
c2i+1k

2i(D+D−)iDu(tn+1/2)) +O(k2j+2) (5)
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and

u(tn+1/2) = u(tn+1) +u(tn)
2 −

j∑

i=1
c2ik

2i(D+D−)iEu(tn+1/2) +O(k2j+2), (6)

for each integer 1≤ j ≤ p. These approximations lead to the schemes

un+1−un
k

−
j∑

i=1
c2i+1k

2i(D+D−)iDun+1/2

= F

(
tn+1/2,

un+1 +un

2 −
j∑

i=1
c2ik

2i(D+D−)iEun+1/2

)
.

(7)

The schemes (7) are multi-steps and prone to stability restrictions. We resort to DC
method to transform them into a sequence of one step schemes as follows: For j = 0,
we have the implicit midpoint rule

u2,n+1−u2,n

k
= F

(
tn+1/2,

u2,n+1 +u2,n

2

)
, u2,0 = u0. (8)

For j ≥ 1,

u2j+2,n+1−u2j+2,n

k
−

j∑

i=1
c2i+1k

2i(D+D−)iDu2j,n+1/2

= F

(
tn+1/2,

u2j+2,n+1 +u2j+2,n

2 −
j∑

i=1
c2ik

2i(D+D−)iEu2j,n+1/2

)
,

(9)

u2j+2,0 = u0. (10)

The scheme (9)-(10) has unknowns u2j+2,n, n= 1,2, ...,N , and is deduced from (7)
by substituting the unknown un under the summation symbols by u2j,n. The index
2j indicates that

{
u2j,n}

n
is expected to be an approximation of the exact solution

u with order 2j of accuracy. We call the schemes (9)-(10) Deferred Correction of
order 2j+ 2 for the implicit midpoint rule, denoted DC(2j+2).

Remark 1 The scheme (9)-(10), for n= 1,2,3, · · · , j, should involve unknowns u2j,−1, ...,u2j,−j

which represent approximate solutions of (1) at the discrete points t=−k, ...,−jk, re-
spectively. To avoid those approximations for t < 0, we propose the following scheme
which is efficient for the computation of u2j+2,1, ...,u2j+2,j , using only points within
the solution interval [0,T ].

u2j+2,n+1−u2j+2,n

k
−k−1

j∑

i=1
cj2i+1k

2i+1
j (D+D−)iDū2j,(2j+1)n+j+1/2

= F

(
tn+1/2,Eu

2j+2,n+1/2−
j∑

i=1
cj2ik

2i
j (D+D−)iEū2j,(2j+1)n+j+1/2

)
,

(11)

u2j+2,0 = u0. (12)
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The finite difference operator in (11) are related to the time step kj = k/(2j+ 1).
The approximations

{
u2j,m}

m
and

{
u2j,n}

n
are computed from the same scheme,

(8) or (9)-(10), but for the time steps kj and k, respectively. The scheme (11) results
from the finite difference approximations

u′(tn+1/2) = u(tn+1)−u(tn)
k

− 1
k

j∑

i=1
cj2i+1k

2i+1
j D(D+D−)iu(τj+1/2) +O(k2j+2

j )

(13)
and

u(tn+1/2) = u(tn+1) +u(tn)
2 −

j∑

i=1
cj2ik

2i
j (D+D−)iEu(τj+1/2) +O(k2j+2

j ), (14)

where tn = τ0 < τ1 < ... < τ2j+1 = tn+1, with τm = tn+mkj , for m= 1,2, · · · ,2j+1.
Table 1 gives the coefficients cji for j = 1,2,3,4.

Table 1 Coefficients of the approximations (13)-(14) for j = 1,2,3,4

j cj2 cj3 cj4 cj5 cj6 cj7 cj8 cj9
1 9

8
9
8

2 25
8

125
24

125
128

125
128

3 49
8

343
24

637
128

13377
1920

1029
1024

1029
1024

4 81
8

243
8

1917
128

17253
640

7173
1024

64557
7168

32733
32768

32733
32768

Remark 2 Each u2j+2,n+1, n≥ j, is an iterative solution of the system

x−ajn−kF (tn+1/2,0.5x+ bjn) = 0, (15)

where x is the unknown, and ajn and bjn are constants depending on u2j+2,n and
u2j,n+1+j ,u2j,n+j , · · · ,u2j,n−j . The total number of vectors (in the solution space
X) stored for the computation of u2j+2,n+1 is j2 +3j+1: u2j+2,n and the u2i,q, for
i= 1,2, · · · , j, and n+ (j− i+ 1)(j+ i)/2−2i≤ q ≤ n+ 1 + (j− i+ 1)(j+ i)/2.

3 Deferred correction condition (DCC)

In this section we give a sufficient condition for the scheme (9)-(10) to achieve order
2j+2 of accuracy. Hereafter, the letter C will denote any constant independent from
k, and that can be calculated explicitly in term of known quantities. The exact value
of C may change from a line to another line. We have the following definition:

Definition 1 Let u be the exact solution of the Cauchy problem (1). Given a posi-
tive integer j, a sequence

{
u2j,n}N

n=0 of approximations of u at the discrete points
0 = t0 < · · ·< tN = T is said to satisfy the Deferred Correction Condition (DCC) for
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the implicit midpoint rule if
{
u2j,n}N

n=0 approximates u with order 2j of accuracy,
and we have

‖(D+D−)D(u2j,n+1/2−u(tn+1/2))‖+‖D+D−(u2j,n+1−u(tn+1))‖ ≤ Ck2j , (16)

for n= 1,2, ...,N−2 and k≤ k0, where k0 > 0 is fixed and C is a constant independent
from k.

Remark 3 Condition (16) is equivalent to
∥∥∥∥∥

j∑

i=1
c2ik

2i (D+D−)i
(
u2j,n−u(tn)

)
∥∥∥∥∥≤ Ck

2j+2, (17)

and
∥∥∥∥∥

j∑

i=1
(c2i+1− c2i)k2i (D+D−)iD

(
u2j,n+1/2−u(tn+1/2)

)∥∥∥∥∥≤ Ck
2j+2, (18)

for n= j,j+ 1, · · · ,N − j. This is due to the transform

k2i (D+D−)i
(
u2j,n−u(tn)

)
= k2

i−1∑

l=0
(−1)l

(
2i−2
l

)
D+D−

(
u2j,n−u(tn)

)

and a similar transform for ki (D+D−)iD
(
u2j,n+1/2−u(tn+1/2)

)
.

We have the following result:

Theorem 1 Let u be the exact solution of (1) and
{
u2j,n}N

n=0, 1 ≤ j ≤ p, a se-
quence of approximations of u satisfying DCC for the implicit midpoint rule. Let{
u2j+2,n}N

n=0 be the solution of (9)-(10) built from
{
u2j,n}N

n=0. We suppose that
u2j+2,1, ...,u2j+2,j are given and satisfy

‖u2j+2,n−u(tn)‖ ≤ Ck2j+2, for n= 1,2, ..., j, (19)

where C is a constant independent from k. Furthermore, we suppose that one of the
following four conditions holds:

(i) F is Lipschitz with respect to the second variable x: there exists µ≥ 0 such that

‖F (t,x)−F (t,y)‖ ≤ µ‖x−y‖, ∀(t,x,y) ∈ [0,T ]×X×X. (20)

(ii) X is finite dimensional, and
{
u2j+2,n}N

n=0 remains close to u in the sense that
there exists M > 0 such that

‖u2j+2,n−u(tn)‖ ≤M, for each n= 0,1, ...,N. (21)

(iii) X is infinite dimensional, and
{
u2j+2,n}

n
converges to the exact solution u.
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(iv) X is a Hilbert space with inner product (., .), and F satisfied the following so-
called one-sided Lipschitz condition, with a constant µ≥ 0,

(F (t,x)−F (t,y),x−y)≤ µ‖x−y‖2, ∀(t,x,y) ∈ [0,T ]×X×X. (22)

Then
{
u2j+2,n}

n
approximates u with order 2j+ 2 of accuracy, that is

‖u2j+2,n−u(tn)‖ ≤ Ck2j+2, for each n= 0,1, ...,N, (23)

where C is a constant depending only on j, T , DCC, a Lipschitz constant on F and
the derivatives of u up to order 2j+ 3, for time steps k sufficiently small.

Proof
1. First we consider the case where the function F = F (t,x) is Lipschitz with respect
to the second variable x. Combining (1) and (9), we obtain the identity

DΘ2j+2,n+1/2 = σ2j+2,n+1/2 + (Λj −Γ j)D
(
u2j,n+1/2−u(tn+1/2)

)

+F
(
tn+1/2, û

2j+2,n+1−Γ j û2j,n+1)−F
(
tn+1/2, û(tn+1)−Γ j û(tn+1)

)
,

(24)

where Λj and Γ j are finite difference operators defined for arbitrary integer j ≥ 1 by

Λju(tn) =
j∑

i=1
c2i+1k

2i(D+D−)iu(tn),

and

Γ ju(tn) =
j∑

i=1
c2ik

2i(D+D−)iu(tn),

provided u(tn±i) exists for i= 0,1,2, · · · , j. We have defined

Θ2j+2,n =
(
u2j+2,n−u(tn)

)
−Γ j

(
u2j,n−u(tn)

)
, (25)

and

σ2j+2,n+1/2 =
[
u′(tn+1/2)−Du(tn+1/2) +ΛjDu(tn+1/2)

]

−
[
F (tn+1/2,u(tn+1/2))−F (tn+1/2, û(tn+1)−Γ j û(tn+1))

]
.

From (5) we have
∥∥u′(tn+1/2)−Du(tn+1/2) +ΛjDu(tn+1/2)

∥∥≤ Ck2j+2,

and, since F is differentiable and u is sufficiently regular, we deduce from the mean
value theorem and the approximation (6) that

∥∥F (tn+1/2,u(tn+1/2))−F (tn+1/2, û(tn+1)−Γ j û(tn+1))
∥∥≤ Ck2j+2,

for each n = 0,1, · · · ,N , where C is a constant depending only on j, T , F and the
derivatives of u up to order 2j+ 3. The last two inequalities imply that

∥∥∥σ2j+2,n+1/2
∥∥∥≤ Ck2j+2. (26)
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Since the sequence
{
u2j,n}

n
satisfies DCC, from Remark 3 we have

∥∥∥
(
Λj −Γ j

)
D
(
u2j,n+1/2−u(tn+1/2)

)∥∥∥≤ Ck2j+2. (27)

From the Lipschitz condition on F we have
∥∥F
(
tn+1/2, û

2j+2,n+1−Γ j û2j,n+1)−F
(
tn+1/2, û(tn+1)−Γ j û(tn+1)

)∥∥

≤ µ‖Θ̂2j+2,n+1‖.
(28)

Substituting inequalities (26)-(28) in the identity (24), we deduce that

‖DΘ2j+2,n+1/2‖ ≤ Ck2j+2 +µ‖Θ̂2j+2,n+1‖,
and it follows from the triangle inequality that

‖Θ2j+2,n+1‖ ≤ C k2j+3

2−µk + 2 +µk

2−µk ‖Θ
2j+2,n‖,

for 0≤ µk < 2. We then deduce by induction on n that

‖Θ2j+2,n‖ ≤ C 1
2−µk

(
2 +µk

2−µk

)n−j−1
k2j+2 +

(
2 +µk

2−µk

)n−j
‖Θ2j+2,j‖. (29)

From hypothesis (19) and the DCC we have

‖Θ2j+2,j‖ ≤ ‖u2j+2,j −u(tj)‖+
∥∥Γ j(u2j,j −u(tj))

∥∥≤ Ck2j+2, (30)

where C is a constant independent from k. Moreover, the sequence
{(

2+µk
2−µk

)n}
n

is
bounded above by exp(2µT/(2−ε)), for 0≤ µk ≤ ε < 2. Whence

‖Θ2j+2,n‖ ≤ Ck2j+2.

Finally, by the triangle inequality, identity (25) and DCC, we have

‖u2j+2,n−u(tn)‖ ≤ ‖Θ2j+2,n‖+
∥∥Γ j(u2j,n−u(tn))

∥∥≤ Ck2j+2,

where C is a constant depending only on j, T , the DCC constant, µ and the deriva-
tives of u up to order 2j+ 3.

2. Suppose that
{
u2j+2,n}N

n=0 satisfies (21) and X is finite dimensional. We can write

F
(
tn+1/2, û

2j+2,n+1−Γ j û2j,n+1)−F
(
tn+1/2, û(tn+1)−Γ j û(tn+1)

)

=
∫ 1

0
duF

(
tn+1/2, û(tn+1)−Γ j û(tn+1) +sΘ̂2j+2,n+1

)(
Θ̂2j+2,n+1

)
ds.

From (21) and the DCC there exists k1 > 0 such that 0< k ≤ k1 ≤ k0 implies

‖Θ̂2j+2,n+1‖ ≤M +Ck2j+2 ≤M + 1.
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On the other hand, we have

‖û(tn+1)−Γ j û(tn+1)‖=

∥∥∥∥∥û(tn+1)−
j∑

i=1

2i∑

l=0
(−1)lc2i

(
2i
l

)
u(tn+i−l)

∥∥∥∥∥≤R,

where

R :=

(
1 +

j∑

i=1
22i|c2i|

)
max

0≤t≤T
‖u(t)‖.

It follows (28) for
µ= sup

0≤t≤T,‖x‖≤M+R+1
‖dxF (t,x)‖ .

Since F is differentiable and the set {x ∈X : ‖x‖ ≤M +R+ 1} is compact in the
finite dimensional linear space X, the supremum exists and is finite. The theorem is
then deduced from the case (i).

3. If
{
u2j+2,n}

n
converges to the exact solution u, taking the DDC and the finite

difference formula (6) into account, we have
(
û(tn+1)−Γ j û(tn+1) +sΘ̂2j+2,n+1

)
−u(tn+1/2)→ 0, as k→ 0, for 0≤ s≤ 1.

It follows from the continuity of u 7→ duF (t,u) that there exists 0 < k2 ≤ k0 such
that 0< k ≤ k2 implies

‖duF (tn+1/2,û(tn+1)−Γ û(tn+1) + τΘ̂2j+2,n+1)‖ ≤ 1 + max
0≤t≤T

‖duF (t,u(t))‖.

The theorem, in this case, follows by taking µ= 1+max0≤t≤T ‖duF (t,u(t))‖ in (i).

4. Here we consider the case where X is a Hilbert space and F satisfies the mono-
tonicity condition (22). Then, taking the inner product of the identity (24) with
Θ̂2j+2,n+1, we deduce the inequality
(
DΘ2j+2,n+1/2, Θ̂2j+2,n+1

)
≤
(
σ2j+2,n+1/2, Θ̂2j+2,n+1

)
+µ‖Θ̂2j+2,n+1‖2

(
(Λj −Γ j)D(u2j,n+1/2−u(tn+1/2)), Θ̂2j+2,n+1

) (31)

since, according to (22), we have
(
F
(
tn+1/2, û

2j+2,n+1−Γ û2j,n+1)−F
(
tn+1/2, û(tn+1)−Γ û(tn+1)

)
, Θ̂2j+2,n+1

)

≤ µ
∥∥∥Θ̂2j+2,n+1

∥∥∥
2
.

Inequalities (26)-(27) together with the Cauchy-Schwartz inequality yield
∣∣∣
(
σ2j+2,n+1/2, Θ̂2j+2,n+1

)∣∣∣≤ Ck2j+2‖Θ̂2j+2,n+1‖,

and
∣∣∣
(

(Λj −Γ j)D(u2j,n+1/2−u(tn+1/2)), Θ̂2j+2,n+1
)∣∣∣≤ Ck2j+2‖Θ̂2j+2,n+1‖,
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where C is a constant depending only on j, T , a Lipschitz constant on F and the
derivatives of u up to order 2j+3. Substituting the last three inequalities into (31),
we obtain

(
DΘ2j+2,n+1/2, Θ̂2j+2,n+1

)
≤ Ck2j+2‖Θ̂2j+2,n+1‖+µ‖Θ̂2j+2,n+1‖2,

and we deduce from the identity
(
DΘ2j+2,n+1/2, Θ̂2j+2,n+1

)
= 1

2k
(
‖Θ2j+2,n+1‖2−‖Θ2j+2,n‖2

)

and the inequality

‖Θ̂2j+2,n+1‖ ≤ 1
2
(
(‖Θ2j+2,n+1‖+‖Θ2j+2,n‖

)

that
‖Θ2j+2,n+1‖ ≤ C k2j+3

2−µk + 2 +µk

2−µk ‖Θ
2j+2,n‖,

for 0≤ µk < 2. The conclusion follows from the case (i).

Remark 4 Theorem 1 shows that the correction may be applied for any other scheme
satisfying DCC.

Remark 5 In practice, the estimate (23) takes the form

‖u2j+2,n−u(tn)‖ ≤ C
(

2 +µk

2−µk

)n−j−1
k2j+2, (32)

where µ ' max
0≤t≤T

‖duF (t,u(t))‖. This inequality requires 0 ≤ µk < 2. If µk > 2 the
estimate does not hold, but the methods may produce accurate solutions which are
prone to oscillations around the exact solution (this is the case when the eigenvalues
of the Jacobian duF (t,u(t)) along the solution curve have negative real part).

4 Convergence and order of accuracy

In this section we prove the following theorem:

Theorem 2 Let u ∈ C2p+3 ([0,T ],X) be the exact solution of the problem (1). Sup-
pose that one of the four conditions (i)-(iv) of Theorem 1 holds, with condition (ii) or
(iii) holding for all j = 0,1, · · · ,p+1. Then each sequence

{
u2j,n}N

n=0, 1≤ j ≤ p+1,
solution of the scheme (8) or (9)-(10), approximates u with order 2j of accuracy.
Furthermore, we have the estimate

‖(D+D−)mD(u2j,n+1/2−u(tn+1/2))‖+‖(D+D−)m(u2j,n+1−u(tn+1))‖ ≤ Ck2j

(33)
for m = 0,1, ...,p− j and n = m+ j− 1,m+ j, ...,N − j−m, where C is a constant
depending only on p, T , and the derivatives of u and F up to order 2m+2j+1 and
2m+ 2j−1, respectively.

To prove this theorem we need Theorem 1 and the the following lemma:
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Lemma 1 Let
{
u2,n}N

n=0 be the solution of the scheme (8). Suppose that one of the
conditions (i), (iii) or (iv) of Theorem 1 holds, or

{
u2,n}N

n=0 is bounded in the sense
of the condition (ii) of this theorem. Then

{
u2,n}N

n=0 approximates u with order 2
of accuracy, and we have the inequality

‖(D+D−)mD(u2,n+1/2−u(tn+1/2))‖+‖(D+D−)m(u2,n+1−u(tn+1))‖ ≤ Ck2,
(34)

for m= 0,1, ...,p and n=m,m+1, ...,N−m−1, where C is a constant depending only
on p, T , and the derivatives of u and F up to order 2m+3 and 2m+1, respectively.

Proof (Proof of Lemma 1) For the sake of simplification we suppose that F = F (x).
The general case can be handled by transforming (1) into an autonomous system.
From the hypotheses of the Lemma, Theorem 1 implies that

{
u2,n}N

n=0 approximates
u with order two of accuracy:

‖u(tn)−u2,n‖ ≤ Ck2, for each n= 0,1,2, · · · ,N, (35)

where C is a constant depending only on T , F and the derivatives of u up to order
3. To establish (34) we proceed by induction on the integer m= 0,1, ...,p.

1. Inequality (34) for m= 0.
As in Theorem 1, we combine (1) and (8) and deduce the identity

DΘ2,n+1/2 =
[
F
(
û2,n+1)−F (û(tn+1))

]
+σ2,n+1/2, (36)

where
Θ2,n = u2,n−u(tn),

and

σ2,n+1/2 =
[
u′(tn+1/2)−Du(tn+1/2)

]
−
[
F
(
u(tn+1/2

)
−F (û(tn+1))

]
.

From Taylor’s formula with integral remainder and the estimate (4), there exists a
function g such that

σ2,n+1/2 = k2g(tn+1),

with
‖Dm1

+ Dm2
− g(tn+1)‖ ≤ C, for m2−1≤ n≤N −m1−1, (37)

for each nonnegative integers m1 and m2 such that m1 +m2 ≤ 2p, where C is a
constant depending only on T , F , and the derivatives of u up to order m1 +m2 +3.
We can write

F
(
û2,n+1)−F (û(tn+1)) =

∫ 1

0
dF
(
Kn+1

1
)

(Θ̂2,n+1)dτ1,

where
Kn+1

1 = û(tn+1) + τ1Θ̂
2,n+1.

The last identities substituted into (36) yield

DΘ2,n+1/2 =
∫ 1

0
dF
(
Kn+1

1
)

(Θ̂2,n+1)dτ1 +k2g(tn+1). (38)
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Proceeding as in Theorem 1, we deduce from (35) and the regularity of u that
∥∥∥∥
∫ 1

0
dF
(
Kn+1

1
)

(Θ̂2,n+1)dτ1

∥∥∥∥≤ C‖Θ̂2,n+1‖.

Therefore, taking the norm on both sides of (38), we deduce by the triangle inequality
and the inequalities (35) and (37), for m1 =m2 = 0, that

‖DΘ2,n+1/2‖ ≤ C‖Θ̂2,n+1‖+k2‖g(tn+1)‖ ≤ Ck2, (39)

where C is a constant depending only on T and the derivatives of u and F up to
order 3 and 1, respectively. The last inequality combined with (35) implies that (34)
holds for m= 0.

2. Here we are going to prove that inequality (34) remains true for m+ 1, assuming
that it holds for an arbitrary integer m such that 0≤m≤ p−1.

We apply (D+D−)mD+ to (38) and obtain

(D+D−)m+1Θ2,n+1 = (D+D−)mD+h(tn+1) +k2 (D+D−)mD+g(tn+1), (40)

where we set

h(tn+1) =
∫ 1

0
dF
(
Kn+1

1
)

(Θ̂2,n+1)dτ1.

The main difficulty is to bound (D+D−)mD+h(tn+1) =D2m+1
+ h(tn+1−m). We have

D+h(tn) =
∫ 1

0
dF
(
Kn+1

1
)

(D+Θ̂
2,n)dτ1 +

∫ 1

0

∫ 1

0
d2F (Kn

2 )
(
D+K

n
1 , Θ̂

2,n
)
dτ1dτ2,

D2
+h(tn) =

∫ 1

0
dF (Kn+2

1 )(D2
+Θ̂

2,n)dτ1 +
∫ 1

0

∫ 1

0
d2F (Kn+1

2 )(D+K
n+1
1 ,D+Θ̂

2,n)dτ2

+
∫ 1

0

∫ 1

0
d2F (Kn+1

2 )(D2
+K

n
1 , Θ̂

2,n+1)dτ2 +
∫ 1

0

∫ 1

0
d2F (Kn+1

2 )(D+K
n
1 ,D+Θ̂

2,n)dτ2

+
∫ 1

0

∫ 1

0

∫ 1

0
d3F (Kn

3 )
(
D+K

n
2 ,D+K

n
1 , Θ̂

2,n
)
dτ3,

where dτ i = dτ1 · · ·dτi, and

Kn
i+1 =Kn

i + τi+1(Kn+1
i −Kn

i ) =Kn
1 +

i∑

l=1

∑

2≤i1<···<il≤i+1
τi1 · · ·τilklDl+Kn

1 . (41)

It follows the general formula

Dq+h(tn) =
q+1∑

i=1

∑

|αi|=q
Ln,qi,αi , for q = 1,2, ...,2p+ 1, and n≤N − q, (42)
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where αi = (α1
i , · · · ,αi−1

i ,αii) ∈ {1,2, · · · , q}
i−1 ×{0,1, · · · , q− i+ 1}, and Ln,qi,αi is a

linear combination, with properly chosen coefficients, of the quantities

Ln,qi,αi,βi =
∫

[0,1]i
diF (Kn+q+1−i

i )
(
D
αi−1
i

+ K
n+βi−1

i
i−1 , · · · ,Dα

1
i

+ K
n+β1

i
1 ,D

αii
+ Θ̂2,n+βii

)
dτ i,

where βi = (β1
i , · · · ,βi−1

i ,βii)∈ {1,2, · · · , q}
i−1×{0,1, · · · , q− i+ 1} with βli+αli ≤ q−

l+ 1, for l = 1, · · · , i. From (41) and (35) we have

Kn+1
i = u(tn+1/2) +O(k), for i= 1,2, · · · ,2p+ 2,

and we deduce that there exists k3 > 0 such that 0< k ≤ k3 implies
∥∥diF (Kn

i )
∥∥≤ Ci, for i= 1,2, ...,2p+ 2, and 0≤ n≤N − i+ 1, (43)

where Ci is a constant depending only on k3, T , and the derivatives of u and F up
to order 3 and i, respectively. From the inductions hypothesis (34) and inequality
(4) we have

‖Dr+Kn
i ‖ ≤ C, for 1≤ r ≤ i≤ 2m+ 3,1≤ n≤N − i− r+ 1, (44)

and
‖Dr+Θ̂2,n‖ ≤ Ck2, for 1≤ r ≤ 2m+ 1,1≤ n≤N − r, (45)

where C is a constant depending only on m, T , and the derivatives of u and F up to
order r+2 and r, respectively. Each Ln,qi,αi,βi being multilinear continuous, we deduce
from (43)-(45) and the relation βli +αli ≤ q− l+ 1, for l = 1, · · · , i, that

‖Ln,qi,αi,βi‖ ≤ Ck
2, for 1≤ i≤ q+ 1≤ 2m+ 2, n≤N − q.

It follows by the triangle inequality that (42) for q = 2m+ 1 yields

‖(D+D−)mD+h(tn+1)‖=
∥∥D2m+1

+ h(tn+1−m)
∥∥≤ Ck2,

for n=m,m+1, · · · ,N − (m+1)−1, where C is a constant depending only on p, T ,
and the derivatives of u and F up to order 2m+4 and 2m+2, respectively . Passing
to the norm in identity (40), we deduce from (37) and the last inequality that

‖(D+D−)m+1Θ2,n+1‖ ≤ Ck2. (46)

Otherwise, applying D− to (40), inequalities (43)-(45) and (46) yield

‖(D+D−)m+1h(tn+1)‖=
∥∥D2m+2

+ h(tn−m)
∥∥≤ Ck2,

for n = m,m+ 1, · · · ,N − (m+ 1)− 1, where C is a constant depending only on p,
T , and the derivatives of u and F up to order 2m+ 5 and 2m+ 3, respectively.
Therefore, passing to the norm in the identity obtained by applying D− to (40), we
deduce from (40) and the last inequality that

‖D− (D+D−)m+1Θ2,n+1‖ ≤ Ck2, (47)

for n=m,m+1, · · · ,N−(m+1)−1, with the constant C depending only on p, T , and
the derivatives of u and F up to order 2m+ 5 and 2m+ 3, respectively. Inequalities
(46) and (47) imply that the induction hypothesis is also true for m+ 1, and we
deduce that (34) is true for each integer m= 0,1, ...,p.
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Proof (Proof of Theorem 2) We proceed by induction on j = 1,2, ...,p+ 1. The case
j = 1 is immediate from Lemma 1. Suppose that

{
u2j,n}N

n
approximates u with

order 2j of accuracy and satisfies (33), for an arbitrary j such that j ≤ p. We are
going to prove that

{
u2j+2,n}N

n
approximates u with order 2j+ 2 of accuracy and

(33) holds substituting j by j+ 1.
From the induction hypothesis,

{
u2j,n}

n
satisfies DCC. Because

{
u2j,n}

n
and{

u2j,m}
m

are computed from the same scheme DC2j, but for different time steps,{
u2j,m}

m
also satisfies DCC. Therefore, as in 29, Theorem 1 applied to the approx-

imation
{
u2j+2,n}j

n=0, built from
{
u2j,m}

m
, yields

‖Θ2j+2,n‖ ≤ C 1
2−µk

(
2 +µk

2−µk

)n−1
k2j+2 +

(
2 +µk

2−µk

)n
‖Θ2j+2,0‖,

where

Θ
2j+2,n =

(
u2j+2,n−u(tn)

)
−Γ j

(
u2j,(2j+1)n+j −u(t(2j+1)n+j)

)
, for 1≤ n≤ j.

According to the DCC and the condition u2j+2,0 = u(t0) = u0, we have
∥∥∥Θ2j+2,0

∥∥∥=
∥∥Γ j

(
u2j,j −u(tj)

)∥∥≤ Ck2j+2.

By the triangle inequality and the DCC, the last two inequalities yield

‖u2j+2,n−u(tn)‖ ≤ Ck2j+2, for n= 0,1, · · · , j. (48)

From the DCC on
{
u2j,n}

n
and the inequality (48), Theorem 1 again implies that

{
u2j+2,n}N

n=0 approximates the exact solution u with order 2j+2 of accuracy. There-
fore, it is enough to establish (33) for j+ 1, j ≤ p. To this end we rewrite identity
(24) as follows

DΘ2j+2,n+1/2 =H(tn+1) +σ2j+2,n+1/2 + (Λj −Γ j)D(u2j,n+1/2−u(tn+1/2)),
(49)

with

H(tn+1) =
∫ 1

0
duF

(
tn+1/2, û(tn+1)−Γ j û(tn+1) + τ1Θ̂

2j+2,n+1
)(

Θ̂2j+2,n+1
)
dτ1,

where Θ2j+2,n and σ2j+2,n+1/2 are as in Theorem 1. Proceeding as in Lemma 1 and
taking the finite difference formulae (5) and (6) into account, we can write

σ2j+2,n+1/2 = k2j+2ε1(tn+1),

where

‖Dm1
+ Dm2

− ε1(tn+1)‖ ≤ C, for m1 +m2 ≤ 2p−2j and m2−1≤ n≤N −m1−1,

C is a constant depending only on p, T , and the derivatives of u and F . According
to the inequality (33) from the induction hypothesis, we may write

(Λj −Γ j)D(u2j,n+1/2−u(tn+1/2)) = k2j+2ε2(tn+1),
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where

‖Dm1
+ Dm2

− ε2(tn+1)‖ ≤ C, for m1 +m2 ≤ 2p−2j+ 2 and m2−1≤ n≤N −m1−1.

Therefore, writing (49) as follows

D−Θ2j+2,n+1 =H(tn+1) +k2j+2G(tn+1),

with
G(tn+1) = ε1(tn+1) +ε2(tn+1),

the induction hypothesis and the reasoning from Lemma 1, substituting the functions
h and g, respectively, by H and G, Θ̂2,n+1 by Θ̂2j+2,n+1, and k2 by k2j+2, yields

‖(D+D−)mDΘ̂2j+2,n+1/2‖+‖(D+D−)mΘ̂2j+2,n+1‖ ≤ Ck2j+2,

for m = 0,1, ...,p− j and n = m+ j− 1,m+ j, ...,N − j−m, where C is a constant
depending only on p, T , and the derivatives of u and F up to order 2(m+ j+1)+1
and 2(m+ j) + 1, respectively. Inequality (33) holds for

{
u2j+2,n}

n
by the triangle

inequality from the last inequality.

5 Absolute stability

In this section we prove the absolute stability of the DC schemes. The notion of
absolute stability is introduced by Dahlquist [5] to characterize methods able to
solve stiff ODEs. Considering the following IVP,

{
u′ = λu
u(0) = 1, (50)

where λ is a complex number, we have the following definition (see [5, 20]):

Definition 2 A numerical method is said to be absolutely stable if the correspond-
ing solution for the problem (50) for fixed k > 0 and some Re(λ)< 0 is such that

lim
n→+∞

|un|= 0. (51)

The region of absolute stability of a numerical method is defined as the subset of the
complex plane

A= {z = λk ∈ C : (51) is satisfied } . (52)

If A∩C− = C−, C− = {λ ∈ C :Re(λ)< 0}, the numerical method is said to be A-
stable.

Before establishing absolute stability results for the deferred correction schemes
(8) and (9)-(10), we recall the following result.

Lemma 2 Let Pm be a polynomial of degree m in one variable. Then the sum∑n
i=0Pm(i) is a polynomial of degree m+ 1 in the variable n.
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Proof Without loss of generality we assume that Pm(x) = xm and set Fm(n) =∑n
p=1 p

m. It is then enough to prove that Fm(n) is a polynomial of degree m+1 in
the variable n, for each non-negative integer m. We proceed by induction on m. The
cases m= 0,1 are trivial. Assume that Fm(n) is a polynomial of degree m+ 1 in n,
for arbitrary positive integer m. We have the identities

(n+ 1)m+2−1 =
n∑

q=1
[(q+ 1)m+2− qm+2] =

n∑

q=1

m+1∑

i=0

(
m+ 2
i

)
qi

=
m+1∑

i=0

(
m+ 2
i

)
Fi(n)

which implies that

Fm+1(n) = 1
m+ 2(n+ 1)m+2− 1

m+ 2

m∑

i=0

(
m+ 2
i

)
Fi(n)− 1

m+ 2 .

According to the induction hypothesis,
∑m
i=0
(
m+2
i

)
Fi(n) is a polynomial of degree

m+1 in the variable n. Therefore, the last identity implies that Fm+1(n) is a poly-
nomial of degree m+2 with respect to n, and we can deduce by induction that each
Fm(n) is a polynomial of degree m+1 in the variable n, for each non-negative integer
m.

Lemma 3 Suppose that F (t,u) = λu and u0 = 1 in the initial value problem (1),
where λ is a complex number with negative real part (λ∈C−). Then the corresponding
approximate solutions from the schemes (8) and (9)-(10) can be written as follows

u2j+2,n =
(

2 +λk

2−λk

)n−j
Pj (n) , for j = 0,1,2, ..., and n≥ j, (53)

where Pj(n) is a polynomial of degree j in the variable n.

Proof We suppose that λk 6=−2, otherwise we trivially have u2j,n+1 = 0, for n≥ j.
Since F (t,u) = λu, we can rewrite (9) as follows

u2j+2,n+1 = 2 +λk

2−λku
2j+2,n+ 2

2−λk
(
kD−Λju2j,n+1−λkΓ j û2j,n+1)

where, according to formulae (2) and (3), we have

kD−Λju2j,n =
j∑

i=1
c2i+1k

2i+1D−(D+D−)iu2j,n

=
j∑

i=1

2i+1∑

m=0
c2i+1(−1)m

(
2i+ 1
m

)
u2j,n+i−m,

and

Γ j û2j,n =
j∑

i=1
c2ik

2i(D+D−)iû2j,n =
j∑

i=1

2i∑

m=0
c2i(−1)m

(
2i
m

)
û2j,n+i−m.
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Combining the last three identities, we deduce that

u2j+2,n+1 = 2 +λk

2−λku
2j+2,n+ 2

2−λk

2j+1∑

i=0
αj,i(λk)u2j,n+1+j−i, for n≥ j ≥ 1, (54)

where αj,i is affine in λk. Under the hypothesis of the lemma, (8) matches the
trapezoidal rule, and we have

u2,n =
(

2 +λk

2−λk

)n
,

that is (53) is true for j = 0. Suppose that (53) holds for an arbitrary integer j ≥ 0.
From (54) we have

u2j+4,n = 2 +λk

2−λku
2j+4,n−1 + 2

2−λk

2j+3∑

i=0
αj+1,i(λk)u2j+2,n+1+j−i,

with n ≥ j+ 2, and, substituting each u2j+2,n+1+j−i by the formula given by the
induction hypothesis (53), we deduce that

u2j+4,n = 2 +λk

2−λku
2j+4,n−1 +

(
2 +λk

2−λk

)n−j−1
Qj(n),

where

Qj(n) = 2
2−λk

2j+2∑

i=0
αj+1,i(λk)

(
2 +λk

2−λk

)j+2−i
Pj(n+ 1 + j− i).

It follows that

u2j+4,n =
(

2 +λk

2−λk

)n−j−1

u2j+4,j+1 +

n∑

i=j+2
Qj(i)


 .

It is clear that Qj(n) is a polynomial of degree j in the variable n as Pj(n). Therefore,
according to the Lemma 2,

∑n
i=j+2Qj(i) is a polynomial of degree (j+ 1) in the

variable n. Whence,

u2j+4,n =
(

2 +λk

2−λk

)n−j−1
Pj+1(n), n≥ j+ 1,

where

Pj+1(n) = u2j+4,j+1 +
n∑

i=j+2
Qj(i)

is a polynomial of degree j+ 1 in the variable n. We then deduce by induction that
the lemma is true for arbitrary non-negative integer j.
Theorem 3 Each of the deferred correction schemes (8) and (9)-(10) is A-stable.
Proof From Lemma 3 we have, for Re(λk)< 0,

lim
n→+∞

|u2j+2,n|= lim
n→+∞

∣∣∣∣∣

(
2 +λk

2−λk

)n−j
Pj (n)

∣∣∣∣∣= lim
n→+∞

|Pj (n) |e(n−j)ln
∣∣ 2+λk

2−λk
∣∣

= 0

since, under the condition Re(λk)< 0, we have
∣∣ 2+λk

2−λk
∣∣< 1.
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6 Numerical experiments

In this section we evaluate the accuracy and order of convergence of the schemes
DC2,DC4, · · · ,DC10, implemented using the Scilab programming language. The
starting values are computed using the scheme (11)-(12). We choose five standard
problems for the evaluation: the first problem concerns the effect of high order deriva-
tives, the second is about long term integration, and the three others are about
stiffness. For a comparison of accuracy we implement in Scilab the backward differ-
entiation formulae (BDF) of order 2, 4 and 6 and the explicit Runge-Kutta (RK) of
order 4, in the case of problems having analytic solutions. The implemented BDF
are then run with exact starting values. For the problems without analytic solu-
tions we use the functions stiff (implementing BDF with adaptive steps) and rkf
(Runge-Kutta 4-5) of the solver ode from Scilab. For each of the problems, except
the first one, we give a table of absolute error and order of accuracy for pairs of two
consecutive time steps, for the approximate solutions with the DC methods, and we
present the optimal absolute error for the solvers stiff and rkf. For the problems
(59) and (60) that do not have an analytic solution, we consider a small time step
such that the approximate solutions with DC6, · · · ,DC10 are almost identical (to
machine precision for problem (59)), and we choose one of the approximate solutions
as reference solution. We denote by kmax the maximal time step allowed to compute
an optimal approximate solution with the solver stiff or rkf.

For solutions u= (u1, · · · ,ud) : [0,T ]→Rd, 1≤ d≤ 6, the absolute errors on the
approximate solutions

{
u2j,n}

0≤n≤N , 1≤ j ≤ 5, is computed with the norm

‖u2j
i −ui‖= max

0≤n≤N
|u2j,n
i −ui(tn)|, 1≤ i≤ d.

For very large N we extract solutions at 2× 106 or 3× 106 discrete times evenly
spread over the interval [0,T ].

6.1 Bernoulli differential equation

u′(t) = F (t,u) =−0.1u(t)−1000u20(t) , u(0) = 1, t ∈ [0,10]. (55)
Figure 1 shows the graph of the absolute error with DC2, · · · ,DC10, BDF2, BDF4,
BDF6 and RK4.

6.2 Oscillatory problem [13]

u′ = λucos(t) , u(0) = 1, T = 106,λ= 10. (56)
The exact solution is u(t) = eλsin(t). The original problem is set with λ = 1 in [13].
The author in [15] solved this problem with Runge-Kutta methods of orders 4 and
8, for λ= 2 and T = 2580π, to “ illustrate the need of higher order methods when a
long-term integration problem is considered”. Table 2 gives the absolute error and the
order of convergence for each pair of consecutive time steps. The maximal absolute
errors with the implemented BDF 2, 4 and 6 for the time step k = 1.5625× 10−3

are respectively 22026.46, 14836.76 and 5578.40. The solvers rkf and stiff, used
with kmax = 0.1 and tolerances rtol = 100× atol = 10−10, give the absolute errors
22026.46 and 2636.00, respectively.
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Fig. 1 Graphs of the maximal absolute error for the Bernoulli differential equation with
DC2, · · · ,DC10 at left and BDF2, BDF4, BDF6 and RK4 at right .

Table 2 Absolute error (order of convergence) for the oscillatory problem

k DC2 DC4 DC6 DC8 DC10
5.00e-2 3418 456.26 42.665 3.2350 0.2132
2.50e-2 790.2 (2.1) 25.351 (4.2) 0.5959 (6.2) 1.17e-2 (8.1) 1.9e-4 (10.1)
1.25e-2 193.8 (2.0) 1.5493 (4.0) 9.17e-3 (6.0) 5.28e-5 (7.8) 2.79e-6 (6.1)
6.25e-3 48.23 (2.0) 9.67e-2 (4.0) 1.4e-4 (5.99) 2.78e-6 (0.0) 2.78e-6 (0.0)
1.56e-3 3.010 (2.0) 3.8e-4 (3.99) 4.72e-6 (2.5) 4.67e-6 (-0.3) 4.7e-6 (-0.3)

6.3 Problem B5 modified [8], stiff with complex eigenvalues of negative real parts

y′ =




−10 α 0 0 0 0
−α −10 0 0 0 0

0 0 −4 0 0 0
0 0 0 −1 0 0
0 0 0 0 −0.5 0
0 0 0 0 0 −0.1



y, y(0) =




1
1
1
1
1
1



, α= 5000, T = 20. (57)

This problem, originally set with α= 100, is an illustration of ODEs resulting from
a semidiscretization by finite element methods of parabolic PDEs [24]. We choose
α = 5000 to make the problem a little more difficult. Table 3 gives the errors for
the first component of the approximate solutions which is similar for the second
component. The errors for the others components quickly achieve machine precision.
The maximal absolute errors with the implementing BDF 2, 4 and 6 for the time
step k = 1.25× 10−6 are respectively 3.38× 10−3, 7.94× 10−8 and 2.3× 10−12 (for
the first two components) while, for atol = 10× rtol = 10−15 and kmax = 2× 10−5,
the solvers stiff and rkf give, respectively, the absolute errors 6.6× 10−10 and
2.36×10−6.
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Table 3 Error (order of convergence) for the first component of the solution for B5 modified

k DC2 DC4 DC6 DC8 DC10
2.000e-5 0.2152 6.51e-2 2.22e-2 8.00e-3 2.98e-3
5.000e-6 1.35e-2 (2) 2.59e-4 (4) 5.59e-6 (6) 1.27e-7 (8) 2.97e-9 (10)
2.500e-6 3.38e-3 (2) 1.62e-5 (4) 8.74e-8 (6) 4.9e-10 (8) 2.9e-12 (10)
1.250e-6 8.47e-4 (2) 1.01e-6 (4) 1.36e-9 (6) 1.9e-12 (8) 7.4e-14 (5.3)
3.125e-7 5.29e-5 (2) 4.00e-9 (4) 3.6e-13 (6) 7e-14 (2.4) 6.3e-14
6.250e-8 2.11e-6 (2) 6.3e-12 (4) 6.02e-13 2.33e-13 1.19e-13

6.4 Problem E5 [8], stiff with complex eigenvalues of predominantly negative real
parts

y′1 =−7.89×10−10y1−1.1×107y1y2

y′2 = 7.89×10−10y1−1.13×109y2y3

y′3 = 7.89×10−10y1−1.1×107y1y2 + 1.13×103y4−1.13×109y2y3

y′4 = 1.1×107y1y2 + 1.13×103y4

y(0) = (1.76×10−3,0;0;0)t,T = 1000.

(58)

A reference solution is computed with DC10 for k= 10−3. The solution of this prob-
lem has small magnitude in [1.618×10−3,1.76×10−3]× [0,1.46×10−10]× [0,8.27×
10−12]× [0,1.38× 10−10] and the eigenvalues of the Jacobian matrix dF (y) along
the solution curve belong to the region [−20490,3.68×10−12]× [−9.17×10−5,9.17×
10−5] of the complex plane. Table 4 gives the absolute errors and order of accuracy
for the four components of the approximate solutions. For the stepsize k = 10−3, the
maximal absolute errors in all the four components of the solution are equal on sev-
enteen digits for DC4, DC6 and DC8. The implemented RK4 diverges to∞ for time
step k≥ 2×10−4 while its absolute errors for k= 10−4 are 2.03×10−16, 2.78×10−22,
1.29× 10−18 and 1.29× 10−18, respectively, for the four components. The absolute
errors from the solver stiff for kmax = 10−3 and rtol = 108 × atol = 10−15 are
1.29×10−16, 7.46×10−22, 4.72×10−23 and 7.14×10−22, respectively, for the four
components. The solver rkf is not efficient for this problem. The errors for the first
component of the approximate solution for the implemented BDF1, · · · ,BDF2 ,
with initial value deduced from the reference solution, for k = 10 are, respectively,
4.4×10−7,5.7×10−8,5.5×10−9,6.6×10−10,2.3×10−10,3.5×10−11.

6.5 Robertson (1966) [10], stiff with real negative eigenvalues

y′1 =−0.04y1 + 104y2y3

y′2 = 0.04y1−104y2y3−3.107y2
2

y′3 = 3.107y2
2

y(0) = (1,0,0)t, T = 105.

(59)

This is one of the three problems considered as stiffest in [10]. We compute a reference
solution with DC10 for the time step k = 1/6000. The solution belongs to the region
[1.78× 10−2,1.00]× [0,3.58× 10−5]× [0,0.983] and the eigenvalues of the Jacobian
dF(y) along the solution curve belong to [−9825.744,0]. Table 5 gives absolute errors
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Table 4 Absolute error (order of convergence) for the problem E5

k DC2 DC4 DC6 DC8 DC10

100
2.79e-07 5.34e-08 8.31e-09 4.26e-09 1.04e-09
8.30e-12 9.68e-13 6.86e-14 6.14e-14 1.66e-14
4.47e-13 5.31e-14 3.28e-15 3.40e-15 8.42e-16
7.85e-12 9.14e-13 6.54e-14 5.81e-14 1.57e-14

12.5
4.94e-09(1.94) 5.88e-11(3.27) 1.84e-12(4.04) 4.98e-14(5.46) 4.44e-15(5.95)
1.22e-13(2.03) 6.42e-16(3.52) 9.07e-18(4.29) 7.45e-19(5.44) 6.33e-20(5.99)
6.71e-15(2.02) 9.18e-17(3.06) 6.08e-17(1.92) 6.44e-17(1.91) 7.03e-17(1.19)
1.15e-13(2.03) 6.63e-16(3.48) 6.89e-17(3.29) 6.51e-17(3.27) 7.04e-17(2.60)

10
3.16e-09(1.99) 2.37e-11(4.07) 5.26e-13(5.62) 1.28e-14(6.08) 4.51e-16(10.3)
7.77e-14(2.00) 2.79e-16(3.74) 3.02e-18(4.93) 1.15e-19(8.38) 7.28e-21(9.69)
4.31e-15(1.98) 7.08e-17(1.16) 5.91e-17(0.13) 6.27e-17(0.12) 6.84e-17(0.12)
7.34e-14(2.00) 3.20e-16(3.26) 6.18e-17(0.49) 6.28e-17(0.16) 6.84e-17(0.13)

and orders of accuracy for each component of the solution. For rtol = 100×atol =
10−15 and kmax = 1/300, the solver stiff gives the absolute errors 7.28× 10−13,
0 and 7.02× 10−13, respectively for the first, second and third components of the
approximate solution. The solver rkf is not able to solve this problem. It would
require kmax ' 10−4 (see the argument in [22] about initial time step).

Table 5 Absolute error (order of convergence) for Robertson problem

k DC2 DC4 DC6 DC8 DC10

0.5
3.63e-5 4.46e-6 2.08e-6 2.91e-6 3.09e-6
3.63e-5 4.46e-6 2.08e-6 2.91e-6 3.09e-6
7.12e-5 4.37e-7 1.02e-7 4.12e-7 4.26e-7

1/300
4.7e-9 (1.8) 1.09e-9 (1.7) 4.0e-10 (1.7) 3e-10 (1.9) 2e-10 (1.9)
7.4e-9 (1.7) 2.23e-8 (1.1) 4.16e-8 (0.8) 2.9e-8 (0.9) 2.5e-8 (0.9)
4.7e-9 (1.9) 2.12e-8 (0.6) 4.12e-8 (0.6) 2.8e-8 (0.5) 2.5e-8 (0.6)

1/600
1.0e-9 (2.2) 1.5e-10 (2.8) 1.0e-12 (8.6) 9.9e-13 (8.) 7.5e-13(8.2)
5e-13 (14.) 3e-14 (19.6) 2e-16 (27.7) 2e-16 (27.1) 3e-16 (26.1)
1.0e-9 (2.2) 1.5e-10 (7.1) 1e-12 (15.3) 9.9e-13 (15) 4e-13 (15.8)

1/6000
9.24D-12 7.31D-14 1.48D-14 4.57D-14 –
5.38D-15 0. 0. 0. –
9.25D-12 2.07D-13 1.36D-13 8.27D-14 –

6.6 van der Pol oscillator [8, 22], stiff, arbitrary complex eigenvalues

y′1 = y2
y′2 = µ(1−y2

1)y2−y1
y1(0) = 2, y2(0) = 0,T = 3000,µ= 1000.

(60)

This problem was initially proposed for T = 1 and µ = 5 in [8]. The actual ver-
sion results from a suggestion by Shampine [22]. We compute a reference solution
with DC8 for k = 1.875××10−6. The solution belong to the region [−2,2.000073]×
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[−1323.04,1231.35] of the real plan and the eigenvalues along the solution curve
belong to the region [−3000.29,1123.17]× [−1158.48,1158.48] of the complex plan.
Table 6 gives the absolute errors and orders of accuracy. For rtol = 10atol = 10−16

and kmax = 7.5×10−5, the absolute errors from the solvers rkf are 3.54×10−2 and
64.76, respectively, for the first and second components of the solution while stiff
gives 2.16×10−6 and 3.48×10−3.

Table 6 Absolute error for the van der Pol’s equation

k DC2 DC4 DC6 DC8 DC10

3.75e-5 3.0089 2.9999 2.9440 0.1838 3.12e-3
1322.9 1327.5 1320.6 197.79 3.26792

1.50e-5 2.9769 (0) 2.9999 (0) 0.1080 (3.6) 1.90e-4 (7.5) 5.1e-5 (4.5)
1333.3 (0) 1330.3 (0) 113.69 (2.7) 0.18281 (7.6) 5.1e-2 (4.5)

7.50e-6 2.8706 (0) 2.6947 (0) 1.60e-3 (6.0) 1.74e-6 (6.7) 1.27e-5 (1.9)
1327.4 (0) 1286.5 (0) 1.6349 (6.1) 1.80e-3 (6.7) 1.29e-2 (1.9)

1.875e-6 0.74(0.9) 0.339 (1.5) 2.50e-7 (6.3) – 2.88e-7 (2.7)
659. (0.5) 373.2 (0.9) 2.91e-4 (6.2) – 2.92e-4 (2.7)

6.7 Discussion of the numerical results

1. The Bernoulli equation is stiff and strongly nonlinear (the approximate solutions
with the explicit forth order Runge-Kutta method diverges to −∞ for time steps
k ≥ 2.03×10−3). The magnitude of the derivatives of F = F (u) with respect to
u increases exponentially with the order of the derivative, and the magnitude of
the solution u is neither large nor small since 0.226 ≤ u(t) ≤ 1, for 0 ≤ t ≤ 10.
Nevertheless, the errors for 10 steps, which corresponds to a time step k = 1,
decrease with the level of correction and are less than 2.5×10−4, for DC6, DC8
and DC10. This illustrates that high order derivatives of F do not strongly affect
the quality of the approximate solutions with the DC schemes.

2. The behavior of the DC schemes on the oscillatory problem shows the ability of
the DC method for long-term integration. Each DC scheme reached its theoretical
order of convergence with a good accuracy way better than from the BDF and
RK methods.

3. For the modified problem B5, each DC scheme converges towards machine ac-
curacy with its theoretical order of convergence, but the time step required is
somewhat small. This behaviour is not generic. For the problem E5 in [8], which
also has complex eigenvalues, very accurate solutions are obtained from the DC
methods even for time steps greater than 100.

4. For the Robertson problem, which corresponds to a system with real negative
eigenvalues, there is no restriction on the time step k for an accurate approximate
solution with the DC schemes, and high order DC methods can be avoided (DC6
is enough). The convergence is slow for k > 1/300, but superconvergent happens
for k in the asymptotic region (k < 1/300).

5. The van der Pol oscillator is stiff and the solution has a large magnitude. DC6
and DC8 reached their order of accuracy. The order of convergence for DC10
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is not observed because of a quick saturation of the error while DC2 and DC4
require smaller time steps.

In general, a careful assessment of the proof of Theorem 1 points out to the fact
that, for a system with complex eigenvalues λ = λ1 + iλ2, we only need a time
step k such that kMax{λ1, |λ2|} < 2 for a good accuracy (superconvergence hap-
pens when −λ1 >> |λ2|). However, time steps k such that kµ ' k|λ| < 2, µ '
max

0≤t≤T
‖dxF (t,u(t))‖, is necessary for an asymptotic convergence (see Remark 3).

For example, in the case of the Bernoulli equation we have λ ' −20000.1 < 0 and
µ = 20000.1. There is no restriction on the time steps for accurate approximation,
but asymptotic convergences are observed only for kµ < 2.

For the computational effort of the DC methods, we recall that to compute
an approximate solution on discrete points 0 = t0 < t1 < · · · < tN = T , DC2 solves
N nonlinear systems while DC2j, j ≥ 2, solves j×N systems. In the case of the
Bernoulli equation, for example, DC10 achieves the maximal error of about 1.1×
10−11 by solving approximately 5×106 nonlinear systems while the maximal absolute
error for DC2 is about 8.9×10−7 for N = 5×106. Since the resolution of nonlinear
systems is the main burden for these methods, using high order DC methods is
advantageous.

7 Conclusions

We have presented a new approach of deferred correction methods for the numerical
solution of general first order ordinary differential equations. Proofs for consistency,
order of convergence and stability of the method are given. The numerical exper-
iments comply with the theory and show a high accuracy of the method and its
satisfactory A-stable property. Globally, each DC scheme reaches its proper order of
convergence and applies to any category of problem, providing accurate approxima-
tions for time steps not necessarily small. The accuracy of the DC schemes increases
with the level of correction.
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Arbitrary high-order
unconditionally stable methods for
reaction-diffusion equations via
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This chapter is presented in terms of a journal article and submitted to Mathematical
Modelling and Numerical Analysis (ESAIM Math. Model. Numer. Anal), carrying
the same title as mentioned above. Please see the attached paper for the content.
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ARBITRARY HIGH-ORDER UNCONDITIONALLY STABLE METHODS FOR
REACTION-DIFFUSION EQUATIONS VIA DEFERRED CORRECTION:

CASE OF THE IMPLICIT MIDPOINT RULE

Saint-Cyr E.R. Koyaguerebo-Imé and Yves Bourgault1

Abstract. In this paper we analyse full discretizations of an initial boundary value problem (IBVP)
related to reaction-diffusion equations. The IBVP is first discretized in time via the deferred correction
method for the implicit midpoint rule and leads to a time-stepping scheme of order 2p+2 of accuracy
at the stage p = 0,1,2, · · · of the correction. Each semi-discretized scheme results in a nonlinear elliptic
equation for which the existence of a solution is proven using the Schaefer fixed point theorem. The
elliptic equation corresponding to the stage p of the correction is discretized by the Galerkin finite ele-
ment method and gives a full discretization of the IBVP. This fully discretized scheme is unconditionlly
stable with order 2p + 2 of accuracy in time. The order of accuracy in space is equal to the degree
of the finite element used when the family of meshes considered is shape-regular while an increment
of one order is proven for shape-regular and quasi-uniform family of meshes. A numerical test with
a bistable reaction-diffusion equation having a strong stiffness ratio is performed and shows that the
orders 2,4,6,8 and 10 of accuracy in time are achieved with a very strong stability.
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Introduction
Let Ω be a bounded domain in Rd (d= 1,2,3) with smooth boundary ∂Ω and T > 0. Consider the following

reaction-diffusion system with Cauchy-Dirichlet conditions




u′−M∆u+f(u) = S in Ω× (0,T )
u= 0 on ∂Ω× (0,T )

u(.,0) = u0 in Ω,
(1)

where u : Ω× [0,T ]→ RJ is the unknown, for a positive integer J , M is an J×J constant matrix, f : RJ → RJ
and S : Ω× (0,T )→ RJ are given smooth functions. This is a general form of reaction-diffusion equations (see
for instance [1]) that model various phenomena in physics, combustion, chemical reactions, population dynamics
and biomedical science (cancer modelling and other physiological processes) (see, e.g., [1–5]).

Keywords and phrases: time-stepping methods, deferred correction ,high order methods, reaction-diffusion equations, finite
elements
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We suppose that M is positive definite and the function f satisfies the following two monotonicity conditions

(f(x)−f(y),x−y)≥ α|x−y|q + τ(y)|x−y|2,∀x,y ∈ RJ , for some α≥ 0, q ≥ 1, (2)

and
(df(x)y) ·y ≥−µ0|y|2, ∀x,y ∈ RJ , (3)

where µ0 is a nonnegative real, and τ is an arbitrary continuous real-valued function. These conditions guarantee
the existence of a solution of problem (1) in L2 (0,T ;H1

0 (Ω)∩H2(Ω)
)

(see for instance [6–8]), and uniqueness
and high order regularity can be deduced. The conditions (2)-(3) are at least satisfied by any polynomial of
odd degree with positive leading coefficient, and the matrix M is supposed to be constant only for the sake of
simplicity. In fact, all our results remain true replacing the operator M∆ by an elliptic operator L:

Lu=−
J∑

i,j=1
ai,j(x)uxixj +

J∑

i=1
bj(x)uxi + c0(x)u, (4)

where the coefficients ai,j , bi and c0 are smooth functions, and ai,j = aj,i (see, e.g., [8, p.292] for a definition
of elliptic operator). The analysis also remains true substituting the Dirichlet condition in (1) by Neumann
conditions.

The numerical analysis of reaction-diffusion equations takes advantage of many results available from the
numerical analysis of semi-linear parabolic partial differential equations (PDEs). The method of lines (MOL)
is commonly used. By this method the PDE is first discretized in space by finite element or finite difference
methods, leading to a system of ordinary differential equations (ODEs). The resulting system of ODEs is
then discretized by fully implicit or implicit-explicit (IMEX) time-stepping methods (see for instance [9–16]).
In [9–11], linear implicit-explicit multistep methods in time together with finite element methods in space are
analysed for a class of abstract semi-linear parabolic equations that includes a large class of reaction-diffusion
systems. The approaches in [9–11] are the same. The authors investigate approximate solutions expected to be
in a tube around the exact solution. They proceeded by induction by adapting the time step k and the space step
h and established that if k and k−1h2r, r≥ 2, are small enough then the global error of the scheme is of order p
(p= 1,2, ...,5) in time and r in space. IMEX schemes with finite difference in space and Runge-Kutta of order
1 and 2 in time are also analysed in [17, 18] for a class of reaction-diffusion systems. Otherwise, in [12, 13, 19]
fully implicit numerical methods for reaction-diffusion equations with restrictive conditions on the nonlinear
term are introduced, combining finite elements in space and backward Euler, Crank-Nicolson or fractional-step
θ methods in time. The resulting schemes are unconditionally stable (the time step is independent from the
space step) with order 1 or 2 of accuracy in time. The time-stepping method in [16] is constructed via a deferred
correction strategy applied to the trapezoidal rule and is of arbitrary high order. However, this method concerns
only linear initial value problems (IVP) (resulting eventually from a MOL) satisfying a monotonicity condition
and has an issue for the starting procedure. Furthermore, the stability analysis proposed in this paper does
not guarantee unconditional stability and/or an optimal a priori error estimate, when a full discretization is
considered.

In practice, the space-discretization of time-evolution PDEs leads to a stiff IVP of large dimension (we
recall that a stiff problem is a problem extremely hard to solve by standard explicit step-by-step methods (see,
e.g., [20]). To avoid overly small time steps, accurate approximate solutions for these IVPs require high order
time-stepping methods having good stability properties (A-stable methods are of great interest). Backward
differentiation formulae (BDF) of order 1 and 2 are commonly used according to their A-stability. However,
BDF methods of order 3 and higher lack stability properties (e.g. for systems with complex eigenvalues).
Moreover, Runge-Kutta methods applied to such IVPs have order of convergence reduced to 1 or 2 (see [21]),
and are inefficient when the IVPs are stiffer.

The aim of this paper is to apply the deferred correction (DC) method introduced in [22] for the semi-
discretization in time of the problem (1). The deferred correction method consists in a successive perturbation
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(correction) of the implicit midpoint rule, leading to A-stable schemes of order 2p+ 2 at the stage p = 1,2, · · ·
of the correction. The order of accuracy of the DC schemes is guaranteed by a deferred correction condition
(DCC). Applying the DC method to (1), the main difficulty is to prove that the resulting schemes satisfy DCC
up to a certain stage p of the correction so that we obtain a time semi-discrete approximate solution with order
2p+2 of accuracy. To overcome this difficulty, we suppose that the exact solution u of (1) is stationary in a small
time interval [0,(2p+1)k0], where k0 is a maximal time step for the time semi-discretized schemes and satisfies
k0µ0 < 2 (µ0 is the constant introduced in (3)). The stationary hypothesis is a simple trick to simplify our
proof. Indeed, the DCC is proven without restrictive condition in the case of IVP (see [22]), but the difficulty
in the case of PDEs is related to the presence of unbounded operator. Each semi-discretized scheme in time
leads to a nonlinear elliptic equation that is discretized using the Galerkin finite element method. It results
an arbitrary high-order unconditionally stable methods for the numerical solution of problem (1). A numerical
illustration using the bistable reaction-diffusion equation with the schemes of order 2, 4, 6, 8 and 10 in time is
given.

The paper is organized as follows. We recall some algebraic property of finite difference operators in section
1. In section 2 we introduce the semi-discretized schemes in time and prove the existence of a solution. The
analysis of convergence and order of accuracy of solutions for the semi-discretized schemes in time is done in
section 3. The fully discretized schemes are presented and analysed in section 4, and numerical experiments are
carried in section 5.

1. Finite difference operators
In this section we recall main results from finite difference (FD) approximations. Details and proofs for these

results can be found in [23]. For a time step k > 0, we denote tn = nk and tn+1/2 = (n+1/2)k, for each integer
n. This implies that t0 = 0. We consider the time steps k such that 0 = t0 < t1 < · · ·< tN = T is a partition of
[0,T ], for a nonnegative integer N . The centered, forward and backward difference operators D, D+ and D−,
respectively, related to k and applied to a function v from [0,T ] into a Banach space X (with norm ‖ · ‖X), are
defined as follows:

Dv(tn+1/2) = v(tn+1)−v(tn)
k

,

D+v(tn) = v(tn+1)−v(tn)
k

,

and

D−v(tn) = v(tn)−v(tn−1)
k

.

The average operator is denoted by E:

Ev(tn+1/2) = v̂(tn+1) = v(tn+1) +v(tn)
2 .

The composites of D+ and D− are defined recursively. They commute, that is (D+D−)v(tn) = (D−D+)v(tn) =
D−D+v(tn), and satisfy the identities

(D+D−)mv(tn) = k−2m
2m∑

i=0
(−1)i

(
2m
i

)
v(tn+m−i), (5)

and

D−(D+D−)mv(tn) = k−2m−1
2m+1∑

i=0
(−1)i

(
2m+ 1
i

)
v(tn+m−i), (6)
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for each integer m≥ 1 such that 0≤ tn−m−1 ≤ tn+m ≤ T . If {vn}n is a sequence of approximation of v at the
discrete points tn, the finite difference operators apply to {vn} and we define

Dvn+1/2 =D+v
n =D−vn+1 = vn+1−vn

k
.

and
Evn+1/2 = v̂n+1 = vn+1 +vn

2 .

We have the following three results:

Result 1
For nonnegative integers m1 and m2, provided v ∈ Cm1+m2([0,T ],X) and m2 ≤ n≤N −m1, we have

∥∥Dm1
+ Dm2

− v(tn)
∥∥≤ max

tn−m2≤t≤tn+m1

∥∥∥∥
dm1+m2v

dtm1+m2
(t)
∥∥∥∥ . (7)

Result 2 (Central finite difference approximations)
There exists a sequences {ci}i≥2 of real numbers such that, for all v ∈C2p+3 ([0,T ],X), where p is a positive

integer, and p≤ n≤N −1−p, we have

v′(tn+1/2) = v(tn+1)−v(tn)
k

−
p∑

i=1
c2i+1k

2iD(D+D−)iv(tn+1/2) +O(k2p+2), (8)

and

v(tn+1/2) = v(tn+1) +v(tn)
2 −

p∑

i=1
c2ik

2i(D+D−)iEv(tn+1/2) +O(k2p+2). (9)

Table 1 gives the ten first coefficients ci.

Table 1. Ten first coefficients of central difference approximations (8) and (9)

c2 c3 c4 c5 c6 c7 c8 c9 c10 c11
1
8

1
24 − 18

4!25 − 18
5!25

450
6!27

450
7!27 −22050

8!29 −22050
9!29

1786050
10!211

1786050
11!211

Result 3 (Interior central finite difference approximations)
For each positive integer p there exists reals cp2, c

p
3, · · · , c

p
2p+1 such that, for each v ∈ C2p+3 ([a,b],X) and a

uniform partition a = τ0 < τ1 < ... < τ2p+1 = b of the interval [a,b], with τn = a+nk, k = (b−a)/(2p+ 1) and
τp+1/2 = (a+ b)/2, we have

u′(τp+1/2) = u(b)−u(a)
b−a − 1

b−a

p∑

i=1
cp2i+1k

2i+1D(D+D−)iu(τp+1/2) +O(k2p+2), (10)

and

u(τp+1/2) = u(b) +u(a)
2 −

p∑

i=1
cp2ik

2i(D+D−)iEu(τp+1/2) +O(k2p+2). (11)

Table 2 gives the coefficients cpi for p= 1,2,3,4.
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Table 2. Coefficients of the approximations (10)-(11) for p= 1,2,3,4

p cp2 cp3 cp4 cp5 cp6 cp7 cp8 cp9
1 9

8
9
8

2 25
8

125
24

125
128

125
128

3 49
8

343
24

637
128

13377
1920

1029
1024

1029
1024

4 81
8

243
8

1917
128

17253
640

7173
1024

64557
7168

32733
32768

32733
32768

2. Semi-discrete schemes in time: existence of a solution
Hereafter we suppose that (1) has a unique solution u ∈ C2p+4 ([0,T ],Hr+1(Ω)∩H1

0 (Ω)
)
, for some positive

integers p and r. We denote by (·, ·) the inner product in L2(Ω) and by ‖·‖ the corresponding norm. The norm in
the Sobolev spaces Hm(Ω) will be noted ‖ ·‖m, for each nonnegative integer m, and we note ‖ ·‖∞ = ‖ ·‖L∞(Ω).
We use h and k to denote stepsizes for space and time discretizations, respectively. The letter C will denote
any constant independent from h and k, and that can be calculated explicitly in term of known quantities. The
exact value of C may change from a line to another line.

As in [22], we can apply deferred correction method to (1) and deduce the following schemes:
For j = 0, we have the implicit midpoint rule





u2,n+1−u2,n

k
−M∆

(
u2,n+1 +u2,n

2

)
+f

(
u2,n+1 +u2,n

2

)
= s(tn+1/2), in Ω,

u2,n = 0 on ∂Ω,
u2,0 = u0.

(12)

For j ≥ 1, we have





u2j+2,n+1−u2j+2,n

k
−DΛju2j,n+1/2−M∆

(
û2j+2,n+1−ΓjEu2j,n+1/2

)

+f

(
u2j+2,n+1 +u2j+2,n

2 −ΓjEu2j,n+1/2
)

= s(tn+1/2), in Ω, for n≥ j+ 1,

u2j+2,n = 0 on ∂Ω,
u2j+2,0 = u0,

(13)

where Γ and Λ are finite differences operators defined for each positive integer j, and n≥ j, by

Λju(tn) =
j∑

i=1
c2i+1k

2i(D+D−)iu(tn) =
j∑

i=1

2i∑

l=0
c2i+1(−1)l

(
2i
l

)
u(tn+i−l), (14)

and

Γju(tn) =
j∑

i=1
c2ik

2i(D+D−)iu(tn) =
j∑

i=1

2i∑

l=0
c2i(−1)l

(
2i
l

)
u(tn+i−l). (15)

The scheme (12) has unknowns
{
u2,n}N

n=1 corresponding to approximations of u(tn), expected to be of order
2 of accuracy. For (13) the unknowns are

{
u2j+2,n}N

n=j+1, expected to be of order 2j+ 2, while
{
u2j,n}N

n=j
is supposed known from the preceding stage. To avoid computing approximate solution of (1) for t < 0, the
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scheme (13) is used only for n≥ j. For the starting values, 0≤ n≤ j−1, we consider the scheme




Du2j+2,n+1/2− 1
2j+ 1Λ̄jDū2j,nj+1/2−M∆

(
û2j+2,n+1− Γ̄jEū2j,nj+1/2

)

+f
(
û2j+2,n+1− Γ̄jEū2j,nj+1/2

)
= s(tn+1/2),

u2j+2,n = 0 on ∂Ω,
u2j+2,0 = u0,

(16)

where we set nj = (2j+ 1)n+ j,

1
2j+ 1Λ̄jDū2j,(2j+1)n+j+1/2 = k−1

j∑

i=1

2i+1∑

l=0
cj2i+1(−1)l

(
2i+ 1
l

)
ū2j,(2j+1)n+j+i−l+1, (17)

and

Γ̄j ū2j,(2j+1)n+j =
j∑

i=1

2i∑

l=0
cj2i(−1)l

(
2i
l

)
ū2j,(2j+1)n+j+i−l. (18)

This scheme is built from (10) and (11), for a= tn and b= tn+1.
{
ū2,n}N

n=1 is computed from (12) with time
the step k/3 instead of k. Similarly,

{
ū2j,n}N

n=j , j ≥ 2, is computed from the scheme (13) with the time step
k/(2j+ 1) instead of k.

To prove the existence of a solution for the schemes (12) and (13), we need the following lemma.

Lemma 1. Let k > 0 such that k|τ(0)| ≤ 1/4, and v ∈ L2(Ω). Then the elliptic problem

u−kM∆u+kf(u) = v in Ω, (19)

u= 0 on ∂Ω, (20)
has a solution u ∈H2(Ω)∩H1

0 (Ω) satisfying the inequality

‖u‖2 ≤ C (|||M |||/γ)
(
k−1‖v−u‖+

√
2γµ0‖∇u‖

)
, (21)

where γ is the smallest eigenvalue of the positive definite matrix M , |||M ||| is any norm of the matrix M , and
the function τ and the scalar µ0 are defined in (2) and (3), respectively.

Proof. The existence can be deduced from the Schaefer fixed point theorem [8, p. 504]. In fact, given u ∈
H2(Ω)∩H1

0 (Ω), the problem
w−kM∆w+kf(u) = v in Ω, (22)

w = 0 on ∂Ω, (23)
has a unique solution w ∈H2(Ω)∩H1

0 (Ω) (see [8, p.317]). Consider the nonlinear mapping

A : H2(Ω)∩H1
0 (Ω)−→H2(Ω)∩H1

0 (Ω),

which maps u ∈H2(Ω)∩H1
0 (Ω) to the unique solution w = A[u] of (22)-(23). It is enough to prove that A is

continuous, compact, and that the set

Σ =
{
u ∈H2(Ω)∩H1

0 (Ω)|u= λA[u], for some λ ∈ [0,1]
}

(24)
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is bounded.

(i) The mapping A is continuous. Indeed, let {um}∞m=1 inH2(Ω)∩H1
0 (Ω) which converges to u∈H2(Ω)∩H1

0 (Ω).
For each m= 1,2, · · · , let wm =A[um] and w =A[u]. Then w−wm belongs to H2(Ω)∩H1

0 (Ω) and satisfies the
equation

(w−wm)−kM∆(w−wm) +k (f(u)−f(um)) = 0 in Ω. (25)
The inner product of the last identity with w−wm yields

‖w−wm‖2 +γk‖∇(w−wm)‖2 +k (f(u)−f(um),w−wm)≤ 0. (26)
We can write,

f(u(x))−f(um(x)) =
∫ 1

0
df (u(x)− ξ(u(x)−um(x)))(u(x)−um(x))dξ.

Since um −→ u in H2(Ω) and H2(Ω) ↪→ C0(Ω), there exists a positive integer m0 such that m≥m0 implies

max
x∈Ω
|u(x)−um(x)| ≤ c2‖u−um‖2 ≤ 1, (27)

where c2 is the constant from the Sobolev embedding. It follows that

|f(u(x))−f(um(x))| ≤ β|u(x)−um(x)|, (28)

where
β = max

|y|≤1+c2‖u‖2
|df(y)|.

Therefore, by Cauchy-Schwartz inequality we have

k |(f(u)−f(um),w−wm)| ≤ kβ‖u−um‖‖w−wm‖ ≤
(kβ)2

2 ‖u−um‖2 + 1
2‖w−wm‖

2.

The last inequality substituted into (26) yields

‖w−wm‖2 + 2γk‖∇(w−wm)‖2 ≤ (kβ)2‖u−um‖2.

It follows that wm→ w in H1
0 (Ω) when m→+∞. On the other hand, elliptic regularity results applied to the

identity (25) yields, owing to (28) and the last inequality,

‖w−wm‖2 ≤ C
(
k−1‖w−wm‖+‖f(u)−f(um)‖

)
≤ 2βC‖u−um‖→ 0 as m→+∞.

Whence {wm}+∞m=1 converges to w in H2(Ω)∩H1
0 (Ω), and the continuity of the mapping A follows.

(ii) The mapping A is compact. Indeed, given a bounded sequence {um}m∈N in H2(Ω)∩H1
0 (Ω), from the

compact embedding H2(Ω) ↪→H1
0 (Ω) we can extract a subsequence

{
umj

}
j∈N that converges to u strongly in

H1
0 (Ω) and weakly in H2(Ω). The subsequence

{
umj

}
j∈N is then bounded in H2(Ω)∩H1

0 (Ω). Let

κ= sup
m∈N
‖um‖2 and β′ = max

|y|≤c2(κ+‖u‖2)
|df(y)|.

Therefore, proceeding exactly as in part (i), substituting m by mj , the inequality (27) by

max
x∈Ω
|umj (x)| ≤ c2 sup

m∈N
‖umj‖2 = c2κ,

56



8 TITLE WILL BE SET BY THE PUBLISHER

and β by β′ in (28), we deduce that wmj =A[umj ]→ w strongly in H2(Ω)∩H1
0 (Ω). Hence A is compact.

(iii) The set Σ is bounded.
Let u ∈H2(Ω)∩H1

0 (Ω) such that u= λA[u] for some λ ∈ (0,1]. Then u satisfies

u−kM∆u+λkf(u) = λv in Ω, (29)

u= 0 on ∂Ω. (30)
By elliptic regularity results we have

‖u‖2 ≤ C‖k−1(λv−u)−λf(u)‖= C‖M∆u‖. (31)

The inner product of (29) with u, taking the boundary condition (30) into account, yields

‖u‖2 +γk‖∇u‖2 +λk

∫

Ω
f(u) ·udx= λ

∫

Ω
v ·udx.

Without loss of generality we suppose that f(0) = 0, otherwise we change f by f̃ = f−f(0) and v by ṽ= v−kf(0).
Then the monotonicity condition (2) combined with the hypothesis of the lemma yields

λk

∫

Ω
f(u) ·udx≥ αλk‖u‖q +λkτ(0)‖u‖2 ≥ αλk‖u‖q− 1

4‖u‖
2, ∀λ ∈ (0,1]. (32)

From Cauchy-Schwartz inequality and the Cauchy inequality with ε= 1, we have

λ

∫

Ω
v ·udx≤ λ2‖v‖2 + 1

4‖u‖
2.

Substituting the last two inequalities in the previous identity, we deduce that

‖u‖2 + 2γk‖∇u‖2 ≤ 2λ2‖v‖2. (33)

On the other hand, the inner product of (29) with −∆u yields

γ‖∆u‖2 ≤ k−1
∫

Ω
(λv−u) · (−∆u)dx+

∫

Ω
λf(u) ·∆udx. (34)

We can write

f(u) ·∆u=
J∑

i=1
∇· (fi(u)∇ui)−

J∑

i=1

(
df(u)

(
∂u

∂xi

))
· ∂u
∂xi

,

and deduce from (3), the boundary condition and the hypothesis f(0) = 0 that

∫

Ω
f(u) ·∆udx=−

J∑

i=1

∫

Ω

(
df(u)

(
∂u

∂xi

))
· ∂u
∂xi

dx≤ µ0

J∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
2

= µ0‖∇u‖2.

By Cauchy-Schwartz inequality and the Cauchy inequality with ε= 1/(2γ) we have
∣∣∣∣k−1

∫

Ω
(λv−u) · (−∆u)dx

∣∣∣∣≤ k−1‖λv−u‖‖∆u‖ ≤ 1
2γk2 ‖λv−u‖

2 + γ

2 ‖∆u‖
2.
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Substituting the last two inequalities in (34), we obtain

γ2‖∆u‖2 ≤ k−2‖λv−u‖2 + 2λγµ0‖∇u‖2.

Therefore,
‖M∆u‖2 ≤ (|||M |||/γ)2 (k−2‖λv−u‖2 + 2γµ0‖∇u‖2

)

since 0≤ λ≤ 1, and we deduce from (31) that

‖u‖2 ≤ C (|||M |||/γ)
(
k−1‖λv−u‖+

√
2γµ0‖∇u‖

)
. (35)

The last inequality together with (33) yields

‖u‖2 ≤ C (|||M |||/γ)k−1
(

1 +
√

2 +
√

2kµ0
)
‖v‖,

and it follows that Σ is bounded. From (i)-(iii) we deduce by the Schaefer fixed point theorem that (19)-(20)
has a solution u ∈H2(Ω)∩H1

0 (Ω) and (21) follows, taking λ= 1 in (35). �

The following theorem shows the existence of a solution for the schemes (12) and (13).

Theorem 1. Suppose that u0 ∈H2(Ω)∩H1
0 (Ω). Then, for each nonnegative integer n, the scheme (12) and

(13) has a solution in H2(Ω)∩H1
0 (Ω).

Proof. Proceeding by induction, the proof is immediate from Lemma 1 for a suitable choice of the functions u
and v. For example, multiplying the first equation in (12) by k/2, we deduce (19)-(20) for u= (u2,n+1 +u2,n)/2,
v = ks(tn+1/2)/2 +u2,n and k substituted by k/2. �

Hereafter we suppose that u2j,n ∈Hr+1(Ω)∩H1
0 (Ω), for 1≤ j ≤ p+ 1 and each n= 0,1 · · · ,N . Convergence

results for these semi-discrete solutions are proven in section 3.

3. Convergence and order of accuracy of the semi-discrete solution
The deferred correction condition (DCC) defined in [22] for ODEs applies to PDEs.

Definition 1. Let u be the exact solution of (1). For a positive integer j, a sequence
{
u2j,n}

n
⊂ H1

0 (Ω) of
approximations of u on the uniform partition 0 = t0 < t1 < · · ·< tN = T , tn = nk, is said to satisfy the Deferred
Correction Condition (DCC) for the implicit midpoint rule if

{
u2j,n}

n
approximates u(tn) with order 2j of

accuracy in time, and for n= 1,2, ...,N −2 we have

‖(D+D−)D(u2j,n+1/2−u(tn+1/2))‖+‖D+D−(u2j,n+1−u(tn+1))‖ ≤ Ck2j , (36)

for each time steps k ≤ k1, where k1 > 0 is fixed and C is a constant independent from k.

Remark 1. Condition (36) is equivalent to
∥∥Γj

(
u2j,n−u(tn)

)∥∥≤ Ck2j+2, (37)

and ∥∥∥(Λj−Γj)D
(
u2j,n+1/2−u(tn+1/2)

)∥∥∥≤ Ck2j+2, (38)
for n= j,j+ 1, · · · ,N − j. This is due to the transforms

k2i (D+D−)i
(
u2j,n−u(tn)

)
= k2

i−1∑

l=0
(−1)l

(
2i−2
l

)
D+D−

(
u2j,n−u(tn)

)
,
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and

k2i (D+D−)iD
(
u2j,n+1/2−u(tn+1/2)

)
= k2

i−1∑

l=0
(−1)l

(
2i−2
l

)
(D+D−)D

(
u2j,n+1/2−u(tn+1/2)

)
.

The following theorem gives a sufficient condition for the semi-discrete schemes in time to converge with the
expected order of accuracy.

Theorem 2. Let j be a positive integer and
{
u2j,n}

n
⊂ H1

0 (Ω) a sequence of approximations of u, on the
discrete points t0 = 0 < t1 < · · · < tN = T , satisfying DCC for the implicit midpoint rule. Suppose that k < k1,
and that u2j+2,1, ...,u2j+2,j are given and satisfy

‖u2j+2,n−u(tn)‖ ≤ Ck2j+2, for n= 0,1, ..., j. (39)

Then the sequence
{
u2j+2,n}

n≥j , solution of the scheme (13) built from
{
u2j,n}

n
, approximates u with order

2j+ 2 of accuracy in time, and we have, for n= 0,1, · · · ,N ,

‖u2j+2,n−u(tn)‖+


γk

n∑

i=j
‖∇Θ̂2j+2,i‖2




1
2

≤ Ck2j+2, (40)

where
Θ2j+2,n =

(
u2j+2,n−u(tn)

)
−Γj

(
u2j,n−u(tn)

)
, (41)

and C is a constant depending only on j, T , M , u ∈ C2j+3 ([0,T ],H2(Ω)
)
, a Lipschitz constant on f and the

DCC constant.

Proof. Combining (13) and (1), we obtain the identity

DΘ2j+2,n+1/2 +f
(
û2j+2,n+1−Γj û2j,n+1)−f

(
û(tn+1)−Γj û(tn+1)

)

−M∆Θ̂2j+2,n+1 = σ2j+2,n+1/2 + (Λj−Γj)D(u2j,n+1/2−u(tn+1/2)),
(42)

where
σ2j+2,n+1/2 = u′(tn+1/2)−Du(tn+1/2) + ΛjDu(tn+1/2) +f(u(tn+1/2))
−f
(
û(tn+1)−Γj û(tn+1/2)

)
−M∆

(
u(tn+1/2)− û(tn+1) + Γj û(tn+1/2)

)
.

The inner product of (42) with Θ̂2j+2,n+1, taking into account the monotonicity condition (2) and the fact that
Θ̂2j+2,n+1 = 0 on ∂Ω, yields

(DΘ2j+2,n+ 1
2 ,Θ̂2j+2,n+1) +γ‖∇Θ̂2j+2,n+1‖2 ≤ τ(û(tn+1)−Γj û(tn+1))‖Θ̂2j+2,n+1‖2

+
(
σ2j+2,n+1/2 + (Λj−Γj)D(u2j,n+1/2−u(tn+1/2)),Θ̂2j+2,n+1

)
.

(43)

From the central finite differences (8)-(9) and the mean value theorem we have

‖σ2j+2,n+1/2‖ ≤ Ck2j+2,

where C is a constant depending only on a Lipschitz condition on f and the norm of u as element of C2j+3 ([0,T ],H2(Ω)
)
,

and there exists 0< k2 ≤ k1 such that k ≤ k2 implies that

‖û(tn+1)−Γj û(tn+1)‖∞ ≤ ‖u(tn+1/2)− û(tn+1) + Γj û(tn+1)‖∞+‖u(tn+1/2)‖∞ ≤ 1 +‖u‖L∞(QT ),
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where QT = Ω× (0,T ). It follows that, for k ≤ k2,
∥∥τ(û(tn+1)−Γj û(tn+1))

∥∥
∞ ≤ max

|y|≤1+‖u‖L∞(QT )
|τ(y)|=: µ.

On the other hand, from the DCC we immediately have

‖(Λj−Γj)D(u2j,n+1/2−u(tn+1/2)‖ ≤ Ck2j+2.

Substituting the last inequalities in (43), taking into account the identity
(
DΘ2j+2,n+1/2,Θ̂2j+2,n+1

)
= 1

2k
(
‖Θ2j+2,n+1‖2−‖Θ2j+2,n‖2

)
,

we deduce that

‖Θ2j+2,n+1‖2−‖Θ2j+2,n‖2 + 2kγ‖∇Θ̂2j+2,n+1‖2 ≤ Ck2j+3‖Θ̂2j+2,n+1‖+ 2kµ‖Θ̂2j+2,n+1‖2. (44)

This inequality yields

‖Θ2j+2,n+1‖2−‖Θ2j+2,n‖2 ≤ Ck2j+3‖Θ̂2j+2,n+1‖+ 2kµ‖Θ̂2j+2,n+1‖2,

and, for µk < 2, we deduce from the inequality
∥∥∥Θ̂2j+2,n+1

∥∥∥≤ 1
2
(∥∥Θ2j+2,n+1∥∥+

∥∥Θ2j+2,n∥∥)

that
∥∥Θ2j+2,n+1∥∥≤ C k2j+3

2−µk + 2 +µk

2−µk
∥∥Θ2j+2,n∥∥ .

It follows by induction on n that

∥∥Θ2j+2,n∥∥≤ C 1
2−µk

(
2 +µk

2−µk

)n−j−1
k2j+2 +

(
2 +µk

2−µk

)n−j ∥∥Θ2j+2,j∥∥ .

From the hypothesis (39) and the DCC we have
∥∥Θ2j+2,j∥∥≤

∥∥u2j+2,j−u(tj)
∥∥+

∥∥Γj
(
u2j,j−u(tj)

)∥∥≤ Ck2j+2, (45)

where C is a constant independent from k. Moreover, the sequence
{(

2+µk
2−µk

)n}
n

is bounded above by
exp(2µT/(2−ε)), for 0≤ µk ≤ ε < 2. Whence

‖Θ2j+2,n‖ ≤ Ck2j+2. (46)
Finally, by the triangle inequality, the identity (41) and the DCC, we have

‖u2j+2,n−u(tn)‖ ≤ Ck2j+2 +
∥∥Γj(u2j,n−u(tn))

∥∥≤ Ck2j+2, (47)

where C is a constant depending only on j, T , µ, M , a Lipschitz constant on f and u as element of C2j+3 ([0,T ],H2(Ω)
)
.

Substituting (46) in (44), we have

‖Θ2j+2,n+1‖2−‖Θ2j+2,n‖2 + 2kγ‖∇Θ̂2j+2,n+1‖2 ≤ Ck4j+5,
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and it follows by induction, taking (45) into account, that

‖Θ2j+2,n+1‖2 + 2kγ
n∑

i=j
‖∇Θ̂2j+2,i‖2 ≤ Ck4j+4.

Inequality (40) follows from (47) and the last inequality. �

To prove DCC for the schemes (12) and (13) we need the following lemma:

Lemma 2. The sequence
{
u2,n}

n
from the scheme (12) approximates u, the exact solution of (1), with order

2 of accuracy. Furthermore, if u(., t) = u0 for all t ∈ [0,(2p+ 1)k0], where k0 is the initial time step defined in
the introduction (k0µ0 < 2), then we have

‖D−(D+D−)mΘ2,n+1‖+
∥∥(D+D−)mΘ2,n+1∥∥+

∥∥∥(D+D−)mΘ̂2,n+1
∥∥∥

2

+
(
γk

n∑

i=m
‖∇(D+D−)mDΘ̂2,i+1/2‖2

)1/2

≤ Ck2,
(48)

for m = 0,1,2, ...,p, n = m,m+ 1, · · · ,N −m, and k ≤ k0, where Θ2,n = u2,n−u(tn), for n = 0,1,2, · · · ,N , µ0
is from (3), and C is a constant depending only on T , Ω, µ0, k0, M , the continuity of the source term S, the
derivatives of f up to order 2m+ 2, and the derivatives of u with respect to the time variable t up to order
2m+ 4.

Proof. According to Theorem 2, it is immediate that the sequence
{
u2,n}

n
from the scheme (12) approximates

u with order 2 of accuracy in time, and

‖Θ2,n‖2 +γk
n∑

i=0
‖∇Θ̂2,i‖2 ≤ Ck4, for n= 0,1, · · · ,N, (49)

where C is a constant depending only on T , Ω, a Lipschitz constant on f and the derivatives of u∈C3 ([0,T ],H2(Ω)
)
.

To prove (48) we proceed by induction on the integer m.

1) The case m= 0.
Combining (1) and (12), we obtain the identity

DΘ2,n+1/2−M∆Θ̂2,n+1 +h(tn+1) = w2,n+1/2, (50)

where

h(tn) = f(û2,n)−f(û(tn)) =
∫ 1

0
df (Kn

1 )(Θ̂2,n)dτ1,

with
Kn

1 = û(tn) + τ1Θ̂2,n,

and

w2,n+1/2 =
[
u′(tn+1/2)−Du(tn+1/2)

]
−M∆

(
u(tn+1/2)− û(tn+1)

)
−
[
f(u(tn+1/2))−f (û(tn+1))

]
.

Applying D+ to (50), we obtain

DD+Θ2,n+1/2−M∆D+Θ̂2,n+1 +D+h(tn+1) =D+w
2,n+1/2,
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and the inner product of this identity with D+Θ̂2,n+1 yields

‖D+Θ2,n+1‖2−‖D+Θ2,n‖2 + 2γk‖∇D+Θ̂2,n+1‖2 ≤ 2k
(
−D+h(tn+1) +D+w

2,n+1/2,D+Θ̂2,n+1
)
. (51)

We can write

D+h(tn) =
∫ 1

0
df
(
Kn+1

1
)

(D+Θ̂2,n)dτ1 +
∫ 1

0

∫ 1

0
d2f (Kn

2 )
(
D+K

n
1 ,Θ̂2,n

)
dτ1dτ2, (52)

where, for n+ i≤N , we have

Kn
i+1 =Kn

i + τi+1(Kn+1
i −Kn

i ) =Kn
1 +

i∑

l=1

∑

2≤i1<···<il≤i+1
τi1 · · ·τilklDl+Kn

1 . (53)

The scheme (12) can be transformed into equations (19)-(20), substituting k by k/2 and choosing u = û2,n+1

and v = (k/2)S(tn+1/2) +u2,n. It follows from (21) and the triangle inequality that

‖û2,n‖2 ≤ C
(
‖S(tn− 1

2
)‖+‖D−Θ2,n‖+‖∇Θ̂2,n‖+‖D−u(tn)‖+‖∇û(tn)‖

)
,

where C is a constant depending only on Ω, the matrix M and µ0. From inequalities (7), (49) and the Sobolev
embedding H2(Ω) ↪→ C0(Ω), the last inequality implies the existence of a real R > 0, depending only on T , Ω,
the regularity of S, the first derivative of f , and the second derivative of u with respect to t, such that

‖Kn
i ‖∞ ≤R, for i= 1,2, · · · ,2p+ 1. (54)

From the condition (3) we have
(
df (Kn

1 )(D+Θ̂2,n),D+Θ̂2,n
)
≥−µ0‖D+Θ̂2,n‖2. (55)

From (54) and (7) we have, for almost every x ∈ Ω,
∣∣∣d2f (Kn

2 )
(
D+K

n
1 ,Θ̂2,n+1

)
(x)
∣∣∣≤ max
|y|≤R

∣∣d2f(y)
∣∣ |D+K

n
1 (x)||Θ̂2,n+1(x)|

≤ C
(
|Θ̂2,n+1(x)|+ |D+Θ̂2,n+1(x)||Θ̂2,n+1(x)|

)
.

Therefore,
∥∥∥d2f (Kn

2 )
(
D+K

n
1 ,Θ̂2,n+1

)∥∥∥≤ C
(
‖Θ̂2,n+1‖+‖D+Θ̂2,n+1‖L4(Ω)‖Θ̂2,n+1‖L4(Ω)

)
,

and we deduce from the Sobolev embedding H1
0 (Ω) ↪→ L4(Ω) and the Poincaré inequality that

∥∥∥d2f (Kn
2 )
(
D+K

n
1 ,Θ̂2,n+1

)∥∥∥≤ C
(
‖Θ̂2,n+1‖+‖∇D+Θ̂2,n+1‖‖∇Θ̂2,n+1‖

)
. (56)

This inequality and (55) together with the Cauchy-Schwartz inequality yield

−k
(
D+h(tn+1),D+Θ̂2,n+1

)
≤ kµ0‖D+Θ̂2,n+1‖2 + 1

2γk‖∇D+Θ̂2,n+1‖2

+Ck‖D+Θ̂2,n+1‖
(
‖Θ̂2,n+1‖+‖∇Θ̂2,n+1‖2‖D+Θ̂2,n+1‖

)
,

(57)
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where we have used the Cauchy inequality with ε= γ/2:

‖∇D+Θ̂2,n+1‖‖∇Θ̂2,n+1‖‖D+Θ̂2,n+1‖ ≤ γ

2 ‖∇D+Θ̂2,n+1‖2 + 1
2γ ‖∇Θ̂2,n+1‖2‖D+Θ̂2,n+1‖2.

According to (49), we have

‖∇Θ̂2,n+1‖2‖D+Θ̂2,n+1‖ ≤ k−1‖∇Θ̂2,n+1‖2
(
‖Θ̂2,n+2‖+‖Θ̂2,n+1‖

)
≤ Ck4. (58)

From Taylor’s formula with integral remainder we can write

w2,n+1/2 = k2g(tn+1),

where, according to (7), we have

‖Dm1
+ Dm2

− g(tn)‖ ≤ C, for m2 ≤ n≤N −m1, (59)

for each nonnegative integers m1 and m2 such that m1 +m2 ≤ 2p+ 1. C is a constant depending only on T ,
the derivatives of f up to order m1 +m2 + 1, and the norm of u in Cm1+m2+3 ([0,T ],H2(Ω)

)
. It follows from

Cauchy-Schwartz inequality that
∣∣∣
(
kD+w

2,n+1/2,D+Θ̂2,n+1
)∣∣∣≤ Ck3‖D+Θ̂2,n+1‖.

Substituting the last inequality and the inequality (57) in (51), taking (49) and (58) into account, we deduce
that

‖D+Θ2,n+1‖2−‖D+Θ2,n‖2 +γk‖∇D+Θ̂2,n+1‖2 ≤ 2kµ0‖D+Θ̂2,n+1‖2 +Ck3‖D+Θ̂2,n+1‖, (60)
where C is a constant depending only on T , Ω, S, the second derivative of f and u ∈ C4([0,T ],H2(Ω)). This
inequality yields

‖D+Θ2,n+1‖−‖D+Θ2,n‖ ≤ kµ0‖D+Θ̂2,n+1‖+Ck3.

Since kµ0 ≤ k0µ0 < 2, it follows by induction that

‖D+Θ2,n‖ ≤ Ck2
(

2 +kµ0
2−kµ0

)n
+
(

2 +kµ0
2−kµ0

)n
‖D+Θ2,1‖.

The condition u(tn) = u0, for 0≤ tn ≤ (2p+ 1)k0, implies ‖D+Θ2,1‖= 0. Whence

‖D−Θ2,n‖= ‖D+Θ2,n−1‖ ≤ Ck2, for n= 1,2, · · · ,N. (61)

Substituting (61) in the right hand side of (60), we deduce that

‖D−Θ2,n‖2 +γk
n∑

l=0
‖∇D+Θ̂2,l‖2 ≤ Ck4. (62)

On the other hand, by the elliptic regularity results applied to (50), we deduce from (54), (59) for m1 =m2 = 0,
and (61) that

‖Θ̂2,n+1‖2 ≤ C
(
‖D−Θ2,n+1‖+‖h(tn+1)‖+‖w2,n+1/2‖

)
≤ Ck2.

Inequality (48) for m= 0 holds from (49), (62) and the last inequality.

2) Inequality (48) for m+ 1, assuming that it holds for arbitrary m≤ p−1.
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We apply (D+D−)m+1 to the identity (50) and take the inner product of the resulting identity with
(D+D−)m+1Θ̂2,n+1 to obtain, as in (51),

‖(D+D−)m+1Θ2,n+1‖2−‖(D+D−)m+1Θ2,n‖2 + 2γk‖∇(D+D−)m+1Θ̂2,n+1‖2 ≤

2k
(
−(D+D−)m+1h(tn+1) + (D+D−)m+1w2,n+1/2,(D+D−)m+1Θ̂2,n+1

)
.

(63)

As in [22] we can write

Ds+h(tn) =
s+1∑

i=1

∑

|αi|=s
Ln,si,αi , for s= 1,2, ...,2p+ 1, and n≤N −s, (64)

where αi = (α1
i , · · · ,αi−1

i ,αii)∈{1,2, · · · ,s}
i−1×{0,1, · · · ,s− i+ 1}. Ln,si,αi is a linear combination of the quantities

Ln,si,αi,βi =
∫

[0,1]i
diF (Kn+s+1−i

i )
(
D
αi−1
i

+ K
n+βi−1

i
i−1 , · · · ,Dα

1
i

+ K
n+β1

i
1 ,D

αii
+ Θ̂2,n+βii

)
dτ i,

where βi = (β1
i , · · · ,βi−1

i ,βii) ∈ {1,2, · · · ,s}
i−1×{0,1, · · · ,s− i+ 1} with βli +αli ≤ s− l+ 1, for l = 1, · · · , i, and

dτ i = dτ1 · · ·dτi. From (54) and the regularity of f we have
∥∥dif (Kn

i )
∥∥
∞ ≤ Ci, for i= 1,2, ...,2p+ 1,0≤ n≤N − i+ 1, (65)

where Ci is a constant depending only on T , the i-th derivative of f and the second derivative of u. From the
induction hypothesis (48), the Sobolev embedding H2(Ω) ↪→ L∞(Ω), and inequality (7), we have

‖Dl+Kn
i ‖∞ ≤ C, for 1≤ l ≤ 2m+ 2,0≤ n≤N − i− l+ 1, (66)

and
‖Dl+Θ̂2,n‖ ≤ Ck2, for 1≤ l ≤ 2m+ 1,0≤ n≤N − l. (67)

- For i= 1 we have
Ln,s1,α1 =

∫ 1

0
df(Kn+s

1 )
(
Ds+Θ̂2,n

)
dτ,

and, by taking s= 2m+ 2, it follows from (3) that
(
Ln−m,2m+2

1,α1 ,(D+D−)m+1Θ̂2,n+1
)
≥−µ0‖(D+D−)m+1Θ̂2,n+1‖2 (68)

since
D2m+2

+ Θ̂2,n−m = (D+D−)m+1Θ̂2,n+1.

- For i= 2 and |α2| ≤ 2m+2, we have 1≤ α1
2 ≤ 2m+2 and 0≤ α2

2 ≤ 2m+1. It follows by the triangle inequality,
the inequalities (7) and (65)-(67) that

‖Ln,s
∗

2,α2,β2
‖ ≤

∥∥∥d2f
(
Kn+s∗−1

2

)∥∥∥
∞
‖Dα

1
2

+ K
n+β1

2
1 ‖∞‖Dα

2
2

+ Θ̂2,n‖ ≤ Ck2, for s∗ ≤ 2m+ 2. (69)

- For i≥ 3 and |αi| ≤ 2m+ 3, we have 1≤ αli ≤ 2m+ 2, for l = 1,2, · · · , i−1, and 0≤ αii ≤ 2m+ 1. It follows by
the triangle inequality, the inequalities (7) and (65)-(67) that, for s∗ ≤ 2m+ 3,

‖Ln,s
∗

i,αi,βi
‖ ≤ ‖dif(Kn+s∗+1−i

i )‖∞‖Dα
i
i

+ Θ̂2,n+βii‖
i−1∏

l=1
‖Dα

l
i

+ K
n+βli
l ‖∞ ≤ Ck2. (70)
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From the identity (64), inequalities (68)-(70) yield
(
−(D+D−)m+1h(tn+1),(D+D−)m+1Θ̂2,n+1

)
≤ µ0‖(D+D−)m+1Θ̂2,n+1‖2 +Ck2‖(D+D−)m+1Θ̂2,n+1‖.

(71)
From inequality (59) we have

‖(D+D−)m+1w2,n+1/2‖ ≤ Ck2. (72)
Substituting (71) and (72) in (63), we obtain

‖(D+D−)m+1Θ2,n+1‖2−‖(D+D−)m+1Θ2,n‖2 + 2γk‖∇(D+D−)m+1Θ̂2,n+1‖2

≤ 2kµ0‖(D+D−)m+1Θ̂2,n+1‖2 +Ck3‖(D+D−)m+1Θ̂2,n+1‖.
(73)

Proceeding as in (60), we deduce by induction that

‖(D+D−)m+1Θ2,n‖ ≤
(
Ck2 +‖(D+D−)m+1Θ2,m+1‖

)(2 +kµ0
2−kµ0

)n−m−1
.

Since u(tn) = u0 for 0≤ tn ≤ (2p+ 1)k0, we have ‖(D+D−)m+1Θ2,m+1‖= 0, for m≤ p−1. Whence

‖(D+D−)m+1Θ2,n‖ ≤ Ck2, for n=m+ 1,m+ 2, · · · ,N −m−1. (74)

Substituting (74) in the right hand side of (73), we deduce by induction that

‖(D+D−)m+1Θ2,n‖2 + 2γk
n∑

i=m+1
‖∇(D+D−)m+1Θ̂2,i‖2 ≤ Ck4.

It is immediate from (65)-(67) that

‖Ln,2m+1
1,α1 ‖ ≤ ‖df(Kn+2m+1

1 )‖∞‖D2m+1
+ Θ̂2,n‖ ≤ Ck2.

Therefore, applying D−(D+D−)m to (50), we deduce from the elliptic regularity inequality, the identity (64),
the last inequality, the inequalities (69)-(70), (74) and (59) that

‖D−(D+D−)mΘ̂2,n+1‖2 ≤ ‖D−(D+D−)m
(
DΘ2,n+1/2 +h(tn+1) +w2,n+1

)
‖ ≤ Ck2.

It follows that

‖(D+D−)m+1Θ2,n+1‖+
(
γk

n∑

i=m+1
‖∇(D+D−)m+1Θ̂2,i‖2

)1/2

+‖D−(D+D−)mΘ̂2,n+1‖2 ≤ Ck2. (75)

Otherwise, applying D+(D+D−)m+1 to (50), the same reasoning, taking the induction hypothesis and the
inequality (75) into account, yields (48) for m+ 1. Finally, we deduce by induction that Lemma 2 is true for
each m= 0,1, · · · ,p. �

The following theorem shows DCC for the schemes (12) and (13) .

Theorem 3. Suppose that the exact solution u of (1) satisfies u(., t) = u0 for each t ∈ [0,(2p+ 1)k0], where
k0 > 0 is a fixed real such that k0µ0 < 2. Then, for k ≤ k0, each sequence

{
u2j,n}

n
, j = 1,2, ...,p+ 1, from the
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schemes (12) or (13) approximates u with order 2j of accuracy in time and we have the estimate

∥∥(D+D−)m
(
û2j,n+1− û(tn+1)

)∥∥
2 +

√√√√k
n∑

i=m
‖∇D−(D+D−)m (û2j,i− û(ti))‖2

+‖D−(D+D−)m
(
u2j,n+1−u(tn+1)

)
‖+
∥∥(D+D−)m

(
u2j,n+1−u(tn+1)

)∥∥≤ Ck2j .

(76)

for m= 0,1, ...,p−j and n=m+j−1,m+j, ...,N−j−m, where µ0 is from (3), and C is a constant depending
only on m, T , µ0, k0, M , the function S, and the derivatives of f and u = u(t) up to order 2m+ 2j and
2m+ 2j+ 2, respectively.

Proof. We proceed by induction on j = 1,2, ...,p+ 1, and the case j = 1 results from Lemma 2. Suppose that{
u2j,n}

n
satisfies (76) up to an arbitrary order j ≤ p. Let us prove that the theorem is still true for j+ 1.

Since
{
u2j,n}

n
satisfies (76), it also satisfies DCC, and then Theorem 2 together with the condition u(., t) = u0

in [0,(2p+1)k0] implies that
{
u2j+2,n}

n
approximates u with order 2j+2 of accuracy in time. Therefore, it is

enough to establish (76) for j+ 1. We can rewrite the identity (42) as follows

DΘ2j+2,n+1/2−M∆Θ̂2j+2,n+1 +H(tn+1) = w2j+2,n+1/2, (77)

where
H(tn+1) =

∫ 1

0
df
(
û(tn+1)−Γj û(tn+1) + τ1Θ̂2j+2,n+1

)(
Θ̂2j+2,n+1

)
dτ1,

and
w2j+2,n+1/2 = σ2j+2,n+1/2 + (Λj−Γj)D(u2j,n+1/2−u(tn+1/2)).

Here Θ2j+2,n+1 and σ2j+2,n+1/2 are as in Theorem 2. From the central finite difference (8)-(9) and the regularity
of u with respect to t, we can write

σ2j+2,n+1/2 = k2j+2G(tn+1/2),

where
‖Dm1

+ Dm2
− G(tn)‖ ≤ C, for m2 ≤ n≤N −m1,

for each nonnegative integers m1 and m2 such that m1 +m2 ≤ 2p−2j+ 1. C is a constant depending only on
T , the derivatives of f up to order m1 +m2 + 2j+ 1 and the norm of u in Cm1+m2+2j+3 ([0,T ],H2(Ω)

)
. On

the other hand, from the induction hypothesis and Remark 1, we immediately have

‖D−(D+D−)m(Λj−Γj)(u2j,n−u(tn))‖ ≤ Ck2j+2, for m= 0,1, ...,p− (j+ 1).

The last two inequalities implies that

‖Dm1
+ Dm2

− w2j+2,n+1/2‖ ≤ Ck2j+2, for m1 +m2 ≤ 2p−2j−2,

and m2 + j ≤ n≤N −m1− j−1. Therefore, the reasoning from Lemma 2, substituting the functions h by H,
w2,n+1/2 by w2j+2,n+1/2, Θ̂2,n+1 by Θ̂2j+2,n+1 and k2 by k2j+2, yields

‖D−(D+D−)mΘ2j+2,n+1‖+
∥∥(D+D−)mΘ2j+2,n+1∥∥+

∥∥∥(D+D−)mΘ̂2j+2,n+1
∥∥∥

2

+
(
k

n∑

i=m
‖∇D(D+D−)mΘ̂2j+2,i+1/2‖2

)1/2

≤ Ck2j+2,
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for m = 0,1, ...,p− (j+ 1), and (76) for j+ 1 follows by the triangle inequality. Inequality (76) then holds for
arbitrary integer j ≤ p+ 1. �

4. Fully discretized schemes and convergence results
Let Sh be a finite dimensional subspace of H1

0 (Ω) and {φi}Nhi=1 a basis for Sh consisting in continuous piecewise
polynomials of degree r ≥ 1 (see for instance [24] for an introduction to finite element subspaces Sh; the integer
r is related to the regularity of the exact solution of (1) in space). We suppose that there exist an interpolating
operator Irh from H1

0 (Ω) onto Sh and a constant c > 0 such that 0≤ l ≤ r implies

‖v− Irhv‖+h‖∇(v− Irhv)‖ ≤ chl+1|v|l+1,2,Ω, ∀v ∈H l+1(Ω)∩H1
0 (Ω), (78)

and
‖v− Irhv‖L4(Ω) +h‖∇(v− Irhv)‖L4(Ω) ≤ chl+1|v|l+1,4,Ω, ∀v ∈W l+1,4(Ω)∩H1

0 (Ω), (79)
where | · |l+1,ρ,Ω is the following seminorm in W l+1,ρ(Ω):

|v|l+1,ρ,Ω =
∑

|α|=l+1
|∂αv|Lρ(Ω).

We say that Sh satisfies the inverse inequality if

‖vh‖∞ ≤ chm−d/2‖vh‖m, ∀vh ∈ Sh, and m= 0,1. (80)

The estimates (78) and (79) hold when Sh is obtained from a shape-regular family of meshes {Th}h>0 [24,
Corollary 1.109 & 1.110 ] while (80) is due to [25, Theorem 3.2.6] or [24, Lemma 1.142] for a family of meshes
{Th}h>0 that is shape-regular and quasi-uniform. We consider the elliptic operator Rh, orthogonal projection
of H1

0 (Ω) onto Sh with respect to the inner product (v,w) 7→ (M∇v,∇w). Proceeding as in [13, Theorem 1.1],
we deduce from (78) that

‖Rhv−v‖+h‖∇(Rhv−v)‖ ≤ chl+1‖v‖Hl+1(Ω), ∀v ∈H1
0 (Ω)∩H l+1(Ω),0≤ l ≤ r. (81)

Furthermore, if Sh satisfies the inverse inequality (80), we deduce from (81) and (78) for l = 1, and (79) for
l = 0 together with the continuous embedding H2(Ω) ↪→W 1,4(Ω) ↪→ L∞(Ω), that

‖Rhv‖∞ ≤ ‖Rhv− Irhv‖∞+‖v− Irhv‖∞+‖v‖∞ ≤ ch1/2‖v‖2 +C‖v‖2, (82)

for each v ∈H2(Ω)∩H1
0 (Ω).

For j = 0,1,2, · · · ,p and each positive integer n≤N , we look for a function u2j+2,n
h ∈H1

0 (Ω) of the form

u2j+2,n
h =

Nh∑

l=1
U2j+2,n
l φl, (83)

satisfying
(
Du

2j+2,n+1/2
h −ΛjDu2j,n+1/2

h ,φ
)

+
(
M∇

(
Eu

2j+2,n+1/2
h −ΓjEu2j,n+1/2

h

)
,∇φ

)

+
(
f
(
Eu

2j+2,n+1/2
h −ΓjEu2j,n+1/2

h

)
,φ
)

=
(
s(tn+1/2),φ

)
,∀φ ∈ Sh, and n≥ j

(84)

u2j+2,0
h =Rhu0, (85)
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where ΛjDu2j,n+1/2
h = Γj û2j,n+1/2

h = 0 if j = 0. The scheme (84)-(85), denoted DC(2j+2), constitutes a full
discretization of the problem (1) with deferred correction in time, at the discrete points 0 = t0 < t1 < · · ·< tN =T ,
tn = nk, and finite element in space. For the starting values in (84)-(85), 0≤ n≤ j−1 , we consider the following
scheme which is deduced from (16):

(
Du

2j+2,n+1/2
h − 1

2j+ 1Λ̄jDū2j,nj+1/2
h +f(û2j+2,n+1/2

h − Γ̄jEū2j,nj+1/2
h ),φ

)

+
(
M∇

(
û

2j+2,n+1/2
h − Γ̄jEū2j,nj+1/2

h

)
,∇φ

)
=
(
s(tn+1/2),φ

)
,∀φ ∈ Sh,

(86)

u2j+2,0
h =Rhu0, (87)

The following theorem proves the existence of a solution for the schemes (84)-(85).

Theorem 4 (Existence of a solution for the fully discretized scheme). We suppose that k|τ(0)|< 2. Then, for
each j = 1,2, · · · , there exists a sequence

{
u2j,n
h

}N
n=0

of elements of the form (83) satisfying (84)-(85).

To prove this theorem we need the following lemma which is an adaptation of the lemma on zeros of a vector
field [8, p.493].

Lemma 3. Let m be a positive integer and v : Rm→ Rm a continuous function satisfying

v (z) ·z ≥ 0 if ‖z‖∗ =R, (88)

for a positive real R, where ‖.‖∗ is an arbitrary norm on Rm. Then there exists a point z in the closed ball

B(0,R) = {z ∈ Rm : ‖z‖∗ ≤R}

such that v(z) = 0.

Proof of Lemma 3. Suppose that v (z) 6= 0 for each z ∈B(0,R). The mapping

ϕ : B(0,R)→B(0,R)

defined by

ϕ(z) =− R

‖v (z)‖∗
v (z)

is continuous. Since B(0,R) is a compact and convex subset of Rm, we deduce from Schauder’s fixed-point
theorem [8, p.502] that ϕ has a fixed point z ∈B(0,R). Therefore, ‖z‖∗ =R, and this leads to the contradiction

0< |z|2 = ϕ(z) ·z =− R

‖v (z)‖∗
v (z) ·z ≤ 0.

�

Proof of Theorem 4. We proceed by double induction on j = 1,2, · · · and n= 0,1, · · · ,N , using Lemma 3 for the
function v : RNh → RNh defined by

vl(z) =
(

2zh−2ah
k

,φl

)
+ (M∇zh,∇φl) +

(
f (zh)−s(tn+1/2),φl

)
, (89)
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for l = 1,2 · · · ,Nh, where ah ∈ Sh is fixed and zh is the unique element of Sh associated to z ∈RNh and defined
by

zh =
Nh∑

l=1
zlφl.

We take ‖z‖∗ = ‖zh‖. The function v is continuous. For j = 1, we have u2,0
h = Rhu0 and, supposing that u2,n

h

exists for an arbitrary integer n <N and taking ah = u2,n
h in (89), we have

v (z) ·z =
(

2zh−2u2,n
h

k
,zh

)
+ (M∇zh,∇zh) +

(
f (zh)−s(tn+1/2),zh

)

≥ ‖zh‖
k

[
(2 +kτ(0))‖zh‖−2‖u2,n

h ‖−k
(
‖f(0)‖+‖s(tn+1/2)‖

)]

≥ 0,

(90)

for
‖z‖∗ = 1

2 +kτ(0)

(
1 + 2‖u2,n

h ‖+k‖s(tn+1/2)‖+k‖f(0)‖
)

:=R.

Then, from Lemma 3, there exists a point z in the closed ball B(0,R) of
(
RNh ,‖ · ‖∗

)
such that v(z) = 0. Taking

U2,n+1 =
(
U2,n+1

1 , · · · ,U2,n+1
Nh

)
= 2z−U2,n,

we have
v

(
U2,n+1 +U2,n

2

)
·el = 0,

for each el in the standard basis of RNh . The last identity implies the existence of u2,n+1
h of the form (83)

satisfying (84)-(85). Moreover, if
{
u2j,n
h

}N
n=0

exists and satisfies (84)-(85), for an arbitrary integer j ≥ 1, then

we have u2j+2,0
h =Rhu0, and the existence of u2j+2,n+1

h is immediate from the existence of u2j+2,n
h , proceeding

as in the case j = 1, taking ah = u2j+2,n
h −Γj û2j,n+1 + 0.5kΛjDu2j,n+1/2 in (89). �

The following theorem shows the convergence and order of accuracy of the fully discretized schemes.

Theorem 5 (Order of convergence of the fully discretized schemes). Suppose that the exact solution u of (1)
is C2p+4 ([0,T ],Hr+1(Ω)∩H1

0 (Ω)
)

and satisfies u(., t) = u0 for t ∈ [0,(2p+ 1)k0], where p is a positive integer
and k0 > 0 is a real such that k0 max{µ0, τ(0)}< 2, µ0 and τ are defined in (2)-(3). In addition, suppose that
Sh satisfies the inverse inequality (80). Then, for j = 1,2, · · · ,p+ 1, the solution

{
u2j,n
h

}N
n=0

of the scheme
(84)-(85) approximates u with order 2j of accuracy in time and order r+ 1 in space, that is

‖u2j,n
h −u(tn)‖+h

∥∥∥∇
(
u2j,n
h −u(tn)

)∥∥∥≤ C(k2j +hr+1), (91)

for k < k0. Furthermore, we have the estimate

‖u2j,n
h −Rhu2j,n‖21 +k

n∑

i=0
‖D(u2j,i+1/2

h −Rhu2j,i+1/2)‖2 + 2αk
n∑

i=0
‖u2j,i
h −Rhu2j,i‖q

Lq(Ω) ≤ Ch
2r+2, (92)

where C is a constant depending only on j, T , Ω, M , k0, µ0 and the derivatives of S, f and u.
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Proof. Inequality (91) is immediate from (92) by quadruple triangle inequality, writing

u2j,n
h −u(tn) =

(
u2j,n
h −Rhu2j,n

)
− [u(tn)−u2j,n]− [u(tn)−Rhu(tn)] +

[
u(tn)−u2j,n−Rh(u(tn)−u2j,n)

]
,

and taking (81) and (76) into account. Therefore, we just need to establish (92). We proceed by induction on
j = 1,2, · · · ,p+1. For this purpose, we need the following claim which proof is a straightforward application of
the mean value theorem, the triangle inequality, and inequalities (76), (81)-(82).

Claim 1. There exist 0< k3 ≤ k0 and h1 > 0 such that k ≤ k3 and h≤ h1 imply,

‖Rh(û2j+2,n+1−Γj û2j,n+1)‖∞ ≤ 1 +C‖u‖L∞(0,T,H2(Ω)), (93)

and
‖w2j+2,n+1/2

h ‖ ≤ Chr+1, (94)
for each j = 0,1, · · · ,p, and n= 0,1, · · · ,N , where we define

w
2j+2,n+1/2
h = f

(
û2j+2,n+1−Γj û2j,n+1)−f

(
Rh(û2j+2,n+1−Γj û2j,n+1)

)

+D
(
u2j+2,n+1/2−Λju2j,n+1/2

)
−RhD

(
u2j+2,n+1/2−Λju2j,n+1/2

)
,

(95)

and we set u0,n = 0.

1. The case j = 1. We proceed in two steps:

(i) First, we are going to prove the inequality

‖u2,n
h −Rhu2,n‖2 + 2γk

n∑

i=0
‖∇E(u2,i+1/2

h −Rhu2,i+1/2)‖2 + 2αk
n∑

i=0
‖E(u2,i+1/2

h −Rhu2,i+1/2)‖q
Lq(Ω) ≤ Ch

2r+2.

(96)
The scheme (12) yields

(
Du2,n+1/2,φ

)
+
(
M∇û2,n+1,∇φ

)
+
∫

Ω
f(û2,n+1)φdx=

(
s(tn+1/2),φ

)
, ∀φ ∈ Sh.

Therefore, combining this identity and (84), for j = 0, we deduce that
(
DΘ2,n+1/2

h ,φ
)

+
(
M∇Θ̂2,n+1

h ,∇φ
)

+
∫

Ω

(
f(û2,n+1

h )−f(Rhû2,n+1)
)
φdx

=
(
w

2,n+1/2
h ,φ

)
+
(
M∇

(
û2,n+1−Rhû2,n+1) ,∇φ

)
, ∀φ ∈ Sh,

(97)

where
Θ2,n
h = u2,n

h −Rhu2,n,

and w
2,n+1/2
h is defined in (95). Hypothesis (2) and inequality (93) yield

∫

Ω

(
f(û2,n+1

h )−f(Rhû2,n+1)
)

Θ̂2,n+1
h dx≥ α‖Θ̂2,n+1

h ‖q
Lq(Ω)−µ‖Θ̂

2,n+1
h ‖2, (98)

where
µ= max

|y|≤1+‖u‖
L∞(0,T ;H2(Ω))

|τ(y)|.
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From the properties of orthogonal projection we have,
(
M∇

(
û2,n+1−Rhû2,n+1) ,∇φ

)
= 0,∀φ ∈ Sh. (99)

Therefore, choosing φ = Θ̂2,n+1
h in (97), we deduce from the Cauchy-Schwartz inequality and the inequalities

(94) and (98) that
(
DΘ2,n+1/2

h ,Θ̂2,n+1
h

)
+γ‖∇Θ̂2,n+1

h ‖2 +α‖Θ̂2,n+1
h ‖q

Lq(Ω) ≤ Ch
r+1‖Θ̂2,n+1

h ‖+µ‖Θ̂2,n+1
h ‖2, (100)

for 0< k ≤ k3 and 0< h≤ h1. This inequality yields
(
DΘ2,n+1/2

h ,Θ̂2,n+1
h

)
≤ Chr+1

∥∥∥Θ̂2,n+1
h

∥∥∥+µ
∥∥∥Θ̂2,n+1

h

∥∥∥
2
,

and it follows for 0< kµ≤ k3µ < 2 that
∥∥∥Θ2,n+1

h

∥∥∥≤ C k

2−kµh
r+1 + 2 +kµ

2−kµ
∥∥∥Θ2,n

h

∥∥∥ .

Proceeding by induction as in Theorem 2, the last inequality yields

∥∥∥Θ2,n
h

∥∥∥≤
(
nkChr+1 +

∥∥∥Θ2,0
h

∥∥∥
)(2 +kµ

2−kµ

)n
≤ Chr+1 (101)

since nk ≤ T and Θ2,0
h = 0. Inequality (96) follows by substituting (101) in (100).

(ii) Now we are going to prove the inequality

k
n∑

i=0

∥∥∥DΘ2,n+1/2
h

∥∥∥
2

+γ‖∇Θ2,n+1
h ‖2 ≤ Ch2r+2. (102)

We choose φ=DΘ2,n+1/2
h in (97) and obtain

∫

Ω

(
f(û2,n+1

h )−f(Rhû2,n+1)
)
DΘ2,n+1/2

h dx+
(
M∇Θ̂2,n+1

h ,∇DΘ2,n+1/2
h

)

+
∥∥∥DΘ2,n+1/2

h

∥∥∥
2

=
(
w

2,n+1/2
h ,DΘ2,n+1/2

h

)
.

(103)

We can write

f(û2,n+1
h )−f(Rhû2,n+1) =

∫ 1

0
df
(
Rhû

2,n+1 + ξΘ̂2,n+1
h

)(
Θ̂2,n+1
h

)
dξ.

From the inverse inequality (80) and the inequality (101), we have

‖Θ̂2,n+1
h ‖∞ ≤ ch−3/2‖Θ2,n

h ‖ ≤ Chr−1/2, r ≥ 1. (104)

This inequality together with (93) implies that there exists 0< h2 ≤ h1 such that, for 0< h≤ h2, we have

‖Rhû2,n+1 + ξΘ̂2,n+1
h ‖∞ ≤ 2 +‖u‖L∞(0,T ;H2(Ω)).
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The last identity yields
∥∥∥f(û2,n+1

h )−f(Rhû2,n+1)
∥∥∥≤ max

|y|≤2+‖u‖
L∞(0,T ;H2(Ω))

|df(y)|
∥∥∥Θ̂2,n+1

h

∥∥∥≤ C
∥∥∥Θ̂2,n+1

h

∥∥∥ . (105)

Substituting (105) in (103), we deduce by Cauchy-Schwartz inequality and (94) that

k‖DΘ2,n+1/2
h ‖2+

(
M∇Θ2,n+1

h ,∇Θ2,n+1
h

)
−
(
M∇Θ2,n

h ,∇Θ2,n
h

)
≤ Ckh2r+2,

for n= 0,1, · · · ,N −1. It follows the inequality

k

n∑

i=0

∥∥∥DΘ2,n+1/2
h

∥∥∥
2

+
(
M∇Θ2,n+1

h ,∇Θ2,n+1
h

)
≤ Cnkh2r+2

since Θ2,0
h = 0. The last inequality gives exactly (102), where C is a constant depending only on T , Ω, ki+1, hi,

i= 1,2, and the derivatives of f and u.
Estimates (96) and (102) gives (92) for j = 1.

2. Here we prove inequality (92) for j+ 1, assuming that it holds up to order j, 1≤ j ≤ p.
From the scheme (13) we have

(
Du2j+2,n+1/2−ΛjDu2j,n+1/2,φ

)
+
(
M∇

(
û2j+2,n+1−Γj û2j,n+1) ,∇φ

)

+
∫

Ω
f
(
û2j+2,n+1−Γj û2j,n+1)φdx=

(
s(tn+1/2),φ

)
, ∀φ ∈ Sh.

(106)

Combining this identity and (84), we deduce that
(
DΘ2j+2,n+1/2

h +f
(
û2j+2,n+1
h −Γj û2j,n+1

h

)
−f

(
Rh(û2j+2,n+1−Γj û2j,n+1) ,φ

)

+ (M∇Θ̂2j+2,n+1
h ,∇φ) =

(
w

2j+2,n+1/2
h + (Λj−Γj)D(u2j,n+1/2

h −Rhu2j,n+1/2),φ
)
,

(107)

for any φ ∈ Sh, where we define

Θ2j+2,n
h = u2j+2,n

h −Rhu2j+2,n−Γj(u2j,n
h −Rhu2j,n),

and we use the identity
(
M∇(Id−Rh)

(
û2j+2,n+1−Γj û2j,n+1) ,∇φ

)
= 0,∀φ ∈ Sh. (108)

Id denotes the identity application. As in (98) we have
∫

Ω

(
f
(
û2j+2,n+1
h −Γj û2j,n+1

h

)
−f

(
Rh(û2j+2,n+1−Γj û2j,n+1))Θ̂2j+2,n+1

h dx

≥ α‖Θ̂2j+2,n+1
h ‖q

Lq(Ω)−µ‖Θ̂
2j+2,n+1
h ‖2.

Therefore, choosing φ= Θ̂2j+2,n+1
h in (107), we deduce by the triangle inequality, the last inequality and (94)

that
(DΘ2j+2,n+1/2

h ,Θ̂2j+2,n+1
h ) +γ‖∇Θ̂2j+2,n+1

h ‖2 +α‖Θ̂2,n+1
h ‖q

Lq(Ω) ≤ µ‖Θ̂
2j+2,n+1
h ‖2+

(
Chr+1 +‖(Λj−Γj)D−(u2j,n+1

h −Rhu2j,n+1)‖
)
‖Θ̂2j+2,n+1

h ‖
(109)
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This inequality implies that

‖Θ2j+2,n+1
h ‖−‖Θ2j+2,n

h ‖ ≤ kµ‖Θ̂2j+2,n+1
h ‖+k

(
Chr+1 +

∥∥∥(Λj−Γj)D
(
u

2j,n+1/2
h −Rhu2j,n+1/2

)∥∥∥
)
, (110)

and we deduce, for kµ < 2, that

‖Θ2j+2,n+1
h ‖ ≤ k

2−kµ
(
Chr+1 +

∥∥∥(Λj−Γj)D
(
u

2j,n+1/2
h −Rhu2j,n+1/2

)∥∥∥
)

+ 2 +kµ

2−kµ
∥∥∥Θ2j+2,n

h

∥∥∥ .

It follows by induction that,

‖Θ2j+2,n+1
h ‖ ≤C

(
2 +kµ

2−kµ

)n−j (
hr+1 +‖Θ2j+2,j

h ‖
)

+k

(
2 +kµ

2−kµ

)n−j n∑

m=j
‖(Λj−Γj)D(u2j,m+1/2

h −Rhu2j,m+1/2)‖,
(111)

for n≥ j, and for 0≤ n≤ j−1 we have

‖Θ̄2j+2,n+1
h ‖ ≤ C

(
2 +kµ

2−kµ

)n(
hr+1 +‖Θ̄2j+2,0

h ‖
)

+k

(
2 +kµ

2−kµ

)n j∑

m=0

∥∥∥(Λ̄j− Γ̄j)D
(
ū

2j,(2j+1)m+j+1/2
h −Rhū2j,(2j+1)m+j+1/2

)∥∥∥ ,
(112)

where we define

Θ̄2j+2,n
h = u2j+2,n

h −Rhu2j+2,n− Γ̄j
(
ū

2j,(2j+1)n+j+1
h −Rhū2j,(2j+1)n+j+1

)
.

Since
{
u2j,n
h

}N
n=0

and
{
ū2j,m
h

}j
m=0

are obtained from the same scheme, but for different time steps k and

kj = k/(2j+1), respectively, as for
{
u2j,n}N

n=0 and
{
ū2j,m}j

m=0, we deduce from the induction hypothesis and
the formulae (17) and (18) that

‖Θ̄2j+2,0
h ‖1 = ‖Γ̄j

(
ū2j,j+1
h −Rhū2j,j+1

)
‖1 ≤ C

2j∑

m=0
‖ū2j,m
h −Rhū2j,m‖1 ≤ Chr+1, (113)

and

k

j∑

m=0

∥∥∥(Λ̄j− Γ̄j)D
(
ū

2j,(2j+1)m+j+1/2
h −Rhū2j,(2j+1)m+j+1/2

)∥∥∥

≤ C

√√√√k

2j2+3j∑

m=0
‖D(ū2j,m+1/2

h −Rhū2j,m+1/2)‖2 ≤ Chr+1.

Substituting the last two inequalities in (112), we deduce that

‖Θ̄2j+2,n
h ‖ ≤ Chr+1, for 0≤ n≤ j,

and it follows by the triangle inequality and the induction hypothesis that

‖u2j+2,n
h −Rhu2j+2,n‖ ≤ Chr+1, for 0≤ n≤ j. (114)
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By the triangle inequality and the induction hypothesis, (114) in turn yields

‖Θ2j+2,j
h ‖ ≤ Chr+1,

and we have from (14) and (15)

k
n∑

m=j
‖(Λj−Γj)D(u2j,m+1/2

h −Rhu2j,m+1/2)‖ ≤ C
√
nk

√√√√k

n+j∑

m=0
‖D(u2j,m+1/2

h −Rhu2j,m+1/2)‖2 ≤ Chr+1.

The last two inequalities and (114) substituted in (111) yields

‖Θ2j+2,n
h ‖ ≤ Chr+1, for j ≤ n≤N, (115)

and it follows from (109) and (114) that

‖u2j+2,n
h −Rhu2j+2,n‖2 + 2αk

n∑

i=0
‖û2j+2,i
h −Rhû2j+2,i‖q

Lq(Ω) ≤ Ch
2r+2. (116)

Otherwise, proceeding as in the step 1-(ii) of this proof, we choose φ=DΘ2j+2,n+1/2
h in (107) and deduce from

(115) that

k

n∑

i=j

∥∥∥DΘ2j+2,i+1/2
h

∥∥∥
2

+γ
∥∥∥∇Θ2j+2,n+1

h

∥∥∥
2
≤ Ch2r+2 +

(
M∇Θ2j+2,j

h ,∇Θ2j+2,j
h

)
, (117)

for j ≤ n≤N , and, for 0≤ n≤ j−1,

k

j∑

i=0

∥∥∥DΘ̄2j+2,i+1/2
h

∥∥∥
2

+γ
∥∥∥∇Θ̄2j+2,n+1

h

∥∥∥
2
≤ Ch2r+2 (118)

since, from Cauchy-Schwartz inequality and (113), we have
∣∣∣
(
M∇Θ̄2j+2,0

h ,∇Θ̄2j+2,0
h

)∣∣∣≤ |||M |||‖∇Θ̄2j+2,0
h ‖2 ≤ Ch2r+2.

By the triangle inequality and the induction hypothesis, inequality (118) for n= j−1 yields
∣∣∣
(
M∇Θ2j+2,j

h ,∇Θ2j+2,j
h

)∣∣∣≤ |||M |||‖∇Θ2j+2,j
h ‖2 ≤ Ch2r+2.

Substituting the last identity in (117), we deduce from (118), the induction hypothesis, and the triangle in-
equality that

k

n∑

i=0
‖D(û2j+2,i+1/2

h −Rhû2j+2,i+1/2)‖2 +γ‖∇
(
û2j+2,n
h −Rhû2j+2,n

)
‖2 ≤ Ch2r+2, (119)

for 0≤ n≤N−1, where C is a constant depending only on j, T , Ω, M , and the derivatives of f and u. Inequality
(92) for the case j+1 follows from (116) and (119). Therefore, we can conclude by induction that the Theorem
holds for 1≤ j ≤ p+ 1. �
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Corollary 1. Under the conditions of Theorem 5, if Sh does not satisfy the inverse inequality, provided that,
in addition to conditions (2) and (3), f satisfies the inequality

|f(x)−f(y)| ≤ C
(
|x−y|+ |x−y|q−1) , for each x,y ∈ RJ , (120)

then the solution
{
u2j,n
h

}N
n=0

, 1≤ j ≤ p+ 1, of the scheme (84)-(85) satisfies

‖u2j,n
h −u(tn)‖ ≤ C(hr +k2j), ∀n= 0,1, ...,N,k < k0. (121)

Furthermore, we have the estimate

‖u2j,n
h − Irhu2j,n‖21+k

n∑

i=0
‖D(u2j,i

h − Irhu2j,i)‖2 + 2αk
n∑

i=0
‖u2j,i
h − Irhu2j,i‖q

Lq(Ω) ≤ Ch
2r (122)

where C is a constant depending only on j, T , Ω, M , k0, µ0, and the derivatives of S, f and u.
Proof. Inequality (122) is deduced from Theorem 5 substituting the elliptic operator Rh by the interpolating
operator Irh. By this substitution, the corresponding Claim 1 is obtained from (78) and (79). Since (104) does
not hold without inverse inequality, (105) is replaced by the inequality
∣∣∣∣
∫

Ω

(
f(û2,n+1

h )−f(Irhû2,n+1)
)(

û2,n+1
h − Irhû2,n+1

)
dx

∣∣∣∣≤ C
(
‖û2,n+1
h − Irhû2,n+1‖2 +‖û2,n+1

h − Irhû2,n+1‖q
Lq(Ω)

)
,

owing to the hypothesis (120). The order of accuracy in space is reduced since, instead of identities (99) and
(108), we have
∣∣(M∇(Id− Irh)(û2j+2,n+1−Γj û2j,n+1),∇φ

)∣∣≤ C‖∇(Id− Irh)(û2j+2,n+1−Γj û2j,n+1)‖‖∇φ‖ ≤ Chr‖∇φ‖,

for each φ ∈ Sh. �

5. Numerical experiment
For the numerical experiment we consider the bistable reaction-diffusion equation

ut−uxx+ 104u(u−1)(u−0.25) = 0 in Ω× (0,T ),
∂u

∂n
= 0 on ∂Ω× (0,T ),

u(·,0) = e−100x2
in Ω.

(123)

We choose Ω = (0,1) and T = 0.0295. We are interested in the order of convergence in time. For this purpose,
we simply use P1 Lagrange finite elements in space with uniform mesh and the step h= 10−3. We compute a
reference solution using DC10 with the time step k= 1.64×10−5 (N=1800). Table 3 gives the maximal absolute
error in time, norm L2(Ω) in space, and the order of convergence for each pair of consecutive time steps.

For this problem, we have
f(u) = 104u(u−1)(u−0.25),

and inequalities (2) and (3) hold with τ(0) = −1500 and µ0 = 8125/3. Therefore, according to Theorem 5,
the maximal time step to solve the problem with the DC methods is k0 = 6/8125 ' 7.38× 10−4, that is N =
39.9479' 40.

For the computational effort of the DC methods, we recall that to compute an approximate solution at
the discrete points 0 = t0 < t1 < · · · < tN = T , DC2 solves N nonlinear systems while DC2j, j ≥ 2, solves
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j×N systems. For the bistable reaction-diffusion, it is clear that, for N > 180, higher order DC method have
the smallest maximal error by solving less systems of equations. For exemple, DC10 achieves an absolute
error of about 2.48× 10−15 by solving approximately 2250 while DC4 achieves almost the same accuracy by
solving 3600 nonlinear systems. DC10, DC8, DC4 and DC2 solve approximately 1800 nonlinear systems,
but the corresponding errors are, respectively, 8.57× 10−14, 2.4× 10−14, 5.63× 10−13 and 6.25× 10−9. Since
the resolution of nonlinear systems is the main burden for these methods, using high order DC methods is
advantageous.

Table 3. Absolute error (order of convergence) for the bistable reaction-diffusion equation

N DC2 DC4 DC6 DC8 DC10
40 0.115 4.62e-03 9.14e-04 1.97e-04 1.11e-03
90 8.48e-04(3.21) 4.59e-05(5.68) 2.05e-06(7.52) 1.55e-06(5.97) 1.45e-06(8.22)
180 5.91e-05(3.84) 2.17e-06(7.72) 5.53e-09(8.53) 4.09e-09(8.56) 1.90e-09(9.57)
360 3.87e-06(3.93) 8.59e-10(7.98) 2.57e-12(11.07) 4.51e-13(13.15) 8.57e-14(14.44)
450 1.55e-06(3.96) 1.44e-10(8.01) 2.33e-13(10.74) 2.40e-14(13.14) 2.48e-15(15.88)
900 9.97e-08(4.00) 5.63e-13(7.99) 2.67e-16(9.77) 8.62e-19(14.75) 7.36e-21(18.36)
1800 6.25e-09(3.99) 2.18e-15(8.00) 2.13e-19(10.29) 1.74e-22(12.27) –
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[22] S.-C. R. Koyaguerebo-Imé, Y. Bourgault, Arbitrary order A-stable methods for ordinary differential equations via deferred

correction, arXiv preprint arXiv:1903.02115v2.
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Conclusion and perspectives

The aim of this thesis was to investigate time-stepping methods having both high
order of accuracy and a good stability, for the numerical approximations of reaction-
diffusion equations. The idea consists in a generalization and improvement of a family
of arbitrary high order time-stepping schemes introduced by Gustafsson and Kress
(2002). The time-stepping method from Gustafsson and Kress are constructed via
a deferred correction (DC) strategy and adresses only linear initial value problems
(IVP) satisfying a monotonicity condition while they have an issue for their starting
procedures. The generalization and improvement of these time-stepping methods and
their application to reaction-diffusion equations are done in three steps corresponding
to three submitted articles that constitute the chapter 1, 2 and 3 of the thesis:

1) The paper in chapter 1 introduces a new approach to derive various finite differ-
ences formulae of arbitrary high order for the numerical approximation of the deriva-
tives of any order of analytic functions. Many examples of arbitrary high order finite
difference formulae suited for DC methods are given in this paper. Furthermore, the
new approach recovers the standard centered, backward and forward finite difference
formulae given in terms of formal power series of finite difference operators.

2) The paper in chapter 2 gives a sequence {DC2j}j of A-stable arbitrary high or-
der time-stepping schemes which are self-starting, for the numerical approximation
of general initial value problems. The schemes are built recursively from the im-
plicit midpoint rule using the deferred correction strategy inspired by Gustafsson and
Kress. The starting procedures are made automatic and optimal owing to an efficient
centered finite difference formula introduced in chapter 1, and the complete analysis
of the convergence is done using a deferred correction condition (DCC) which guar-
antees the improvement of the order of accuracy by two from a scheme DC2j to the
scheme DC(2j + 2). Numerical experiments on standard stiff and non-stiff IVPs are
performed and showed that the DC schemes have large stability region, achieved their
proper order of accuracy (case of DC2 · · · , DC10), and are adapted for approximate
solutions on large time intervals. The step sizes used by the schemes to compute an
approximate solution are not necessarily small.

3) The paper in chapter 3 constitutes the application of the new DC method intro-
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duced in chapter 2 to an initial boundary value problem (IBVP) related to reaction-
diffusion equations. The IBVP is first discretized in time via the DC method, followed
by a space discretization using the Galerkin finite element method. It results a family
of fully discrete schemes for the numerical approximation of the IBVP which is proven
to be:

• of arbitrary high order both in time and space (the order of accuracy in time is
2j + 2 at the stage j = 0, 1, 2, ... of the correction while the order of accuracy
in space is at least equal to the degree of the finite element used);

• unconditionally stable (convergences of the fully discrete schemes hold with time
steps independent from space steps);

• and strongly stable (the method is compatible with the monotonicity condition
of the reaction-diffusion equations).

A complete analysis of the method is given using a deferred correction condition, as
in the case of IVPs, and a numerical test on a bistable reaction-diffusion equation
having a strong stiffness ratio agrees with the theory. The higher order DC methods
reach smaller error levels by solving a smaller number of nonlinear systems than
lower order DC methods, for time steps not necessarily small, and the convergence is
towards machine accuracy.

The existing time-stepping methods face at least one of the following challenges:
lack of stability when order 3 or greater is investigated, overly small time step or/and
reduction of the order of convergence for stiff problems, inefficiency for long term in-
tegration. In fact, our DC time-stepping methods have a large stability region, they
are not prone to order reduction or a stability restriction even for a stiff problems
(ODEs as PDEs) of large dimension and are adapted for long intervals of integration.
Their convergence are toward machine accuracy with time steps not necessarily small,
and the computational effort favors higher order DC methods for a given accuracy
(at least in the region of asymptotic convergence). Furthermore, the discretizations
in chapter 3 give efficient schemes for the numerical approximation of parabolic equa-
tions in general, and the techniques used for our proofs constitute some new tools
for the analysis of the DC methods applied to more general time-evolution PDEs.
Consequently, our work in this thesis constitutes a very important contribution to
the literature on the numerical analysis of time-stepping methods.

The work done in this thesis gives rise to many perspectives for which the fol-
lowing list is far from being complete:

• Apply the DC methods constructed to more general time-evolution partial dif-
ferential equations such as hyperbolic PDEs and Naviers-Stokes equations. In
fact, the DC methods have a simple structure and can be easily applied, as time
stepping methods, to more general ODEs and PDEs.
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• Investigate a solver with adaptive time-steps for the DC schemes constructed.
In fact, our convergence analysis of the DC schemes pointed out the necessity
of an initial time step k0 for a global convergence. Constant stepsize codes
use time steps k ≤ k0 to compute accurate approximate solutions, resulting in
high computational efforts. In practice, the stepsizes needed for an accurate
approximate solution of an IVP by the DC methods depend locally on the
Jacobian matrix of a linearized form of the IVP along its solution curve. Since
the Jacobian matrix is not constant along the solution curve (except for some
linear systems), a variable-stepsize code should allow the use of time steps k ≥ k0
in regions with mild variations and then significantly reduces the CPU time.

• Investigate the impact of starting values on standard high order time-stepping
methods that require a starting procedure. In fact, we have done a careful study
on starting values versus possible order reduction, which allowed us to built
the efficient starting procedures for our DC schemes. However, the numerical
experiments performed in chapter 2, comparing our DC schemes with respect
to implemented backward differentiation formulae (BDF) using exact starting
values and the BDF solver with adaptive steps, showed an impact of starting
values on the BDF methods. As a consequence, a study about the impact of
starting values on high order time-stepping methods in general is necessary.

• Investigate new variant of DC time-stepping methods based on the BDF and
the Runge Kutta methods. In fact, DC method for BDF1 was analysed in first
versions of the papers in chapter 2 and 3, but the theory was not complete (in
the case of PDEs) and numerical experiments were not performed. It is possible
to continue such study and investigate more general extensions. We recall that
a correction on, for example, BDF4 will lead to a scheme of order 8 of accuracy
with about the double of the computational effort required by BDF4.
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