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Abstract

Accurate numerical simulation of reaction-diffusion systems can come with a high
cost. A system may be stiff, and solutions may exhibit sharp localized features that
require fine grids and small time steps to properly resolve the physical phenomena
they represent. The development of efficient methods is crucial to cut down the
demands of computational resources.

In this thesis we consider the use of adaptive space and time methods driven by
a posteriori error estimation. The error estimators for the spatial discretization are
built from a variety of sources: the residual of the partial differential equation (PDE)
system, gradient recovery operators and interpolation estimates. The interpolation
estimates are anisotropic, not relying on classical mesh regularity assumptions. The
adapted mesh is therefore allowed to include elements elongated in specified directions,
as dictated by the type of solution being approximated.

This thesis proposes an element-based adaptation method to be used for a resid-
ual estimator. This method avoids the usual conversion of the estimator to a metric,
and instead applies the estimator to directly control the local mesh modifications.
We derive a new error estimator for the L2-norm in the same anisotropic setting and
adjust the element-based adaptation algorithm to the new estimator.

This thesis considers two new adaptive finite element settings for reaction-diffusion
problems. The first is the extension to a PDE setting of an estimator for the time
discretization with the backward difference formula of order 2 (BDF2), based on an
estimator for ordinary differential equation (ODE) problems. Coupled with the resid-
ual estimator, we apply a space-time adaptation method. The second is the derivation
of anisotropic error estimates for the monodomain model from cardiac electrophysi-
ology. This model couples a nonlinear parabolic PDE with an ODE and this setting
presents challenges theoretically as well as numerically.

In addition to theoretical considerations, numerical tests are performed through-
out to assess the reliability and efficiency of the proposed error estimators and nu-
merical methods.
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Chapter 1

Introduction

Reaction-diffusion systems represent a large class of time-dependent problems in the
field of partial differential equations. They are used to model balance laws, including
a very broad range of physical applications, such as population dynamics, chemical
processes, and physiology. General resources dealing with the analysis of these sys-
tems and the illustration of the various physical applications can be found in [89],
[93], [99], [52] and the references therein. Reaction-diffusion systems are known to
admit solutions exhibiting a wide variety of pattern formation and wave propagation
phenomena. The existence and behaviour of planar wave solutions have been stud-
ied in a variety of situations, see for instance [59]. Spiral waves, which propagate
with a curved wave profile, were observed as early as in the 1950s with the so-called
Belousov-Zhabotinsky reaction, and can been studied in a geometrical framework, for
instance see [61].

The problems tend to be nonlinear, and in general cannot be solved by analytical
means alone. An important tool in the study of the solutions is to compute accurate
numerical approximations. A variety of approaches have been taken, including finite
difference schemes, finite volume and finite element methods. The finite element
method in particular admits flexibility in terms of geometry and choice of domain. It
is therefore the method used in this thesis for space discretization. Standard references
for the finite element method are [40] and [23].

In general, a sufficiently accurate numerical solution is difficult to obtain. For
example, in cardiac electrophysiology, the wave-front of the action potential requires
resolution of approximately 0.1mm, so that for realistic 3D models to reach this
resolution for a heart, measuring several cubic cm in volume, a uniform mesh would
have to contain on the order of 107 unknowns for the simplest models. For more
complex models, the number of unknowns could increase by orders of magnitude, and
the memory requirement to set up the system becomes prohibitive [92, Chapter 6]. At
the same time, in a normal heartbeat, which takes on order of 1 second, phenomena
occur at multiple time scales, ranging in some cases from about 0.001− 0.1ms, so to

1



1. INTRODUCTION 2

capture the lowest scale with a constant time step will on the order of about 106 steps
[46].

It is clear that steps should be taken to reduce the prohibitive cost and to improve
the efficiency of numerical methods. To name a few approaches, domain decompo-
sition methods [79] can be applied to solve the problem in parallel, and the use of
higher-order methods in space [3], and in time [42] can often be advantageous. In
this thesis, we consider the use of adaptive finite element methods. The main idea is
that if one can approximate the exact error of the discrete solution, the regions that
contribute the most and least amount of error can be identified. Then the discretiza-
tion can be changed locally, with respect to the mesh and time-step size, to either
improve accuracy or reduce complexity. For a general overview of error estimation for
finite elements, see [1] and [40, Chapter 10], and for a modern introduction to mesh
adaptation method, see [48].

For the remainder of this chapter, we introduce the concepts and background
material required for this thesis. In Section 1.1 we discuss the general setting of
reaction-diffusion systems, including the functional spaces required for the variational
framework. Following, we formally introduce the example of the bidomain and mon-
odomain models from cardiac electrophysiology. Next, we introduce the basics of the
Lagrangian finite element method for the discretization of the problem in Section
1.2. We discuss a posteriori error estimation in Section 1.2.4 and adaptative methods
in Sections 1.2.5 and 1.2.6. Finally, in Section 1.3 we state the goals and problems
addressed in the thesis.

1.1 Reaction-diffusion systems

1.1.1 Model problem and functional spaces

Let T > 0, and Ω ⊆ Rd be a bounded domain with Lipschitz boundary. For i with
1 ≤ i ≤ m, consider source terms Si : (0, T ) × Ω → R, reaction terms Fi : Rm → R,
and initial conditions Ui,0 : Ω → R. For some k with 1 ≤ k ≤ m consider for i ≤ k
the diffusion coefficients Di : Ω → Md×d(R), where the matrices Di(x) are positive
definite, and boundary data Gi : (0, T ) × ∂Ω → R. For convenience, extend the
definitions of Di, Gi to be zero for i > k. In this thesis we are concerned with solving
the following system for the unknowns Ui : (0, T )× Ω→ R:

∂Ui
∂t
− div(Di∇Ui) + Fi(U1, · · · , Um) = Si, in (0, T )× Ω,

Di∇Ui · n = Gi, in (0, T )× ∂Ω,
Ui(0) = Ui,0, in Ω.

(1.1.1)

The solution to system (1.1.1) will be defined in a weak sense. With the Lebesgue
measure on Ω we consider the functional spaces (L2(Ω), ‖ · ‖0,Ω) and (H1(Ω), ‖ · ‖1,Ω)
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with norms

‖u‖0,Ω =

(∫
Ω

|u|2 dx

)1/2

, u ∈ L2(Ω)

‖u‖1,Ω =

(∫
Ω

(|u|2 + |∇u|2) dx

)1/2

, u ∈ H1(Ω).

We denote by (·, ·)Ω the inner product on L2(Ω). Let (V, ‖ · ‖) be a Banach space.
For a measurable function v : (0, T )→ V , define the norm

‖v‖L2(0,T ;V ) =

(∫ T

0

‖v‖2 dt

)1/2

, (1.1.2)

and define the space L2(0, T ;V ) = {v : (0, T ) → V : ‖v‖L2(0,T ;V ) < ∞}, which is a
Banach space with norm given by 1.1.2. Given reflexive Banach spaces V1, V2 with
V1 ⊆ V2, define

W(V1, V2) = {w : [0, T ]→ V1 ; w ∈ L2(0, T ;V1), ∂tw ∈ L2(0, T ;V2)},

which is a Banach space with norm

‖w‖W(V,V ′) = ‖w‖L2(0,T ;V1) + ‖∂tw‖L2(0,T ;V2).

The time derivative here is meant in the vector-valued distributional sense (see [67] or
[93]). Let V, H be two Hilbert spaces such that there exists a continuous embedding
V ⊂ H, generally not isometric, such that the image under the embedding of V is
dense in H. Let V ′, H ′ denote their topological duals, and identify H with H ′ in the
usual way. We naturally have inclusions V ⊂ H = H ′ ⊂ V ′. We therefore view the
duality pairing (·, ·)V ′,V as an extension of the inner product on H. Then, there is a
continuous embedding W(V, V ′) ⊆ C([0, T ];H), see [67, Lemme 1.2]. In particular,
for w ∈ W(V, V ′), the point evaluations w(0), w(T ) ∈ H are well-defined.

Under this functional setting, take V = H1(Ω) and H = L2(Ω). Choose the
initial conditions Ui,0 ∈ H and boundary data Gi ∈ L2(0, T ;L2(∂Ω)) and source
terms Si ∈ L2(0, T ;H). Then {Ui} ∈ W(V, V ′)k ⊕ W(H,H ′)m−k is the solution to
the system of variational equations

d

dt
(Ui, v)Ω + (Di∇Ui, ∇v)Ω + (Fi(U1, · · · , Um), v)Ω = (Si, v)Ω + (Gi, v)∂Ω , (1.1.3)

∀v ∈ W(V, V ′)

Ui(0) = Ui,0. (1.1.4)

Results for existence and uniqueness to (1.1.4) depend on the choice of reaction terms
Fi, and can be found for instance in [89], [93], [99]. In Chapter 3 we will concentrate
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on the scalar case, where m = 1, and in Chapter 4 we concentrate on the monodomain
model, introduced in Section 1.1.2 below, which is a two-variable model with diffusion
only for the first variable (so D2 = 0).

Additionally, in Chapter 2 we discuss a stationary diffusion problem which is
now described. Consider source term f ∈ L2(Ω), boundary term g ∈ H1/2(∂Ω) and
diffusion coefficient D : Ω → Md×d(R). Suppose that the matrix coefficients Di,j

belong to L∞(R) and that the uniform ellipticity assumption is satisfied: there exists
a constant C > 0 such that for a.e. x ∈ Ω

ξTD(x)ξ ≥ C|ξ|22, ∀ξ ∈ Rd,

where |ξ|2 =
(∑d

i=1 ξ
2
i

)1/2

. Let u ∈ V be the solution to the following:{
−div(D∇u) = f, in Ω,
u = g, on ∂Ω.

(1.1.5)

Equation (1.1.5) has a unique solution, see for instance [40]. Let V0 = {v ∈ V :
v|∂Ω = 0} and Vg = {v ∈ V : v|∂Ω = g}. Then u ∈ Vg is the solution to the
variational problem

(D∇u, ∇v)Ω = (f, v)Ω , ∀v ∈ V0.

1.1.2 Equations from electrophysiology

The heart is composed of muscle, which is arranged in fibres. In the course of a
normal heartbeat, electrical current flows from excited cells to surrounding cells,
with the direction of propogation influenced by the orientation of the fibres. The
depolarization of the cells induces the muscle to contract, and blood is pumped from
the heart.

We briefly introduce the models from electrophysiology relevant for this thesis.
For a thorough derivation of the models, see for instance [59], [60], [47], [92]. The heart
at the cell-level is divided into two domains: the intra- and extra-cellular domains Ωi

and Ωe, separated by the cell membrane. Inside each domain, the current densities
Ji and Je are assumed to be purely Ohmic, satisfying

Ji = −Mi∇ui, Je = −Me∇ue,

where Mi, Me are positive definite conductivity matrices. The heart muscle fibres are
arranged in sheets, with the eigenvectors of the conductivity matrices corresponding to
the direction parallel to the fibre (the direction of highest conductivity), orthogonal
to the fibres parallel to the sheets, and orthogonal to the sheets. The membrane
acts as an insulator, with capacitance Cm, with most of the ionic transport between
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domains facilitated by ionic channels. The separation of ions between the intra-
and extra-cellular domains results in a potential difference across the membrane:
u = ui − ue, where ui and ue denote the potential in each domain. Through a
homogenization argument, for instance in [59], [47], the domains are assumed to
coincide Ωi = Ωe = Ω. The total current is modelled as a circuit in parallel, as a sum
of the ionic and capacitive current:

Im = χ(Iion + Ic),

where the constant χ > 0 is the cell membrane surface area to volume ratio, re-
quired since the ionic and capacitive currents are measured per unit area of surface
membrane, while the transmembrane current is measured per unit volume of tissue.
The bidomain model for the potential in an isolated heart in terms of the unknowns
u, ui, ue : (0, T )× Ω→ R and W = (w1, · · · , wm) : (0, T )× Ω→ Rm is given by

χCm
∂u

∂t
− div(σi∇ui) + χIion(u,W ) = 0, in (0, T )× Ω,

χCm
∂u

∂t
+ div(σe∇ue) + χIion(u,W ) = 0, in (0, T )× Ω,

∂W

∂t
= G(u,W ), in (0, T )× Ω,

σi∇ui · n = 0, in (0, T )× ∂Ω,
σe∇ue · n = 0, in (0, T )× ∂Ω,
u(0) = u0, in Ω,
W (0) = W0, in Ω.

(1.1.6)

The first two equations represent balance laws for the charges in the two domains
Ωi, Ωe. The boundary conditions are made under the assumption that the heart is
insulated. The third equation represents a system of ODEs for the ionic activity,
for instance channel gating variables or ionic concentrations, which is coupled to
the transmembrane potential by the nonlinear reaction term Iion. The above also
assumes there is no external current source, which may be added to the first two
equations. Existence results for weak solutions of the bidomain model can be found
in [30] for the FitzHugh-Nagumo model, in [20] under some growth assumptions for
the reaction terms, including the FitzHugh-Nagumo and Aliev-Panfilov models, and
in [19] extending results to the heart-torso coupled problem, as well as a version of
the Mitchell-Schaeffer model. Uniqueness so far has only been proven for models
related to the FitzHugh-Nagumo, as in [20] and [19], for systems which satisfy a
strong monotonicity condition.

If we assume equal anisotropy ratios, so that Me = λMi for some λ > 0, then
setting σ = λ

1+λ
Mi, the first two equations in (1.1.6) may be replaced by a single

equation

χCm
∂u

∂t
− div(σ∇u) + χIion(u,W ) = 0. (1.1.7)
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The monodomain system consists of replacing (1.1.7) for the first two equations in
(1.1.6) with boundary condition (σ∇u) · n = 0.

Phases of the action potential

The primary importance of the bidomain and monodomain models, is the simulation
at the macroscopic scale of the action potential, which is a physiological reaction that
results in the heartbeat. The cells of the heart muscle are excitable, reacting to outside
stimulus. The ionic channels of cells in the ventricle are controlled by gates, which
open and close in a voltage-dependent way. When the potential difference is raised
above a certain threshold, an action potential results. In the case of the ventricle, this
process can be described as follows. In the upstroke phase, which is short (short scale,
a few milliseconds), the sodium channels open, and a large influx of sodium ions enter
until the cell is completely depolarized. In the following excited phase (long scale,
hundreds of ms), the inward sodium current is balanced by an outward potassium
current, and the cell slowly begins to repolarize. During the repolarization phase
(short scale, tens of ms), the sodium channel closes, while the outward potassium
current completes the repolarization of the cell. After the cell has repolarized, a long
scale recovery period begins (long scale, hundreds of ms), during which equilibrium
is attained for the ionic currents and gates, for instance by the Na-K pump, which
pumps sodium out of the cell and potassium in. See [86], [92], [66], [59] for further
details on the physiology of the action potential.

FitzHugh-Nagumo model

The simplest ionic model we consider is the FitzHugh-Nagumo (FHN) model, see
[43], with 0D model given by

du

dt
= f(u)− w,

dw

dt
= ε(κu− w), (1.1.8)

where f(u) = u(u− a)(1−u), with constants 0 < a < 1, ε > 0 and κ > 0. The model
is a simplified version of the Hodgkin-Huxley model, which was designed to model the
nerve axon of a giant squid [56]. While the model is not considered physically accurate
for the purposes of the human heart, it is a simple model that qualitatively captures
some features of the action potential. Usually 1 � ε, so w generally varies more
slowly. The action potential resulting from the system may be described by “fast-
slow” dynamics, by studying the nullclines of (1.1.8). When f(u) ≈ w, the second
equation dominates, and u varies slowly, which roughly corresponding to plateau
and recovery phases. Depolarization and repolarization are then modeled by the
rapid transitions between branches, moving respectively towards the upper and lower
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stable equilibria. See for instance [59] for details. In Chapter 3 we discuss a simplified
version of this model, which does not involve the variable w. This version is sufficient
to model the depolarization front, but not the repolarization. In Chapter 4 we study
the full two-variable model.

Mitchell-Schaeffer model

We also consider the Mitchell-Schaeffer (MS) model from [75], with 0D model given
by

du

dt
=

1

τin
wu2(1− u)− 1

τout
u (1.1.9)

dw

dt
=

{
1

τopen
(1− w), u < ugate,

− 1
τclose

w, u ≥ ugate,
(1.1.10)

where 0 < τin � τout � τopen, τclose are positive constants and 0 < ugate < 1. In a
regular heartbeat simulation, the variables u, w are between 0 and 1. The first term
on the right for the first equation represents the inward current, which is gated by w,
so that the gate is open when w = 1, and closed when w = 0, while the second term
represents an ungated outward current. Due to the relation between the parameters,
the action potential can be described by fast-slow dynamics by studying the phase-
plane. The nullcline for the first equation consists of a short depolarization of order
τin, a long plateau of order τclose, a short repolarization of order τout and recovery
of order τopen. See [75] for details. Unlike the FHN model, the paramters of the MS
model can be chosen to match the duration of each phase of the action potential (see
[86]).

1.2 Finite element method

1.2.1 Lagrangian finite elements

In this thesis, a mesh Th is an assemblage of a finite number of d-dimensional simplicial
elements K with finite and nonzero volume such that Ω = ∪K∈ThK, and such that

any pair of elements K1, K2 have disjoint interior K̊1∩K̊1 = ∅. The subscript h refers
to the largest diameter h = maxK∈Th hK , where hK is the diameter of the element

K. Fixing a reference simplex K̂, for every element K ∈ Th there exists an invertible
affine transformation FK : K̂ → K. Denoting the vertices {v̂i} and {vi} for the
respective elements, the transformation is unique up to the condition FK(v̂i) = vi.
The mesh is assumed to be geometrically conformal: given two elements K1, K2 such
that K1 ∩K2 is a (d− 1)-dimensional face E, then there is a face Ê of the reference
simplex such that up to a reordering of the nodes of K1, K2, E = FK̂1

(Ê) = FK̂2
(Ê)
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and FK̂1
|Ê = FK̂2

|Ê. In particular, for d = 2, the intersection of any two elements will
be either empty, a vertex, or an edge.

Denote pK the diameter of the largest ball inscribed in K. A family of meshes
{Th}h, indexed by the maximum diameter h, is said to be shape-regular if there
exists a constant c > 0 such that maxh{maxK∈Th

hK
pK
} ≤ c. For d = 2, denoting by

θK the smallest angle in K, we have the inequality hK
pK
≤ 1

sin θK
, so a shape-regular

family of meshes satisfies a minimum-angle condition. In what follows, we say that a
family of meshes satisfying a shape-regularity condition is isotropic. Otherwise, it is
anisotropic.

We specialize to the case d = 2. Let ` ≥ 1 be an integer. For an element K ∈ Th,
let P`(K) be the space of polynomials on K of degree at most `. This space has
dimension n` = 1

2
(` + 1)(` + 2). We define a basis as follows. Consider the local

nodes {aK,i}n`
i=1 in K with Barycentric coordinates

(
i0
`
, i1
`
, i2
`

)
, where i0, i1, i2 are all

triplets of non-negative integers such that i0 + i1 + i2 = `. Define the linear forms
σi : P`(K) → R by σi(p) = p(aK,i). Then Σ = {σi}n`

i=1 forms a basis of the dual
of P`(K). The dual basis {θi}n`

i=1 ⊆ P`(K), consisting of the polynomials satisfying
σi(θj) = δij, are called the local shape functions, and the set (K,P`(K),Σ) is called
a Lagrangian finite element.

1.2.2 Finite element approximation

Denote by Vh the Lagrangian finite element space:

Vh = {vh ∈ C(Ω) : vh|K ∈ P`(K), ∀K ∈ Th}.

The space Vh is H1(Ω)-conformal, in the sense that Vh ⊆ H1(Ω). The global nodes
{ai}Ni=1 are obtained as the union of all the local nodes for each element K. A
basis {φi} of Vh consists of the functions that satisfy φi(aj) = δij. Define the space
V0,h = H1

0 (Ω) ∩ Vh, with basis consisting of the φi for which ai is an internal node.
Let gh be a piecewise linear interpolation of g. The finite element approximation

uh ∈ Vh to problem (1.1.5) is obtained by restricting the variational form:

(D∇uh, ∇vh)Ω = (f, vh)Ω , ∀vh ∈ V0,h,

uh|∂Ω = gh.

The convergence of this method under certain regularity assumptions can be summa-
rized in the following.

Theorem 1.2.1. [40] Suppose that the solution u to (1.1.5) belongs to H`+1(Ω), and
let {Th}h be a family of shape regular meshes. Then there exists a constant C > 0
independent of h such that the P` approximation satisfies

‖u− uh‖0,Ω + h‖u− uh‖1,Ω ≤ Ch`+1‖u‖`+1,Ω.



1. INTRODUCTION 9

Due to Cea’s Lemma [40, Lemma 2.8] the finite element approximation uh is in
some sense the best approximation to u in the approximation space Vh. Therefore,
bounds on local interpolation error lead to bounds for the global finite element approx-
imation error. The dependence on shape-regularity for the constant C in Theorem
1.2.1 is due to classical bounds on the Lagrange interpolation operator. In prac-
tice, the shape-regularity requirement may be too restrictive. This restriction can
be weakened somewhat by replacing the minimum-angle condition with a maximum-
angle condition, see [5]. In this thesis, we do not want to impose any a priori global
constraint on the type of elements allowed.

1.2.3 Anisotropic setting

In this thesis, we make use of the anisotropic setting from [44]. For a triangular
element K, consider the affine mapping FK : K̂ → K. The reference element K̂ is
taken to be the equilateral triangle centred at the origin with vertices at the points
(0, 1), (−

√
3

2
, −1

2
), (

√
3

2
, −1

2
). The Jacobian JK of FK is non-degenerate, so that the sin-

gular value decomposition (SVD) JK = RT
KΛKRKZK consists of orthogonal matrices

RK , ZK , and a positive definite diagonal matrix ΛK . The matrices RK , ΛK take the
form

RK =

(
rT1,K
rT2,K

)
, ΛK =

(
λ1,K 0

0 λ2,K

)
,

where λ1,K ≥ λ2,K > 0, r1,K , r2,K are orthogonal unit vectors. Geometrically, the
singular values and vectors represent the deformation of the unit ball in R2 to an
ellipse with axes of length λ1,K , λ2,K in directions r1,K , r2,K , respectively. Moreover,
they represent K in the sense that the ellipse circumscribes the element.

Denote by ∆K the patch of all elements which contain a vertex of K. While
shape-regularity is not imposed for individual elements, some mild conditions are
imposed on the type of patches allowed, see for instance [80], [74]. For v ∈ H1(Ω),
define the following “Hessian” type matrix:

G̃K(v) =

(∫
∆K

∂v

∂xi

∂v

∂xj
dx

)
i,j

,

and let
ω̃K(v) = (λ2

1,Kr
T
1,KG̃K(v)r1,K + λ2

2,Kr
T
2,KG̃K(v)r2,K)1/2.

As d ≥ 2, there is no embedding H1(Ω) ⊆ C(Ω), so instead of the usual Lagrange
interpolation operator, one uses a quasi-interpolation operators Qh : H1(Ω) → Vh,
for instance the Clement or the Scott-Zhang operators [29], [88]. Then we have the
following estimates.
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Lemma 1.2.2 ([44][45]). Let Qh : H1(Ω) → Vh denote the Clement or Scott-Zhang
interpolation operator. Then there exists a constant CK̂ > 0, such that for all v ∈
H1(Ω)

1. ‖v −Qhv‖0,K ≤ CK̂ωK(v),

2. ‖v −Qhv‖0,∂K ≤ CK̂

(
hK

λ1,Kλ2,K

)1/2

ωK(v).

As noted in [74], the constant C(K̂) does not depend on a minimum-angle con-
dition, but instead on mild conditions related to the patch ∆K . More specifically, it
is assumed that the cardinality (number of elements) of all such patches, as well as
the diameter of F−1

K (∆K) are uniformly bounded. These interpolation estimates have
been used to derive optimal order a priori error estimates, see for instance [45] and
[74]. More significantly, they have been used to derive a posteriori error estimates in
a variety of settings. In this thesis we build on these results.

1.2.4 A posteriori error estimates

A posteriori error estimates do not involve any information about the unknown so-
lution, as in Theorem 1.2.1. Additionally, the estimate should be “local”, giving
information about the error on an element, edge, patch, etc. In what follows we give
some examples from the literature.

Gradient recovery and superconvergence

For Lagrange finite elements, the gradient ∇uh generally converges at a lower rate
(i.e. convergence in the H1-seminorm) than uh (i.e. convergence in the L2-norm) due
to the fact that the gradient belongs to a lower order finite element space. To recover
higher-order convergence, one can apply a gradient recovery operator of the form
Πh : Vh → Vh ⊕ Vh. The operator should be superconvergent in the sense that Π(uh)
converges to ∇u faster than ∇uh.

A popular recovery operator is the Zienkiewicz-Zhu (ZZ) estimator used in [87],
simplified from the original [102]. The estimator is constructed by a mass-lumped
integral:

ZZ(uh)(p) =
∑
K∈∆p

|K|
|∆p|
∇uh|K ,

where ∆p is the patch of elements containing the vertex p, and where | · | denotes
the Lebesgue measure on Rd. Define the estimator ηZZ = ‖∇uh − ZZ(uh)‖0,Ω. In
[87] it is shown that ηZZ is equivalent to the exact error in the sense that there
exists C1, C2 > 0 independent of h (under shape-regularity requirements) such that
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C1η
ZZ ≤ |u − uh|1,Ω ≤ C2η

ZZ . Additionally, it is shown that for certain classes of
uniform meshes (i.e. parallel), the gradient is superconvergent.

Another recovery operator that was introduced in [101], based on a local least
squares approximation at solution nodes, improves on the approximation properties of
the ZZ recovery operator. Superconvergence results were extended to further classes
of regular meshes for which the ZZ estimator is not superconvergent, including the
chevron pattern. Moreover, their recovery operator Πk

h preserves polynomials of order
k+ 1. That is, if u is polynomial of order k+ 1, and uh is the Lagrange interpolant of
order k, then Πk

huh = ∇u. This property holds for the ZZ estimator for only certain
classes of uniform meshes.

Hierarchical

Hierarchical estimates use the idea that higher-order approximate solutions should
be more accurate. From the initial solution space Vh, one considers the “enriched”
solution space Ṽh = Vh ⊕Wh. The error eh = u− uh ∈ V is then approximated by a
function ẽh ∈ Wh. For example, if Vh is a P` approximation space, then one may take
Ṽh to be the P`+1 approximation space. Locally, one has P`+1(K) = P`(K)⊕C`+1(K),
where C`+1(K) is the set of monomials of degree `+ 1. A variety of approaches exist
for constructing hierarchical estimates. In [57], the error is approximated by solving
an auxiliary problem. For a finite element approximation uh ∈ Vh which solves
a(uh, vh) = f(vh), ∀vh ∈ Vh, where a is a bilinear form on Vh, and f is a linear
functional, the error is approximated by function ẽh ∈ Wh by solving a(ẽh, wh) =
f(wh) − a(uh, wh), ∀wh ∈ Wh. A similar approach is taken in [98] by solving a local
Neumann or Dirichlet problem. For general results on such methods, see for instance
[40]. A problem-independent approach was taken in [17], where the approximate error
function is constructed with the use of gradient recovery techniques. In addition,
their estimator does not rely on a mesh regularity condition, and therefore applies in
anisotropic settings.

Hessian

Hessian type estimators are based on reconstruction of the Hessian of the solution.
This idea is related to the observation that the interpolation error can be related to
the Hessian of the solution, for example see [53], [48]. The Hessian is treated as a
Riemannian metric, defined discretely at nodal values. This point of view leads very
naturally to anisotropic mesh adaptation. A crucial step in applying such estimators
is approximating the Hessian from the approximate solution. For the P1 finite ele-
ment space Vh, the Hessian recovery operator is a function PH : Vh →M2(Vh), where
Ph(ai) is a symmetric matrix for each node ai. A simple, yet effective, method can be
found in [53], which applies a variational formulation with lumped mass integration.
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Comparison studies on the performance and approximation properties of various Hes-
sian recovery techniques can be found in [97] and in [82]. In general, the recovered
Hessian does not need to converge in norm to the exact Hessian of the solution in
order for the estimated error to properly represent the exact error for the problem,
but a much weaker “closeness” assumption should be satisfied, see [58, Theorem 2.1].

Residual estimates

In this thesis, we focus on explicit residual type estimators for the energy norm of the
error. These methods take advantage of Galerkin orthogonality for the variational
equation of the finite element approximation to represent the error in terms of ele-
ment and edge residuals. These residuals are local estimates, generally obtained by
integration by parts. For standard results on such estimators, see [6], [1], [98], and
for a more modern approach, see [45], [80], [72], [63]. The latter group vary from the
former by applying anisotropic interpolation estimates and gradient recovery tech-
niques. The estimators are generally of two different forms: explicit or dual-based.
In the dual-based approach, one is interested in controlling an arbitrary (possibly
nonlinear) functional of the error. The estimator consists of products of stability
constants, computed by approximating a dual problem, with residual terms. See [41]
for a detailed review of the methods.

Error estimation and this thesis

From the methods mentioned above, in this thesis we are only concerned with
anisotropic error estimation. In particular, we focus on the general anisotropic setting
from [80]. We are interested in extending the results in a few directions. Typically,
an explicit residual estimator is developed to control the energy norm of the error
for elliptic problems. We address the question of how well such estimators, in this
setting, can be used to control the error in other norms, specifically the L2-norm.
Additionally, we would like to extend the results on these error estimates to further
nonlinear settings, namely to nonlinear reaction-diffusion systems, and to the systems
for electrophysiology. There has been some work on residual a posteriori error esti-
mation in electrophysiology, however, none of the results have been for anisotropic
estimators and generally apply a dual-based method, for instance in [41].

1.2.5 Mesh adaptation

The technique of mesh adaptation uses computed data, such as the approximate so-
lution, error estimates, etc., to find a new optimal mesh. There are many approaches,
ranging from isotropic methods, which respect conditions such as mesh-regularity, see
[98], to anisotropic methods where as few such mesh requirements are considered as
possible. In this thesis, we consider anisotropic methods for 2D simplicial meshes.
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The adaptation will combine local operations, illustrated in Figure 1.1. The opera-
tions involve two types of element patches: the patch ∆e denotes the patch of elements
containing the edge e, and the patch ∆p denotes the patch of elements containing the
vertex p.

• Edge refinement: Given an edge e, add a new node at the midpoint, splitting
each element adjacent to e into two new elements.

• Edge swapping: Given an edge e with two adjacent elements, reconnect the
edge using the other two vertices in the patch ∆e.

• Node removal: Remove the node p and all elements in the patch ∆p, then
remesh the resulting “hole”.

• Node displacement: Choose a new coordinate for the node p within the patch
∆p.

Note that edge swapping cannot be performed if the reconnected edge results in
overlapping elements. Also, when performing node displacement, the patch ∆p must
remain star-shaped with respect to the new coordinate for p. To drive these local
operations, one uses error estimators. A few approaches are used in this thesis.

(a) Edge refinement. (b) Edge swapping.

(c) Node removal. (d) Node displacement.

Figure 1.1: Local mesh operations.

Metric based adaptation

A popular method for anisotropic mesh adaptation is to use a Riemannian metric. The
metric introduces the notion of path length in the domain, and in particular, defines
edge length. The idea is to construct an optimal mesh where all edges have a length
of 1 in the Riemannian metric, and this is what determines the criteria for local mesh
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modification. Edge refinement is performed to edges which are too long, while node
removal is performed if an edge attached to a node is too short. The other operations
attempt to equidistribute the edge length, applying a non-Euclidean analogy of the
Delaunay criterion for edge swapping, and a spring energy minimization analogy for
node displacement. For a modern introduction to the theory and techniques, see [68],
[69], [48].

Element-based adaptation

Another approach is to work with estimators defined on elements. In this context,
the error can be approximated by local values:

‖eh‖ ≈ η =

(∑
K∈Th

η2
K

)1/2

,

where ηK is computed locally on each element. The goal of mesh adaptation is to
control the global level of error by requiring that η ≤ TOL for some global tolerance
TOL > 0. Moreover, the error should be equidistributed over the elements in some
way. Classically, this requirement has been achieved by refinement where the error
is large and derefinement where the error is small, for instance [98], done in such
a way to respect mesh regularity conditions. More recently in [17], this approach
was extended to a completely anisotropic setting using a hierarchical error estimator.
The operations edge swapping and node discplacement were performed in order to
minimize the energy norm of the error, while edge refinement and node removal were
used to control the global L2-norm of the error.

Element to metric conversion

With an element-based estimator, a common approach is to convert the estimator
into a metric in order to apply mesh adaptation. Thus the control of the error on
elements is transformed into a control of the error on edges. See [80], [72] for details.

Mesh adaptation and this thesis

A significant number of anisotropic mesh adaptation methods have been introduced in
the literature, which highlights the need for a comparative study of the performance
of these methods. In particular, if we would like to control the error in a given norm,
what is the best method to achieve a level of error in the least amount of CPU time,
or with the least amount of memory usage? Note that while an adaptation method
might be developed to control the error in one norm, it might effectively control the
error in other norms as well, so that it is worthwhile to compare methods designed
for various situations. Another question arises for the anisotropic residual estimator.
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While they are typically used for mesh adaptation by converting the error into a
metric, this requires an averaging over adjacent nodes. Does this averaging affect
the equidistribution of the estimator over the elements, and therefore the control
of the error, and might we achieve greater control by employing an element-based
adaptation method?

1.2.6 Space-time discretization

To approximate the full problem (1.1.1) it is necessary to discretize the partial dif-
ferential equation in time as well. Partition the interval [0, T ] as 0 = t0 < t1 < · · · <
tN = T , with time steps τk = tk − tk−1, and denote the step-size ratio γn = τn

τn−1
.

The multistep backward difference formula (BDF) method of order s with 1 ≤ s ≤ 6
which solves for unh using the s previously computed values {un−s+kh }s−1

k=0 is obtained
by solving the variational problem

(π′s(tn), vh)Ω + (D∇unh, ∇vh)Ω + (F (unh), vh)Ω

= (S, vh)Ω + (G, vh)∂Ω , ∀vh ∈ Vh,

where πs : [tn−s, tn] → Vh is the order s Newton polynomial that interpolates the
values uk at tk, see [37]. The first step u0

h is the interpolation of the initial value u0,
while the step ukh for 1 ≤ k ≤ s− 1 are computed using a lower order method.

The BDF2 method (with s = 2) is known to have good stability properties
applied in the context of electrophysiology, see [42], [85]. The stability is preserved
in the variable step method under reasonable restrictions on the step-size ratio, see
[9], [38]. Additionally, in [38], optimal order convergence results are given for a linear
and nonlinear problem.

In general, if the full discretization of the problem is order O(hr+τ s), it is natural
to seek an error estimator of the form:

‖eh‖ ≈
(
(ηS)2 + (ηT )2

)1/2

=

(
N∑
n=1

(
ηSn
)2

+
(
ηTn
)2

)1/2

,

where, ηS and ηT are of optimal order O(hr) and O(τ s), corresponding respectively
to the error for the space and time discretization. Adaptation in both space and time
may be applied by choosing two tolerances TOLS, TOLT , with the goal of achieving
ηS ≈ TOLS and TOLT ≈ ηT . To give a few examples of space-time adaptation
methods that are based on a posteriori residual estimators, see [73], [70] for single step
methods, [41] for continuous and discontinuous Galerkin polynomial approximation
methods and [46] for a Rosenbrock method. Note that it is not necessary to adapt
both in space and in time. For instance, in [11] and [24] mesh adaptation is performed
to control the error in space, while a constant time step is employed throughout.
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Space-time adaptation and this thesis

The appeal of space-time adaptation is that we can, in principle, very accurately con-
trol the error of the solution by tuning the local mesh and step size. The hope is a gain
in efficiency over uniform refinement methods, both in terms of CPU time, memory
usage, and in the number of time steps performed. On the other hand, the adaptive
process may introduce significant overhead. After the mesh is adapted, the system
needs to be reassembled, the error estimators need to be computed throughout, and
the solution may need to be recomputed with a smaller time step. The potential for
gains in efficiency will be explored when applying such methods to reaction-diffusion
systems and to the monodomain problem in electrophysiology. Gains in efficiency
have been noticed in the literature when adapting in space with a constant time step,
so this situation will also be considered for comparison. An interesting question that
arises in time-dependent partial differential equations is what is the best time step?
For a given space discretization, taking the time step to zero approximates the so-
lution of the semidiscrete problem in space, not of the original problem, so it is not
always the smallest time step that gives the most accurate result. If a constant time
step is used, should its size be determined by the interval on which we expect the
highest error? This question appears to be problem dependent, and we consider to
what extent time-step adaptation may resolve this issue.

1.3 Plan of thesis

The goal of this thesis is to further build upon existing work related to a posteriori
error estimation and mesh adaptation techniques for the finite element method applied
to elliptic and parabolic equations. This work relates to the improved efficiency and
accuracy that is to be gained from adaptive techniques. Moreover, the a posteriori
error estimates that guide the adaptation process should be theoretically justified in
their representation of the exact error of the problem. We address these issues in the
thesis as follows.

• Chapter 2: This chapter deals with a purely diffusive linear elliptic equation.
The first goal of the chapter is to introduce a new mesh adaptation method to
control the energy norm of the error using the error estimator from [80] and
[72]. The performance of the implementation of the new adaptation algorithm
is thoroughly investigated. The second goal of the chapter is to compare the
efficiency of the new method with three existing adaptation methods. The third
goal of the chapter is to introduce a new estimator for the L2-norm of the error.

• Chapter 3: We consider a nonlinear scalar reaction-diffusion equation. The
primary goal is to introduce a new estimator for the full discretization of the
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problem, by employing a fully implicit BDF2 discretization in time. The reli-
ability of the estimator is proven using energy techniques, and illustrated with
numerical examples. A space-time adaptation algorithm is proposed and is
demonstrated to effectively control the error. The chapter addresses the ques-
tion of whether improved efficiency can be expected when applying the space-
time adaptation method compared to a space-only adaptation method on a
case-by-case basis. The method is shown to correctly predict a suitable time-
step choice, leading to improved user-independence.

• Chapter 4: This chapter extends the results of Chapter 3 to the monodomain
problem. The primary difficulty with the system is the lack of diffusion operator
for the recovery variable. The theoretical aspects of applying the estimator are
discussed for different ionic models. A modified estimator for the recovery
variable is proposed due to limitations of the residual estimator. Numerical
examples are provided to illustrate the suitability of the adaptation algorithm
for error control, and to assess the reliability of the estimator. Efficiency of the
method is discussed.

Chapter 2 has been submitted for publication to The Journal of Computational
and Applied Mathematics, co-authored with my thesis advisors Yves Bourgault and
Thierry Giordano. My contribution, under the direction of my advisors, is the writing,
the implementation and analysis of the numerical results, and the theoretical deriva-
tion of the new L2 estimator. Chapter 3 is currently in preparation to be submitted
for publication, and is therefore presented in article format.



Chapter 2

Anisotropic residual-based a
posteriori mesh adaptation in 2D:
element-based approach

Abstract. An element-based adaptation method is developed for an anisotropic a
posteriori error estimator. The adaptation does not make use of a metric, but instead
equidistributes the error over elements using local mesh modifications. Numerical
results are reported, comparing with three popular anisotropic adaptation methods
currently in use. It was found that the new method gives favourable results for
controlling the energy norm of the error in terms of degrees of freedom at the cost of
increased CPU usage. Additionally, we considered a new L2 variant of the estimator.
The estimator is shown to be conditionally equivalent to the exact L2 error. We
provide examples of adapted meshes with the L2 estimator, and show that it gives
greater control of the L2 error compared with the original estimator.

2.1 Introduction

In the last twenty years, anisotropic mesh adaptation has seen great activity. Since
the work of D’Azevedo and Simpson in [34] and [33] for piecewise linear approximation
of quadratic functions there has been a significant amount of research dedicated to
producing practical adaptation procedures based on their results. In addition, there
has been much software written for the implementation, which either construct an
entirely new mesh, such as BAMG [54], BL2D [65], GAMANIC3D [49], or apply local
modifications to a previous mesh, such as MEF++ [50], MMG3D [36], YAMS [78].
The main idea they share in common is to construct a non-Euclidean metric from the
Hessian of the solution. We will refer to them as Hessian adaptation methods, see for
instance [68], [69], [48], [18], [53].

18
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Residual a posteriori error estimation for elliptic equations has been around for
some time. In [7] and [8], Babuska and Rheinboldt introduced a local estimator,
constructed entirely from the approximate solution, that is globally equivalent to
the energy norm of the error. Numerical results showed that it was suitable for the
purposes of mesh adaptation by determining regions in which the mesh could be re-
fined or coarsened. While initially an entirely isotropic method, recently, the residual
method was modernized by the introduction of anisotropic interpolation estimates
from [44]. Unlike classical results, the new estimates did not require a minimum (or
maximum) angle condition, and instead took into account the geometric properties
of the element. In [80] and [45] these interpolation results were combined with the
standard a posteriori estimates to drive mesh adaptation by constructing a metric.
We will refer to this method as the residual metric method. The method results in
highly anisotropic meshes, reducing the error by an order of magnitude compared to
isotropic methods [80]. Moreover, the procedure has been successfully applied to a
variety of nonlinear situations, including a reaction-diffusion system to model solutal
dendrites in [24] and the Euler equations to model the supersonic flow over an aircraft
in [22].

Recent work in [17] demonstrates the potential advantages of element-based
anisotropic mesh adaptation over the usual metric based mesh adaptation methods
used so far. The error estimator they use is hierarchical: from a given approxi-
mate solution, they construct a higher-order, more accurate approximation. For the
Hessian method it is necessary to take the absolute value of the eigenvalues of the
Hessian, thus treating positive and negative curvature as essentially equal, while the
distinction can be seen very clearly in meshes adapted with the hierarchical method.
Further, the hierarchical estimator has the advantage that it can naturally be applied
to finite elements of arbitrary order.

The primary goal of this paper is to introduce, and numerically assess, an
element-based adaptation approach to be used with the residual estimator from [80].
We will refer to this method as the element-based residual method. Motivation for
implementing such a method includes avoiding the additional steps involved in con-
verting the estimator defined on elements, to a metric defined on the nodes, during
which information could be lost. Additionally, we would like to attempt to mimic
the success of the hierarchical method. The adaptation will be implemented by inter-
facing the estimator with the hierarchical adaptation code MEF++. We also intro-
duce a variant of the estimator for the L2 norm error, which is shown to be reliable
and efficient under certain assumptions, and show that the estimator is also suitable
for anisotropic mesh adaptation. A secondary goal of the paper will be to provide
a comparative performance analysis between four different adaptation techniques:
element-based residual, metric based residual, Hessian, and hierarchical.

The outline of this paper is as follows: in Section 2 we introduce the model
problem and error estimator, as well as recall some results from the literature; in
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Section 3 we discuss both the metric and element-based adaptation procedures; in
Section 4 we produce numerical results, validating the element-based method, and
comparing it with other anisotropic adaptation procedures.

2.2 The estimator

We discuss the model problem and introduce a residual estimator. Main results will
be summarized from the literature. Full details can be found for instance in [44], [80],
and [72].

2.2.1 Model problem

Let Ω ⊆ R2 be a bounded polygonal domain, with boundary ∂Ω. Let V = H1(Ω) and
V0 = {v ∈ H1(Ω) : v|∂Ω = 0}. For g ∈ H1/2(∂Ω), let Vg = {v ∈ H1(Ω) : v|∂Ω = g},
which may be thought of as the translation of V0 by g. For f ∈ L2(Ω), and a positive
definite matrix A, let u ∈ Vg be the solution of the equation{

−div(A∇u) = f, in Ω,
u = g, on ∂Ω.

(2.2.1)

Then u is the solution to the variational equation

B(u, v) = F (v), ∀v ∈ V0,

where

B(u, v) =

∫
Ω

A∇u · ∇v dx, u ∈ Vg, v ∈ V0,

F (v) =

∫
Ω

fv dx, v ∈ V0.

For h > 0, let Th be a conformal triangulation of Ω consisting of triangles K
with diameter hK ≤ h. Denote by Vh the finite element space of continuous, piecewise
linear functions (P1) on Th and Vh,0 the subspace of functions vanishing on ∂Ω. Let gh
be a piecewise linear approximation of g on ∂Ω and let Vh,g = {vh ∈ Vh : vh|∂Ω = gh}.
Then the finite element approximation uh ∈ Vh,g of u satisfies the discrete variational
equation

B(uh, vh) = F (vh), ∀vh ∈ Vh,0. (2.2.2)

For details on the finite element method for elliptic problems, see for instance [84].
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2.2.2 Anisotropic residual error estimator

Define the energy norm by |||v||| = B(v, v)1/2 for v ∈ V . The residual mesh adaptation
procedure is based on controlling the energy norm of the discretization error eh =
u − uh. The error estimator, which will be outlined below, combines information of
the residual with anisotropic interpolation estimates.

Define the localized residual by

RK(uh) = f + div(A∇uh),

where the divergence operator is local to K. The jump of the derivative for an element
K with edges ei is defined by

rK(uh) =
3∑
i=1

[A∇uh]ei ,

where the jump [A∇vh]ei over ei is defined as follows: denoting the outward unit
normal by ni and the adjacent element (if it exists) by K ′, then

[A∇vh]ei =

{
0, ei ∈ ∂Ω,
A∇(vh)|K · ni − A∇(vh)|K′ · ni, otherwise.

For a triangular element K, the anisotropic information comes from the affine
mapping FK : K̂ → K. The reference element K̂ is taken to be the equilateral
triangle centred at the origin with vertices at the points (0, 1), (−

√
3

2
, −1

2
), (

√
3

2
, −1

2
).

The Jacobian JK of FK is non-degenerate, so the singular value decomposition (SVD)
JK = RT

KΛKRKZK consists of orthogonal matrices RK , ZK , and positive definite
diagonal matrix ΛK . The matrices RK , ΛK take the form

RK =

(
rT1,K
rT2,K

)
, ΛK =

(
λ1,K 0

0 λ2,K

)
,

where λ1,K ≥ λ2,K > 0, r1,K , r2,K are orthogonal unit vectors. Geometrically, these
eigenvalues and eigenvectors represent the deformation of the unit ball in R2 to an
ellipse with axes of length λ1,K , λ2,K in directions r1,K , r2,K respectively. Moreover,
they represent K in the sense that the ellipse circumscribes the element.

Denote by ∆K the patch of elements containing a vertex of K. As noted in [74],
for the bounds for the quasi-interpolation operator to be uniform, there must be an
integer Γ > 0 and a constant C > 0 such that all such patch satsifies card(∆K) ≤ Γ
(cardinality) and diam(F−1

K (∆K)) ≤ C (diameter). For v ∈ V, define the following
“Hessian” type matrix:

G̃K(v) =

(∫
∆K

∂v

∂xi

∂v

∂xj
dx

)
i,j

, (2.2.3)
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and let
ω̃K(v) = (λ2

1,Kr
T
1,KG̃K(v)r1,K + λ2

2,Kr
T
2,KG̃K(v)r2,K)1/2,

Finally, define

η̂2
K =

(
‖RK(uh)‖0,K +

(
hK

λ1,Kλ2,K

)1/2

‖rK(uh)‖0,∂K

)
ω̃K(eh). (2.2.4)

Theorem 2.2.1 ([80][81][72]). There exist constants C1,K̂ , C2,K̂ > 0 such that

C1,K̂

∑
K

η̂2
K ≤ |||eh|||

2 ≤ C2,K̂

∑
K

η̂2
K .

The upper and lower bounds in Theorem 2.2.1 still depend on the unknown solu-
tion due to the ω̃K(eh) term. The approach taken in [80] is to remove this dependency
by using a gradient recovery operator of the form Π : Vh → Vh ⊕ Vh. The operator
should be super-convergent in the sense that Π(uh) converges to ∇u faster than ∇uh,
at least of order 1+ε where ε > 0. For full details on the derivation of upper and lower
bounds using super-convergence assumptions, see [72]. Therefore, for the remainder
we replace G̃K(eh) by

GK(uh) =

(∫
K

(
∂uh
∂xi
− Π(uh)i

)(
∂uh
∂xj
− Π(uh)j

)
dx

)
i,j

,

and ω̃K(eh) by ωK(uh) = (λ2
1,Kr

T
1,KGK(uh)r1,K + λ2

2,Kr
T
2,KGK(uh)r2,K)1/2 and the es-

timator becomes

η2
K =

(
‖RK(uh)‖0,K +

(
hK

λ1,Kλ2,K

)1/2

‖rK(uh)‖0,∂K

)
ωK(uh). (2.2.5)

Note furthermore, that the integral for the matrix G̃K(eh) is taken on the patch ∆K

while that for GK(uh) is taken only on the element K. We found simplification works
in practice and greatly reduces the computational complexity of the estimator, and
has been used for instance in [80], [70].

2.2.3 Gradient recovery

Here we discuss briefly our choice of gradient recovery method. A popular choice is
the simplified Zienkiewicz-Zhu (ZZ) operator, see [87], which generally performs very
well. For instance, on certain regular meshes (parallel) it is asymptotically exact.
Moreover, despite the fact that it cannot be proven to be super-convergent for non-
regular meshes, in practice superconvergence has been observed for adapted meshes,
as in [80] and [72].
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An improved method is proposed by Zhang and Naga in [101]. The main idea
is that for each node, one fits the solution values to a higher-order polynomial on
a surrounding patch, the fit being obtained in a least-square sense. The value of
the recovered gradient at the node is obtained by taking the gradient of the higher-
order polynomial. They prove that the method is super-convergent for any regular
mesh pattern, including situations where the ZZ estimator is not, such as the chevron
pattern [87]. In addition, while the ZZ estimator only preserves polynomials of degree
1, their method can be extended to higher-order elements.

In this paper we have chosen to use the recovery method of Zhang and Naga due
to an observed increase in performance. We remark that the usual justification of use
of the ZZ estimator is its low cost. However, the gradient recovery is only computed
once at the start of each iteration of the adaptation loop. As it turns out in our case,
calculation of the Zhang/Naga gradient recovery accounted for less than 0.5% of the
total CPU time.

2.3 Adaptive procedure

In this section, we describe the four mesh adaptation methods that will be compared
in Section 2.4, starting with the new, element-based adaptation procedure for the
residual estimator ηK . The section concludes with a discussion of the control of the
L2 norm error vs. the H1 seminorm error.

2.3.1 Element-based adaptation

By Theorem 2.2.1, the estimator η = (
∑

K η
2
K)

1/2
is globally equivalent to the energy

norm of the error |||eh|||. Given an error tolerance TOL > 0, the adaptation algorithm
will attempt to control the error so that η ≈ TOL. Moreover, the mesh should
have the least possible number of elements NT . Therefore, the primary goal of the
adaptation algorithm is to equidistribute the estimated error by asking that every
element K satisfies η2

K ≈ TOL2

NT
. From an initial calculation of ηK we adapt the

mesh by performing the following local mesh modifications: edge refinement, edge
swapping, node removal, and node displacement. For a complete description of local
mesh modifications, see for instance [17], [32], [48], [53].

For convenience we define two element patches, which will be referred to fre-
quently while discussing the local modifications. For an edge e, the patch ∆e will
denote the patch of elements containing e. Similarly, for a vertex p, the patch ∆p will
denote the patch of elements containing p.
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Edge Refinement

Edge refinement is used to decrease the level of error where it is too large. The
candidate edges for refinement are those belonging to an element K for which η2

K >
1.5TOL

2

NT
. For such an edge e with associated edge patch ∆e, denote by ∆′e the resulting

patch after refining e, and suppose they have respectively NT,e, NT,e′ elements. Denote
respctiveley by η2

∆e
and η2

∆′e
the error on the patch before and after refinement. The

refinement is accepted if the new error is closer to the goal in the following sense:∣∣∣∣∣ η2
∆′e

NT,e′
− TOL2

NT

∣∣∣∣∣ <
∣∣∣∣ η2

∆e

NT,e

− TOL2

NT

∣∣∣∣ . (2.3.1)

Edge swapping

Edge swapping is used to minimize the error without changing the number of elements.
For an internal edge e, consider the edge patch ∆e, test the reconnection of the edge,
and denote this patch ∆e′ . Note that it may be geometrically impossible to swap
an edge, for instance if the patch is not convex, or degenerates to a triangle. Edge
swapping is performed if the global error decreases. At first, one might try swapping
if the following criterion holds: ∑

K′∈∆e′

η2
K′ <

∑
K∈∆e

η2
K .

However, for the residual estimator, the above criteria is not enough, and we had to
enlarge the patch as in Figure 2.1. Note that swapping the edge changes the normal
jump of the derivative for elements adjacent to ∆e. Including these elements in the
error calculation means that we have included all elements for which ηK is changed
by swapping, so that if the error decreases on the patch, then in fact the error will
have decreased globally.

Figure 2.1: Extension of the edge patch for edge swapping.

The edges are stored in an ordered list, and edge swapping is carried out by
looping over this list and checking all internal edges. When an edge is swapped, the
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new edge is placed at the end of the list, so will be considered for swapping again.
After the list is exhausted, if any edges were swapped the entire procedure will be
repeated.

We remark that the loop will in fact terminate. There are only finitely many ways
to reconfigure the mesh by swapping, and the edges are only swapped if the global
error decreases. Furthermore, because no interpolation of the solution takes place
during edge swapping, the map from edge configuration to global error calculation is
well-defined, so it is not possible to arrive at a previous configuration but with smaller
error. Also, as noted on p. 1339 of [80], the choice of reference element means that
the contribution of the SVD will not depend on a reordering of the nodes.

Node removal

Node removal is used to reduce the number of mesh elements where possible, par-
ticularly where the error is small. Node removal consists in removing a node p from
the mesh, as well as the patch of elements, ∆p, attached to the node. The resulting
“hole” then is remeshed, and we will call the resulting patch ∆′p. The initial choice
of remeshing is not important because the optimal choice will be determined by edge
swapping. One compares the error before and after the procedure, denoted η∆p , η∆′p ,
and the node is accepted for removal if the following analogue to (2.3.1) holds∣∣∣∣∣ η

2
∆′p

NT,p′
− TOL2

NT

∣∣∣∣∣ <
∣∣∣∣∣ η2

∆p

NT,p

− TOL2

NT

∣∣∣∣∣ . (2.3.2)

Node displacement

The goal of node displacement is to equidistribute the error over the mesh elements.
Node displacement is applied to each vertex p to determine the optimal position of
the vertex within the vertex patch ∆p. Note that this patch might not be convex,
so care has to be taken to avoid overlapping elements. We consider the value of the
error on the elements as a discrete distribution, and find the position within the patch
which minimizes the variance: minp

(
VarK∈∆p{η2

K}
)
. No attempt is made to solve the

minimization problem fully for each vertex, but only to find an approximate solution
with one iteration of a gradient recovery method. Computing the full solution could
be costly, and moreover might not even be possible depending on the shape of the
function being minimized. Instead, one applies several iterations of the global node
displacement procedure. As we will see in Section 2.3.2, node movement minimizes a
different function in the hierarchical method from [17].

Edge refinement and node removal work towards achieving the error tolerance,
node movement “smooths” the mesh by equidistributing the error, while edge swap-
ping minimizes the error.
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After a mesh operation is performed the error estimator needs to be recalculated.
First we interpolate the continuous data, which in this case is uh and the recovered
gradient Π(uh). The discontinuous data needs to be recalculated on each element,
i.e. the singular value decomposition, discontinuous gradient, jump of the derivative,
and the residual. Additionally, after each operation is performed there is a check to
ensure degenerate elements were not produced.

All numerical results are produced with MEF++. The hierarchical estimator
adaptation driver was used, described in [17], suitably adjusted.

2.3.2 Hierarchical

We summarize the ideas from [17]. Given a Pk approximation uh,k, construct a higher-
order solution Pk+1, ũh,k+1, which is supposed to be more accurate. From this, one
obtains an approximation of the error

eh ≈ ũh,k+1 − uh,k. (2.3.3)

Taking k = 1, and the barycentric representation of the element K by uh,1|K =
u1λ1 + u2λ2 + u3λ3, one builds ũh,2 in the “hierarchical” basis

ũh,2|K = u1λ1 + u2λ2 + u3λ3 + 4(e1λ1λ2 + e2λ1λ3 + e3λ2λ3),

where ei denotes the mid-edge values. Taking the Zhang-Naga (or any other suffi-
ciently accurate) recovered gradient Π(uh,1) = (Π(uh,1)1,Π(uh,1)2), the mid-edge val-
ues are found by enforcing consistency between the Hessian of ũh,2 and the derivatives
of Π(uh):

∂2ũh,2
∂x2

1

=
∂Π(uh,1)1

∂x1

,
∂2ũh,2
∂x2

2

=
∂Π(uh,1)2

∂x2

,

∂2ũh,2
∂x1∂x2

=
1

2

(
∂Π(uh,1)1

∂x2

+
∂Π(uh,1)2

∂x1

)
.

Having computed the higher-order solution, the adaptation process follows similarly
to that used in Section 2.3.1. But since (2.3.3) gives a direct representation of the
error field, one has considerably more freedom in how to calculate the error on each
element. The choice in [17], and as implemented by the authors in MEF++, is to
target the global error in the L2 norm. The operations of edge refinement and node
removal will be used to achieve a global level of error, while node displacement and
edge swapping are used to locally equidistribute the error by minimizing the gradient
of the error, i.e. the H1-seminorm error.

In this paper, we only consider hierarchical adaptation for P1 finite elements for
the sake of comparison. However, note that (2.3.3) is quite general, and it is very easy
to generalize these ideas to higher-order finite elements. The hierarchical method has
been successfully applied to P2 finite elements in [16].
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2.3.3 Metric adaptation

Currently, the most popular anisotropic mesh adaptation methods in use are metric
based. Here, the main idea is to control the edge length in a Riemannian metric. For
a planar domain Ω, an inner product is given by a set {M(x)|x ∈ Ω} of 2×2 positive
definite matrices. In practice we only have a discrete approximation, consisting of a
metric defined at the nodes of the mesh, the values at other points being obtained by
interpolation [18]. For an edge e = PQ, the edge length is given by

|e|M =

∫ 1

0

√
eTM(P + te)e dt. (2.3.4)

The goal of a metric based adaptation algorithm will be to generate meshes which
are “unit” with respect to the metric. For 2D meshes this simply means that, up to
some tolerance, the edges have unit length.

The metric adaptation will be done using MEF++, applying the same mesh
modification operations discussed Section 2.3.1. The goal of edge refinement and node
removal is to achieve unit edge length, while the second two locally equidistribute
the error. More precisely, edge swapping applies a non-Euclidean variant of the
classical Delaunay edge swapping criterion to maximize the minimum angle. For
node movement, the edges attached to a node are seen as a network of springs with
stiffness proportional to metric edge length, and the goal is to minimize the “energy”
of the system. For full details see for instance [53].

2.3.4 Residual metric based

Now we describe how the residual estimator introduced in Section 2.2 can be used
to define a metric. There exist at least two approaches used in the literature, both
following similar principles. The one we will use is that from [72] since it resulted in
unit meshes in only a few iterations. The metric is constructed locally for the element
K by finding the shape of a new element Knew which minimizes ηKnew up to a fixed
area. From [72], Propostion 26, the minimzing shape is given by r̃1,K = p2, r̃2,K = p1,

and s̃K =
√

α1,K

α2,K
, where α1,K ≥ α2,K > 0 and p1, p2 are respectively the eigenvalues

and eigenvectors of the normalized matrix GK

|K| . Under these conditions, one obtains

a simple relation for the error [72, p. 826]. Imposing ηK ≡ τ , where τ > is the local
error tolerance, one determines the area from this relation, and then easily recovers the
optimal values λ̃1,K , λ̃2,K . Finally, defining R̃K , Λ̃K in the obvious way, the metric
on K is then given by M̃K = R̃T

KΛ̃−2
K R̃K . We remark that the mesh adaptation

software used for this paper requires the metric to be defined on vertices, and for this
purpose we apply metric intersection. For a vertex p, the metric M̃p will be defined
as the intersection of all the metrics M̃K over the patch ∆p. For details on metric
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intersection, see for instance [48]. Note that, alternatively to metric intersection, we
found that a simple averaging procedure gave satisfactory results.

2.3.5 Hessian

The Hessian metric approach indroduced here follows the expositions from [18], [53].
The P1 interpolation error eIh = u − Ih(u) of a function u on an edge ` = [xi, xj]
satisfies

|eIh|L∞(`) =
|`|2

8

∣∣∣∣d2u

dx2
(ξ)

∣∣∣∣ ,
where ξ is some point in `. The error on the edge can then approximated using the
end-points of the interval

|eIh|L∞(`) ≈
1

2

(
`T |H(xi)|`+ `T |H(xj)|`

)
, (2.3.5)

where H(x) is the Hessian of u at x, and |H(x)| is the positive semi-definite matrix
obtained by taking the absolute value of the eigenvalues of the symmetric matrix
H(x). Fixing an error level eD, defining the metricMx = 1

8·eD
|H(x)|, and computing

the edge length from (2.3.4) with the trapezoid rule give |`|M = 1 precisely when the
approximate error (2.3.5) is equal to eD. For a slightly different approach to Hessian
methods, see [68] and [69].

Note that (2.3.5) depends on the unknown Hessian of the solution. One may
obtain a piecewise linear approximation of the Hessian from the computed solution,
for instance, with the least square fitting method used in [13].

2.3.6 L2 error vs. H1 seminorm error estimation

While the residual estimator targets the energy norm of the error, it is also interesting
to determine whether we can expect to control the L2 norm of the error. Recall that
for elliptic problems such as (2.2.1), if a set of meshes uniformly satisfies the minimum
(or maximum) angle condition for some angle θ > 0, then there exists C1 > 0 such
that for any such mesh with maximum edge length h > 0,

|eh|1,Ω ≤ C1h. (2.3.6)

Furthermore, the Aubin-Nitsche Lemma states that there is a C2 > 0 such that the
L2 error satisfies

‖eh‖0,Ω ≤ C2h|eh|1,Ω. (2.3.7)

Combining (2.3.6) with (2.3.7) one concludes that there is a C3 > 0 such that

‖eh‖0,Ω ≤ C3h
2. (2.3.8)
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Therefore, if we adapt the mesh to control the H1 seminorm error, which is the case
for the residual estimator, we expect higher-order convergence for the L2 error coming
from an upper bound similar to (2.3.8).

In the absence of an Aubin-Nitsche Lemma in the context of anisotropic meshes,
we attempt to find a comparison at the element level between the L2 and energy norm
of the error. The ultimate goal of the analysis is to derive an L2 norm variant of the
residual estimator ηK , which could be used for mesh adaptation.

To motivate our results, we first recall two existing a posteriori L2 error esti-
mators. The first, in the isotropic setting is of the form ηL2(K) = hKηH1(K), where
ηH1(K) is an estimator for the energy norm, see (3.20) and (3.31) from [1] and 5.1
from [26]). Similarly, the authors in [63] derived an anisotropic estimate of the form
η̃E = (hmin,E)ηE, where ηE, η̃E are respectively estimates for the H1 seminorm and
L2 norm of the error for the edge E, and where hmin,E plays an analogous role to λ2,K

in the current setting. These observations lead us to propose the following candidate
for an L2 error estimator:

η̃K = λ2,KηK , (2.3.9)

where ηK is the energy norm estimator (2.2.5). In what follows we present some
partial results towards the reliability and efficiency of this estimator.

We make the following strong assumption on the equivalence of the energy norm
error: there exist C1, C2 > 0 such that for every element K,

C1ηK ≤ |eh|1,K ≤ C2ηK . (2.3.10)

Given this assumption, the strategy will be to relate the L2 error and energy norm
locally. Note that in the literature, the upper bound in (2.3.10) only appears globally
(for the entire domain Ω), while the lower bound holds on a patch related to a quasi-
interpolation operator, see [72, Propositions 16, 21]. Numerical results in Section
2.4.1 suggest that provided the mesh is not too coarse, the inequality holds with
C1 = 1 and C2 = 10, see Figure 2.4.

We begin with a technical lemma. In what follows we let Wh denote the space
of continuous piecewise quadratic functions on Th. We note, however, that Wh could
be replaced by a higher-order finite element space, with different constants for the
inequalities.

Lemma 2.3.1. Let vh ∈ Vh.

1. There exists CK̂ > 0 depending only on the reference element K̂ such that for
all wh ∈ Wh and K ∈ Th,

‖vh − wh‖0,K ≥CK̂λ2,K |vh − wh|1,K . (2.3.11)
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2. Suppose that wh ∈ Wh and CK̂,1 > 0 such that for all K ∈ Th

λ1,K‖∇(vh − wh) · r1,K‖0,K ≤ CK̂,1λ2,K‖∇(vh − wh) · r2,K‖0,K . (2.3.12)

Then there exists CK̂ > 0 depending only on the reference element K̂ and CK̂,1
such that for all K ∈ Th,

‖vh − wh‖0,K ≤ CK̂,2λ2,K |vh − wh|1,K . (2.3.13)

Proof: By [44], Lemma 2.2 we have

|wh − vh|1,K ≤
(
λ1,K

λ2,K

)1/2

|ŵh − v̂h|1,K̂ ,

where ŵ = w ◦ FK for a function w on K. Since P2(K̂) is finite dimensional, there
exist positive constants C̃1, C̃2 such that

C̃1‖ŵ‖0,K̂ ≤ |ŵ|1,K̂ ≤ C̃2‖ŵ‖0,K̂ , ∀ŵ ∈ P2(K̂).

Therefore,

|wh − vh|1,K ≤ C̃2

(
λ1,K

λ2,K

)1/2

‖ŵh − v̂h‖0,K̂

= C̃2

(
1

λ1,Kλ2,K

)1/2(
λ1,K

λ2,K

)1/2

‖wh − vh‖0,K

=
C̃2

λ2,K

‖wh − vh‖0,K , (2.3.14)

and (2.3.11) follows. For (2.3.13), we have

‖vh − wh‖0,K = (λ1,Kλ2,K)1/2 ‖ûh − ûh,2‖0,K̂

≤ C̃1 (λ1,Kλ2,K)1/2 |ûh − ûh,2|1,K̂ .

Applying [44], equation (17) to the right side of the inequality, and applying assump-
tion (2.3.12),

‖vh − wh‖0,K

≤ C̃1

(
λ2

1,K‖∇(vh − wh) · r1,K‖2
0,K + λ2

2,K‖∇(vh − wh) · r2,K‖2
0,K

)1/2

≤ C̃1CK̂,1λ2,K |vh − wh|1,K .
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In the present situation we take vh = uh. To apply Lemma 2.3.1 in a meaningful
way, we would like to find functions {wh ∈ Wh}h that converge to u faster than
{uh ∈ Vh}h and that moreover satisfy (2.3.12) uniformly. Let gh = Πh(uh) denote the
recovered gradient, which is assumed to be superconvergent. In the literature, the
adaptive algorithm is designed to achieve the equality

λ1,K‖(∇uh − gh) · r1,K‖0,K = λ2,K‖(∇uh − gh) · r2,K‖0,K ,

In the context of [72], this equality means that ηK has been minimized with respect
to the choice of r1,K , r2,K and aspect ratio sK . The adaptive algorithm discussed
in Section 2.4.1 will ensure that the equality holds by minimizing of ηK with edge
swapping and node movement. In general, gh is not the gradient of a function in
Wh. Instead, we take ũh,2 ∈ Wh to be the hierarchical reconstruction introduced in
[17], which in practice provides a higher-order approximation to u, for instance [17,
Figure 17]. Additionally, it will be assumed that ∇ũh,2 and gh are close enough so
that (2.3.12) holds with wh = ũh,2.

Proposition 2.3.2. With the notation and assumptions of the preceding paragraph,
there exist positive constants CK̂,1, CK̂,2 such that for all K ∈ Th,

‖eh‖0,K ≥ CK̂,1 (λ2,K |eh|1,K − ‖u− ũh,2‖0,K − λ2,K |u− ũh,2|1,K) , (2.3.15)

and

‖eh‖0,K ≤ CK̂,2 (λ2,K |eh|1,K + ‖u− ũh,2‖0,K + λ2,K |u− ũh,2|1,K) (2.3.16)

Proof: This follows directly from Lemma 2.3.1 and straightforward triangle in-
equality arguments.

Finally, if we apply the superconvergence assumptions on ũh,2 and ∇ũh,2, and
the strong energy norm error assumption (2.3.10), we conjecture that there exists
CK̂,1, CK̂,2 > 0 such that for every element K, up to the addition of higher-order

terms, the L2 norm error satisfies

CK̂,1η̃K ≤ ‖eh‖0,K ≤ CK̂,2η̃K . (2.3.17)

This local estimate will be verified numerically in the following section.

2.4 Numerical results

In this section we provide numerical validation for the new, element-based adaptation
method for the residual estimator. The full adaptation loop is given in Algorithm 1.
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The first test case will begin with an illustration of the convergence of the loop for the
element-based residual method introduced in this paper, the notion of convergence
to be made more precise in the following section. Next, we will assess how well the
method performs in achieving the goal of equidistributing the error over the elements
of the mesh. Since what we are really interested in is controlling the actual error, the
analysis will include an element-level comparison of the estimated versus exact error.
Following will be a numerical validation of the L2 error control results from Section
2.3.6. Finally, the remainder of the section will be devoted to the comparison of the
adaptation methods outlined in Section 2.3.

Algorithm 1 Solution-adaptation loop

1 Compute the solution and error estimator on the current mesh.

2 Adapt the current mesh by performing the following loop one or more times:

(a) Refine edges where the error is too large.

(b) Minimize the error by swapping edges until the algorithm terminates, then
equidistribute the error by applying node displacement. Repeat the pro-
cedure one or more times.

(c) Remove nodes where the error is too small, or when the impact on the
error is minimal.

(d) Apply 2(b).

2.4.1 First test case

We consider the problem (2.2.1) using A = I, with domain Ω = (0, 1) × (0, 1), and
f, g chosen so that the exact solution is

u1(x, y) = 4(1− e−100x − x(1− e−100))y(1− y).

Due to the boundary layer near x = 0, this function can be used to check the
anisotropy of an error estimator and adaptation method, and appears for instance in
[44] and [80].

Assessment of the residual element-based method

Convergence of the adaptation loop. The convergence of the algorithm for the
element-based residual method is assessed. Starting from a relatively coarse initial
mesh, the tolerance TOL is set to 0.125 and the loop is run for 40 iterations (which
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Figure 2.2: Left: initial uniform mesh with 121 vertices. Middle: first
adapted mesh with 324 vertices. Right: final mesh with 8559 vertices.

for our purposes will be more than sufficient). See Figure 2.2 for initial and adapted
meshes. In the context of Algorithm 1, the edge swapping/node movement step is
always run 3 times. Additionally, the adaptation step 2 is only run once before the
solution and the estimator are recomputed. The point of view taken here is that
the adaptation algorithm should not be run too long before recomputing the solution
and error estimator. For comparison, we computed an example where step 2 from
Algorithm 1 is run twice, as opposed to just once. From Figure 2.3a, repeating the
loop initially calls for too much refinement. This is likely due to a loss of accuracy of
the estimator on coarse meshes (see Figure 2.4 and the related discussion).

Table 2.1 records the number of refinements, derefinements and edge swappings
performed at each iteration. The columns for edge swapping include the sum of
three separate edge swapping loops. In all cases, note that the number of operations
performed becomes small by about 10 iterations.

Convergence of node movement is measured by norm of the displacement of
individual nodes. For a node p denote by Dp the norm of its displacement. Figure
2.3b plots the max and mean displacement for each iteration of node movement during
the adaptation loop. While the maximum displacement remains of the order 10−2,
this value represents only a few outlier cases, with the average displacement occuring
between 10−5 and 10−4.

Control of the energy norm of the error. Next we assess the performance of
the algorithm towards equidistributing the error. The distribution of the estimated
error for different iterations is plotted in Figure 2.4. The error is normalized by taking

eK = log10

(
ηK

TOL/
√
NT

)
. From the figure, we see that after successive iterations the

error increasingly tends to cluster towards the target error and the distribution tends
to be more normal. Furthermore, the standard deviation of the error decreases from
0.58 on the intial mesh to 0.041 on the final mesh.
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Figure 2.3: Left: Number of vertices after refinement/derefinement. Right:
Maximum and average displacement of nodes for cumulative node movement
loops.

Next we establish numerically the equivalence between the exact and estimated
error. The motivation is to assess to what degree we can expect to control the exact
error, both locally and globally, by equidistributing the estimated error as in Figure
2.4. Define the global effectivity index with respct to the energy norm by ei = η

|||eh|||
,

where η =
√∑

K η
2
K . Theorem 2.2.1 says that globally the energy norm of the error is

equivalent to the estimated error, so that the effectivity index assesses this equivalence
on a given mesh. Ideally, the effectivity index satisfies ei → 1 as the mesh element
size goes to 0, in which case we say that the estimator is asymptotically exact. This
effectivity index is studied for instance in [80] and [72], where it was observed to
remain reasonably low for adapted meshes (between 2 to 5). Furthermore, for meshes
adapted with target error TOL, the index remains bounded as TOL → 0, see for
instance [80, Table 3.7]. Thus, while the estimator is not asymptotically exact, it is
clearly equivalent to the exact error.

We define the local effectivity index for a triangle K by

eiK =
ηK
|eh|1,K

. (2.4.1)

(Recall that since A = I in (2.2.1) the energy norm is just the H1 seminorm.) The



2. ANISOTROPIC RESIDUAL-BASED A POSTERIORI MESH
ADAPTATION IN 2D: ELEMENT-BASED APPROACH 35

it. refinement derefinement swapping
after refinement after derefinement

edges % nodes % edges % edges %
1 212 175.21 9 2.70 500 53.48 251 27.61
2 415 128.09 47 6.36 1049 49.23 418 20.93
3 487 70.38 55 4.66 1179 34.40 569 17.41
4 996 88.61 20 0.94 1616 25.96 768 12.44
5 2383 113.48 78 1.74 3275 24.66 1235 9.45
6 3295 74.80 256 3.32 4556 19.91 1675 7.57
7 2031 27.28 507 5.35 3926 13.95 1380 5.18
8 265 2.95 497 5.38 1902 6.94 990 3.82
9 189 2.16 223 2.50 1173 4.43 677 2.62

10 87 1.00 132 1.50 777 2.98 535 2.08
...

...
...

...
...

...
...

...
...

40 5 0.06 4 0.05 153 0.60 110 0.43

Table 2.1: Number of local operations for complete adaptation loop.

quantity (2.4.1) measures the equivalence of the exact and estimated error at the
level of the element. In Figure 2.4 we plotted the distribution of (2.4.1) for a few
meshes. For the coarse uniform mesh with 200 elements, note that while the global
effectivity index is quite low (ei = 1.08), the distribution of the local effectivity index
is spread out, with a large upper tail. On the other hand, the finer uniform mesh
with 20000 elements has a higher global effectivity index (ei = 1.70) with a smaller
tail, suggesting that the accuracy of the estimator improves with refinement. We also
show the distribution for a relatively coarse adapted mesh with 4500 elements. While
the global effectivity index is higher (ei = 2.42), the local effectivity index is more
closely distributed about the global effectivity index. What appears to happen is that
refinement exaggerates the overestimation of the error that already occurs in uniform
meshes.

Control of the L2 norm of the error. In the remainder of the subsection, we
will assess numerically the lower and upper bounds for the L2 error given in (2.3.17),
and briefly present some results using the estimator (2.3.9) for mesh adaptation.

Setting TOL = 0.125, the final adapted mesh using ηK mesh has about 18000
elements. Figure 2.5a records for each element the estimated error ηK (in blue) and
η̃K (in black) vs. the exact L2 error ‖eh‖0,K . While ηK remains within less than
1 order of magnitude, the exact L2 error is spread by about 3 orders. Therefore,
equidistributing the estimator ηK does not lead to equidistribution of the L2 error.
In verifying the lower and upper from (2.3.17), we see that the local effectivity index
ẽiK = η̃K

‖eh‖0,K
remains between about 0.1 and 10, with the lower bound appearing

sharp.
Next we adapt the mesh using the scaled error η̃K . The mesh is adapted using
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the hybrid error approach from [17] for the hierarchical estimator. That is, edge
refinement and node removal are used to control the global L2 error level (here using
(2.3.9)), while edge swapping and node movement are used to equidistribute the error
by minimizing the energy norm (here using (2.2.5)). Results of two meshes adapted
using different target error levels are presented in Figure 2.5b: a mesh with about
1000 elements (top right) and one with 14000 (bottom left). The spread of the L2

error is significantly lower, going from 3 orders of magnitude to about 1.5.
We compare global error calculations using the scaled and non-scaled estimator

in Figure 2.6. Clearly, the non-scaled estimator results in lower energy norm error for
the same degrees of freedom. Moreover, as predicted, the scaled error significantly
improves the results for the L2 error.

Lastly, we compare meshes adapted with the scaled and unscaled estimators in
Figure 2.7. Both meshes have roughly the same number of vertices/elements, but
the distribution of the elements for the mesh adapted using the scaled estimator is
much more spread throughout the domain, while that in the original estimator tends
to concentrate near the boundary x = 0. This oberservatioin is really not surprising,
since scaling the estimator by the smallest eigenvalue will permit elements to be
larger in areas where the H1 error is largest, such as the boundary layer. Generally,
we expect that the error converges at a higher order in the L2 norm than for the H1
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Figure 2.5: Estimated error vs. exact L2 error over elements.

seminorm error. But as seen in Figure 2.5b, this higher order is not just global (at the
level of the domain), but local (element level). This observation about mesh quality
being related to the norm will be further confirmed in what follows when we consider
the hierarchical estimator, which natively controls the L2 error.

Comparison of the adaptation methods

Qualitative comparison. Figure 2.8 presents examples of adapted meshes
with about 2500 vertices produced by each method. In all cases, we see that the
meshes contain elements that are very stretched near the boundary layer. Note that in
general the meshes obtained from the residual estimators tend to have more elements
near the boundary layer, while the meshes from Hessian and hierarchical methods
tends to be more spread out. The difference in mesh density is likely due to the
target norm used by each method. As discussed in the previous section, the target
norm is related to the local order of convergence, which affects local element size.

Another note is that the mesh for the Hessian is quite regular in the top and
bottom right corners. The initial mesh is regular, consisting of right triangles as
in Figure 2.2a, so what seems to be happening is that in these regions the main
operation performed is edge refinement. In particular, node displacement appears
to be less smooth for the Hessian. Repeating the adaptation loop starting from a
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Figure 2.6: Energy norm (left) and L2 norm (right) error calculations for u1

for residual estimators.

non-uniform mesh does in fact result in a final mesh which is not regular.

Analytical comparison. The error is reported in Figure 2.9 as a function of the
number of vertices. Recall that for a regular mesh in 2D, the number of vertices
is roughly proportional to ( 1

h
)2, so that the theoretically optimal (logarithmic) slope

corresponding to (2.3.6) is −1/2, while for (2.3.8) it is −1.
Figure 2.9 reports the error in the energy and L2 norm. We see that all meth-

ods approach the theoretical rate of convergence for the energy norm. Moreover the
hierarchical method, which reports the largest error, remains about 1.3 times higher
than the residual element-based method, which reports the smallest error. The con-
vergence for the L2 norm, on the other hand, appears to be more erratic, with none of
the methods achieving the optimal rate of convergence. Here the hierarchical method
reports the lowest error, the residual methods report an error 2 to 3 times as large,
while the Hessian method reports an error about 4 to 5 times as large. Note that for
both, the energy and L2 norms, the results for both residual methods are close.

In Table 2.2 we record the mean and variance of the distribution of the error over
the elements. While Figure 2.9 shows that the global energy norm is lowest for the
residual methods and highest for the hierarchical, the situation is reversed here, with
the hierarchical reporting the lowest mean error. This can be partially accounted
for by the fact that the residual methods result in the lowest standard deviation for
the energy norm of the error, which is likely the result of the equidistribution of the
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Figure 2.7: Adapted meshes with 2500 vertices using the H1 estimator (left)
and scaled estimator (right).

estimated error achieved by the adaptive method. For the L2 error, as expected the
hierarchical method reports the lowest mean and standard deviation.

We remark that the target norm for the Hessian adaptation is L∞, so it is possible
that the Hessian does the best job equidistributing the error in the L∞ norm. We did
not calcluate the L∞ norm. Furthermore, it should be noted that in [69], a Hessian-
based error estimator was developed to control the the Lp error for 1 ≤ p < ∞.
Adaptation is, as before, done by constructing a metric, which turns out to be the
the same as that discussed in Section 2.3.5 with the eigenvalues appropriately scaled
for the choice of p, see [69, Section 2]. It is reasonable to expect that the results for
the L2 error could be improved using their estimates.

Computational performance. Figure 2.10a records the CPU time for the adap-
tation part of each iteration of the loop. For each method, we chose the global error
level so that the final mesh has about 9000 vertices. The number of vertices at each
iteration is recorded in Figure 2.10b, and the gap between lowest and highest at the
last step is about 6%. We find that metric adaptation requires much less time than
the other methods, and in the plot both metric based methods appear superimposed.
This result is not surprising. The only that value we really need to keep track of is the
metric tensor at each vertex. The local error calculations are relatively insubstantial
compared to those required for element-based adaptation.

In addition, note that the element-based residual method takes roughly 5 to 6
times that of the hierarchical estimator. For one thing, the residual estimator requires
the contribution from discontinuous functions. These functions cannot be directly in-
terpolated after performing local modifications, and must be recomputed on each
element/edge. Especially problematic is the calculation of the singular value decom-
position. Even for a 2× 2 matrix A, it can be numerically disastrous to calculate the
singular value decomposition of A directly by first computing AAT [51], and instead
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Figure 2.8: Adapted meshes for u1 with approximately 2500 vertices, with
zoom near the boundary at x = 0. From top to bottom: residual (element),
residual (metric), Hessian, hierarchical.
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Figure 2.9: Energy norm (left) and L2 norm (right) error calculations for u1.

it is recommended to use an iterative method. We have used the implementation
provided by DGESVD from LAPACK. Overall, it was found that this computation
takes between 13−18% of the total adaptation process. Another contribution towards
increased CPU time is due to the fact that the jump term depends on more than one
element. As mentioned in Section 2.3.1, when performing edge swapping, the error
needs to be calculated on an enlarged patch as in Figure 2.1 in order to accurately
compute the jump term. The construction and handling of this patch introduces
significant computational overhead.

2.4.2 Second test case

With the same parameters for problem (2.2.1) as test case 1, we consider the function
taken from [76]

u2 = tan−1(α(r − r0)),

where r =
√

(x+ 0.05)2 + (y + 0.05)2, and r0 = 0.7. Thus, we have a circular a
wave-front type solution, centered at (−0.05,−0.05) with a transition region with
thickness of order α−1. We will run simulations with both α = 100 and α = 1000.

Qualitative comparison

In Figures 2.11 we show some examples of adapted meshes. In each case, the mesh
follows what we would expect from the solution. The elements are mainly concen-
trated near the wavefront where the gradient is steep in the direction orthogonal to
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method vertices mean st. dev. mean st. dev.
‖∇(eh)‖K ‖∇(eh)‖K ‖eh‖K ‖eh‖K

residual (element) 657 5.37e-03 1.20e-03 2.16e-05 3.16e-05
residual (metric) 639 6.04e-03 1.74e-03 2.63e-05 3.93e-05
Hessian 691 5.27e-03 3.84e-03 2.27e-05 2.07e-05
hierarchical 670 5.42e-03 5.30e-03 1.84e-05 1.21e-05
residual (element) 2369 1.42e-03 2.82e-04 3.25e-06 5.13e-06
residual (metric) 2251 1.62e-03 4.09e-04 3.55e-06 4.99e-06
Hessian 2342 1.51e-03 1.08e-03 4.40e-06 5.98e-06
hierarchical 2356 1.41e-03 1.54e-03 2.14e-06 1.08e-06
residual (element) 8992 3.63e-04 7.24e-05 4.51e-07 7.65e-07
residual (metric) 8701 4.01e-04 8.88e-05 4.99e-07 8.20e-07
Hessian 8842 3.85e-04 2.56e-04 6.63e-07 1.09e-06
hierarchical 8786 3.55e-04 3.62e-04 2.96e-07 1.72e-07
residual (element) 35218 9.12e-05 1.76e-05 7.13e-08 1.44e-07
residual (metric) 33448 1.02e-04 2.14e-05 8.16e-08 1.58e-07
Hessian 38290 8.78e-05 7.92e-05 1.06e-07 1.85e-07
hierarchical 38205 7.90e-05 8.10e-05 3.95e-08 2.97e-08

Table 2.2: Distribution of error.

the wave, and with the alignment of the elements in this region reflecting the curva-
ture. Outside this region, variation in the solution is reduced significantly, so that the
elements can be much larger. What is striking, however, is the difference between the
mesh produced by the hierarchical method compared to the others. For the hierarchi-
cal method, the mesh is more spread out and less concentrated near the wave-front.
As discussed in Section 2.4.1, we attribute this difference to the target norm used.
Another feature of interest, seen in the zoom to the wavefront, is a sub-layer of ele-
ments where the mesh is coarser. In this region, the function is almost linear in the
direction orthogonal to the wave-front, so that the error is somewhat smaller than in
the immediate surroundings.

Analytical comparison

Calculation of the residual term. This test case highlights one of the drawbacks
of residual estimators. To calculate the error ηK , we need to evaluate the integrals∫
K
f 2 dx of the source term f. (Since A = I and uh is piecewise linear, we get

RK(uh) = f .) At the wave front with α = 1000 this value is very difficult to compute
accurately. The immediate effect on adaptation was that some elements were not
being refined despite being flagged as having large error. In particular, the algorithm
reported ∫

K1

f 2 dx+

∫
K2

f 2 dx�
∫
K

f 2 dx, (2.4.2)

where K1, K2 are obtained by refining an edge of K.
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Figure 2.10: Left: CPU time for each iteration. Right: number of nodes at
each iteration.

We improve the accuracy of the integral by subdivision. For a given quadrature
rule QK on an element, we divide the triangle into 4 by splitting the edges in half,
then define the subdivided quadrature rule QK,1 to be that composed of four copies of
the original, each weighted 1

4
|K|. The effect is that if the rule we had before was Chk

accurate, the subdivided scheme is C
2k
hk accurate. We therefore increase the accuracy

without introducing a large constant from a higher-order method. See Algorithm 2
for implementation details.

Since each time we subdivide, we multiply the number of Gauss points by 4,
subdivision can quickly become expensive. We always subdivide at least once, so
that at the very least we need to compute values at (1 + 4)BG points, where BG

is the base number of Gauss points. Therefore, higher-order quadrature rules are
virtually unusable for subdivision, and the total number of subdivisions never exceeds
3. Fortunately, in our case it was sufficient to use the single point (barycenter)
integration scheme. Even still, this comes at the high cost of 64 Gauss points for the
third subdivision. The percentage of subdivisions that occur for an adaptation loop
with ε from Algorithm 2 set to 0.05 are reported Figure 2.3. By the tenth iteration,
additional subdivision is not significant.

We remark that subdivision integration is not necessary if adapting using a met-
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Figure 2.11: Adapted meshes for u2, α = 100 with approximately 3000 ver-
tices, with zoom to wave front. From top to bottom: residual (element),
residual (metric), Hessian, hierarchical.



2. ANISOTROPIC RESIDUAL-BASED A POSTERIORI MESH
ADAPTATION IN 2D: ELEMENT-BASED APPROACH 45

Algorithm 2 Calculation of the residual on element K.

1. Calculate the residual R̃0 with the original quadrature QK,0.

2. Choose ε > 0 to be small. For i = 0, 1, 2 do the following:

(a) Subdivide the current quadrature QK,i into QK,i+1 and compute the resid-
ual R̃i+1.

(b) If i = 2 or if |R̃i−R̃i+1|
R̃i+1

≤ ε then accept R̃i+1 as the residual and exit.

it. 2 sub. % 3 sub. %
1 7.55 4.02
5 10.69 2.69

10 1.79 0.88
20 1.49 0.77

Table 2.3: Percentage of elements where additional subdivision occurs at
each iteration of the global adaptation step.

ric. There, the residual is calculated only once to compute the metric so that issues
such as (2.4.2) will not be seen during adaptation. Furthermore, when computing
the metric, the residual term is often left out altogether to save computational time,
as is done in [24]. Theoretically, this simplification can be justified for the Laplace
equation as proven in [63]. In the case of element-based adaptation, we found that in-
cluding the residual term was necessary, since experiments with removing the residual
term generally resulted in meshes of poor quality.

Global error comparison. In Figures 2.12 and 2.13, we record the error conver-
gence for u2 for α = 100 and α = 1000. The results are very similar to that for u1:
for the energy norm, the results are close, with the element-based residual method
reporting the lowest error, while for the L2 error, as in Section 2.4.1, the hierarchical
method reports the lowest. The results for the L2 error for α = 1000 will be discussed
in some detail here, for they clearly highlight the issue of controling the L2 norm with
an estimator for the H1 seminorm. We found that the L2 error oscillates over con-
secutive iterations when adapting with the residual in some situations. To illustrate
this issue, we reported the results in a different way in Figure 2.13. For each target
error, after the number of local modifications and vertices has stabilized, we take the
smallest and largest error after 10 further adaptation iterations, giving an upper and
lower envelope. With the exception of the residual element-based, where we see a
persistent spread of about 5 to 10%, the envelope becomes narrow as the number of
nodes increases.
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Figure 2.12: Energy norm error calcultations for u2 with α = 100 (left) and
α = 1000 (right).

In Figure 2.14, we illustrate that the oscillation is due to a few outlier elements,
appearing just before and after the wave-front. These elements account for a signif-
icant percentage of the overall error, and at each iteration, slight variations in this
region cause significant fluctuation in the error. From the Figure 2.13b we see that
for coarse meshes, this instability arises for all methods. For the hierarchical method,
as we decrease the target error, the region is refined, and the L2 error stabilizes. The
lack of stability for the L2 error in the case of the residual estimator is the result
of two combined factors. First, the estimator does not detect the fact that the L2

error is still quite large outside the wave-front, and therefore, even at very fine meshes
of over 250000 vertices, the mesh is not refined in those regions. This observation
fits within the context of Proposition 2.3.2 very well, because while we have equidis-
tributed the H1 seminorm error over the elements, the value of λ2,K is much smaller
for elements at the wave-front, which predicts that the L2 error should also be much
lower. The other contributing factor is that the mesh is not completely stationary in
this region, so that slight variations in the mesh, which barely registered as far as the
H1 seminorm is concerned, cause large variations in the L2 error.

2.5 Conclusion

We introduced an element-based mesh adaptation method for the anisotropic a pos-
teriori error estimator appearing in [80]. The method is done by interfacing with
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Figure 2.13: L2 norm error calcultations for u2 with α = 100 (left) and
α = 1000 (right). The plot on the right depicts the envelope of the oscillating
error.

the hierarchical estimator driver from MEF++, as introduced in [17]. We tested
the method in numerical test cases that feature significant anisotropic behaviour and
verified that the adaptation algorithm produces anisotropic meshes and converges.
Additionally, we considered an L2 norm error variant of the estimator, which, under
some hypotheses on the mesh, is equivalent to the exact L2 error. Numerical ex-
amples were provided to confirm the equivalence with the exact error. Examples of
adapted meshes using the modified estimator were provided, and it was found to give
improved performance for control of the L2 error over the original estimator.

The new element-based method was compared with three existing anisotropic
mesh adaptation methods for P1 finite elements: residual metric based, Hessian met-
ric, and hierarchical. In terms of controlling the level of error with respect to degree
of freedom, the new method generally performed slightly better for the energy norm,
while the hierarchical method performed significantly better than the other methods
for the L2 norm. However, the new method is significantly more expensive from a
computational standpoint. We note that the results for both element and metric
based methods for the residual estimator were generally very close for both norms.
Given the results presented in Section 2.4, it seems likely that the method that ob-
tains a given level of error in the energy norm in the shortest time would be the
residual metric method, while for L2 error it would be one of the residual metric or
Hessian methods.
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L^2 error

7.87e-3

3.64e-9

Figure 2.14: Mesh with about 1100 vertices adapted with the hierarchical
method (left) and the distribution of the exact L2 error (right).

Currently the authors are working on optimizing the computational aspects of
the method to make it more competitive with the other methods in terms of CPU
efficiency. Additionally, an investigation is being made to determine why the element
residual cannot be dropped from the computation, as for instance in [24].



Chapter 3

Space-time adaptation for
nonlinear reaction-diffusion
equations

Abstract. A residual error estimator is proposed for the energy norm of the error
for a scalar reaction-diffusion problem. The problem is discretized using P1 finite ele-
ments in space, and the backward difference formula of second order (BDF2) in time.
The estimator for space makes use of anisotropic interpolation estimates, assuming
only minimal regularity. Reliability of the estimator is proven under certain mild as-
sumptions on the convergence of the approximate solution. A space-time adaptation
algorithm is proposed to control the global error, using a Riemannian metric for mesh
adaptation and a simple method to adjust the time step. Numerical examples are
used to verify the reliability and efficiency of the estimator, and to test the adaptive
algorithm. The potential gains in efficiency of the proposed algorithm compared to
uniform methods is discussed.

3.1 Introduction

Reaction-diffusion equations model physical problems in a large variety of situations.
Numerically, these problems tend to be stiff, and can be demanding in terms of
computational resources, particularly in regions that develop sharp wave fronts, soli-
tons, etc., and for solutions that exhibit multiscale behaviour. Achieving an accurate
solution with uniform spatial and temporal resolution can be impractical or even im-
possible. This chapter addresses the problem of improving efficiency and accuracy
by the use of adaptive techniques. The adaptation should be based, when possible,
on theoretically justified a posteriori error estimates that are computable from the
approximate solution.

49
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A variety of approaches have been considered to estimate the error for reaction-
diffusion equations. Energy techniques are applied in [24], [27] to derive explicit
error estimates, the former for the energy norm and the latter in the L∞(0, T ;L1(Ω))
norm. The error is bounded by a sum of residual terms, together with interpolation
estimates. A similar class of estimators in various norms is found in [39], [41], where
the error is estimated using duality techniques. The residual terms are weighted by
stability terms, obtained by approximating a dual problem, which indicates the rate
of accumulation of error. While such techniques are generally more expensive, owing
to the requirement of solving a dual problem, they are useful if one is interested in
controlling the value of an arbitrary functional of the error. Another approach can
be found in [46], [57], [64], where the error is approximated by solving an auxiliary
problem with a hierarchical basis.

Equally important to error estimation is the application of adaptation techniques.
Mesh adaptation based on a posteriori error estimates for reaction-diffusion problems
can be found in [14], [39], [41], [46] in an isotropic context. Here the primary mesh
operations performed are refinement in regions where the estimator is large, and coars-
ening where the estimator is small. These estimators generally employ finite element
interpolation or projection estimates, which rely on a mesh regularity assumption
such as the minimum (or maximum) angle condition. With the aid of anisotropic
interpolation estimates, for instance from [25], [44], [62], the classical a posteriori es-
timates have been applied to mesh adaptation in anisotropic framework in [57], [62],
[73], [80] for linear problems, and in [22], [24] for nonlinear problems. The adaptation
is driven by constructing a non-Euclidean metric from the estimator, often employing
a gradient and Hessian recovery technique. See for instance [48], [53], [68] for details
on metric mesh adaptation in a general context. The use of anisotropic methods is
generally found to result in significantly lower error for a given number of elements
compared to isotropic methods; see for instance [45], [57].

The application of adaptation in both space and time has been explored for a
number of problems and time-stepping methods. To give some examples, estimates
for arbitrary order continuous and discontinuous Galerkin methods are considered in
[41], space-time adaptation in an anisotropic setting for the first-order discontinuous
Galerkin method is given in [73], while the Crank-Nicolson method is used in [70], for
linear problems and in [83] for nonlinear ones. A popular choice for reaction-diffusion
problems is the fully implicit backward difference formula of second order (BDF2).
The method is second-order accurate, and has good stability properties applied to
nonlinear problems, for instance see [42], [95], for constant time step, [11] for use in
mesh adaptation, and [9], [38] for stability of the variable time-step method. As far
as the author is aware, a space-time adaptation algorithm driven by a posteriori error
estimates has not been considered for the BDF2 discretization. In [2] optimal order a
posteriori error estimates were derived for the method applied to linear ODEs. The
primary goal of this chapter is to extend the estimator in [2] to the full discretization
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of nonlinear problems. First-order simplicial elements will be used for the spatial
discretization, and we will employ a simple explicit a posteriori error estimator using
energy techniques. The estimator will then be used to drive a complete space-time
adaptation algorithm to control the error. The mesh adaptation will be performed in
the anisotropic context of [44], [80].

The rest of the chapter will proceed as follows. In Section 3.2 we introduce the
problem studied and all functional notation. In Section 3.3 we introduce the a poste-
riori error estimators and prove some upper bounds: first for the semidiscrete problem
in space in Section 3.3.1. In Section 3.3.2 we consider the full BDF2 discretization.
In Section 3.4 we verify numerically the equivalence of the estimator with the energy
norm error. Following, we test the space-time adaptation algorithm. It is shown
that applying the algorithm leads to optimal second-order behaviour in time. The
efficiency of the method is considered.

3.2 Functional spaces and model problem

Let Ω be a bounded polygonal domain in R2 with finitely many edges. For two
measurable functions u, v : Ω→ Rn whose inner product is integrable we will denote
by (u, v)Ω =

∫
Ω

(u, v) dx their L2 inner product. Let V = H1(Ω), H = L2(Ω), with
topological duals V ′, H ′. There exist continuous dense embeddings V ⊆ H = H ′ ⊆
V ′. Therefore, defining (u, f)V,V ′ = (u, f)Ω for u ∈ V, f ∈ H, the duality between V
and V ′ can be expressed in terms of the duality between H and itself.

Let T > 0 and define

W(V, V ′) = {w : [0, T ]→ V ; w ∈ L2(0, T ;V ), ∂tw ∈ L2(0, T ;V ′)},

where the derivative is meant in the vector-valued distributional sense. Then, it can
be shown that there is a continuous embedding W(V, V ′) ⊆ C([0, T ];H), so that in
particular w(0), w(T ) ∈ H are well-defined, see for instance [67].

Let f ∈ C(R). We will assume that there exists 2 ≤ p <∞, with conjugate ex-
ponent 1 < q ≤ 2 such that f(u) ∈ Lq(0, T ;Lq(Ω)) for u ∈ W(V, V ′)∩Lp(0, T ;Lp(Ω)),
for instance if f satisfies the growth assumptions from [71]. As Ω ⊆ R2, the Sobolev

embedding V ⊆ Lp(Ω) holds, so that the integral
∫ T

0
(f(u), v)Ω dt is defined for

v ∈ V . Additionally, f is assumed to satisfy one of the following:

(F1) f is continuously differentiable and for some α ≥ 0 its derivative satisfies
f ′(x) ≥ −α, ∀x ∈ R,

(F2) f is locally Lipschitz continuous.

A typical example of (F1) is f(x) =
∑2p−1

k=0 bkx
k, that is, a polynomial of odd degree

with real coefficients such that b2p−1 > 0. We can now define the model initial value
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problem. For u0 ∈ H, g ∈ L2(0, T ;L2(∂Ω)) and s ∈ L2(0, T ;H), let u ∈ W(V, V ′) ∩
Lp(0, T ;Lp(Ω)) be the solution to the initial value problem

∂u

∂t
−∆u+ f(u) = s, in (0, T )× Ω,

∇u · n = g, in (0, T )× ∂Ω,
u(0) = u0, in Ω.

(3.2.1)

Problem (3.2.1) will be considered in the following variational formulation:

d

dt
(u, v)Ω + (∇u, ∇v)Ω + (f(u), v)Ω = (s, v)Ω + (g, v)∂Ω , ∀v ∈ V

u(0) = u0. (3.2.2)

For existence and uniqueness of solutions to the initial value problem (3.2.2), see for
instance [67] or [93].

3.3 A posteriori estimates

3.3.1 Semidiscrete problem

Notation and background

Let Th be a conformal triangulation of the domain Ω with elements K of diameter
hK and consider the finite element approximation space Vh = {vh ∈ C(Ω); vh|K ∈
P1(K), ∀K ∈ Th}. Let u0 ∈ Vh be an approximation of u0. The semidiscrete approx-
imation uh ∈ C1(0, T ;Vh) of u satisfies

d

dt
(uh, vh)Ω + (∇uh, ∇vh)Ω + (f(uh), vh)Ω = (s, vh)Ω + (g, vh)∂Ω , vh ∈ Vh,

uh(0) = u0. (3.3.1)

Define the error eh = u− uh. Below, we introduce the notation required to derive an
anisotropic residual estimator for the energy norm of the error. Relevant results are
cited from the literature.

The estimator combines information on the residual with anisotropic interpola-
tion estimates. Define the local residual RK(uh) ∈ L2(0, T ;L2(K)) by

RK(uh) =
∂uh
∂t
−∆uh + f(uh)− s.

Here ∆ denotes the Laplacian operator on K. The jump of the derivative of uh for
an element K with edges ei is defined by

rK(uh) =
3∑
i=1

[∇uh]ei ,
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where the jump [∇vh]ei over ei is defined as follows: denoting the outward unit normal
by ni and the adjacent element (if it exists) by K ′, then

[∇uh]ei =

{
2 (g −∇uh · n) , ei is a boundary edge,
∇(uh)|K · ni −∇(uh)|K′ · ni, ei is an interior edge.

Next, we introduce the interpolation estimates from [44] and [45]. For a triangular
element K, the anisotropic information comes from the affine mapping FK : K̂ → K.
The reference element K̂ is taken to be the equilateral triangle centred at the origin
with vertices at the points (0, 1), (−

√
3

2
, −1

2
), (

√
3

2
, −1

2
). The Jacobian JK of FK is non-

degenerate, so the singular value decomposition (SVD) JK = RT
KΛKRKZK consists

of orthogonal matrices RK , ZK , and a positive definite diagonal matrix ΛK . The
matrices RK , ΛK take the form

RK =

(
rT1,K
rT2,K

)
, ΛK =

(
λ1,K 0

0 λ2,K

)
,

where λ1,K ≥ λ2,K > 0, and r1,K , r2,K are orthogonal unit vectors. Geometrically, the
SVD represents the deformation of the unit ball in R2 to an ellipse with axes of length
λ1,K , λ2,K in directions r1,K , r2,K respectively. Moreover, the SVD also represents K
in the sense that the ellipse circumscribes the element.

Let Ih : H1(Ω) → Vh denote a Scott-Zhang interpolation operator, see [88].
Define the following “Hessian” type matrix:

G̃K(v) =

(∫
∆K

∂v

∂xi

∂v

∂xj
dx

)
i,j

, for v ∈ V,

and let

ω̃K(v) =
(
λ2

1,Kr
T
1,KG̃K(v)r1,K + λ2

2,Kr
T
2,KG̃K(v)r2,K

)1/2

.

Here ∆K is the patch of elements containing a vertex common to K. Recall that as
in [74], the usual minimum-angle condition is not required, but instead, the uniform
bound of the interpolation operator Ih requires a mild patch condition to hold. In
what follows, a constant CK̂ will denote a positive constant which relies on such a
patch condition.

Define the local anisotropic residual estimator by

η2
K,t =

(
‖RK(uh)‖0,K +

(
hK

λ1,Kλ2,K

)1/2

‖rK(uh)‖0,∂K

)
ω̃K(eh), (3.3.2)

and the global estimator

η2
t =

∑
K

η2
K,t, η =

(∫ T

0

η2
t dt

)1/2

. (3.3.3)
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Lemma 3.3.1. There exists a constant CK̂ > 0 independent of the mesh such that
the following distributional inequality holds:

1

2

d

dt
‖eh‖2

0,Ω + |eh|21,Ω ≤ CK̂η
2
t − (f(u)− f(uh), eh)Ω . (3.3.4)

Proof:
From the variational formulation (3.2.2) of u,(
∂eh
∂t

, eh

)
Ω

+ (∇eh, ∇eh)Ω

=

(
s− ∂uh

∂t
, eh

)
Ω

− (∇uh, ∇eh)Ω + (g, eh)∂Ω − (f(u), eh)Ω

=

(
s− ∂uh

∂t
− f(uh), eh

)
Ω

− (∇uh, ∇eh)Ω + (g, eh)∂Ω − (f(u)− f(uh), eh)Ω .

Using the fact that Ih(eh) ∈ Vh a.e. t ∈ (0, T ) and applying integration by parts for
each triangle K(
s− ∂uh

∂t
− f(uh), eh

)
Ω

− (∇uh, ∇eh)Ω + (g, eh)∂Ω

=

(
s− ∂uh

∂t
− f(uh), eh − Ih(eh)

)
Ω

− (∇uh, ∇(eh − Ih(eh)))Ω + (g, eh − Ih(eh))∂Ω

=
∑
K

(
(Rh(uh), eh − Ih(eh))K +

1

2
(rh(uh), ∇(eh − Ih(eh)))∂K

)
.

Therefore, applying the interpolation estimates from [44] and [45], and the Cauchy-
Bunyakowsky-Schwartz inequality

1

2

d

dt
‖eh‖2

0,Ω + |eh|21,Ω

≤
∑
K

(
‖Rh(uh)‖0,K ‖eh − Ih(eh)‖0,K +

1

2
‖rh(uh)‖0,∂K ‖∇(eh − Ih(eh))‖0,∂K

)
− (f(u)− f(uh), eh)Ω

≤ CK̂η
2
t − (f(u)− f(uh), eh)Ω .

From Lemma 3.3.1, it follows that the main difficulty to proceed is to deal with
the last term on the right side of (3.3.4), which depends on the nonlinear function f .
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Upper bounds

Here we derive two theoretical upper bounds for the energy norm of the error in terms
of the estimator. Recall that the energy seminorm for v ∈ L2(0, T ;V ) is given by

|||v||| =
(∫ T

0

|v(t)|21,Ω dt

)1/2

. (3.3.5)

We would like to find an upper bound for the error of the form

|||eh||| ≤ Cη, (3.3.6)

where C > 0 is close to 1, and does not depend on the choice of mesh.
Propositions 3.3.2 and 3.3.4 can be proved if f satisfies (F1) or (F2). To simplify

the presentation, we only prove the results in terms of (F1), and after we illustrate
how (F2) can be substituted.

Proposition 3.3.2. Suppose that f satisfies (F1). Then for CK̂ > 0, independent of
the mesh, we have

1

2
‖eh(T )‖2

0,Ω +

∫ T

0

e2α(T−t) |eh(t)|21,Ω dt ≤ 1

2
e2αT ‖eh(0)‖2

0,Ω + CK̂

∫ T

0

e2α(T−t)η2
t dt.

(3.3.7)

Proof:
From (F1) and the mean value theorem we conclude (f(u) − f(uh))(eh) ≥

−α(eh)
2. Inequality (3.3.4) implies

1

2

d

dt
‖eh‖2

0,Ω + |eh|21,Ω ≤ CK̂η
2
t + α ‖eh‖2

0,Ω . (3.3.8)

Taking the term |eh|21,Ω to the right hand side, we can apply Gronwall’s inequality to
(3.3.8) to get

1

2
‖eh(T )‖2

0,Ω ≤
1

2
e2αT ‖eh(0)‖2

0,Ω +

∫ T

0

e2α(T−t)
(
CK̂η

2
t − |eh(t)|

2
1,Ω

)
dt, (3.3.9)

and the result follows.

In the context of (3.3.6), using the inequality 1 ≤ e2α(T−t) ≤ e2αT and supposing
that we may ignore the initial error term, we are led to consider the upper bound

|||eh||| ≤ eαTC
1/2

K̂
η. (3.3.10)
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While the constant on the right hand side of (3.3.10) will not be close to 1, we can
at least conclude that the upper bound holds for fixed T > 0. For long time scales,
however, we do not expect the upper bound to be sharp. Furthermore, the value α
can be quite large as will be seen in Section 3.4. For instance, solutions to the bistable
equation are traveling waves with width scaled proportional to α−1/2. Therefore, the
stiffer the solution, the less optimistic is the theoretical result. Recall that classical a
priori estimates for (3.2.1) are typically of the form C(u;T )eMTO(hk), where C(u;T )
depends on various norms of u, and where M is a large constant depending on the
derivatives of f . It should be remarked, however, that (3.3.7) is essentially a worst
case estimate in the sense that it is valid for any solution of the initial value problem
(3.2.1), including solutions with finite time blowup. In what follows, we derive a
stronger estimate under the assumption that the approximate solution converges at
an optimal rate.

We now get to the alternative upper bound in Proposition 3.3.4. The following
result is based on the assumption that the error converges faster in the L2 norm
than the H1 seminorm. We use a condition similar to [24, (3.4)]. For the general
anisotropic case, we have some partial results. We borrow from [17], where the idea
is that given a P1 approximation uh, by utilizing the recovered gradient one may
construct a P2 approximation uh,2 which converges faster to u, both in L2 norm and
H1 seminorm. While this superconvergence property would be difficult to prove in
general, test cases in [17] suggests that it is true in practice. Condition (3.3.11) is
similar to conditions used in [81] and [72].

Lemma 3.3.3 ([15], Proposition 1, Propsition 2.3.2 in this thesis). Using the notation
above, suppose that there exists CK̂,1 > 0 such that, for all K ∈ Th and a.e. t ∈ [0, T ],

λ1,K‖∇(uh − uh,2) · r1,K‖0,K ≤ CK̂,1λ2,K‖∇(uh − uh,2) · r2,K‖0,K . (3.3.11)

Then there exists CK̂,2 > 0 independent of t such that

‖eh‖0,K ≤ CK̂,2 (λ2,K |eh|1,K + ‖u− uh,2‖0,K + λ2,K |u− uh,2|1,K) . (3.3.12)

From (3.3.12), we conclude that there exists CK̂ > 0 for a.e. t ∈ [0, T ], such that

‖eh‖0,Ω ≤ CK̂

(∑
K

λ2
2,K |eh|21,K

)1/2

+ ‖u− uh,2‖0,Ω +

(∑
K

λ2
2,K |u− uh,2|21,K

)1/2
 .

Under superconvergence assumptions for uh,2, the last two terms on the right are
assumed to be higher order, so neglected. Note that this is stronger than the usual
superconvergence assumptions, which are for stationary problems. Additionally, we
will assume that there exists a constant C > 0 such that for all K ∈ Th and a.e.
t ∈ [0, T ]

|eh|1,K ≤ CN
−1/2
T |eh|1,Ω, (3.3.13)
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where NT is the number of elements. The mesh adaptation algorithm will attempt
to equidistribute the error over all elements, so that (3.3.13) should hold in practice.
Then noting that

∑
K λ

2
2,K ≤

∑
K λ1,Kλ2,K = |Ω||K̂|−1, there exists a constant CAN >

0 such that up to higher-order terms

‖eh‖2
0,Ω ≤ CANN

−1
T |eh|

2
1,Ω. (3.3.14)

Proposition 3.3.4. Suppose that f satisfies (F1) and the error satisfies (3.3.14).
Then there exists CK̂ > 0 such that

‖eh(T )‖2
0,Ω +

(
1− αCANN−1

T

)
|||eh|||2 ≤ ‖eh(0)‖2

0,Ω + CK̂η
2. (3.3.15)

Proof:
Integrate (3.3.8) over t and apply condition (3.3.14).

Ignoring the error on the initial condition ‖eh(0)‖0,Ω, estimate (3.3.15) implies

|||eh||| ≤ C
1/2

K̂

(
1− αCANN−1

T

)−1/2
η → C

1/2

K̂
η,

where NT →∞. Therefore, we achieve an upper bound of the form (3.3.6) asymptot-
ically with respect to the mesh size. However, note that the value of α can be large,
and the constant CAN is not known a priori, so it is not clear how fine the mesh needs
to be so that 1− αCANN−1

T > 0.

Remark 1. In general the constant CAN depends on the class of meshes considered.
For isotropic meshes, where λ1,K ' λ2,K ' hK ' h, the error is expected to converge
O(h2) in the L2 norm and O(h) in the H1 seminorm. Then from the relation NT ≈
Ch−2, this translates to O(N−1

T ) for the L2 norm and O(N
−1/2
T ) for the H1 seminorm,

and we obtain (3.3.14).

Remark 2. Propositions 3.3.2 and 3.3.4 were proven under the assumption of (F1),
which is used to prove estimate (3.3.8). On the other hand, if f satisfies (F2), if we
assume that u ∈ L∞(0, T ;L∞(Ω)) and moreover, that the collection {uh}h is uni-
formly bounded in L∞(0, T ;L∞(Ω)), then there exists a Lipschitz constant Cf (u) > 0
for f such that |(f(u) − f(uh))(eh)| ≤ Cf (u)(eh)

2 a.e., and we obtain an analogue
to (3.3.8). The rest of the proof follows as before. The boundedness of u is easy to
prove, provided that the initial data is smooth enough and that the equation admits
an invariant region [89]. For uniform boundedness of the approximate solutions, see
for instance [41]. If the solution blows up in finite time (in the L∞ sense), then the
estimates can only be local in time.
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3.3.2 Space-time discretization

To simplify the presentation, for the remainder of the section we assume that g and
s are both 0. Let 0 = t0 < t1 < · · · < tN = T , with time steps τk = tk − tk−1. We use
the following notation for backward finite difference formulas

∂0
nuh = unh,

∂knuh =
∂k−1
n uh − ∂k−1

n−1uh( τn+...+τn−k+1

k

) , k ≥ 1.

We will also need the Newton polynomials of degree 1 and 2, given by

uh∆t = unh + (t− tn)∂1
nuh, t ∈ [tn−1, tn],

ũh∆t = unh + (t− tn)∂1
nuh +

1

2
(t− tn−1)(t− tn)∂2

nuh, t ∈ [tn−2, tn],

that satisfy uh∆t(tk) = ukh for k = n− 1, n and ũh∆t(tk) = ukh for k = n− 2, n− 1, n.
We define the Gear derivative ∂Gn uh = ∂ũh∆t

∂t
(tn), which is a second-order accurate

approximation of the first derivative. In practical computation, it is a two step
approximation of the following form:

∂Gn uh =
1

τn

[
1 + 2γn
1 + γn

unh − (1 + γn)un−1
h +

γ2
n

1 + γn
un−2
h

]
,

where γn = τn
τn−1

is the step-size ratio. Denote by πh : C(Ω) ∩ H1(Ω) → Vh the
Lagrange interpolation operator. The variable time step BDF2 method starting with
backward Euler is defined as follows: find {unh}n ∈ Vh that solve

u0
h = πh(u0)

(∂1
1uh, vh)Ω + (∇u1

h, ∇vh)Ω + (f(u1
h), vh)Ω = 0,(

∂Gn uh, vh
)

Ω
+ (∇unh, ∇vh)Ω + (f(unh), vh)Ω = 0, n ≥ 2.

(3.3.16)

As with constant step BDF2, the method is second-order accurate in time. It is shown
in [9] that the method is stable for linear problems provided γn ≤ (2+

√
13)/3 ≈ 1.86,

and that the constant ΓN =
∑N−2

n=2 [γn − γn+2]+ remains bounded, where [·]+ denotes
the non-negative part. In [38], this result is extended to semilinear parabolic problems
provided γn ≤ γmax ≈ 1.910, and provided τn ≤ τmax, where τmax depends only on
the nonlinear term f . For the purposes of implementing adaptive step-size control,
these restrictions are not too severe. The maximum for the step-size ratio allows
the step size to increase by an order of magnitude in three steps, a rapid transition.
Furthermore, the boundedness of ΓN will hold provided the variation in γn is not too
erratic.
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For the next lemma we need a linear reconstruction of f(uh):

I1(f(uh))(t) = f(unh) +
t− tn
τn

(f(unh)− f(un−1
h )).

For convenience, we will define the function ∂
3
uh : [0, T ] → Vh to be 0 for t ≤ t2

and otherwise to be ∂3
nuh on (tn−1, tn]. The following lemma extends results from [2],

where only a constant step size was considered.

Lemma 3.3.5. For vh ∈ Vh and t ∈ (tn−1, tn] with n ≥ 3(
∂ũh∆t

∂t
, vh

)
Ω

+ (∇uh∆t, ∇vh)Ω = − (I1(f(uh)), vh)Ω −Qn(t)
(
∂3
nuh, vh

)
Ω
,

where Qn(t) = τn−1(τn+τn−1+τn−2)
6τn

(t − tn). Furthermore, if the collection
{
∂

3
uh

}
h

is

uniformly bounded in L2(0, T ;H), then ‖Qn(t)∂3
nuh‖L2(0,T ;H) is order O(τ 2

∗ ) where
τ∗ = maxn≥2 τn.

Proof:
If n ≥ 3, we can apply the two step variational equality for un−1

h and unh so that

(∇uh∆t, ∇vh)Ω

= − (I1f(uh), vh)Ω −
(
∂Gn uh +

t− tn
τn

(∂Gn uh − ∂Gn−1uh), vh

)
Ω

.

Then combined with the relation ∂ũh∆t

∂t
= ∂Gn uh + (t− tn)∂2

nuh(
∂ũh∆t

∂t
, vh

)
Ω

+ (∇uh∆t, ∇vh)Ω

= − (I1f(uh), vh)Ω + (t− tn)

(
∂2
nuh −

1

τn
(∂Gn uh − ∂Gn−1uh), vh

)
Ω

.

Since ∂Gn uh = ∂1
nuh + τn

2
∂2
nuh, we get

∂2
nuh −

1

τn
(∂Gn uh − ∂Gn−1uh) = ∂2

nuh −
1

τn

(
τn + τn−1

2
∂2
nuh +

τn
2
∂2
nuh −

τn−1

2
∂2
n−1uh

)
= −τn−1

2τn
(∂2
nuh − ∂2

n−1uh)

= −τn−1(τn + τn−1 + τn−2)

6τn
∂3
nuh

and we conclude the result. Finally, for the order of convergence we note that∫ tn

tn−1

Qn(t)2
∥∥∂3

nuh
∥∥2

0,Ω
dt
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=
1

108
τnτ

2
n−1 (τn + τn−1 + τn−2)2

∥∥∂3
nuh
∥∥2

0,Ω

≤ Cτ 4
∗ ‖∂3

nuh‖2
L2(tn−1,tn;H). (3.3.17)

Remark 3. In [2] it is shown that the uniform boundedness assumption of ∂
3
uh

need not hold. The optimality of the order of convergence of the estimator will be
addressed in Section 3.4 for numerical examples.

For convenience, we will denote by pn = pn(τn, τn−1, τn−2) the coefficient for
‖∂3

nuh‖
2
0,Ω appearing in the second line of (3.3.17).

The techniques used in the proof of Theorem 3.3.6 are essentially from [70, The-
orem 4.4], which is an estimate for the heat equation solved with Crank-Nicolson.
We include the proof for the sake of completeness. In what follows, we denote
eh(t) = u − uh∆t and ẽh(t) = u − ũh∆t. For the fully discrete problem, the element
residual defined on (tn−1, tn)×K is

RS
K,n(uh) = f(ũh∆t) + ∂Gn uh −∆uh∆t,

while the edge residual defined on (tn−1, tn)× ∂K is

rSK,n(uh) = [∇uh∆t].

Theorem 3.3.6. Suppose that (3.3.14) holds. There exists a constant CK̂ > 0 inde-
pendent of the mesh and step size such that for n ≥ 3

‖eh(tn)‖2
0,Ω +

∫ tn

tn−1

|eh(t)|21,Ω dt ≤ ‖eh(tn−1)‖2
0,Ω

+ CK̂

(∑
K

∫ tn

tn−1

(
‖RS

K,n(uh)‖0,K +
1

2

(
hK

λ1,Kλ2,K

)1/2

‖rSK,n(uh)‖0,∂K

)
ω̃K(ẽh) dt

+
∑
K

λ2
2,Kτ

3
n

∥∥∂2
nuh
∥∥2

0,K
+ pn

∥∥∂3
nuh
∥∥2

0,Ω
+

1

120
τ 5
n

∣∣∂2
nuh
∣∣2
1,Ω

+

∫ tn

tn−1

‖f(ũh∆t)− I1(f(uh))‖2
0,Ω dt

)
. (3.3.18)

Proof:
For v ∈ V , using the variational formulation for u(
∂ẽh
∂t

, v

)
Ω

+ (∇eh, ∇v)Ω
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= −
(
∂ũh∆t

∂t
, v

)
Ω

− (∇uh∆t, ∇v)Ω − (f(u), v)Ω

= −
(
∂ũh∆t

∂t
+ f(ũh∆t), v

)
Ω

− (∇uh∆t, ∇v)Ω − (f(u)− f(ũh∆t), v)Ω . (3.3.19)

For vh ∈ Vh, we apply Lemma 3.3.5 to conclude(
∂ẽh
∂t

, v

)
Ω

+ (∇eh, ∇v)Ω

= −
(
∂ũh∆t

∂t
+ f(ũh∆t), v − vh

)
Ω

− (∇uh∆t, ∇(v − vh))Ω +Qn(t)
(
∂3
nuh, vh

)
Ω

− (f(u)− f(ũh∆t), v)Ω − (f(ũh∆t)− I1(f(uh)), vh)Ω . (3.3.20)

Choose v = ẽh, vh = Ih(ẽh). Note that

(∇eh, ∇ẽh)Ω =
1

2
|eh|21,Ω +

1

2
|ẽh|21,Ω −

1

2
|eh − ẽh|21,Ω

=
1

2
|eh|21,Ω +

1

2
|ẽh|21,Ω −

1

2
|ũh∆t − uh∆t|21,Ω

=
1

2
|eh|21,Ω +

1

2
|ẽh|21,Ω −

1

4
(t− tn)2(t− tn−1)2

∣∣∂2
nuh
∣∣2
1,Ω
, (3.3.21)

so substituting (3.3.21) into (3.3.20), applying integration by parts over each element
K, and integrating from tn−1 to tn, and applying Cauchy-Bunyakowsky-Schwartz we
get

1

2
‖eh(tn)‖2

0,Ω −
1

2
‖eh(tn−1)‖2

0,Ω +

∫ tn

tn−1

1

2

(
|eh(t)|21,Ω + |ẽh(t)|21,Ω

)
dt

≤
∑
K

∫ tn

tn−1

∥∥f(ũh∆t) + ∂Gn uh −∆uh∆t

∥∥
0,K
‖ẽh − Ih(ẽh)‖0,K dt︸ ︷︷ ︸

I

+
∑
K

∫ tn

tn−1

1

2
‖[∇uh∆t]‖0,∂K ‖ẽh − Ih(ẽh)‖0,∂K dt︸ ︷︷ ︸

II

+
1

120
τ 5
n

∣∣∂2
nuh
∣∣2
1,Ω

+
∑
K

∫ tn

tn−1

|t− tn|
∥∥∂2

nuh
∥∥

0,K
‖ẽh − Ih(ẽh)‖0,K dt︸ ︷︷ ︸

III

+

∫ tn

tn−1

∥∥Qn(t)∂3
nuh
∥∥

0,Ω
‖Ih(ẽh)‖0,Ω dt︸ ︷︷ ︸

IV
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−
∫ tn

tn−1

(f(u)− f(ũh∆t), ẽh)Ω dt︸ ︷︷ ︸
V

−
∫ tn

tn−1

(f(ũh∆t)− I1(f(uh)), Ih(ẽh))Ω dt︸ ︷︷ ︸
VI

(3.3.22)

(Note that eh = ẽh at t = tn, tn−1).
We will deal with each term of (3.3.22). Applying the interpolation estimates we

get

I + II ≤
∫ tn

tn−1

CK̂
∑
K

(
‖RS

K,n(uh)‖0,K +
1

2

(
hK

λ1,Kλ2,K

)1/2

‖rSK,n(uh)‖0,∂K

)
ω̃K(ẽh) dt.

As in [70], we assume there exists Ceq > 0 independent of the mesh such that ω̃K(ẽh) ≤
Ceqλ2,K |ẽh|1,Ω. Then applying the interpolation estimates and Young’s inequality, for
any γ > 0

III ≤
∑
K

γ

2

∫ tn

tn−1

λ2
2,K(t− tn)2

∥∥∂2
nuh
∥∥2

0,K
dt+

C2
K̂
C2
eq

2γ

∫ tn

tn−1

|ẽh|21,Ω dt

≤
∑
K

γ

6
λ2

2,Kτ
3
n

∥∥∂2
nuh
∥∥2

0,K
+
C2
K̂
C2
eq

2γ

∫ tn

tn−1

|ẽh|21,Ω dt.

Let CIh > 0 be a constant such that for all v ∈ H1(Ω), ‖Ih(v)‖0,Ω ≤ CIh‖v‖0,Ω. Then

IV ≤ γ

2
pn
∥∥∂3

nuh
∥∥2

0,Ω
+
C2
Ih

2γ

∫ tn

tn−1

‖ẽh‖2
0,Ω dt.

Assuming (F1) we get

V ≤ α

∫ tn

tn−1

‖ẽh‖2
0,Ω dt.

Finally,

VI ≤ γ

2

∫ tn

tn−1

‖f(ũh∆t)− I1(f(uh))‖2
0,Ω dt+

C2
Ih

2γ

∫ tn

tn−1

‖ẽh‖2
0,Ω dt

If we apply assumption (3.3.14) and collect the coefficients to
∫ tn
tn−1
|ẽh|21,Ω dt on the

left side we have

1

2
−
C2
K̂
C2
eq

2γ
− CAN

NT

(
α +

C2
Ih

2γ

)
.
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This can be made non-negative, for instance choosing γ ≥ max{2C2
K̂
C2
eq, C

2
Ih
} and

provided NT ≥ 4CAN(α + 1
2
). The proof is then completed by gathering all terms in

(3.3.22).

Note that the right hand side of the inequality in Theorem 3.3.6 still depends on
the unknown ∇u. However, as is done for instance in [80], we let Πh : Vh → Vh × Vh
denote a gradient recovery operator. In general, we expect Πh(uh) to converge faster
than∇uh. In this chapter, we found it sufficed to apply the simplified Zienkiewicz-Zhu
operator studied in [87]. We have the following estimator for the error in space

ηSK,n =

(∫ tn

tn−1

(
‖RS

K,n(uh)‖0,K +
1

2

(
hK

λ1,Kλ2,K

)1/2

‖rSK,n(uh)‖0,∂K

)
ωK(ũh∆t) dt

)1/2

,

(3.3.23)

where for vh ∈ Vh

ωK(vh) =
(
λ2

1,Kr
T
1,KGK(vh)r1,K + λ2

2,Kr
T
2,KGK(vh)r2,K

)1/2
,

GK(vh) =

(∫
K

(
∂vh
∂xi
− Πh(vh)i

)(
∂vh
∂xj
− Πh(vh)j

)
dx

)
i,j

.

Note that while ω̃K(ẽh) is defined by taking the integral over the patch ∆K , in the
definition of ωK(uh) the integral is only taken over the element K. We found this
simplification to produce satisfactory results in practice. The estimator for the error
in time is given by

ηTn =
(
(η1,T
n )2 + (η2,T

n )2 + (η3,T
n )2 + (η4,T

n )2
)1/2

, (3.3.24)

where

η1,T
n =

(
1

120
τ 5
n

∣∣∂2
nuh
∣∣2
1,Ω

)1/2

, η2,T
n =

(
1

12

∑
K

λ2
2,Kτ

3
n

∥∥∂2
nuh
∥∥2

0,K

)1/2

,

η3,T
n =

(
pn
∥∥∂3

nuh
∥∥2

0,Ω

)1/2

, η4,T
n =

(∫ tn

tn−1

‖f(ũh∆t)− I1(f(uh))‖2
0,Ω dt

)1/2

.

(3.3.25)

Adaptive algorithm

Let TOLS, TOLT > 0 denote error tolerances for the space and time error respec-
tively. As in [70], the goal will be to adapt both the mesh and time step in order to
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satisfy the following inequalities on each interval

0.1875 TOLS ≤
ηSn
|||uh|||n

≤ 0.75 TOLS, (3.3.26)

0.5 TOLT ≤
ηTn
|||uh|||n

≤ 1.5 TOLT , (3.3.27)

where |||v|||n =
(∫ tn

tn−1
|v(t)|21,Ω dt

)1/2

. The choice of constants appearing in the upper

and lower bounds in (3.3.26) may seem unusual, particularly the upper bound 0.75
which is less than 1. However, we found that with the adaptation algorithm we
describe below, the error after adaptation was generally significantly lower than the
target error.

The mesh is adapted using a non-Euclidean metric, derived from ηK using the
techniques from [72], which we briefly describe. The metric consists of a positive
definite matrix MK corresponding to each element. The Jacobian JK relates to the
metric by the relation MK = RT

KΛ−2
K RK . Therefore, given the prescribed global

error tolerance T̃OL, the idea is to determine a new optimally defined element K̃

by choosing new directions r̃1,K , r̃2,K and aspect ratio s̃K =
λ̃1,K

λ̃2,K
which minimize ηK̃

and scaling the area λ̃1,K λ̃2,K so that the error satisfies ηK̃ = T̃OL√
NT
. Since the mesh

adaptation software we use in this chapter, MEF++, requires the metric to be defined
on vertices, the metric needs to be averaged. We use the simple averaging for each
vertex p:

Mp =
1

Np

∑
K∈∆p

MK ,

where ∆p is the patch of elements containing p as a vertex, and Np is the number of
elements of ∆p. Since the BDF2 method involves the variables un−2

h , un−1
h , unh, the

mesh should be adapted to the solution on the entire interval [tn−2, tn]. Therefore,
following an idea from [85], for each sub-interval [ts−1, ts] we construct the metricMs

under the condition ηS

|||uh|||n
= TOLS. Then we take the average Mn = 1

3

∑2
s=0Mn−s.

We have made the common assumption that the edge residual rK dominates the space
residual RK , and so have dropped the latter from the calculation, see [26], [22], [24].

The time-step adaptation is implemented with a standard method involving mul-
tiplicative factors. After computing the solution unh the estimator ηT is computed.
If (3.3.27) is not satisfied, a multiplicative factor m > 0 determines a new step
τnew = mτ. For our purposes, we chose m = 0.67 if the error was too large, and
m = 1.5 if the error was too small. Note that the estimator is only defined for n = 3
onwards. We therefore cannot completely control the accumulation of error in the
first two time steps. We will assume that if the error does not satisfy the upper bound
(3.3.27) for the third step, then it also does not satisfy it for the first two. We will
therefore terminate the algorithm and restart using a smaller time step.
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In order to avoid asking for too much control of either the space or time error,
we fix the ratio TOLT

TOLS
= µ. In [70], this ratio is fixed at µ = 1. The choice of µ used in

this chapter will be discussed further in Section 3.4, as it is observed that a suitable
choice depends on the particular problem being solved.

Algorithm 3 Space-time solution-adaptation loop.

1. Initialization: Find a suitable starting mesh.

(a) Repeat the following for a fixed number of iterations (5 or 10):

i. Interpolate u0
h = πh(u0) on the current mesh and solve for u1

h, u
2
h, u

3
h.

ii. Adapt the mesh using u0
h, u

1
h, u

2
h, u

3
h.

(b) Interpolate u0
h on the current mesh and solve for u1

h, u
2
h, u

3
h, u

4
h.

2. Space Loop:

(a) Compute ηSn .

(b) If (3.3.26) is satisfied, move on to step 3.

(c) If (3.3.26) is not satisfied, adapt the mesh using un−2
h , un−1

h , unh.

(d) Interpolate un−2
h , un−1

h on the new mesh, and solve for unh, u
n+1
h . Go to step

2.

3. Time Loop:

(a) Compute ηTn .

(b) If (3.3.27) is satisfied, or if the ratio τn
τn−1

is too large or too small, compute

un+1
h and go to step 2.

(c) If (3.3.27) is not satisfied, adjust the time step, recompute unh and go to
step (3).

3.4 Numerical results

All numerical computations in this section are performed with the MEF++ software
developed by GIREF [50].
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3.4.1 Test case 1

Let Ω = (0, 1)× (0, 1), T = 0.04, and take u to be the solution to
∂u
∂t
−∆u+ 104u(u− 1)(u− 0.25) = 0, in (0, T )× Ω,

∇u · n = 0, in (0, T )× ∂Ω,

u(0) = e−100(x2+y2), in Ω.
(3.4.1)

The solution is a traveling wave with a circular profile, moving upwards and right from
the bottom left corner until u ≈ 1 in the entire domain (see Figure 3.4). We plot
the space and time error estimators as a function of time (Figure 3.1) on a relatively
fine uniform mesh with 12800 elements (h = 0.0125), and with constant time step
τ = 0.0004. The error estimator in space follows more or less the area of the wave-
front, increasing until the front hits the top and right boundaries, and decreasing as
the wave exits the domain. The time estimator behaves similarly, but has two peaks,
corresponding to the wave hitting the boundary at t = 0.027 and just as it exits at
t = 0.038.

10-1

100

101

102

0 0.008 0.016 0.024 0.032 0.04

er
ro

r

time

  ηS
  ηT

Figure 3.1: Test case 1: plot of the error estimators in time for the solution
on a uniform mesh.

Effectivity index

As in [70], we define the effectivity indices

ei =

(
(ηS)2 + (ηT )2

)1/2

|||eh|||
, eiS =

ηS

|||eh|||
, eiT =

ηT

|||eh|||
,
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where

|||v||| =
(∫ T

0

|v(t)|21,Ω dt

)1/2

, ηS =

(∑
n≥1

(
ηSn
)2

)1/2

, ηT =

(∑
n≥3

(
ηTn
)2

)1/2

.

In the absence of an exact solution, we approximate the effectivity index with the
use of a reference solution. Normally, a reference solution is computed on a very fine
uniform mesh with a very small time step. However, we found that for this example,
computing a reference solution with a uniform mesh is impractical, as we illustrate
below. For fixed time step τ = 0.0002, denote by u∆t the semidiscrete in time solution
to (3.4.1), and uH∆t the fully discrete solution computed on a uniform mesh with
H = 0.025. Table 3.1 illustrates the approximation of the error |(uH∆t−u∆t)(0.01)|1,Ω
by the value eh,refH = |(uH∆t−uh∆t)(0.01)|1,Ω, where uh∆t is the fully discrete solution
computed on various uniform meshes, and solutions using space adaptation. If we
assume that the error at time t = 0.01 is O(H) and O(h), respectively, then at worst∣∣∣eh,refH − |(uH∆t − u∆t)(0.01)|1,Ω

∣∣∣
|(uH∆t − u∆t)(0.01)|1,Ω

≤ |(uh∆t − u∆t)(0.01)|1,Ω
|(uH∆t − u∆t)(0.01)|1,Ω

is O
(
h
H

)
. Unless h << H, one cannot trust the accuracy of the reference solution.

With H = 0.025, in this case a mesh with 6400 elements, this restriction on h calls
for a uniform mesh with millions of elements, and unrealistic demands for memory
and CPU usage. On the other hand, with adapted meshes the approximate error
approaches the value 0.953 in reasonable CPU time. In what follows, the reference
solution will be computed using space adaptation with TOLS = 0.015625 and with a
finer time step τref = 2.5× 10−5. The resulting meshes range from 43000 elements at
time t = 0 to 180000 elements at t = 0.01.

h (uniform meshes) TOLS (adapted meshes)
0.0125 0.00625 0.003125 0.25 0.125 0.0625 0.03125 0.015625

eh,refH 0.7380 0.8992 0.9396 0.9487 0.9541 0.9556 0.9530 0.9531
max. elements 25600 102400 409600 1113 3431 10450 42172 160563
CPU time (sec) 168 871 5229 26 65 202 878 4089

Table 3.1: Approximation of error in space at t = 0.01 with H = 0.025, τ =
0.0002.

We compute the error and effectivity indices for a few values of h and τ in Table
3.2. The effectivity index ei remains at a good value (1 ≤ ei ≤ 10) provided the space
and time estimators remain close in magnitude. Moreover, the index eiS remains close
to 1. The effectivity index increases as we decrease h and τ . For the coarse mesh
h = 0.025 the solution has not yet reached the asymptotic convergence, noting that
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the error decreases by a factor of 6 (first and last rows) instead of the theoretic factor
of 4 predicted by the general theory. The evolution of the error in time is shown in
Figure 3.2. Note that the space and time error estimators grow at the same rate for
each value of h, τ , while the exact error grows slower for the lower value of h, τ. As
a result, the growth of the exact error is more closely captured by the estimators for
finer mesh and time step.

h τ |||eh||| ηS ηT ei eiS eiT

0.025 0.0002 0.0582 0.0494 0.199 3.52 0.849 3.42
0.025 0.0001 0.0560 0.0497 0.0528 1.29 0.888 0.943
0.0125 0.0002 0.0240 0.0247 0.199 8.34 1.03 8.29
0.0125 0.0001 0.0216 0.0250 0.0531 2.72 1.16 2.46
0.00625 0.0001 0.00966 0.0124 0.0533 5.66 1.28 5.52

Table 3.2: Error and effectivity indices for uniform mesh and constant time
step.
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(a) h = 0.025, τ = 0.0002.
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(b) h = 0.00625, τ = 0.0001.

Figure 3.2: Plot of the exact and estimated error in time for uniform mesh
and constant time step.

Remark 4. If the reference solution is computed on an adapted mesh Th, the integral
is approximated by interpolating the gradient of uH∆t at the Gauss points of Th. To
verify the accuracy of the integral, we apply successive subdivisions of the quadrature
formula. That is, the quadrature rule on each element is obtained by splitting the
element into four copies by dividing each edge in half. If the initial quadrature rule is
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accurate order of h`, the resulting subdivided rule is accurate of order
(
h
2

)`
. Generally,

on a fine adapted mesh, the difference is less than 1% after 3 subdivisions.

We now address the optimality of the time estimator. In Table 3.3 we compute
the estimators on uniform meshes and time steps, and refine with a fixed ratio τ2

h
. We

conclude that asymptotically, the space error ηS converges O(h), the time estimators
ηi,T for i = 1, 3, 4 converge O(τ 2), while the estimator η2,T converges O(hτ). It was
observed in [2] that the estimator may be of sub-optimal order for a given ODE system
when the first step is computed with backward Euler. However, in our case we are
not interested in the best approximation of the semidiscretization in space, but the
approximation in both space and time of the PDE. We expect that the behaviour of
the estimators in these two situations may be different.

h τ ηS η1,T η2,T η3,T η4,T ηT

0.1 8.00× 10−4 1.69× 10−1 1.27× 10−2 8.81× 10−2 2.14 3.49 4.10
0.05 5.66× 10−4 1.40× 10−1 8.37× 10−3 2.53× 10−2 8.76× 10−1 1.35 1.61
0.025 4.00× 10−4 9.02× 10−2 4.84× 10−3 8.61× 10−3 4.36× 10−1 6.03× 10−1 7.45× 10−1

0.0125 2.83× 10−4 4.93× 10−2 2.60× 10−3 3.08× 10−3 2.47× 10−1 2.90× 10−1 3.81× 10−1

0.0625 2.00× 10−4 2.52× 10−2 1.39× 10−3 1.13× 10−3 1.38× 10−1 1.46× 10−1 2.01× 10−1

0.03125 1.41× 10−4 1.26× 10−2 7.11× 10−4 4.06× 10−4 7.32× 10−2 7.32× 10−2 1.04× 10−1

0.1 2.00× 10−4 1.62× 10−1 1.18× 10−3 3.09× 10−2 3.73× 10−1 2.89× 10−1 4.73× 10−1

0.05 1.41× 10−4 1.41× 10−1 6.85× 10−4 7.82× 10−3 1.08× 10−1 9.39× 10−2 1.43× 10−1

0.025 1.00× 10−4 9.17× 10−2 3.59× 10−4 2.39× 10−3 3.54× 10−2 3.97× 10−2 5.32× 10−2

0.0125 7.07× 10−5 4.98× 10−2 1.82× 10−4 8.34× 10−4 1.90× 10−2 1.89× 10−2 2.68× 10−2

0.0625 5.00× 10−5 2.53× 10−2 9.29× 10−5 2.97× 10−4 1.01× 10−2 9.41× 10−3 1.38× 10−2

0.03125 3.53× 10−5 1.26× 10−2 4.66× 10−5 1.05× 10−4 5.23× 10−3 4.68× 10−3 7.02× 10−3

Table 3.3: Error estimators for uniform mesh and constant time step.

Dealing with overshoot of the time estimator

We address a technical difficulty in implementing the space-time adaptation algo-
rithm. The time estimator is observed to strongly spike at times when the mesh is
adapted. To assess what is happening, we apply mesh adaptation with a constant
time step for various levels of TOLS and various time steps. We found that for fixed
TOLS, as the time step is decreased, the magnitude of the overshoot increases (see
top row of Figure 3.3). Moreover, from the bottom row of Figure 3.3 we see that the
overshoot of the estimator does not reflect the nature of the true error, and therefore,
decreasing the time step in order to attempt to control the time estimator would not
be worthwhile. The most likely explanation for the overshoot is that interpolating
the solution on the new adapted mesh introduces high frequency transients, which are
quickly damped. While the finite element solution itself remains good, the estimator
ηT is built using finite difference schemes for second and third-order derivatives, so the
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transients are magnified by small time steps. In Figure 3.3, note that the overshoot is
largest for η3,T , which requires the solution at four different time steps. As TOLS is
decreased, the interpolation error decreases, so smaller time steps may be taken. To
apply the space-time adaptation algorithm, this implies that the ratio TOLT

TOLS
cannot

be taken too small. In practice, for this test case, we found that the algorithm could
be used with TOLT

TOLS
as low as 8, however, this is still unnecessarily restrictive. In

Figure 3.3, we observe that the dominant terms are η3,T and η4,T , and that after the
initial overshoot, η3,T quickly settles back to the level of η4,T . Moreover, note that in
Table 3.3 for uniform meshes, the column for η3,T is closely matched by that for η4,T .
In what follows, we replace ηT with the modified estimator:

η̃T =
(
(η1,T
n )2 + (η2,T

n )2 + (η4,T
n )2

)1/2
, (3.4.2)

While oscillations are also observed in η1,T , they are small relative to η4,T . There-
fore, including η1,T in the estimator did not result in oscillations in (3.4.2). Another
possible solution, which was not explored here, would be to use a more accurate
interpolation operator as was done in [21].

Space-time adaptation

We fix the ratio TOLT

TOLS
= 0.75 and apply space-time adaptation (Algorithm 3). Note

that as the wave exits the domain, the normalizing factor |uh|1,Ω appearing in (3.3.26)
quickly decreases to zero. To avoid pathological behaviour, we use the modified form
max(|uh|1,Ω, 1). Examples of adapted meshes and the solution are shown in Fig. 3.4.
The majority of the elements are located near the wave-front and elongated parallel
to the wave. Note that the mesh is somewhat coarser near the center of the wave,
where the wave is nearly linear in the direction orthogonal to the wave. Figure 3.5
shows the evolution of the error estimators, the time step, and the number of elements
for a complete computation using TOLS = 0.125, TOLT = 0.09375. The adaptation
maintains the relative space and time error near a constant value until the normalizing
factor |uh|1,Ω quickly drops off as the wave exits the domain. Recalling the results
form uniform meshes (3.1), the space and time estimators grow and decrease slowly
as the surface of the wave-front increases and eventually exits. This behaviour is
reflected in the adaptive algorithm with a slow growth and decrease in the number
of elements, and in the fact that the time step is mostly constant. Moreover, the
decreases in the time step and corresponding spikes in the time estimator coincide
with the wave hitting the boundary. Note that as the wave exits the time step
becomes large and the number of elements drops significantly. The evolution of the
time step follows the trend noted in Figure 3.1, with a nearly constant time step
where the error grows linearly, and with two sharp decreases when the wave hits the
boundary. The oscillation in ηS is a reflection of the mesh adaptation, with the error
dropping off suddenly after adaptation, and growing quickly as the wave-front moves
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Figure 3.3: Test case 1. Top: evolution of time estimator applying mesh
adaptation with TOLS = 0.5 with constant time step τ = 0.001 (left) and
τ = 0.000125 (right). Bottom: evolution of the estimators and exact error
for TOLS = 0.5, τ = 0.000125 (left) and TOLS = 0.52, τ = 8.85625 × 10−5

(right).
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beyond the refined region. In Table 3.4 it is shown that the estimated error terms
converge proportionally to TOLS, TOLT when applying the space-time adaptation
algorithm. In Table 3.5 we collect some additional statistics. Columns three, four and
six address the efficiency of the time-step adaptation algorithm. From column three,
we note that the number of time-step modifications is essentially independent of the
error tolerance. Recall that each time the time step is modified, the current time
step needs to be recomputed after which condition (3.3.27) is checked once again.
The current time step may possibly need to be recomputed several times before the
error condition is satisfied. Column four collects the total number of times that a
time step needs to be recomputed, and we conclude that in this case, no additional
recomputations are required to satisfy the error condition. Then from column 6, it
is shown that the total percentage of CPU time spent computing the time estimator
is low (no more than 0.3%). From column five, we observe that the total number
of time steps has a moderate growth as a function of TOL−1

T . More precisely, as we
decrease TOLT by 2, the number of time steps increases by approximately a factor
of
√

2 (as was observed in [70] for the Crank-Nicolson method). This is consistent
with the fact that the BDF2 method is second-order accurate. Lastly, note that the
number of mesh adaptations grows sublinearly as TOLS is decreased.

TOLS TOLT ηS η̃T η1,T η2,T η4,T

0.5 0.375 1.38× 10−1 2.36× 10−1 2.53× 10−3 8.84× 10−3 2.36× 10−1

0.25 0.1875 6.98× 10−2 1.21× 10−1 1.46× 10−3 2.72× 10−3 1.21× 10−1

0.125 0.09375 3.65× 10−2 6.07× 10−2 7.52× 10−4 1.07× 10−3 6.07× 10−2

0.0625 0.046875 1.92× 10−2 3.05× 10−2 3.67× 10−4 4.43× 10−4 3.05× 10−2

0.03125 0.0234375 9.77× 10−3 1.52× 10−2 1.76× 10−4 1.65× 10−4 1.52× 10−2

Table 3.4: Estimated error after space-time adaptation for Test case 1 with
TOLT = 0.75 · TOLS.

TOLS remeshings step adapts step restarts total steps CPU time est (%)
0.5 21 11 11 305 0.22
0.25 38 11 11 432 0.18
0.125 48 9 9 611 0.19
0.0625 62 10 10 862 0.24
0.03125 73 11 11 1219 0.28

Table 3.5: Mesh and time-step statistics for space-time adaptation for Test
case 1 with TOLT = 0.75 · TOLS.

3.4.2 Test case 2

The goal of the following test case is to determine the gain in efficiency using space-
time adaptation. In particular, we are interested in situations where the time error
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Figure 3.4: Examples of contours and adapted meshes with TOLS =
0.125, TOLT = 0.09375 at t = 0.00141933 (top), t = 0.0265008 (center)
with zoom to the wave-front (center right), and at t = 0.0382107 (bottom).
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(bottom).
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varies more rapidly and in magnitude than in the previous test case. We choose the
same domain, initial data and reaction term as in (3.4.1) and take T = 0.01. We
replace the diffusion term with −div(A∇u) where

A(x, y) = 1 + 19
(

1− tanh2
(

20
((
x2 + y2

)1/2 − 0.3
)))

.

The wave slows down and spreads outwards as it enters the region with higher diffusion

where (x2 + y2)
1/2 ≈ 0.3, and then picks up speed as the wave exits this region. The

theory in this case follows as in Section 3.3 with appropriate changes to the definition
of the edge and element residuals. To simplify the computation of the estimator,
on each element K we replace A by its value AK at the barycenter of K. Then we
define the new edge residual rAK(uh) = AK [∇uh]. This definition is somewhat different
from what appears in the literature, for instance in [80] and [73], but was easier to
implement.

As for test case 1, we compute a reference solution using mesh adaptation with
TOLS = 0.015625, with meshes ranging from 55000 to 250000 elements, and a rela-
tively small constant time step τref = 1.25× 10−5. A solution is then computed on a
uniform mesh with h = 0.025, with 6400 elements, and time step τ = 2×10−4 and the
estimated error and exact error are approximated from the reference solution, plotted
in Figure 3.6 (left). We see that the estimated error ηS is generally close to the exact
error. The time estimator η̃T decreases as the wave enters the area of higher diffusion
and slows down. The estimator then increases as the wave exits this region speeds up
again. Additionally, we compute the estimated and exact error when applying mesh
adaptation with TOLS = 0.25, with meshes of about 1000 elements, and constant
time step 2× 10−4, plotted in Figure 3.6 (right). The observed trend for η̃T is similar
to that for uniform meshes. The estimated error ηS is again close to the exact error,
both dropping whenever the mesh is adapted. As noted for test case 1, the space
error grows more quickly for adapted meshes compared to uniform meshes since the
wave moves beyond the refined region of the mesh. Finally, Figure 3.7 illustrates the
evolution of the error and time step applying the space-time adaptation algorithm
with TOLS = 0.25, TOLT = 0.375, also resulting in meshes of about 1000 elements.

The efficiency of the method is assessed by determining the level of error that
can be obtained in a given total CPU time. We compare computations on uniform
meshes with constant time step, adapted meshes with constant time step, and apply-
ing the full space-time adaptation algorithm. For each uniform mesh, we compute
the solution with a variety of time steps, collected in Table 3.6, to determine the
“best” time step for a given value of h. For instance, for h = 0.05, as the time step
is decreased below τ = 10−4, the error changes very little while the total CPU time
increases. The same approach is taken to get Table 3.7 for mesh adaptation with
constant time step, finding the best time step for a fixed value TOLS. The results for
space-time adaptation are reported in Table 3.8. For each value of TOLS, we com-
pute the solution with various levels of TOLT . Figure 3.8 plots the CPU time vs. the
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Figure 3.6: Plot of error for Test case 2. Plot of error in time on a uniform
mesh with h = 0.025, τ = 2 × 10−4 (left) and using space-only adaptation
with TOLS = 0.25, τ = 2× 10−4 (right).
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Figure 3.7: Test case 2: plot of the error (left) and time step (right) using
space-time adaptation with TOLS = 0.25 and TOLT = 0.375.
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h τ |eh|1,Ω ηS eiS CPU(sec) steps
0.05 4.00× 10−4 0.0874 0.0740 0.85 3.5 25
0.05 2.00× 10−4 0.0772 0.0742 0.96 6.3 50
0.05 1.00× 10−4 0.0748 0.0743 0.99 11.3 100
0.05 5.00× 10−5 0.0742 0.0743 1.00 21.1 200
0.05 2.50× 10−5 0.0741 0.0743 1.00 41.9 400
0.05 1.25× 10−5 0.0741 0.0743 1.00 80.0 800
0.025 4.00× 10−4 0.0478 0.0380 0.79 14.7 25
0.025 2.00× 10−4 0.0336 0.0379 1.13 25.3 50
0.025 1.00× 10−4 0.0303 0.0380 1.25 45.9 100
0.025 5.00× 10−5 0.0296 0.0380 1.28 85.6 200
0.025 2.50× 10−5 0.0294 0.0380 1.29 172.4 400
0.0125 4.00× 10−4 0.0321 0.0188 0.59 62.5 25
0.0125 2.00× 10−4 0.0159 0.0188 1.18 108.8 50
0.0125 1.00× 10−4 0.0128 0.0188 1.47 189.0 100
0.0125 5.00× 10−5 0.0122 0.0188 1.54 350.6 200
0.0125 2.50× 10−5 0.0121 0.0188 1.56 683.4 400
0.0125 1.25× 10−5 0.0120 0.0188 1.56 1289.1 800

Table 3.6: Test case 2: error and total CPU time for uniform meshes with
constant time step.

error, with the plot on the right including only the best points for each method. We
conclude that for this test case, both the space and space-time adaptation methods
achieve significantly lower error level for a given amount of CPU time compared to
using uniform meshes. Moreover, when using mesh adaptation, there does not seem
to be much difference between the constant and adapted time-step methods. For both
methods, either a choice of time step, or a choice of TOLT will give a comparable
result for a given TOLS. Note that for all computational methods, the effectivity
index eiS is close to 1, varying between 0.5 and 2.

It should be noted that one of the advantages of using the space-time adapted
method is that it is more automated. From Table 3.8, the choice TOLT ≈ TOLS
consistently gives a good result. This observation suggests a strategy for how to
proceed for general problems. Choosing TOLT = TOLS, start with a small time step.
If the time estimator is too large, start over with a smaller time step. Otherwise, if
the estimator is small, the time step will automatically increase to an appropriate
value, and the rest of the computation proceeds. When solving with a constant time
step, it is not always clear how the step should be chosen. A further remark is that
since the nonlinear system (3.3.16) is solved with Newton’s method, increasing the
time step may increase the number of Newton iterations required for each time, and
therefore, the CPU time savings for using a larger time step may not be as great as
expected. Another approach would be to try a linearized version of (3.3.16) where
the reaction term is evaluated explicitly at un−2

h and un−1
h .
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TOLS τ |eh|1,Ω ηS eiS CPU(sec) steps
0.5 4.00× 10−4 0.0232 0.0415 1.79 11.3 25
0.5 2.00× 10−4 0.0196 0.0385 1.96 11.5 50
0.5 1.00× 10−4 0.0226 0.0389 1.72 12.7 100
0.5 5.00× 10−5 0.0228 0.0389 1.71 14.9 200
0.5 2.50× 10−5 0.0235 0.0399 1.70 19.7 400
0.25 4.00× 10−4 0.0194 0.0225 1.16 21.5 25
0.25 2.00× 10−4 0.0112 0.0213 1.91 24.2 50
0.25 1.00× 10−4 0.0117 0.0210 1.79 25.1 100
0.25 5.00× 10−5 0.0132 0.0212 1.61 30.6 200
0.25 2.50× 10−5 0.0142 0.0214 1.50 46.9 400
0.25 1.25× 10−5 0.0144 0.0211 1.47 78.2 800
0.25 6.25× 10−6 0.0127 0.0213 1.68 129.7 1600
0.125 4.00× 10−4 0.0241 0.0118 0.49 60.6 25
0.125 2.00× 10−4 0.0073 0.0112 1.55 58.3 50
0.125 1.00× 10−4 0.0055 0.0109 1.98 78.3 100
0.125 5.00× 10−5 0.0058 0.0108 1.88 100.8 200
0.125 2.50× 10−5 0.0059 0.0109 1.85 161.2 400
0.125 1.25× 10−5 0.0059 0.0108 1.83 267.2 800

Table 3.7: Test case 2: error and total CPU time for adapted meshes with
constant time step.

TOLS TOLT |eh|1,Ω ηS eiS CPU(sec) steps
0.5 3 0.0430 0.0444 1.03 12.2 21
0.5 1.5 0.0210 0.0422 2.00 11.8 29
0.5 0.74 0.0207 0.0415 2.01 12.0 40
0.5 0.375 0.0218 0.0415 1.90 11.3 56
0.5 0.1875 0.0251 0.0408 1.62 11.8 76
0.25 0.75 0.0152 0.0230 1.51 21.8 38
0.25 0.375 0.0109 0.0223 2.06 22.6 55
0.25 0.1875 0.0119 0.0220 1.85 23.7 79
0.25 0.09735 0.0133 0.0222 1.67 25.0 111
0.25 0.046875 0.0146 0.0218 1.50 29.3 155
0.25 0.0234375 0.0131 0.0217 1.65 34.4 220
0.125 0.375 0.0126 0.0119 0.94 65.9 42
0.125 0.1875 0.0076 0.0116 1.52 65.4 58
0.125 0.09375 0.0057 0.0114 2.00 69.9 82
0.125 0.046875 0.0056 0.0112 2.00 75.8 113
0.125 0.0234375 0.0058 0.0112 1.93 89.9 160
0.125 0.01171875 0.0059 0.0111 1.90 107.4 223

Table 3.8: Test case 2: error and total CPU time for adapted meshes with
adapted time step.
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Figure 3.8: Test case 2: CPU time vs. error for all computations (left) and
best points (right).

3.5 Conclusion

This chapter introduced an error estimator for the energy norm of the error for non-
linear reaction-diffusion equations, approximated with piecewise linear finite elements
in space, and the BDF2 method in time. The estimator is shown to be reliable un-
der certain conditions of the reaction term, and it is verified numerically that the
effectivity index is close to 1. A space-time adaptation method is proposed to simul-
taneously control the estimators for the space and time error. The mesh is adapted
using a metric to control the anisotropic nature of the error. The adaptation method
is applied to a traveling wave with constant diffusion and a solution with variable
diffusion. It was found that the space-time method is at least as efficient in terms
of achieving a global level of error in a given CPU time compared to applying mesh
adaptation with a constant time step. Looking ahead, the method can be applied to
more complex situations, such systems of equations exhibiting multiscale behaviour,
where it is reasonable to expect that a combined space-time approach will lead to
improved efficiency.



Chapter 4

Application to electrophysiological
models

4.1 Introduction

In this chapter we apply the general theoretical and adaptive framework of the pre-
vious chapter to the monodomain model used in cardiac electrophysiology.

A variety of adaptive techniques have been applied to the monodomain and bido-
main models. The majority of this work has been dedicated to isotropic meshes. A
heuristic method is employed in [66], where mesh elements containing the wave-front
are successively refined, based on the observation that the variation of the solution
is low outside this region. A similar heuristic method is employed in [100], where
elements are refined based on the magnitude of the gradient of the transmembrane
potential, which again, is expected to occur primarily in the wave front. Additionally,
the time step is adapted based on the variation of certain ionic currents, specific to the
Luo-Rudy I model. Both [66] and [100] report an increase in computational efficiency
compared to uniform refinement, however, without a clear theoretical framework it
is not clear how widely their methods can be applied. Towards this direction, in [28]
the mesh and time step are adapted based on estimating the local truncation error for
a finite difference scheme using a Richardson extrapolation, and a similar technique
is applied to a finite element method in [96], while in [77], the interpolation error
is approximated for trilinear elements. In [46], the authors use a hierarchical error
estimator, which approximates the residual in a higher-order space, for a multilevel
finite element discretization in space and a Rosenbrock time-stepping scheme. This
work is applied to computations on a realistic heart geometry, simulating fibrillation
dynamics in [35]. The theoretical foundation of the method can be found in [64].
A different approach is taken in [4], where they apply a p-adaptive method. The
error estimator is based on an approximation of the error in space only, between the
semidiscretization in time and the full discretization. An advantage of their method

80
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is a relatively quick reassembly of the matrices involved, since the mesh connectivity
is preserved. While the adaptive approach taken in this thesis means that we cannot
avoid the issue of matrix reassembly, the general methodology we take is to not adapt
the mesh too often.

Work on adaptive methods in an anisotropic setting applied to electrophysiology
has only begun recently. The first work in that direction can be found in [10]. The
mesh adaptation is based on a simple hierarchical estimator, constructed from gradi-
ent and Hessian recovery techniques. Results are presented for 2D spiral waves, where
the elements of the mesh are aligned for the minimization of the gradient of the error,
capturing the anisotropic features of the solution. Results in 3D are presented in
[11], where the authors apply a Riemannian metric adaptive technique using Hessian
recovery, and extend their results to 3D scroll waves in [12]. In these works, however,
mesh adaptation is performed after every time step. The potential gains in CPU
time using the adaptive mesh could be offset by the increased overhead required to
perform the adaptation steps and to recompute the matrices to solve the system. In
[91], the adaptation step is performed after fixed intervals, and a speedup of up 11.2
compared to the uniform method is observed. However, a significant percentage of
the total computation time is still spent adapting the mesh, up to 79%. A parallel
version was presented in [90]. In [85], a similar method was used while the portion of
time spent adapting the mesh was reported to be about 25% of the total time when
adapting every 10 time steps.

The work in this chapter continues in the vein of anisotropic adaptive methods.
Unlike the anisotropic methods used previously, the adaptation is driven by an error
estimator computed from the residual of the system involved. The general frame-
work uses the anisotropic interpolation estimates for piecewise linear elements found
in [44] and [45], which is combined with a gradient recovery operator to obtain an
a posteriori error estimator as done in [80] and [72]. As in [80], mesh adaptation
is only performed when the estimated error is above or below a certain threshold,
therefore systematically avoiding the issue of too frequent adaptation found in pre-
vious anisotropic methods in electrophysiology. We find that it is necessary to treat
the ODE variables of the system differently as they do not benefit from parabolic
smoothing. We propose a modified estimator that does not make use of a residual. In
some previous work, for instance in [91], [66], [100], the adaptation takes into account
only the variation of the transmembrane potential, likely based on the observation
that it varies more rapidly than the ODE variables. Here we illustrate numerically
that all variables should be taken into account, especially when simulating a heart-
beat with realistic duration scales. We use the fully implicit backward difference
formula of second order (BDF2) for the discretization in time. The error due to the
time discretization is approximated with an extension of the estimator from [2] to the
nonlinear setting and with a variable time step. A space-time adaptation algorithm
is employed.
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The rest of the chapter will proceed as follows. In Section 4.2 we recall the
monodomain model. In Section 4.3 we give the full discretization of the problem and
derive the error estimates. The theoretical applicability of the residual estimate will
be discussed for both the FitzHugh-Nagumo and the Mitchell-Schaeffer ionic models.
In addition to a residual estimator, we consider a simplified estimator only based on
the recovered gradient for the recovery variable. Section 4.4 presents the numerical
results. After a brief discussion of the adaptive algorithm, two numerical test cases
are presented. The first, with the FitzHugh-Nagumo model, is used in order to verify
the reliability of the estimators and the mesh adaptation algorithm. The second, with
the Mitchell-Schaeffer model, models a heartbeat with realistic phase time scales and
is suitable to a space-time adaptation algorithm.

4.2 Model problem

In this chapter, we keep the notation introduced in the preceding chapter. In particu-
lar, let V = H1(Ω), H = L2(Ω) and let Vh be the space of piecewise linear continuous
functions. For u0, w0 ∈ H, let u ∈ W(V, V ′), w ∈ W(H,H ′) be the solution to the
following initial value problem:

∂u

∂t
−∆u+ F (u,w) = 0, in (0, T )× Ω,

∂w

∂t
+G(u,w) = 0, in (0, T )× Ω,

∇u · n = 0, on (0, T )× ∂Ω,
u(0) = u0,
w(0) = w0,

(4.2.1)

where F, G : R2 → R are continuous. Moreover, we assume that F, G satisfy one of
the following conditions for every bounded domain D ⊆ R2,

C4.2.1 there exists αD > 0 such that for x = (x1, x2), y = (y1, y2) ∈ D

(F (x)− F (y))(x1 − y1) + (G(x)−G(y))(x2 − y2) ≥ −αD‖x− y‖2
2,

C4.2.2 there exists αD > 0 such that for x, y ∈ D

max{|F (x)− F (y)|, |G(x)−G(y)|} ≤ αD‖x− y‖2.

To improve the estimates, we also consider a stronger form of (C4.2.1)

C4.2.3 there exist positive constants αD, βD such that for x = (x1, x2), y = (y1, y2) ∈
D

(F (x)− F (y))(x1 − y1)+(G(x)−G(y))(x2 − y2)

≥ −αD(x1 − y1)2 + βD(x2 − y2)2.
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The domain D will be assumed implicitly assumed, and we will denote αD by α and
βD by β in (C4.2.1), (C4.2.2) and (C4.2.3). In particular, we will assume the solution,
and approximate solutions, are uniformly bounded in L∞(Ω). Some details on the
boundedness assumption follow in Section 4.3.

There are several well-posedness results for (4.2.1). In [20], a weak solution
is proven to exist globally in time provided the reaction terms satisfy mild growth
conditions, which apply for instance to the FitzHugh-Nagumo and Aliev-Panfilov
models. Uniqueness is proven for the FitzHugh-Nagumo model. Additionally, local
existence of more regular solutions is proven provided further regularity of the reaction
terms and the initial data. In [19] existence is proven for a regularized version of the
Mitchell-Schaeffer model. Note that the results in the references above apply to the
bidomain problem, for which the monodomain problem is a simplification.

The error estimates in Section 4.3 require additionally that w belongs to
L2(0, T ;V ). We can obtain more regular solutions by considering so-called strong
solutions of (4.2.1) in the setting of [55]. For instance, if we modify the definition of
the spaces Z and Zα in [20, Section 4] to use the space B = V ∩ L∞(Ω), then on a
maximal interval [0, τmax), there exists a unique strong solution in the sense of [20,
Definition 18] provided the function (u,w) ∈ Zα 7→ (F (u,w), G(u,w)) ∈ Z is locally
Lipschitz continuous and (u0, w0) ∈ Zα. In particular, we have w ∈ C([0, τmax);V ).
For the solution to exist globally, we require that the local Lipschitz condition be
replaced by a global one. For F , this can be achieved provided there exists a pri-
ori bounds on u,w in the L∞(Ω) norm. Such bounds will be discussed for specific
ionic models in Section 4.3 due to the existence of invariant rectangles. For G this
is not quite enough since the norm on V involves the gradient. However, it suffices
to assume that G and its first derivatives are globally Lipschitz continuous, which is
satisfied for the ionic models considered in this chapter.

4.3 Discretization and error estimator

We use the notation from Section 3.3.2. For the full discretization of (4.2.1), we apply
continuous piecewise linear finite element approximation for the space discretization
and fully implicit BDF2 for the time discretization. The initial conditions are in-
terpolated u0

h = Ih(u0), w0
h = Ih(w0). Recall that ∂Gn uh for n ≥ 2 denotes the the

second-order accurate discrete time derivatives used for the BDF2 methods. Then
for n ≥ 2, unh, w

n
h are obtained by solving the variational problem{ (
∂Gn uh, φh

)
Ω

+ (∇unh, ∇φh)Ω + (F (unh, w
n
h), φh)Ω = 0,(

∂Gn wh, ψh
)

Ω
+ (G(unh, w

n
h), ψh)Ω = 0,

(4.3.1)

for all φh, ψh ∈ Vh. The solution for n = 1 is obtained by the backward Euler method.
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Recall that uh∆t and ũh∆t respectively denote the piecewise linear and quadratic
in time reconstructions. Define the element residuals

RU
K,n =

∂ũh∆t

∂t
−∆uh∆t + F (ũh, w̃h),

RW
K,n =

∂w̃h∆t

∂t
+G(ũh, w̃h),

and edge residual
rUK,n = [∇uh∆t].

Define eu = u− uh∆t, ẽu = u− ũh∆t and similarly define ew and ẽw. Define the local
space estimators

η̃S,UK,n(eu) =

(∫ tn

tn−1

(
‖RU

K,n‖0,K +

(
hK

λ1,Kλ2,K

)1/2

‖rUK,n‖0,∂K

)
ω̃K(ẽu) dt

)1/2

,

η̃S,Wn,K (ew) =

(∫ tn

tn−1

‖RW
K,n‖0,Kω̃K(ẽw) dt

)1/2

, (4.3.2)

and global space estimators

η̃S,Un =

(∑
K

(η̃S,UK,n)2

)1/2

, η̃S,Wn =

(∑
K

(η̃S,WK,n )2

)1/2

. (4.3.3)

Define the time estimators

ηT,Un =
(
(η1,T,U
n )2 + (η2,T,U

n )2 + (η3,T,U
n )2

)1/2
,

ηT,Wn =
(
(η2,T,W
n )2 + (η3,T,W

n )2
)1/2

, (4.3.4)

where

η1,T,U
n =

(
1

120
τ 5
n

∣∣∂2
nuh
∣∣2
1,Ω

)1/2

, η2,T,U
n =

(
pn
∥∥∂3

nuh
∥∥2

0,Ω

)1/2

η3,T,U
n =

(∫ tn

tn−1

‖F (ũh∆t, w̃h∆t)− I1(F (uh, wh))‖2
0,Ω dt

)1/2

, (4.3.5)

where pn is defined as in (3.3.17). The time estimators for W are defined similarly.
Note that there is no corresponding estimator for η1,T,U for w since there is no Lapla-
cian operator. Also, note that there is no analogous term corresponding to η2,T from
(3.3.25). This is due to the fact that we are using the time derivatives of the quadratic
reconstructions ∂ũh

∂t
and ∂w̃h

∂t
in the element residuals, instead of retaining only the

constant part ∂Gn uh and ∂Gn wh as is done in Chapter 3. The following lemma is an
easy extension of Lemma 3.3.5.
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Lemma 4.3.1. For vh ∈ Vh and t ∈ (tn−1, tn] with n ≥ 3(
∂ũh∆t

∂t
, vh

)
Ω

+ (∇uh∆t, ∇vh)Ω = − (I1(F (uh, wh)), vh)Ω −Qn(t)
(
∂3
nuh, vh

)
Ω
,(

∂w̃h∆t

∂t
, vh

)
Ω

= − (I1(G(uh, wh)), vh)Ω −Qn(t)
(
∂3
nwh, vh

)
Ω
,

where Qn(t) = τn−1(τn+τn−1+τn−2)
6τn

(t− tn).

Recall the definition of the global and local energy norm for v ∈ L2(0, T ;V )

|||v||| =
(∫ T

0

|v|21,Ω dt

)1/2

, |||v|||n =

(∫ tn

tn−1

|v|21,Ω dt

)1/2

.

For convenience, we also write |||v|||∞ and |||v|||∞,n to respectively denote the L∞(0, T ;H)

and L∞(tn−1, tn;H) norms. Recall as in Chapter 3 that Ih : H1(Ω) → Vh denotes a
Scott-Zhang interpolation operator.

Theorem 4.3.2. Suppose that (C4.2.1) or (C4.2.2) is satisfied. There exists a con-
stant CK̂ > 0 independent of the mesh and the step size and C(α) > 0 depending on
α such that, for n ≥ 3,

|||eu|||2∞,n + |||ew|||2∞,n + |||eu|||2n
≤ CK̂e

C(α)τn
(
‖eu(tn−1)‖2

0,Ω + ‖ew(tn−1)‖2
0,Ω + (η̃S,Un )2 + (η̃S,Wn )2 + (ηT,Un )2 + (ηT,Wn )2

)
.

(4.3.6)

If (C4.2.3) is satisfied, then there exists CAN > 0 depending on the superconvergence
assumption (3.3.14) such that, for n ≥ 3,

|||eu|||2∞,n + |||ew|||2∞,n +

(
1− αCAN

NT

)
|||eu|||2n +

β

2
‖ew‖2

L2(tn−1,tn;H)

≤ CK̂

(
‖eu(tn−1)‖2

0,Ω + ‖ew(tn−1)‖2
0,Ω + (η̃S,Un )2 + (η̃S,Wn )2 + (ηT,Un )2 + (ηT,Wn )2

)
.

(4.3.7)

Proof:
By inspecting the proof of Theorem 3.3.6 up to (3.3.20), we get for the first

equation(
∂ẽu
∂t

, ẽu

)
Ω

+ (∇eu, ∇ẽu)Ω

= −
(
∂ũh∆t

∂t
+ F (ũh∆t, w̃h∆t), ẽu − Ih(ẽu)

)
Ω

− (∇uh∆t, ∇(ẽu − Ih(ẽu)))Ω
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−Qn(t)
(
∂3
nuh, Ih(ẽu)

)
Ω
− (F (ũh∆t, w̃h∆t)− I1(F (uh, wh)), Ih(ẽu))Ω

− (F (u,w)− F (ũh∆t, w̃h∆t), ẽu)Ω . (4.3.8)

Therefore, applying Young’s inequality and (3.3.21), there exist positive constants
C1, C2 depending on the interpolation operator Ih such that

d

dt
‖eu‖2

0,Ω + |eu|21,Ω + |ẽu|21,Ω

≤ C1

(∑
K

(
‖RU

K,n‖0,K +

(
hK

λ1,Kλ2,K

)1/2

‖rUK,n‖0,∂K

)
ω̃K(ẽu)

+
1

4
(t− tn)2(t− tn−1)2

∣∣∂2
nuh
∣∣2
1,Ω

+
∥∥Qn(t)∂3

nuh
∥∥2

0,Ω

+ ‖F (ũh∆t, w̃h∆t)− I1(F (uh, wh))‖2
0,Ω

)
+ C2‖ẽu‖2

0,Ω − (F (u,w)− F (ũh∆t, w̃h∆t), ẽu)Ω , (4.3.9)

Similarly, for the second equation we get(
∂ẽw
∂t

, ẽw

)
Ω

= −
(
∂w̃h∆t

∂t
+G(ũh∆t, w̃h∆t), ẽw − Ih(ẽw)

)
Ω

−Qn(t)
(
∂3
nwh, Ih(ẽw)

)
Ω
− (G(ũh∆t, w̃h∆t)− I1(G(uh, wh)), Ih(ẽw))Ω

− (G(u,w)−G(ũh∆t, w̃h∆t), ẽw)Ω . (4.3.10)

so there exist constants C3, C4, also depending on Ih, such that

d

dt
‖ew‖2

0,Ω ≤ C3

(∑
K

‖RW
K,n‖0,KωK(ẽw) +

∥∥Qn(t)∂3
nwh

∥∥2

0,Ω

+ ‖G(ũh∆t, w̃h∆t)− I1(G(uh, wh))‖2
0,Ω

)
+ C4‖ẽw‖2

0,Ω − (G(u,w)−G(ũh∆t, w̃h∆t), ẽw)Ω . (4.3.11)

For convenience, we respectively denote by S1(t) and S2(t) the right sides of (4.3.9)
and (4.3.11). If we assume either (C4.2.1) or (C4.2.2), then

C2‖ẽu‖2
0,Ω + C4‖ẽw‖2

0,Ω

− (F (u,w)− F (ũh∆t, w̃h∆t), ẽu)Ω − (G(u,w)−G(ũh∆t, w̃h∆t), ẽw)Ω

≤ (C(α))(‖ẽu‖2
0,Ω + ‖ẽw‖2

0,Ω),

where C(α) = max{C2, C4}+α. Taking the sum of (4.3.9) and (4.3.11), and applying
Gronwall’s inequality we obtain for a.e. t ∈ (tn−1, tn]

‖eu(t)‖2
0,Ω + ‖ew(t)‖2

0,Ω +

∫ t

tn−1

eC(α)(s−tn−1) |eu(s)|21,Ω ds
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≤ ‖eu(tn−1)‖2
0,Ω + ‖ew(tn−1)‖2

0,Ω +

∫ t

tn−1

eC(α)(s−tn−1)(S1(s) + S2(s)) ds

≤ ‖eu(tn−1)‖2
0,Ω + ‖ew(tn−1)‖2

0,Ω +

∫ tn

tn−1

eC(α)(t−tn−1)(S1(t) + S2(t)) dt.

Since t is arbitrary, we have

|||eu|||2∞,n + |||eu|||2∞,n +

∫ tn

tn−1

eC(α)(t−tn−1) |eh(t)|21,Ω dt

≤ 2

(
‖eu(tn−1)‖2

0,Ω + ‖ew(tn−1)‖2
0,Ω +

∫ tn

tn−1

eC(α)(t−tn−1)(S1(t) + S2(t)) dt

)
,

and conclude (4.3.6). On the other hand, suppose (C4.2.3) holds. Then

C2‖ẽu‖2
0,Ω + C4‖ẽw‖2

0,Ω

− (F (u,w)− F (ũh∆t, w̃h∆t), ẽu)Ω − (G(u,w)−G(ũh∆t, w̃h∆t), ẽw)Ω

≤ (C2 + α)‖ẽu‖2
0,Ω + (C4 − β)‖ẽw‖2

0,Ω.

From the proof of Theorem 3.3.6, we note that the constant C4 can be made arbitrar-
ily small, so in particular, we can take C4 <

β
2
. Then (4.3.7) follows after applying

(3.3.14) and integrating over t.

Note that the estimators (4.3.3) used in Theorem 4.3.2 depend on the unknown
solutions u and w. Therefore, as is normally done in the literature, we replace the
value of ∇u and ∇w in (4.3.2) with recovered versions Πh(uh) and Πh(wh), where
Πh : Vh → Vh ⊕ Vh is a superconvergent gradient recovery operator. More in detail,
define

GK(uh) =

(∫
K

(
∂uh
∂xi
− Π(uh)i

)(
∂uh
∂xj
− Π(uh)j

)
dx

)
i,j

, (4.3.12)

ωK(uh) = (λ2
1,Kr

T
1,KGK(uh)r1,K + λ2

2,Kr
T
2,KGK(uh)r2,K)1/2, (4.3.13)

and

ηS,UK,n =

(∫ tn

tn−1

(
‖RU

K,n‖0,K +

(
hK

λ1,Kλ2,K

)1/2

‖rUK,n‖0,∂K

)
ωK(uh) dt

)1/2

, (4.3.14)

with similar definition for ηS,WK,n . In the remainder, we use the gradient recovery version
of the estimators. In this chapter we found the simplified Zienkiewicz-Zhu estimator
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from [87] was sufficient for our purposes. Also note that as in Chapters 2 and 3, the
definition of GK(uh) that we used in practice did not involve an integral on the patch
∆K , but only on the element K.

In what follows, we look at specific ionic models. For convenience, we have the
following lemma.

Lemma 4.3.3. Suppose there exist positive constants µ1, µ2, µ3 such the following
inequalities hold uniformly on the domain D:

∂F

∂x1

≥ −µ1,

∣∣∣∣ ∂F∂x2

∣∣∣∣+

∣∣∣∣ ∂G∂x1

∣∣∣∣ ≤ µ2,
∂G

∂x2

≥ µ3. (4.3.15)

Then (C4.2.3) holds with α = µ1 +
µ2

2

2µ3
, and β = µ3

2
.

Proof:
For any x, y ∈ D, by the mean value theorem there exists ξ1, ξ2 on the line

segment between x and y such that

(F (x)− F (y))(x1 − y1) + (G(x)−G(y))(x2 − y2)

=
∂F

∂x1

(ξ1)(x1 − y1)2 +

(
∂F

∂x2

(ξ1) +
∂G

∂x1

(ξ2)

)
(x1 − y1)(x2 − y2) +

∂G

∂x2

(ξ2)(x2 − y2)2.

Applying (4.3.15) and Young’s inequality, for arbitrary γ > 0

(F (x)− F (y), G(x)−G(y)) · (x− y)

≥ −µ1(x1 − y1)2 − µ2|x1 − y1||x2 − y2|+ µ3(x2 − y2)2

≥ −
(
µ1 +

µ2
2

2γ

)
(x1 − y1)2 +

(
µ3 −

γ

2

)
(x2 − y2)2.

The result follows choosing γ = µ3.

4.3.1 FitzHugh-Nagumo model

F (u,w) = f1(u) + w = u(u− a)(u− 1) + w, (4.3.16)

G(u,w) = −ε(κu− w), (4.3.17)

and 0 < a < 1, ε, κ > 0. It is clear that F, G are locally Lipschitz continuous.
Invariant rectangles of arbitrary size exist for the model, see [89], [31], so the solution
remains bounded if u0, w0 ∈ L∞(Ω). Furthermore, letting µ > 0 be such that f ′1(x) ≥
−µ, then applying Lemma 4.3.3 we obtain (C4.2.3) with α = µ+ (1+εκ)2

2ε
and β = ε

2
.
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4.3.2 Mitchell-Schaeffer model

F (u,w) =
1

τin
wu2(u− 1) +

1

τout
u (4.3.18)

G(u,w) =

{
1

τopen
(w − 1), u < ugate,

1
τclose

w, u ≥ ugate,
(4.3.19)

where τin, τout, τopen, τclose, ugate are positive constants, with 0 < ugate < 1. The
reaction term G is discontinuous on the line u = ugate, and F, G do not satisfy
(C4.2.1) or (C4.2.2) for a domain D crossing this line. We will use the following
smoothed version:

G(u,w) =
1

τu
((1− s)(w − 1) + sw),

τu = τopen + (τclose − τopen)s,

s(u, κ, ugate) =
1

2
(1 + tanh(κ(u− ugate))),

where κ > 0. Both F, G are now C1 so that (C4.2.2) holds. As for the FitzHugh-
Nagumo model, the solutions remain bounded provided the initial conditions are
bounded. Moreover, applying the maximum principle from [31], for arbitrary ε > 0,
the region {(u, w) : −ε ≤ u ≤ 1, 0 ≤ w ≤ 1} is invariant, and we conclude that the
region {(u, w) : 0 ≤ u ≤ 1, 0 ≤ w ≤ 1} is invariant as well.

We now show that (C4.2.3) also holds. For the first reaction term,

∂F

∂x1

=
1

τin
x2(3x2

1 − 2x1) +
1

τout
.

For a typical heartbeat, (u,w) is in [0, 1]2 so we may take µ1 = 1
3τin
− 1

τout
from the

bound on w. From the bound on u we get∣∣∣∣ ∂F∂x2

∣∣∣∣ ≤ max
x1∈[0,1]

1

τin
|x2

1(x1 − 1)| = 1

τin

4

27
.

For the second term,

∂G

∂x2

=
1

τu
≥ min

{
1

τopen
,

1

τclose

}
.

Finally,

∂G

∂x1

= κ sech2(κ(x1 − ugate))
1

τ 2
u

(τu − (x2 + s− 1)(τclose − τopen)) ,
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so assuming that x2 remains in [0, 1],∣∣∣∣ ∂G∂x1

∣∣∣∣ ≤ κ
τu + |τclose − τopen|

τ 2
u

≤ κ
τmax + |τclose − τopen|

τ 2
min

,

where τmin,max = min,max{τopen, τclose}. To summarize, from Lemma 4.3.3 we obtain

(C4.2.3) with α = 1
3
τ−1
in − τ−1

out + 1
2

(
4
27
τ−1
in + κ τmax+|τclose−τopen|

τ2
min

)2

τmax and β = 1
2τmax

.

Under the assumption that τin � τout � τopen, τclose, we have α = O
(
τ−2
in + κ2 τ

3
max

τ2
min

)
.

Note that when taking the limit κ→∞ to approach the original discontinuous model,
the constant α blows up. The proof above relies on a uniform bound for ∂G

∂x1
, which

clearly does not exist for the discontinuous model, and therefore a different approach
would have to be taken.

4.3.3 A modified estimator for the recovery variable

We discuss some technical limitations for the use of the estimators introduced in
Section 4.3 for use mesh adaptation, in particular for the ODE variable w. To simplify
the discussion, we consider a simple ODE model:{

∂w

∂t
+ µw = f,

w(0) = w0.
(4.3.20)

where µ ≥ 0 is a constant and f ∈ L2(0, T ;H). Applying the same arguments as in
Theorem 4.3.2 it can be shown that the error satisfies

‖ew(tn)‖2
0,Ω + µ

∫ tn

tn−1

‖ew(t)‖2
0,Ω dt

≤ ‖ew(tn−1)‖2
0,Ω + CK̂

(
(ηS,Wn )2 + (ηT,Wn )2

)
, (4.3.21)

where the residual defined on K is RW
K,n = ∂w̃h

∂t
+ µw̃h − f . If we are in the special

situation that f is in L2(0, T ;Vh), then RW
K,n is as well. Therefore, by Galerkin

orthogonality, RW
K,n(tn) = 0 and from this it is easy to conclude that RW

K,n(t) →
0 uniformly in t as τn → 0. By contrast, note that for parabolic problems, the
differential operator A rarely satisfies A(Vh) ⊆ Vh. Moreover, since the time estimator

ηT,Wn is O(τ
5/2
n ), for τn small enough, the dominant term on the right side of (4.3.21)

is the initial error ‖ew(tn−1)‖2
0,Ω . This term is highly sensitive to the interpolation

error at each mesh adaptation step. More specifically, if πnh is the interpolation
operator for the new mesh obtained at time tn, and wn−1,old

h is the solution computed
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on the previous mesh, then we have wn−1
h = πnh(wn−1,old

h ). Then from the relation

ew(tn−1) = w(tn−1)− wn−1,old
h + wn−1,old

h − πnh(wn−1,old
h ) we get

‖ew(tn−1)‖0,Ω ≤ ‖eoldw (tn−1)‖0,Ω + ‖wn−1,old
h − πh(wn−1,old

h )‖0,Ω. (4.3.22)

If the interpolation error is not taken into account when adapting the mesh, the
last term on the right will spoil the control of the error. For instance, in regions of
the domain where the solution varies rapidly, the interpolation error remains large
independent of the time step. At the same time, the element residual converges to 0
uniformly as the time step is decreased.

An even worse situation can occur if the source term f does not belong to the
finite element space. In this situation, we might expect the element residual RW

K,n to
be large only in regions where f varies rapidly, and is far locally, in the L2 sense on
the element K, from the finite element space. As we will demonstrate shortly with a
numerical example, the variation in f does not necessarily correspond with the local
variation of the solution, an observation which has significant implications on the
effectiveness of the estimator for mesh adaptation purposes.

We propose the use of a modified estimator of the space error for w. By Young’s
inequality, we note that

ηS,WK,n ≤
(

1

2

∫ tn

tn−1

‖RW
K,n‖2

0,K dt+
1

2

∫ tn

tn−1

ω2
K dt

)1/2

≤
(∫ tn

tn−1

‖RW
K,n‖2

0,K dt

)1/2

+

(∫ tn

tn−1

ω2
K dt

)1/2

,

which splits the estimator into the residual, and the gradient recovery part. We
therefore consider the following local estimator for w

ωS,WK,n =

(∫ tn

tn−1

ω2
K dt

)1/2

, (4.3.23)

and global estimator

ωS,Wn =

(∑
K

(ωS,WK,n )2

)1/2

, ωS,W =

(∑
n

(ωS,Wn )2

)1/2

. (4.3.24)

Comparing the estimators ηS,WK,n with ωS,WK,n , we see that the value of the former will
depend highly on the value of the element residual in a given region. The residual
may indicate new regions where the error accumulation will occur, but it may still
dampen the estimator in regions of sharp gradient. The latter estimator, on the other
hand, is problem-independent, its value only depending on the local features of the
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approximate solution. Heuristically, we might expect that this estimator will be large
in regions where the initial interpolation error (4.3.22) is large.

We illustrate the above issues with the residual estimator, and relative merits
of the simplified estimator, with a numerical example. Let Ω = (0, 100) × (0, 100),
T = 100, and let w solve (4.3.20) with f = −0.016875 tanh(x− 0.25t− 50), µ = 0.01
and initial condition w(0) = 0. The solution of this equation mimics the behaviour of
the recovery variable for the FitzHugh-Nagumo model. In particular, the unknown
u in (4.3.17) is replaced by tanh(x − 0.25t − 50), which represents a traveling wave
moving to the right with fixed speed. The initial condition is chosen so that the initial
interpolation error in (4.3.21) will be zero, and therefore, the only important term on
the right side for the error in space is the residual term.

The solution is computed on a uniform mesh with 6400 elements and constant
time step τ = 1. The exact error is estimated by computing a reference solution on a
much finer mesh with 1638400 elements, obtained after 4 subdivisions of the coarser
mesh. The results of the error computation are shown in Figure 4.1. To highlight
the local properties of the estimator, in addition to the plot of the estimator ηS,W

in the usual L2 in time sense, as highlighted in (4.3.21), we plotted the estimators
ηS,W (t) and ωS,W (t) as functions of time. The plot on the left shows the evolution
of the estimators and the exact error over time. We clearly have the following upper
bounds for the error at time t:

‖ew(t)‖0,Ω ≤
(∫ t

0

(ηS,W )2 dt

)1/2

. (4.3.25)

For larger t, this value tends to overestimate the true error. This is not too surpris-
ing, since we are estimating an error which is L∞ in time with an estimator which
accumulates in an L2 sense.

To get a better picture of what is going on, we look at the local distribution of
the error over the elements of the mesh. Figure 4.1 (right) plots these values over
the line y = 50 at time t = 100 (left y-axis), as well as the superposition of the
function tanh(x − 0.25t − 50) (right y-axis). In particular, the estimator ηS,W (t)
only detects error in regions where source term varies rapidly, while near x = 45,
where the source term is close to zero, the error is underestimated by several orders
of magnitude. Therefore, while the estimator is reliable in the sense that (4.3.25)
holds, the estimator cannot be localized in space and time. We can’t expect to
reliably estimate the local value of the error ‖ew(t)‖0,K without taking into account
the value of the estimator at all previous times, so the estimator is impractical for
mesh adaptation. Note that from the left plot in the figure, the estimator, taken
pointwise in time, does appear to give an accurate estimate of the error in the sense
that

‖ew(t)‖0,Ω ≤ CηS,W (t),
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for some constant C which is close to 1. However, given the above observations,
such an upper bound is not something we expect in general. Finally, note that the
estimator ωS,W (t) on the other hand remains within an order of magnitude of the
exact error throughout the domain, and therefore gives a local representation of the
error.
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Figure 4.1: Left: plot of the total error over time. Right: plot of the error
(left y-axis) and source term (right y-axis) over the line y = 50 at time
t = 100.

All mesh adaptation done in Section 4.4 for problem (4.2.1) makes use of the
estimator (4.3.23) for the variable w, while the estimator (4.3.14) is used for u. The
reliability of the estimator is verified numerically in Section 4.4.1, as well as the time
step independence property. Further theoretical issues of the residual estimator is
discussed in Section 4.4.2. Recall that for elliptic and parabolic problems, the normal
jump rK tends to dominate the residual [26], and therefore the size of the residual is
less crucial.

4.4 Numerical results

4.4.1 Test case 1

Take the domain Ω = (0, 100) × (0, 100), T = 350. Solve with FitzHugh-Nagumo
model with ε = 0.01, κ = 0.16875, a = 0.25, and initial condition

u0 = 0.5− 1

π
arctan

(√
x2 + y2 − 200

)
, w0 = 0.
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At time t = 0 the wave is activated in the lower left corner of the domain, and a
circular wave action potential results moving away from the origin.

time-step dependence of estimator

Before applying the adaptive algorithm, we compare the residual and non-residual
estimators introduced in Section 4.3 on a fixed uniform mesh, with h = 5 (1600 ele-
ments), and with a varying time step. Given s ∈ [0, τ ], we approximate the estimator
at different points of the interval in the following way:

resW (s) = τ 1/2

(∑
n

∑
K

‖RW
K,n(tn−1 + s)‖0,KωK(ẽw(tn−1 + s))

)1/2

,

and define resU(s) similarly. For comparison, we also consider resBDF1
W (s) where the

time derivative in the residual is replaced by the time derivative corresponding to the
piecewise linear reconstruction. From Table 4.1 we observe only minimal variation
for different values s and time step τ in the estimator for u. However, for w, the
definition appears to be crucial. The residual at s = τ changes very little, while the
values for s < τ decrease to the value at s = τ as τ is decreased. An explanation
for this trend is given in Section 4.4.2, the essential idea being a difference between
parabolic PDEs and ODEs. At the same time, the estimator ωS,W does not change
with the time step, and as will be seen in what follows, is quite close to the actual
error, as observed in Section 4.3.3.

τ resBDF1
U (τ) resU (0) resU (τ/2) resU (τ)

2 45.2 46.5 46.5 46.5
1 46.1 46.7 46.8 46.8

0.5 46.5 46.8 46.8 46.9
0.25 46.7 46.9 46.6 46.9
0.125 46.8 46.9 46.9 46.9

τ resBDF1
W (τ) resW (0) resW (τ/2) resW (τ) ωS,W

2 0.184 0.0815 0.0715 0.0199 0.907
1 0.132 0.0453 0.0402 0.0192 0.910

0.5 0.0937 0.0279 0.0258 0.0189 0.911
0.25 0.0664 0.0214 0.0208 0.0189 0.911
0.125 0.0472 0.0195 0.0193 0.0189 0.911

Table 4.1: Test case 1: residual estimators for uniform mesh h = 5.
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Adaptive algorithm

We apply mesh adaptation only. Choose positive constants TOLUS , TOL
W
S . The goal

is to control the relative error:

0.25 TOLUS ≤
ηS,Un
|||uh|||n

≤ TOLUS , (4.4.1)

0.25 TOLWS ≤
ωS,Wn
|||wh|||n

≤ 0.65 TOLWS . (4.4.2)

The mesh is adapted if either of the upper bounds in (4.4.1) or (4.4.2) are violated,
or if both of the lower bounds are violated. The meshes are adapted using the same
method as in Chapter 3. That is, for each variable, metrics M(u)k and M(w)k
are constructed for the time steps tn−2, tn−1, tn according to the algorithm given in
Section 3.3.2. Then we take the average M = 1

6

(∑2
s=0M(u)n−s +

∑2
s=0M(w)n−s

)
.

One expects that the estimators ηS,U and ωS,W are respectively of order 1 and 2, so

we refine the tolerances to maintain
TOLU

S√
TOLW

S

to be a constant ratio. See Table 4.3 for

numerical verification of this assumption for uniform meshes.
In Figure 4.2 we show an example solution and meshes using the adaptive

method. The mesh elements are heavily concentrated in the depolarization and re-
polarization regions of the transmembrane potential, while there are few elements in
the region ahead of the wave-front, where both variables are nearly constant. Addi-
tionally, the regions corresponding to the plateau and recovery are reasonably well
refined, capturing the slow variation of the recovery variable. Figure 4.3 shows a
zoom on the wave-front illustrating that the mesh fits both variables well.

Computation of the effectivity index

We estimate the following effectivity indices

eiS,U =
ηS.U

|||eu|||
, eiS,W =

ωS.W

|||ew|||∞
,

eiZZ,U =
ηZZ.U

|||eu|||
, eiZZ,W =

ηZZ.W

|||ew|||
,

where

ηZZ,U =

(∫ T

0

‖∇uh − ZZ(uh)‖2
1,Ω dt

)1/2

is the estimated error for the Zienkiewicz-Zhu recovered gradient (see [87]). Since
we do not have an exact solution, to assess the robustness of the estimators we
compute a reference solution. In Chapter 3 it was noted that computing a reference
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Figure 4.2: Test case 1: transmembrane potential u (left) and corresponding
adapted mesh (right) when applying the adaptive method with TOLUS =
0.125, TOLWS = 0.0125 and τ = 0.5 at t = 87.5 (top), t = 175 (centre) and
t = 350 (bottom).
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Figure 4.3: Test case 1: zoom of the mesh at wave-front at time t = 175
(left), and contours of u (centre) and w (right).

solution with uniform meshes would be impractical. This issue was additionally
observed in [11] when solving the monodomain problem. As before, we compute
a reference solution using the adapted method. The reference solution is computed
with TOLUS = 0.015625, TOLWS = 0.0015625, and τ = 0.0625, with meshes ranging
from 110000 elements at t = 0 to 540000 elements when the wave hits the boundary
(around t = 260). The accuracy of error computation is checked by comparing the
results with a somewhat coarser adapted solution, with TOLUS = 0.03125, TOLWS =
0.003125, resulting in meshes with approximately 4 times fewer elements. Table 4.2
records the relative differences for some of the computations. That is, let uRef

h , denote
the reference solution, and uRef,C

h the coarser solution. If we want to estimate the
exact error for a given approximate solution uH , then we compute eF = ‖uRef

h −
uH‖ and eC = ‖uRef,C

h − uH‖ and record the value 100 |e
F−eC |
eF

in Table 4.2. For the
uniform mesh computations, the error calculations appears to be quite reliable, with
the error computations differing by less than 0.1%. The adapted mesh computation
with TOLUS = 0.25 and TOLWS = 0.2 also appears reliable with the computations
differing by at most 0.15%, while the computations with TOLUS = 0.125 and TOLWS =
0.05 are at the limit of how far the reference solution can be trusted, and it is likely
only one or two digits of the estimated error is correct. Figure 4.4 plots the solution at
the point (0.5, 0.5), giving qualitative evidence that the uniform mesh computations
are converging to the reference solution as h and τ are decreased.

Some results for uniform meshes, computing the error with this reference solution,
are summarized in Table 4.3, and for adapted meshes in Table 4.4. The effectivity
indices eiS,U and eiS,W are generally close to 1. Note the effectivity index eiS,U tends
to increase, on average as we decrease h for the uniform mesh and both indices eiS,U

and eiS,W tend to increase as we decrease TOLUS and TOLWS for the adapted mesh
computations. The tendency can be explained by the plots of the error in Figure
4.7 for uniform meshes, and Figure 4.8 for adapted meshes. Here, for the energy
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h τ |||eu||| − diff% |||ew|||∞ − diff%
1.25 1 0.0864082 0.0282279
1.25 0.5 0.0682789 0.00152349
1.25 0.25 0.063556 0.00366051
TOLU

S TOLW
S τ |||eu||| − diff% |||ew|||∞ − diff%

0.25 0.2 1 0.0343926 0.0509442
0.25 0.2 0.5 0.0451661 0.105481
0.25 0.2 0.25 0.0759341 0.153237
0.125 0.05 1 0.284668 0.11999
0.125 0.05 0.5 0.391476 1.22847
0.125 0.05 0.25 0.448963 0.579438

Table 4.2: Test case 1: relative difference (in %) when computing the error
using the reference solution and when using a coarser adapted solution, by a
factor of 4.

norm and error estimators, we plot at time tn the sum of the error up to time tn.

That is, for the estimator η, we plot (
∑n

k=1 τη
2
k)

1/2
. For the L2 error computation we

have just plotted the L2 error at tn. We see that the increase in eiS,U just reflects
the fact that the estimator more closely captures the growth of the error as the
tolerance decreases. Moreover, we can see that for both u and w, the ZZ estimator
very accurately predicts the energy norm of the error, and suggests that the effectivity
indices eiZZ,U/W approach 1. For the L2 error, we note that there is a slight tendency
of the estimator ωS,W to overestimate the error for the adapted mesh computations.
While Table 4.4 suggests that this overestimation becomes worse as the tolerance is
decreased, Figure 4.8 suggests that the overall rate of growth is closer to that of the
exact error for smaller tolerance.

Efficiency of the adaptive method

From Tables 4.3 and 4.4 we can get some idea of the efficiency of the adaptive method.
First we observe, however, that for the uniform mesh computations, the smallest time
step does not generally result in the lowest error. For fixed h, the error decreases as
τ is decreased to an optimal value τopt, and then the error increases as the time
step is decreased further. From Table 4.3, we infer τopt = 8 for h = 5, τopt = 5.656
for h = 2.5 and τopt = 2 for h = 1.25. Also, in Table 4.4, the lowest error for
TOLUS = 0.5, TOLWS = 0.2 occurs with the step τ = 4. Recall that we are solving a
traveling wave solution, and for large time step and coarse mesh the speed of the wave
is generally wrong. The wave front for the approximate solution gets ahead of or lags
behind the actual wave front, and the effect of this displacement is that the exact
error varies significantly depending on the time step. Therefore, we content ourselves
with only comparing the most accurate solutions, for which the convergence of the
approximate solution should be closer to the asymptotic rate. The lowest error for the
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Figure 4.4: Test case 1: comparison of reference solution with solutions on
uniform meshes, plotted at point (x, y) = (0.5, 0.5) of u (left) and w (right).

uniform mesh occurs with h = 1.25 and τ = 2. With TOLUS = 0.125, TOLWS = 0.05
and τ = 1, the adapted method achieves an error which is 14% lower for u in 33%
less CPU time and with 40% fewer elements. The error for w is 18% higher for the
the adapted mesh solution. However, looking at the surrounding values in Table 4.3,
the low value of the error is not typical, and appears to occur almost by accident.
The trend for the for surrounding values in Table 4.4 seems more regular, decreasing
as the time step is decreased. In Figures 4.5 and 4.6 we plot the error for CPU time
and number of elements. For the uniform mesh computation, we used the same τopt
noted earlier, while for the adapted mesh, we chose τ at 4, 2 and 0.5 respectively for
TOLUS at 0.5, 0.25 and 0.125. We see the trend is we can expect a decrease in error by
about 50% for a given level of CPU time and by about 50− 80% for a given number
of elements, indicating savings in memory.

4.4.2 Test case 2

Take the same domain and initial condition as test case 1 with T = 500, but with
the smoothed Mitchell-Schaeffer model with smoothing parameter κ = 100. The
parameters are taken from [86]: τin = 0.315, τout = 5.556, τopen = 94.942, τclose =
168.5, ugate = 0.13, diffusion coefficient is 3.949. The solution is a more realistic
representation of a heartbeat in terms of the duration of the phases of the action
potential. The action potential is activated in the lower left corner of the domain and
the wave radiates away from the origin until about time t = 60 when the entire domain
is depolarized. A long plateau follows in which the gate w closes and the inward and
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h τ |||eu||| |||ew|||∞ ηS,U ωS,W eiS,U eiS,W CPU(s) NT

5 8 77.4282 1.3315 40.5122 0.8459 0.5232 0.6353 26 1600
5 5.656 77.6913 1.2806 42.1245 0.8777 0.5422 0.6853 34 1600
5 4 80.9626 1.3696 43.4789 0.8953 0.5370 0.6537 47 1600
5 2.828 83.7481 1.4722 44.4672 0.9033 0.5310 0.6136 60 1600
5 2 85.5144 1.5480 45.1927 0.9072 0.5285 0.5860 80 1600
5 1.414 86.4901 1.5953 45.7251 0.9095 0.5287 0.5701 106 1600
5 1 87.0392 1.6225 46.0677 0.9101 0.5293 0.5609 149 1600
5 0.707 87.3052 1.6374 46.3265 0.9108 0.5306 0.5563 196 1600
5 0.5 87.4675 1.6452 46.4819 0.9107 0.5314 0.5535 278 1600
5 0.354 87.5272 1.6492 46.6012 0.9108 0.5324 0.5523 391 1600
5 0.25 87.5697 1.6513 46.6814 0.9108 0.5331 0.5516 543 1600

2.5 8 31.3545 0.5285 21.3164 0.2255 0.6799 0.4268 121 6400
2.5 5.656 22.0597 0.2759 22.4235 0.2354 1.0165 0.8530 156 6400
2.5 4 23.2969 0.2402 23.3803 0.2412 1.0036 1.0043 210 6400
2.5 2.828 30.9476 0.3398 24.0348 0.2438 0.7766 0.7177 283 6400
2.5 2 37.8576 0.4279 24.4838 0.2452 0.6467 0.5730 377 6400
2.5 1.414 42.2648 0.4857 24.7991 0.2460 0.5868 0.5065 492 6400
2.5 1 44.7831 0.5194 24.9872 0.2462 0.5580 0.4741 612 6400
2.5 0.707 46.1200 0.5379 25.1309 0.2465 0.5449 0.4583 866 6400
2.5 0.5 46.8454 0.5477 25.2099 0.2465 0.5382 0.4500 1163 6400
2.5 0.354 47.1964 0.5528 25.2733 0.2465 0.5355 0.4459 1681 6400
2.5 0.25 47.3887 0.5555 25.3147 0.2465 0.5342 0.4438 2438 6400
1.25 4 20.4654 0.2138 11.6837 0.0607 0.5709 0.2841 761 25600
1.25 2.828 11.0160 0.0966 12.0312 0.0614 1.0922 0.6355 1023 25600
1.25 2 6.9944 0.0384 12.2691 0.0617 1.7541 1.6074 1636 25600
1.25 1.414 9.3211 0.0784 12.4358 0.0619 1.3342 0.7900 2205 25600
1.25 1 11.8854 0.1118 12.5336 0.0620 1.0545 0.5543 3056 25600
1.25 0.707 13.4654 0.1308 12.6086 0.0620 0.9364 0.4744 3629 25600
1.25 0.5 14.3438 0.1409 12.6485 0.0620 0.8818 0.4400 5015 25600
1.25 0.354 14.7991 0.1462 12.6808 0.0620 0.8569 0.4241 7732 25600
1.25 0.25 15.0408 0.1490 12.7017 0.0620 0.8445 0.4162 9444 25600

Table 4.3: Test case 1: results for uniform mesh computations.

outward currents are roughly balanced. At about t = 290 the outward current begins
to dominate and the region is completely repolarized by about t = 360. As u drops
below ugate, the gate slowly opens. See Figure 4.9 for the solution at different phases,
and Figure 4.10 for the complete action potential.

On the residual for the recovery variable

For the monodomain problem, the variables u and w do not decouple, so the argu-
ments relating to problem (4.3.20) do not directly apply. However, the equation for
w in the Mitchell-Schaeffer model switches between two equations of this form: with
µ = τ−1

open, f = τ−1
open for u < ugate and µ = τ−1

close, f = 0 for u ≥ ugate. During the action
potential, this switching occurs when u varies quickly during the depolarization and
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TOLU
S , TOL

W
S τ |||eu||| |||ew|||∞ ηS,U ωS,W eiS,U eiS,W CPU(s) maxNT

0.5, 0.2 8 28.3658 0.4947 19.2791 0.5957 0.6797 1.2041 43 2104
0.5, 0.2 5.656 21.3598 0.2549 19.1085 0.5348 0.8946 2.0984 47 2431
0.5, 0.2 4 16.8330 0.1470 18.9243 0.4938 1.1242 3.3596 61 2470
0.5, 0.2 2.828 18.4506 0.1769 18.9116 0.4519 1.0250 2.5545 75 2718
0.5, 0.2 2 24.2087 0.2791 18.6489 0.4342 0.7703 1.5560 90 2751
0.5, 0.2 1.414 24.8318 0.2714 18.2091 0.4160 0.7333 1.5329 116 2843
0.5, 0.2 1 31.2314 0.3429 18.1779 0.4128 0.5820 1.2039 134 2708
0.5, 0.2 0.5 31.0808 0.3378 18.2355 0.4072 0.5867 1.2056 256 2925
0.5, 0.2 0.25 31.4417 0.3406 17.9535 0.3891 0.5710 1.1424 490 3005
0.25, 0.2 8 29.7775 0.4942 15.7462 0.3773 0.5288 0.7634 78 3747
0.25, 0.2 5.656 30.8307 0.3408 15.4878 0.3074 0.5023 0.9018 90 4466
0.25, 0.2 4 24.6326 0.2605 14.7702 0.2764 0.5996 1.0610 107 4251
0.25, 0.2 2.828 16.1720 0.1468 14.2122 0.2571 0.8788 1.7516 122 4325
0.25, 0.2 2 10.3628 0.0574 13.7931 0.2470 1.3310 4.3022 147 4165
0.25, 0.2 1.414 10.2044 0.0683 13.7948 0.2388 1.3518 3.4965 196 4324
0.25, 0.2 1 11.0217 0.0808 13.4485 0.2269 1.2202 2.8071 268 4409
0.25, 0.2 0.5 12.6683 0.1147 13.1701 0.2210 1.0396 1.9271 388 4432
0.25, 0.2 0.25 13.2568 0.1347 13.0424 0.2107 0.9838 1.5636 745 4706

0.125, 0.05 4 29.7520 0.3389 8.1244 0.0734 0.2731 0.2165 498 15003
0.125, 0.05 2.828 20.9759 0.2267 7.6320 0.0645 0.3638 0.2845 570 14433
0.125, 0.05 2 13.4546 0.1382 7.3431 0.0596 0.5458 0.4313 670 14906
0.125, 0.05 1.414 8.3719 0.0765 7.0998 0.0579 0.8480 0.7566 866 14894
0.125, 0.05 1 5.9626 0.0455 6.8849 0.0556 1.1547 1.2217 1086 15109
0.125, 0.05 0.5 4.6691 0.0184 6.6940 0.0537 1.4337 2.9192 1709 15768
0.125, 0.05 0.25 4.6680 0.0175 6.5266 0.0528 1.3982 3.0196 3237 15441

Table 4.4: Test case 1: results for adapted mesh computations.

repolarization phases. These phases occupy a relatively short duration. During the
plateau and recovery phases, w varies almost independently of u. From Figure 4.11
we observe that the element residual RW

K,n is only significant when u ≈ ugate, which
occurs on the wave-front, and as a result, the estimator ηS,W is close to 0 elsewhere.
On the other hand, the estimator ωS,W detects a significant error contribution when
(x2 + y2)1/2 ≈ 20. This can be understood from Figure 4.9, top row left and centre.
One expects a relatively large contribution to the interpolation error, as w transitions
from a constant value. In this region the interpolation error is not seen by the residual
estimator. This is in agreement with the discussion in Section 4.3.3.

Space-time adaptation

We plot the estimators in time in Figure 4.12. In particular, we can see the effect
of the phases of the action potential on the error. The estimators for u are only
large during the polarization phases, while the estimators for w generally decrease
outside the polarization phases, though at a slower rate. Moreover, the time error
for both variables is low during the plateau and recovery phases. Since these phases



4. APPLICATION TO ELECTROPHYSIOLOGICAL MODELS 102

100

101

102

10 100 1000

|||
e u

|||

CPU time

adapted
uniform

10-2

10-1

100

101

10 100 1000

|||
e w

|||
∞

CPU time

adapted
uniform

Figure 4.5: Test case 1: error vs. CPU time for uniform and adapted mesh
computations.

comprise the majority of the time duration, we suspect a possible gain in efficiency
when applying an adaptive time step.

The method for the time-step adaptation is similar to that used in Chapter 3.
Choose positive constants TOLUT , TOL

W
T . The time step is decreased by a factor of

2/3 if

ηT,Un

|||uh|||n
> 1.5TOLUT , or

ηT,Wn

|||wh|||n
> 1.5TOLWT , (4.4.3)

and the time step is increased by a factor of 3/2 if

ηT,Un

|||uh|||n
< 0.5TOLUT , and

ηT,Wn

|||wh|||n
< 0.5TOLWT . (4.4.4)

We perform a complete space-time adaptive solution with the following parameters:
TOLUS = 0.0625, TOLWS = 0.0625, TOLUT = 0.035875 and TOLWT = 0.0075. From
Figure 4.13 we see a variation in the time step of two order of magnitude, with
the smallest steps ranging from 0.05 to 0.1 in the depolarization and repolarization
phases, and the largest steps ranging from about 1 to 4 during the plateau and
recovery phases. The control of the error in space is illustrated in Figure 4.14, and we
see that most of the adaptation occurs during the depolarization and repolarization
phases. From the subplot on the plot on the intervals [0, 60] and [290, 360], note that
the decision to adapt during the depolarization phase is given by condition (4.4.1),
u being the fast variable, while it is given by (4.4.2) during the repolarization phase.
Examples of adapted meshes for these phases are shown in Figure 4.15. The mesh
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and adapted mesh computations.

for the depolarization phase is quite similar to those for the FitzHugh-Nagumo model
in Figure 4.2, and with a small layer of refinement near

√
x2 + y2 = 20, fitting the

observation made for Figure 4.11. We remark that if the mesh were to be adapted
only to the variable u, as is done for instance in [91], the the mesh would only be
refined in the wave front, and the slow variation in w would be not be captured
properly. This in turn would eventually spoil the quality of approximation for the
subsequent phases. The mesh for the repolarization phase is generally more diffuse,
with the refinement of the action potential downstroke requiring fewer elements than
the wave front, resulting in a mesh with 7000 elements. This is likely due to the slow
variation of w.

As a final note, the efficiency of applying the space-time adaptation algorithm
for this example requires a thorough study. This could for instance be done by
computing a reference solution as is done for Test case 4.4.1 and in Chapter 3, and
therefore approximating the exact error. However, due to the scale of this problem,
a different approach may be required.

4.5 Conclusion

In this chapter we introduced an anisotropic residual error estimator for the mon-
odomain equation, discretized with P1 finite elements in space, and the variable step
BDF2 method in time. We proved that the estimator gives an upper bound for the en-
ergy norm of the error for the first variable, and the L∞(0, T ;L2(Ω)) norm of the error
for the second variable. It was found that the estimator for the second variable could
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not be used in practice for mesh adaptation purposes, due to a fundamental difference
in behaviour between parabolic PDEs and ODEs. Instead, a simplified estimator was
proposed for the ODE variable, which is based on interpolation estimates combined
with a gradient recovery operator. Numerical computations are carried out, con-
firming the reliability of the estimator, and demonstrating improved efficiency gained
from the error estimator guided mesh adaptation method. A space-time adaptation
method is applied to a problem exhibiting large variation in time scales. While the
results appear promising, more work is required to accurately assess the efficiency of
the algorithm.
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Figure 4.7: Test case 1: estimators and exact error solving with uniform
meshes with h = 5, τ = 1 (top), h = 2.5, τ = 0.5 (centre), h = 1.25, τ = 0.25
(bottom).
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Figure 4.8: Test case 1: estimators and exact error when applying mesh
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a constant time step 0.25.
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Figure 4.12: Test case 2: evolution of the normalized space error (left) and
time error (right) computed on a uniform mesh with h = 2.5 and step τ = 0.5.
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Figure 4.13: Test case 2: evolution of the time step (left) and the number of
elements (right).
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Figure 4.14: Test case 2: evolution of the space error for space-time adapted
solution.
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Figure 4.15: Test case 2: adapted mesh at t = 30 (left) during the depolar-
ization phase and at t = 316 (right) during the repolarization phase.



Chapter 5

Conclusions

In this thesis we considered adaptive methods for solving elliptic and parabolic equa-
tions with the use of explicit anisotropic, residual-based a posteriori error estimators.
We focussed on algorithmic aspects of the implementation of a new element-based
method and the implementation of a space-time adaptation algorithm, as well as the
introduction of such techniques to the field of cardiac electrophysiology.

5.1 Contributions

5.1.1 Element-based adaptation

An element-based adaptation method was implemented for an anisotropic residual
error estimator. As far as we know, we are the first propose and investigate local
criteria to drive local mesh modifications for this estimator. The usual approach
taken in the literature is to convert the estimator into a metric and apply an averaging
technique. The element-based approach allows direct control of the estimator, instead
of indirectly through the recovered metric. The method is shown to converge in the
sense that the total number of local operations decreases to a minimal value, and it
is shown that the resulting error is reasonably well equidistibuted over the elements
of the mesh. Compared to other anisotropic methods, it was found to result in
marginally lower error in the H1-seminorm and similar error in the L2-norm for a
given number of degrees of freedom. However, in terms of CPU time efficiency, the
current method is still far off from the existing methods, particularly the metric based
methods.

5.1.2 An L2-norm error estimator

A new error estimator for the L2-norm of the error for elliptic problems was introduced
in Chapter 2. The estimator makes use of an existing anisotropic residual estimator
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for the H1-seminorm and exploits a mesh-dependent relation between the error in the
respective norms. The estimator is shown to be equivalent to the exact L2-norm of
the error under reasonable mesh-dependent assumptions. This equivalence is verified
numerically. An element-based mesh adaptation method was employed to control the
L2-norm, by combining it with the estimator for the H1-seminorm, similar to the
method used for a hierarchical estimator in [17]. As expected, the method is found
to give better control of the L2-norm than with the estimator for the H1-seminorm.

Future work could involve the use of the estimator for metric adaptation, thereby
exploiting the efficiency of such methods.

5.1.3 Space-time adaptation for reaction-diffusion systems

An a posteriori error estimator was developed for scalar reaction-diffusion problems
as well as the monodomain problem, which consists of a scalar parabolic problem
coupled with an ODE. The estimator consists of an anisotropic residual estimator for
the space discretization, as well as an estimator for the BDF2 time discretization. As
far as we know this is the first time the estimator for the BDF2 discretization from [2]
has been extended to a PDE problem. We believe this is the first anisotropic residual
estimator that has been developed for the monodomain problem. For both the scalar
and monodomain problem, it was shown that the error estimator estimator gives an
upper bound for the error. The proof of the upper bound relies on a convergence
hypothesis, modified from one originally used in [24], and we have provided partial
results on its validity. In the case of the ODE variable for the monodomain model, we
also considered a simplified estimator that does not use the residual. Numerically, we
verify that the estimated error is equivalent to the exact error for the scalar problem,
while for the monodomain problem, the equivalence of the error is verified for the
PDE variable, as well as the ODE variable with the modified non-residual estimator.
A space-time adaptation algorithm is successfully applied for both models, and in the
case of the scalar equation, the method is found to be at least as efficient in terms of
CPU time compared to a mesh adaptation method computed with a nearly optimal
constant time step, and more efficient than the standard uniform method. Moreover,
the use of the time-step adaptation prevents one from having to guess an optimal time
step. We applied the space-time adaptation algorithm to a physiologically relevant
example, and preliminary computations suggests that there could be a potential gain
in efficiency over long time scales.
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5.2 Future work

5.2.1 Improvements to the element-based method

In the future, it would be desirable to apply the element-based adaptation method to
more complex problems, such as time-dependent problems. However, the practicality
of such an application is still far off, as the current method performs poorly in terms
of CPU time compared to the existing methods. A good deal of work needs to go into
optimizing the method. The primary difficulty stems from recomputing the estimator
after performing mesh modification. The discontinuous fields that go into the a
posteriori estimator, which include the singular valued decomposition, the gradient,
and the normal jump of the derivative, need to be recomputed from the reinterpolated
solution. Methods to either simplify or avoid such computations should be considered.
A secondary issue is the non-local nature of the estimator, namely that the error on
an element depends on a contribution from adjacent elements in the normal jump. We
have to consider patches larger than what would be required to perform just the local
operation, suggesting that changes to the local data structures should be considered.
Finally, the computation of the residual can be expensive, and the possibility of
removing this term from the computation needs further investigation.

5.2.2 Efficiency of the space-time adaptive method

Further work is required to assess the efficiency of the space-time adaptation method.
For the scalar equation, there was no noticeable increase in CPU time efficiency com-
pared to computation with space adaptation only. It is likely that the problems
considered for the scalar equation did not exhibit significant significantly complex
multiscale temporal behaviour to benefit from the use of a space-time adaptive pro-
cedure. On the other hand, a proper assessment of the efficiency for long time scale
examples, such as the Mitchell-Schaeffer test case used in this thesis, would require
a considerable amount of CPU resources. Time could be reduced, for instance, by
applying higher-order methods in space and domain decomposition methods when
computing the reference solution. Additionally, for the monodomain, the efficiency
of the mesh-only adaptation needs further investigation.

5.2.3 Theoretical and practical considerations for the time
estimator

The control of the interpolation error between adapted meshes proved to be crucial.
The Lagrange interpolation operator is clearly not accurate enough to apply the full
time estimator for small time steps, and a modification is required to continue. More
accurate interpolation operators, which are specifically designed to interpolate finite
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element functions between different meshes, should be considered in the space-time
adaptation algorithm. Furthermore, in the context of the monodomain problem, the
effect of the interpolation error on the quality of the residual error estimator for the
ODE needs to be investigated.

5.2.4 Theoretical issues with the recovery variable

In practice, we were not able to use the residual estimator for the recovery variable of
the monodomain model. Part of the issue is the dominance of the interpolation error,
which appears to be an issue related to ODE problems that lack a spatial Laplacian
operator. The residual seems to primarily capture variation in the PDE variable. To
use the estimator, we were required to “remove” the residual as a direct multiplier.
At the same time, the apparent reliability of the modified estimator also needs further
investigation.

5.2.5 Extensions to more complex settings

There are many directions in which this research may be extended. In this thesis,
we only considered very simple geometries and action potentials with circular wave
fronts. A first step would be to apply the adaptive method to more realistic curved
2D and 3D geometries, as well as simulations of pathological conditions such as spiral
and scroll waves for fibrillation dynamics. It should be reasonably straightforward
to extend the theoretical results to the more complex bidomain problem, which is
considered a more physically realistic model. Additionally, in this thesis we only
considered simple two-variable ionic models. A challenging problem, although still
far off, would be to extend the results to more complex models, for instance the
ten Tuscher-Noble-Noble-Panfilov model [94], with twelve gating variables and four
ionic concentrations. The primary difficulty of implementing an adaptive strategy
for the model appears to be identifying which variables are essential, and which can
be ignored or lumped. Finally, the adaptive framework should be considered with
different discretizations. In time, it should be straightforward to consider a semi-
implicit BDF2 method, which avoids the need to solve with Newton’s method, and
may prove more efficient. In space, the extension to P2 finite elements should be
considered by employing appropriate anisotropic interpolation estimates. In cardiac
electrophysiology, it has already been observed [10], that P2 finite elements lead to
improved efficiency over P1.
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