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Abstract

Flows with time-periodic forcing can be found in various applications, such as the
circulatory and respiratory systems, or industrial mixers. In this thesis, we address
few questions in relation with the time-periodic forcing of flows and related partial
differential equations (PDE), including the linear Advection-Diffusion equation.

In Chapter 2, we first study linear PDE’s with non-symmetric operators subject to
time-periodic forcing. We prove that they have a unique time-periodic solution which
is stable and attracts any initial solution if the bilinear form associated to the operator
is coercive, and we obtain an error estimate for finite element method with a back-
ward Euler time-stepping scheme. That general theory is applied to the Advection-
Diffusion equation and the Stokes problem. The first equation has a non-symmetric
operator, while the second has a symmetric operator but two unknowns, the velocity
and pressure. To apply the general theory, we prove an error estimate for a Riesz pro-
jection operator, using a special Aubin-Nistche argument for the Advection-Diffusion
equation with a time-dependent advective velocity. A spectral analysis for the 1-D
Advection-Diffusion equation, relevant parameters that control the speed of conver-
gence of any initial solution to the time-periodic solution are identified.

In Chapter 3, we extend a theorem of J.L. Lions about the existence of time-periodic
solutions of Navier-Stokes equations under periodic distributed forcing with homoge-
neous Dirichlet boundary conditions to the case of non-homogeneous time-periodic
Dirichlet boundary conditions. Our theorem predicts the existence of a time-periodic
solution for Navier-Stokes equations subject to time-periodic forcing but the stability
of these time-periodic solutions is not known.

In Chapter 4, we investigate the stability of these time-periodic solutions, through
numerical simulations with test cases in a 2-D time-periodic lid driven cavity and a
2-D constricted channel with a time-periodic inflow. From our numerical simulations,
it seems that a bifurcation occurs in the range 3000-8000 in the periodically driven

cavity, and the range 400-1200 in the periodically driven channel.
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Chapter 1

Introduction

1.1 Motivation

Time-periodic flows can be found in various applications, such as the circulatory
system, respiratory system or industrial mixers. We first review two important ap-
plications of periodic flows, namely the lid-driven cavity flows and blood flows in

arteries.

1.1.1 Lid-driven Cavity

Lid-driven cavities are a class of internal recirculating flows, usually bounded, of an
incompressible, viscous, Newtonian fluid in which the motion is generated by the
motion of a portion of the boundary. Cavity flows are important in a number of
industrial contexts in which these flows and the structures they exhibit play a role.
In [30] and [1], the authors point out the direct relevance of cavity flows to coaters
and melt spinning processes used to manufacture microcrystalline materials. The
eddy structures found in driven-cavity flows give insights into the behavior of such
structures in applications as diverse as drag-reducing riblets and mixing cavities used
to synthesize fine polymeric composites. In fact, the driven cavity problem is one of

the standard test cases used to test new computational schemes. Another advantage

13



of this class of flows is that the flow domain is very simple, a square or a rectangle in 2-
D. They exhibit almost all phenomena that can possibly occur in the incompressible
flows: eddies, secondary flows, instabilities, transition and turbulence which make

them an interesting test case.

1.1.2 Blood Flow in Arteries

The mathematical setting of blood flow in arteries has been presented in detail in [18]
and [11]. From a physiological point of view, blood is a mixture of cells, proteins,
lipoproteins and ions by which nutrients are transported. Red blood cells typically
comprise approximately half of the blood’s volume. They are small semisolid parti-
cles, they increase the viscosity of the blood and make the blood almost four times
more viscous than water. Moreover, blood does not exhibit a constant viscosity at all
flow rates and it is non-Newtonian in the microcirculatory system. However, in suffi-
ciently large arteries, blood behaves in a Newtonian way, under normal physiological
conditions.

Blood velocity and pressure are unsteady. The heart pumps the blood in a cyclic fash-
ion and creates pulsatile conditions in all arteries. Pressure and velocity are different
in various parts of the arterial system and different from the normal Poiseuille flow.
The typical Reynolds number ranges from 1 in small arteries to 4000 in the largest
artery, such as the aorta. Thus the flow spans a range of Reynolds numbers in which
the viscous forces are dominant on one end and inertial forces are more important on
the other.

A simplified model of the blood flow in arteries considers a Newtonian flow where two
non-dimensional parameters, the Reynolds (Re) and Strouhal (Str) numbers govern
the flow field (see [25]). The Strouhal number corresponds to the non-dimensional
frequency of the inlet flow pulsation and it is less than 1 in the circulatory system.
A dimensional analysis of the unsteady Navier-Stokes equations subject to a peri-
odic forcing, gives a nondimensional number known as the Womersley parameter,
Wo = (@)%. This parameter Wo can be interpreted as the ratio of the periodic

inertial forces to the viscous forces. When the Womersley parameter is low, viscous
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forces dominate, velocity profiles are nearly parabolic in shape, and the centerline
velocity oscillates in phase with the driving pressure gradient. For Womersley pa-
rameters above 10, the unsteady inertial forces dominate, and the flow has a flat

velocity profile, eventually with small reversed flow regions, near the wall.

1.2 Literature review

1.2.1 Numerical and experimental studies of time-periodic

flows

The study of time-periodic flows has been done before, especially in engineering and
bio-fluid applications. As we mentioned before there are a large number of applica-
tions of lid-driven cavity flows in industrial applications, see [30]. That paper, which
is a very good review of the subject, presents the detailed structure of cavity flows
where the flow is generated by the steady, uniform motion of one of the walls alone,
the lid. Applying the no-slip conditions on the side walls, and the bottom of the
cavity, some features of cavity flow fields will show up. Some characteristics such as
primary eddies, corner eddies, corner singularities will appear. The simulation will
reveal the tendency of the core fluid to move almost like a solid body with uniform
vorticity when we approach a Re = 10000. The paper also suggests that a critical
Reynolds number for which the flow becomes unstable is Re = 13000. It is difficult
to investigate this question when we talk about 2-D flows because they are almost
fictious: 3-D effects rapidly appear when increasing the Reynolds number.

The problem of finding such a critical Reynolds number is not an easy one. Different
studies have been done, one to mention is the paper by A. Fortin et al. [10]. That
paper is concerned with precise localization of Hopf bifurcations in various fluid flow
problems. One of them is the steady lid-driven cavity flow and the approach used
was the computation of eigenvalues of a large matrix corresponding to the lineariza-
tion of the discretized Navier-Stokes equations in the neighborhood of the stationary

solution, which is a standard technique in bifurcation theory. The critical Reynolds
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number was found to be around Re = 8000.

Despite the fact that lid-driven cavity flows have been studied intensively, few at-
tempts have been made to study time-periodic lid-driven cavity flows. We can men-
tion the work of M.J. Vogel, L. Marquez et al. (see [33], [19], [20]). They have done
experimental and numerical work on a 3-D flow in a rectangular cavity driven by the
sinusoidal motion of the floor. Their results show that the harmonic oscillation of the
floor in the cavity introduces a spatio-temporal invariance. The basic state becomes
unstable via symmetry breaking bifurcations. The time-periodic base flow may loose
stability in a number of ways: One is via synchronous bifurcations, when a Floquet
multiplier crosses the unit circle at +1, and another time-periodic state results. An-
other possibility is for a pair of complex conjugate Floquet multipliers to cross the
unit circle, giving rise to a quasi-periodic state. The third generic type of bifurcation
occurs via period-doubling. It was also noticed that the system has a space-time
symmetry that consists of a reflection about the vertical mid-plane together with a
half-period translation in time. The paper is an excellent presentation of the behavior
of time-periodic flows in a cavity for Reynolds numbers up to Re = 1163 and a fixed
period of T' = % They did not experiment with other parameters such as the period,
which as we will see plays an important role in the flow stability.

Another paper of H.M.Blackburn and M.Lopez (see [3]) presents a Floquet analysis
of a time-periodic driven-cavity flow. The two-dimensional base flow has no compo-
nent in the spanwise direction and is periodic in time. In addition, it appears that
it has the same space-time symmetry as the two-dimensional periodically shedding
bluff-body wake: Invariance to a midplane reflection composed with a half-period
evolution in time. A new synchronous mode is found, in addition to the experimen-
tally observed mode. These two modes have very different spanwise length: A long
wave-length (named mode A) and a short wave-length (named mode B). They both
result from synchronous bifurcations. A third mode (mode QP) has been found. This
last one results from a complex conjugate pair of Floquet multipliers crossing the unit
circle, and it arises through a Neimark-Sacker bifurcation of the base flow. This mode
gives rise to a quasi-periodic state. The Floquet analysis emphasizes the dependence

of the stability on the Reynolds number and the period 7. In that article the authors
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experiment with Reynolds numbers up to Re = 1500 and two values of the Strouhal
number, Str = 100 and Str = 160, but they could not identify period-doubling bi-
furcations.

Other studies have been done to obtain critical Reynolds numbers. For example,
P.S. Casas and A. Jorba (see [5]) have identified a critical Reynolds numbers,
Re = 5772.22, and another Hopf bifurcation at Re = 7400 for a wavenumber of
1.02056 in the two-dimensional Poiseuille problem. They also observed the existence
of quasi-periodic solutions. Other papers to be mentioned are [19] and [20] where
the attention is focused on the occurrence of a Naimark-Sacker bifurcation in a peri-
odically forced system, i.e in a Taylor-Couette flow with axial oscillations of the inner
cylinder. They study the linear stability of the spiral Poiseuille flow, covering a wide
range of angular velocities of the inner and outer cylinders and values of the axial
Reynolds number.

In the domain of blood flow applications one of the most cited books is that of
McDonald (see [18]) which has proved to be a cornerstone in this field. The first
studies considered the arteries as a straight pipe or a channel where we have a Hagen-
Poiseuille flow and plane Poiseuille flow. In [18], an analytical expression for the fully
developed pulsatile flow in a straight or a tapered tube is presented. This idea is not
new and the result was developed by Womersley in 1955 (see [36]).

Atherosclerosis is a disease of the cardiovascular system which involves the hardening
of the arteries due to the deposition of fat. Atherosclerotic constrictions in arteries
is known as arterial stenoses. Fluid dynamics of post-stenotic flow plays a key role
in the diagnosis of arterial diseases. For two hundred years it has been known that
stenosis in arteries produce distinct sounds known as “bruits” which can be heard
externally. The general understanding is that the sounds are produced by the ”dis-
turbed” flow downstream of the stenosis, but until 1960s little work has been done
to explore the origin of these sounds. Studies done later showed that sounds are due
to the shear layer and not to the turbulence in the core of the flow as it was believed.
This conclusion is also reached by R.Mittal et al. [21], considering flows in a channel
with time-periodic inflow. Their experiments show a vortex structure downstream of

the constriction. These vortices form in the shear layers and become more energetic
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when the Reynolds number is increased, leading to a higher turbulent kinetic energy.
In that article, the Reynolds number was varied over a range of 750 to 2000.

Among the abundant literature, a couple of articles draw our attention. In 1995,
M. Rosenfeld [25] described his numerical experiments on 2-D flows in a constricted
channel with a pulsating entry. As previous results showed [2], even cases with
steady flows at the inlet may exhibit complex patterns. Depending on the geometry
and flow conditions, several separation eddies may be generated behind the constric-
tion, and at Reynolds numbers of O(10?), the flow becomes unsteady and vortices
are shed periodically. In [25] the study of pulsating flows was extended to differ-
ent parameter regimes. Their study focuses on the two most important factors: the
Strouhal and Reynolds numbers. The Strouhal number is varied by three orders of
magnitude (12 > Str > 0.01) while the Reynolds number is changed by almost two
orders of magnitude (1500 > Re > 45). However, their work did not identify a critical

Reynolds number at which the solution becomes unstable.

1.2.2 Theoretical and numerical studies on periodically forced
PDEs

Aside from experiments with particular periodically-driven flows, there is a core of
theory for PDEs with periodic forcing term, in terms of existence, convergence and
numerical methods. A theoretical result on the existence of a time-periodic solution
of the Navier-Stokes equations with a time-periodic volumic force was presented by
J.L.Lions, see [17]. A missing part in his theory is the analysis of the stability and
uniqueness of the time-periodic solution. Moreover, the analysis is done only for vo-
lumic forcing with no-slip velocity on all boundaries, which is far from the current
practice with periodically forced flows.

Further studies on periodically forced partial differential equations were done by
O.Vejvoda [32]. These studies have been developed using Fourier analysis, just
for 1-D problems and they do not extend to higher dimensions. C. Bernardi (see
[4]) published an article on the numerical approximation of periodic linear parabolic

problems with symmetric operators. The discretization uses a Galerkin method for

18



the space variables and a spectral method for the time variable. Some optimal error
estimates are derived. The proof depends on a spectral decomposition in time and
therefore the results do not apply to problems where the elliptic spatial operator is
time dependent.

Another approach to approximate the periodic parabolic problems has been suggested
by C.V.Pao [23]. His method is based on the method of upper and lower solutions
and associated monotone iterations. The analysis of periodic solutions of a finite dif-
ference system which is a discrete version of a class of nonlinear reaction-convection-
diffusion equations is being performed. This method leads to an existence-comparison
theorem for periodic solutions of the nonlinear finite difference system. The existence-
comparison theorem can be used to show the convergence of a discrete solution to a
continuous solution of the original problem. The numerical schemes use a combina-
tion of Picard type and Jacobi type monotone iterative schemes.

The calculation of periodic orbits for system of ODEs has been studied before by J.
Guckenheimer [13], where the shooting method is applied. However, the method is
difficult to implement when we deal with large systems of equations. Algorithms for
the computation and bifurcation analysis of periodic solutions of systems of nonlinear
autonomous partial differential equations have been studied by K. Lust [16]. The
methods are based on single and multiple shooting that exploits the property of PDEs
to have periodic orbits with only few unstable or weakly stable modes. Among the
techniques presented by K.Lust, the periodic Schur decomposition is capable to com-
pute an eigenvalue spectrum characterized by extreme differences in the magnitude
of the eigenvalues. These methods prove to be efficient for autonomous equations but
the author did not consider the case of non-autonomous systems.

The Picard iteration is also used in the paper of A. Hansbo (see [14]) where the
convergence is proved for the semi-discrete Galerkin method and for a fully discrete
method obtained by using the Backward Euler method. These methods can be shown
to have the desired contractivity property by an energy argument. However, the re-
sults are proven only for symmetric operators. The heat equation is considered in

that article, but not the advection-diffusion equation.

19



1.3 Purpose of the work

The present work is intended to be a study of time-periodic parabolic problems,
in particular the Navier-Stokes and related problems, from numerical and theoretical
point of views. From theoretical point of view we extend some previous results to more
complicated cases. Through numerical experiments we want to find some relevant

situations which might lead us to unstable time-periodic solutions.

e Chapter 2 In the beginning of this chapter, there is a review on the convergence
analysis of the semi-discrete and fully-discrete approximations for a general
linear parabolic problem. The theory presented by A. Quarteroni, A.Valli [35]
and A. Ern, J.L. Guermond [9] are combined and presented here in a uniform
manner. The second section takes the results obtained by A. Hansbo [14] on the
convergence analysis of a time-periodic solution of linear parabolic problem with
a symmetric operator and extends these results to the case with a non-symmetric
operator. The results are true only when the projection operator defined from
the space of test functions to its finite-dimensional subspace has some special
properties and when the bilinear form, associated to our operator, is coercive. In
the next section we take an example of parabolic problems with non-symmetric
operators; the advection-diffusion equation with a time-dependent advective
ve locity. In this case, we had to prove the properties needed to apply the
general theory for the projection operator. A special Aubin-Nitsche argument is
required to deal with the advective part of the advection-diffusion operator. To
our knowledge, a similar analysis for time-periodic solutions of parabolic PDEs
with non-symmetric operators is not available in the literature. Also, the Stokes
problem is presented, because of the difficulties imposed by the presence of two
unknowns, the velocity and the pressure.There are two projection operators to
deal with, one is the projection of the velocity and the other is the projection
of the pressure. The velocity projection operator satisfies the needed properties
and so, the general theory applies for the Stokes problem. The last section
of that chapter presents an analysis of the computational results obtained for

the 1-D advection-diffusion equation. First, taking a specific problem, we show
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that the coercivity of the bilinear form is a necessary condition for the existence
and convergence to a periodic solution, at least for some problems. Basically,
for the pure advection equation, the bilinear form is not coercive and we may
not obtain a time-periodic solution. Then, we focus on the identification of
the relevant parameters that control the convergence of the solution of the
initial-value problem toward a time-periodic solution. A spectral analysis of

the fully-discrete problem and also of the semi-discrete problem is done.

Chapter 3 The main topic of this chapter is time-periodic solutions of the
Navier-Stokes equations. In his book, J.L. Lions ( [17]) proved the existence of
a time-periodic solution for the Navier-Stokes equations, when a time-periodic
volumic forcing term is applied to the system and homogeneous Dirichlet bound-
ary conditions are being considered. We are interested in flows that are driven
by periodic non-homogeneous boundary conditions instead of volumic forces.
We prove the existence of a time-periodic solution of the Navier-Stokes problem
in this situation. In order to generalize the results obtained by J.L. Lions, the
non-homogeneous boundary conditions must be treated in such a way that the
problem could be transformed into one with homogeneous Dirichlet boundary
conditions. To show how we can treat the boundary conditions, we presented
first, the proof of existence of a solution of the Navier-Stokes equations with

non-homogeneous boundary conditi ons, not necessarily time-periodic.

Chapter 4 The results of our numerical experiments are presented here. The
simulations are done for 2-D flows only, but for a relatively large range of
Reynolds and Strouhal numbers. We use the results obtained by A. Fortin
et al. [10] to validate our code. The simulations are divided into two main
parts, the lid-driven cavity and an artery with a stenotic region in the middle.
The stenosis is considered to be deformed in both upper and lower wall, while
the simulations done so far to characterize the stability of the flow with periodic
inflow,(e.g. [21]), consider the deformation of the upper wall only. We calculate

the solutions at different Reynolds and Strouhal numbers. What we observed
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was that the higher the Reynolds number, the longer is the transition to a time-
periodic solution, if the solution is periodic at all. The period plays a role in the
stability of a solution. A small period seems to increase the instability of the
flow as observed for flow in stenotic arteries. The number of periods needed to
obtain a time-periodic solution is monitored. The simulations are carried over
different ranges of Reynolds and Strouhal numbers, some of the cases being
suggested by the literature available ( [25], [21]). We also tried to increase the
number of test cases. Our simulations monitor the number of periods needed
to obtain a time-periodic solution. We also try to identify flows with Reynolds

numbers beyond the critical values for a bifurcation to a quasi-periodic flow.
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Chapter 2

Time-periodic solution of linear

parabolic problems

A.Hansbo (see [14]) presented some error estimates on the numerical solution of the
time-periodic linear parabolic problems with a symmetric operator. These results will
be extended in this Chapter to a non-symmetric operator as we will see in Sections
2.1 and 2.2. The advection-diffusion problem is a very attractive test case because
it possesses two properties: It has a non-symmetric operator and shares many char-
acteristics with the Navier-Stokes problem. We will discuss that problem in Sections
2.3.1. We also present an application of the general theory to the Stokes problem
in Section 2.3.2. The 1-D advection-diffusion equation and some mechanisms that
control the convergence of the transient solution toward a periodic solution will be

investigated in Section 2.4 as well.

2.1 Initial value problem for a general parabolic
equation

Semi-discrete finite element approximations of linear parabolic equations have been
studied extensively. As references, [35, chapter 11] and [9, chapter 6] offer an

excellent review of the main results and mathematical techniques on this subject.
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This section is a review of the main results on the error estimates for the solution
of the semi-discrete problem and the fully discrete problem with the backward Euler
time discretization.

Let Q be a bounded domain in R?, d = 2,3 with a Lipschitz boundary. Consider a
second order elliptic differential operator L. The initial value problem writes as: Find

u solution of

—+Lu = f in (0,T)xQ
u = 0 on (0,7)x 09 (1)
u(0) = uy on 9

where L is a linear differential operator acting on a subspace of the Hilbert space H
(in general H = L?(€2) so the norm of H is denoted by || - ||).

Problem (1) can be reformulated in a weak variational form, therefore we introduce
the space V' with the norm || - ||; as the space of test functions and W (V') as the

space of admissible solutions:
W) :={u:(0,T)— Vlue L*0,T;V),dwu € L*(0,T;V')} (2)

where V' is the dual space of V. V is dense in H and the injection from V to H is
continuous. There is a Poincaré-type inequality between the V- and H-norms in the

sense that there exist a constant cp > 0 such that
cp |l u|P<[| u |}

The homogeneous Dirichlet’s boundary condition requires that V' = Hj(Q) C H'(Q)
in case L = —A or a related operator.

The weak formulation

For all f € L?(0,T;V") and uy € L*(Q) we consider the following problem: Find
u € W(V) such that

d
pr < u,v >yxyr +a(t;u,v) = < f,v>yxyr, for any veV (3)
u(0) = wug
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It is assumed that the bilinear form a(t;u,v) : V x V — R is coercive in the Hilbert
space V with a constant o and continuous with a constant M, both independent of
time, namely
a(tyv,v) > a|lv |} (4)
a(t;u,v) < M [ u 1] vy ()
The existence of a solution has been proved using different methods, for example in
[22] the proof is based on semigroup theory or in [6] a Galerkin approach is used.

To discretize the problem (3) we introduce a family of finite-dimensional subspaces
Sy C V, with h > 0, such that

| w = Ih(w) [lororsm +h || w = L(w) llerorm < CA™ | w lleromsmr+), (6)
for any weCY0,T; VﬂHTH(Q))
where I, is the usual Lagrange interpolation operator of degree r (as defined in [9]).

For all ¢ € [0, T] we introduce the projection operator IT, : V' — S}, such that I, (w)

is the solution of
a(t; Iy (w), vy) = a(t; w,vy) for all v, € Sy, (7)

In the following we suppose that the projection operator I, (w) satisfies the following

Projection Property

I w = T w) lleoan + | @ = a(w) lloxoran < OB | w0 lloxoarssy (8)

This property will be proven below for particular bilinear forms a(t; -, -), e.g. for the
advection-diffusion equation. As we shall see, (8) is a very important hypothesis in
the next section.

Another important tool in our demonstrations is the Gronwall Lemma (see [9]) which

states as follows

Lemma 2.1.1. Gronwall Lemma: Consider 3 € R, ¢ € C'(0,T;R) and f €
C°(0,T;R) such that % < B¢+ f. Then

B(t) < e’ (0) + /O t P f () dr (9)
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Semi-discrete approximation
We consider the semi-discrete approximate problem which reads as follows : Given
up,, € Sy, a suitable approximation of the initial datum uy € L*(Q2), for each ¢ € [0, 7]
find u,(t) € Sy, such that

d

% < uh(t)avh > +a(t; uh(t)avh) = < f(t)avh >, fOT any v € Shat € (OaT)
uh(O) = Uo,n (10)

Theorem 2.1.2. Assume that the solution u of (3) is such thatu € C* (0, T; H(Q)),

r > 1. Then, using piecewise-polynomaials of degree less than or equal to v in the defi-

nition of the finite element space Sy, for each t € [0,T] and assuming that (8) holds,
the solution up, of (10) satisfies

Fu(t) — un(t) 1<l w(0) — uop | +CLA™ [ w llero,rmr+y (11)
where C7 > 0 is a suitable constant independent of h.

Proof. We make use of the projection operator II, defined in (7). By (8) we have
that

lw = T0a(u) lero,sny +h 11w =TIa(w) 2 < O | lleroasmry  (12)

For all t € [0, 7] let us write up(t) — u(t) = v1(t) + v2(t) where
v1(t) := up(t) — Mp(u(t)) and vo(t) := p(u(t)) — u(t).

Substituting v, in the inequality (12) we can estimate that

Ovy (T
sup (1| v2() 11+ 1 227 ) < OB L Yoo (13)
0<7<t T

Also, || v1(t) || must be bounded. First we subtract (3) from (10) to obtain
d
7 < up(t) — u,vp > +a(t; up(t) — u,vp) =0 (14)

From the definition of the projection operator (7), the definition of v;(¢) and the use
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of (14) we have that

dv; dup(t)

< d—t(t),vh > +a(t;vi(t),vn) = < Tl +a(t; up(t), vs)
dll t
- < %,m > —a(t; Tl (u(t)), va)
dup(t
= < ucillt( ),Uh > +(L(t; uh(t),vh)
dll t
- < %,vh > —a(t;u(t),vn)
dup (T dllp (u(t
= < C;lt( ),vh>—< #,vh>—% < up — u,vp >
du(t) dITp, (u(t) > dvo(t)
= < > < 20T ) =< -
at " a at "
Choosing v, = v1(t) it follows from that last equality
1d ) . _ du(2)
S ) 7 +at o (), w(0) = — < P2 ) >
Using the coercivity of the bilinear form a(t; -, ) and the inequality pg < %2 + %,
1d dvy(t) a 1 dus(?)
—— v (2) |I? 1) 11P< — < —=Z o1 (t) >< = || (@) ||? +=— || —2 |?
) 17 e ) < — < 228 o) >< O ot 12 4o ) 22D
which gives
1d o' 1 dus(t)
el t) 1|2 1 12< = 017 +=— || =212
o P+l v 1< 2w 1?7 45 | 228
Since || v1(t) 2> ¢, || v1(¢) ||?, the inequality becomes
d 1 d’l)g(t)
G 1) I +ac, () 1< oo )| 22
Using Gronwall’s Lemma (9) for v;(¢),we obtain that
1/ dva(T)
1 112< 0 2 —acpt _/ —acp(t—7) 24
I on(0) Pl ) 7 et o [ et ) ST e e
The integral term can be bounded as follows
1 — et dvy(7)
vi(t) <] v1(0) || e7 " + ————— su 2 2 15
les(e) <] w1 (0) | s 27 (15)
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The triangle inequality || uw(t) — up(t) ||<|| v1() || + || v2(t) || combined with (15)

gives

—acpt ]_ dU T
Fu(t) = un(®) [ 02(0) | €2 + (1 4+ —) sup (|| va(r) || + | fl( ) ) (16)
QCp 0<7<t T
The term || v1(0) || is bounded in the following way:
[ 01(0) 1= wo.n — Tauo [[<|| wo,n — u(0) [| + || u(0) — T4u(0) | (17)

-

In (16), e S < 1lforallt> 0. Applying (13), the conclusion of the theorem comes

in a straightforward way:
[l u(t) — un(t) 1<l w(0) = uop | +CLA™ || w lero,rmrsry (18)
]

Fully-discrete approximation
Applying the backward Euler method, the space-time discretization of problem (3)

writes as

1
%(UZH — Uy, Un) + a(tni1; UZH, o) = (f(tat1),vn), for any v, € Sp(19)

uh(O) = UO,h

Here uZ“, uf represent the solution of the discretized problem at time ¢,,11 = k(n+1)

and t,, = nk, respectively, k is the time step.

Theorem 2.1.3. Assume that the solution uy, of the semi-discretized problem (10)
is such that up, € C*(0,T; L*(2)). The solution u} of the fully discrete problem (19)

satisfies
1
t 2 3
" 0 Up(T 2
It = unen) < ok ([0 557 1P ar)
0 T
at any time t,.

Proof. The semi-discretized equation (10) can be rewritten as

1 tnt1) — tn 0
0ntas1) = ), 00) + i unltyr) ) = (Ul Ztelln)

+ (f(tnt), on)
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by adding on both sides +(un(tpt1) — un(tn), vp)-
Given the fact that u, € C?(0,T; H™(Q2)), by Taylor’s Theorem the first term on
the right-hand side is equal to

Un(tnt1) — un(tn)  Oun _ 1 /t"+1 B 0%uy,
< k Y (tns1),vn ) = VA (T tn)—6T2 (T)dT, vy,

Defining e} := uf — up(t,) and subtracting (20) from (19)

1

(en+1 — e, vp) + altug entl vp) = l /’tn+1 [T —t ]%(T)dT U, (21)
7 \eh h> n+l;€p k\J., " or? ’

for all v, € Sp,.
Replacing vj, with e} ™!, first we bound the term (ft U — tn]a S (T)dr, vh> using
the Jensen’s inequality [26],the inequality pg < % + 4 5 and the fact that |7 —t,| <k

% (/th[ - ]6215:_57)% ezﬂ) N %/9 </t:n+l[7 t ]8; 5 (7 )dT> etz
/<|eh+1|/ %uj d%) de < || et (/Q (/t:nﬂklégqgh %T> dx)i
<A 622“ [ 222[2(/tjn+1k|§ff() d%) .
A 2h+ [ ;ﬁ/(/|%( | CZ—T)dx

ﬁz ” ez-i—l ||2 k2 / /tn+1 a2uh ) dr
< -
= 2 + 2,32 N Sz () de
2| o412 tnt1
<Al 62" (- / /\aa“; ) [2 dedr (22)
T

where [ is a constant which will be chosen in a suitable way in the following. Return-
n+1 ”2

ing to (21), we can estimate || e from the coercivity of a(t; -, -), the inequality
(22) and the equality a® — ab = —2 - % + +(a —b)?

il || e —eh I +all g™ I

oz e I+
ﬂQ ” €n+1 ||2 tn+1 (92uh
< h 252 | 87’2 7) |? drvdr (23)
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But || el [12<|| et ||? so we obtain
Fen™ 1% = len I+ 1l ex™ —eh I +2ke || €™ |I*
tnt1 a
< ol Py [ [1Ge paar e
T

Now we can choose 3 such that 32 = 2o and the inequality can be simplified to

tn+1 82’&
e =< g [ [5G P doar (25)

Summing up from €9 to e} ™' and noticing that e = 0 we obtain

tn+1 aQu %
le s on( [ 15 17 ar)

with Cy = i This is true for all ¢,,,1 so we can write
1
el Ca ([ 1 G 12 ar )

Theorem 2.1.4. Let u be the ezact solution of (3) such that u € C*(0,T; H(Q)),
r > 1, u, € C*0,T; L*(2)) solution of the semi-discrete problem (10) and u} the
solution of the fully discrete problem (19) at time t,. If (8) holds, then the error is
given by

O

1
tn aQu 2
I ultn) =0 1<l o= 4000 L vy +Cok [ 11 G5 () 12 ar )
0
(26)

Proof. Combining Theorem 2.1.2 and Theorem 2.1.3 we get the result right away.
]

2.2 Error estimate for the numerical solution of a

time-periodic parabolic problem

In her paper [14], A. Hansbo proved the existence of a time-periodic solution for a

linear parabolic equation with a symmetric operator. I will show that her results are
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valid in the case of linear parabolic problems with a non-symmetric operator.
We consider the time-periodic parabolic problem
SHLu = f in (0T)xQ
u = 0 on (0,T) x 09 (27)
u(0) = u(T) on Q
where T is the period and f € L?(0,T; L?(Q2)), f periodic with period T" and L is a

non-symmetric operator, eventually time-periodic.

The weak formulation of (27) writes as: Find u € W (V) such that

d

pr <u,v>+a(tyu,v) = < f,v>yyxy, for any v €V (28)
u(0) = u(T)

where V' is the space of test functions. It is assumed that the bilinear form a(t; u, v) :
V xV — R is coercive in the Hilbert space V with a constant o and continuous with

a constant M, both independent of time, namely
a(t;v,v) 2 o v}

a(t;u,0) < M [ u o] v

The initial value problem associated with (28):Given ¢ € L?(Q2), find u € W (V) at

any time ¢ such that

%<ﬂ,v>+a(t;ﬂ,v) = < f,u> (29)
u(0) = ¢
The solution can be written as (see [22])
t
() = B(6,0)6+ | B(t.5)5(s)ds = E(t,0)6+ () (30)
0

E(t,7)¢ is the solution of (29) with f = 0 and initial value ¢ given at ¢ = 7. The
operator E(t,7) : L*(Q) — L*(Q) has the norm || - || in L*(Q). We will prove that
E(-,-) is a contraction.

Let E(t,0)¢ be a solution of (29) with f = 0. We can prove the following Lemma
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Lemma 2.2.1. || E(£,0) |[< ¢ < 1, forallt > 0.

Proof. We know that E(t,0)¢ = v(t) is a solution of (29) with f = 0. Then

4 < (1,006, > +alt; B(1,006,v) = 0

Because a(t; -, -) is coercive and || - ||<|| - |1

L 12 vl ve) < 12

< 52 Ho@) I +a(t 0(®), v(t)) = 0

From the last inequality we obtain that

d
7 v@ [P< =20 o(0) |

Applying the Gronwall’s Lemma, we obtain:
[ o(t) [P< e || 0(0) |I”

In other words we have that

2
Lo I _ oy

ol =

for all t > 0, so the operator E(t,0) is a contraction.

O

We may represent the solution w = u(0) of the periodic problem at time zero in

terms of E(T,0) and g as
w = E(T,0)w+ g(T)

using (30).

(31)

By Lemma 2.2.1, E(T, 0) is a contraction therefore I— F(T, 0) is invertible on L?(2).
We know that g is a solution of (29) with initial value ¢ = 0, f € L?(0,T; L*(f)) im-
plies that g € L*(Q) and it follows that (31) has a unique solution w. The solution

at time ¢ of the periodic problem (27) is the solution of the initial value problem (29)

at time ¢ with ¢ = w.
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We define the semi-discrete problem as : Find w, € S,, S, a family of finite-

dimensional subspaces S, C Hj as defined in (6) , such that

d
p < up,vp > talt;up,vp) = < fyop> , for any v, €S, and te€(0,T)
un(0) = un(T) (32)

We associate to (32) the following problem : Given ¢, find uy, € S;, such that

d ~
— < up,vp > +a(t;up,vp) = < fiop>, for any t>0 and any v, € Sy

dt

un(0) = ¢n (33)
Let Ep(t,7) : S, — Sk, t > 7, be the solution operator of the semi-discrete homo-
geneous equation with initial value given at ¢ = 7. This operator is contraction in
L?(2) with the norm || - ||.
Let E,(t,0)¢y be the solution at time t of (33) with f = 0.

Lemma 2.2.2.
|| En(t,0) ||<c< 1

with ¢ independent of h.

Proof. Ey(t,0)¢n = vp(t) is a solution of (33) with f = 0, then

d
—-— < Eh(ta O)d)h: Vp, > +CL(t, Eh(ta O)d)hvvh) =0

dt
Because a(t; -, ) is coercive and || - ||<|| - |1
1d 1d
5 1on@) 17 +a [ va(®) [F< 5l on () I* +a(t; va(t), va(#)) = 0

Or p
7 |l n(?) 12< —2a || wa(t) |7

Using the Gronwall’s Lemma, we obtain
[l on(t) 1< e [ va(0) |I?
In other words we have that

lon® 12 o
- et 1 34
Ton 2 = (34)

So, E}(t,0) is a contraction. O
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This is true for all £. We can prove as in the continuous case that the solution
of (33) is the same as the solution of the periodic problem (32), if ¢, = u(0),
and that u,(0) is uniquely defined by wy, = Ei(T,0)w, + gn(T), where g,(T) =
[ En(T, ) f(s)ds.

Theorem 2.2.3. Let u and uy, be solutions of (28) and (32), respectively, with u €
CH0,T; HY(Q)), r > 1, then if property (8) holds, we have the following estimation

I () — un®) 1< O | lloaorarssy
for allt <T and C a constant independent of h.

Proof. Theorem 2.1.2 applied to u(t) and uy(t) gives
Il u(t) = un(t) [I<]] w(0) — un(0) | +CH™" || w ller(orsmm+y (35)
What we need is to estimate the first term on the right. This can be written as
| u(0) — un(0) [|<l w(0) — Mau(0) | + || TLpu(0) — ua(0) | (36)
By the approximation assumption (8) on I, we have
1 u(0) = Tyu(0) [|< CA™ || u llerorsmrn) (37)

Let up(t) be the solution of the semi-discrete initial value problem (33) with initial
value I1,(u(0)) and Ej, = E,(T,0).Then

T(T) = EyTlyu(0) + gu(T), where g,(T) = /O CBT.9)f()ds  (39)
The solution wy, = u(0) of the periodic problem fulfills
wp, = ER(T, 0)wp, + gn(T) = Epun(0) + gn(T) (39)
Subtracting (38) and (39) we get

Ep(un(0) — Thu(0)) = up(0) — up(T) = (ua(0) — Ipu(0)) + (Ipu(0) — un(T))
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E}, is a contraction with || Fj ||< ¢ < 1 which gives

(I — Ep)(up(0) = Hau(0)) = up(T) — Muu(0)
= un(0) = Thu(0) < (1 =) (|| @n(T) — u(T) || + || u(0) — I4u(0) ||)

But, by Theorem 2.1.2
I u(T) = @ (T) <] u(0) — Tpu(0) | +CA™ || u llero,rim+,)

Using (37) we have that

| w(T) — @n(T) |< 2CH™ || w [|er oy
which, combined with (40) and (37) gives

Un — Hpu > U ||ci(o,1;Hr+1

I un(0) = Iyu(0) |< CR™ || u fler )

This, together with (35) and (36) gives

lu() = un(t) < CH™ L lloro,rmr+y

O

We consider the backward Euler fully discrete scheme. Let k£ be the time step, with

Nk =T, and U, the approximation of v in S}, at time ¢, = nk. The approximation

can be written as

(Un - Un—l
k
UO == UN

The fully discrete scheme for the initial value problem is

U,—-U,_ ~
07 ) + altn; Unyon) = (f(ta),vn), v € Sh

Uy = on

o) + a(tn; Unyvn) = (f(tn),vn), n=1,2,..,N for any wvy€ Sy

(41)

(42)

Letting Epi(t) = (I + kAx(t))~!, the solution operator of the initial value problem

with homogeneous equation is defined by
En(tj, ti) = Ehk(tj) . Ehk(tj—l) oot Epg(tivr), j >
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The solution of the time-periodic problem at time zero satisfies

N
Uo=Ux = Ew(T,0Uo+k Y En(T,1;)f(t;)

Jj=1

= Ep(T,0)Uo + gn(T)
FE,(T,0) is a contraction in L?(Q) as stated in the following Lemma:

Lemma 2.2.4.
| Eni(T,0) ||< e~ < 1. (43)
with € a constant.

For a proof see A.Hansbo [14, page 670].

Theorem 2.2.5. Let U, be solution of (41) and u solution of (28) at time t;. Then,
if (8) holds we have the following inequality

1
T 82 up, 2

I ulty) = Uy 1< O L fovaaeey 40k [ 1 G0 P ar)

with 7=0,1,...,N.

Proof. In a similar manner as in the proof of Theorem 2.2.3 we apply Theorem
2.1.4 to U; and u(t;) to obtain

1
2

T a2
, 0°u
I ut) = Uy <1 0) = U 40074 | llrrarsn 5 [ 1 G20 P ar )
(45)
What we need is to estimate the first term on the right
| u(0) — Uo <] w(0) — TLhu(0) || + || Thu(0) — o | (46)
By the approximation assumption (8) on I, we have
| w(0) — ILyu(0) ||[< CH™ || w ||eao,r;mr+1) (47)
Let Uy be the solution of (42) with initial value IT,u(0), then
Un = En(T, 0)I1,u(0) + gl (48)
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where g = kY2 En(T, ) f(1)).
The solution wyy, = Uy of the periodic problem (41) fulfills

W = Epg(T, 0)wpy + gévk (49)
Subtracting (48) from (49) we get
Epi(T, 0)(Uy — Iyu(0)) = Uy — Uy = (Uy — Myu(0)) + (yu(0) — Uy)

= (I — Ep(T,0))(Us — u(0)) = Uy — I,u(0).
Eui(T,0) is a contraction with || Ep ||< ¢ <1 ( by Lemma 2.2.4), so

| Up = Mau(0) < (1= ) 7M(|| Un — w(T) || + || u(0) — TTyu(0) ||) (50)

Using Theorem 2.1.4 and (47)

1

T 2 3

~ 0“u 2

| Un —u(T) || < 2CA™ || u 10,41y +Ck (/o I 87'2h () |I? dT)

which, combined with (50) and (47) gives

1
T 82 Up 2

| Us — Mpu(0) [|< CR™ || w || orgo,mmm+1) +Ck (/0 I 572 ()| dT) (51)

This, together with (45), (47) and (46) gives

=

T 2

0“u
I ut) = Uy 1< 0% [l +Ch ([ 1 G20 | r)
0

2.3 Applications of the general theory to time-

periodic parabolic problems

In this section, we present two examples of PDEs, both of them showing some dif-
ficulties in handling the variational problem. The advection-diffusion equation is a

nice example of a PDE with a non-symmetric operator. The difficulty to treat these
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type of problems arises when we try to prove the Projection Property (8),which is
an important hypothesis in the proofs of Section 2.2, and it is due mainly to the time
dependence of the non-symmetric operator, as we shall see. As far as we know, in
the literature there are no detailed proofs of (8) for an advection-diffusion operator.
The Stokes problem, even though it possesses a symmetric operator, it contains the
extra pressure term which forces us to modify the formulation of (8) if we make use

of a mixed-formulation.

2.3.1 Application to the advection-diffusion equation

Consider the second order elliptic differential operator L
Lw:= -V (cVw) + V - (bw) + ayw

where o € (L®(2))%¢, ap € L*®(Q) and b € (C%([0,T] x 2))?. We assume that
%V-b—l—aonfor all x € Q.

L is an elliptic operator, i.e. there exists a constant ay > 0 such that
D 0i(@)El; > ol
i’j

for each € € R? and any z € €.
For the purpose of our analysis we consider the case of || o || <<|| b ||c2(j0,77x5)-

We associate to the operator L a non-symmetric bilinear form
a(t; w,v) := /[(JV'LU) Vv + (V- (bw))v + apwv]dx (52)
Q

With the notations introduced in Section 2.1, let V = H}(Q) and H = L*(Q).
To apply the theory of Section 2.1 and Section 2.2 we prove that the bilinear form
a(t;-,-) is coercive in the Hilbert space V with a constant o and continuous with a

constant M, both independent of time, as in (4) and (5). The coercivity is obtained
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easily as follows
altv,v) = /Q (0VD) - Vo + (V - (b)) + ao|v[2]da

> a || Vo | +/Q (V- (b0))v + aglol?] da

= o || Vv | —i—/Q —|v|2V-b+ m

2
= 010||V’U||2+/
Q

1
= qp || Vo |? +/ EV-b-f-ao] v|*dx
al

+a0\v\2} dzx

1 1
—V-b-ﬁ-ao] |v|2dx+—/ [v|?b - nds
2 2 Joa

The last equality comes from the fact that v|sq = 0. Using the hypothesis %V-b—kao >

0 and the Poincaré inequality we have that there exist & > 0 such that

a(t;v,v) > a|lv ||} (53)
Continuity can be obtained easily from the following inequalities
a(t;u,v) = /Q[(O’Vw) - Vv + (V- (bu))v + aquv]dz

< o lleoll Vu flf} Vo ] +/Q[(V-b)uv+(b-W)v]dx+ a0 [looll w Il v 1]

< maz (]| o floos [| b lle2(o,rixe)s [ @0 lloo) [ w ll2l] v [h= M | u la]l v [y

The weak formulation of the initial value problem (1) reads as follows: Given f €
L*(0,T; L*(Q)) and uy € L*(Q2), find u € W(V), such that

L u), v Sy +altu(t),v) = < f(1),0 Svrey (54)

dt
u(0) = wug

Consider now the discretization of the problem (54). We consider a family of finite-
dimensional subspaces S, C V with the Lagrange interpolation operator I, defined
as in (6).

For all ¢t € [0,T] we introduce the projection operator IT, : V' — S}, such that I, (w)
is the solution of (7).
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Theorem 2.3.1. The projection operator 1 (w) satisfies

| w = Ta(w) [ler o2y +h || w = (W) loromsm@) < CH™ [ w llerorar)
(55)

Proof. Part I) First we prove that
bl w—Th(w) [|leorm@n< CH || w loxourmr+ -
Adding and subtracting a(t; I, (w), vs) in (7)
a(t;w —p(w), vy) = alt;w — I(w), vs) + a(t; Iy(w) — Hp(w), vy) =0

which gives
a(t; I(w) — Ty (w),vp) = alt; I(w) — w, vp)

Setting v, = I(w) — II(w), by the coercivity of a(t;-,-) we get for all time ¢
ol Ih(w) = p(w) I} < at; Ih(w) = Hp(w), f(w) — Ty (w))
= a(t; I(w) — w, Iy(w) — I(w))
< M || Ih(w) = w [[1l] Tn(w) — Ta(w) |2

~—  —

The last inequality comes from the continuity of a(¢; -, -).

Then we get from (6)

M
bl Ih(w) — Ha(w) oo rm @) < h; | In(w) = w ||coqo.r;m1 ()

M
CEhT—H || w ||Cl(O’T,H7+1) (56)

VAN

So from (6) we have that

bl w—Th(w) [|eoorar)y < bl w— In(w) ||coor;a @)
+ bl Ih(w) = Oa(w) [lco,r;a )
M
S (1 + E)Ch"‘-l-l || w ||CI(O,T;H'I‘+1) (57)

Part IT) We need to prove that
I Tl (w) = w [leoqriza@n < OB | w oo+ - (58)
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Using Aubin-Nitsche duality argument as in [35] we consider the auxiliary problem:
Given s € L?(Q) find ¢(s) € V such that

a(t;v,0(s)) = (s,v), forallveV (59)
Then we can write
II — t. 11 _
|| Hh(w) —w ||: Sup (87 h(w) U]) — Sup a’( ) h(w) 'LU, ¢(8)) (60)
SEL2(Q),s£0 | s |l s€L2(Q),s£0 | s |l
Let ¢, € S}, be such that
| () = n [1=infy,es, | 6(s) —va [1< Ch || &(s) [|2 (61)

From the regularity of ¢(s) (see [35]) we have that

16(s) < C | s |l (62)
Since ¢y, € Sy, we know that a(t; I, (w) —w, ¢(s)) = a(t; I (w) —w, ¢(s) — ¢p). Then,
using (61)

a(t; T (w)—w, ¢(s)=¢n) < M || Hn(w)—w [|s[| ¢(s)=n [1< COM || Tp(w)=w [[x b || 6(s) [|2
(63)

Combining the inequalities (57),(63),(60) and (62) we get

S[UP] | Iy (w) — w ||< Ch || Hh(w) — w ||corm@)< CR || w ||erormray (64)
te[o0,T

So we have that
| TTh(w) — w ||oogo,miz20) < CR™* || w 10,5 m7+1) (65)
Part IIT) The third part of our proof consists in demonstrating that
b\l 0y (In(w)) — Ow || coqo,rmrr () < Ch™ || w loro,mymr+1y - (66)

To prove this, we differentiate (7) with respect to t. Using the fact that v,, o and ag

do not depend on time, we have

0a(t; Ty (w),vp) = a(t; 0y(y(w)), vp) +/(V-((8tb)l_[h(w)))vhd:r

Q

= Owa(t;w,vy) = a(t; Oy(w), vp) —i—/(V - ((Osb)w) )vpdx

Q
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with b € (C?([0,T] x Q))%. Then we have

a(t; O, (w) — Qyw, vy) = / (V- ((0b)(w — Iy (w)))) vpdx (67)

Q

and
a(t; Ol (w) — Oyw, vy) = a(t; Ol (w) — Ih(Oyw), vp) — a(t; Qw — In(Gyw), vy)
So from the last two equalities we get
a(t; 01, (w) — I(Ow),vp) = a(t; Ol (w) — Oyw, vy) + a(t; Opw — In(Opw), vp)
= [ (V- (@) w - Ww))) vade + aft: 0w = (0w), )
Q
Let vy, = 0I1p(w) — I, (O;w) and by the coercivity and continuity of a(¢; -, -) we get
a || 001, (w) — L(0ww) || < alt; Ow — L(Osw), 11, (w) — I (dyw)) +
+ /(V'((atb)(w — IIn(w)))) (OIIn(w) — In(Opw))dz
Q
S M || 8tw — Ih(at’w) ||1|| atHh(’l,U) — Ih(atw
(b llezqo,mxay) | w — Ha(w) [l1f] GITa(w

. +

)
) = Ih(Ow) |lx

_I_

Then from the above inequality and (6) we obtain

M
bl 011 (w) — I(Oiw) [lcor (o) < h— | Oew — Ih(9w) || cogo,;m1(e))

+

S ChH_l || w ||CI(O’T;H7"+1)

I b llc20,7,0
AL R N

Then (6) gives

h || Oyw — atHh(w) ||C°(0,T;H1(Q)) < h || Oyw — ]h(atw) ||CO(0,T,H1(Q))
+ b || Ih(Gw) — Oy 11p(w) ||C°(0,T;H1(Q))
< O | w o oamey (68)

Part IV) The last thing left to prove is
|| 8,114 (w) — Byw) [lcoo,rsr2@)< CHH || w llovo,msmry - (69)
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Using an Aubin-Nitsche duality argument as before, we consider the auxiliary prob-
lem: Given s € L?(Q) find ¢(s) € V such that

a(t;v,0(s)) = (s,v), forallveV (70)
This is true also if we replace v by d;v with v € C'(0,T;V):
a(t; O, (s)) = (s, Ow)

Then we can write

(s, Ol (w) — Oyw)

| OIIp(w) — Opw | = sup
s€L?(Q),s#£0 || &} ||
— sup a(ta atHh(w) — atwa ¢(8)) (71)
s€L2(Q),s#£0 || 8 ”
Let ¢, € S, be such that
| ¢(s) — én [1=infy,es, || ¢(s) —va [L< Ch | ¢(s) [|2 (72)
with ¢(s) satisfying the regularity argument
16(s) 1< C |l s |l (73)

Since ¢, € Sy, the following holds

a(t; Ol (w) — Oyw, ¢(s)) = a(t; Ol (w) — Qyw, P(s) — oy, +at8tHh( ) — Oyw, ¢p)
= a(t; Ol (w) — Qyw, P(s) — /V ((Ob) (w — I (w))) prdx

where the last equality comes from (67). Then using the continuity of a(t; -, -)
alt, o) = 00, 6(9) ) + [ V- (@) (M) — w)(6(s) — én)io
— [ V(@D (w) - w)é(s)dz < M | Aln(w) = B 1] 6(s) = 6 I
+ [ V(O M) = w)6) — dds — [ V- (@D)[a(w) — w)(s)ds (74
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Using (72), the second term at the right is bounded as follows
9+ (@)htw) = ) (6(5) = 1)

- /(v 0,b) (I (1) — w)(()—gbh)dw/atb-vmh() 0)(6(s) — )

(
) -

< b llezrmll Ta(w) —w ([l ¢(s) = én | + 11 0 llc20m0) | Hn(w) — w |l ¢(s) — ¢ ||
< o llozommll a(w) —w [l ¢(s) = én [l + 11 0 [le2q0,rayll Ha(w) — w I+ ]| (s) — ¢ s
< o llezoroyll n(w) —w [ Al ¢(s) lla + [1b [le2orso | Ha(w) —w [[x A || ¢(s) [l
From (73) we obtain
/V ((8:b)(ITn(w) = w))(b(s) = ¢n)dz < C || b [lo> syl a(w) —w [lx B[] 6(s) |2
< Clblleprml Ta(w) —wlli bl s (75)

The last term can be bounded in a similar way
V- (@) (w) - w)é(s)da
= / (0:b) (Ip(w) — w)V(¢(s))dx — / (0eb - n)(Ilp(w) — w)g(s)ds  (76)
Q o0
The term I, (w) — w € Hg(Q) which means that (II;(w) — w)|sq = 0. This gives

- /thb)(nh(m —w)V(¢(s))dz <[| b [|c2(0,r;0) |l Tn(w) — w [[[| ¢(s) [k
< b llezoroyll Tn(w) —w llll ¢(s) ll2< C || T (w) —w ][] s || (77)

where the last inequality comes from the regularity estimate (73) of ¢(s).
Using the estimates (74), (75) and (77) we can estimate (71)
a(t; 011y (w) — Oyw, ¢(s))

s€EL2(Q),s#£0 ” s ”

M08 (w) — B 1 6(5) = 60
$€L2(Q),s#£0 || § ||
+ s C | b ez bl Ta(w) —w ||| s ||

$€L2(Q),s#£0 ” S ||

C |1 —

v wp @) - wlis]

s€L2(Q),s#£0 || S ||

| 0 1Tn(w) — G || =

IN

44



Combining the inequalities (68), (73), (72) and the estimates for || II,(w) — w ||,

|| I, (w) — w ||; we obtain

sup || 0In(w) — Bw ||[< CH™ || w ||erormr+ (78)
t€[0,T]
So we have that
| 8TT4(w) — Byw [|coqrsr2() < CH ™ || w o1 (o,rsmm 1) (79)

(57), (65), (68) together with (79) proves that

| w = Ta(w) ller o2y +h || w —Th(w) [lovomsm@) < CH™ [ w llerorar)
]

With the Projection-Property(8) proven, the general theory of Section 2.2 di-
rectly applies. The coercivity constant o depends on the diffusion coefficient, o. The
operators E(-,-), En(-,-) and Ep(-,-) are contractions if ¢ > 0. In the case of pure
advection the results obtained before do not apply.

In particular, if b(¢) and f(¢) are time periodic, the solution of the continuous semi-
discrete and discrete problem are time periodic and any initial solution is attracted
to the periodic solution. Moreover, from Theorem 2.2.5, the solution of the time-
periodic discrete problem is at most at a distance of O(k + h"*!) from the solution of
the continuous time-periodic problem.

The error estimate obtained in Theorem 2.2.3 holds for a Galerkin method provided
the space step h is sufficiently smaller than the diffusion coefficient o. If this is not
the case a stable Petrov-Galerkin method must be used, but the above analysis and
conclusions are expected to also hold in that latter case as Galerkin formulations are
often stabilized by the addition of positive terms, increasing the coercivity constant
Q.

So far, we have used homogeneous Dirichlet boundary conditions. The results are
true in the case of non-homogeneous boundary conditions if we extend the function
on the boundary to the whole domain and then transform the problem into one with

homogeneous boundary conditions.
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2.3.2 Application to the Stokes problem

The Stokes problem has a more complex variational form because of the extra pressure
term which involves no second order derivative in space and no time derivative for
that variable. The error-estimates will depend on both the velocity and the pressure
as we shall see.

Let € be an open, bounded Lipschtiz set in R¢. The Stokes problem is defined by:

Find a vector function
u = {U,l, Uy any Ud} : [O,T] x Q — Rd
and a scalar function
p:[0,T] x Q— R,

respectively equal to the velocity of the fluid and its pressure, such that

@—VAU-J-VP = f in ]0,T[xQ (80)

ot
V-u = 0 in ]0,T[xQ (81)
u = 0 in ]0,T[x00
u(z,0) = wuy in

where the vector functions f and ug are given, f defined on [0, 7] x Q, ug defined on

Q. We define the following spaces

V.= {ue?t V-u=0} (82)
V i=the closure of ¥ in (H())* (83)
H :=the closure of ¥ in (L*(Q))? (84)

The space V is equipped with the norm of (H;(2))? denoted by || - ||;. V is a Hilbert
space with the scalar product

((,0)) =Y _(Dsu, Div) (3 sy (85)

im1
The space H has the norm of (L?(€2))? denoted by || - ||.

The space V is contained in H, and the injection is continuous. Let V' and H' denote
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the dual spaces of V' and H respectively. By the Riesz representation theorem, we

can identify H and H' so we have the following inclusions
Ve H=H <V

We define the following bilinear form:
a: (Hg(Q)? x (Hy())! — R

a(u,v) :=v((u,v)) (86)

In addition to the bilinear form a(-, -) defined above we introduce the following Hilbert

space L3(§2) where
13(9) = {g € I*(9)| / =0 (87)

and b a bilinear form such that b : (Hg(Q))¢ x L2(Q) = R

b(v,p) == —(V-v,p) (88)

Obviously a(-,-) is coercive with a coercivity constant o and it is continuous with a

continuity constant M. Also the bilinear form b(-, -) satisfies the following inequality

b(v,p)| < M vl p (89)

where M is a constant.
Then the weak mixed-formulation writes as : for f € L?(0,T; (L?(Q2))¢ and uy € H,
find u € L2(0,T; (H}(2)4) N L*(0,T; H) and p € L*(0,T; L2(9)) such that

% <u,v > +a(u,v) +b(v,p) = < f,v> for any v € (H(Q))
q) = 0, for any q€ L3() (90)
u(0) = wug

Problem (90) admits a unique solution. For a proof, see [9, page 302].
We consider the spatial approximation of the Stokes problem: Let (Sp)pso and

(@n)n>o be two families of finite element spaces. Suppose that the couple (Sy, Q) are
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uniformly compatible in the sense that they satisfy the Brezzi-Babuska-Ladyshenskaya

condition, i.e. there exists a constant # > 0 independent of A such that

. f th - Up
N fq,cq, SUP Lo

> (91)
onesn || o (]l gn |l

We suppose that S, and @) satisfy the interpolation property, namely that there
exists a constant r > 1 such that for all w € (H™'(Q))? and ¢ € H"(Q) N Q there

exist interpolation operators I, and (), that satisfy

| w—=In(w) llovoryr2yey +h I w—=Ih(w) llerorm @)y < CH L w llororym+ )
(92)
and
¢ = @n(@) llcrorsr2n < CR” | @ lloro.mmm ) (93)
We introduce the elliptic projections as in |9, page 304]: For all ¢ € [0,7T] fixed,
u(t) € (HE(Q))? and p(t) € Q we define I, (w) € S, and p,(p) € Qp, such that

a(llp(w), vp) + b(vp, pn(p)) = alw,v) +b(vs,p), for any vy € Sy
b(In(w),qn) = blw,qn) for any gqn € Qn (94)

Then we can prove the following theorem, given in [9] (without demonstration):

Theorem 2.3.2. If (w,p) are such thatw € C1(0,T; (H™(Q))4) andp € C*(0,T; H"(Q))
then

| w—T(w) loromee@yy < CH (I w lleroryar+r@ps) + | 2 llovorar@y)

| w—TIa(w) |lerorsm o)) | = pu(P) llcr 0200 < CR™ (|| w | ox 0,03+ (02)))

+
+ 2 lleom;mr@y) (95)
From now on, to make the calculations clearer we shall define
c(w,p) ==l w ||cl(o,T;(Hr+1(Q))d) + | p ||Cl(O,T;H’(Q)-
Proof. Adding and subtracting a(I,(w),vs) and b(vy, @, (p))in the first equation of
(94) we get
a(Ilp(w) = In(w), va) + b(vn, pr(p) — @ (P)) = a(w — In(w), vn) + b(vn, p — @x(p))
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If we substitute v, = I (w) — I(w) in the above equation and use the continuity and

coercivity property of a(-,-) the following inequality holds

a | u(w) = y(w) [} +b(Ia(w) = In(w), pr(p) — Qu(p))
<M || In(w) = w [[1]] In(w) = Tp(w) [[y +b(In(w) — Lh(w),p — &(p)) (96)

Using a similar argument as in [9, page 104] and the continuity of b(-, -), the inequality
(96) becomes

a || Ta(w) = Ii(w) I} +8 || Ta(w) — Ta(w) 1]l @u(p) — pu(p) | (97)
< O w = In(w) L[] Th(w) = Tn(w) [l + || Ta(w) = Lu(w) Jl2]l » = @u(p) 1)

From (92) and (93) we obtain the following result

min(e, B) (|| Hn(w)=Iu(w) [[1 + [| on(p) = @u(p) ) < CH ([ w lr+r@pye + 12 [l (@)

This gives

| w—p(w) llco,rymr@pey + 1| 2= pa(p) llco,r;L2)) (98)
< CR (|| w [|coo,rymr+1 )ty + || P leoo,r;ar(92)))

In a similar way we obtain the estimate on the derivative. Taking the partial derivative

in time in the first equation of (94) the following equality is obtained
a(01Tx(w), vn) + b(vh, Orpn(p)) = a(Oyw, vp) + b(vp, Orp) (99)

With the same kind of arguments as before we have the following estimate for the

partial derivatives

| w = Olla(w) [lco,rymrpey + | 0w — Orpn(p) [lcoo sz (100)
< Ch(|| Opw ||c°(o,T;(Hr+1(n))d) + || Oip ”CO(O,T;HT(Q)))

Combining (98) and (100) the second inequality of the theorem is proved

| w =T(w) leromyar@psy + 1P = o llororzze)
< Ol (| w = () llovornns + 1@ llosorr@) (101)
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To prove the first inequality we need to use an Aubin-Nitsche argument: Given

s € (L?(2))¢ find ¢(s) € V such that
a(v,¢(s)) = (s,v) for allv € V (102)

The definition of the projection operator(94) gives

| w— T (w) ||=

N (R A CORZC)
SE€(L2(Q))d,s£0 | s ||

_ sup a(w — Ty (w), ¢(s) — dn) + a(w — Ix(w), ¢n)
sE(L2(Q))4,5£0 | 5]

_ g Y Th@).06) ) M mB) =P
s€(L2(Q))4,s£0 | 5]

The term involving the bilinear operator b(-, -) requires extra care, as follows

b(¢n, pn(p) — p)

s |l
) . b(dn — (), pu(p) — p) + b(&(s), pr(p) — p) (104)

s€(L2())d,5£0 | s |l

SUpP  se(L2(Q))4,5#£0

Because ¢(s) € V, then the last term is b(¢(s), pn(p) — p) = 0. Using the continuity

of a(-,-) and b(+,-), and the regularity argument as in (72) we obtain

| w—Ta(w) | )
M || w — Tl(w) ]l 6() — 6 [l +M || dn — 6(5) 1l pu(p) —p |
s

< sup
s€(L2(Q))%,5#0

M| w = T(w) |y Ch I 9(s) s , W71 6) lell p = pulo) evoiraoeey

SR A s 5]
< Ch(|| w = Th(w) leoorm@yy + 1| 2 = pa(®) lloorszay)
So from (98) and (105) the following inequality is obtained
| w =T (w) [|cogoryz2(@)sy < CR™ e(w, p) (106)
In a similar way we can approximate the time derivative

|| 8tw - atHh(w) ||C’0(0,T;(L2(Q))d)§ C’h’”’lc(w,p) (107)

20
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Then, (106) together with (107) gives
|| w— I (w) ||cl(0,T;(L2(Q))d)S Chrﬂc(wap)
So the first inequality of the theorem is proven. O
Space-approximation Let
Vi := {vn € Salb(vn,qn) = 0, for all g, € Qp}

We approximate (90) as follows: Find u; € C'(0,T;S) and p, € C°(0,T;Qy) such
that

d
pr < Up, vy > Fa(up,vp) + b(vp,pp) = < f,v, > forall v, € Sy,
b(up,qn) = 0 for all g, € Qp
un(0) = uon (108)

with ugp € Vj. The velocities u and uy, satisfy the following theorem:

Theorem 2.3.3. The solutions u of (90) and uy, of (108), withu € C*(0,T; (H™1(Q2))9),
satisfy
Il u(t) = un(t) lleogo,ry s I o — uon || +CA™ e(u(t), p(t)) (109)

Proof. For all t € [0,T], u(t) € (H$ () and p(t) € Li(Q), let [,(u) € S, and
pr(p) € Qn be the projection defined in (94). We can write uy, (t) —u(t) = v1(t) +ve(t)
such that vi(t) := up(t) — My (u(t)) and ve(t) := My (u(t)) — u(t). Also we introduce
the following notation 6(t) := py, — pr(p) corresponding to the pressure.

v9 can be bounded using the inequality (95) on the projection operator

1) < Ch™* e(u, p) (110)

sup (|| va(7) [| + |

vy (T)
0<r<T or
The next step is to bound || v1(t) ||. We subtract (90) from (108) to obtain

% < up(t) — u(t), v > +a(un(t) — u,vs) + b(vs, pr(t) — p(t)) =0 (111)
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From the definition of the projection operators (94), the definition of v (t), the defi-
nition of §(¢) and the use of (111) we have that

dv1
E(t)’vh > + a(vi(t),vn) + b(vp, 6(t))
- < %(t), vp > Fa(up(t), vn) + b(vn, pr(t))
- < w,vh > —a(I(u(t)), vn) — b(on, pa(p(t)))
_ dugft),vh > +a(un(t), vn) + b(vn, pa(t))
_ w, vy > —a(u(t), vy) — b(vn, p(t))
_ - duc};t( ),Uh S < w’yh > —% < up(t) — u(t), v, >
< dz;it),vh .- w,vh o< _dvé_t(t),yh > (112)
Choosing v, = v1(t) from the last equality (112)
1 ) dvy(t)
5 o) I +a(or (), v1(1)) + b(us(£),60) = = < ==, v, > (113)

We know that b(IT,u(t),qn) = b(u(t),qs), from the definition of the projection op-
erator (94). We have that b(I,u(t),qn) = 0 because b(u(t),qs) = 0, for all u(?)
solution of the Stokes problem. Also, for all u(t) € V, b(u(t),qn) = 0 is true and
b(up(t),qn) = 0 for all up(t) € V. From here we can conclude that b(v1,g,) = 0, so
b(v1,6(t)) = 0. The rest of the proof follows the same steps as in Theorem 2.1.2

and the error estimate for the semi-discrete problem is obtained. O

Fully-discrete problem Applying the backward Euler method, the space-time
discretization of the Stokes problem writes as: Find u}*' € S, pi™' € @), such that
1

k (UZ—H - ug: Uh) + a( n+1> ) + b(vha n+1) = (f(tn-i-l): Uh)a for any v, €Sy
( n—|—1’ h) = 05 fOT any gp € Qh
up = gy (114)

uy given in V.
Here u}*', pp™' and u? represent the solution of the discretized problem at time

tnt1 = k(n+ 1) and t,, = nk, respectively, £ is the time step.
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Theorem 2.3.4. Assume that any solution uy of the semi-discrete problem (108) is
such that up, € C*(0,T; (L*(Q))?). The solution u} of the fully discrete problem (114)

and uy, satisfy
" tn O%up (T :
It = wnten) < Ok [ 1557 2 ar)
0

at any time t,.

Proof. The semi-discretized equation (108) reads as

L n(t) — un(t).vn) -+ alun (), vn) + (on, palt)) =

uh(tn—H) — ’U,h(tn) 8uh
( : = 5 (1), o) + (f(taga), vn) (115)

Given the fact that u € C?(0,T; H"*1(2)), by the Taylor Theorem the first term on
the right-hand side is equal to

Uh(tn-l-l) - Uh(tn) _ auh . _l /tn+1 _ a2uh
( p 5 (tns1),vn ) = AvA (1 tn)—aT2 (1T)dT, vy

Defining e} := u} — up(t,) and subtracting (115) from (114)

1 n+1 n n+1 n+1 1 fnt1 a2uh
E(eh ~€h» Uh)+a(eh ’Uh)+b(vh:ph _ph(tn+1)) = E [T - tn]ﬁ(T)dTa Up,
tn

(116)
for all v, € S;.If we set v, = €}t! then b(e} ™, gn) = 0 for all ¢, € Qp, so we can
obtain an estimate of the velocity independent of the pressure. Then, the rest of the

proof can be carried out with the same arguments as in Theorem 2.1.3. O

Time-periodic Stokes problem The problem writes as : Given f a time peri-

odic function with period T, find u(x,t) and p(z,t) such that

a—u—VAu+Vp = f in ]0,T[xQ2 (117)

ot
V-u = 0 in ]0,T[xQ
u = 0 in ]0,T[x00
u(z,0) = u(z,T) in
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The weak formulation of (117) writes as: Given f € L%(0,T;(L?(2))%), find u €
L%(0,T; (HE(Q))4) N L®(0,T; H) and p € L?(0,T; LZ(Q2)) such that

% <u,v > +a(u,v) +b(v,p) = < f,v> for any ve (Hg(Q))* (118)
b(u,q) = 0, for any g€ LjQ)
u(0) = u(T)

The initial value problem associated to (118) is :Given ¢ € L?(Q) and f € L*(0,T; (L?(2))%),
find w € V and p at any time ¢ such that

% < v >+a(U,v) +b(v,p) = < fiv>, for any v € (H;(Q)* (119)
b(i,q) = 0, for any g€ LiQ)
u0) = ¢

We approximate (118) as follows: Find u, € C'(0,7T;Sy) and p, € C°(0,T; Qy) such
that

d
pr < Up, vy > Fa(up, vp) + b(vp,pp) = < f,vn, > forall v, € Sy,
b(uh, qh) = 0 for all qn € Qh

From the second equality of equation (119), b(v,q) = 0 for all ¢ € L3(f2), whenever
v € V, so we can estimate the time-periodic velocity without involving the pressure
term, as long as we take the test function in V.

Then problem (118) becomes: Find v € L*(0,T;V) N L*(0,T; H) such that

%<u,v>+a(u,v) = <f,v> for any veV (121)
u(0) = u(T)

and the initial value problem (119): Given ¢ € L?(Q2), find € V' at any time ¢ such
that

d _ ~
£<u,v>+a(u,v) = < f,uv>, for any veV (122)
u0) = ¢
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As in Section 2.2, the solution of (122) can be written as (see [22])

() = E(t,0)¢ + /0 CB(t5)f(s)ds = E(t.0)6 + g(1) (123)

E(t,7)¢ is the solution of (122)with f = 0 and initial value ¢ given at t =7 > 0. We

can prove the following Lemma as in Lemma 2.2.1
Lemma 2.3.5. || E(¢,0) ||< ¢ < 1, with ¢ independent of h.

The semi-discrete problem (120) can be treated as for going from problem (118)
to problem (121), without involving the pressure term, if we take v, € V;. Then

problem (120) writes as : Find u, € V}, such that

% < up, ¥ > +alup, ) = < f,o>, for any eV, and te(0,7T)

We associate to (124) the following semi-discrete problem : Given ¢, € V,, find
up, € Vj, such that

% < Up, ¥ > +a(up, ) = < f,p >, te(0,t) and any Y€V,
un(0) = o (125)

Let Ep(t,7) : Vj, = Vi, t > 7, be the solution operator of the semi-discrete homo-
geneous equation with initial value given at £ = 7. As in Section 2.2 we have the
following result: Let Ej(t,0)¢p be the solution at time ¢ of (125) with f = 0, then

Lemma 2.3.6.
|| En(2,0) ||<ec< 1

with ¢ independent of h.

Theorem 2.3.7. Let u and uy be solutions of (121) and (124). Then
| w(t) — un(t) ||[< CR™ e(u, p), C constant

forallt <T.
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Proof. Similar to proof of Theorem 2.2.3. O

The backward Euler fully discrete scheme writes as: Find U,, € V}, such that

Un - Un—l

() +aUn ) = () ), n=1,2 N and v €V;(126)

Uy = Un

The fully discrete scheme for the initial value problem is: Given ¢, € V}, find ﬁn eV,
such that

Un Uty v a@d) = (Fta)w), b EVa (127)

(7]C v
U = ¢n

E},; is the solution operator of the initial value problem with f = 0, as defined in

Section 2.2.

Lemma 2.3.8.
| Eni(T,0) ||< ¢ < 1, with ¢ independent of h.

Theorem 2.3.9. Let U, be solution of (126) and u(T) solution of (121). Then

T 82U %
0 = o) < o etupy +0n ([ 50 17 ar )

Proof. See proof of Theorem 2.2.5 O

There are two important remarks to be underlined.
Remark1 The existence of the pressure can be proven as in Temam( [31]) introducing
the following functions U(t) := fot u(s)ds and F(t) := fotf(s)ds. Integrating (121)

over time we see that

< u(t)—ug,v > +v((U(t),v)) =< F(t),v>, for any t€l[0,T] and any veV
(128)

or

<u(t) —ug—vAU(t) — F(t),v >=0 for any te€[0,T], and any veV
(129)
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For each t € [0, T] there exist some function P(¢) € L?(f2) such that
u(t) —uy — vAU(t) + gradP(t) = F(t) (130)

Observing that
gradP(t) = F + vAU — u + uy (131)

we conclude that P € C(0,T; L?(Q2)) and we can differentiate (130) in the variable ,
in the sense of distribution in Q x (0,T). Setting p = %& we obtain precisely (117).
Regarding the periodicity of p(t), this comes from (117) taking in consideration the
fact that u(z,t) and f(z,t) are time-periodic.

Remark?2 The case of linearized Navier-Stokes equations can be treated in a similar
way as the Stokes problem with the extra difficulty which is created by the advective

term. Consider the Navier-Stokes equations

8—u—1/Au—|—u-Vu—|—Vp = f in ]0,T[xQ2 (132)

ot
V-u = 0 in ]0,T[xQ (133)
u = 0 in ]0,7[x00

u(z,0) = uy in Q

where the vector functions f and ug are given, f defined on [0, 7] x €2, ug defined on €.
The Navier-Stokes equations (132) can be linearized around 4, by taking v = @ +u
with 4,7 : [0,T] x Q@ — R? | e.g to look at the stability of #. The Navier-Stokes

equations becomes

ou 0u N ~ N N -~
ot @D V(@) - rA@+ D) +VE+H) =T +] (134
where @ satisfies the Navier-Stokes equations
ouw _ __ I
E—i—u-Vu-i—Vp:f (135)
Then the linearized Navier-Stokes equations writes as
ou ~ ~ n
E-i—u-Vu—i—u-Vu—yAu—l—Vp = f
V-u =0 (136)
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Assuming the term u - V4 is small, the linearized Navier-Stokes equations becomes

%Jra-va—u&w tu+Vp = f

at
Vi = =0 (137)

The analysis of the initial value and time-periodic problems for that linearized Navier-
Stokes equations, and their discretizations, can be done by combining the techniques
for the linear advection-diffusion and the Stokes equations. As a consequence, one
notices that the linearized Navier-Stokes equations can only have stable periodic
solutions under periodic forcing in the limit £ — oo, and this is true both for the
continuous and the discrete problems. If under periodic forcing, the full nonlinear
Navier-Stokes equations show a non-periodic solution, this can only be the result of

nonlinear effects.

2.4 1-D Advection-diffusion equation

Advection-diffusion equations are an important class of partial differential equations
with linear operators that arise in fluid mechanics. Basically they describe physical
phenomena involving the transport of physical quantities by moving continua. This
section focuses on the numerical results of the 1-D time-periodic advection-diffusion
problem. In Section 2.4.1. we study the effect of the coercivity of the associated
bilinear form on the existence of a time-periodic solution, using a simple 1-D example.
In Section 2.4.2, the numerical experiments intend to explore the relevant parameters
that control the convergence to a time-periodic solution. We used a finite element
method in space and the backward Euler method in time. The convergence of the
solution towards a periodic solutions obtained in our numerical experiments is also

confirmed through a spectral analysis of the method.
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2.4.1 The necessity of the coercivity of the bilinear form on

the existence of a time-periodic solution

As we have proven before in Section 2.2, the coercivity of the bilinear form a(t; -, -)
is a sufficient condition to obtain a time-periodic solution of the parabolic PDE in-
volving that bilinear form and a periodic forcing term. As we know, the coercivity is
dependent on the diffusion coefficient v in the advection-diffusion equation. Basically,
if v = 0 the equation is a purely hyperbolic one and the coercivity does not hold.
To study the impact of the coercivity on the existence of a periodic solution, we

consider the 1-D advection-diffusion equation

ou ou  Ju
—_ — —V— = <z<
o +C(I’t)8x Vo f, 0<z<1
u(0,t) = 0
u(l,t) = 0
u(z,0) = 0 (138)

with ¢(z,t) = cos(2nt/T) , T =1 and f(z,t) = 2.0 for x € (0.4,0.6) and f(z,t) =0
elsewhere, at any time ¢. In case v = 0, we have a pure advection equation and the
boundary conditions above will be imposed only on the inflow boundary, namely at
x =0 when ¢(0,¢) > 0 and at x = 1 when ¢(1,t) < 0.

The numerical method used here is the explicit upwind finite difference method(
which in 1-D case is similar to a Petrov-Galerkin method) with a time step & = 1073,
a space step h = 1072 and a number of time steps per period N = 103. We present
two cases:

The case v > 0

In the situation where v # 0 the solution is time-periodic with period 1. The results at
time ¢ = 20, 20.25, 20.5, 20.75 and 21 are represented in Figure 1. Also, we represent
on the same graph the solutions at times 20.0, 25.0 and 30.0. After a transient period
of time, the solution stabilizes and it becomes periodic in time. In the calculations,
we use v = (0.1. The larger v, the quicker the solution becomes periodic. From the
theory developed in Section 2.2, it is guaranteed that a periodic solution exists and

is asymptotically stable. Hence the numerical solutions behave as predicted by the
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theory.

The case v =0
In the case where v = 0 the solution is not time-periodic. The results at time ¢ = 20,
21, 22, 23 and 24 are represented in Figure 2. Also, it is more evident that the
solution tends to increase in time if we look at the graph of the solution at times
t = 20, 25 and 30, which is an indication of the fact that in the pure advection case
we cannot obtain a time-periodic solution. In the next section, a 1-D spectral analysis
is used to study the effect of different parameters on the solution.

This example indicates that for some test cases the coercivity is a necessary con-

dition for the existence and stability of a time-periodic solution.

2.4.2 Spectral analysis of a 1-D advection-diffusion equation

The time-periodic problem for the 1-D advection-diffusion equation on the whole real

line writes as

ou ou 0%u
u(0) = u(T)

We do not know the exact value of u(0) so we are going to solve the following

initial value problem: Find u such that

ou ou 0%u

for a given wuy. Using the theoretical results of Section 2.2 and Section 2.3 we know
that the solution of this problem tends to a time-periodic solution because the bilinear
form associated to the equation is coercive.
Using the Galerkin FEM in space with u(x,t) = Z;V:1 ﬁj (t)®,(z), as described in
[28, Section 2.3], we approximate (140) on a finite interval [z1, ..., T x]
M% +QU = f (141)

Uuo) = U°
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where U is a given initial value and

1 dﬁjfl 2 dﬁ] 1 dﬁj+1 b vV~ 21/ ~ b v
5 2 - = VU + 2T
6 d Taa To o T Can gl Uit (g )l = I

with 1 < 7 < N. Splitting U = U+U where U is the solution of a time-periodic semi-
discrete problem approximating the solution of (139), it results that the transient part

U solves the following system

v g~ o (142)

dt
o) = U°—U(0)

The transient part U generally tends to zero in an infinite time. The question which
arises is how fast is the transient going to zero, and which combination of the physical
and numerical parameters controls the speed of convergence.

To fully discretize the system we use the backward Euler method and (142) be-

comes

(M + kQ)U™! = MU (143)
U° given.

The spectral analysis of this system is done using a method similar to the one
presented in [34, Chapter 2]: For solutions of the form w(jh,t") = U"e"¢" we have
the following recurrence relation U""le®" = g(¢h)Ume™ where —T < & < T .

h h
Substituting this into (143) we have

1 v . .. b v L
ok i(j—1)h¢ k=) elihé k _ i(i+1)hE) —
GEMIE — Ko+ )0 4 (24 k) 4 (4 (o — )R]
1 2 1 ..
— G- DhE | Z ighE | T i(G+1)hE
66 + 36 -+ 66

The amplification factor g(£h) can be written as

s cos(Eh) + 3
(- P%h) cos(Eh) + i3 sin(ER) + § + 5o Peh

g(&h) =

where Pej, = 7 and A\ = % are the numerical Pechlet and Courant-Friedrich-Levy

(CFL) number, respectively.
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If we consider N the number of time steps within one period, then the evolution of
each wave mode from period to period is given by the N** power of the amplification

factor g(¢h), and we have:
Theorem 2.4.1. [g(¢h)|N < 1, for any 0 < Pe;, < co.
Proof. We can write |g(&h)| as
g cos(Eh) + 3

\/[(g — ) cos(Eh) + B + 12 + 4 sin®(€h)

g cos(&h) + 3
\/[(% cos(€h) + %) + P%h(l —cos(&h))]? + ’\Iz sin?(£h)
But 1 — cos(éh) > 0 and % sin?(£h) > 0 so we can bound |g(&R)| by

g(€h)] <1

assuming A # 0. We obtain that [g(¢h)|Y < 1. O

lg(Eh)| =

This result proves that the transient part converges to zero in an infinite numbers
of periods, so we obtain a time periodic solution when the number of time steps
n — oo. This is in complete agreement with the general theorem of Section 2.2
saying that any linear parabolic PDE, or its discrete version, subject to a periodic
forcing admits a stable periodic solution attracting all solutions of the initial value
problem. In case both \/Pe, — 0 and A — 0, then |g(¢h)|Y — 1, so we should
not obtain a time-periodic solution when n — oo. This will happen if the time step
k — 0, i.e. the number N of time steps per period goes to infinity, while A, b and v,
hence Pey, are kept constant. This result will be confirmed later in this section by
numerical experiments.

If we apply the spectral decomposition @(x,t) = U(t)e%® to the non-discretized
transient problem, we can compare the evolution of the exact solution with the evo-
lution of the solution for the fully-discrete system (143). To do this we need first to

evaluate u(z,t) knowing that it satisfies the following equation:

@4-()@ — @
ot or Vo
a(z,0) = ao (144)
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Assuming the exact solution takes the form @(z,t) = U(t)e*®

% +bicU = —v€?U (145)

Solving (145) with the initial value U(0) = Uy, we get
|U(T)| = |Tgle™" (146)
After one period T'= N k and the solution can be written in the form
T(T)] = [Tl (™) (147)

or
T(T) = [Tple” Pon (148)

From (148) it is obvious that the exact solution of the transient problem for each
wave mode converges to zero with the increasing number of periods since initial time,
as long as AN/Pey(éh)? > 0. On the other hand if AN/Pe;, = 0, the solution
\U(T)| = |Up| and the transient solution no longer converges to a periodic solution.
This happens when v = 0. Moreover, when k approaches 0 and Pey, is kept constant,

2 (¢h)?

the damping factor e Pen of the exact solution from period to period remains

constant, as opposed to the amplification factor [g(£Rh)|N of the fully discrete solution
going to 1 under similar conditions.
Numerical experiments

We investigate the consequences of the spectral analysis done in the previous
section by solving numerically a simple 1-D advection-diffusion equation with a time-
periodic forcing term. For our numerical experiment we consider f = sin(27t/T) on
[0,1] and u(0) = u(1) = 0.

The strategy used to compute a periodic solution is the following:
e Start with an initial condition U? = ug(z;), z; = jh € [0, 1], where ug(z) = 1—x;

e Iterate in time by computing U""! from U", using N time steps k = T/N
per period, up to the point where the following stopping criteria on succesive

iterations of the Poincaré map is met:
| UCFIN — UiV || < 1078, (149)
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where 7 is the number of periods computed since initial time.

We will compare the predictions of the spectral analysis and 1-D simulations
with published numerical results obtained by M.Rosenfeld in [25]. The focus of that
paper is on incompressible viscous flows in two-dimensional constricted channels with
time-periodic inflow. The experiments show that the results depend on the Reynolds
number (Re = Yn%) and the Strouhal number (Str = ﬁ) where d is the width of the
channel and U,, the mean velocity. The Navier-Stokes equations and the advection-
diffusion equations belong to the same class of problems, with the extra-difficulty
given by the non-linear term in the Navier-Stokes equations, hence the interest in

comparing our conlusions with Rosenfeld’s results. The data considered are
e d=1,h=479 x 1072
e Re =360, U,, =1.39
e k=T/200 and N = 200

The number of periods needed to reach a periodic solution for Navier-Stokes equations
for Str = 0.386, 0.011 and 11.787, are compared with the number of periods obtained
for our 1-D advection-diffusion problem as we can see in Table 1 and Table 2. When
Pey, = 17.244 and ) is small, e.g. A = 6.26 - 10~3, the number of periods necessary
to reach a time-periodic solution is large of order O(10%). When A = 6.784, the time-
periodic solution is obtained in two or three periods. If we increase Pe;, = 1000, we
see that the number of periods is very large O(10%) when A = 6.26-1073. If A = 6.784
the result is not affected by the increase of Pey, i.e. the time-periodic solution is
obtained in two or three periods. It is surprising to see how well simple 1-D linear
simulations predict the trends for the transients in 2-D nonlinear incompressible flow
simulations. That 1-D analysis gives at least a lower bound on the number of periods
needed to approach a periodic solution of the Navier-Stokes equations with a given
accuracy, and will be used to analyze our flow simulations in Chapter 4.

In Figure 3 the amplification factor |g(£R)|Y
values 17.244 and 1000, and taking for A the values given in the table. We also plot the

is ploted keeping Pey, at two constant

amplification factor corresponding to the exact solution of the problem (144) using
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Table 1: Number of periods necessary to obtain a periodic solution if Pe, = 17.244

Pey, A Str T | 2-D flows | 1-D adv diff
17.244 0.208 0.387 2 20 5
17.244 6.784 0.011 | 65 3 2
17.244 | 6.26x10~3 | 11.787 | 0.06 400 156

Table 2: Number of periods necessary to obtain a periodic solution if Pe, = 1000

Pey, A Str T | 1-D adv diff
1000 0.208 0.387 2 12

1000 6.784 0.011 | 65 2

1000 | 6.26x103 | 11.787 | 0.06 3327

the expression in (148) when A = 0.208. As we can see, in the case of a small A which
also is associated to the small period 7" = 0.06, the amplification factor after one
period does not drop sharply to zero. In fact it has values close to 1 for Pe, = 1000.
That means the transient part tends to zero very slowly so we need a large number of
periods to obtain a time-periodic solution. On the contrary, when A becomes larger
and larger, the amplification factor is very close to zero for most £h except near the
origin, implying that a time-periodic solution is obtained in a relatively small number
of periods. The graphs of the amplification factors are in complete agreement with the
numerical simulations presented in the Table 1 and Table 2: Larger Pey, for a fixed
A, or smaller A for a fixed Pep, both imply less damping from period to period, hence
more periods are needed to converge to a periodic state. Moreover, the prediction of
the transient by the numerical scheme can be quite wrong for some wave modes, if
we compare the blue (numerical) with the black (exact) curves on each graph.

Spectral analysis on a bounded domain The 1-D spectral analysis has been done

for an unbounded domain, i.e. R, so we have to study the impact of restricting the
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problem to an interval [0, L]. We consider the problem

01 01 0%

T N il L
8t+bax ”axz’ 0, 0<z<
u(0,t) =u(L,t) = 0 (150)
u(z,0) = ap(z), 0<z<L

The eigenvalues and eigenfunctions of the advection-diffusion operator with Dirichlet
boundary conditions can be calculated, at least in the continuous case. Assuming

u(x,t) = e Otu, (z), this gives

Ouy () Pun(x)
—0p Uy () + b L e 0 (151)

This is a linear second order differential equation with constant coefficients with the

associated characteristic equation
—vy2 +by -6, =0.

The solutions of this equation are

bE\/b% — 4vé,

1= 2v
Assuming that the v’s are complex, we can generate the solution u,(z) = e~ 3 sin(iv”?;‘lf’”s“)

that satisfies the boundary conditions u,,(0) = @,(L) = 0. We obtain that

(b2 — 4vd,, inm
1° = 7 (152)

which is an equation in the unknown §,. Solving this equation gives us

i it -
4v L?

The solution ,(z,t) = e °*'u,(z) of the problem (150) could be seen as the tran-

sient response of an advection-diffusion equation on [0, L] with homogeneous Dirichlet

boundary conditions, periodic volumic forcing and an initial solution %(0) = u(0)+u,.

Here we use the decomposition of u into the periodic and transient responses presented

in Section 2.4.2. Clearly, the transient response 1, decays exponentially in time to 0
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over all [0, L], with a rate controlled by d,.

From Equation (153), one can see that for a fixed diffusion coefficient v, the eigenvalue
0n(v) increases with the wave number n and the advection velocity b, but decreases
with the domain length L. This is confirmed by the the graph presented on Figure
4, where the parameters b =1, L = 1, n = 1 set the base case to which all the other
cases are compared. The consequence is that the transient mode u, will be damped
more slowly on larger domains, but a higher advective velocity b easily compensates
for that loss of damping. Also, highly oscillating modes are damped more rapidly in
time, leaving in the transient solution for large time ¢ only the first modes with small
on (V).

From Figure 4, one can see that as a function of v, é,(v) monotonically decreases
for small v to reach a minimum, then to increases monotonically for large values
of v. These two situations correspond to an advection dominant equation and to a
diffusion dominant equation, respectively. If v is small, §,(v) is large because of the
term b? /4v: Transient waves are rapidly advected and washed out out the domain. If
v is large, 8, (v) is large because of the term vn?7?/L?: Transient waves are rapidly

damped by diffusion very much like for the heat equation.
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Chapter 3

Time-periodic solutions of the

Navier-Stokes equations

The existence of time-periodic solutions of PDEs has been studied before. In his book
[17], J.L.Lions proved the existence of a time-periodic solution for the Navier-Stokes
equations subject to a periodic volumic force field.

In some industrial applications, the periodicity is enforced by a moving boundary
rather than an external volumic force applied to the fluid. It seems natural to consider
a periodic moving boundary when we think about lid-diven cavities. For example
in biofluid applications, the flow in a portion of an artery is driven by the inflow
boundary conditions. Therefore, the existence of a time-periodic solution for the
Navier-Stokes equations subject to periodic boundary conditions will be investigated

in this chapter.

3.1 Navier-Stokes equations with non-homogeneous

Dirichlet boundary conditions

The main purpose of this section is to present the proof of the existence of solutions
for problems with non-homogeneous boundary conditions. As we shall see the proof

is long and requires some additional results, but it will give us a better idea of the
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steps which have to be followed in the time-periodic case. The non-homogeneous case
needs an extra treatment, i.e. to transform the problem into one with homogeneous
boundary conditions by extending the function on the boundary into one on the whole
domain, under some regularity conditions. To our knowledge there is one reference of
such a proof,R. Temam [31], but he treats only the stationary problem. The following
intends to be a demonstration of the solution’s existence for a time-dependent problem
with non-homogeneous Dirichlet boundary conditions.

Basically, the problem considered is: Let 2 be an open, bounded Lipschtiz set in R¢.
We denote by @ :=]0, T[xQ,T > 0. The Navier-Stokes problem is defined by:

Find a vector function
u = {u, Uy, ..., uq} : [0,T] x Q2 — R

and a scalar function
p:[0,T] xQ—R,

respectively the velocity of the fluid and its pressure, such that

d
—u—l/Au—f—u-Vu—i-Vp = f n Q

dt
Veu = 0 in @ (154)
u = ¢ in ]0,T[x00
u(z,0) = wuy in Q(ie. ui(z,0) = ug(z), z € Q)
where the vector functions f, ¢ and ug are given, f defined on |0, T[x£2, ug defined
on 2, ¢ defined on |0,7[x0) and v is a constant. We suppose that f is given in

L%(0,T; (H1(Q))%) and that ¢ is the restriction of a function v defined on  such
that

Y o€ L0, T; (H*())Y)
Veyt) = 0 (155)
PY(t) = ¢ on 00

at any time f.

Then we look for a solution & = u — ¢ of a homogeneous problem. From (154) we
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obtain

du o~ ~ ~ .
d—?—l/Au—l—u-Vu-l—u-Vi/)—i-w-Vu—l—Vp = f in Q
Vu =0 in Q (156)
@ = 0 in ]0,T[xQ
where f = f +vAp — - Vi — 22,
We introduce the following spaces
V.= {ue2%Q), V-u=0} (157)
V i=the closure of ¥ in (Hy())* (158)
H :=the closure of ¥ in (L*(Q))* (159)
with the same properties as in Section 2.3.2.
We define the following bilinear form
a€ (VxV;R)
a(u, v) := v((u,v)) (160)

and the following trilinear form

b(w,u,v) = /Q(w -Vu) -vdx = i /ij(Djui)'uidx

ij=1

In the weak sense, equations (156) can be written as: Find @ € L?(0,7;V) N
L*>(0,T; H) such that

d
pr <u,v>+4v((u,v)) + b(u,a,v) + b(w,v,v) + b(y,a,v) = < f,o>
u(0) = o (161)

for all v € L2(0,T; V) N (L4())4, with f € L0, T; V") (see [31]).

We state the following Lemmas which we are going to use in the proof of our theorem.
Lemma 3.1.1. Foru €V, wv¢€ (Hy'(Q)*N (L4 Q)¢ we have that

b(u,v,v) =0 (162)
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Proof. For all v and v € V' we know that

(v5)° 1 2
UZ'DZ"U]"UJ' = ’U,ZD«L de = —= Dzuz(’l)]) dx
Q Q 2 2 Q

Summing over all 7 and j we obtain

b(u,v,v) = —% Z/QV -u(vj)’dz =0
j=1

]
Lemma 3.1.2. Consider the mapping t — B(w(t), u(t)) defined a.e. on [0,T] by
B(w(t),u(t)) € [(H'(Q)
< Bw(t),u(t)),v> = bwt),ut),v), for any wve H;)

Ifu,w e L2(0,T; (HY(Q))4) N L*(0,T; H) then

B(w,u) € L*(0,T;[(H'()T), ifd =2 (163)

B(wu) € L3(0,T;[(HQ)]), if d=3
Proof. For a proof see [12, pages 157-158], the results follow the same way. O

Lemma 3.1.3. The trilinear form b(-, -, -) is well defined and continuous on (H'(£2))%¢x

(HY(2))? x (H*(Q))4 N (L4(2))?) at any time t.

Proof. If uw € (H*(2))? we have that u; € H*(2) so by the Sobolev’s Theorem,
Uu; € Lq(Q)’ % =

% 5 and we observe that

|/Quj(Dj’l)i)wz’d$| <[l wj [[za@ | Djvi [l wi [z
which implies that b(-, -, -) is continuous. a
Lemma 3.1.4. Let u € L?(0,T; (H'(Q))4) N L*>°(0,T; H)), then u satisfies
1 1 1

u € L*(0,T; (LP(Q))%), 5= 3 54 (164)
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Proof. If u = {u;} we have that
u; € L*(0,T; H'(Q)) N L*(0,T; L*(2)) (165)
Two cases can be distinguished

1. d = 2 From Interpolation inequalities [17, page 71] and (165) we have that

1 1 1
lwalt) llzscoy< CQ) 1 alt) 12 ol w0) (22 < Nl s®) 1

From here we obtain that u; € L*(0,T; L*(2)) and using (165) we obtain (164)
with p = 4.

2. d > 3 Using the Sobolev’s Theorem with (H'(Q) — L%(f2)) and (165) implies
that
u; € L2(0,T; LY(Q)) N L*(0,T; L*(2))

<. Using Holder inequality and (165)
1 1 1
| wi®) o) <[l wit) |Zaayll wi(®) L2 @)< ¢ Il wil) [ 2o

which gives u; € L*(0,T; L(€2)) and this implies (164).

Lemma 3.1.5. For all v > 0, there exists some ¢ = 1(7y) satisfying (155) and
[b(u(t), %, v()| < v || v(t) |12 (166)
at any time t.

Remark The existence of ¢ which satisfies (155) was proven in [31, page 173].

Theorem 3.1.6. If we chose any vector v with properties (155) and (166), there
exists at least one u such that (154) hold.
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Proof. Setting u = u — 1, the problem (154) writes as (156), which is equivalent to
the variational problem (161).

The proof requires three main steps:
1) Estimation a priori I
We consider a basis {@Wy, }m>1 of V' and we denote by V,, := span{ws, ..., Wy, }.
Remark The spectral problem ((@,v)) = A(W,v), v € V admits a sequence of non
zero solutions @; € V corresponding to a sequence of eigenvalues \; that satisfies
((wj,v)) = Aj(w;,v),A; > 0, see [17, page 74]. The spectral basis members @w; are
orthogonal for both the L? and H' dot product.
We can replace the problem (156) by the following problem in V,, x [0, T]: Find (%)
of the form ,,(t) = >°7" | gjm(t)®W; satisfying the initial value problem for a system
of first oder ODE.

d . A PR . . L ~
— < U (t), Wi > +a(Up, W;) + b(Unmy U, @) + (U, 0, @;) + 0(, U, W) = < f,W; >

dt
Um(0) = Tom (167)

for 1 < ¢ < m.(Uom can be the projection of %y on V;, for the norm of H)
But Uy, = 377 gjm(t)W; so (167) becomes

NE

m
AN AN d AN AN
Z < Wj, Wi > - gim(t) + ) a(@, @) gjm(t) +

1

<.
Il

NE

b(ﬁj\ja 1/1, @i)gjm(t) +

m m -
ZZ w]awkawz gjm(t)gkm(t) +
j=1 k=1

1

<.
Il

~

+ bW, By, B)gjm(t) = < F(1), T > (168)
j=1

for 1 < i < m, with the starting value g;,(0) = g3,,, Where g;,(0) = g3, are the
coefficients of U, in the basis w1, ..., W,.
The m x m matrix [< @;, w; >] for 1 <4, j < m is nonsingular since @y, ..., Wy, are
linearly independent.

According to Caratheodory’s theorem (see [7]), this system of ODEs has a local
solution %,,(t) on a maximal time interval [0, ¢,,[ for some ¢, < T. If t,, < T then

necessarily lim,_,;— || Um(t) ||= co. Therefore, if we show that || u,,(t) || is bounded
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independently of m and ¢, then this will prove that ¢,, = T for any m and that @, (?)
is in fact a global solution of the initial value problem over the interval [0, 7).

For this, let ¢ € [0, t,,[, multiply (167) by gin(t) and sum over 1 to m. In view of
b(u,v,v) =0 we get

di,, . P ~
< d—;”,um > v || U |7 +0(Um, ¥, Um) =< f,Um > (169)

Let us integrate both sides of this equation on [0, ] and apply Green’s formula ( [9])

1. 1, .. b

5 | @ (2) |17 —3 | Gm(0) > + v [ || Gm(s) I ds +
0
t

~

+/0 b(iin(5), 1(5), i ())ds = /0 < F(5),n(s) > ds (170)

or

| @m0 I* + 2y/0 1T (s) 11} ds =l T (0) || —2/0 b(tm (s), 9, U (s))ds

t
+ 2/ < F(s),im(s) > ds (171)
0
Due to the assumption made on 1 (155), taking v = % we have that
14
oo, 0) < 2l vt

Which proves that
t t R
[ bl )t < P )t < [ Gl 1 F vl )i
0 0
¢ 14 ~ 14 —~ -~
< [N+ 20T I+ ) F IR0
0
Then (171) becomes

t t
| @ (8) 12+ / i (s) |2 ds <[ Tm(0) || +C / | F(s) 1B ds

because || - ||<]|| - [|1-
Therefore we can conclude that @,,(t) can be bounded in L*(0,7;V) N L>(0,T; H)
with a bound independent from ¢ and this proves that t,, = T, so u,(t) is a global
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solution of (167) on [0, 7.

2) Estimation a priori II
We are going to demonstrate that £7,, is bounded in L2(0,T;V"). Let us define the
projection operator I, : V' — V,, C V asin [17, page 75]

m
ph =Y < h,@; > @ (172)

i=1
As mentioned in the Remark made at the beginning of the proof, the eigenfunc-
tions w; are in V. From the identification of the duality product < -,- > with the
dot product over H (because V — H = H' — V'), II,, is nothing but the H-
projection operator on the subspace V,, whenever the function A in taken in H, hence

|| I || ¢z, )< 1. This can be proven in the following way

m m
| Mu 7= < u, @; >< u, @; > (@i, @)y = Y _(u, @) jr )\
i,j=1 i=1

The last equality comes from the fact that @; and @; are the spectral basis member

defined in the begining of our proof. From the spectral theorem we obtain

m

> (ww)hi = Vu ||

i=1

This can be bounded as follows
| Vau 5L w5

Because I, = II], : V! — V' we obtain || IL, || 2o ,vn=|l n ||2v,v)-
By transposition and the fact that Il,, is self-adjoint, we obtain || IL,, || &7y < 1.

Remark The fact that I, is self-adjoint can be proved easily as follows: For any u,
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veV'

m
< ILyu,v >ygyr = < E < u, ﬁJ\Z > @-,v >y
i=1

m
= Y <u, @ ><v,@; >

=1

m
= < U,Z < U,@i > ’(,171 >vikv
i=1
= <u, Hmv VIV,
thus IL,, = II7,.
We define the operator A as follows

a(u,v) =< Au,v >, Ae LV, V). (173)

Using the operators A, B and II,, defined so far, the variational form (161) reformu-

lates as an equation over V'

%am = L, (BT, i) — (B (T, 1)) — o (B(W, i) — VI Al + IL f (174)

From Lemma 3.1.2, that equation makes sense in V' as
B(ama am)a B(ama w)’ B(wa am) € [(‘Hl (Q))d]l — VI'

Also A, € L*(0,T;V").
From the fact that || II, || ¢w/y)< 1 and the boundedness of %, in the space
L(0,T;V)NL>(0,T; H), the equation (174) implies that %7, is bounded in L2(0, T; V).
3) Convergence to the limit
The following inclusions hold

Vs H<=V

and V < H is compact as in [17, page 76].

Using the weak- and weak® compactness of bounded sets in Sobolev spaces as well as
a compactness theorem (see [17, page 58]), we can extract a subsequence 4, of iy,
such that

(i) weak lim, 00U, = U in L*(0,T;V)
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(ii) weak™ lim, oo, =u in L*°(0,T; H)
(iii) a.e. and strong limy, .U, = U in L?(0,T; H)
(iv) weak limy 0o 20, = % in L?(0,T; V")
Item (i) and (ii) imply that @,(0) — ©(0) weak in V.
From (164) we have the following limit
SR e 111

weak U,;U,; — &; in L°(0,T; L2(Q2)) with > =32 24 (175)
which due to (iii) gives &; = u;u;.
This allows a passage to the limit in the nonlinear term as for any ¥ € L?(0,T), the

following holds
T T
[ s Tt =~ [ 6 05,7,
0 0
Taking the limit and using (175), we obtain
b(ty, U, ;) — b(d,d, W;) weak in L*(0,T)

The convergence of all the other terms (linear in u) in the variational formulation is

a simple consequence of (i)-(iv). Taking m = p in the limit we thus obtain

d . . PR o - o~ ~
pm < u,w; > +v((u, w;)) + b(u,u, w;) + b(u, ¥, w;) + b, u, w;) =< f,w; >

The w; form a basis, hence the result. O

3.2 Time-periodic solutions of the Navier-Stokes

equations

Theorem 3.2.1. Given the functions f and ¢ time periodic with period T, f €
L2(0,T; V") and ¢ satisfying the property (155), there exists a function v € L*(0,T; V)N
L>(0,T; H) that satisfies

% <u,v>4v((u,v)) + b(u,u,v) = < f,v>, foranyveV
u(z,t) = ¢, in[0,T] x 02
u(0) = w(T) (176)
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Proof. Using the hypothesis of Theorem 3.1.6 take ¢ as in (155) and set u := u— 1.
From (176) we obtain

du A A N —~
d—z—yAu—i—u-Vu-l—u-Vi/)-Hﬁ-Vu-l—Vp:f (177)

where f = f+vAp — - Vo — % fe [2(0,T;V").
We must prove that there is a @ € L2(0,T; V)N L>®(0,T; (L?*(2))¢) time-periodic such

that

A~
~

du . . R ~ ~
< d_?’ u > 4v((u,v)) + b(u, u,v) + b(u, ¥, v) + b(¢, u,v) =< f,v > (178)

for any v € V.

We consider a basis {@Wy, }m>1 of V and we denote by V,, := span{wy, ..., Wy, }. Then
we can replace the problem (178) by the following Cauchy problem in V,, x [0, T]:
Find Uy, (t) of the form @y, (t) = Y77, gjm(t)W; satisfying the initial value problem for
the system of ODEs

d . N PN PR R R PN ~
— < U (t), Wi > +a(Upm, ©s) + b(Um, Um, W) +  b(Um, 1, @;) + b(Y, U, W;) =< f,W; >

dt
um(0) = g (179)

with @y given, for 1 <7 < m.

We are going to prove that

There exists an R,independent of m, such that if |uy| < R then |u,,(T)| < R
(180)
Multiplying (179) by ¢im(t) and summing over ¢ from 1 to m, we have

% < T (®), T () > 42T (8), T (1)) + 0(Tm (1), 0, T (1)) =< Folim(t) > (181)

or

% % | T () 12 42 (1), T (1)) = —b(Tm (1), 0, U () + < frUm(t) > (182)

But |b(Um(t), Y, Um(t))| < 7 || Gm(t) ||? (from Lemma 3.1.5) so (182) becomes

1d

57 I B (®) [P +0((@n(®), @ (6)) < v | 8 (®) 1T + < Foim(t) > (183)
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Taking v = <7 ,then the above inequality can be written as

1d A _ ~ n
57 18 () 117 42 (@ (2), Bn(2))) < % | (8) 12 455 1 (8 112+ 1] F I

2dt 4
(184)
In particular, from Poincaré inequality, we have that ((t,,(t), U (t))) > o || T (2) |2,

which gives

d . N —~
%Ium(t)l2 + v || U (t) I3< 261 || £ 17 (185)
It follows that
T
e || T (T) [1*<|| o |I? +261/0 e || f(t) |13 dt (186)

If we divide (186) by e®”" we obtain

T
1 TnlT) [P e o 4260 [ 1) Flt)
The integral term can be bounded and we obtain
| @n(T) [IP< e || o [|” +ca (187)
From (187) we conclude that it is sufficient to take R such that

2 Cq
R Z 1— e—auT

(188)
to achieve (180).

So the Cauchy problem (179), can be written as an application Uy — U, (1) = I, (To)-
Using the Brouwer’s fixed point theorem (see [27, page 143]) every continuous map
of a closed ball to itself has a fixed point.

So we have that
There exist Uy, € Bg such that 7, (Uo,) = vom

This gives U, (0) = Uopp,.
From (180),%Uo,, stays in a bounded subset of H so we have the same estimates as in
the case of the initial value problem for the Navier-Stokes equations. In particular,
we have that

U, = u(0), U,(T) = a(T)in V' weak (189)
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But 4, (0) = 4,(T) so we conclude that u(0) = u(T).

There are two remarks to be made:
Remark 1 The condition (188) depends on f, T,v and «. The function fmust be
bounded. Also, if T" or v are too small, R will be very large.
Remark 2 The theorem does not guarante that the periodic solution is unique
or asymptotically stable. Numerical simulations indicate that the periodic solution
might be stable as well as unstable, depending on the value of the viscosity v and the

period T'.

80



Chapter 4

Numerical study of pulsatile flows

4.1 The numerical methods

As a general method, the Navier-Stokes equations for time-periodic solutions can be
discretized through mixed or stabilized finite-element methods combined with a finite-
difference time-stepping scheme. This strategy would give rise to a large nonlinear
algebraic system where the solutions at all time steps are coupled in an implicit way,
a system too large to be solved with the current computational capabilities. A more
tractable approach consists in solving a transient problem starting from an initial flow
(we use a fluid that is at rest or a steady flow in our case) and iterate in time over
the transient flow until the periodic solution is completely set, exactly like what we
analyze with the 1-D advection-diffusion equation in Chapter2.

To solve the Navier-Stokes equations we use the SUPG-PSPG formulation as pre-

sented in [8]. The classical Galerkin formulation has some weaknesses, such as:

e In case of high order Reynolds numbers, the numerical velocity solution might
be polluted with spurious oscillations if the grid is not fine enough to capture
all boundary or internal layers across which large velocity gradients exist. This

is due to the advection-diffusion character of the momentum equation.

e Equal-order velocity-pressure interpolation leads to spurious pressure wiggles.

This is due to the violation of the Brezzi-Babuska-Ladyshenskaya condition for
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the underlying Stokes problem.

e The velocity-pressure integrated approach leads to a matrix problem charac-
terized by zero entries on the main diagonal of the system matrix. Therefore,

pivoting is required if a direct solver is used.

The viscous incompressible Navier-Stokes equations are given by

Z—QZ—HL-VquVp—V-(VVu) = f, in Q
Veu = 0, in Q (190)
u = u, on Iy,
(=pl +vVu)-n = 0, on Dy,

where v is the kinematic viscosity, f a body force per unit mass, I the identity tensor,
n is the outward normal unit vector. The boundary I' consists of two complementary
subsets ['4, and I',,,;, on which the Dirichlet type and Neumann type velocity boundary
conditions apply.

The SUPG/PSPG method is a full Petrov-Galerkin formulation, in which a perturbed
weight function is applied to all terms in the continuity and momentum equations,
i.e. advection, diffusion and source terms as well as the pressure gradient.

We define the trial and weight function spaces for pressure and velocity as

h g h|h 1h

Sy = {¢'l¢" € H™"}

Sh = {utut e (H™?, w'=7 on T4} (191)
Vho = [t e (H'™)Y, ov"=0 on g}

v

where H* = {¢"|¢" € C°(Q),¢"|q, € P, for any . € 3}, with Q. an
element with boundary I', and diameter h,, 7, the discretization of the domain €.
Then, the SUPG/PSPG method can then be formulated as follows: Find (u”, ph) €
Sy x St such that for any (v",¢") € V! x S}

d
pr <ul " > +(Vh vVul)g - (V-oh pMg + (6", V - uM)g
+ST = (Uh', f)Q + (Uh, g)rnu (192)
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with ST =" (tsupgu” - Vo + 7pspaVq", R(p", u"))q,. Note that ST contains the
residual of the momentum equation R(p", u”) = u”-Vuh + Vph — V- (vVu") — f and
some intrinsic time scales Tsypg and Tpspa.

The time scales Tsype and Tpspg are usually defined in analogy to the stability
parameters for the scalar advection-diffusion and Stokes problems, respectively. For
the SUPG part this gives 7sypg = auﬁﬁ, where ¢ is a function of the element
Reynolds number (Rep, = %) and could be given as £(Rey,) = max]0, min(%, 1)].
Often 7pspg is taken as Tpspg (= apmﬁ. The typical values for o, and «, are
between 1 and 5. As opposed to the SUPG part, the PSPG stabilization is still
required for low Reynolds numbers.

After we discretize the system in space we obtain a system of ODEs of the form

dU
— =F(U,P)

which is solved using an implicit second order Gear time-stepping scheme

%Un—H - 2Un + %Un—l
k

= F(Un-f—la Pn+1)

The resulting nonlinear system is solved using PETSC (see [24]) applying the Newton-
Raphson’s method and a direct LU decomposition at each Newton iteration. As
stopping criteria we use the default option given in PETSC with a tolerance of 101°.
The time step is always set to kK = 1072. At each time step the solver performs about
6 Newton’s iterations.

To find the solution at large Reynolds numbers, we calculate first the solution of the
Navier-Stokes equations for a small Reynolds number, starting with a solution at rest.
Then, we increase the Reynolds number. For each new Reynolds number we start
with the solution obtained at the previous Reynolds number and then iterate over
time. Also, at each time step we store the solution obtained at a given point. When
the error in the L? norm, between the solutions calculated at two consecutive periods
is smaller than a given tolerance, we stop. For comparison purposes, on each figure

we provide the Womersley number, but we can calculate it from the following formula

Wo = (ﬂR;Str)%.
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4.2 Periodically driven cavity flows

Periodically driven flows occur in several important applications such as flows in
the blood circulatory system, the respiratory system, industrial mixers, etc. For
example, the flow of blood in any portion of the arterial tree is driven in a periodic or
almost periodic way by the heart from heartbeat to heartbeat. Despite their practical
interest, relatively few literature is available on periodically driven flows, and several
questions remain open: Why does the structure of periodically driven flows tend to
be more complex than steady flows in the same geometry? Under what circumstances
a viscous flow driven by periodic boundary conditions ceases to be periodic? Which
sequence of bifurcations transforms a periodic periodically-driven flow into a fully
turbulent flow?

Most periodically-driven flows that are of physical interests are driven through time-
periodic boundary conditions. As a result of the theory developed in Chapter 3 , a
periodic solution exists when the boundary is moving in a periodic way, no matter
how small is the viscosity v or how large is the Reynolds number. But the uniqueness
and stability of that periodic solution is not guaranteed by the Theorem 3.2.1.
Few attempts at looking at the stability of periodically-driven flows have been done
(3, 19, 33, 20]. To our knowledge, only two papers|[3, 33] address the case of a periodic
lid-driven 3-D cavity among the abundant literature on lid-driven cavities (for a review
see [30]). Those few studies show that periodic periodically-driven flows become
unstable while increasing the Reynolds number.

Efficiently computing the periodic solutions for periodically-driven flows is another
important problem. Computing periodic flows requires an enormous amount of CPU
time compared to the simulation of steady flows on the same mesh. Again a limited
literature is available on the computation of time-periodic solution of PDE problems
[14, 23|, mostly for symmetric PDEs with symmetric operators. A common strategy
is to start from some initial solution, compute a transient solution and expect that
this transient solution converges to the periodic solution.

Lid-driven cavity problems are standard test cases for the Navier-Stokes equations.

For example, bifurcation from steady to periodic solutions have been thoroughly
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studied with a steady lid-driven velocity on the upper boundary [10]. To ensure the
validity of our code we used one example studied in [10]. This test case will also be
a comparison case with the periodic lid-driven examples that we will consider in the

following.

4.2.1 Steady lid-driven cavity

As mentioned before, the square cavity problem is one of the most standard test case
used for the analysis of numerical methods for the Navier-Stokes equations. Although
it is not possible to give an analytic solution, the geometry is so simple that most
numerical codes have been tested on this problem. It is relatively easy to calculate
solutions at high Reynolds numbers with a good precision.

The problem states as: Find the velocity u and the pressure p that satisfy the equation
(190). The domain € is the unit square [0, 1] x [0, 1] and as boundary conditions we

assuine

U(z,y,t) = (0,0), ify<1
U(z,y,t) = (1,0), ify=1

The boundary conditions are singular at the upper corners. We have assumed that
the velocity is (1,0) on the upper wall, including both corners.

We have used a mesh with 100 x 100 x 4 elements, a finer grid than the meshes used
in the article [10]. The streamlines are represented in Figure 5 and the results are
similar to those obtained by [10]. A close look at the solution shows a slight pulsation
of the corner vortices on the left wall. These two vortices interact among themselves,
while the core of the flow remains almost stationary. When the Reynolds number
is further increased, the amplitude of the oscillations increases. At Re = 8000, just
after the Hopf bifurcation has taken place, the numerical solution tends to stabilize
to a time-periodic solution as can be seen in Figure 6, where the horizontal velocity
at the point (0.2,0.5) (a point closed to the left wall) is ploted at each time step.
We know from [10] that the critical Reynolds number Re,, for the square lid-driven

cavity is above 8000 and this result is confirmed by our experiments.
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4.2.2 Periodically time-symmetric lid-driven cavity

A tractable approach to compute time-periodic flows consists in solving a transient
problem starting from an initial flow (e.g. using a fluid initially at rest) and iterate in
time over the transient flow until the periodic solution is completely set, exactly like
what we analyze for the advection-diffusion equation in Chapter 2. In the paper
of Rosenfeld [25], the numerical experiments showed that the number of periods
necessary to reach a periodic solution depends on the Reynolds number Re but also
on the Strouhal number Str. This is also in agreement with our linear stability
analysis.

In this test case, the boundary conditions are time-periodic and they are given by:

U(z,y,t) = (0,0), on the boundary where y < 1
U(z,1,t) = (cos(27t/T),0)

where T is the period. The lid is driven in a periodic fashion by time-symmetric
boundary conditions in the sense that U(z,1,¢t+7T/2) = —=U(x,1,t) for all t.

Period T=1, Str=1

The mesh we consider has 200 x 200 x 4 elements which increase the CPU time to 46
hours per period.

For that test case we calculated the solutions at Re = 3000, 5000, 8000 and 12000
and the streamlines of the velocity fields are shown in Figure 7, Figure 8, Figure
9 and Figure 10. The results show clearly that larger Re induce more pronounced
vortices at the left and right walls. At Re = 8000 and Re = 12000 on Figure 9 and
Figure 10, multiple vortices appear close to the left wall.

In Figure 11 to Figure 18, the time-periodic solution is shown at a full, quarter,
half and three quarters of a period within a time period interval. At the beginning
of the period t = 14T, as seen in Figure 11 and Figurel2, pronounced vortices at
the upper corner of the left and right wall are observed. This corresponds to the time
where the lid moves with the largest positive x-velocity. There are two vortices at
the left wall, the large one is moving counterclockwise and the other one clockwise.

The vortex at the right moves in a clockwise direction as it is the vortex the closest
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to the lid. In Figure 11 the streamlines are colored with respect to the x-velocity.
As we can see the highest value of the x-velocity is at the top of the cavity. Figure
12 presents the streamlines colored by the y-velocity and it is easier to observe the
fluid motion and the vortices that appear.

At t = 14T + %, the upper wall is at rest. As we can observe in Figure 13 and
Figure 14 there are only two vortices, one close to the upper left corner and the
other one at the upper right corner. The orientation of these two vortices remain the
same as at the beginning of the period. The fluid descends mostly on the right wall.
When we reach half of the period, the upper wall has a horizontal velocity of —1,(see
Figure 15), meaning that the motion of the moving lid is reversed. The fluid has
two corner vortices and descends at the left wall as we can see in Figure 16.

In Figure 17 and Figure 18, at the three-quarters of a period, the upper boundary
is at rest. The fluid has only a nearly reversed behavior as opposed to the case of a
quarter of a period.

After one complete period, at t = 157", on Figure 19 and Figure 20, the flow returns
almost to the same state as it was at ¢ = 147 and the solution seems to be time-
periodic. Further investigations have been conducted for Re = 8000, value at which
a bifurcation of the solution was observed in the steady lid-driven cavity test. The
x-velocity computed at the point (0.2,0.75) (close to the upper left corner), shows a
time periodic behavior, as can be seen on the time history of the x-velocity presented
in Figure 21 for Re = 8000 and Figure 22 for Re = 12000. If Re = 8000, the
difference between the solutions at period 13 and period 14 is of order 1.001 x 10~*
in the L? norm. That means we are close to a time-periodic solution. In Figure 23
we represented the y-Velocity with respect to the x-Velocity for the last four periods,
when Re = 8000. The solutions are almost overlapping, meaning we are close to a
time-periodic solution. In the case of Re = 12000, the solution is almost periodic
as it can be observed from Figure 22 and Figure 24 but of course more periods
are needed to confirm the exact periodicity of the solution. The difference between
the solutions at period 9 and 8 is of order 1073, From the linear analysis we need at
least 20 periods to reach a time-periodic solution for Re = 8000 and 30 periods for

Re = 12000, assuming a difference of 10~ in the solution from period to period.
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Period T=10, Str=0.1

With a period of T" = 10, the solutions for Re = 5000 and Re = 8000 are presented
in Figure 25 and Figure 26, respectively. There are four main vortices each one
close to a corner of the square and another two small vortices on the top right and
bottom right. The difference between these two solutions is not so large, the solution
at Re = 8000 has a larger lower right vortex compared to the solution at Re = 5000.
On Figure 27 to Figure 30, the time-periodic solution is shown at a full, quarter,
half and three quarters of a period for a Re = 5000. At the beginning of the period
t = 11T, on Figure 27, there are four vortices, two of them moving counterclockwise
and the others, clockwise. The vortex at the top left corner moves in a counterclock-
wise direction, while the vortex at the top right corner moves in a clockwise direction.
At t=11T+ %, the upper wall is at rest. As we can observe in Figure 28 the vortex
situated at the bottom left corner has moved to the center of the square, while the
big vortex at the bottom right corner retracts to the right. There is also a new small
vortex situated at the right wall. The orientation of the four big vortices remains the
same as at the beginning of the period.

On Figure 29, when we reach half of the period, the upper wall has an horizontal
velocity of —1, that means the motion of the moving boundary is reversed. The small
right vortex disappeared. The solution is nearly reversed compared to the solution on
Figure 27 which means a possible break-up in the space-time symmetry. The size
of the four vortices changes from full period to half period.

In Figure 30, at the three-quarters of a period, the upper boundary is at rest. The
small vortex at the right wall, from Figure 28, disappeared . The fluid has an almost
reversed behavior as opposed to the solution at a quarter of a period, but not exactly
the same.

In case we increase the Reynolds number to Re = 8000, the behavior of the solution
within one period does not change very much, as we can see from Figure 31, Figure
32, Figure 33 and Figure 34, comparing with the case of Re = 5000.

We must mention that we modified the mesh, taking a smaller number of elements
100 x 100 x 4 because of the long CPU time required for a mesh of 200 x 200 x 4
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elements which was used in the case of a period of T'=1. The number of time steps
per period is 1000.

In Figure 35 the x-velocity at the point (0.8,0.5) is represented in the case of
Re = 5000 and in Figure 36 the horizontal velocity was calculated for Re = 8000.
When Re = 5000, the difference between period 7 and 6, in the L? norm, is of order
1072, while in the case of Re = 8000 a time periodic solution is not obtained even after
20 periods. This fact is more obvious if we look at the graph of the y-velocity versus
the x-velocity. In the case of Re = 5000, the solutions are close to each other, even
if they are not perfectly overlapping as we can see in Figure 37. When Re = 8000,
the solutions calculated at the last four periods are far from overlapping, see Figure
38, so no time-periodic solution has been obtained up to time ¢ = 20. According to
the linear spectral analysis performed in Chapter 2 for the 1-D advection diffusion
problem, a minimum of 20 periods is needed to obtain a time-periodic solution for
Re = 8000 and 15 periods for Re = 5000 if we assume a difference of 1072 in the
solution from period to period. There are two possibilities, either we need to perform

more than 20 periods or we are around a critical Reynolds Re,, for a bifurcation.

4.2.3 Time-asymmetric periodically lid-driven cavity

In the introduction we presented several ways a solution can lose its stability and
becomes unstable. One of the possibilities is to break the space-time symmetry of the
boundary conditions and excite an unstable mode appearing after the bifurcation of
the time-periodic solution. We change the boundary conditions so that they will not

be symmetric in time, by taking

U(z,y,t) = (0,0), ify<1

Uz, 1,1) = (maw(cos(?),O),O)

As before we consider two test cases, one with 7" =1 and the other one with 7" = 10.

Period T=1, Str=1
The solution at Re = 5000, Figure 39, is in a way different from the solution at
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Re = 8000, Figure 40. Both of them have a large recirculation area in the middle
of the domain and a small vortex at the bottom near the right corner, but the center
of the big vortex at Re = 8000 is situated closer to the center of the domain. Also
the small right bottom corner vortex is larger when Re = 8000.

At Re = 5000, within one period there is not much change in the solution’s stream-
lines as can be seen on Figure 41 to Figure 44. At the beginning of the period T,
the upper wall has a maximum velocity of 1. The velocity of the lid decreases from
t=6Ttot=06T+ %, resulting in reduced speed of the flow without much impact on
the qualitative aspect of the streamlines. From 67 + % to 67 + % there is no motion
induced by the lid. The flow keeps dissipating energy and slowing down. At 67" + %
there are two new vortices appearing at the left bottom corner and at the left upper
corner as we can see on Figure 44. The corner vortex at the bottom right reaches
its maximal extend just before the lid starts moving again. From 67 + % to 7T the
lid’s velocity rises again.

The solutions at full,quarter, half and three quarters of a period for Re = 8000 are
represented on Figure 45 to Figure 48. The solution does not change too much
within one period, in a similar fashion as for the flow at Re = 5000 . The secondary
vortex at the right bottom corner changes its size during one period. At 307 + % we
notice the appearance of two vortices, at the left top and bottom corners as seen on
Figure 48.

The mesh used here, consists of 200 x 200 x 4 elements, the same as for the case of
the time-symmetric periodically lid-driven cavity with Str = 1.

At Re = 5000, on Figure 49 and Figure 51 we have not iterated over many periods
so we might still be in a transient state. The 1-D spectral analysis tell us that we
need to perform at least 15 periods for Re = 5000 to obtain a time-periodic solution.
The horizontal velocity calculated at the point (0.2,0.75) near the top left corner for
Re = 8000 does not stabilize after 35 periods as we can see in Figure 50. The graph
of the y-Velocity with respect to the x-Velocity, Figure 52 for the last 4 periods is
far from overlapping from one period to another. At Re = 8000 the solution is far
from being stabilized. According to the 1-D spectral analysis, we need at least 20

periods to obtain a time periodic solution for Re = 8000. We might be around a
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critical Reynolds Re,,. for a bifurcation point.

Period T=10, Str=0.1

The solution at Re = 5000, Figure 53 presents a main clockwise rotating vortex in
the center of the domain and three secondary vortices, two of them at the bottom
left and right corner and one at the top close to the right wall. At the right bottom
corner we can notice the existence of a ternary vortex. The solution at Re = 8000 has
the same structure, except that the main vortex has its center closer to the center of
the domain and there are two small vortices (a secondary and a ternary one) at the
left bottom corner (see Figure 54).

Solutions at the full, quarter, half and three quarters of a period are represented on
Figure 55 to Figure 58 for Re = 5000. At the beginning of the period 197, the
upper wall has a maximum velocity of 1. From 197 to 197 + % the velocity of the
lid decreases and the right upper corner vortex is drained by the moving lid into the
core vortex, which recirculates and damps it over the rest of the period as we can
see in Figure 56. Also the flow slows down and energy dissipates, creating a new
small vortex situated at the top left wall. The ternary vortex at the right bottom
corner disappears. From 197 + % to 197 + %, there is no motion induced by the
boundary and at 197 + %, on Figure 57, we see the small left top vortex increasing
to dissipate the kinetic energy. A new right top corner vortex starts to grow while
the remains of the upper right corner vortex can be found in the main vortex. At
197 + %, Figure 58, the boundary is still at rest and the solution is almost the
same as the solution at half of the period. The secondary corner vortices situated at
the left and right bottom corners pulsate over the period, with the peak lid velocity
inducing a maximal vorticity in the core vortex and in return producing a ternary
vortex at the lower right corner. The top left corner vortex which appears when the
lid stops moving, slowly decreases when the lid starts to move again, to eventually
completely disappear when the lid reaches its maximal velocity.

Solutions at full, quarter, half and three quarters of a period are represented on Fig-

ure 59 to Figure 62, for Re = 8000. There are only minor differences between the
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solution at Re = 5000 and at Re = 8000. At ¢t = 167 + % on Figure 60, the sec-
ondary left bottom corner vortex is replaced by two small vortices. At ¢t = 167 + %,
on Figure 61, the small right top vortex moves closer to the center of the domain.
It is almost at the center of the domain, see Figure 62 at ¢t = 167" + %.

The mesh used here is of 100 x 100 x 4 elements, the same as the mesh used for the
time-symmetric problem with Str = 0.1.

The horizontal velocity calculated at the point (0.8, 0.5) for Re = 5000 and Re = 8000
are showed in Figure 63 and Figure 64. In both cases the solution does not seem
to stabilize after 20 and 16 periods, respectively. The y-velocity with respect to the
x-velocity for the last four periods does not stabilize as we can see in Figure 65 and
Figure 66. According to our 1-D spectral analysis, a minimum of 20 periods must
be performed to obtain a time-periodic solution for Re = 8000 and 15 periods for
Re = 5000, with a difference of 10~® in successive periods. We should consider two
possibilities, either we need to continue calculations until a time-periodic solution is

obtained or we are around a critical Reynolds Re,, for a bifurcation .

4.2.4 Comparison of solutions at Re = 8000

The last analysis made on the lid-driven cavities is a comparison between the solutions
obtained at Re = 8000, in all four cases, and the solution obtained in the steady lid-
driven cavity case.

When the boundary conditions on the upper boundary are time-periodic and time-
symmetric, we use as time reference, the time where the lid reaches its peak positive
velocity. The core vortex which can be seen on Figure 5 becomes much smaller, see
Figure 67 and Figure 68. On Figure 67, the solution at Str = 1 has in fact two
main vortices situated at the top left and right corners. A third vortex appears close
to the left wall. The solution at Str = 0.1 has four main vortices at the top and
bottom right and left corners, as in Figure 68.

When we apply an asymmetric time-periodic conditions on the upper boundary, the
solutions at Str = 1 and Str = 0.1, represented in Figure 69 and Figure 70, have

a core vortex, very much like in the case of steady lid-driven cavity, see Figure 5.
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The left top corner vortex of Figure 5 disappears. When Str = 1, the secondary
left bottom vortex also disappears as we can see on Figure 69. On Figure 70, the
solution at Str = 0.1 does not have the top left corner vortex but it has a new right
top corner vortex. There are still the two secondary vortices situated at the bottom
left and right corners. We can see also the appearances of another two ternary vortices
at the bottom left and right corners.

If we compare the x-velocity at Str = 1, (see Figure 21 and Figure 50) with the
x-velocity at Str = 0.1, (see Figure 36 and Figure 64), it seams that a short period
gives rise to a flow response closer to a sinusoidal wave than a long period, even
in the case of the time-asymmetric cosines boundary conditions. Also, looking at
Figure 21 and Figure 50, we notice that in the case of time-asymmetric boundary
conditions it is harder to achieve a time-periodic solution. The transient is longer
or a bifurcation to a time-periodic solution is more likely to appear. If we look on
the effect produced by a longer period, we notice a period of T = 10 produces a less
stable periodic solution as we can see on Figure 35 and Figure 63 compared with
a period of T'= 1 on Figure 49, for Re = 5000. The same phenomena happens for
Re = 8000 if we compare Figure 36, Figure 64 with Figure 21 and Figure 50.

4.3 Pulsatile flow in a constricted channel

Atherosclerosis is a disease of the cardiovascular system which involves hardening
of arteries due to the deposition of fat. Atherosclerotic constrictions in arteries are
known as arterial stenoses and they are found especially in the internal carotid artery
which supplies blood to the brain, cardiac muscle and the femoral artery which sup-
plies blood to the lower limbs. Moderate as well as severe stenoses can have long
term health consequences. First, the presence of a constriction results in head losses
which can reduce the blood supply through the artery and also impose additional
load on the heart. The pressure losses are significant only when the internal diameter
is reduced beyond half of the nominal value (see [21]).

The fluid dynamics of the post-stenotic flow plays an important role in the progres-

sion of the atherosclerosis and therefore we concentrate our experiments on the flow
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motion in a stenosis. The geometry of the computational domain is composed of two
straight parallel plates which have been “squeezed” in the middle. In our studies, the
channel has been modified at the upper and the lower wall, comparing with previous
studies (see [21] and [25]) where the modifications are made just for the upper wall.
The effects of the constriction size and the waveform will not be considered. Under
these conditions two non-dimensional parameters, the Reynolds and Strouhal num-
bers govern the flow field (Re = Y=¢ Str = ﬁ) The mesh is shown in Figure
71. We start our computations from a steady solution which we compute first and
then we march in time until a time-periodic flow was attained. We play with different
values of the Reynolds number with ranges from Re = 200 to Re = 1200 and differ-
ent values of the Strouhal number, Str = 0 to Str = 2. The portion of the artery
has an adimensional length of 5 and a width of 1. The ratio of the diameter at the
stenosis compared to the diameter of the unconstricted channel is 1/2. The number

of elements is 200 x 40 x 4.

4.3.1 Flow in a constricted channel with steady inflow

First we compute a flow with the inflow u(0,y,t) = [U(0,y,t),0] where U(0,y,t) is
given by
U(0,y,t) = 1.0

We consider no slip boundary conditions at the upper and lower boundary and free
exit at the outflow. The solutions are calculated for Re = 200, Re = 400 and
Re = 1200 and are shown on Figure 72, Figure 73 and Figure 74, respectively. The
solution presents two vortices, right after the constriction. These vortices increases as
Re increases. When Re = 200 and Re = 400 the solutions are nearly symmetric with
respect to the axis of the pipe, as we can see in Figure 72 and Figure 73. When
Re = 1200, the symmetry with respect to the x-axis is broken which is most likely
the consequence of a bifurcation. The size of the vortices grows with Re probably
resulting in a less stable flow for higher Re numbers. When Re = 1200, the horizontal
velocity at the point (3.2,0.75), a point just after the constriction where some vorticity

appears, is represented on Figure 75 and Figure 76. The x-velocity presents very
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large variations at the beginning of the simulations but then it tends to decrease.
Through a closer look over a smaller time interval (see Figure 76), one can see
that the solution at that point is likely to be periodic. This could result from a
bifurcation from a steady to a periodic solution while increasing Re. Therefore, our

future calculations will experiment with Reynolds numbers up to Re = 1200.

4.3.2 Flow in a constricted channel with time-periodic inflow

The incoming axial velocity velocity is set to
27t
U0,y,t) =1—sin(—)
T
where T is the period. We consider three cases, one with a period 7" = 1, one with
period 7" = 0.5 and another with period T" = 2.

Period T=1, Str=1

At different Re the streamlines of the solution look like those in Figure 77 for
Re = 200, Figure 78 for Re = 400 and Figure 79 for Re = 1200. There are four
vortices that can be observed, two of them right after the constriction and the other
two further downstream in the channel. Their size decreases as Re increases. The
solutions are almost symmetric about the line y = 0.5.

It is interesting to see what happens with the solution within one period. The re-
sults are presented for Re = 400 in figures Figure 80, Figure 81, Figure 82 and
Figure 83. At the beginning of a period 87, the solution presents four vortices, two
of them just after the constriction. This situation corresponds to an axial velocity of
1. Follows a deceleration phase, up to 87 + % where the inflow axial velocity reaches
its minimal value of 0. At that time, the flow exhibits large vortical structures both
upstream and downstream of the constriction. From 87 + % to 87T + % there is an
acceleration phase. The incoming velocity is back to the value of 1 at 87 + % All
the large vortices created during the peak systole have been washed out by the rapid
axial flow. Only two small vortices remain on the downstream side of the constric-
tion. The velocity is at its maximum when ¢t = 87" + %. This ¢ orresponds to the

peak systole. The flow looks very much like a Poiseuille flow, except for the small
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disturbance created by the constriction.

The same phases can be observed when Re = 1200 on Figure 84, Figure 85, Figure
86 and Figure 87. Symmetry is even less apparent at the peak diastole, at 117" + %
as some large vortices that were present at Re = 400 break into smaller vortices. We
might be above a bifurcation point.

The horizontal velocity at the point (3.2,0.75) for Re = 400, Figure 88, seems pe-
riodic, with a difference between solution at successive periods of 1072 in L? norm,
while in the case of Re = 1200 (Figure 89) the solution has not reached a periodic
state after 12 periods. The y-velocity with respect to the x-velocity is represented on
Figure 90 and Figure 91 for Re = 400 and Re = 1200, respectively. On Figure
90 the solutions at the last three periods are shown. As we can see they are close to
each other, almost overlapping. On Figure 91 the solutions for the last four periods
appear to be further apart from each other, as could result from the bifurcation of
a periodic solution to a non-periodic solution. This would have to be confirmed by

simulations over more periods, to be sure that the solution has gone over the transient.

Period T=0.5, Str=2

At different Re the streamlines of the solution look like those in Figure 92 for
Re = 200, Figure 93 for Re = 400 and Figure 94 for Re = 1200. There are six vor-
tices that can be observed, four right after the constriction and other two downstream
the channel. The two vortices situated close to the constriction seem to increase as
Re increases. The solutions look symmetric about the line y = 0.5.

The solution within one period is presented for Re = 400 on Figure 95, Figure 96,
Figure 97 and Figure 98. At the beginning of a period 37, the solution presents
six vortices, four of them just after the constriction, this situation corresponds to an
axial velocity of 1. Follows a deceleration phase, when the inflow velocity decreases
to 0 at 37" + %. At that time, the flow is reversed after the constriction. At peak di-
astole there are six larger vortices, compared to fewer vortices for the case of Str = 1.
From 3T + % to 3T + % there is an acceleration phase, the incoming velocity is 1 at
3T + % and we notice the increase in the number of vortices after the constriction.

The velocity is at its maximum when ¢ = 37" + %. It can be remarked an increase
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in the number of vortices at 37 + % and at 37 + % for Str = 2 compared to the case
Str = 1.

The same phases can be observed when Re = 1200, Figure 99, Figure 100, Figure
101 and Figure 102. There are some slight modifications in the streamlines com-
pared to the case of Re = 400, in the sense that the number of vortices increases.
The horizontal velocity at the point (3.2,0.75) for Re = 400 (Figure 103) becomes
periodic, with difference between solution at successive periods of 1072, while in the
case of Re = 1200, Figure 104, the solution has not reached a periodic state after 10
periods. On Figure 105, the graph of the y-velocity with respect to the x-velocity
for the last four periods shows that solutions are close to each other, so we might be
close to a time-periodic solution. On Figure 106, the solutions do not stay close to
each other so we did not obtain yet a time-periodic solution. It is possible that we

are above a bifurcation point.

Period T=2, Str=0.5

The solution at Re = 400 is shown on Figure 107. We can see four vortices close
to the constriction, two of them larger and two smaller. Within one period we can
observe the two large vortices at 67" + % and at 67" + %, on Figure 108 and Figure
109, respectively. At peak systole, on Figure 110, there are no vortices, they have
been washed up by the rapid axial flow.

The x-velocity is represented on Figure 111 and the y-velocity with respect to x-
velocity is shown on Figure 112. The second graph shows clearly that the solutions of

the last two periods almost overlap and we are very close to a time-periodic solution.

4.3.3 Comparison of solutions at Re = 400

On Figure 113 to Figure 115 we compare the solutions obtained at Re = 400 and
for Str = 0.5, Str = 1 and Str = 2. The large two vortices rig ht after the constric-
tion from Figure 113 become smaller and smaller when we increase the Strouhal
number Str. For Str = 2 we notice these vortices are very small and they basically

change into four small vortices. Also, if we compare the solutions at peak diastole,
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we observe that for small Str = 0.5, on Figure 108 there are two large vortices right
after the constriction . These vortices decrease in size when Str = 1, Figure 81 and
they become very small when Str = 0.5, Figure 96. In all three cases it seems that
we are close to a time-periodic solution, as we can observe from Figure 105, Figure
90 and Figure 112.

4.3.4 Blood flow in an artery

As presented at the beginning of the thesis, a nondimensional frequency parameter,
the Womersley number, governs the relationship between the inertial and viscous
forces for blood flows in arteries. This parameter is used widely in the description of

1
TReSI)3 and corre-

cardiovascular flows. The Womersley number is given by Wo = (
sponds to the non-dimensional frequency of the inlet flow pulsation. The simulations
done so far in this section used a uniform velocity profile varying sinusoidally in time
at the inlet. However, the pulsatile flow profile in a channel is different from a uniform
or parabolic profile for Womersley numbers greater than one.

In [21], the authors suggest that reasonable inflow conditions can be obtained as a

solution of the following equation:

where A and B correspond to the steady and oscillatory pressure gradients (see [21]),
T is the period and U(x,y,t) is the horizontal velocity.
The solution of the above equation is given by (see [21])

cosh(2WoV/i(y — 0.5))
cosh(Wov/)

= w

Uly,t) =

(1—4(y—0.5)%) + g —if(Wo) (1 -

where f(«) is a function of « which appears as a consequence of matching the volume
flux conditions (see [29]).

The ratio of the length of the channel with respect to the width is 8:1. The mesh is
increased to 400 x 80 x 4 elements and the constriction appears close to the begin-

ning of the channel. The experiments done so far in this study considered a shorter
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channel, but we want a perspective on what happens with the flow downstream of
the constriction, in case the channel is longer and the inflow boundary conditions are
varied. The velocity profile at the inflow is given in Figure 116 within one period.
The horizontal velocity at a point, in this case (4.02,0.875), for Re = 400 and 7' = 1 is
pictured in Figure 117. As we can see, after 11 periods we have not reached a time-
periodic solution. The solutions at time ¢ = 6 and ¢ = 11 are represented in Figure
118 and Figure 119, respectively. We can notice the appearence of some vortices
after the constriction. These vortices are slightly different from those observed with
the shorter pipe (compare Figures 118 and Figure 119 with Figure 78). More
interestingly, with the longer pipe, the vortices are advected further downstream, and
their size and number keep growing with time. This suggest that we should continue
our simulations for that test case. The use of a longer pipe in all our test cases would
have been desired, but would have somewhat limited our ability to vary the Reynolds
and Strouhal numbers given the large CPU time then required. On the other hand,

the inflow boundary conditions do not seem to have a very strong impact.
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Chapter 5

Summary and conclusions

5.1 Summary of the research and conclusions

This thesis presents a theoretical and numerical study of time-periodic parabolic

problems with an emphasis on the Navier-Stokes equations. More specifically,

e We extended previous results on the existence and stability of time-periodic so-
lutions for periodically forced parabolic equations to the case of non-symmetric
and time-dependent operators. We obtained an error estimate for finite element

methods approximating those time-periodic parabolic problems.

e The results are true only when the projection operator defined from some
Sobolev space to the finite-element subspace has some special properties and
when the bilinear form, associated to our operator, is coercive. We proved
that the projection operator associated to the advection-diffusion operator has
these special properties, even when the advective velocity is time-dependent.
The handling of a time-dependent advective velocity required a special Aubin-

Nitsche argument that we have not seen in the literature.

e We extended that general theory to the time-periodic Stokes problem. Even
if we only obtained an error estimate on the velocity, that extension required

some care to properly handle the pressure.
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e The 1-D advection-diffusion problem has been studied as an example of a linear
problem. First, a numerical study of an advection-diffusion problem has been
done in the presence and in the absence of coercivity. The absence of coercivity
did not produce a time-periodic solution, indicating the necessity of the coer-
civity to guarantee the existence of a time-periodic solution under time-periodic
forcing, even in the linear case. Second, through a spectral analysis of the 1-D
advection-diffusion problem, we identified two relevant parameters, namely the
local Peclet Pej and the CFL number A, controlling the convergence of the
solution of the initial value problem toward the solution of the time-periodic
problem. Numerical experiments for different values of these two parameters
gave us an idea on the number of periods needed to obtain a time-periodic so-
lution. Through comparison with published results on time-periodic flows, we
verified that the linear stability analysis provides a lower bound on the number
of periods needed to reach a periodic viscous incompressible flow within a given
accuracy. Finally, a spectral analysis of the advection-diffusion operator on a
bounded interval showed that the length of the domain, the advective velocity
and the diffusion coefficient all have impact on the decay rate of the transient

solution toward the periodic solution.

e We obtained the existence of a solution for the initial boundary value problem
for the Navier-Stokes equations subject to non-homogeneous Dirichlet bound-
ary conditions by merging two proofs available in the literature, one is the proof
of the existence of a steady solution for the Navier-Stokes equations subject to
non-homogeneous Dirichlet boundary conditions and the other is the proof of
the existence of a unsteady solution for the Navier-Stokes equations subject to
homogeneous Dirichlet boundary conditions. Those two proofs are available in
books, but we have not found anywhere the proof for the initial boundary value
problem with non-homogeneous Dirichlet boundary conditions. Using that re-
sult, we proved the existence of a time-periodic solution for the Navier-Stokes

problem with time-periodic non-homogeneous Dirichlet boundary conditions,
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extending a previous result of Lions where only homogeneous boundary condi-
tions were considered. The solution exists but we do not know if the solution

is stable or unique.

Numerical experiments for the 2-D lid-driven cavity were carried out for time-
symmetric and time-asymmetric periodically driven problems. In each case we
considered two relevant parameters, the Reynolds and the Strouhal numbers.
The Reynolds number was varied over a range of 5000 to 8000 and the Strouhal
number considered were 1 or 0.1. For the time-symmetric case, when Str =1,
we notice that the solution tends to be time-periodic. If Str = 0.1 the solution
seems to lose its periodicity. The analysis of the streamlines within one period
showed that the time-symmetry could be broken. We might be above the critical
Reynolds number for a bifurcation. When we break the time-symmetry of the
boundary conditions, the solution for both Str = 1 and Str = 0.1 does not seem
to be time-periodic at Re = 5000 or at Re = 8000. Looking at the solution

within one period, we could not observe any time-symmetry.

In all cases, the solutions of cavity flows with a time-periodic lid differ very much
from the usual steady lid-driven cavity flows, with the larger differences observed
when the lid eventually reverses the direction of its movement (time-symmetric
cases). In that latter case, we observed that the large vortex appearing in the
steady lid disappears. The solution then has a totally different structure with

four equal-size vortices, in case the period is long enough (when Str = 0.1).

The study of 2-D flows in a stenosis has been done using a time-periodic inflow.
Three different cases were considered, Str = 1, Str = 2 and Str = 0.5. The
critical Reynolds number to lose the time-periodicity of the flow seems to be
around Re = 1200. The stenosis allows the appearance of some vortices, the

size of these vortices depending on the Strouhal number.
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5.2 Recommendations for future work

The analysis of the stability and uniqueness of the time-periodic solution for the
Navier-Stokes equations under periodic forcing would be an interesting but difficult
avenue. It would also be interesting to do a more comprehensive qualitative stability
analysis of some of the sensitive cases identified in the thesis, e.g. the time-symmetric
periodically lid driven cavity with Str = 0.1 and Re = 8000, all time-asymmetric lid
driven cavity problems and the flows in the stenosis near Re = 1200. One way to
clarify whether or not we are close to a bifurcation point would be to perform a
Floquet analysis. Also, we should consider 3-D experiments with more complicated

geometries closer to real life arteries.
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Figure 1: Solution of the advection-diffusion equation for v = 0.1
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Figure 2: Solution of the advection-diffusion equation for v = 0.0
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Figure 5: Streamlines colored by the || u ||, Re = 8000, Str =0, (Wo =0), t = 480
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Figure 6: x-Velocity at (0.02,0.5), Re = 8000, Str = 0, (Wo = 0), ¢t € [420, 480],
Uz, 1,t) =1
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Figure 7: Streamlines colored by the || u ||, Str = 1, Re = 3000, (Wo = 68.62), t = 9,
U(z,1,t) = cos(&)

Figure 8: Streamlines colored by the || u ||, Str = 1, Re = 5000, ,(Wo = 88.6), t = 9,

Uz, 1,t) = cos(%%)
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Figure 11: Streamlines colored by the x-velocity, Str = 1, Re = 8000, (Wo = 112.07),

t =14, U(z,1,t) = cos(3)
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Figure 12: Streamlines colored by the y-velocity, Str = 1, Re = 8000, (Wo = 112.07),

t =14, U(z,1,t) = cos(%)
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Figure 13: Streamlines colored by the x-velocity, Str = 1, Re = 8000, (Wo = 112.07),

t=14+ % U(z,1,t) = cos(%)
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Figure 14: Streamlines colored by the y-velocity, Str = 1, Re = 8000, (Wo = 112.07),
t=14+7%, U(z,1,t) = cos(Z)
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Figure 15: Streamlines colored by the x-velocity, Str = 1, Re = 8000, (Wo = 112.07),

t=14+Z U(z,1,t) = cos(%)
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Figure 16: Streamlines colored by the y-velocity, Str = 1, Re = 8000, (Wo = 112.7),

t=14+1, U(z,1,t) = cos(Z)
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Figure 17: Streamlines colored by the x-velocity, Str = 1, Re = 8000, (Wo = 112.07),

t=14+3 U(z,1,t) = cos(%)

Yalueify ¥

\ aupsy
i l

Figure 18: Streamlines colored by the y-velocity, Str = 1, Re = 8000, (Wo = 112.07),

t=14+ 3 U(z,1,t) = cos(%)
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Figure 19: Streamlines colored by the x-velocity, Str = 1, Re = 8000, (Wo = 112.07),

t =15, U(z,1,t) = cos(3E)
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Figure 20: Streamlines colored by the y-velocity, Str = 1, Re = 8000, (Wo = 112.07),
t =15, U(z,1,t) = cos(%)
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Figure 21: x-Velocity at (0.2,0.75), Str = 1, Re = 8000, (Wo = 112.07), t € [8,14],
U(z,1,t) = cos(%t)
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Figure 22: x-Velocity at (0.2,0.75), Str = 1, Re = 12000, (Wo = 137.25), t € [3,9],
Uz, 1,t) = cos(%t)
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Figure 23: y-Velocity wrt x-Velocity at (0.2,0.75), Str = 1, Re = 8000, (Wo =
112.07), t € [11,14], U(z, 1,t) = cos(Z)
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Figure 24: y-Velocity wrt x-Velocity at (0.2,0.75), Str = 1, Re = 12000, (Wo =

137.25), ¢ € [6,9], U(z, 1,t) = cos(Z)
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Figure 25: Streamlines colored by the | u ||, Str = 0.1, Re = 5000, (Wo = 28.01),

t =110, U(z,1,t) = cos(%)

Figure 26: Streamlines colored by the || u ||, Str = 0.1, Re = 8000, (Wo = 35.44),

t =190, U(z,1,t) = cos(%)
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Figure 27: Streamlines colored by the y-velocity, Str = 0.1, Re = 5000, (Wo = 28.01),

t =110, U(z,1,t) = cos(%)

Walasiiyy

. f.a500

.25t
4. 44
-, 0850

41,8544

Figure 28: Streamlines colored by the y-velocity, Str = 0.1, Re = 5000, (Wo = 28.01),
t=110+ %, U(x,1,t) = cos(Z)
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Figure 29: Streamlines colored by the y-velocity, Str = 0.1, Re = 5000 , (Wo

28.01), t =110+ L, U(z, 1,t) = cos(%L)
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Figure 30: Streamlines colored by the y-velocity, Str = 0.1, Re = 5000, (Wo = 28.01),

t =110+ 2L, U(z,1,t) = cos(%)
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Figure 31: Streamlines colored by the y-velocity, Str = 0.1, Re = 8000, (Wo = 35.44),

t =190, U(z,1,t) = cos(%)
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Figure 32: Streamlines colored by the y-velocity, Str = 0.1, Re = 8000, (Wo = 35.44),
t=190+%, U(z,1,t) = cos(Z)
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Figure 33: Streamlines colored by the y-velocity, Str = 0.1, Re = 8000, (Wo = 35.44),

t=190+ T, U(z,1,t) = cos(%t)
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Figure 34: Streamlines colored by the y-velocity, Str = 0.1, Re = 8000, (Wo = 35.44),
t =190+ 2L, U(z,1,t) = cos(%)
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Figure 35: x-Velocity at (0.8,0.5), Str = 0.1, Re = 5000, (Wo = 28.01), ¢ € [10, 120],
Uz, 1,t) = cos(4%)
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Figure 36: x-Velocity at (0.8,0.5), Str = 0.1, Re = 8000, (Wo = 35.44), t € [20, 200],
Ul(z,1,t) = cos(%t)
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Figure 37: y-Velocity wrt x-Velocity at (0.8,0.5), Str = 0.1, Re = 5000, (Wo =
28.01), ¢ € [90,120], U(z, 1,t) = cos(%L)
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Figure 38: y-Velocity wrt x-Velocity at &%.8,0.5), Str = 0.1, Re = 8000, (Wo =
35.44), t € [160,200], U(z, 1, 1) = cos(2xt}



Figure 39: Streamlines colored by the || u ||, Str = 1, Re = 5000, (Wo = 88.6), t = 6,

Uz, 1,t) = (maz(cos(%), 0),0)

Figure 40: Streamlines colored by the || u ||, Str = 1, Re = 8000, (Wo = 112.07),
t =30, U(z,1,t) = (maz(cos(2),0),0)
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Figure 41: Streamlines colored by the y-velocity, Str = 1, Re = 5000, (Wo = 88.6),

t =6, U(z,1,t) = (maz(cos(%t),0),0)
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Figure 42: Streamlines colored by the y-velocity, Str = 1, Re = 5000, (Wo = 88.6),
t=6+7Z, U(z,1,t) = (maz(cos(%L), 0),0)
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Figure 43: Streamlines colored by the y-velocity, Str = 1, Re = 5000, (Wo = 88.6),

t=6+1, U(x,_l,t) = (max(cos(%),_O), 0)

T e ——

Figure 44: Streamlines colored by the y-velocity, Str = 1, Re = 5000, (Wo = 88.6),
t=6+ 2L, U(z,1,t) = (maz(cos(2L),0),0)
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Figure 45: Streamlines colored by the y-velocity, Str = 1, Re = 8000, Wo = (112.07),

t =30, U(z,1,t) = (maz(cos(3),0),0)

Figure 46: Streamlines colored by the y-velocity, Str = 1, Re = 8000, Wo = (112.07),
t=30+1L, U(z,1,t) = (maz(cos(%),0),0)
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Figure 47: Streamlines colored by the y-velocity, Str = 1, Re = 8000, Wo = (112.07),
t=30+7Z,U(z,1,t) = (maz(cos(%),0),0)

Figure 48: Streamlines colored by the y-velocity, Str = 1, Re = 8000, Wo = (112.07),
t =30+ 3L, U(z,1,t) = (maz(cos(2),0),0)
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Figure 49: x-Velocity at (0.2,0.75), Str = 1, Re = 5000, (Wo = 88.6), t € [0,7],

Uz, 1,t) = (maz(cos(%4),0),0)
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Figure 50: x-Velocity at (0.2,0.75), Str = 1, Re = 8000, (Wo = 112.07), t € [2, 35],
Uz, 1,) = (mas(cos(22), 0),0)
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Figure 51: y-Velocity with respect to x-Velocity at (0.2,0.75), Str = 1, Re = 5000,
(Wo=288.6),te 4,7, Uz,1,t) = (maz(cos(3),0),0)
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Figure 52: y-Velocity with respect to x-Velocity at (0.2,0.75), Str = 1, Re = 8000,
(Wo =112.07), ¢ € [32,35], U(z, 1,t) = (maz(cos(%4),0),0)
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Figure 53: Streamlines colored by the || u ||, Str = 0.1, Re = 5000, (Wo = 28.01),
t =190, U(z,1,t) = (maz(cos(2),0),0)

Figure 54: Streamlines colored by the || u ||, Str = 0.1, Re = 8000, (Wo = 35.44),
t =160, U(z,1,t) = (maz(cos(%*),0),0)136
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Figure 55: Streamlines colored by the y-velocity, Str = 0.1, Re = 5000, (Wo = 28.01),

t =190, U(z,1,t) = (maxz(cos(3£),0),0)
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Figure 56: Streamlines colored by the y-velocity, Str = 0.1, Re = 5000, (Wo = 28.01),
t=190+ %, U(z,1,t) = (maz(cos(Z), 0),0)
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Figure 57: Streamlines colored by the y-velocity, Str = 0.1, Re = 5000, (Wo = 28.01),

t =190+ T, U(z,1,t) = (maz(cos(%), 0),0)
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Figure 58: Streamlines colored by the y-velocity, Str = 0.1, Re = 5000, (Wo = 28.01),
t =190+ 2L, U(z,1,t) = (maz(cos(%L), 0),0)
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Figure 59: Streamlines colored by the y-velocity, Str = 0.1, Re = 8000, (Wo = 35.44),

t =160, U(z,1,t) = (maz(cos(3£),0),0)
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Figure 60: Streamlines colored by the y-velocity, Str = 0.1, Re = 8000, (Wo = 35.44),
t=160+ %, U(z,1,t) = (maz(cos(Z), 0),0)
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Figure 61: Streamlines colored by the y-velocity, Str = 0.1, Re = 8000, (Wo = 35.44),

t =160+ T, U(z,1,t) = (maz(cos(%), 0),0)
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Figure 62: Streamlines colored by the y-velocity, Str = 0.1, Re = 8000, (Wo = 35.44),
t =16+ 3L, U(z,1,t) = (maz(cos(2),0),0)
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Figure 63: x-Velocity at (0.8,0.5), Str = 0.1, Re = 5000, (Wo = 28.01), ¢ € [20, 200],
U(x,1,t) = (maz(cos(%), 0),0)
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Figure 64: x-Velocity at (0.8,0.5), Str = 0.1, Re = 8000, (Wo = 35.44), t € [10, 160],
U(z,1,t) = (maz(cos(%),0),0) 141
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Figure 65: y-Velocity wrt x-Velocity at (0.8,0.5), Str = 0.1, Re = 5000, (Wo = 28.01),
t € [170,200], U(z,1,t) = (maz(cos(3£),0),0)
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Figure 66: y-Velocity wrt x-Velocity at (0.8,0.5), Str = 0.1, Re = 8000, (Wo = 35.44),
¢ € [130,160], U(z,1,t) = (maz(cos(2),0),0)
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Figure 67: Streamlines colored by the || u ||, Str = 1, Re = 8000, (Wo = 112.07),
t =14, U(z,1,t) = cos(%)

Figure 68: Streamlines colored by the || u ||, Str = 0.1, Re = 8000, (Wo = 35.44),
t =190, U(z,1,t) = cos(%) 143



Figure 69: Streamlines colored by the || u ||, Str = 1, Re = 8000, (Wo = 112.07),
t =30, U(z,1,t) = maz(cos(2L), 0)

Figure 70: Streamlines colored by the || u ||, Str = 0.1, Re = 8000, (Wo = 35.44),
t =190, U(z,1,t) = maz(cos(%L),0) 144
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Figure 71: The geometry of the computational domain
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Figure 73: Streamlines colored by the x-velocity, Str = 0, Re = 400, (Wo =
t =60
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Figure 74: Streamlines colored by the x-velocity, Str = 0, Re = 1200, (Wo =

t =60
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Figure 75: x-Velocity at (3.2,0.75), Str = 0, Re = 1200, (Wo = 0), t € [10, 60]
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Figure 76: x-Velocity at (3.2,0.75), Str = 0, Re = 1200, (Wo = 0), t € [20, 60]
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Figure 77: Streamlines colored by the x-velocity, Str = 1, Re = 200, (Wo = 17.72),
t=28
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Figure 79: Streamlines colored by the x-velocity, Str = 1, Re = 1200, (Wo = 43.4),
t=11
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Figure 80: Streamlines colored by the x-velocity,Str = 1, Re = 400, (Wo = 25.05),
t=28
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Figure 81: Streamlines colored by the x-velocity, Str = 1, Re = 400, (Wo = 25.05),
t=8+1
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Figure 83: Streamlines colored by the x-velocity, Str = 1, Re = 400, (Wo = 25.05),
t=8+%%
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Figure 85: Streamlines colored by the x-velocity, Str = 1, Re = 1200, (Wo = 43.4),
t=11+1
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Figure 86: Streamlines colored by the x-velocity, Str = 1, Re = 1200, (Wo = 43.4),
t=11+71
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Figure 87: Streamlines colored by the x-velocity, Str = 1, Re = 1200, (Wo = 43.4),
t=11432L
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Figure 90: y-Velocity wrt x-Velocity at (3.2,0.75), Re = 400, Str =1, (Wo = 25.05),
t € 16,8
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Figure 91: y-Velocity wrt x-Velocity at (3.2,0.75), Re = 1200, Str = 1, (Wo = 43.4),
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Figure 93: Streamlines colored by the x-velocity, Str = 2, Re = 400, (Wo = 35.44),
t=2
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Figure 94: Streamlines colored by the x-velocity, Str = 2, Re = 1200, (Wo = 61.38),
t=2
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Figure 95: Streamlines colored by the x-velocity, Str = 2, Re = 400, (Wo = 35.44),
t=1.5
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Figure 96: Streamlines colored by the x-velocity, Str = 2, Re = 400, (Wo = 35.44),
t=15+71
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Figure 97: Streamlines colored by the x-velocity, Str = 2, Re = 400, (Wo = 35.44),
t=15+1
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Figure 98: Streamlines colored by the x-velocity, Str = 2, Re = 400, (Wo = 35.44),
t=15+3
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Figure 99: Streamlines colored by the x-velocity, Str = 2, Re = 1200, (Wo = 61.38),
t=3
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Figure 100: Streamlines colored by the x-velocity, Str = 2, Re = 1200, (Wo = 61.38),
t=3+1
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Figure 101: Streamlines colored by the x-velocity, Str = 2, Re = 1200, (Wo = 61.38),
t=3+1
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Figure 102: Streamlines colored by the x-velocity, Str = 2, Re = 1200, (Wo = 61.38),
t=3+%%
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Figure 103: x-Velocity at (3.2,0.75), Re = 400, Str = 2, (Wo = 35.44), t € |0, 3.5]
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Figure 104: x-Velocity at (3.2,0.75), Re = 1200, Str = 2, (Wo = 61.38), t € [0.5, 3.5]
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Figure 105: y-Velocity wrt x-Velocity at (3.2,0.75), Re = 400, Str = 2, (Wo = 35.44),
t € [2.5,3.5]
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Figure 106: y-Velocity wrt x-Velocity at (3.2,0.75), Re = 1200, Str = 2, (Wo =
61.38), ¢ € [2,3.5]

157



Valunitad
oo

L4
0755
-0.u27
-1.41

Figure 107: Streamlines colored by the x-velocity, Str = 0.5, Re = 400, (Wo = 17.72),
t=12
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Figure 108: Streamlines colored by the x-velocity, Str = 0.5, Re = 400, (Wo = 17.72),
t=12+1
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Figure 109: Streamlines colored by the x-velocity, Str = 0.5, Re = 400, (Wo = 17.72),
t=12+71
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Figure 110: Streamlines colored by the x-velocity, Str = 0.5, Re = 400, (Wo = 17.72),
t=1243L
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Figure 111: x-Velocity at (3.2,0.75), Re = 400, Str = 0.5, (Wo = 17.72), t € [0, 14]
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Figure 112: y-Velocity wrt x-Velocity at (3.2,0.75), Re = 400, Str = 0.5, (Wo =
17.72), t € [8,14]
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Figure 113: Streamlines colored by the x-velocity, Str = 0.5, Re = 400, (Wo = 17.72),
t=12

- — = T Valuitet
e e !# il 292
S = e B g 'll_r' -‘_!
= = 0.735
=S -0.327
=141

Figure 114: Streamlines colored by the x-velocity, Str = 1, Re = 400, (Wo = 25.05),
t=11
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Figure 115: Streamlines colored by the x-velocity, Str = 2, Re = 400, (Wo = 35.44),
t=3
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Figure 116: Velocity profile: at L (red), £ (blue), 2L (green), T' (black)
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Figure 117: x-Velocity at (4.02,0.875), Str = 1, Re = 400, (Wo = 25.05), t € [3,11]
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Figure 118: Streamlines colored by the x-velocity, Str = 1, Re = 400, (Wo = 25.05),
t=26
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Figure 119: Streamlines colored by the x-velocity, Str = 1, Re = 400, (Wo = 25.05),
t=11
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