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Abstract

The heart is a very important human organ, that has a complex structure. Cardiovascular
diseases have been the highest cause of death in North America and in Europe for decades.
For this reason, a lot of research is made to understand the heart’s physiology.

One way to better understand the heart is via theoretical modeling of physiological
mechanisms, the main ones being

• trans-membrane potential wave propagation,

• myocardium’s contraction and

• blood flow in the cardiac chambers.

These physiological phenomena can be modeled via systems of partial differential equa-
tions (PDEs) that are defined on a domain given by the heart’s shape. Numerical methods
for solving these equations play a crucial role for validating these models. Numerical sim-
ulations also serve to make predictions of the organ’s reaction to given stimuli. Thereby
medical interventions such as the introduction of a pacemaker can be numerically simu-
lated before attempting the surgical implantation.

Such simulations on a complex geometry (the heart muscle or blood chambers) are
usually made using the finite element or the finite volume methods. These methods requires
a mesh of the computational domain, that is a triangulation of the domain into triangles in
2D or into tetrahedra in a 3D scenario. Thus far, most computations are made on meshes
of idealized geometries and there is a lack of accurate 3D geometrical models of the heart.
The community is aware of the importance of building accurate 3D models of the heart
for understanding its physiology. There is only one realistic heart model that is publicly
available.

The main achievement of this project is to have built a precise and complete geometrical
model of the human heart. The model consists of

1. An accurate and properly refined mesh of the heart muscle and chambers. The model
includes fine features such as the pulpillary muscles (pillars) in the left and right
ventricles.
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2. The orientation of cardiac fibers.

3. The model is publicly available to the scientific community1.

Other contributions of this thesis include a careful analysis, of known PDE-based seg-
mentation methods. This is done in Chapter 5. We mostly studied the active contour without
edges algorithm. We compared the impact of the choice of discretization on the numeri-
cal solutions of the problem. We concluded that some discretizations, while being more
natural, do not behave as well as some others. We also evaluated the impact of the initial
condition that is chosen on the speed of convergence of the algorithm. We carefully stud-
ied the hierarchical method of Gao and Bui [39], and show test cases where it performs
better than the original multiphase algorithm of Vese and Chan [117]. We show that the
hierarchical segmentation is a more natural framework for segmenting junctions of three
segments.

We also proposed modifications of some PDE-based methods to be able to do the heart
segmentation. In Chapter 5, we introduced two new types of initial conditions that make
the active contour without edges algorithm converge more quickly. Also the hierarchical
segmentation algorithm with an L1 fidelity term is introduced and is shown to be more effi-
cient in some contexts. In Chapter 7, we present a variant of the subjective surface problem
introduced by Sarti, Malladi and Sethian [98, 99]. We propose to solve the problem on an
annulus around the heart chambers.

During this project, we have developed C++ classes that handles 2D and 3D images.
The result is a small PDE image processing toolkit (SPDEIPTK) that is suitable for research
use. It features an almost transparent parallel implementation. The toolkit is also publicly
available2.

1http://www.mathstat.uottawa.ca/~orous272/
2http://www.mathstat.uottawa.ca/~orous272/spdeiptk/index.html
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Introduction

The heart is a muscle that pumps the blood through the circulatory system. It brings oxygen-
rich blood to the human organs and de-oxygenated blood to the lungs through the pulmonary
artery. According to the American Heart Association, cardiovascular diseases have been the
number one cause of death in the United States since the year 1900. One out of three adults
(about 80 000 000) is affected by cardiovascular diseases. It was responsible for 865 000
deaths across the United States in 2005 only. This represents 35.3% of the total number
of deaths that year [59]. These statistics indicate why so many researches are needed to
understand the heart’s physiology and to understand how cardiovascular diseases affect it.

Figure 1.1: A human heart (from http://www.en.wikipedia.org/wiki/Heart).
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12 Introduction

During a heartbeat, the heart is crossed by two trans-membrane potential waves. The
first one is a depolarization wave that forces the cell contraction. The second is a repolar-
ization wave which brings back the cells to their original state. The depolarization wave
is initiated by the sinoatrial node in the right atrium and then transferred to the ventricles
by a relay point called the atrioventricular node and the Purkinje fibers. For reference,
we include a picture showing the main anatomical features of the heart (Figure 1.2). The
myocardial cells (called the myocites) are organized in fibers gathered in sheets. The trans-
membrane potential travels at a greater speed in the direction of the heart fibers. The result-
ing contraction of the ventricles pushes the blood into the blood vessels. The orientation
of the fibers also plays an important role in the contraction process, causing a twist in the
heart’s shape.

Figure 1.2: Heart anatomy (from http://www.texasheartinstitute.org/hic/anatomy/anatomy2.cfm)

One way to better understand the heart is via the theoretical modeling of these mecha-
nisms, the main ones being
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• trans-membrane potential waves propagation,

• myocardium’s contraction and

• blood flow in the cardiac chambers.

These physiological phenomena can be modeled via systems of partial differential equa-
tions (PDEs) that are defined on a domain given by the heart’s shape. Numerical methods
for solving these equations play a crucial role for validating these models. Numerical sim-
ulations also serve to make predictions of the organ’s reaction to given stimuli. Thereby
medical interventions such as the introduction of a pacemaker can be numerically simu-
lated before attempting the surgical implantation.

Such simulations on a complex geometry (the heart muscle or blood chambers) are
usually made using the finite element or the finite volume methods. These methods requires
a mesh of the computational domain, that is a triangulation of the domain into triangles in
2D or into tetrahedra in a 3D scenario. Thus far, most computations are made on meshes
of idealized geometries (for example [118]) and there is a lack of accurate 3D geometrical
models of the heart. The community is aware of the importance of building accurate 3D
models of the heart for understanding its physiology. For instance the IEEE Transactions

on Medical Imaging dedicated a special issue to this difficult task in 2002 [35].
Only a few realistic models of the heart are available. There are the Auckland canine

heart model [57, 105], the INRIA model [75], the Asclepios model [89] and the Auckland
porcine model [107]. All these models contain the heart geometry and the orientation of the
fibers. In the first models, the fiber orientation was found by dissection, while recent models
have fiber orientation derived from diffusion tensor MRI (DTMRI) imaging methods.

Of those, the Asclepios model is the only model publicly available to the scientific
community1. It consists of the lower part of the left and right ventricles. The surface of the
ventricular cavities are smooth and do not contain details such as the pillars. The model is
shown in Figure 1.3.

1.1. THE PROJECT

The non availability of accurate 3D models of the human heart motivates this PhD project.
The main objective of this project is to build a precise and complete geometrical model of
the human heart. The model should consist of

1http://www-sop.inria.fr/asclepios/data/heart/index.php
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Figure 1.3: The Asclepios model.

1. An accurate and properly refined mesh of the heart muscle and chambers. The model
must include fine features such as the pulpillary muscles (pillars) in the left and right
ventricles.

2. The orientation of cardiac fibers.

3. The model should be publicly available to the scientific community.

Medical images are about the most reliable sources of data on which to base our con-
struction. The challenge is to extract the heart boundaries and other geometrical character-
istics from these medical images. This is called the segmentation process. In a 2D scenario,
a human eye can easily detect the contours of objects and draw these contours. It is quite
difficult however to get a computer to perform the same tasks, but this computational step
is necessary in 3D contexts. Indeed, a human would have a lot of trouble to find a boundary
surface in 3D images. Moreover, an automation of the segmentation process would provide
a very powerful tool for physicians. Even though automation is not our primary goal, we
do favor processes which require little human interaction.

1.2. DATA

Imaging the heart is a difficult task. The main reason for this is that the heart is either
constantly moving or, when it is dead, its shape is modified. When the heart beats, the
cells contract and make the heart’s walls thinner. Two common types of heart imaging



1.2. Data 15

procedures are MRI and CT scans. The Visible Human Project2 is another source of data
but, as the subject is dead, the shape of the heart may not be as realistic as images of living
patients. In all cases, the images are given as series of 2D slices. Another cardiac imaging
technique is echocardiography, also known as ultrasound. It used to provide 2D views of
the heart, but nowadays 3D ultrasound devices are available.

1.2.1. Magnetic Resonance Imaging (MRI)

In magnetic resonance imaging, there is a long sequence of operations that are necessary in
order to pass from the acquired data to a real image.

Briefly, the process goes as follows: The patient is placed into a long thick tube. A
strong magnetic field affecting hydrogen atoms of the body is produced inside the tube. An
hydrogen atom is constituted of a proton and an electron which makes it a dipole. Under
the influence of the magnetic field, the dipoles all align in the same direction.

A second device, often shaped like a donut, is placed in the scanner around the region
of interest. This device also produces a magnetic field that aligns the hydrogen atoms in
a different direction. Everything is then ready for data acquisition: the second magnetic
field is stopped and all of a sudden, dipoles come back to their original orientation. When
doing so, the atoms release some energy that is captured by the second device. This data is
processed in order to reconstruct an image representing the hydrogen density map. Since
hydrogen in the human body mostly comes from water, organs can be colored with respect
to their water concentration. This is great for heart imaging. It allows to distinguish between
the muscle and the cavities of the heart containing blood with a larger water concentration
than other tissues. Figure 1.4 shows a slice of a typical MRI data set. The MRI data set to
which we have access has resolution 1.2mm × 1.2mm × 6mm and size 256 × 256 × 14.

During the MRI scan, slices are imaged periodically at the same moment of the beating
cycle, usually at the diastole. Hence an image is produced at each heart beat. Typically,
the resolution in the x and y directions is between 1mm and 2mm, and the the resolution in
the z direction between 2mm and 6mm This resolution is not high enough to recover fine
anatomical details of the heart.

DTMRI scanners (Diffusion tensor MRI) can measure the diffusion of the water in a
tissue. In the heart, the privileged direction for the diffusion of the water is along the
fibers [101]. This is therefore a good way to compute the orientation of the cardiac fibers.
The downside of this technique is that the tissue needs to stay in the scan for a long time

2http://www.nlm.nih.gov/research/visible/visible_human.html



16 Introduction

Figure 1.4: 3D images of a living patient, 1.2mm × 1.2mm × 6mm. Courtesy of the On-
tario Consortium of Cardiac Imaging, Sunnybrook Health Sciences Center, University of
Toronto

which would be harmful to a living person.
At Johns Hopkins University, in the Center for Cardiovascular Bio-informatics and

Modeling, they measured these diffusion tensors from the heart of a dead person and several
dog hearts. As the hearts are dead, they may not have a very reliable shape. Nevertheless,
these data sets are very interesting regarding the cardiac fibers orientation. A picture of a
slice of the human data set together with some fibers is shown in Figure 1.5. The Asclepios
team at INRIA Sophia Antipolis created from these data a mean shape of the canine hearts,
and a mean fiber orientation from about 20 DTRMI data set [89]. This gives a reasonably
clean fiber data set.

1.2.2. Computed Tomography (CT)

Computed tomography uses X-ray technology. As for MRI, the patient is placed into a
tube. This tube emits X-rays toward the center of the cylinder. The X-rays pass through the
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Figure 1.5: 3D image and fiber information of a dead heart, 0.4mm × 0.4mm × 1mm. The
size is 256 × 256 × 134. Courtesy of the Center for Cardiovascular Bio-informatics and
Modeling, Johns Hopkins University.

body and the intensity is measured on the other side. Then a reconstruction work is done to
actually obtain a 3D image.

A disadvantage of that method is that it distinguishes bones better than organic tissues.
The muscle and the cavities of the heart are not well differentiated, both appearing on close
gray tones on the CT scan. On the other hand, it offers precise data relatively quickly.

The scan always take the pictures at the same moment of the heart beat. It can capture
up to 10 slices of 1.2mm per heart beat. On each slice, it is possible to have a resolution of
0.5mm × 0.5mm, which is very good. Figure 1.6 shows a slice of a typical CT scan.
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Figure 1.6: 3D image of a CT scan, 0.5mm×0.5mm×1.2mm. Courtesy of the Heart Institute,
University of Ottawa.
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This CT scan contains 512 × 512 × 199 voxels and is the best data set that we have at
hands at the moment.

1.2.3. Visible Human Project

Another valuable source of data is the one provided by the Visible Human Project [1]. A
man and a woman (dead) have been frozen in an ice cube. The frozen bodies were thinly
sliced (1mm for the men and 0.33mm for the women). A color picture of each slice was
then taken. These data sets are very precise and contain a lot of useful anatomic details.
The drawback is that the patients were dead, which changes the shape of the heart. The
whole data sets are huge. A close up on the man’s heart is shown in Figures 1.7. Its size is
440 × 440 × 121.

Figure 1.7: Visible Human Male, 0.33mm × 0.33mm × 1mm. Courtesy of the United States
National Library of Medicine.



20 Introduction

1.2.4. Echocardiography

Echocardiography uses the ultrasound technology to produce 2D images of the heart. It is
a fast and safe imaging technique, so that it is now possible to have real-time 3D images of
the heart. However, it is often of relatively poor quality as you can see in Figure 1.8. It is
mostly used by physicians for quick diagnostics or for real time imaging during a surgical
intervention.

Figure 1.8: An example of an echocardiogram (from
http://en.wikipedia.org/wiki/Echocardiography).

1.3. HEART SEGMENTATION

Heart segmentation is a difficult task for several reasons. A first reason is the complexity
of the organ shape and topology. A second one is the fact that the heart is an organ that
is difficult to image. A third reason is that the heart is often occluded by other details of
the anatomy such as fat, liver or the chest wall [81]. For all these reasons, the heart is
usually segmented using model-based methods. They are segmentation methods that rely
on a standard mean shape of the heart, or user defined landmarks in the image.

Model-based techniques yield more robust algorithms, that can perform well on various
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images. On the other side, the more robust the algorithm is, the more details will be lost in
the segmentation process. An automatic segmentation algorithm will find the overall shape
of the heart, but not necessarily the fine details of the heart’s anatomy.

To our knowledge, there are very few attempts to segment the myocardium using a
method that is not model-based. All of those attempts required careful manual initial con-
dition positioning. The main model-based cardiac segmentation methods are active shape
models, active appearance models, and deformable models. A good review is the one of
Frangi, Niessen and Viergever [36].

1.3.1. Deformable models in cardiac segmentation

Deformable models have made their first apparition in the snakes introduced by Kass,
Witkin and Terzopoulos [51]. Their original idea is to start with a curve (a surface in 3D)
and to let the curve evolve until it stops on the contour of the object of interest.

The snake evolution is often driven by a minimization problem: the optimal snake is the
one that minimizes a given energy. In general, the energy is made of two terms. The first is
an external energy that depends on the underlying image and attracts the snake towards the
features of the image. The second is an internal energy that enforces the smoothness of the
curve (or surface).

The evolution process can be described in two main ways. The curve can be defined
explicitly via a parametrization. The curve is then discretized and a differential equation
is solved to find the speed at which the curve should move at each discretization point.
The other approach is to define the curve implicitly via a level set method [77]. A partial
differential equation needs to be solve on the domain. This approach allows for possible
topology changes over the evolution. It is applicable in 2D, 3D or more dimensions without
changing the form of the equation. All these methods are described in depth in Sections 4.1-
4.5. They have been heavily used for medical image segmentation [36].

Deformable models can segment fine details of the image while enforcing a relative
regularity of the segmented contour. This feature also makes the segmentation process
less robust to noise or image artifacts. Deformable models are prone to get stuck in local
optima due to some local features of the image, or to leak when the object’s edges are
missing or occluded. Hence, heart segmentation with deformable models requires a careful
initialization, with an initial contour that is close to the object of interest. It may also require
a user to put landmarks on the image that will guide the segmentation. Because of these
characteristics, deformable models are mostly used to segment the left ventricle chamber,
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also called the left ventricle’s endocardium. The endocardium is the inner surface of the
myocardium while the epicardium is the outer surface. The left ventricle endocardium
usually has a good contrast with the heart muscle and deformable models can perform well
for this segmentation task. It has been done successfully by many people.

Zhukov et al. [130] segmented the endocardium surface from MRI images. They take
the mesh of a sphere inside the left ventricle chamber as initial condition. The mesh is
deformed by minimizing the snake energy (Equation 4.1 below). It is done in an explicit
manner in order to preserve the topology of the sphere. Many landmarks are assigned by
the user. The mesh stops deforming in the neighborhood of these landmarks.

In the work of Corsi et al. [28], the left ventricle’s endocardium is segmented from
echocardiography images. These are usually very noisy and have many gaps. The segmen-
tation is done via a level set method that has no inflating term (see Section 4.3.1). In this
context, a close initial condition is needed. A user takes several slices of the image and on
each of these, he marks a polygon located close to the left ventricular chamber boundary.
The slice are then gathered together and the initial condition is the polyhedron made of the
stacked polygons.

Deformable models are also a good choice to segment 4D images (3D + time), since
once a segmented image is found at a given time, it can serve as initial condition for the next
time step. It has been done by Gerard et al. [41]. They segmented 4D echocardiography
images in real time. A first segmentation is given by a coarse mesh that is placed manually.
To segment the next images in the time sequence, they first look for a simple affine transfor-
mation that brings the initial condition to a better place, then the snake equation is applied
explicitly to deform the mesh.

McInerney and Terzopoulos [63] segmented the endocardium surface from 4D CT
images. The segmentation is made by deforming the mesh of a sphere that is given inside
the chamber. The user can interactively add a string force at some places to attract the mesh
to the surface.

There are also some attempts to segment more than just the left ventricle chamber.
Santarelli et al. [96] segmented the left ventricle with both the endocardium and epicardium
surfaces. They used the explicit snake formulation on 2D slices. The first slice is segmented
by using a rough curve traced by a user. The snake equation is applied to find a better
contour. Once the endocardium contour is found, it is used as initial condition to find the
epicardium contour. When the slice is segmented, the algorithm goes to the next slice,
taking as initial condition the contours of the last slice.

Park, Metaxas and Axel [79, 80, 81] segmented the endocardium and epicardium sur-
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faces of the left and right ventricles in 4D on tagged MRI. This is a special type of MRI
image where a grid is overlaid on the MRI image and the grid deforms with the heart move-
ment [128, 11]. In the segmentation process, the volume is first represented by a mesh
whose boundaries are ellipsoidal surfaces that roughly fits the first image of the time series.
The ellipsoids are deformed very smoothly on the image using the snakes equation. The
mesh is then deformed in time using forces derived from the tags.

Von Berg and Lorenz [120] segmented the endocardium and epicardium surfaces of
the left ventricle as well as the endocardium surfaces of the right ventricle and atria from
CT images. They also included some of the vessels connected to the heart. They used
deformable models with user defined landmarks. The initial condition is a model of these
surfaces that is built by hand with simple surfaces as spheres, ellipsoids and tubes.

1.3.2. Active shape model and active appearance model

These methods have been introduced by Cootes et al. [27, 25]. They use a training set
in order to learn the shape and image variability to help the segmentation process. Each
image from the training set must be segmented manually by a specialist. Next, N landmark
points are placed at strategic locations. The shape of the object is then defined by a single
vector xi in R3N . Principal component analysis (see [34]) is then performed to get the main
directions of shape variability.

In the active shape model only information about the shape is used. In the active appear-
ance model, the gray-level variability of the image is also taken into consideration, yielding
a more complete segmentation algorithm.

Active shape models and active appearance models are strongly model-based and yield
more robust segmentation algorithms. On the other hand, they tend to over-smooth the
features. This type of method is suitable for automatic detection of the heart position and
overall shape, but not for identification of fine anatomical features.

Active shape models have been used by Van Assen et al. [114] to segment left ventricle
endocardium and epicardium surfaces from MRI images. A mesh of a mean shape ventricle
is first generated and main directions of deformations are obtained from the principal com-
ponent analysis. Given an image to segment, the model shape is first aligned on the image.
It is then deformed using the image intensity and the preferred directions of deformation
(see Section 4.6.1).

Frangi et al. [37] proposed an automatic method for finding landmarks in images. This
can help the process of tagging the training set for the active shape model.
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A group from Philips Research has developed over the years an automatic algorithm to
segment the endocardium of both ventricles and both atria as well as the epicardium of the
left ventricle from various image acquisition techniques [121, 33, 100, 87, 88, 32, 86, 65,
64]. In [33] they addressed the question of how the segmentation via active shape model is
affected by the shape variability of the training set.

Zheng et al. [129] segmented the same surfaces as the Philips group from CT images.
They proposed a fast way to search the shape space for the optimal alignment of the atlas
(model shape of the heart). An efficient mix of global and local deformations are also
proposed to deform the heart model to fit the image.

Active appearance models have also been used for heart segmentation by Mitchell et

al. [71] to segment endocardium and epicardium surfaces of the left ventricle from MRI
and echocardiography images.

Andreopoulos and Tsotsos [8] proposed a efficient way of matching a heart model on
an image using active appearance model. They segmented endocardium and epicardium
surfaces of the left ventricle from MRI images.

1.3.3. Other methods

Among other methods are some mix of the methods presented above. For example Fritscher
and Schubert [38] combined the idea of active appearance models with deformable models.
An atlas is built as for active appearance model and a principal component analysis is made
to find the main directions of deformation. Given a new image, the model is first aligned
correctly with the image using affine registration [24, 119]. It is then locally deformed with
demon registration [110]. It is finally deformed using an extension of the geodesic active
contours [15, 58] that uses statistical shape information from the atlas. With this method,
they segmented the endocardium of the left and right ventricles from MRI images.

Another example of combined methods is the one proposed by Tobon-Gomez et al. [111].
A 3D active shape model is built on a CT training set to segment lower resolutions images
coming from different imaging protocols.

Lorenzo et al. [60] segmented the endocardium of the left and right ventricles as well
as the epicardium of the left ventricle from 4D MRI images using B-spline registration
methods. They first build an atlas from many MRI images that are segmented manually.
The atlas is then registered on the image using B-spline registration. It yields a smooth
overall segmentation of the surfaces.

Perperidis et al. [84] also used a registration method for segmenting the endocardium
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and epicardium surfaces of the left ventricle from 4D MRI images.
Santarelli et al. [97] proposed a method for segmenting the heart in low resolution

images such as CPECT using the segmentation result on a MRI image obtained as in [96].
Some other people use 2D segmentation methods to segment the heart on every slice of

the data set and then merge the results to obtain a 3D segmentation [50, 95, 123]. These
methods do not make use of all the features of the full 3D images and yields lower quality
segmentations.

1.4. PROPOSED FRAMEWORK

As mentioned previously, the main goal of this PhD project is to create a realistic geomet-
rical model of the heart that contains fine anatomical features. We do not intend to devise
an algorithm that performs automatic segmentation. Such an algorithm must be robust to
noise and shape variability and as such will not segment fine details. However, the proposed
method should be easily applicable to many images.

We decided to use the cardiac CT image presented in Section 1.2.2. It is the most precise
and clearest cardiac image that we have at our disposal.

We will not consider statistical shape models such as active shape model and active
appearance model. These methods are interesting for their robustness for finding the overall
shape of the heart. This is perfect for automatic heart segmentation. A drawback of these
methods is that they require a training set that consists of many images that are manually
segmented. Usually, they require at least 20 images. We do not have access to such a
training set. Recall that the efficiency of the active shape methods heavily depends on the
diversity of the training set [33].

We use a deformable model approach. However, we will not use a model-based method.
There are several reasons justifying this choice. A good model-based method uses an atlas
that is built from a given training set. Again, for availability reasons, we do not want to
proceed along this avenue. An atlas also introduces a bias in the segmentation result since
the algorithm searches for a shape similar to the one of the atlas. This is something that we
do not want in our segmentation method.

We create our heart model with the following framework:

1. Segmentation of the full endocardium (both ventricles and atria) via a modified ver-
sion of the Chan-Vese algorithm.

2. Segmentation of the full epicardium (both ventricles and atria) using a modified sub-
jective surface problem.
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3. Mesh generation of the myocardium using DistMesh.

4. Registration of the Asclepios model onto our model to get the fiber orientation in the
ventricles using diffeomorphic demons.

Chan-Vese algorithm

The Chan-Vese algorithm is a variant of the Mumford and Shah problem [72]. Let

g : Ω→ [0, 1] (1.1)

be an image. Mumford and Shah proposed to consider pairs (u,K), formed of an image u

and a compact set K representing edges. They state that the pair (u,K) which minimizes

F(u,K) =

∫
Ω\K
|∇u|2dx +

∫
Ω

(g − u)2dx + length(K)

gives a good segmentation of the image g. In this context, the set K represents the contours
of the objects in g. Moreover, the function u should be such that ∇u is well defined on Ω\K.
Such functions belong to the space of functions of bounded variation.

It is a difficult task to prove that this functional has indeed a minimum. To compute
this minimum numerically, the problem may be expressed in a simplified form by assuming
that the minimal image u has only 2 values. Using this assumption, the problem can be
reformulated using level sets. This leads to the PDE, proposed by Chan and Vese [21],

φt = µδ(φ)
(
div

(
∇φ
|∇φ|

)
+ (g − u)

)
, Ω

∂φ
∂n = 0, ∂Ω

φ(x, 0) = φ0,

(1.2)

where u is a function that takes only two values c1 and c2. The steady state solution splits the
domain into two regions, namely {φ < 0} and {φ > 0}. These two sets represent regions of
interest of the image g. It is then possible to consider one of these regions as a new domain,
and split it again. This hierarchical process gives an efficient way to segment images. We
will study and use an improved version of this algorithm.
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Subjective surfaces

The subjective surfaces method has been introduced by Sarti, Malladi and Sethian [98, 99].
It is a variation of the geodesic active contour method of Caselles, Kimmel and Sapiro [16],
where all level sets of the level set function are considered. The idea is that all level sets
will be attracted by the image edges, creating cliffs. A suitable threshold then yields a
segmentation. The subjective surface problem is given as

φt = h(|∇g|)|∇φ|div
(
∇φ
|∇φ|

)
+ ∇h(|∇g|) · ∇φ on Ω

φ = 0 on ∂Ω,

φ(x, 0) = φ0 on Ω,

(1.3)

where h is called an edge stopping function. It is such that

1. h is monotonically decreasing,

2. h(0) = 1,

3. h(x)
x→∞
−→ 0.

We will use a modified version of the subjective surface problem that is more suitable
for heart segmentation.

DistMesh

The publicly available Matlab code DistMesh [85, 47] is used to mesh the resulting seg-
mentations. The code has been modified to create meshes that are compatible with the
boundary of sub-domains.

Diffeomorphic demons

Diffeomorphic demons will be used to map the Asclepios model onto our segmentation
results. A diffeomorphic registration method need to be used in order to be able to map the
fibers using its Jacobian. The problem is variational as the diffeomorphism is sought as the
minimum of a functional over a space of diffeomorphisms. We used for this the method
introduced by Vercauteren et al. [116] that was implemented in the Insight Toolkit (ITK)
by the same authors [115].
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1.5. THESIS OVERVIEW

The structure of this thesis is as follows. In Chapter 2, we present some background material
that is relevant for PDE methods in image analysis. We introduce the functional space of
functions of bounded variation as well as the main theorems leading to the existence of
solutions for most image processing PDE methods. We also present some basics in the
calculus of variations and the Mumford-Shah functional.

In Chapter 3, we present the basic PDE methods in image denoising and possible nu-
merical schemes to solve them. We introduce the total variation equation [92].

In Chapter 4, we present an overview of existing segmentation methods for medical im-
ages. We give a special care to PDE based methods as they are at the heart of this thesis. We
first present the classical snakes method [51]. Next we introduce the level set method [77]
that is used to define other snake methods such as geodesic active contours [16] and subjec-
tive surfaces [98, 99]. We expand more on the active contours without edges, also known
as the Chan-Vese algorithm [21]. We also present how one can introduce a shape prior in
each of these methods. We end this chapter by two other segmentation techniques called
active shape model and active appearance model [27, 25].

Chapter 5 is dedicated to a fine analysis of the active contour without edges algorithm.
We study several aspects of the problem and describe how these influence the results. We
first study the different discretizations of the energy functional. This implies the computa-
tion of the length of a curve defined implicitly. We then look at the impact of the related
discretizations of the Euler-Lagrange equation. Next we study the impact of the initial con-
dition on the problem. We introduce two new types of initial conditions, namely a random
initial curve and another curve that is the solution of the active contour without edges with
no curvature term. We also analyze the hierarchical method based on active contours with-
out edges introduced by Tsai, Yezzi and Willsky [113] and further investigated by Gao
and Bui [39]. We present test cases where this method performs better than the original
multiphase method. Finally, we propose to use this method with a L1 fidelity term instead
of the classic L2 fidelity. This yields an algorithm that is more efficient and less sensitive to
noise.

In Chapter 6, we use the analysis of Chapter 5 to get a modified version of the original
active contour without edges. We shall use this method to segment 3D cardiac CT images.
We introduce a parallel implementation of this algorithm that enables us to solve the related
PDE problem in a reasonable time. The heart chambers, ventricles and atria are well seg-
mented and the segmented surfaces contain many fine anatomical details. The epicardium
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of the heart is also well segmented, but it suffers from leaking in some regions.
We tackle the problem of the epicardium segmentation in Chapter 7 using subjective

surfaces. The original subjective surface problem takes a long time to solve on large im-
ages and may also suffer from leaking for the type of images that we are segmenting. For
these reasons, we introduce a new subjective surface problem, that is on a smaller domain
with boundary conditions that will prevent the curve from leaking. With this method, we
obtained nice segmentations of the epicardium of the ventricles and of the atria. The results
of Chapters 6 and 7 put together yield a full 3D heart segmentation that is anatomically
accurate.

In Chapter 8, we address the problem of mesh generation from the segmentation results
obtained. For this task, a library of Matlab code called DistMesh [85, 47] is used. We
modified parts of the algorithms in order to fit our applications. We generate 2D and 3D
meshes of the heart, heart and torso, the trachea and the carotid.

In Chapter 9, we use the Asclepios model in order to get the fiber orientation over
our geometrical model. This is done using the diffeomorphic demons algorithm and an
inpainting technique.

In chapter 10 we conclude by stating the scientific contributions of this thesis. We also
present some insights on future work and applications.

The code for image segmentation that has been developed during this project is briefly
presented in an appendix. It basically consists of four classes that are easy to use to perform
serial and parallel image processing operations. The code is gathered in the small PDE
image processing toolkit (SPDEIPTK).
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Background material

In this chapter, we shall present some of the background that is necessary to correctly state
and solve variational problems that arise in image de-noising and segmentation. This will
contain some measure theory, basic notions about distributions and weak derivatives. For
proofs, or a more detailed exposition, we recommend for example Rudin [93, 94].

Next, we talk about some fine properties of functions, such as approximate continuity
and jump set and introduce spaces of functions of bounded variations, state the main com-
pactness results and go into some proof in order to get a feeling of them. We recommend
for this material the excellent and very complete book by Ambrosio [5], although there are
several other good references such as [43, 131, 13, 9]

At last, we present some basics of calculus of variations. A more complete treatment
can be found for example in Giusti [44] or Struwe [108].

2.1. LP SPACES

In this section, Ω denotes an open set of RN . By Lp(Ω), we mean Lp(Ω,L NxΩ), where
L N is the Lebesgue measure on RN and L NxΩ denotes the restriction of the measure to the
set Ω. un ⇀ u denotes weak convergence of un towards u. Standard theory of Lp spaces is
assumed. The statements below are less known and are of interest for variational problems
in image processing.

Theorem 1. Let 1 < p < ∞. If {un}n ⊆ Lp(Ω) is a bounded sequence, then there exists a

sub-sequence

unk ⇀ u ∈ Lp(Ω).

If p = 1, the above theorem is not valid, we need an additional condition on the sequence
to ensure the existence of a converging sub-sequence, namely equi-integrability.

Definition 2. {un}n ⊆ L1(Ω) is equi-integrable if and only if

31
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1. ∀ε > 0,∃A ⊆Ω such that µ(A) < ∞ and ∀n,
∫
Ω\A undx < ε,

2. ∀ε > 0,∃δ > 0 such that ∀E µ−measurable set, L N(E) < δ⇒ ∀n,
∫

E |un|dx < ε.

Proposition 3. If Ω is bounded, then {un}n ⊆ L1(Ω) is equiintegrable if and only if

{un}n ⊆

{
f ∈ L1(Ω) :

∫
Ω

φ(| f |) ≤ 1
}

for some increasing continuous function φ : [0,∞]−→[0,∞] satisfying

limt→∞ φ(t)/t = ∞.

Theorem 4. A bounded sequence {un}n ∈ L1(Ω) has a weakly convergent sub-sequence if

and only if {un}n is equiintegrable.

2.2. RADON MEASURES

In this section X denotes a locally compact separable metric space and B(X) is the σ-
algebra of all Borel sets on X.

Definition 5. µ : B(X)−→RN is a Radon measure if

1. µ(∅) = 0,

2. ∀(En)n ⊆B(X), pairwise disjoint sets,

µ
(
∞

∪
n=0

En

)
=

∞∑
n=0

µ(En).

The set of all Radon measures on X is denoted M (X).

Remark 6. For µ ∈ M (X), there is a decomposition µ = (µ1, ..., µN). For u ∈ [Cc(X)]N

(that is u = (u1, u2, ...,UN) with each ui ∈ CC(X)), write

∫
X

udµ =

N∑
i=1

∫
X

uidµi.

Definition 7. Let µ ∈M (X). The total variation of µ

|µ|(E) = sup

 ∞∑
n=0

|µ(En)| : En ∈ B(X) pairwise disjoint , E =
∞

∪
n=0

En


is a finite positive measure on X.
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Proposition 8. Let µ ∈M (X), then for all open set A ⊆ X,

|µ|(A) = sup
{∫

X
udµ : u ∈ [Cc(A)]N , ‖u‖∞ ≤ 1

}
Remark 9. The set M (X) is a Banach space when equipped with the norm

‖µ‖ = |µ|(X).

The space M (X) can be identified with the dual of the space of continuous functions
vanishing at boundaries of X. This space is C0(X), the closure of Cc(X) in the space C0(X)
of continuous functions on X. It corresponds to the continuous functions which vanish at
the boundaries of X.

Theorem 10 (Riesz). Let

L : [C0(A)]N−→R

be a linear bounded functional. Then there exists a unique µ ∈M (X) such that

∀φ ∈ [C0(A)]N , Lφ =

∫
X
φdµ.

Therefore M (X) �
(
[C0(A)]N

)∗
. Moreover

µ(X) = ‖L‖ = sup
‖φ‖∞≤1

L(φ)

In view of this fact, it is possible to define a weak∗ topology on M (X). This topology
turns out to be very useful for applications.

Definition 11. Let (µn)n ⊆M (X). Then µn
∗
⇀µ if

∀φ ∈ [Cc(A)]N ,

∫
X
φdµn−→

∫
X
φdµ.

Theorem 12. Let (µn)n ∈ M (X) be such that supn |µn|(X) < ∞. Then there exists a sub-

sequence (unk )k
∗
⇀ u ∈M (X). Moreover the map µ 7→ |µ|(X) is lower semi-continuous with

respect to the weak∗ convergence. That is

lim inf
n
|µn|(X) ≥ |µ|(X).
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Theorem 13. Let (µn)n ⊆M (Ω) such that µn
∗
⇀ u. If |µn|

∗
⇀λ for some positive measure λ,

then

|µ| ≤ λ.

Definition 14. Let µ be a positive measure on B(X), and ν ∈M (X). Then

1. ν is absolutely continuous with respect to µ (ν � µ) if

∀E ∈ B(X), µ(E) = 0 =⇒ ν(E) = 0.

2. ν and µ are mutually singular (ν ⊥ µ) if there exists E ∈ B(X) such that

ν(E) = 0 = µ(Ec).

Theorem 15 (Radon-Nikodým). Let µ be a σ-finite measure on B(X) and ν ∈M (X). Then

there exists νa, νs ∈M (X) such that νa � µ, νs ⊥ µ and

ν = νa + νs.

Moreover, this decomposition is unique and there is a unique f ∈ [L1(X, µ)]N such that

νa = fµ.

Remark 16. If µ and ν are mutually singular, then for any E ∈ B(X)

|µ + ν|(E) = |µ|(E) + |ν|(E).

2.3. APPROXIMATE CONTINUITY

For functions in Lp(Ω), it is still possible to define some kind of continuity and differentia-
bility.

Definition 17. Let u ∈ L1
loc(Ω). u has an approximate limit at x ∈ Ω if there exists z ∈ R

such that

lim
δ→0

?
Bδ(x)
|u(y) − z|dy = 0,

where Bδ(x) denotes the ball of radius δ about x and
>

B f (x)dx denotes the mean value

of f over B. If there exists no z ∈ R with this property, we say that x is an approximate
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discontinuity point, and the approximate discontinuity set S u is the set of such points. u

has an approximate jump at x ∈ Ω if there exits z+ , z− ∈ R such that

lim
δ→0

?
B+
δ (x)
|u(y) − z+|dy = 0 = lim

δ→0

?
B−δ (x)
|u(y) − z−|dy,

where B±δ denote half balls of radius δ about x. The approximate jump set Ju is the set all

points having an approximate jump. jump set. Then Ju ⊆ S u.

The following theorem gathers facts about S u and Ju that are important.

Theorem 18. Let u ∈ L1
loc(Ω). Then

1. L N(S u) = 0,

2. H N−1(S u \ Ju) = 0,

where H N−1 stands for the (N − 1)-dimensional Hausdorff measure.

2.4. DIFFERENTIABILITY

Definition 19. Let D(Ω) be the set of C∞ functions with compact support in Ω. Then

provide D(Ω) with the following topology: we say that φn
D(Ω)
−→ φ if there exists a compact

K ∈ Ω such that for all n, supp(φn) ⊆ K and for all α ∈ NN , Dαφn converge uniformly to

Dαφ on K.

Remark 20. The space D(Ω) cannot be equipped with a norm. It has in fact a family of

semi-norms, namely the Ck(K) norms, where K ⊆ Ω is compact.

Definition 21. The space of distributions D ′(Ω) is the dual of D(Ω), which means that

D ′(Ω) = {L : D(Ω)−→R : L is a continuous linear functional}.

It is common to write < L, φ >D(Ω) (or (L, φ)D(Ω) or simply < L, φ > or (L, φ)) for Lφ.

Example 22. Given f ∈ L1, define the distribution

L f : D(Ω)−→R,

φ 7→ ( f , φ)D(Ω) =

∫
Ω

fφ dx.
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Suppose f is C1. Then by Green’s theorem and the fact that φ|∂Ω = 0

(Di f , φ)D(Ω) =

∫
Ω

Di fφ dx = −

∫
Ω

f Diφ dx = −( f ,Diφ)D(Ω),

which suggests:

Definition 23. The partial derivative of a distribution L in the direction xi is

DiL : D(Ω)−→R,

φ 7→ −(L,Diφ)D(Ω).

The total derivative of L is DL = (D1L, ...,DN L). For φ ∈ [D(Ω)]N , we write

(DL, φ)[D(Ω)]N = (DL1, φ1)D(Ω) + ... + (DLN , φN)D(Ω).

Hence remark that

(DL, φ)[D(Ω)]N = −(L, divφ)D(Ω).

Definition 24 (Sobolev functions). Let f ∈ Lp(Ω). We say that f belongs to the Sobolev

space W1,p(Ω) if its total derivative D f in the sense of distributions belongs to [Lp(Ω)]N .

This means that there exists g ∈ [Lp(Ω)]N such that

∀φ ∈ [D(Ω)]N −

∫
X

f divφ dx =

∫
X

g · φ dx.

W1,p(Ω) is a Banach space with the norm

‖ f ‖p
W1,p(Ω)

= ‖ f ‖pLp +
∑

i

‖Di f ‖pLp(Ω).

W1,2(Ω) is even a Hilbert space with the dot product

( f , g)W1,2(Ω) = ( f , g)L2(Ω) +
∑

i

(Di f ,Dig)L2(Ω),

and is often denoted by H1(Ω).

Definition 25 (Functions of bounded variation). The function f ∈ L1 is of bounded varia-
tion if there exists a finite signed measure µ such that

∀φ ∈ [D(Ω)]N , −

∫
Ω

f divφ dx =

∫
Ω

φdµ.
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Write BV(Ω) for the space of functions of bounded variation and D f = µ = (µ1, ..., µN) is

the total derivative of f in the sense of distributions. The measure µi is the partial derivative

of u in the direction xi. The space BV(Ω) is a Banach space with the norm

‖ f ‖BV(Ω) = ‖ f ‖L1 + |D f |(X),

where |D f | is the total variation of the Radon measure D f .

Remark 26. Let u ∈ BV(Ω) and µ = Du. Then by Riez Theorem,

|µ|(E) = sup
φ∈D(Ω)
‖φ‖∞≤1

∫
E

udivφ dx = sup
φ∈D(Ω)
‖φ‖∞≤1

∫
E
φ dµ.

Example 27. Let u : (−1, 1)−→R be the function

u(x) =

0, x ≤ 0,

x2/2, x > 0.

Therefore

u′(x) =

0, x ≤ 0,

x, x > 0.
u′′(x) =

0, x ≤ 0,

1, x > 0.
u′′′(x) = δ.

Then we have

u′ ∈ C0(−1, 1) =⇒ u ∈ C1(−1, 1),

u′′ ∈ L1(−1, 1) =⇒ u′ ∈ W1,1(−1, 1),

u′′′ = δ ∈M (−1, 1) =⇒ u′′ ∈ BV(−1, 1).

Example 28. Let E ⊆Ω. Define the perimeter of E in Ω to be

P(E,Ω) = |D1E |(Ω),

where 1E is the indicator function of the set E. It is said that E is of finite perimeter in Ω if
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P(E,Ω) < ∞. Now suppose ∂E is C1. Then by Gauss-Green Theorem and Proposition 8,

|D1E |(Ω) = sup
φ∈D(Ω)
‖φ‖∞≤1

∫
Ω

φ dD1E = sup
φ∈D(Ω)
‖φ‖∞≤1

∫
Ω

divφ1E dx

= sup
φ∈D(Ω)
‖φ‖∞≤1

∫
E

divφ dx = sup
φ∈D(Ω)
‖φ‖∞≤1

∫
∂E∩Ω

φ · νdH N−1 = H N−1(∂E ∩Ω).

The last equality seems obvious, but requires some work. The result is still true in a more

general context: If E has finite perimeter, then

P(E,Ω) = H N−1(∂E ∩Ω).

2.5. THE SPACES BV(Ω) AND S BV(Ω)

In this section Ω denotes a bounded open set of RN with Lipschitz boundary. It turns out
that the convergence in the BV(Ω)-norm is too strong for most of the applications. The
weak∗ convergence is more useful.

Definition 29. Let {un}n ⊆ BV(Ω). Then un
∗
⇀ u ∈ BV(Ω) if

1. un
L1(Ω)
−→ u, and

2. Dun
∗
⇀Du as Radon measures.

It has the following nice properties:

Theorem 30. Let {un}n ⊆ BV(Ω) and u ∈ BV(Ω). Then

un
∗
⇀ u ⇐⇒ un

L1(Ω)
−→ u and sup

n
‖un‖BV(Ω) < ∞.

Theorem 31 (Compactness in BV(Ω)). Let {un}n ⊆ BV(Ω) be such that

sup
n
‖un‖BV(Ω) < ∞,

then there exists u ∈ BV(Ω) and a sub-sequence unk such that unk

∗
⇀ u.

Using Radon-Nikodým Theorem, there exists a unique g ∈ [L1(Ω)]N such that

Du = Dau + Dsu = gL N + Dsu.
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So for φ ∈ [D(Ω)]N , ∫
Ω

f divφ dx =

∫
X

gφ dx +

∫
Ω

φdDsu.

This suggests the notation ∇u = g, which represents the Sobolev part of derivative Du of
the function u.

Theorem 32 (Decomposition of derivatives). Let u ∈ BV(Ω), then

Du = Dau + D ju + Dcu = gL N + (u+ − u−)νuH
N−1xJu + Dc,

where Ju is the set of approximate discontinuities of u, νu is a normal vector to the discon-

tinuity set, H N−1 is the Hausdorff measure and u+, u− stand for the limits of u on both

sides of Ju. D ju is the jump part of the function u. Dcu is called the Cantor part and has

Hausdorff dimension d ∈ (N − 1,N).

Remark 33. The notation Dcu is motivated by the fact that the Cantor-Vitali function u ∈

BV(0, 1) is such that Du = Dcu and supp(Du) is included in the Cantor set. We will consider

functions that do not have derivatives of this type.

C1 C2 C3

Figure 2.1: The Cantor-Vitali function C is the limit of the above sequence of functions. It
is continuous, monotonically increasing, |Du|(0, 1) = 1, but C′ = 0 almost everywhere. In
fact, the support of DCu is exactly the Cantor set.

Remark 34. Let u ∈ BV(Ω), then |Du|(Ω) < ∞. From Remark 16, it follows that

|∇uL N |(Ω) + |Dsu|(Ω) = |Du|(Ω) < ∞.

Hence both terms on the left hand side are finite.
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Definition 35 (Special functions of bounded variation). Let u ∈ BV(Ω), then u ∈ S BV(Ω)
if Dcu = 0. Or equivalently u ∈ S BV(Ω) if and only if Dsu has support in a measurable

σ-finite set with respect to H N−1.

Example 36. Let u1, u2 ∈ W1,1(Ω) ∩ L∞(Ω) and E ∈ Ω a subset of finite perimeter in Ω.

Then

u = u11E + u21Ω\E ∈ S BV(Ω).

Example 37. An image is some function g : Ω−→R, that is smooth inside the boundaries

of the objects and discontinuous on their boundary which have H N−1-finite measure. If

‖g‖∞ < ∞, then g ∈ S BV(Ω).

Proposition 38. The space S BV(Ω) is closed with respect to the BV(Ω) norm.

Proof. Let un
BV(Ω)
−→ u, where un ∈ S BV(Ω). The Sobolev part and the singular part of a

function of bounded variation are orthogonal by definition, then

|Da(un − u) + Ds(un − u)| = |Da(un − u)| + |Ds(un − u)| → 0. (2.1)

Now, since Dsun is concentrated on Bn which is σ-finite with respect to H N−1, then by the
fact that |Dsun − Dsu| → 0, we have that Dsu is concentrated on ∪nBn, which is σ-finite
with respect to H N−1. �

However the closure of S BV(Ω) with respect to the weak∗ convergence would be more
interesting. In fact S BV(Ω) is not closed with respect to the weak∗ topology, but it is possi-
ble to find sufficient conditions for the weak∗ limit of a sequence of functions in S BV(Ω) to
be in S BV(Ω). These will follow from the following result about the chain rule in BV(Ω).

Theorem 39 (Chain rule in BV(Ω)). Let u ∈ BV(Ω) and ψ ∈ C1(R) such that ψ(0) = 0,

then ψ ◦ u ∈ BV(Ω) and

D(ψ ◦ u) = ψ′(u)∇uL N + (ψ(u+) − ψ(u−))νuH
N−1xJu + ψ′(ũ)Dcu,

where ũ denotes the approximate limit of u. If Ω is bounded, then the hypothesis ψ(0) = 0
can be removed.

So if u ∈ S BV(Ω), for all ψ ∈ C1(R) ∩W1,∞(R), we have∣∣∣Dψ(u) − ψ′(u)∇uL N
∣∣∣ =

∣∣∣(ψ(u+) − ψ(u−))νuH
N−1xJu

∣∣∣
≤ 2‖ψ‖∞|D ju|,
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where νu ≤ µ as measures means that for every measurable set E, we have νu(E) ≤ µ(E). It
turns out that the reverse holds in the following sense:

Theorem 40. Let u ∈ BV(Ω). If there exists a ∈ [L1(Ω)]N and µ a finite positive measure

on Ω such that ∀ψ ∈ C1(R) ∩W1,∞(R)

|Dψ(u) − ψ′(u)aL N | ≤ ‖ψ‖∞µ,

then u ∈ S BV(Ω). Moreover a = ∇u and µ ≥H N−1xJu.

It is then possible to prove the following closure property of S BV(Ω).

Theorem 41 (Closure of S BV(Ω)). Let Ω ⊆ RN be a bounded domain and {un}n ⊆ S BV(Ω)
such that un

∗
⇀ u ∈ BV(Ω) and

sup
n

{∫
Ω

|∇un|
2 dx + H N−1(Jun)

}
< ∞.

Then u ∈ S BV(Ω) and

1. ∇un ⇀∇u in [L1(Ω)]N ,

2. D jun
∗
⇀D ju.

Moreover ∫
Ω

|∇u|2 dx ≤ lim inf
n

∫
Ω

|∇un|
2 dx

and

H N−1(Ju) ≤ lim inf
n

H N−1(Jun).

Proof. Note that
Dun = ∇unL

N + D jun
∗
⇀Du.

One needs to show that ∇un ⇀∇u in L1(Ω), D jun
∗
⇀D ju and Dcu = 0.

First, take a look at the jump part. By hypothesis, if µn = H N−1xJun , then

sup
n
µn(Ω) = sup

n
H N−1(Jun) < ∞.

Therefore, by compactness of M (Ω) (Theorem 12), we can suppose that

µn
∗
⇀µ ∈M (Ω) (up to a sub-sequence).
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For the absolutely continuous part, note that

sup
n

∫
Ω

|∇un|
2 dx < ∞.

Since Ω is bounded, Proposition 3 with φ(t) = t2 ensures equi-integrability of (∇un). There-
fore, by Theorem 4, it has a weakly convergent sub-sequence (denoted again by ∇un). So

∇un ⇀ a ∈ [L1(Ω)]N .

i.e. ∀g ∈ [L∞(Ω)]N ,
∫
Ω
∇un · g dx−→

∫
Ω

a · g dx. Therefore ∇unL N ⇀ aL N in the sense
of Radon measures. Theorem 40 is used to establish that a = ∇u and µ ≥ D ju. Let
ψ ∈ W1,∞(R) ∩C1(R). First, note that

ψ′(un)∇un ⇀ψ′(u)a.

Indeed, let ε > 0 and δ > 0 be such that |x − y| < δ ⇒ |ψ′(x) − ψ′(y)| <
√

ε
2L N (Ω) . Now,

since un
L1(Ω)
−→ u, un converges in measure to u, and then there exists a M > 0 such that

n ≥ M ⇒ L N ({x : |un(x) − u(x)| > δ}) <
ε

4‖ψ′‖2∞
.

Set Aδ = {x : |un(x) − u(x)| > δ}, then∫
Ω

|ψ′(un) − ψ′(u)|2 dx =

∫
Aδ
|ψ′(un) − ψ′(u)|2 dx +

∫
Ac
δ

|ψ′(un) − ψ′(u)|2 dx

≤ 2‖ψ′‖2∞L N(Aδ) + L N(A c
δ )

ε

2L N(Ω)

≤ 2‖ψ′‖2∞
ε

4‖ψ′‖2∞
+ ε/2 ≤ ε/2 + ε/2 = ε.

So ψ′(un)
L2(Ω)
−→ψ′(u). For any g ∈ L∞(Ω),∫

Ω

ψ′(un)∇ung dx =

∫
Ω

∇ung(ψ′(un) − ψ′(u)) dx +

∫
Ω

∇un(ψ′(u)g) dx.

But by Cauchy-Schwartz inequality∫
Ω

∇ung(ψ′(un) − ψ′(u)) dx ≤ ‖∇ung‖L2(Ω)‖ψ
′(un) − ψ′(u)‖L2(Ω)−→0,
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since ‖∇ung‖L2(Ω) is bounded. Also, since ψ′(u)g ∈ L∞(Ω),∫
Ω

∇un(ψ′(u)g) dx−→
∫

Ω

aψ′(u)g dx.

Hence ∀g ∈ L∞(Ω), ∫
Ω

ψ′(un)∇(un)g dx−→
∫

Ω

aψ′g dx,

i.e. ψ′(un)∇un ⇀ψ′(u)a.
From Theorem 39 (chain rule formula), it is clear that

sup
n
‖un‖BV(Ω) < ∞ =⇒ sup

n
‖ψ(un)‖BV(Ω) < ∞.

Moreover ψ(un)
L1(Ω)
−→ψ(u), so by Theorem 30, ψ(un)

∗
⇀ψ(u) in BV(Ω), i.e. Dψ(un)

∗
⇀Dψ(u)

in M (Ω), which implies that

Dψ(un) − ψ′(un)∇unL
N ∗
⇀Dψ(u) − ψ′(u)aL N .

What is needed is a relation between the absolute values of these measures. Note that

sup
n
|Dψ(un) − ψ′(un)∇unL

N |(Ω) = sup
n
|Dsψ(un)|(Ω) ≤ sup

n
|Dψ(un)|(Ω) < ∞.

Hence, there is a sub-sequence (that may depend on ψ) such that∣∣∣Dψ(unk ) − ψ
′(unk )∇unkL

N
∣∣∣ ∗⇀λ.

Hence Theorem 13 asserts that

|Dψ(u) − ψ′(u)aL N | ≤ λ.

|Dψ(u) − ψ′(u)aL N | ≤ λ ≤ 2‖ψ‖∞µ.

Then by Theorem 40, u ∈ S BV(Ω). Moreover a = ∇u and µ ≥H N−1xJu. Hence

∇unL
N ∗
⇀∇uL N and D jun = Dun − ∇unL

N ∗
⇀Du − ∇uL N = D ju.
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Now, since ∇unL N ∗
⇀∇uL N , the lower semi-continuity property∫

Ω

|∇u|2 dx ≤ lim inf
n

∫
Ω

|∇un|
2 dx

follows from Theorem 12. Finally,

H N−1(Ju) ≤ µ(Ju) ≤ µ(Ω) ≤ lim inf
n

µn(Ω) = lim inf
n

H N−1(Jun),

where the inequality µ(Ω) ≤ lim infn µn(Ω) comes from lower semi-continuity of the total
variation of Radon measures (see Theorem 12) �

Theorem 42 (Compactness in S BV(Ω)). Let Ω ⊆ RN be a bounded domain and {un}n ⊆ S BV(Ω)
such that supn ‖un‖∞ < ∞ and

sup
n

{∫
Ω

|∇un|
2 dx + H N−1(Jun)

}
< ∞.

Then there exists a sub-sequence unk

∗
⇀ u ∈ S BV(Ω).

Proof. It is sufficient to show that supn ‖un‖BV < ∞ and apply Theorem 31 to obtain a
converging sub-sequence unk

∗
⇀ u.

First, note that

sup
n
‖un‖L1(Ω) = sup

n

∫
Ω

|un| dx ≤ sup
n
‖un‖∞L N(Ω) < ∞.

Also,

sup
n
|Dun|(Ω) = sup

n

{∫
Ω

|∇un| dx +

∫
Jun

|u+
n − u−n | dx

}
≤ sup

n

{∫
Ω

(|∇un|
2 + 1) dx + 2‖un‖∞H N−1(Jun)

}
≤ sup

n

{∫
Ω

|∇un|
2 dx + L N(Ω) + 2‖un‖∞H N−1(Jun)

}
< ∞.

Therefore supn ‖un‖BV(Ω) < ∞ as needed. �

2.6. CALCULUS OF VARIATIONS

In the Calculus of Variations, one tries to determine the existence of some critical points
that optimize functionals. Historically, mathematicians were interested in minima, since the
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functionals of interest were deduced from laws of physics where the critical points represent
physical solutions, satisfying a minimal energy principle.

Definition 43. Let V be a Banach space and F : V−→R be a continuous functional. The

problem

inf
u∈V

F(u) (2.2)

is a minimization problem. The goal is to determine the existence and the possible unicity

of a minimizer u∗. The minimum of the functional would then be F(u∗).

If it is possible to define a derivative for F, it is natural to think that at a minimum u∗

DF(u∗) = 0.

This is the Euler-Lagrange equation of the functional F. It is a first order optimality
condition. When the problem is unconstrained, this gives a necessary condition for u∗ to be
a local minimum. Note that, in the general case, DF(u∗) = 0 only implies that u∗ is a critical
point of F. It can be minimum, a maximum or a saddle point. Even, if it is a minimum, it
may be only a local one.

Example 44. Let Ω ⊆ R, V = {u ∈ C 1(Ω) : u|∂Ω = h} and

F : V−→R

u 7→
∫

Ω

L(x, u, u′) dx,

where L : Ω × R × R is a C2 function. Suppose u is a minimum for F. Then for any

φ ∈ C∞0 (Ω), gφ(t) = u + tφ ∈ V, and the real function

t 7→ F(gφ(t))

has a critical point at t = 0. Using differentiation, integration by parts and the fact that this

is valid for all φ, everything boils down to the Euler-Lagrange equation of F:

∂L
∂u
−
∂

∂x

(
∂L
∂u′

)
= 0.

In general, if V is a space of functions, the Euler-Lagrange equation DF = 0 will
have the form of a partial differential equation. A classical idea is that if you follow the
gradient flow, you must end at a critical point, i.e. a solution of the Euler-Lagrange equation
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(under some compactness assumptions). Since minima are of great interest, one may try to
follow flow lines in the directions of the negative gradient. These are given by the partial
differential equation ut = −DF(u). Therefore, to find a local minimum, one picks an initial
function u0, and solve the problem ut = −DF(u),

u(·, 0) = u0

iteratively to obtain a sequence un that could converge to a local minimum. This approach is
very convenient to find explicitly a critical point. Note that, if we can prove the convergence
of such an algorithm, then using numerical computations the algorithm usually converges
to a local minimum, since other critical points are unstable. However the minimum may not
be the global minimum. An important issue is the one of the existence of a solution, that
will ensure that the sequence fn converges. A standard way to tackle the existence problem
is to use the direct method.

Definition 45. To solve (2.2) by the direct method, first pick a minimizing sequence (xn)n,

i.e.

lim
n→∞

F(xn) = inf
x∈V

F(x) = c.

Then choose a suitable topology τ on V, in the sense that the following steps are feasible.

1. Show that (xn) admits a convergent sub-sequence

xnk

τ
−→x

for the topology τ.

2. Show that

F(x) = c.

(This step is non trivial because F may not be continuous with respect to τ.)

The way to achieve this highly depends on the space V and on the functional F. A
common hypothesis is coercivity.

Definition 46. A function F : V−→R is coercive if

lim
|x|V→∞

F(x) = ∞.
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Proposition 47. Let F : Rn−→R be continuous and coercive. Then the problem

inf
x∈V

F(x)

admits a solution.

Proof. Let (xn)n be a minimizing sequence. By coercivity (xn)n is bounded. It admits a
converging sub-sequence xnk−→x for the usual topology. Then

F(x) = F
(
lim
nk

xnk

)
= lim

nk
F(xnk ) = inf

x∈V
F(x).

�

In many case, it is too restrictive to consider only continuous functions. We can relax
this assumption by considering lower-semi-continuous functions.

Definition 48. F is τ-lower-semi-continuous (l.s.c.) if

∀xn
τ
−→x, lim inf

n
F(xn) ≥ F(x).

Equivalently

f is l.s.c. ⇔ ∀c ∈ R, {F > c} is open

Remark 49. If V = Rn and τ denotes the usual topology on Rn, then

F is l.s.c. and coercive ⇔ ∀c ∈ R, Vc = {F ≤ c} is compact.

Proposition 50. Let F : Rn−→R be l.s.c. and coercive. Then the problem

inf
x∈V

F(x)

admits a solution.

Proof. Let (xn)n be a minimizing sequence and cn = F(xn). Then

Vc0 ⊇ Vc1 ⊇ Vc2 ⊇ ...

is a decreasing sequence of compacts. There must exist x ∈ V that belongs to each Vcn , then
∀n, F(x) ≤ cn. �
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In these examples, it has not been necessary to pick another topology because the space
V was of finite dimension. But it appears that in most situations, a weaker topology is
needed. Indeed, if the functional is coercive, then minimizing sequence are bounded, but
in general one cannot hope that a bounded sequence admits a convergent sub-sequence.
Hence, it is necessary to choose a coarser topology τ that has more compact sets than the
usual (strong) topology. At the same time τ must be fine enough to have the lower semi-
continuity of F.

Theorem 51. Let V be a reflexive Banach space (that is V∗∗ = V). Then a bounded se-

quence (xn)n in V admits a weakly convergent sub-sequence

xnk ⇀ x.

This leads to

Theorem 52. Let V be a reflexive Banach space and F : V−→R be a coercive functional,

which is weakly l.s.c., then the problem

inf
x

F(x)

admits a solution.

Weak l.s.c. may be hard to prove. The following criterion is often used.

Theorem 53. Let V be a Banach space and F : V−→R be a convex functional, then

F is l.s.c. ⇔ F is weakly l.s.c..

Then Theorem 52 becomes

Theorem 54. Let V be a reflexive Banach space and

F : V−→R

be a coercive convex l.s.c. functional, then the problem

inf
x

F(x)

admits a solution.
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But this result does not hold for functionals on L1(Ω), since it is not a reflexive space.
It is possible to prove the following results for functional on L1(Ω).

Theorem 55. Let F(x, u) : Ω × Rs−→R̄ be a C1 function and un, u ∈ L1(Ω). If one of the

following holds

1. un
L1(Ω)
−→ u or

2. un
L1(Ω)
⇀ u and for all x ∈ Ω, the function F(x, ·) is convex,

then ∫
Ω

F(x, u(x)) dx ≤ lim inf
k→∞

∫
Ω

F(x, un(x)) dx.

Example 56 (Poisson equation). A solution of the Poisson equation with homogeneous

Dirichlet boundary conditions−∆u = f on Ω, f ∈ L2(Ω)

u = 0 on ∂Ω,

is a minimum of the following functional defined on H1
0(Ω) = D(Ω)

H1(Ω)

F(u) =
1
2

∫
Ω

|∇u|2 dx −
∫

Ω

f u dx.

First, this functional admits a minimum. Indeed, |∇u|2 − f u is convex, so that F(u) is a

convex functional. Moreover if un
H1(Ω)
−→ u, then ‖∇un‖

2
L2(Ω)→‖∇u‖2

L2(Ω), so that

|F(un) − F(u)| ≤
1
2

∣∣∣∣‖∇un‖
2
L2(Ω) − ‖∇u‖2L2(Ω)

∣∣∣∣ +

∫
Ω

| f (un − u)|dx

≤
1
2

∣∣∣∣‖∇un‖
2
L2(Ω) − ‖∇u‖2L2(Ω)

∣∣∣∣ + ‖ f ‖L2(Ω)‖un − u‖L2(Ω)
n→∞
−→0.

The last inequality comes from Hölder inequality. Hence the functional F is continuous,

therefore l.s.c. To prove that the functional is coercive, recall that

F(u) = ‖∇u‖2L2(Ω) −

∫
Ω

f u dx.

It will be necessary to use the Poincare inequality to get

‖∇u‖L2(Ω) ≥ C ‖u‖H1
0 (Ω)
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Hence the term ‖∇u‖2
L2(Ω) is at least quadratic in ‖u‖H1

0 (Ω). On the other side, by Hölder

inequality, ∣∣∣∣∣∫
Ω

f udx
∣∣∣∣∣ ≤ C̃ ‖u‖L2(Ω) ≤ C̃ ‖u‖H1

0 (Ω),

which gives that the second term is less than linear in ‖u‖H1
0 (Ω). Therefore

lim
‖u‖H1

0 (Ω)→∞
F(u) = ∞.

So that F is continuous convex and coercive. Since H1
0(Ω) is reflexive, Theorem 54 ensures

that F admits a minimum.

To actually find the minimum, we obtain the Euler-Lagrange equation of F by comput-

ing directional derivatives of F. If u is a minimum, all the directional derivatives should

vanish. Let v ∈ D(Ω), then

∂F
∂v

(u) =
d
dt

F(u + tv)
∣∣∣∣∣
t=0

=
d
dt

1
2

∫
Ω

|∇u + t∇v|2dx −
∫

Ω

f (u + tv)dx
∣∣∣∣∣
t=0

=
1
2

∫
Ω

d
dt
|∇u + t∇v|2

∣∣∣∣∣
t=0

dx −
∫

Ω

d
dt

f (u + tv)
∣∣∣∣∣
t=0

dx

=

∫
Ω

(∇u + t∇v) · ∇v
∣∣∣∣∣
t=0

dx −
∫

Ω

f v
∣∣∣∣∣
t=0

dx

=

∫
Ω

∇u · ∇vdx −
∫

Ω

f vdx

= (∇u,∇v)D(Ω) − ( f , v)D(Ω)

= (−∆u, v)D(Ω) − ( f , v)D(Ω)

= (−∆u − f , v
)
D(Ω)

= 0, ∀v ∈ D(Ω).

Hence −∆u = f in the sense of distributions. The solutions of that equation correspond to

critical points of the functional. In order to solve numerically, it is possible to do a gradient

descent which amounts to solving the initial value problemut = ∆u + f

u(x, 0) = g,

where g is some initial guess.
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2.7. MUMFORD-SHAH FUNCTIONAL

2.7.1. Continuous Mumford-Shah problem

We now present the important minimization problem proposed by Mumford and Shah [72],
that we outlined in Section 1.4. Following the same notations as before, they proposed that
minimizing the functional

F(u,K) =

∫
Ω\K
|∇u|2 +

∫
Ω

(u − g)2 + H N−1(K ∩Ω)

over all admissible pairs (K, u) ∈ A , where

A =
{
(K, u) : K ⊆Ω compact , u ∈ W1,2

loc (Ω \ K)
}
,

should give a good segmentation of the image g ∈ L∞(Ω). To prove that this problem admits
a solution is really non trivial.

Let us try to solve this problem by the direct method. Take a minimizing sequence
(un,Kn). We can suppose that ‖un‖∞ is uniformly bounded, say by ‖g‖∞, otherwise, we
can just truncate the sequence. The first thing we have to do is to provide the space X =

{K ⊆Ω,K compact} a topology.

Definition 57. 1. For K ⊆Ω, we define Kε = {x ∈ X : dist(x,K) ≤ ε}.

2. The Hausdorff distance between two compacts K and K′ is

δ(K,K′) = in f {ε : K ⊆ K′ε and K′ ⊆ Kε}.

Theorem 58 (Blashke). (X, δ) is a compact metric space.

Now, we have the tools to show that the minimizing sequence (Kn, un) admits a con-
verging sub-sequence. Since any sequence in X is bounded (Ω is bounded), we can suppose
that our sequence Kn converges to some K. Now we wonder if un is converging to some
function u ∈ W1,2

loc (Ω). Let A ⊆ B ⊆Ω, with A open, B closed such that B ∩ K = ∅. Then
clearly there exists N such that for n ≥ N, B ∩ Kn = ∅. Then for n ≥ N, un ∈ W1,2(A).
Now since ‖un‖∞ is uniformly bounded, there exists a sub-sequence converging weakly to
u ∈ W1,2(A). By a diagonal argument, ranging over open subsets A of Ω, we can conclude
that there is a sub-sequence of un converging weakly to u ∈ W1,2

loc (Ω). See Ambrosio [5] for
details.
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So the sequence (Kn, un) has a sub-sequence that is converging to some pair (K, u). The
problem is that we cannot show that this pair actually minimizes the functional, since the
functional is not lower semi-continuous with respect to this convergence. This comes from
the fact that the function

K 7→H N−1(K)

is not l.s.c. In fact, any K can be approximated in an obvious way by discrete sets, which
have H N−1-measure 0.

To bypass this difficulty, we have to go through a weak formulation of the problem. We
search for u ∈ S BV(Ω) that minimizes the functional

F(u) =

∫
Ω

|∇u|2 +

∫
Ω

(u − g)2 + H N−1(S u),

where now ∇u is the approximate gradient of u, ie. Du = ∇uL n + D ju, and S u is the set of
approximate discontinuities of u.

Remark 59. It is a fact that Cantor functions (ie. a function with Du = Dcu) are dense

in L2(Ω). Those functions have S u = ∅ and have zero derivatives almost everywhere.

Therefore

inf
u∈BV(Ω)

F(u) = 0;

This suggests that we really need to minimize over S BV(Ω).

The following theorem is crucial (see Ambrosio [5] for details). It shows the equiva-
lence of the two formulations.

Theorem 60.
inf

u∈S BV(Ω)
F(u) = inf

(K,u)∈A
J(K, u).

The next important step is to prove that the weak formulation admits a solution.

Theorem 61. Let g ∈ L∞(Ω). Then there exists u ∈ S BV(Ω) such that

F(u) = inf
v∈S BV(Ω)

F(v).

Proof. F is bounded from below. So take a minimizing sequence un for F. We can suppose
without loss of generality that ‖un‖∞ ≤ ‖g‖∞, since otherwise the sequence of functions
u′n = min(‖g‖∞, un) is such that F(u′n) ≤ F(un). Therefore u′n is also a minimizing sequence
and satisfies the given property.
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Since un is a minimizing sequence for F, clearly

sup
n

{∫
Ω

|∇un|
2dx + H N−1(S u)

}
≤ ∞.

Then, using theorem 42, there exists u ∈ S BV(Ω) and a sub-sequence unk of un such that
unk

∗
⇀ u. Now the map v 7→

∫
Ω

(g − v)2dx is strongly l.s.c. in L1(Ω) by theorem 55. This,
together with the second part of the theorem 41 ensures that

F(u) ≤ lim inf
k

F(unk ).

Thus u ∈ S BV(Ω) is a minimizer of F. �

2.7.2. Piecewise constant Mumford-Shah problem

In practice, it is often necessary to simplify the problem to be able to compute the minimum
numerically. One way is to to minimize the Mumford-Shah functional over piecewise con-
stant functions in S BV(Ω). It will produce good segmentation results only if the image is
close to be constant inside the objects of interest. First, the concept of a piecewise constant
function has to be defined carefully (see [5] for details).

Definition 62. A partition {Vk}k∈N of Ω is a Cacciopoli partition of Ω if∑
k

P(Vk,Ω) < ∞,

where P(Vk,Ω) denotes the perimeter of Vk in Ω. The partition is said to be ordered if the

sequence (|Vk|) is decreasing.

Definition 63. A function u : Ω−→R is said to be piecewise constant if there exists a

Cacciopoli partition {Vk} of Ω and a sequence {tk} of real numbers such that

u =
∑

k

tk1Vk .

Let PC(Ω) the set of piecewise constant functions over Ω.

Remark 64. The numbers tk need not be distinct. But, they can be made distinct by ordering

the set of values {tn1 , tn2 , ...} of u and taking the Cacciopoli partition {Fl} of Ω given by

Fl = u−1(tnl).
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We call the {Fl} the level set Cacciopoli partition of Ω associated to u.

It is important to understand how the discontinuity set of a piecewise constant function
u can be. It turns out that H N−1-almost everywhere, S u ⊆ ∪

k
∂Vk ∩Ω. Therefore

2H N−1(S u) ≤
∑

k

P(Vk,Ω).

It is clear that the equality need not be attained when the values tk are not distinct. It turns
out that this is the only possibility.

Theorem 65. Let u be piecewise constant function with level set Cacciopoli partition {Vk}

of Ω. Then

2H N−1(S u) =
∑

k

P(Vk,Ω).

Cacciopoli partitions have nice compactness properties.

Theorem 66. Let {Vk,n}n be a sequence of Cacciopoli partitions of Ω such that

sup
n

∑
k

P(Vk,n,Ω) < ∞.

Then there exists a Cacciopoli partition {Vk} of Ω and a sub-sequence nl such that for all k

1Vk,nl

L1

−→1Vk .

With that in mind, it is possible to prove the existence of a minimizer for the piecewise
constant Mumford-Shah problem.

Theorem 67. Let g ∈ L∞(Ω). Then there exists u ∈ S BV(Ω) ∩ PC(Ω) such that

F(u) = inf
v∈S BV(Ω)∩PC(Ω)

F(v).
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Image denoising

An image can be seen as a function

g : Ω−→[0, 1]

representing the gray tones (0 for black and 1 for white). The domain Ω is in general a
rectangle or a cube. The domain is bounded and there is a finite number of pixels in the
image, hence it is natural to assume that

‖g‖∞ < ∞.

Denoising an image is a complex task that is highly dependent on the image nature.
Several types of noise can be found in images and they require different denoising methods.
The typical noise found in CT or MRI images is that some pixels, or small packets of
pixels, will have a value slightly off the real value they should have. These errors can be
large enough to lead to irrelevant segmentation. To repair these pixels, a common strategy
is to apply a smoothing algorithm to the noisy image.

We present here several denoising techniques that admit PDE formulations. PDE meth-
ods for denoising have proved their efficiency and are widely used for medical images. The
PDEs that are involved are closely related to the PDEs that arise for the segmentation prob-
lem. There are several good references on the subject, let us only mention the book by Chan
and Shen [20] and the one by Aubert and Kornprobst [9].

In this chapter we sketch the different methods as well as their numerical implementa-
tions. This will serve later when we get to the segmentation problem in Chapter 4.
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3.1. HEAT EQUATION

The best known smoothing PDE is certainly the heat equation:
ut = µ∆u, on Ω × (0,T )
∂u
∂n = 0, on ∂Ω

u(·, 0) = g on Ω.

(3.1)

The physical interpretation of this problem is that Ω can be seen as a body with thermal
conductivity µ and temperature distribution given by g at time 0. The solution u(x, t) rep-
resents the temperature at position x and time t. Heat diffuses in the body and smoothens
temperature differences at neighboring points. To solve the equation, it is necessary to spec-
ify boundary conditions. A common choice is to impose ∂u

∂n = 0 on ∂Ω, which means that
no heat leaves the domain.

It is easy to solve Problem 3.1 by finite differences when the domain is rectangular. The
domain is naturally discretized using the pixels of the image to define an orthogonal grid.
Let un

i, j denote the value of the approximate solution solution ū at pixel xi, j and time n∆t.
As the spacing between pixel is constant here, we can take ∆x = ∆y = 1. Then

(ut)n
i, j ≈

un+1
i, j − un

i, j

∆t
.

The Laplacian discretized by central differences gives

(∆u)n = un
i+1, j + un

i−1, j + un
i, j+1 + un

i, j−1 − 4un
i, j.

To solve the equation, it is necessary to choose at what time the Laplacian is to be
evaluated. There are 3 main schemes:

1. ∆u ≈ (∆u)n (explicit)

2. ∆u ≈ (∆u)n+1 (implicit)

3. ∆u ≈ (∆u)n+(∆u)n+1

2 (Crank-Nicholson)

The first scheme is called explicit since it is possible to express un+1 directly in term of
un from the discretized equation without factoring any matrix:

un+1
i, j = un

i, j + µ∆t(un
i+1, j + un

i−1, j + un
i, j+1 + un

i, j−1 − 4un
i, j).
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The other schemes need the resolution of a linear system of the form

Bun+1 = Aun ⇒ un+1 = B−1Aun,

provided B is invertible. These schemes are less sensitive to instability. However, due to
the size of the 3D medical images (about 50 000 000 voxels), it is a huge challenge to solve
such linear systems.

The desired smoothed image is the solution u(x, τ) for some time τ not too large. At
steady state (ut = 0), we have un

i, j = un+1
i, j = ui, j, thus ∆u = 0 leads to

ui, j =
ui+1, j + ui−1, j + ui, j+1 + ui, j−1

4
.

This means that the value at a pixel is the mean of the values of the neighboring pixels. This
is a discrete version of the property of harmonic functions which says that?

Br(x)
u(y)dy = u(x)

for any ball Br(x) ⊆Ω about x.
One of the problem of that method is that it has the tendency to smooth edges. Another

important issue is to determine the stopping time τ that gives the best smoothed image. That
will be discussed later on. Increasing the conductivity µ makes the solution to converge to
steady state in less time, but the explicit scheme needs smaller time steps to remain stable,
generally giving the same computational time.

Figure 3.1 shows images smoothed with the heat equation for different numbers of time
steps. The white dotted line in the last 3 images is an important contour taken from the initial
image and reproduced in subsequent images. It is possible to see that the corresponding
contour in the blurred images tend to slightly shift from the original one as the image gets
smoother and smoother.

3.2. INHOMOGENEOUS DIFFUSION

A possible alternative to the preceding method is to consider that the domain’s conductivity
is not constant. The conductivity could be larger away from edges, and smaller on edges.
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initial image g 20 iterations
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Figure 3.1: Smoothing of a 512×512 slice of a CT image via the heat equation with ∆t = 0.1
and µ = 1.

The heat equation in divergence form is
ut = div(µ∇u), on Ω

∂u
∂n = 0, on ∂Ω

u(·, 0) = g on Ω.

(3.2)
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where now µ is some function. Perona and Malik ( [83]) initially proposed

µ = e−
|∇g|2

σ2

for some constant σ that depends on the actual image. A finite difference discretization of
Problem 3.2 is

un+1
i, j =un

i, j + ∆t(cn
i+1, j(u

n
i+1, j − un

i, j) − cn
i−1, j(u

n
i, j − un

i−1, j)

+ cn
i, j+1(un

i, j+1 − un
i, j) − cn

i, j−1(un
i, j − un

i, j−1),

where ci, j is an approximated value of µ at pixel (i, j). This scheme is directly derived from
the divergence form of the equation. At steady state, this gives

ui, j =
ci+1, jui+1, j + ci−1, jui−1, j + ci, j+1ui, j+1 + ci, j−1ui, j−1

ci+1, j + ci−1, j + ci, j+1 + ci, j−1
,

that is, each pixel becomes a weighted average of its neighbors. The diffusion is inhomo-
geneous. If there is a jump between the pixels xi, j and xi+1, j, then ci+1, j will be small and
ui, j will depend mostly on the other pixels. It is possible that the steady state is a good
smoothing. In practice, this will have the tendency to smooth too much, except edges that
are clearly outlined. Figure 3.2 show results of anisotropic diffusion with σ = 10. The pa-
rameter σ is slightly too small since some noise is kept. On the other hand some edges tend
to disappear as the one between the cavity of the heart and the myocardium. In Figure 3.3,
the same calculation is made with σ = 20. Now the noise is completely removed but many
edges are smoothed.
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50 iterations 100 iterations

Figure 3.2: Smoothing via anisotropic diffusion with ∆t = 0.1 and σ = 10.

50 iterations 100 iterations

Figure 3.3: Smoothing via anisotropic diffusion with ∆t = 0.1 and σ = 20.
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3.3. SOBOLEV SMOOTHING

In this section, we start to investigate variational formulations of the denoising problem.
The idea behind variational methods is that the ideal image will minimize a certain func-
tional

E : V−→R,

where V is the vector space of admissible images, that has to be well chosen in order for E

to admit a minimum. The choice of the functional will be influenced by the nature of the
noise in the image g.

One example is the the Sobolev smoothing functional.

E : H1(Ω)−→R, (3.3)

u 7→
∫

Ω

|∇u|2dx +

∫
Ω

(u − g)2dx. (3.4)

As mentioned earlier, the function g can always be assumed to be bounded (in L∞(Ω))
since it has a finite set of values on the domain Ω. Moreover, as Ω is bounded, the function
g is also in L2(Ω), so that the second term in the energy is well defined. The functional
E is coercive, convex and continuous (hence l.s.c.) on W1,2(Ω). Therefore E reaches its
minimum at some u ∈ W1,2(Ω). We compute the directional derivatives of E at u:

∂E
∂v

(u) =
d
dt

E(u + tv)
∣∣∣∣∣
t=0

=
d
dt

∫
Ω

|∇u + t∇v|2dx +

∫
Ω

(u + tv − g)2dx
∣∣∣∣∣
t=0

=

∫
Ω

d
dt
|∇u + t∇v|2

∣∣∣∣∣
t=0

dx +

∫
Ω

d
dt

(u + tv − g)2
∣∣∣∣∣
t=0

dx

= 2
∫

Ω

(∇u + t∇v) · ∇v
∣∣∣∣∣
t=0

dx + 2
∫

Ω

(u + tv − g)v
∣∣∣∣∣
t=0

dx

= 2
[∫

Ω

∇u · ∇vdx +

∫
Ω

(u − g)vdx
]

= 2
[
(∇u,∇v)D(Ω) + (u − g, v)D(Ω)

]
= 2

[
−(∆u, v)D(Ω) + (u − g, v)D(Ω)

]
= 2

(
− ∆u + (u − g), v

)
D(Ω)

= 0, ∀v ∈ D(Ω).
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Hence
∆u = u − g

in the sense of distributions, which is the Euler-Lagrange equation of E. The problem
associated to the gradient descent method is

(P3)


ut = ∆u + (g − u), Ω

∂u
∂n = 0, ∂Ω

u(x, 0) = g.

In principle, the initial condition could be any function, but it is reasonable to take g as
initial guess. The steady state of that equation will be a solution of −∆u + u = g, ie.
u = (I − ∆)−1g. It corresponds to a local minimum of the functional. This is the desired
image.

However, in this ideal image, sharp edges have disappeared. For example, let Ω =

[−1, 1] and g = 1[0,1]. g is an ideal image that does not need to be cleaned. Note that for
any g ∈ L2([−1, 1]),

(I − ∆)−1(g) ∈ H2([−1, 1]) ⊆ C1([−1, 1]). (3.5)

Hence g is not a solution of the Sobolev smoothing problem. In fact the Sobolev smoothing
tends to smooth edges. Indeed, let fn be the sequence of functions

fn =


0 x ∈ [−1,−1/n)

nx + 1, x ∈ [−1/n, 0)

1, x ∈ [0, 1]

As an example, Figure 3.4 shows the function f5. Now we can compute∫
Ω

|∇ fn|2 = n2 1
n

= n. (3.6)

This calculation, shows that the steeper the function fn is, the higher its Sobolev energy
will be. This is not a desirable property since a clean image should have steep gradient on
object’s boundary. Notwithstanding this fact, if the L1-norm is used instead, we have∫

Ω

|∇ fn| = n
1
n

= 1. (3.7)
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Figure 3.4: The function f5.

This suggests that the L1 norm is probably a better choice for conserving clear image edges.
This leads to the total variation functional.

3.4. TOTAL VARIATION

Introduced by Osher, Fatemi and Rudin [92], the idea is to minimize the functional

E : BV(Ω)−→R,

u 7→ ETV (u, g) = |Du|(Ω) + λ

∫
Ω

(u − g)2dx. (3.8)

Note that if u ∈ W1,1(Ω), then

|Du|(Ω) =

∫
Ω

d|Du| =
∫

Ω

|∇u|dx.

An obvious advantage is that discontinuous functions are admissible as long as their approx-
imate discontinuity set is of finite H N−1 measure. In the last example, the image g = 1(0,1)

is a minimizer of ETV (·, g).
Let v ∈ D(Ω). To compute the Euler-Lagrange equation of ETV , the partial derivative
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in the direction v is evaluated as

∂ETV

∂v
=

d
dt
|Du + t∇v|(Ω)

∣∣∣∣∣
t=0

+ 2λ(u − g)

=

(
Du + t∇v
|Du + t∇v|

· ∇v
)

(Ω)
∣∣∣∣∣
t=0

+ 2λ(u − g)

=

(
Du
|Du|

· ∇v
)

(Ω) + 2λ(u − g)

=

(
Du
|Du|

,∇v
)
D(Ω)

+ 2λ(u − g)

=

(
−div

(
Du
|Du|

)
, v

)
D(Ω)

+ 2λ(u − g)

=

(
−div

(
Du
|Du|

)
+ 2λ(u − g), v

)
D(Ω)

= 0, ∀v ∈ D(Ω).

Hence
div

(
∇u
|∇u|

)
= λ(u − g)

in the sense of distributions, which is the Euler-Lagrange equation of ETV . The problem
associated to the gradient descent method is

ut = div
(
∇u
|∇u|

)
+ λ(g − u), Ω

∂u
∂n = 0, ∂Ω

u(x, 0) = g.

(3.9)

Again, the initial condition could be any function, but it is reasonable to take g as initial
guess. The steady state of that equation will be the desired image. Note that for a function
u : Ω−→R, ∇u

|∇u| is a unit normal vector to the level curves and then div
(
∇u
|∇u|

)
is simply the

mean curvature of the level curves. Therefore the Total Variation algorithm will smooth the
level curves of the initial image g. The smaller λ is, the more regular the steady state will
be.

The Euler-Lagrange equation is non-linear and exhibits unstable numerical behavior,
which forces us to take very small time steps, especially when an explicit time stepping
scheme is used. Implicit time-stepping allows us to use larger time steps. On the other
hand, since the equation is nonlinear, the equation needs to be linearized and solved via
Newton’s method, or an equivalent method at each time step. This requires solving several
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linear systems and is very demanding for large 3D images. On the other hand, an explicit
solver is easily parallelizable.

Another challenging part is to discretize the curvature term div
(
∇u
|∇u|

)
. This term is highly

non linear and must be discretized carefully as it may blow up when u is nearly flat. There
are several ways to discretize this term. A first approach is to compute

div
(
∇u
|∇u|

)
=

∂

∂x

 ux√
u2

x + u2
y

 +
∂

∂y

 uy√
u2

x + u2
y

 (3.10)

=
u2

yuxx − 2uxuyuxy + u2
xuyy

(u2
x + u2

y)3/2
,

where the last expression is obtained by computing directly the partial derivatives. Then
each of ux, uy, uxx, uyy, uxy can be discretized by centered differences. It is a natural choice to
use central differences since div

(
∇u
|∇u|

)
being a diffusive term, there is no preferred direction

of propagation.
Recall that the curvature of a curve at a point x is 1/r, where r is the radius of the largest

tangent circle to the curve at x. Then it seems natural to impose that∣∣∣∣∣∣div
(
∇u
|∇u|

)∣∣∣∣∣∣
i, j
<

1
∆x

,

since we cannot hope to resolve curvature in the image at points where the given radius
is smaller than the size of a pixel. The condition can be imposed by truncating the term∣∣∣∣div

(
∇u
|∇u|

)∣∣∣∣
i, j

, setting it to ± 1
∆x , when it is too large. It turns out that imposing this condition

stabilizes the scheme.
Another approach is direct discretization:

∂

∂x

 ux√
u2

x + u2
y

 (xi, j) ≈
(ui+1, j−ui, j)

h√
(ui+1, j−ui, j)2

h2 +
(ui, j+1−ui, j−1)2

4h2 + δ

(3.11)

−

(ui, j−ui−1, j)
h√

(ui, j−ui−1, j)2

h2 +
(ui−1, j+1−ui−1, j−1)2

4h2 + δ

,

where δ is some small parameter (typically δ = 10−10) that avoids divisions by zero. With
the introduction of this parameter, it is not necessary to test whether

∣∣∣∣div
(
∇u
|∇u|

)∣∣∣∣
i, j
< 1

∆x or
not.
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The partial derivatives are discretized sometimes via forward, sometimes via centered
differences. This choice may seem strange, but a completely centered scheme would involve
values that are two pixels away from the center xi, j, which is a wide stencil.

To avoid the use of a non-centered scheme, it is possible to introduce middle points
xi±1/2, j and xi, j±1/2, together with values

ui±1/2, j =
ui, j + ui±1, j

2
and ui, j±1/2 =

ui, j + ui, j±1

2
.

Then a centered scheme would be

∂

∂x

 ux√
u2

x + u2
y

 (xi, j) ≈
(ui+1, j−ui, j)

h√
(ui+1, j−ui, j)2

h2 +
(ui+1/2, j+1−ui+1/2, j−1)2

4h2 + δ

−

(ui, j−ui−1, j)
h√

(ui, j−ui−1, j)2

h2 +
(ui−1/2, j+1−ui−1/2, j−1)2

4h2 + δ

(3.12)

If we discretize the equation

ut = div
(
∇u
|∇u|

)
with the scheme (3.11) and a forward Euler scheme in time, we get

un+1
i, j = un

i, j + ∆t((Ci, jun
i+1, j + Ci−1, jun

i, j + Di, jun
i, j+1 + Di, j−1un

i, j−1

− (Ci, j + Ci−1, j + Di, j + Di, j−1)un
i, j)), (3.13)

where
Cn

i, j =
1√

(un
i+1, j−un

i, j)
2

h2 +
(un

i, j+1−un
i, j−1)2

4h2

and similarly

Dn
i, j =

1√
(un

i, j+1−un
i, j)

2

h2 +
(un

i+1, j−un
i−1, j)

2

4h2

.

Smereka [103] suggested that replacing un
i, j by un+1

i, j in the right hand side of Equation (3.13)
improves the stability of the algorithm. This can still be solved explicitly; indeed

un+1
i, j =

1
C

(
un

i, j + ∆t((Ci, jun
i+1, j + Ci−1, jun

i, j + Di, jun
i, j+1 + Di, j−1un

i, j−1

)
, (3.14)
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Figure 3.5: Smoothing via total variation with λ = 1, dt = 0.1.

where
C = 1 + ∆t((Ci, j + Ci−1, j + Di, j + Di, j−1).

This is called a semi-explicit scheme. Experimentally, this scheme has proved his superi-
ority over the others, but to our knowledge, there is no rigorous justification of that fact. It
will be the preferred scheme for discretizing curvature terms.

Marquina and Osher [62] remarked that the total variation model may suffer from a
so-called stair-casing effect. That is, the solution tend to be piecewise constant in regions
where it should be smooth. They propose to multiply the right hand side of Equation (3.9)
by |∇u|. The equation then becomes

ut = |∇u|
[
div

(
∇u
|∇u|

)
+ λ(g − u)

]
. (3.15)

This has the effect of increasing the stability of the discretized problem as well as avoiding
the stair-casing effect [62]. However, the PDE no longer comes from a variational problem.
Figure 3.5 shows the result of applying this new equation for smoothing images.

Remark 68. The variational approach suggests a criterion for what would be a good stop-

ping time when an image is smoothed via the heat equation or by anisotropic diffusion: one

should stop when either the Sobolev energy, or the total variation energy is minimal. This

corresponds to minimizing the corresponding energy on a one-dimensional family of images

parametrized by the time t, namely the solution u(x, t) of the problems in Equations (3.1)
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and (3.2).

The total variation functional given in Equation 3.8 contains a fidelity term that is the
L2 distance between the denoised image u and the original image g:∫

Ω

|g − u|2dx. (3.16)

It is classical in many minimization problems to use an L2 fidelity term. It has nice ana-
lytical properties and it is easy to handle. The idea of replacing the L2 fidelity by an L1

fidelity has first been introduced in signal processing by Alliney [2, 3, 4] and later in image
processing by Nikolova [73] and Nikolova, Esedoglu and Chan [74].

The total variation functional with L1 fidelity takes the form

ETVL1(u) = |Du|(Ω) +

∫
Ω

λ|u − g|dx. (3.17)

It has been remarked that for TV denoising, the L1 fidelity is more natural [18], since in
this case the problem is scale-invariant.

This means that if the underlying image is g and u∗ denotes the minimum of ETVL1(·, g),
then cu∗ is the minimum of ETV (·, cg). This property that seems very natural and desirable
for a noise removal algorithm is not satisfied by the original total variation algorithm.

Another interesting fact about the L1 version of the total variation algorithm is that one
can make a direct correspondence between the value of the weight parameter λ and the size
of details to be kept in the image. Indeed Nikolova, Esedoglu and Chan [74] remarked that
given details do not fade out continuously as the value of λ changes. On the contrary, for a
given size of detail, there is a critical value of the parameter λ above which the detail is kept,
and below which the detail disappears. This property is very interesting if, for example, one
is aware about the nature and the variance of the noise in the image.

Total variation methods are very efficient for removing noise amongst relatively uniform
objects. There has been many improvements of the method. Actually, the main area of
development is to try to incorporate texture information into the models, see, for example,
[10] or [56].
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Segmentation problem

The segmentation problem consists in separating a given image into its significant compo-
nents. The meaning of significant relies on the segmentation goals. Figures 4.1 and 4.2
shows examples of segmentation problems. In Figure 4.1, the goal is to extract the position
of the cameraman in the image. In Figure 4.2, it is the heart muscle and heart cavities that
are to be extracted. The two images are of very different nature, as of the objects to detect.

Figure 4.1: Segmentation of the cameraman image.

There exists a multitude of segmentation techniques, of very different nature. Each
technique has strengths and drawbacks. Different applications will need different segmen-
tation algorithms. The main factors that will guide the choice of a segmentation method
are

1. The level of noise in the image,

2. The shape of the object of interest: its topology, the smoothness of its contours, its

69
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Figure 4.2: Heart segmentation from a 2D slice of a CT scan.

size,

3. The type of texture in the image,

4. The sharpness of the object’s contour,

5. The image contrasts.

Among all segmentation methods, active contours (or deformable models) have proved
their efficiency for applications to medical image segmentation. The idea is to let a curve
evolve on the image until it stops on the edges of the object of interest. There are many
variants of the original snake method proposed by Kass, Witkin and Terzopoulos [51]. The
motion of the curve is generally driven by a partial differential equation. There are many
variants of active contours algorithm. In some cases, the PDE is derived from a variational
problem: the location and shape of the contour should minimize a given energy. In some
other cases, the PDE is given ad-hoc. Another distinction between active contour methods
is whether they are edge-based or region-based methods. In an edge based method, the
contour evolves according to the presence of edges in the image. This is a more local
method, as edge presence is a local property of the image. In region based methods, the
evolution is driven by global properties of the regions delimited by the curve. It is also
possible to add shape prior knowledge to a deformable model technique.

Other important methods in medical image segmentation are active shape models and
active appearance models. Both methods rely on a training set of images on which impor-
tant landmarks are tagged. For active shape models, a mean shape is built and a principal
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component analysis gives the preferred directions of deformation. For active appearance
models, the gray-level variation is also taken into account.

In the following sections, we give more details on the segmentation methods outlined
above.

4.1. SNAKES

We begin by describing the active contour model introduced by Kass, Witkin and Ter-
zopoulos [51]. The method is variational and edge based. It is the first appearance of active
contour methods in image segmentation. The set of admissible edges is the set V of closed
continuous curves in Ω, often called snakes.

V = {v :
k
t

i=1
S 1−→Ω},

where k denotes the number of connected components in the curve. To know which curve
in V approximates best the boundaries in the image, a curve energy is defined. The energy
of v ∈ V is defined as

Esnake(v) = Eint(v) + Eext(v). (4.1)

Eint(v) is the internal energy, which decreases as v gets more regular. Typically

Eint(v) =

∫
S 1

∣∣∣∣∣dv
ds

∣∣∣∣∣2 ds + α

∫
S 1

∣∣∣∣∣∣d2v
ds2

∣∣∣∣∣∣2 ds.

The first term is an elasticity term, that penalizes long curves. The second is a rigidity term,
that penalizes high curvature regions.

The external energy Eext(v) is related to the underlying image. It has to be small if v is
on the edges of g and large otherwise. There are many possibilities for Eext(v), but typically
edges are characterized by a sudden change of color in the image. Hence pixels where the
image gradient is large are likely to be close to relevant edges. A common choice for Eext(v)
is

Eext(v) = −β

∫
S 1
|∇g(v(s))|2ds,

but it could be −
∫

S 1 h(|∇g(v(s))|)ds for any increasing positive function h.

Remark 69. The energy does have minimizers, but they need not be unique [51].

It is then possible to compute the Euler-Lagrange equation of this minimization prob-
lem. The problem is usually solved by a gradient descent method, starting from an initial
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curve v0. In general, if the initial curve is close to the object contour that is sought, this
approach will give interesting results, since the initial curve is close to the global minimum
of the functional.

On the other end, when the initial curve is relatively far, many difficulties may occur.
First, the curve can get stuck in a local minimum. Another problem is that we may want the
curve to change topology or avoid overcrossings. These operations are hard to do with a
parametrized curve. The algorithm to evolve a parametrized curve usually goes as follows

1. Discretize the curve;

2. Advance the front by an explicit or implicit scheme;

3. Re-parametrize the curve.

The re-parametrization is very important since the curve may be stretched or compressed at
some places. Figure 4.3 shows how this can be complicated when there is a possibility for
a change of topology.

Advance and re-parametrize the curve Reconnecting problems

Figure 4.3: Active contours with a parametrized curve

4.2. LEVEL SET METHOD

The Level Set method was introduced in the late 80’s by Sethian and Osher [77]. This
method gives tools to evolve a curve and manage topology changes, which was hard with
the active contour approach of Kass, Witkin and Terzopoulos [51]. The idea is simple:
instead of describing the curve via an explicit parametrization C = {v(s), s ∈ S 1}, the curve
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is described implicitly via a function

φ0 : Ω−→R,

such that
C = {x : φ0(x) = 0}.

If the function φ0 changes, then so does its 0-level set. Hence the curve evolution will be
describe as a continuous deformation of φ0:φ : Ω × R+−→R,

φ(x, 0) = φ0(x)

This can be thought of as a time evolution, such that the curve Ct at time t is simply

Ct = {x : φ(x, t) = 0}.

Topology changes do not require special care using level set functions. They occur naturally
as nothing special happens to the level set function when the topology of its level sets
changes.

Figure 4.4: The level set method can handle topology changes of the curve. Different slices,
that correspond to different times in the curve evolution process are shown.

Example 70. The equation

(P5)

φt = −Vn|∇φ|

φ(·, 0) = φ0

evolves the curve initially described by φ0 in the normal direction at speed Vn. Indeed, if
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v(t) is a parametrization of the curve at time t, then

0 =
d
dt
φ(v(t), t) = φt + ∇φ(v(t), t) · v′(t).

But as noted before, the normal to the curve is n =
∇φ
|∇φ| and since the normal speed is

v′(t) · n = Vn, we get

0 = φt + ∇φ(v(t), t) · v′(t) = φt + |∇φ|n · v′(t) = φt + Vn|∇φ|.

The normal speed Vn can depend on various things such as

1. Position in space;

2. External parameters (e.g. medical image g, interface pressure);

3. Curvature of the curve.

There are now many books available on this method, since it revealed itself as a very
efficient and robust way to model the evolution of curves and fronts. Two main references
are the book by Sethian [102] and the one by Osher [76].

4.3. GEOMETRIC ACTIVE CONTOURS

4.3.1. Level set formulation of classical snakes

The original active contour method of Kass, Witkin and Terzopoulos [51] can be described
in a level set framework. For a given level set function

φ : Ω−→R,

the internal energy is rewriten as

Eint(v) = H N−1({φ = 0}) + α

∫
Ω

δ(φ)div
(
∇φ

|∇φ|

)
dx. (4.2)

The first term in the energy computes the length and the second integrates the mean cur-
vature of the curve (the 0 level curve of φ). Remark that the integrand of the curve length
integral is not an integrable function. It is rather a function of bounded variation. The
integral is defined in that respect. Now remark that if H = χ[0,∞) denote the Heaviside
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function
H N−1({φ = 0}) = |DH(φ)|(Ω) =

∫
Ω

d|DH(φ)| =
∫

Ω

δ(φ)|∇φ|dx. (4.3)

Hence
Eint(v) =

∫
Ω

δ(φ)|∇φ|dx + α

∫
Ω

δ(φ)div
(
∇φ

|∇φ|

)
dx (4.4)

is the level set formulation of the internal energy. As it will be noted in section 4.4, the term
associated to

∫
Ω
δ(φ)|∇φ|dx in the Euler-Lagrange equation has the form

δ(φ)div
(
∇φ

|∇φ|

)
, (4.5)

which accounts for the rigidity term. Hence minimizing length gives rise to a curvature
term in the curve evolution process. This suggests some dependence between the two terms
in the internal energy. In most cases, only the first term is considered. The second is an
elastic energy, that gives rise to a 4th order PDE.

4.3.2. Non variational active contours

Level set methods have first been applied to active contours in the works of Caselles et
al. [15] and of Malladi, Sethian and Vermuri [61]. They proposed edge based algorithms,
that are non variational.

They rely on an edge detector (edge stopping function), which is a function h : R+−→R+

such that

1. h is monotonically decreasing,

2. h(0) = 1,

3. h(x)
x→∞
−→ 0.

Hence, h(|∇g|) is a function that has value 1 in flat regions of the image and gets close to 0
close to edges. A typical example of an edge detector is

h(x) =
1

1 + cx2 . (4.6)

A clear edge in an image is a very fine feature. Around an edge, only few pixels will have
high gradient magnitude |∇g|. In order for the edge to have a wider influence, Caselles et

al. [15] proposed to use Gσ∗g instead of g, where Gσ is the Gaussian kernel of variance σ2.
Gσ ∗ g is a blurred version of the image g. Figure 4.5 shows the difference between h(|∇g|)
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and h(|∇(Gσ ∗ g)|). Also the influence from the noise is less important using the blurred
image instead of the real image. In practice Gσ ∗ g is generally computed by applying the
heat equation (3.1) for some time steps.

Now, consider the problem φt = |∇φ|h(|∇(Gσ ∗ g|),

φ(·, 0) = φ0.
(4.7)

This problem evolves the initial curve C0 = {x : φ0(x) = 0}, that moves in the normal
direction with constant speed in objects with uniform colors, and stops when it reaches
regions of high gradient of g (boundary points). The model can be refined by adding a
curvature term φt = |∇φ|(h(|∇(Gσ ∗ g|) + εκ),

φ(·, 0) = φ0.
(4.8)

This prevents the curve from developing sharp corners. The process is local: the evolving
may get stuck if it is blocked by image features. In such a case, the contour may not detect
features over these boundaries.

4.3.3. Geodesic active contours

Geodesic active contours have been first introduced by Kichenassamy et al. [52] and by
Caselles, Kimmel and Sapiro [16]. Their idea was to set up a variational active contour
model whose minimizers are geodesics for a particular metric. This metric is given by the
stopping function h̄ = h(|∇(Gσ∗g)|) in the following sense: for a given curve c : [0, 1]→ Ω,
its length is given by ∫ 1

0
h̄(c(t))|c′(t)| dt. (4.9)

For a given curve c, they define the curve energy to be

E(c) = α

∫ 1

0
|c′(t)|2 dt + λ

∫ 1

0
h̄(c(t))2 dt. (4.10)

They showed in [16] that minimizers of E = E(c) are geodesics under the metric given by
equation (4.9).
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(a) (b)

(c) (d)

Figure 4.5: Different stopping images, using blurred and non blurred image. When using
the blurred image, the edges have an influence on a wider band, and there is also less
contamination by noise and texture. (a) The original image. (b) The stopping image 1

1+|∇g|2 .

(c) A blurred version of the image. (d) The stopping image 1
1+|∇(Gσ∗g)|2 .
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In a level set framework, local minimizers are level sets of steady states of the equation
φt = |∇φ|div

(
h̄ ∇φ
|∇φ|

)
= h̄|∇φ|div

(
∇φ
|∇φ|

)
+ ∇h̄ · ∇φ, on Ω,

∂φ
∂n = 0 on ∂Ω.

(4.11)

This equation is very similar to equation (4.8). The extra advection term ∇h̄ · ∇φ attracts
the level sets of φ towards the edges, since the vector field −∇h̄ points towards minima of h̄,
which correspond to edges. This new feature makes the active contour method more robust.
It has been used successfully in many applications, for example [16, 58, 78, 122].

The main difficulty when using this algorithm is that the energy has many local minima.
The noise will also affect the number of local minima. If the image is very noisy, it is very
likely that the curve will get stuck into a local minimum. In that case, the initial curve needs
to be close to the global minimizer.

The advection term in equation (4.11) is discretized using a standard upwind scheme.
The diffusion term can be discretized with a simple scheme like the one given in equa-
tion (3.11). There is no need to use a more complex scheme, since the time step restriction
imposed by the advection term will in general ensure the stability of the simple scheme of
equation (3.11). Mikula et al. [68, 69] proposed a semi-implicit finite volume scheme that
is unconditionally stable and that allows to iterate with large time steps. They also proposed
a parallel implementation of that scheme [67].

4.3.4. Subjective surfaces

In a typical level set application, it is the 0 level set of the level set function φ that is tracked
in time. Sarti, Malladi and Sethian [98, 99] pointed out that the level set equation (4.11)
has no preference towards the 0 level set of the function φ. In fact, all of its level sets are
attracted towards edges of the image g. In this process, steep cliffs are created near edges.
Away from edges, the level set function becomes flat. The steady state should then be a
piecewise smooth function whose discontinuities lye on edges. This method is called the
subjective surface method, since it looks at all level curves instead of the sole 0 level set.

They took advantage of this fact to help choosing a good initial condition to equa-
tion (4.11). A point x0 is chosen inside the object of interest, and the distance function
D(·, x0) to this point is computed. A good initial condition is then φ0 = 1

1+D . It has high
values just in a neighborhood of the given point x0 and rapidly goes to 0 away from x0.
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Equation (4.11) is solved with a Dirichlet boundary condition instead of a Neumann bound-
ary condition. Only features that are relatively close to the chosen point x0 will be captured
by the evolving equation.

Figure 4.6 shows the evolution of the subjective surface in the case of a 100×100 image
featuring a broken circle. A time step dt = 0.001 has been used and 40 000 iterations have
been performed. The middle point has been chosen as initial condition. The method has the
ability to close missing boundaries.

(a) (b)

(c) (d)

Figure 4.6: The subjective surface method. (a) The synthetic image of a broken circle. (b)

The initial condition φ0 =
1

1 + D(·, x0)
, where x0 is point chosen inside the circle. (c) The

level set function after 20 000 iterations (d) The steady state.
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4.4. ACTIVE CONTOUR WITHOUT EDGES

4.4.1. The original model

The active contour without edges of Chan and Vese [21] is a variational active contour
method based on the Mumford-Shah functional

J(K, u) =

∫
Ω\K
|∇u|2 + λ

∫
Ω

(u − g)2 + µH N−1(K ∩Ω) (4.12)

described in section 2.7. There has been several approaches in order to solve this minimiza-
tion problem. One consists in approximating the Mumford-Shah functional by a sequence
of elliptic functionals [6, 7, 13]. These can be solved more easily with a sequence of
compact sets Kn that will Gamma-converge to the set K minimizing the Mumford-Shah
functional.

Another approach is to minimize the Mumford-Shah over a restricted domain. Chan
and Vese [21], as well as Tsai, Yezzi and Willsky [113] independently proposed ways of
solving the minimization problem over the set of piecewise smooth functions. The problem
becomes much simpler as the discontinuity set Ju can be described by a level set function
φ. Hence the minimum is sought among functions of the form u = u1H(φ) + u2(1 − H(φ)),
where u1 and u2 are smooth in the regions {φ ≥ 0} and {φ < 0} respectively. The Mumford-
Shah functional becomes

F(φ, u1, u2) = µH N−1({φ = 0})+
∫

Ω

|∇u|2dx+λ

∫
Ω

(g−u1)2H(φ)dx+λ

∫
Ω

(g−u2)2(1−H(φ))dx,

(4.13)
where H = χ[0,∞) stands for the Heaviside function. Also, remark that

DH(φ) = δ(φ)|∇φ|, (4.14)

so that
H N−1(Ju) = |DH(φ)|(Ω) =

∫
Ω

δ(φ)|∇φ|dx =

∫
Ω

|∇φ|dδ(φ). (4.15)

Then

F(φ, u1, u2) = µ

∫
Ω

δ(φ)|∇φ|dx+

∫
Ω

|∇u|2+λ

∫
Ω

(g−u1)2H(φ)dx+λ

∫
Ω

(g−u2)2(1−H(φ))dx.

(4.16)
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It is now possible to compute the Euler-Lagrange equation associated to F. Looking at the
variation with respect to u1 leads to the Sobolev smoothing problem of section 3.3. That is,
u1 is a solution of ∆u1 = u1 − g on Ω1 = {φ ≥ 0},

∂u1
∂n = 0, on ∂Ω1.

(4.17)

Similarly, u2 is a solution of∆u2 = u2 − g on Ω2 = {φ < 0},
∂u2
∂n = 0, on ∂Ω2.

(4.18)

The directional derivative of the length term at φ in the direction ψ ∈ D(Ω) can be
computed as follows

d
dt

∫
Ω

δ(φ + tψ)|∇φ + t∇ψ| dx
∣∣∣∣∣
t=0

=

∫
Ω

δ′(φ + tψ)ψ|∇φ + t∇ψ| + δ(φ + tψ)
∇φ + t∇ψ
|∇φ + t∇ψ|

· ∇ψ dx
∣∣∣∣∣
t=0

=

∫
Ω

δ′(φ)ψ|∇φ| + δ(φ)
∇φ

|∇φ|
· ∇ψ dx. (4.19)

Remark that

div
(
δ(φ)

∇φ

|∇φ|
ψ

)
= δ′(φ)|∇φ|ψ + δ(φ)div

(
∇φ

|∇φ|

)
ψ + δ(φ)

∇φ

|∇φ|
· ∇ψ (4.20)

in the sense of distributions, so that∫
Ω

δ′(φ)ψ|∇φ| + δ(φ)
∇φ

|∇φ|
· ∇ψ dx

=

∫
Ω

div
(
ψδ(φ)

∇φ

|∇φ|

)
−

∫
Ω

δ(φ)div
(
∇φ

|∇φ|

)
ψ. (4.21)

Moreover ∫
Ω

div
(
δ(φ)ψ

∇φ

|∇φ|

)
=

∫
∂Ω

δ(φ)ψ
∇φ

|∇φ|
· ndH N−1 = 0 (4.22)

if we impose ∂φ
∂n = ∇φ · n = 0, which seems a reasonable boundary condition, since this

forces the level curves to be transverse to the boundary ∂Ω. Therefore

d
dt

∫
Ω

δ(φ + tψ)|∇φ + t∇ψ| dx
∣∣∣∣∣
t=0

= −

∫
Ω

δ(φ)div
(
∇φ

|∇φ|

)
ψ. (4.23)
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For the fidelity term, we have

d
dt

∫
Ω

(g − u1)2H(φ + tψ)dx +

∫
Ω

(g − u2)2(1 − H(φ + tψ)) dx
∣∣∣∣∣
t=0

=

∫
Ω

(g − u1)2δ(φ)ψ − (g − u2)2δ(φ)ψdx

=

∫
Ω

δ(φ)ψ[(g − u1)2 − (g − u2)2]dx. (4.24)

Therefore(
∂F
∂φ

, ψ

)
= −

(
δ(φ)div

(
∇φ

|∇φ|

)
, ψ

)
+

(
δ(φ)[(g − u1)2 − (g − u2)2], ψ

)
=

(
δ(φ)

[
−div

(
∇φ

|∇φ|

)
+ (g − u1)2 − (g − u2)2

]
, ψ

)
= 0, ∀ψ ∈ D(Ω), (4.25)

which means that

δ(φ)
[
−µdiv

(
∇φ

|∇φ|

)
+ λ(g − u1)2 − λ(g − u2)2

]
= 0 (4.26)

in the sense of distributions. In gradient descent form, this gives the initial value problem
φt = δ(φ)

[
µdiv

(
∇φ
|∇φ|

)
− λ(g − u1)2 + λ(g − u2)2

]
, on Ω × (0,T ),

∂φ
∂n = 0 on ∂Ω,

φ(·, 0) = φ0 on Ω.

(4.27)

Problem 4.27 is very close to the gradient descent Problem 3.9 for the total variation al-
gorithm of Osher, Rudin and Fatemi [92]. The main difference is that with (4.27) we let
evolve a curve while with Osher algorithm it is the initial image g that is deformed. Also,
in the last equation, there is a coefficient δ(φ) so that only the 0 level set of φ moves. In
practice, a regularization δε of δ is used. The function

δε(x) =
1
π

ε

ε2 + x2 (4.28)

is a good choice in many cases.
The algorithm for computing the solution then goes as follows: At each time step,

1. Compute u1 and u2 from φn, solving Problems 4.17 and 4.18.
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2. Compute φn+1 from φn, u1 and u2, solving Problem 4.27.

Problem 4.27 can be solved using similar discretizations as the ones used for the total vari-
ation problem.

In this version of the Mumford-Shah problem, Equations 4.17 and 4.18 need to be
solved at each time step. This is still computationally demanding. Chan and Vese also
propose a simpler version of the Mumford-Shah problem [21], where the Mumford-Shah
functional is minimized over the set of binary functions

{u ∈ S BV(Ω) : u ∈ {c1, c2}, c1, c2 ∈ R}. (4.29)

The condition u ∈ S BV(Ω) forces the discontinuity set Ju to be of finite perimeter. As in
the piecewise smooth case (equation (4.16)), the function u can be written as u = c1H(φ) +

c2(1 − H(φ)) and the Mumford-Shah functional becomes

ECV (φ, c1, c2) = µ

∫
Ω

δ(φ)|∇φ|dx+λ

∫
Ω

(g−c1)2H(φ)dx+λ

∫
Ω

(g−c2)2(1−H(φ))dx. (4.30)

The Euler-Lagrange equations lead to the following gradient descent problem:
φt = µδ(φ)

[
div

(
∇φ
|∇φ|

)
− λ(g − c1)2 + λ(g − c2)2

]
, Ω

∂φ
∂n = 0, ∂Ω

φ(·, 0) = φ0,

(4.31)

that is coupled with the conditions

c1 =

∫
Ω

gH(φ)dx∫
Ω

H(φ)dx
and c2 =

∫
Ω

g(1 − H(φ))dx∫
Ω

1 − H(φ)dx
. (4.32)

The algorithm for computing the solution then goes as follows: At each time step,

1. Compute c1 and c2 from φn, using equations (4.32).

2. Compute φn+1 from φn, c1 and c2 solving Problem 4.31.

4.4.2. Multiphase active contours without edges

The active contour without edges algorithm separates the given image g in two distinct parts.
In many applications, the images to be segmented are complex and contain much more than
two distinct parts or phases. In order to segment complex images, Vese and Chan [117]
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proposed a multiphase framework to their algorithm. The idea is to have several level set
functions at the same time. If two level set functions φ1 and φ2 are used, the domain is split
into four different regions, namely

Ω11 = {x : φ1(x) ≥ 0} ∩ {x : φ2(x) ≥ 0} (4.33)

Ω12 = {x : φ1(x) ≥ 0} ∩ {x : φ2(x) < 0}

Ω21 = {x : φ1(x) < 0} ∩ {x : φ2(x) ≥ 0}

Ω22 = {x : φ1(x) < 0} ∩ {x : φ2(x) < 0}.

This situation is illustrated in Figure 4.7.

Figure 4.7: Two level set functions φ1 and φ2 split the domain Ω into four distinct phases.

With the help of these level set functions, the Mumford-Shah energy becomes

ECV =µ

∫
Ω

|∇H(φ1)| + µ

∫
Ω

|∇H(φ2)|

+ λ

∫
Ω

(g − c11)2H(φ1)H(φ2) dx + λ

∫
Ω

(g − c12)2H(φ1)(1 − H(φ2)) dx

+ λ

∫
Ω

(g − c21)2(1 − H(φ1))H(φ2) dx + λ

∫
Ω

(g − c22)2(1 − H(φ1))(1 − H(φ2)) dx.

(4.34)

The Euler-Lagrange equation and the gradient descent equation can be derived as in
the two phase case. One clearly obtains that ci j is the mean value of g in the region Ωi j.
Also, looking at the variations with respect to φ1 and φ2 yields to the following system of
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equations,

∂φ1

∂t
= δ(φ1)

{
µdiv

(
∇φ1

|∇φ1|

)
− λ

[
(g − c11)2 − (g − c21)2

]
H(φ2)

− λ
[
(g − c12)2 − (g − c22)2

]
(1 − H(φ2))

}
, (4.35)

∂φ2

∂t
= δ(φ2)

{
µdiv

(
∇φ2

|∇φ2|

)
− λ

[
(g − c11)2 − (g − c12)2

]
H(φ1)

− λ
[
(g − c21)2 − (g − c22)2

]
(1 − H(φ1))

}
. (4.36)

These equations can be solved in the same way as the far simpler two phase case. However,
a problem is that the two equations are coupled. As noted in [39], the algorithm often falls
into local minimums, yielding the complicated problem of well seeding the algorithm.

Chung and Vese [23] proposed instead to use only one level set function, but to look at
several of its level sets. The number of phases must be given in advance. In the three-phase
case, a level set function φ splits the domain into the three regions

Ω1 = {φ ≥ 1},

Ω2 = {φ ≥ 0} ∩ {φ < 1},

Ω3 = {φ < 0}.

Again, the Mumford-Shah energy can be written in terms of this level set function,

ECV =µ

∫
Ω

|∇H(φ)| + µ

∫
Ω

|∇H(1 − φ)| (4.37)

+ λ

∫
Ω1

(g − c1)2 dx + λ

∫
Ω2

(g − c2)2 dx + λ

∫
Ω3

(g − c3)2 dx.

This method is very efficient on images where phases are contained one in another, like
brain images. However there could be no intersections between phases as all level sets are
strictly disjoint from each other for any continuous function φ.

Another approach is the hierarchical method proposed by Tsai, Yezzi and Willsky [113],
and further investigated by Gao and Bui [39]. The idea is simple. It consists of first seg-
menting the image with the original two-phase Chan-Vese model. Then both regions can
be considered as new domains, on which the two-phase Chan-Vese model can be applied
again. This approach has the advantage that it is not necessary to solve equations (4.35) and
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(4.36) simultaneously. Instead, three different two-phase problems need to be solved. As
noted in in [39] this method solves the problem that the multiphase algorithm often falls
into local minima.

4.4.3. Variations on the Chan-Vese model

As for the total variation problem described in section 3.4, the numerical computations
could benefit from replacing δ(φ) by |∇φ|. This was suggested by Marquina and Osher [62].
Here, there is no staircasing effect, however, the numerical schemes have better stability.
The gradient descent equation becomes

φt = |∇φ|

[
µdiv

(
∇φ

|∇φ|

)
− λ(g − c1)2 + λ(g − c2)2

]
. (4.38)

It is interesting to point out that Problem (4.31) admits steady states, but equation (4.38) no
longer has steady states. On the contrary, for any initial condition φ0, the function φ will
tend to +∞ where it is positive, and to −∞ where it is negative. However, the 0 level set of
φ converges to the exact same contour as the steady state of Problem (4.31).

In [106], Song and Chan decoupled equation (4.27) in order to simplify the resolution.
They first smooth the image g to obtain a new image g∗, and then solve the simplified
equation

φt = (g∗ − c1)2 − (g∗ − c2)2. (4.39)

They proposed a fast algorithm for solving equation (4.39). In fact, their algorithm corre-
sponds closely to clustering the set {g∗(x) : x ∈ Ω} of values of g∗ into two clusters using a
k-means procedure [45]. Osher and He introduced a similar algorithm to solve the multi-
phase problem [46]. Again, this is closely related to applying a k-means procedure to the
set {g∗(x) : x ∈ Ω} with the right number of clusters k. Independently, Gibou and Fed-
kiw took advantage of this analogy to propose a hybrid algorithm that alternates between
smoothing and k-means [42]. However, it is not known if any of these fast algorithms lead
to minima of the Chan-Vese energy for some value of the parameters µ and λ.

Chan, Esedoglu and Nikolova [19] also proposed a way of finding global minimizers
for the Chan-Vese model. They proposed to minimize the following functional

ECVGM = µ

∫
Ω

|∇H(φ)| dx + λ

∫
Ω

φ (|c1 − g|H(φ) + |c2 − g|(1 − H(φ))) dx, (4.40)

under the constraint 0 ≤ φ ≤ 1. This constraint makes the problem non convex. However,
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they devised an exact penalty term ν(s), where s = (c1 − g)2 + (c2 − g)2 to be added to this
functional and that removes the constraint. The gradient descent equation is then

φt = µdiv
(
∇φ

|∇φ|

)
+ λ

[
−(c1 − g)2 + (c2 − g)2

]
− αν′(s). (4.41)

In theory, the steady state is a function φ∗ that has values in [0, 1]. In practice, they show that
the steady state is almost a binary function. For almost any value c ∈ (0, 1), the threshold
function φ∗c = H(φ − c) is a minimizer of the original Chan-Vese energy.

Burger and Hintemüller [14] proved that the functional in equation (4.40) can be mini-
mized using the following gradient descent equation

φt = µdiv
(
∇φ

|∇φ|

)
+ λ

[
−(c1 − g)2 + (c2 − g)2

]
. (4.42)

It is the same equation as the original equation for the Chan-Vese model except that
the factor δ(φ) is missing. Nevertheless the function φ must be subject to the condition
φ ∈ [−1, 1] which can be enforced easily at each time step.

In section 3.4, it has been mentioned that the total variation algorithm benefits from
using an L1 fidelity term instead of an L2 fidelity term. It is natural to ask the same question
for the Chan-Vese model. To our knowledge, Kimmel [53] first introduced the L1 fidelity
for this problem. The problem is to minimize

ECVL1 =

∫
Ω

µ|∇H(φ)| dx + λ

∫
Ω

|c1 − g|H(φ) dx + λ

∫
Ω

|c2 − g|(1 − H(φ)) dx. (4.43)

A continuous change of contrast is any continuous non decreasing function f : R → R. A
minimization problem minu E(u, g) will be said contrast invariant if

arg min
u

E(u, f ◦ g) = f ◦ arg min
u

E(u, g). (4.44)

Note that this contrast invariance property is stronger than the scale invariance property
obtained for the Problem (3.17) in [18]. Darbon [31] proved that unlike the L2 problem,
Problem (4.43) is contrast invariant. In order to solve this problem via a PDE formulation,
it can be formulated in terms of a level set function φ as follows:

min
c1,c2,φ

ECV (φ, c1, c2), (4.45)
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where

E(φ, c1, c2) = µ

∫
Ω

δ(φ)|∇φ| dx + λ

∫
Ω

|c1 − g|H(φ) dx + λ

∫
Ω

|c2 − g|(1 − H(φ)) dx. (4.46)

The gradient descent equation for φ is obtained in the same way as for the L2 case:

φt = δ(φ)
[
µdiv

(
∇φ

|∇φ|

)
− λ|c1 − g| + λ|c2 − g|

]
. (4.47)

Note that outliers here have a weakened influence since for such points, (c1 − g)2 will be
much bigger than |c1 − g|. But the main difference is in the calculation of the values c1 and
c2. If φ is fixed, we need to find c1 which minimizes∫

Ω

|c1 − g|H(φ) dx =

∫
Ω1={φ≥0}

|c1 − g| dx.

We can use the following proposition. We did not find any proof of this proposition in the
literature, so we present here a personal proof.

Proposition 71. For g : Ω→ R, if c∗ is a minimum of

F(c) =

∫
Ω

|g − c| dx,

then c∗ is a median value for g in Ω.

Proof. It is not possible to directly compute the derivative with respect to c because the
absolute value is not smooth at the origin. However, we can compute the variation of the
energy F as c changes. For ∆c ≥ 0, let us compare F(c + ∆c) with F(c). If µ denotes the
usual Lebesgue measure on Rn, we have∫

g≤c
|g − (c + ∆c)| dx =

∫
g≤c
|g − c| dx + ∆cµ{g ≤ c},∫

g≥c+∆c
|g − (c + ∆c)| dx =

∫
g≥c+∆c

|g − c| dx − ∆cµ{g ≥ c + ∆c}.

Moreover, for the missing part, there is also the following obvious estimate∣∣∣∣∣∣
∫

c<g<c+∆c
|g − (c + ∆c)| dx −

∫
c<g<c+∆c

|g − c| dx

∣∣∣∣∣∣ ≤ ∆cµ{c < g < c + ∆c},
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Hence, we get∫
Ω
|g − (c + ∆c)| dx −

∫
Ω
|g − c| dx

∆c
=µ{g ≤ c} − µ{g ≥ c + ∆c}

+

∫
c<g<c+∆c

|g − (c + ∆c)| dx −
∫

c<g<c+∆c
|g − c| dx.

Now, when ∆c→ 0, we have µ{g ≥ c + ∆c} → µ{g > c} and

lim
∆c→0

µ{c < g < c + ∆c} = 0,

so that
F(c + ∆c) − F(c)

∆c
→ µ{g ≤ c} − µ{g > c}.

That is, F is Gâteaux-differentiable along ∆c > 0. If c∗ is a minimum of F, this derivative
has to be positive, which leads to

µ{g ≤ c∗} ≥ µ{g > c∗} = µ(Ω) − µ{g ≤ c∗}.

Hence µ{g ≤ c∗} ≥ µ(Ω)/2. A similar calculation can be performed for ∆c ≤ 0, which gives
as left derivative −µ{g < c} + µ{g ≥ c}. For a minimum c∗, we also get µ{g ≥ c∗} ≥ µ(Ω)/2,
which means that c∗ is a median value for g in Ω. Moreover, the function F is differentiable
in the usual sense at a value c if and only if µ{g = c} = 0. �

This means that c1 and c2 are the median values of the observed image g in the regions
{φ ≥ 0} and {φ < 0} respectively. Recall that in the original problem, they were the mean
values, which are again more sensitive to outliers than the median value. This is why the
median values is desirable for noisy images. If segmentation is performed with L2 fidelity,
a smaller value of the parameter λ will be needed as if the segmentation was made using
the L1 fidelity. This leads to over-smoothing of the segmentation result.

There is also a main difference between the L1 and the L2 problems. The L2-norm
Chan-Vese problem tends to split up the image according to major color changes. Hence a
relatively small region, whose color is far from the rest of the image could be segmented
in a single step. On the other hand, the L1-norm Chan-Vese problem will tend to split the
image into regions of similar area. This version is particularly useful when objects with low
contrast differences are to be detected. The choice of the norm should depend on the image
to segment and the goal of the segmentation.
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4.5. ACTIVE CONTOURS WITH SHAPE PRIORS

Active contours have proved be very efficient for image segmentation. However, in most
real applications, image are very complex, and the objects to be segmented are melted in
their environment. This makes them very difficult to recognize in the image. In those cases,
the active contours will leak, or will fall into a local minimum. In such complex application,
a common tactic is to incorporate shape prior information to the model.

The basic idea is to add a term in the evolution that comes from the minimization of
a distance between the image to be segmented and a model of the object of interest. This
leads to the question of choosing an adequate notion of distance between images. A simple
choice is to take the L2 distance between the segmented image u and a model image gm:

EL2 =

∫
Ω

(u − gm)2 dx. (4.48)

This supposes that the two images are aligned. Even then, it turns out not to be an optimal
choice. Indeed it depends on the size of the image, which is not natural. There has been a
lot of work on defining appropriate metrics on the space of curves and on how to align the
model on the image. A non exhaustive part of this work can be found in [127, 125, 70, 22,
66, 124].

There has been many attempts at the use of active contours with shape prior information.
Given a metric η on the space of curves, it is natural to add the energy

Eη = η(u, gm),

which is the distance between the segmented image u and the model image gm. If the active
contour method is variational with energy EAC , then one can consider the new variational
problem that consists in minimizing

EPrior = EAC + Eη. (4.49)

This variational problem will lead to a gradient descent equation as usual. This is the
approach taken by Cremers and Soatto [30], Riklin-Raviv, Kiryati and Sochen [91] and
Chan and Zhu [17]. In each of these cases, they consider the Chan-Vese model as the active
contour energy, and they handled the metric part in different manners.

If the active contour problem is non variational one can just add the Euler Lagrange
equation of the metric energy to the evolution equation for the active contour. This is the
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approach used by Leventon, Grimson and Faugeras [58] and Tsai et al. [112].

4.6. ACTIVE SHAPE MODEL AND ACTIVE APPEARANCE MODEL

Active shape model (ASM) [27] and active appearance model (AAM) [25] are model based
segmentation algorithm. The algorithm knows what is the standard shape of the object and
how it may vary from one image to another.

4.6.1. Active shape models

The active shape model has been introduced by Cootes et al. [27]. In the algorithm, the
shape of the object of interest must be learned prior to the segmentation process. This is
done by looking at a database of a reasonable number of images (say N). On each image,
the shape of the object is described by a number of tagged points on the object. The points
are to be placed consistently on each image. Points must be placed at strategic locations,
for example regions where the shape changes significantly. If each image is tagged with n

points, then the general shape of the object in an image is described by a single point in R2n

for 2D images or in R3n for 3D images.
The N images of the training sets are given by N points xi in, say, R2n. From these

points, a principal component analysis (PCA, see for example [34]) can be applied to get
the main modes of variations of the points. It is done as follow. First the mean shape of the
object is

x̄ =
1
N

∑
i

xi. (4.50)

Then the covariance matrix can be calculated as

S =
1
N

∑
i

(xi − x̄)(xi − x̄)T . (4.51)

The eigenvalues λk of S represents the variance of the data set in the direction of the as-
sociated eigenvector vk. The idea of PCA is to approximate the data set variability only with
few modes with the highest eigenvalues. Let the eigenvalues λk be ordered in decreasing
order. Then, if

λT =

2n∑
k=1

λk (4.52)
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is the total variance of the data set, one could choose a number m such that

1
λT

m∑
k=1

λk > 0.95. (4.53)

In that case, 95% of the variation of the data set are described by the eigenvectors v1, v2, ..., vm.
Hence, the shape variability of the object to be segmented may be described by only a few
eigenvectors, depending on the application.

Given a new image, the segmentation problem consists then in looking for a shape x in
the image that is of the form

x = x̄ +

m∑
k=1

wkvk. (4.54)

Chebyshev’s inequality suggests that the weights wk can be chosen in the interval [−3
√
λk, 3

√
λk].

The set of admissible shape can be written as

SASM =

x = x̄ +

m∑
k=1

wkvk, wk ∈
[
−3

√
λk, 3

√
λk

] . (4.55)

The active shape model finds the optimal weights by starting with the mean shape y0 = x̄

and alternating between the following two steps until convergence.

1. Find a better position y′1 for landmark points, that fits better the image characteristics.

2. Update landmarks positions to y1 that is the closest point to y′1 in SAS M.

4.6.2. Active appearance model

The active appearance model, introduced by Cootes, Edwards and Taylor [25] is an en-
riched version of the active shape model where the gray level of the image is also taken
into consideration. Using the training set as above, the shape vectors xi and the mean shape
vector x̄ are formed as above.

In order to formulate statistics about gray level variability, the images of the training
set must be standardized in some way. First the image gi of the training set is warped to
fit the mean shape via a transformation that sends its shape xi to the mean shape x̄. Then
a mean intensity image ḡ can be computed from all the warped images. Each image has
to be rescaled to be consistent with the mean image ḡ. Then a PCA can be performed on
the set of normalized images to get eigenvectors uk corresponding to the m highest intensity
modes.
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Given a new image h, a segmented image is sought in the set of admissible images
SAAM. An admissible image must be of the formgx

 =

ḡx̄
 + Pb, (4.56)

where P is the matrix containing all the eigenvectors vk and uk as columns and b is the
vector of weights. Each weight bk is sought in an interval [−3

√
λk, 3

√
λk].

The segmented image g will be the one that minimizes the L2 distance between h and
SAAM. A gradient descent method can be applied on the set of weights b to find g. However,
it is computationally expensive to do this directly. Some clever iterative techniques have
been proposed by Baker and Matthews [12] and Cootes and Taylor [26].
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5

Analysis of the Chan-Vese model

In this chapter, we analyze the Chan-Vese model under various factors. These are

1. Influence of the discretization;

2. Influence of the initial condition;

3. Performance of the hierarchical segmentation;

4. Introduction of the hierarchical segmentation with L1 fidelity.

To our knowledge, the analysis and the remarks made in this chapter are original, except
when sources are explicitly cited.

5.1. DISCRETIZATIONS

The Chan-Vese model is variational, based on an energy ECV defined on functions φ : Ω→

R (see equation (4.30)). A gradient descent equation (equation (4.31)) is derived from this
energy. To solve the Chan-Vese model, it is necessary to discretize the gradient descent
equation in some way. Conversely, it is possible first to discretize the energy, and then solve
the resulting finite dimensional optimization problem. The diagram in Figure 5.1 shows this
situation. These two approaches may result in different discretization for minimizing the
energy and making the diagram non commutative. In this section, we analyze the impact of
these different discretizations.

5.1.1. Length of an implicit curve

To compare the impact of the discretization on the active Chan-Vese minimization problem,
it is necessary to compute the energy ECV (φ, c1, c2). However computing the length of an
implicitly defined curve is not a trivial task. The length (or area in 3D) is given analytically
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ECV
discretization //

Euler-Lagrange

��

?©

Discretized energy ECV

Euler-Lagrange

��
Continuous gradient descent Discretization // Discrete gradient descent

Figure 5.1: The commutative diagram representing the two possible ways to get a dis-
cretization.

by the integral

H N−1({φ = 0}) =

∫
Ω

|DH(φ)| =
∫

Ω

δ(φ)|∇φ|. (5.1)

Here |DH(φ)| and δ(φ) are measures. One approach in computing the length is to approxi-
mate the Dirac delta function by the Gaussian kernel

δβ =
1

β
√
π

e(x/β)2
, (5.2)

where β > 0 is a parameter controlling the degree of blurring. Hence in 2D the length can
be approximated as

H N−1({φ = 0}) ≈
∑
i, j

h2δβ(φi, j)|∇+φi, j|, (5.3)

where
|∇+φi, j| =

√
(D+

xφi, j)2 + (D+
y φi, j)2, (5.4)

D+
x and D+

y standing for the forward finite difference operators. For a given choice of β, it
is possible to compute an approximation to the length.

An alternate approach is to compute numerically the integral
∫

Ω

|DH(φ)|. In this case,

H N−1({φ = 0}) ≈
∑
i, j

h2|∇+H(φ)i, j|. (5.5)

It is a coarse approximation since at every pixel |∇+H(φ)i, j| can only take values 0, 1/h or
√

2/h. Indeed, much information about the interface present in φ is lost in the function H(φ).
However, it has an important advantage over the Gaussian kernel approximation since it has
a very narrow support. The support is one pixel wide, for whatever scaling of the function
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φ, meaning that the length computed remains unchanged while rescaling the function φ.
Although imprecise, this approximation is the only truly invariant method.

Smereka [104] proposed a modified version of this approximation method. His discrete
delta function δ̃ is given by

δ̃(φi, j) = δ̃(+x)
i, j + δ̃(−x)

i, j + δ̃
(+y)
i, j + δ̃

(−y)
i, j , (5.6)

where

δ̃(+x)
i, j =


|φi+1, jD0

xφi, j|

h2|D+
xφi, j||∇

ε
0φi, j|

if φi+1, jφi, j ≤ 0,

0, otherwise.

δ̃(−x)
i, j =


|φi−1, jD0

xφi, j|

h2|D−xφi, j||∇
ε
0φi, j|

if φi−1, jφi, j ≤ 0,

0, otherwise.

δ̃
(+y)
i, j =


|φi, j+1D0

yφi, j|

h2|D+
y φi, j||∇

ε
0φi, j|

if φi, j+1φi, j ≤ 0,

0, otherwise.

δ̃
(−y)
i, j =


|φi, j−1D0

yφi, j|

h2|D−y φi, j||∇
ε
0φi, j|

if φi, j−1φi, j ≤ 0,

0, otherwise.

and
|∇ε0φi, j| =

√
(D0

xφi, j)2 + (D0
yφi, j)2 + ε

From values of the level set function φ given at the vertices of the image’s regular grid,
it is easy to construct a piecewise linear approximation to φ. Then another approach is to
compute the length of the 0-contour for this piecewise linear approximation. It is easily
done since on a triangle, the 0 level set is a line segment that crosses two of the three sides
of the triangles and the intersection points can be found in a straightforward manner.

We tested the different methods for computing the length of the 0-contour with a simple
function: the signed distance function φ to a circle of radius 100. Table 5.1 shows the results
of the use of the different Delta functions. We used the Gaussian approximation with β =

2.5 and β = 10, the Heaviside approximation, the discretization proposed by Smereka [104]
as well as the piecewise linear approximation of φ. When using the signed distance function
φ to the circle, all methods perform well, except the one using the Heaviside function H(φ)
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Table 5.1: Computation of the circumference of a circle of radius 100 via different dis-
cretization methods.

Real length Gaussian Gaussian Heaviside Smereka Piecewise
(β = 2.5) (β = 10) linear

628.3185308 623.0148349 623.0177399 722.2914139 622.7586591 623.0202264

which is off the real length. In real applications, the function φ will often not be a signed
distance function. In the Chan-Vese algorithm, the level set function quickly becomes very
irregular. Hence, the method for computing must be robust to changes in scaling of the
function φ. We computed the same length using the functions φd with degrees d = 3,
d = 5 until d = 11. The results are shown in Figure 5.2. It is clear from the results that
the Gaussian approximation is not robust to changes in the scale of the level set function.
This is due to the fact that the Gaussian approximation has a wider support. One advantage
of the Heaviside approximation is that it will always give the same result for the length
of the curve. The Smereka approximation will tend to get away from the real length, but
very slowly. The same phenomenon happens for the piecewise linear approximation. The
Smereka approximation remains the best approximation for the length of the circle.

Figure 5.2: Computation of the circumference of a circle of radius 100 via different dis-
cretization methods and different rescaled level set functions φd.

Figure 5.3 shows the length computation when the level set function is multiplied by
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a constant m. The same kind of results appears. Again, the wide support of the Gaussian
approximation makes it less robust. The Smereka approximation and the piecewise linear
approximation are scale-invariant for this type of scaling.

Figure 5.3: Computation of the circumference of a circle of radius 100 via different dis-
cretization methods and different rescaled level set functions mφ.

From this study, we conclude that the Smereka approximation is the best choice for
computing the length of an implicitly defined curve, although the piecewise linear approxi-
mations yields also good results.

5.1.2. Impact of discretization

We now analyze the impact of the choice of the discretization for the Chan-Vese problem.
The equation

φt = δ(φ)
[
µdiv

(
∇φ

|∇φ|

)
− λ(g − u1)2 + λ(g − u2)2

]
(5.7)

can be solved numerically in many ways. We propose to study seven different ways of
discretizing equation (5.7). The first five discretizations are obtained by discretizing the
continuous Euler-Lagrange equation of the energy ECV , that is the down and right paths of
Diagram 5.1. For the last two, the energy ECV is first discretized, and then a gradient descent
equation is obtained for the finite dimensional minimization problem, which corresponds
to going right and down in Diagram 5.1.
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The first method of solution consists in replacing the Dirac delta function δ(φ) by |∇φ|
as explained in section 4.4.3. Then the curvature term

κ = div
(
∇φ

|∇φ|

)
is discretized via the simple finite difference scheme of equation (3.10).

The second method replaces δ(φ) by |∇φ|, but uses the fancier midpoint discretization
described in equation (3.12).

The third method also replaces δ(φ) by |∇φ| but it uses the semi-explicit scheme given
in equation (3.14).

The fourth method implements the algorithm introduced by Chan, Esedoglu and Nikolova [19],
presented in section 4.4.3. Here the factor δ(φ) is suppressed and a correction term −αν′(s)
is added to equation (5.7), where s = (g − c1)2 + (g − c2)2, as described in equation (4.41).

The fifth method replaces the term δ(φ) by a regularized version of it

δβ(x) =
1

β
√
π

e(x/β)2
. (5.8)

The sixth method consists of computing a gradient descent equation for the Chan-Vese
energy which is discretized via the Heaviside function. Recall that

H N−1({φ = 0}) ≈ Lh =
∑
i, j

h2|∇+H(φ)i, j|. (5.9)

The energy functional is then a function of N variables, where N is the total number of
voxels in the image. To compute the gradient of the discrete energy, we can simply find the
partial derivatives of the energy with respect to all variables φi, j. In H, only three terms will
have non zero partial derivative with respect to φi, j. Namely the terms

A = h2
√

D+
x H(φi, j)2 + D+

y H(φi, j)2,

B = h2
√

D+
x H(φi−1, j)2 + D+

y H(φi−1, j)2, (5.10)

C = h2
√

D+
x H(φi, j−1)2 + D+

y H(φi, j−1)2.

Now
∂A
∂φi, j

= h2 −D+
x H(φi, j) − D+

y H(φi, j)√
D+

x H(φi, j)2 + D+
y H(φi, j)2

, (5.11)
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∂B
∂φi, j

= h2 D+
x H(φi−1, j)√

D+
x H(φi−1, j)2 + D+

y H(φi−1, j)2
, (5.12)

∂C
∂φi, j

= h2 D+
y H(φi, j−1)√

D+
x H(φi, j−1)2 + D+

y H(φi, j−1)2
. (5.13)

Hence the total partial derivative is

∂Lh

∂φi, j
= −h2D−x

 D+
x H(φi, j)√

D+
x H(φi, j)2 + D+

y H(φi, j)2

 − h2D−y

 D+
y H(φi, j)√

D+
x H(φi, j)2 + D+

y H(φi, j)2

 .
(5.14)

The Euler-Lagrange equation for this problem is then

∂φi, j

∂t
= −

∂Lh

∂φi, j
+ δ(φ)

[
−(g − c1)2 + (g − c2)2

]
. (5.15)

This yields a discretization very close to the one described in equation (3.11), but with the
function φ replaced by H(φ). This defines the sixth method. We do not expect that it gives
nice results since a lot of information is lost when considering only H(φ), as for the similar
method for computing the length of the 0-contour.

The seventh method is devised by doing the same kind of computations with the discrete
length approximation

H N−1({φ = 0}) ≈ L̃h =
∑
i, j

h2δβ(φi, j)|∇+φi, j|, (5.16)

Again H′ contains only three terms whose partial derivatives with respect to φi, j do not
vanish. These terms are (note that we omit h2 as it is a factor of all terms):

Ã = δβ(φi, j)
√

D+
xφ

2
i, j + D+

y φ
2
i, j,

B̃ = δβ(φi−1, j)
√

D+
xφ

2
i−1, j + D+

y φ
2
i−1, j, (5.17)

C̃ = δβ(φi, j−1)
√

D+
xφ

2
i, j−1 + D+

y φ
2
i, j−1.

Again, we can compute their partial derivatives.

∂Ã
∂φi, j

= δ′β(φi, j)
√

D+
xφ

2
i, j + D+

y φ
2
i, j + δβ(φi, j)

−D+
xφi, j − D+

y φi, j√
D+

xφ
2
i, j + D+

y φ
2
i, j

, (5.18)



102 Analysis of the Chan-Vese model

∂B̃
∂φi, j

= δβ(φi−1, j)
D+

xφi−1, j√
D+

xφ
2
i−1, j + D+

y φ
2
i−1, j

, (5.19)

∂C̃
∂φi, j

= δβ(φi, j−1)
D+

y φi, j−1√
D+

xφ
2
i, j−1 + D+

y φ
2
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Hence the total partial derivative is
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This is the discretization of the curvature term that is used for the seventh method. The
Euler-Lagrange equation will be the same as with the sixth method shown in equation (5.15)
with ∂Lh

∂φi, j
replaced by ∂L̃h

∂φi, j
.

We compare the use of these seven different methods on the cameraman image. The
parameters µ and λ are set in order that the curvature term is dominant in the equation, in
order to be able to see the influence of the discretization. We take µ = 2 and λ = 0.00004,
β = 5 and ∆t = 0.1. The gradient descent method was run for a very long time to be
sure that steady state was reached. Figure 5.4 shows the final binary segmentation of the
cameraman image with the various discretizations. Figure 5.5 shows the various final level
set functions.

In order to determine which segmentation method performs best, we computed the
Chan-Vese energy on every segmentation result. To compute the length, the piecewise
linear approximation, the Heaviside approximation as well as the Smereka approximations
were performing well, so we computed the length in these three ways to compare the re-
sults. The energies are displayed in Table 5.2. The final level set function of a segmentation
process can be far from being a signed distance function, so we did not compute the length
using the Gaussian approximation of the Dirac delta function. It would be possible to reini-
tialize the level set functions to signed distance functions. However in doing so, there is, in
general, a smoothing effect on the zero level set that may perturb the length calculation.

From Table 5.2, we conclude that methods 4 and 5 lead to the solutions with lowest
energy. Methods 2 and 3 also yields solutions with low energy. Method 4 has the advantage
that the final level set function has a lot of contrast. Hence, there is more freedom on which
level curve to take. The final level set function of the method 6 is surprisingly close to the
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Cameraman Method 1 Method 2

Method 3 Method 4 Method 5

Method 6 Method 7

Figure 5.4: Binary segmentations of the cameraman by the different methods.

original image. We believe that this is due to the fact that the curvature term discretized in
this way has a smaller weight in the gradient descent equation. In fact, the segmentations
obtained by methods 6 and 7 in Figure 5.4 are somewhat similar to the result of the active
contour without edges algorithm with a small weight for curvature as seen on Figure 5.8(b),
where there is no curvature term. This is a drawback of these approaches.

The fifth method seems to be the one leading to the lowest energy. Hence we assume
that its solution — the combination of its 0 level-set and of the values of c1 and c2 — is the
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Cameraman Method 1 Method 2

Method 3 Method 4 Method 5

Method 6 Method 7

Figure 5.5: Final level set functions for the binary segmentation of the cameraman by the
different methods.

global minimum of the Chan-Vese problem. Figure 5.6 shows the L2 convergence towards
this minimum with the various discretizations. If u∗ is a level set function corresponding
to the global minimizer of ECV , then at each iteration the distance between H(φ∗) and the
function H(φ) or H(−φ) is computed:

dL2(φ∗, φ) = min
(
#
{
xi : H(φ∗(xi)) , H(φ(xi))

}
, #

{
xi : H(φ∗(xi)) = H(φ(xi))

})
, (5.22)
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Table 5.2: The energies associated with the different segmentation results.
Method Heaviside Smereka Piecewise linear

1 5421.001806 5143.046447 5156.683373
2 5163.946193 5000.949844 5039.889972
3 5092.511354 4950.370264 4973.554848
4 5050.317000 4899.265609 4908.181506
5 5040.670162 4902.036943 4905.685890
6 10220.39522 8887.510197 9184.742464
7 7436.302185 6983.656071 7550.272390

where xi stands for the midpoints of the image pixels. Again methods 4 and 5 perform
better, as seen in Figure 5.6. Nevertheless, method 4 seems to converge more quickly
towards the minimum. A surprising fact is that the sixth method initially converges very
fast, then it stagnates.

Figure 5.6: L2 convergence to the global minimum with the various discretization methods

The behavior observed for the various discretization remains unchanged as the parame-
ters λ and µ are varied. The same behavior has also been observed on many different images.
In summary, we recommend to use method 4 which leads to a low energy and converges
quickly. It is also a method that is very close to the original continuous Euler-Lagrange
equation since only the Delta function is regularized.



106 Analysis of the Chan-Vese model

5.2. INITIAL CONDITIONS

We will study how the problem behaves when different initial conditions are taken. In the
seminal work Chan and Vese [21] propose to take as initial condition the signed distance
function to a circle. Another choice is to take the signed distance function to a collection of
circles spread out on the image. Figure 5.7 shows these choices of initial conditions.

Figure 5.7: Classical choices of initial conditions for the Chan-Vese model.

There are mainly two concerns one might have regarding the choice of an initial con-
dition. First, the energy is non convex so that it might have some local minima. Hence
choosing a wrong initial condition may lead to a minimum that is not global. The second
concern is the computational time. If the initial condition is far from the minimum, it usu-
ally takes more time steps to get to this minimum. For large 3D applications, the difference
in CPU time can be very significant.

We propose two original choices of initial conditions. The first one consists in a function
with random values uniformely distributed in [−1, 1]. It is inspired by the fact that taking
a collection of circles instead of one circle increases the performance of the algorithm.
The reason for this is that every pixel is closer to the interface, hence it is easier for it to
change sign if needed. In a random image, every pixel is very close to the interface, so it
can cross it easily. This should save computational time. Also, there are points inside and
outside the curve all over the image, which will help capturing all pertinent information in
the image and avoid local minima. Figure 5.8(a) shows this initial condition function for
the cameraman image.

The other initial condition we propose is to take the solution of the Chan-Vese problem
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(a) (b)

Figure 5.8: (a) The random initial condition: for each pixel a value is taken uniformely at
random in [−1, 1]. (b) The initial condition that is the solution of the problem with λ = 1
and µ = 0.

without curvature term. It has been mentioned in section 4.4 that if there is no curvature
term in the Chan-Vese model (λ = 1 and µ = 0), the problem can be solved very quickly. It
corresponds, in fact, to the k-means problem with two clusters on the set of values taken by
the image. This can be solved very quickly. Its solution φ̄ is a good initial condition for the
more general problem since it should be close to the solution. It is possible to reinitialize the
function φ̄ to a signed distance function to have a more regular initial condition. However
this is not necessarily a good choice, since some points may be very far from the interface.
Instead, we chose the initial condition

φ̄0 = H(φ̄) − H(−φ̄).

Figure 5.8(b) shows the initial curve given by φ̄0 on the cameraman image.
We now compare the results obtained with the four initial conditions on the cameraman

image. The first initial condition is the signed distance function φC to a circle. The second
is the signed distance function φ100 to a collection of 100 circles evenly spread over the
image. The third is the random function φR and the last is the function φ̄0 described above.
The parameters are λ = 1 and µ = 10000. The Chan-Vese model is solved for 100 time
steps. All four initial conditions eventually lead to the same global minimum shown in
Figure 5.10. However, it is not done at the same speed. Figure 5.9 shows the L2 distance
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Figure 5.9: The L2 convergence to the steady state under various initial conditions for the
cameraman image.

to the steady state (that is the global minimum) as time evolves. The initial condition φ̄0

is the one that gets to the steady state the quickest as we could expect. The random initial
condition φR is the second, then the curve φ100 reaches the steady state. The curve given by
the initial condition φC does not reach the steady state in 100 iterations. It takes about 600
iterations to reach it. Note that the initial condition φ̄0 can be computed in a time negigible
compared to the time for solving the Chan-Vese problem. For this particular problem, it
takes 0.4572s. to compute φ̄0.

We did the same calculations on a different image. It is the synthetic image of shapes
with salt and pepper noise added with a probability of 50% shown in figure 5.11. The
parameters are λ = 2 and µ = 1. Due to the high level of noise, the algorithm had to run for
about 2000 time steps to reach the steady state shown in Figure 5.12. The L2 convergence
to the steady state is shown in Figure 5.13. Exactly the same behavior as for the cameraman
image is observed. We can conclude is that the initial condition φ̄0 is a very good choice
since it reduces considerably the number of iterations necessary to reach the steady state.
On the other hand the random initial condition also converges quickly and provides a prior-
free initial condition.



5.3. Hierarchical segmentation 109

Figure 5.10: The steady state of the Chan-Vese model on the cameraman image with λ = 1
and µ = 10000.

Figure 5.11: A synthetic image with salt and pepper noise added

5.3. HIERARCHICAL SEGMENTATION

We now focus on the hierarchical method proposed by Tsai, Yezzi and Willsky [113] and
further investigated by Gao and Bui [39] that we described at the end of Section 4.4.2. The
image is first split into two pieces using the Chan-Vese model. Then each of the pieces is
considered as a new domain on which the Chan-Vese model is again applied. n steps in the
segmentation process will lead to a segmentation into 2n phases.

This seems very similar to the original multiphase algorithm proposed by Vese and
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Figure 5.12: The steady state of the Chan-Vese model on a synthetic image with λ = 2 and
µ = 1.

Chan [117], where n level sets are evolved to split the image into 2n phases (equations (4.34),
(4.35) and (4.36) of section 4.4.2). But in doing so, n level set equations have to be solved
simultaneously. The PDEs are then coupled and it is known to easily fall into local min-
ima [39]. The hierarchical method is very stable and easy to solve, since at each step, there
is only the two phase Chan-Vese problem to solve.

We also remarked that the multiphase algorithm may have some problems when there
are triple regions. In order to describe triple junctions with two level set functions, the zero
level sets of the two functions must be superimposed in some regions. In this case, if the
curvature term is dominant, it may lead to miss-classification in this region, since the curves
may not superimpose correctly. Figure 5.14 shows an example of this phenomena. To our
knowledge, it is the first time that such artifacts are reported in the literature. We built this
test case to emphasize the fact that the multiphase algorithm may behave badly when the
curves should be superimposed. In the case of this synthetic image, the hierarchical method
performs better as can be seen in Figure 5.15. The first step splits the image into two
regions. Then each of these regions is split again into two sub-regions. The second step is
computed separately on each of the two regions, and the homogeneous Neumann boundary
condition on the boundary forces the contour to be normal to the boundary. Hence, it is not
possible for the second contour to be superimposed on the first one since the level curve
at the second step of the hierarchical segmentation would then be on the boundary of the
domain, violating the Neumann boundary condition.

The hierarchical methods proposed in [113, 39] aim at a complete segmentation of the
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Figure 5.13: The L2 convergence to the steady state under various initial conditions for a
digital image with added salt and pepper noise.

image. Another important remark is that for most real life applications, it is not required
to have a full segmentation of the image. For example, with medical images, one is mostly
interested by the position and shape of one organ. Hence, the hierarchical segmentation can
be done as follows:

1. Split the domain Ω into Ω+ and Ω− using the 2-phase Chan-Vese model.

2. Stop if the object is extracted, that is if the object is either Ω+ or Ω−. Otherwise,
decide which of Ω+ or Ω− contains the object of interest, and pick this region as a
new domain for step 1.

Figure 5.16 shows the results of the hierarchical segmentation process on a slice of a CT
scan of the heart. At each stage, one side of the segmentation is chosen, the other side (in
green) is ignored. Convergence is attained when no more pixels change sign.



112 Analysis of the Chan-Vese model

(a) (b)

(c) (d)

Figure 5.14: An example of an image for which segmentation with two level set function
may lead to incorrect segmentation. (a) is the synthetic image to be segmented. (b) shows
a correct segmentation of the image, when the curvature term is not dominant (µ = λ = 1).
(c) is the result if the curvature term is more important (µ = 10000, λ = 1): there is a
miss-classification of some pixels. (d) shows a close-up on the curves where there is miss-
classification: it comes from the fact that level curves are only nearly superposed in these
regions.
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(a) (b)

(c) (d)

Figure 5.15: Iterative segmentation of the synthetic image (a). (b) shows the two-phase
Chan-Vese model applied to the image (µ = 10000, λ = 1). (c) is the result of the two-phase
algorithm applied to the red region of (b) (µ = 100000, λ = 1) and (d) shows the two-phase
segmentation of the blue part of (b) (µ = 10000, λ = 1). Note that the parameters are
different from one iteration to the next since they mainly depend on the size of the fidelity
term.
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(a) (b) (c)

(d) (e) (f)

Figure 5.16: 2D Iterative segmentation of the heart from a CT scan image. (a) The image
to be segmented (b) the result of the first application of the 2-phase Chan-Vese model, the
red part is the region of interest (c) Second step: in green is the region that has been ignored
in the segmentation. The blue region will be chosen. (d) Third step, the red region will
be segmented further (e) The fourth and final step. (f) shows the connected component
containing the heart muscle.
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Step Time step µ λ Nbr. of iterations CPU time Cumulative CPU time
1 0.1 0 1 4 1s. 1s.
2 0.1 1 0.01 5 1s. 2s.
3 0.1 1 0.00008 1248 50s. 52s.
4 0.1 1 0.0002 378 10s. 62s.

Table 5.3: Computational times and parameters for the hierarchical segmentation of a 2D
slice of a cardiac CT scan. The total computational time is 62s. Steps 3 and 4 take more
time since a higher curvature term is needed because of the noisy nature of the image.

The parameters and computing times for this hierarchical segmentation are given in
Table 5.3. It shows a great advantage of this method, which is that different parameters can
be chosen from step to step, depending on the nature of the phases to separate. Nevertheless,
there are no automatic way to set the parameters; they are tuned by letting them vary and
observing the results.

For the first two steps, the segmentation is easy since the phases have sharp boundaries.
Hence, only a small influence of the curvature term is needed, which means that the ratio
µ/λ is small. For steps three and four, the phases to separate have quite close gray tones
and they contain a lot of noise and texture, hence a higher value of the ratio µ/λ is needed
in order to obtain the desired segmentation. Note that the fourth step of the hierarchical
segmentation in Figure 5.16(e) is not perfect since the cavity of the right ventricle is not
well segmented. This is due to the high noise level in this region and the little difference in
gray tones between the muscle and the cavity.

To overcome the problems arising from the high noise level, the algorithm can be ap-
plied to a blurred version of the original image g. Also, the degree of smoothing can change
from step to step in order to help the segmentation. An easy way to blur the image is to
simply apply the heat equation (equation (3.1) ) for a certain number of time steps. Fig-
ure 5.17 shows two different blurrings of the image via the heat equation with conductivity
1 and time step dt = 0.1. The first image is after 5 time steps (g5) and the second after
15 time steps (g15). Figure 5.18 shows the results of the hierarchical segmentation process
using these images. If only g5 is used at the last step, the result is similar to the one shown
in Figure 5.16(e). This is the reason why we favored the smoother image g15. Using
a blurred version of the image is not an ideal situation since, when smoothing the image,
edges can shift as described in chapter 3. Table 5.4 gives the different computational times
and parameters to obtain the segmentation shown in Figure 5.18. The overall CPU time is
smaller using blurred images since the parameter λ can be taken larger and fewer time steps
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(a) g (b) g5 (c) g15

Figure 5.17: Blurred versions of the original 2D slice of a cardiac CT scan. (a) the original
image g, (b) the image g5 after 5 time steps of the heat equation and (c) the image g15 after
15 time steps of the heat equation.

(a) (b) (c)

(d) (e) (f)

Figure 5.18: 2D Iterative segmentation of the heart from a CT scan image using blurred
images. (a) The image to be segmented, (b) the result of the first application of the 2-phase
Chan-Vese model using the original image g, (c) Second step, obtained using the blurred
version of the image g5, (d) Third step, obtained using g5, (e) Fourth step, obtained using
g15, (f) The final segmentation of the heart muscle over the 2D image.
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Step Time step µ λ Nbr. of iterations CPU time cumulative CPU time
1 0.1 0 1 4 1s. 1s.
2 0.1 1 0.01 5 1s. 2s.
3 0.1 1 0.001 76 3s. 5s.
4 0.1 1 0.0002 675 21s. 26s.

Table 5.4: Computational times and parameters’ values for the hierarchical segmentation
of a 2D slice of a cardiac CT scan using smoothed versions of the image. The total compu-
tational time is 26s.

are required to reach convergence.
The results of the hierarchical segmentation suggests that if the image is to be segmented

by the original multiphase algorithm of Vese and Chan, four different level sets functions
would be necessary. This makes the implementation very difficult, as equations (4.35)
and (4.36) needs to include many more terms. Also, when proceeding in this manner, the
user need to know at the beginning the number of phases needed, which may be hard for
complex images. Given that the multiphase algorithm has shown some weakness with as
less as two level set functions on a simple synthetic image (see Figure 5.14), we did not try
this approach on the CT scan of the heart.

5.4. HIERARCHICAL SEGMENTATION WITH L1 FIDELITY

We now modify the hierarchical segmentation method by using an L1 fidelity term. As
discussed earlier, the L1 fidelity is more natural than the classical L2 fidelity term. The
model gets more robust to noise using L1 fidelity as can be seen on Figure 5.19. For images
(a) and (b), the parameters are the same: µ = 1 and λ = 0.1, only the fidelity changes. On
the result with L1 fidelity, there is less noise. It is possible to get a similar segmentation with
the L2 fidelity by changing the parameters λ and µ. Taking µ = 1 and λ = 0.0005 yields a
similar segmentation as with the L1 fidelity (see Figure 5.19(c)). Although it is hard to say
in this case, in general some features could be over-smoothed by taking a high ratio µ/λ
with an L2 fidelity term.

Figure 5.20 shows the results of the hierarchical segmentation of the 2D slice of a CT
scan of the heart using L1 fidelity. Using L1 fidelity, only 3 steps are necessary to segment
the heart muscle. This is because the problem with L1 fidelity tends to split the image into
regions of similar size. Note also that a clean segmentation of the heart muscle is attained
using only the original image. This was not possible for L2 fidelity as shown in Figure 5.16.
This is because the median is less sensitive to noise. Table 5.5 shows the parameters and the
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(a) (b) (c)

Figure 5.19: The results of a segmentation of the cameraman image by the Chan-Vese
model with (a) the L2 fidelity and (b) L1 fidelity. The parameters µ = 1 and λ = 0.1 are the
same in both cases. In (c), the result of the Chan-Vese model with L2 fidelity using µ = 1
and λ = 0.0005.

computational times for this hierarchical segmentation. Note that the overall computational
time is similar to the one for L2 fidelity. This is partly due to the fact that the median value
of a set is longer to compute than the mean value. Note that even though step 3 requires
more time steps to be solved, it is done faster than step 2 of the hierarchical method. This is
due to the fact that the domain to be segmented gets smaller and smaller from one iteration
of the hierarchical method to the next. This speeds up the computation time.
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(a) (b) (c)

(d) (e) (f)

Figure 5.20: Hierarchical segmentation of the heart from a 2D slice of a CT scan using the
L1–fidelity. 3 steps are required rather than 4 for the L2–fidelity. (a) is the original image
and (b) is the result of the first iteration of the hierarchical segmentation. The blue region
contains the heart. (c) Second step, the red region will be further segmented. (d) The result
of the final step. (e) A full segmentation of the heart muscle is obtained from result (d). (f)
shows the difference between the L1 and L2 segmentations. The L1 segmentation is in blue
and the L2 segmentation is in red.

It is also possible to get a segmentation of the muscle using blurred versions of the
image g. The results are shown in Figure 5.21. For the first two steps, the blurred image g5

is used and for the last step the blurred image g15 is used.
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Step Time step µ λ Nbr. of iterations CPU time Cumulative CPU time
1 0.1 0 1 5 1s. 1s.
2 0.1 1 0.01 493 31s. 32s.
3 0.1 1 0.005 524 22s. 54s.

Table 5.5: Computational times and parameters for the hierarchical segmentation of a 2D
slice of a cardiac CT scan using L1 fidelity. The total computational time is 54s.

(a) (b) (c)

(d) (e) (f)

Figure 5.21: 2D Iterative segmentation of the heart from a CT scan image using blurred
images and L1 fidelity. (a) The image to be segmented, (b) the result of the first application
of the 2-phase Chan-Vese model using the blurred image g5, (c) Second step, obtained
using the blurred version of the image g5, (d) Third step, obtained using g15, (e) The final
segmentation of the heart muscle over the 2D image.
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Step Time step µ λ Nbr. of iterations CPU time Cumulative CPU time
1 0.1 0 1 5 1s. 1s.
2 0.1 1 2 24 2s. 2s.
3 0.1 1 1 57 2s. 5s.

Table 5.6: Computational times and parameter values for the hierarchical segmentation of
a 2D slice of a cardiac CT scan using smoothed versions of the image. The total computa-
tional time is 5s.

The computational times as well as the parameter values used are shown in Table 5.6.
The total computational time is 5s, which is much faster than for the L2 fidelity with
the blurred image which was 26s. In Figure 5.22, the result of this new segmentation is
compared with the one obtained without smoothing. As expected, the segmentation using
blurred images yields smoother contours, but they might be slightly shifted in some regions.



Figure 5.22: Hierarchical method with L1 fidelity: differences between the smoothed and
unsmoothed results. The result with the blurred image is in red while the result with the
original image is in blue.

122



6

Endocardium segmentation

In this chapter, we present how the Chan-Vese algorithm can be used to segment the en-
docardium from the high resolution CT scan presented in Section 1.2.2. We segment with
this technique the endocardial surfaces of the ventricles and of the atria. A parallel imple-
mentation of the computations is used to speed up the algorithm. The segmentation is very
precise and contains many fine features of the heart’s cavities, such as the pillars. The outer
surface of the heart is almost completely segmented, but the surface suffers from leaking in
several regions.

To our knowledge this is the first application of the Chan-Vese algorithm to cardiac
segmentation. The only medical application we know is for brain segmentation [23]. This
is also the first time that this algorithm is used on such large images and we believe that we
have done its first parallel implementation.

As mentioned in Section 1.3, most of the existing segmentation methods for left ventri-
cle endocardial surfaces will only find the approximate shape of the ventricle. The pillars
are rarely segmented. Segmentations similar to the one obtained here can only be found in
the work of Fritscher and Schubert [38] on MRI data. They used the maximum a posteriori
(MAP) method introduced by Leventon, Grimson and Faugeras [58].

In the light of the previous analysis of the Chan-Vese algorithm made in chapter 5, the
segmentation will be done using the L1 Chan-Vese problem

φt = |∇φ|
[
div

(
∇φ
|∇φ|

)
− |g − c1| + |g − c2|

]
, Ω

∂φ
∂n = 0, ∂Ω

φ(·, 0) = φ0,

c1 = median value of g in {φ >= 0}

c2 = median value of g in {φ < 0},

(6.1)

where the initial condition φ0 is chosen to be a random initial condition as described in
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section 5.2. The equation will also be solved with the semi-explicit scheme and space
discretization presented in equation (3.14) The hierarchical method studied in section 5.3 is
used to assess the multiphase segmentation.

6.1. PARALLEL IMPLEMENTATION

We now focus on how Problem 6.1 can be solved in parallel. The domain is described by
the structured grid of the underlying image. A domain decomposition is easily achieved by
slicing the image in one direction. We decided to slice the image in the z direction. Then
the resulting blocks are distributed on the given processors. For example, the CT image
described in Section 1.2.2 is of size 512×512×199. If two processors are used, the image
will be split into two blocks: one of size 512×512×100 and a second of size 512×512×99.

Problem 6.1 is solved with a semi-explicit scheme. Starting with the initial condition
φ0, the solution is computed forward in time by time stepping. Using the semi-explicit
scheme each processor can compute independently the solution φn+1 at time tn+1 = tn + ∆t

from the solution φn. Boundary conditions of each block requires special care.
In the C++ implementation, for each processor the image block is augmented by one

in all directions. For example the image block of size 512×512×100 will be contained in
the middle of an array of size 514×514×102. Then boundary conditions are easily set. On
a face of the image block that corresponds to the boundary of the image, the outside values
are set to satisfy a homogeneous Neumann boundary condition. In this case the voxels
are set to the same value as the closest voxel that is in the image. The other case is if a
face corresponds to a slicing plane of the data set, which means that the image does not
end, but voxels belong to another processor. In this situation, the voxel values on the two
slices on each side of the slicing plane need to be exchanged between the processors. This
is illustrated in figure 6.1 where a 2D domain of 100×100 pixels is split in 2 parts. The
domain is extended by on one pixel in every direction. At each iteration, the blue part is set
to satisfy the boundary condition. Also each processor will send its yellow slice to the red
slice of the processor sharing the slicing line.

To solve the problem 6.1, it is also necessary to compute the values c1 and c2 which are
the medians of the values of g taken in two different sub-domains. It is not straightforward
to write a parallel algorithm that computes the median of a distributed data set.

We first describe the structure of a serial recursive algorithm for finding the kth smallest
element in a data set of n elements. This is done by a function kth_element(X, k, n) where X
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Figure 6.1: An example of a 2D domain decomposition. At each time step the region in
blue is set according to the Neumann boundary condition and each processor send its yellow
slice to the red slice of the neighboring processor.

is the data set, k is the position of the desired value (it is n/2 if the median is wanted), and
n is the number of elements in X. The recursive algorithm is implemented as follows.

kth_element(X, k, n) :

1. Choose a tentative kth element m.

2. Let X−m = {x ∈ X : x ≤ m}, X+
m = {x ∈ X : x ≥ m}.

Compute n− = #X−m and n+ = #X+
m.

3. (Stopping criterion) If n− ≥ k and n+ ≥ n − k, return m as the median value.

4. Else,

(a) if n− ≤ k − 1, the median is in the set X+
m. It is the (k − n−)th element in X+

m.
Therefore return kth_element(X+

m, k − n−, n+).

(b) If n− ≥ k, the median is in the set X−m. It is the kth element in X−m. Therefore
return kth_element(X−m, k, n

−).

Now this algorithm is easily portable to a parallel context where the data is distributed
among several processors. The structure of the algorithm is exactly the same as above. The
data set X is distributed over the processors. The values of all other variables (k, n, m, n±)
need to be known by every processor. k, n and m need only be shared by all processors. To
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find the values of n±, the processor i can compute a value n±i from his part of the data set
(say Xi). The global value is then simply

n± =
∑

i

n±i . (6.2)

Then n± need just be broadcasted to all processors. Steps 3 and 4 do not require special
attention. During the recursive algorithm, it may be worth noticing that even if each proces-
sor calls the function kth_element(X, k, n) with the same values of k and n, each processor
only sees a part of the data set X.

In the first step, one needs to choose a tentative value m for the kth element. There are
many approaches to choose this value. If m is close to the real kth value, the algorithm stops
with fewer iterations. However, a close value may take longer to guess. Hence, there is
a trade-off between the accuracy of the initial m and the time needed to compute it. The
choice to be made may depend on the applications. There exist clever ways to select m that
speeds up the computations. However they may be difficult to implement. In many concrete
applications, m is just chosen randomly among the set of values.

Our choice was between fancy algorithms and random choice. If the processor i has ni

elements, then the kth element is around the (k ∗ ni/n)th element mi of the processor i. We
take m has the mean value of mi over all processors. The element mi is simply calculated
with the nth_element C++ template [48]. It is a linear algorithm for partial sort (it is
more efficient than complete sort which is of order n log(n)). On a 52 000 000 values data
set, this recursive parallel median algorithm usually terminates within 5 to 10 iterations.

For the global problem 6.1, most of the computations are made locally on one processor.
The amount of information to transfer is small (only two slices need to be transferred be-
tween each pair of successive processors and a few numbers during the median calculation)
compared to the computational load of an iteration. Hence, the speed up of the algorithm
is nearly perfect: using n processors divides the time per iteration by n, as depicted in
Figure 6.2.

For large problems, most computations are made on a 16 processor SUN cluster (AMD
opteron 250, 2.4Ghz, TCP/IP interconnected with distributed memory). Running the code
on 6 processors divides the CPU time by almost 6. As the number of processors increases,
the time lost in data transmission becomes more important. Note that many computations
have been made successfully on a simple dual-core laptop, cutting the CPU time in 2,
although the same amount of RAM is required.
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Figure 6.2: The speed up for the parallel algorithm: the time for doing an iteration with one
processor divided by the time for doing an iteration with n processors. It is just below the
ideal speedup.

With more than 6 processors, this implementation is less effective as the amount of
data to be transferred is larger compared to the size of the blocks (the blocks become flat
prisms). To solve with more processors, it would be better to split the domain in the 3
different directions, to obtain small cubes. We did not have to do this since the gain from
computing with 6 processor is good enough for our applications.

6.2. THE SEGMENTATION

We now apply this algorithm to the high resolution CT scan described in Section 1.2.2.
Figure 6.3 shows the 3D CT image as well as the result of the first segmentation step.
Following this first segmentation, one side of the surface must be chosen as the new seg-
mentation domain. The interior is the region containing the trachea, the exterior contains
the heart. For the first step, as for the 2D case described in section 5.4, there is no need to
impose curvature term. Hence, we take λ = 1 and µ = 0. The parameters and computational
times for the three iterations of the hierarchical method are gathered in Table 6.1.

To segment the heart, we need to take the result of the first segmentation and choose the
exterior of the surface. To get to the heart, two more segmentation steps are required (as in
the 2D case described in Section 5.4). If this would be done with a multiphase method, it
would then take 3 different level set functions to isolate the phase obtained in the third step
of the hierarchical method from the image. The 3 different PDEs would have to be solved
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(a) (b)

Figure 6.3: The first step of the segmentation process. (a) is the CT scan to be segmented.
(b) is the result of the first segmentation step.

simultaneously, which is hard to do on images of this size.
From the second stage, we have decided to do the segmentation not on the exact image

but on a blurred version of it, due to the high level of noise. To blur the image, we apply
the linear heat equation on the image for a few time steps with an explicit scheme. This is
also easily done in parallel.

In the 2D example of Section 5.4, we remarked that using the L1 fidelity allows to
obtain a similar segmentation by using only the original image. This is the best way to
proceed precision-wise, since some information is lost when blurring the image. However,
the number of iterations increases considerably. We decided to go with an in intermediate
alternative, by slightly blurring the image to increase efficiency without losing too many
fine details.

Figure 6.4a shows the result of the second step of the hierarchical segmentation together
with the domain boundary in orange. Figures 6.4b and 6.4c shows two views of the 0-level
surface alone. Color arrows point several interesting anatomical regions. The red arrows
point to the region containing the heart. The heart is wrapped into a layer of muscles and
fat. It is the outer surface of this that is seen on the picture. The yellow arrows point to the
pulmonary arteries. The blue ones point to a region containing the spine. Finally, the green
arrows point to a region containing the ribs. The spine and the ribs are wrapped with a layer
of muscles and fat similar to the one of the heart.

In order to segment the heart, one more segmentation step is needed. We chose the pos-
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itive side of the previous segmentation. The result of the third step is shown in Figure 6.5.
The resulting image u of the segmentation has 3 values: 0 for the region that is ignored
from the previous segmentation steps and -1 and 1 for the two regions obtained from the
third step. Figure 6.5a shows the level surface {u = 0.5} recovering the endocardium while
Figure 6.5b shows the level surface {u = −0.5} recovering the epicardium.
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(a) The result of the second step in white, together with the domain boundary
in orange

(b) (c)

Figure 6.4: The second step of the segmentation process. (a) shows the 0-level surface of
the level set function together with the domain’s boundary in orange. In (b) and (c) two
views of the 0-level surface alone. The red arrows point on the region containing the heart,
the yellow arrows point to the pulmonary arteries, the blue ones point the spine region and
the green ones point the region containing the ribs.
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(a) The level surface {u = 0.5}

(b) The level surface {u = −0.5}

Figure 6.5: The third and final step of the segmentation process.
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The various computing time and parameters are gathered into Table 6.1. The behavior
is similar to the 2D case studied in Section 5.4. The first step is fast to compute since the
curvature term is null. The second and third steps take more iterations. In the first step, the
average computing time per time step is 15s. At the second step, it is 8s. while for the last
step, the average time is 6.5s. It is normal that this time is getting smaller and smaller since
the computational domain also gets smaller and smaller.

Table 6.1: Computational times and parameters for the hierarchical segmentation of a 3D
cardiac CT scan using L1 fidelity. The times are those when the problem is solved in parallel
on 6 processors.

Step Time step µ λ Nbr. of iterations CPU time Cumulative CPU time
1 0.1 0 1 11 2m46s. 2m46s.
2 0.1 1 1 666 93min17s. 96m03s.
3 0.1 1 1 1575 179m41s. 275m44s.

The total time for the segmentation is 275min 44s, that is about 4.5 hours. It is a fairly
high computational time. Note that this can be considerably reduced if a smoother version
of the image is used. As we mentioned earlier, we choose this level of smoothing to keep
as many details as possible.

Figure 6.6 shows a slice of the original image with the segmented contour superposed.
Cavity contours are very close to the image and contains many interesting details. The
pulpillary muscles are well segmented. The exterior boundary of the heart is nicely seg-
mented except in some regions where the curve is leaking. We address this problem in
Chapter 7.

The segmentation result shown in Figure 6.5 contains the heart, but also many other
details that are not relevant to heart segmentation. On Figure 6.5 are pointed the main
anatomic details present in the segmentation. In Figure 6.5a, the heart cavities are shown
and identified, as well as the aorta. In Figure 6.5b, the epicardium, the spine, the liver and
the aorta are shown.

In order to isolate the heart muscle from this segmentation result, we manually pick a
point in the heart muscle, then we take the connected component containing that point.

We have written an algorithm that extract the connected component containing a seed-
ing voxel x0 = (i0, j0, k0). The algorithm has the following structure.

1. Create an empty vector v. It is a workspace that will contain neighboring points.
Insert the point x0 in the vector.
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Figure 6.6: The segmented contour over a slice of the original image. The surface is leaking
over the liver.

2. If v is empty or if the maximum number of pixels is reached, exit the algorithm. Oth-
erwise, insert at the end of the vector v all neighbors of v[0] in the same component
as v[0] that have never been visited. Note that pixels are in the same component if
the level set function φ as the same sign.

3. Put the element v[0] in a list containing the pixels in the same component as x0.

4. Delete element v[0] from the vector v and go back to step 2.

To extract the heart, we set a limit of 10 000 000 voxels on the size of the connected
component. The output of this is shown in Figure 6.7a.

There are some imperfections in the segmentation of the heart surface near the epi-
cardium, as the surface leaks in some areas. This is due to the fact that the heart touches the
liver at that place in the image and that the two organs are of same gray level. This can be
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seen in Figures 6.6 and 6.7b. This problem is addressed in Chapter 7.
We can also use the algorithm for finding the connected components to extract the

cavities of the heart. We picked a point inside the left ventricle cavity and then applied the
algorithm, setting a size limit to 3, 500, 000 voxels on the size of the connected component.
Figure 6.8 shows the segmented endocardial surfaces. The cavities of the ventricles and the
atria are well segmented, especially the one of the left ventricle, which is the most important
part in many applications. The occulus of the mitral valve that is between the left ventricle
and the left atrium is also precisely captured as shown in Figure 6.9. The general shape
of the heart is well represented, ventricles and atria are extracted as well as the aorta. The
right ventricle cavity has some imperfections in the surface, but the pulpillary muscles are
present in the segmentation.

From this segmentation, the ventricular and atrial cavities can be separated from the
segmentation shown in Figure 6.8 by simple plane cutting. The isolated cavities are seen in
Figure 6.10.

6.2.1. Trachea segmentation

At the first step of the hierarchical segmentation, we have chosen the region that was on one
side of the surface in which the heart was located. The region that is on the other side of
the surface contains the trachea. The trachea can be segmented by applying the hierarchical
segmentation to that region. Only one step is needed to fully segment the trachea.

A high curvature term is needed in order for the curve not to leak in the small air
channels of the lungs. As for the heart, we manually chose a point inside the trachea and
extracted the full connected component of that point in the segmented image. that corre-
sponds to the trachea. Figure 6.11 shows the resulting segmentation. This segmentation
result will be meshed in Chapter 8.



(a) A view of the epicardium

(b) A second view of the epicardium

Figure 6.7: Views of the epicardium (outer surface of the heart). The surface is leaking in
some regions.
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(a) The heart cavities: ventricular and atrial cavities. (b) The left ventricle cavity

Figure 6.8: Two views of the interior surfaces of the heart in the final segmentation. The
pillars in both ventricles are well segmented.

(a) A top view of the position of the mitral valve. (b) A combined view of the left ventricle and the
left atrium and the mitral valve occulus.

Figure 6.9: Two other views of the segmented endocardium.
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(a) The isolated ventricular cavities. (b) The isolated atrial cavities.

Figure 6.10: Isolated cavities of the heart.

Figure 6.11: The trachea segmented from the 3D CT scan.
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7

Epicardium segmentation

In this chapter, we present how a full heart segmentation is obtained from the cavity seg-
mentation of Chapter 6. To do this, we use a problem similar to the one of subjective
surfaces. The subjective surface problem presented in Section 4.3.4 requires long compu-
tational time to solve for large problems. To help with this, we introduce a new problem
that has a smaller domain and boundary conditions adapted for heart segmentation. As in
Chapter 6, the problem is solved in parallel.

This method yields a complete 3D segmentation of the heart’s epicardial surfaces of
both ventricles and atria. This segmentation is very close to the real heart geometry and the
resulting geometries should be suitable to do realistic simulations of heart physiology.

The method outlined above, together with the segmentation result itself constitute the
original content of this chapter.

7.1. CLASSICAL SUBJECTIVE SURFACES

In Section 4.3.4, we presented the subjective surface problem introduced by Sarti, Malladi
and Sethian [98, 99]. It consists in finding a function φ that is a steady state of

φt = h|∇φ|div
(
∇φ
|∇φ|

)
+ ∇h · ∇φ on Ω

φ = 0 on ∂Ω,

φ(x, 0) = φ0.

(7.1)

In this problem, the initial condition is usually taken as φ0 = 1
1+D(x) , where D(x) is the

distance from a point p chosen inside the object of interest. Hence, the function φ0 has
highest value 1 at p and decreases quickly to 0. It is also possible to take D(x) to be the
distance to a set of points, or the distance to another shape such as a line or a curve. h is an
edge stopping function as in Equation 4.6.
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The partial differential equation in Problem 7.1 can be solved using a finite difference
method. The diffusion term can be discretized as for the total variation problem (see Sec-
tion 3.4) or the Chan-Vese problem (see Section 5.1). The advection term needs to be
discretized using an upwind scheme. The upwind scheme takes an approximation

∇uwφ = (Duw
x φ,Duw

y φ)

of the gradient ∇φ using upstream values. In the advection term, the speed is b = −∇h,
hence

Duw
x φ =

D+
xφ if D0

xh ≥ 0,

D−xφ if D0
xh < 0.

(7.2)

Similarly

Duw
y φ =

D+
y φ if D0

yh ≥ 0,

D−y φ if D0
yh < 0.

(7.3)

We intend to solve the problem with an explicit time stepping scheme. Without using
the upwind scheme, it is not possible to achieve stability even if very small time steps are
used (e.g. ∆t = 10−8). Even though the upwind scheme is used, very small time steps
still need to be used. Therefore, the curvature term need not be discretized using a fancy
scheme. It is more efficient to use the direct discretization described in 5.1, since other
schemes double the iteration time.

Figure 7.1 shows the result of the algorithm on a 2D slice of a 3D CT scan. This 2D
case study is done on the same slice as the hierarchical segmentation of Section 5.3. A point
p inside the left ventricle has been chosen and the initial condition is φ0 = 1

1+D(x) , where
D(x) is the distance to that point.

One can see that there is no level curves that can successfully segment the epicardial
surface. Moreover, it takes a very large number of time steps, around 100, 000 in order
to reach this state, which may not yet bet the steady state. The computing time for these
iterations is about 33 min 49s, which is very long compared for example to the Chan-Vese
method.

7.2. PROPOSED PROBLEM

In order to obtain a better segmentation of the epicardial surface than the one obtained in
Section 7.1, we will use the information about the heart’s cavities obtained in Chapter 6. In
Chapter 6, the endocardial surface of the ventricles have been successfully segmented. The
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(a) The steady state of Problem 7.1. (b) The level curves of the steady state on top of the
image.

Figure 7.1: The result of the classical subjective surface problem applied to a 2D slice of a
CT scan.

epicardial and endocardial surfaces are somewhat related one to the other and one might
think that it would be useful to use the endocardial surface position to infer the epicardial
surface.

The idea is that the endocardial surface will be used to restrict the computational domain
and will have adequate boundary conditions that help avoiding leakage of the level surfaces.

The main modification we bring to the original subjective problem (Problem 7.1) is to
restrict the computational domain. The position and shape of the endocardial surface is
known. The epicardial surface has to sit outside the endocardial surface. Also, it cannot be
too far away from the endocardial surface as the myocardium has a maximal thickness.

The idea is then to do the computation on points that are outside the endocardial surface
and at a distance less than a given number L. For example L could be set to be twice the
estimated myocardium wall thickness. The domain is then much smaller than the original
domain. We will also modify boundary conditions. We force the function to be 1 at the
endocardial surface S and be 0 at the surface S L that is at a distance L from the endocardial
surface. If ΩL stands for the region between these two surfaces, then the proposed problem
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is to find a steady state φ of the problem

φt = h|∇φ|div
(
∇φ
|∇φ|

)
+ ∇h · ∇φ on ΩL

φ = 1 on S ,

φ = 0 on S L,

φ(x, 0) = φ0.

(7.4)

In practice, we get the surface S L by computing the signed distance function ψ to the
endocardial surface. This is done with the help of the reinitializing equation (Equation 8.3)
that will be further discussed in Section 8.2. Then, the domain ΩL consists of voxels xi for
which 0 ≤ ψ(xi) ≤ L. Figure 7.2 shows an example of the resulting domain.

Figure 7.2: The computational domain ΩL with boundary conditions.

As an example, consider the application to the 3D CT scan presented in Section 6.2.
The segmented endocardial surfaces of the ventricles are shown in figure 6.10a. The full
computational domain has 52, 166, 656 voxels while a valid restricted domain can contain
as few as 4, 415, 284 voxels, which corresponds to 8.4% of the original size. This is a
considerable gain.

Using the Problem 7.4 yields more than just a reduced domain size: the solution con-
tours must remain between the surfaces S and S L. Hence there will be less leaking of the
level set surfaces. The problem is then solved in parallel using the same framework as the
one described in Section 6.1.
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7.3. THE RESULTS

We used the new subjective surface problem given in equation 7.4 for two different appli-
cations. First, it has been applied for ventricle segmentation, then for atria segmentation.

7.3.1. Ventricle segmentation

We started with the segmentation results obtained in section 6.2, that are shown in Fig-
ure 6.2a. The computations are made on a restricted domain of 4, 415, 284 voxels. The
equation is solved explicitly with a time step ∆t = 0.01. This is done in parallel on 6 pro-
cessors for 1, 000, 000 iterations. The total computation time is 168 hours, which is close
to 7 days. The final result is a function that is between 0 and 1. A level surface needs to
be chosen that will yield the epicardial surface. As the steady state should be close to a
piecewise constant function, there should be a large interval of values that would give the
same level surface.

Figure 7.3 shows the results of the segmentation when choosing the surface of level 0.5
from the steady state. Figure 7.3c and 7.3d show front and back views of the surfaces on
top of a 2D slice of the CT image. As it can be seen there, the myocardium is very thin
in the right ventricle. In general, this is a major problem for segmenting the whole heart
and for this reason, all right ventricle segmentation of which we are aware only segment the
epicardial surface of the right ventricle. The modified subjective surface problem used here
forces the myocardium to have some width everywhere. Indeed, the heart chambers have
fixed value 0 and the epicardium can be chosen as the level surface 0.5 for example.

Figure 7.4a shows a 2D slice of the CT image with the segmented epicardial surface
restricted to that slice on top. As can be seen, the contour is very close to the epicardium
in the CT image. Again, it can be seen in Figure 7.4a how thin is the myocardium in the
right ventricle region. Figure 7.4b shows a relief map of the steady state function restricted
to the same 2D slice. The function is almost piecewise constant, hence many level surfaces
generate the same epicardium surface. This also indicates that the final level set function is
close to being the steady state.

With this new subjective surface problem, we have been able to get an accurate seg-
mentation of the epicardial surface. This can be seen by restricting the segmentation to 2D
slices as in Figures 7.4a, 7.3c, d and in Figure 7.5. In each of these figures, the segmented
epicardial contour follows closely the epicardial contour that a human eye distinguishes in
the image.

Now, this result can be combined with the segmented endocardial surface to obtain a
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(a) The endocardial surface of the ventricles. (b) The epicardial surface.

(c) Back view of the endocardium and epicardium
on a 2D slice of the CT image

(d) Front view of the endocardium and epicardium
on a 2D slice of the CT image

Figure 7.3: The result of the myocardium segmentation.

complete segmentation of the myocardium walls. As remarked previously in Section 6.2,
the endocardial surface of the left ventricle is nicely segmented, it is the right ventricle that
suffers from some leaking.

To improve even further this segmentation, we will use the fact that we now have a
precise segmentation of the epicardial surface. We can then use a hierarchical Chan-Vese
algorithm as described in Chapter 6 on the region inside the epicardial surface. This region
now contains only the myocardium and the heart chambers. Applying the two phases Chan-
Vese method on that domain, yields a better segmentation of the endocardial surface in the
right ventricle.
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(a) (b)

Figure 7.4: The final epicardium segmentation restricted to a 2D slice of the CT image. (a)
The epicardial contour superposed on a slice of the original CT image. (b) A relief map of
the steady state solution restricted to the same slice with the chosen contour.

The combined result of the epicardium segmentation using subjective surfaces and
the new endocardium segmentation of the endocardium using Chan-Vese gives a full my-
ocardium segmentation. In order to appreciate the quality of the segmentation, we show in
Figure 7.5 the segmented myocardium contours on 2D slices of the CT image. It can be
seen that the contours closely follow the real myocardium contours.

Figure 7.6 shows several view of the complete segmented myocardium. Figure 7.6d is
an explanatory diagram of the four visible orifices. Note that the orifice of the aorta and the
one between the left atria and the left ventricle are not completely disjoint.
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(a) (b)

Figure 7.5: The final myocardium segmentation restricted to 2D slices. (a) A frontal view
of the final segmentation. (b) A top view of the final segmentation.
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(a) (b)

(c) (d)

Figure 7.6: The final myocardium segmentation. (a) A front view of the final segmentation.
(b) A top view of the final segmentation. (c) A back view of the final segmentation. (d)
Explanatory diagram of the orifices.
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7.3.2. Atria segmentation

The same subjective surface method can be applied to the segmented atria cavities shown
in Figure 6.2b. Again, the domain is restricted and the equation is solved explicitly with a
time step ∆t = 0.01. It is solved in parallel using 6 processors for 1 000 000 iterations. The
total computation time is 3 598 min, that is 2.5 days.

As in Section 7.3.1, the segmented outer surface can be joined with the cavities. We did
not use the Chan-Vese algorithm in this case to improve the cavities. We simply smoothed
the inner surfaces with a total variation algorithm as described in Section 3.4.

For the CT scan used for this segmentation, a tracer has been used to highlight the
pulmonary arteries. This can be seen as the lightest region in 2D slices shown in Figure 7.8.
This presence of the tracer complicates the right atrium segmentation. Using the segmented
epicardial surface and the smoothed endocardial surface yields a 3D segmentation where
some walls are very thin. These are too thin to be meshed accurately. For this reason,
we introduced an artificial width between these surfaces. This is easily done using the
signed distance functions to both surfaces and choosing surfaces at distance 1 away from
the segmented surfaces. It is about twice the smallest width in the initial segmentation.

Figure 7.7 shows the resulting atria cavities together with the epicardial surface. Anno-
tations have been added to distinguish between the left and the right ventricle.

Figure 7.8 shows the atria endocardial and epicardial contours on 2D slices of the CT
image. The effect of the artificial width can easily be seen: the contours are somewhat
shifted from the original image contours. Nevertheless, the overall shape of both endo-
cardium and epicardium is well captured.



(a) (b)

(c) (d)

Figure 7.7: The result of the atria segmentation with annotations. (a) The endocardial
surface of the atria. (b) A top view of the segmented atria. (c) A front view of the segmented
atria. (d) A back view of the segmented atria.
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(a) (b)

Figure 7.8: The final segmentation on 2D slices. The contours are close to the real endocar-
dial and epicardial surfaces, although they are somewhat shifted due to the smoothing step
and to the artificial width introduced. (a) A top view of the final segmentation. (b) A front
view of the final segmentation.
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Mesh generation

The results of the segmentation methods described in chapters 6 and 7 are given as a level
set function whose 0-level set is the contour of the object of interest. The ultimate goal of
this work is to be able to perform numerical simulations on segmented organ geometries. A
standard finite element method requires a mesh of the given geometry. In this chapter, we
present how a volumetric 3D mesh of the heart is generated from the segmentation results
of Chapters 6 and 7.

8.1. MESH GENERATORS

There exists plenty of 2D and 3D mesh generators that are publicly available. We have
been looking for software that can mesh geometries that are defined implicitly. We also
want to produce meshes that are 2D and 3D. There are not many meshers that satisfy these
two criteria. Besides, most mesh generators involve using complicated libraries. Robert
Schneiders keeps up to date a list of all commercial and non commercial mesh generators1.
Among those, there is a small function set called DistMesh that captured our attention.

8.2. DISTMESH AND ITS MODIFICATIONS

DistMesh is a set of Matlab functions written by Persson [85, 47]. It is very simple to use
and very efficient compared to many mesh generators. It is designed to produce meshes of
domains that are defined explicitly via a level set function φ. It is based on the Delauney
criterion to assess mesh quality and it considers edges as a network of springs with properly
chosen forces to obtain mesh uniformity. The novelty of the algorithm is in the way domain
boundaries are handled. Points close to the boundary are projected on it, in order to a obtain
a nice smooth boundary. Another interesting feature of this code is that it works in 2D and
3D, with some minor changes. The general structure of the mesh generator is as follows.

1http://www-users.informatik.rwth-aachen.de/ roberts/
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1. The user creates a length function that specify at each point in space the desired
diameter of an element. It can be uniform or not.

2. A random initial vertex distribution is created, according to the length function.

3. Vertices outside the domain are rejected.

4. Delauney triangulation is calculated with the given vertices.

5. Forces related to the length function are calculated for each edge and vertices move
according to the resulting force.

6. Points near the boundary are projected on the boundary with the help of the level set
function.

7. Steps 4-6 are repeated until the mesh is of sufficient quality.

It is in step 6 that the user has some freedom. The distance between a vertex and the
boundary is simply given by the value of the level set function at this vertex. The level set
function is usually numerically given by values on the underlying image grid, hence it has
to be interpolated to get the value at a specific vertex. Next, one must define a notion of
proximity to the boundary. In the original code, it is suggested to project only the vertices
that lie outside the domain. However, we remarked that the boundary was better preserved
when some points inside the domain were also projected on the boundary. This had to be
tuned up in each case, but in general we projected vertices at a distance less than h/2, where
h stands for the element diameter in that region.

The code as it is only meshes the region where the level-set function is negative. In
some applications, we had to mesh a domain, that contains sub-domains whose interfaces
also need to be respected by elements. This is the case of the example of a 2D torso mesh
(see Figure 8.1) where there are 4 sub-domains: the myocardium, the heart cavities, the
lungs and the remaining of the torso. In this case, we calculated four different level set
functions, one for each of the sub-domains. Then we had only to modify step 6 of the
algorithm, to project on the boundaries of all sub-domains, using the same technique.

The projection method of step 6 is simple. If a vertex v is such that φ(v) > −c for some
small positive value c, then we project the node v on the point T (v) on the interface and
given by

T (v) = v + φ(v)∇φ(v). (8.1)
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This works if φ is a signed distance function, which means |∇φ| = 1 everywhere. However,
we happened to have some problems since in some cases the function φ is just approxi-
mately a signed distance function. In those cases, the projection should be

T (v) = v + φ(v)
∇φ(v)
|∇φ(v)|

, (8.2)

by taking a special care that the numerical gradient is never zero. This is a modification that
we made to the original code. These kinds of problems arose when we generated signed
distance functions with the help of the itk library [126] 2. For this reason, we preferred
to use the reinitialization equation in order to get signed distance functions. It consists in
solving 

φt = S (φ0)(1 − |∇φ|),

φ(0, ·) = φ0,

∂φ
∂n = 0 on ∂Ω,

(8.3)

where S (x) is the sign function as suggested in [109]. In practice a regularization S̄ of S is
used:

S̄ (φ) =
φ√

φ2 + (∆x)2
. (8.4)

Peng et al. [82] also suggested to take

S̃ (φ) =
φ√

φ2 + |∇φ|2(∆x)2
. (8.5)

In our applications, we did not remark significant differences between the regularizations S̄

and S̃ .
The term |∇φ| needs to be discretized using an upwind scheme. The flow always goes

away from the zero 0 level set. In consequence, the pixels inside the curve ({φ < 0}) will be
treated differently that the pixels outside the curve ({φ ≥ 0}). The simplest stable scheme
is an upwind scheme [76]. At a pixel xi, j inside the curve, the norm of the gradient can be
approximated by

|∇φ(xi, j| ≈

√
min((D−xφ)i, j, 0)2 + max((D+

xφ)i, j, 0)2 + min((D−y φ)i, j, 0)2 + max((D+
y φ)i, j, 0)2.

(8.6)

2SignedDanielssonDistanceImageFilter [49]
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Similarly, for a pixel xi, j outside the curve,

|∇φ(xi, j| ≈

√
max((D−xφ)i, j, 0)2 + min((D+

xφ)i, j, 0)2 + max((D−y φ)i, j, 0)2 + min((D+
y φ)i, j, 0)2.

(8.7)
Doing so, the equation can be solve with a Euler explicit scheme with a time step as big as
half the size of the spatial step size.

There may be one drawback for using Distmesh in 3D applications as Delaunay criteria
in 3D does not prevent the creation of slivers (tetrahedra with null volume and nearly equal
edge lengths, see for example [40]). We have overcome this problem by smoothing the
resulting 3D meshes with the software Stellar [54].

8.3. APPLICATIONS FOR MESHING

8.3.1. 2D heart and thorax

In section 5.4, we obtained a segmentation of the heart muscle from a 2D slice of a CT
scan. The goal is now to generate a mesh that is suitable for 2D numerical simulations of
electrocardiograms.

For this application, we added the segmentation of the lunges and of the thorax bound-
ary. For each of these sub-domains, a signed distance function has been computed using
the reinitialization equation. The whole thorax region is meshed, but we forced the mesh to
respect the boundaries of the lunges, the heart, and heart chambers.

We defined a mesh size function that is dictated by the application. For electrophysi-
ology simulations, a very fine mesh is required in the heart in order to get realistic trans-
membrane wave propagation. In the lunges and thorax, the mesh may be much coarser. The
mesh size function varies continuously – using the distance function to the heart muscle –
from a very small value in the heart muscle to the larger size in the thorax. We also re-
marked that the sub-domain interfaces are better preserved if the mesh size is decreased by
a factor of 2 while approaching them. We have done this for every sub-domain using their
signed distance functions. Figure 8.1 shows the result of the meshing process. This mesh
has 82 000 vertices and 163 000 triangles. It has been successfully used for simulations in
electrophysiology [29, 90].

8.3.2. Trachea

As mentioned earlier, one of the great advantage of DistMesh is that it works in 3D as easily
as in 2D. In Section 6.2, we obtained a 3D segmentation of the trachea. In order to create
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Figure 8.1: Different views of a 2D mesh of the torso. Four sub-domains are represented:
the myocardium, the heart cavities, the lungs, the remaining of the torso.

a 3D mesh, we computed the signed distance function to the trachea. Figure 8.2 shows a
coarse 3D mesh of the trachea. It contains about 3 400 vertices and 16 000 tetrahedra. In
Figures 8.3 are two different views of a finer mesh containing around 52 000 nodes and
290 000 cells.

8.3.3. Carotid

We present here an application to the carotid. We segmented the carotid from a MRI image
provided by André Garon3. The segmentation was done using a mix of simple segmentation
methods such as threshold and classical snakes for which we do not give details. The
segmentation has then been smoothed by the total variation equation (equation (3.15)).
The result of this is displayed in Figure 8.4. Looking at this segmented carotid, we had
a surprise as it has a non standard configuration. On a normal patient, there are three main

3from École Polytechnique de Montréal
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Figure 8.2: A coarse 3D mesh of the trachea: 3 400 vertices and 16 000 tetrahedra.

(a) (b)

Figure 8.3: A fine 3D mesh of the trachea: 52 000 vertices and 290 000 tetrahedra. (a) A
view of the mesh skin. (b) a view on interior cells.
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Figure 8.4: The segmented carotid. There are only two junctions in the plain circle instead
of the three usually seen on a normal patient. The missing junction is lumped in the dashed
circle.

artery junctions with the aortic arch, the region in the plain circle in Figure 8.4. On this
patient, there are only two junctions as two of the junctions are lumped together further up
in the dash-circled region.

We computed the signed distance function to this carotid and generated 3D meshes
of it. The meshes are intended to serve for 3D blood flow simulations. Accordingly we
defined the mesh size function to have smaller elements close to the boundary to capture
the boundary layer of the blood flow resulting from the no-slip velocity on the arterial
walls. The mesh is cut at the end of each vessel to obtain in-flow and out-flow boundaries
that are perpendicular to the artery’s central axis. Figure 8.5 encompass several views of
the resulting mesh. The colors represent the different labels put on the nodes. There is one
label per entrance/exit region and per entrance/exit region’s boundary (a curve). An extra
label is given for points on the rest of the surface.

8.3.4. 3D heart

In Section 7.3.1, we obtained a full segmentation of the myocardium. Again, the signed
distance function to the interface can be calculated using the reinitialization equation. With
this distance function, we created meshes of the heart muscle. These meshes are intended
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(a) (b)

(a) (b)

Figure 8.5: A fine 3D mesh of the carotid: 120 000 nodes and 540 000 cells.
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to serve for electrophysiology simulations, hence we chose a uniform mesh size function.
We only decrease the cell size by a factor of two while approaching boundaries. As we
remarked earlier, this helps having a smooth boundary. Figures 8.6 shows a mesh obtained
in this way. It has about 247 000 vertices and 1 256 000 cells. Coarser or finer meshes can
easily be generated using the same code. In Figure 8.7 views of the skin of the mesh are
displayed, of the interior of the right ventricle on top, and of the interior of the left ventricle
below.
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Figure 8.6: Different views of a 3D mesh of the heart containing 247 000 vertices et
1 256 000 cells.
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Figure 8.7: Inside views of a 3D mesh of the heart containing 247 000 vertices et 1 256 000
cells. The top view image is looking at the inside of the right ventricle while the bottom
one shows the inside of the left ventricle.
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8.3.5. 3D heart and torso

In order to do 3D numerical simulations of electrocardiograms, the torso need to be meshed
together with the heart. The CT image from which we segmented the heart does not contain
the whole thorax shape. Therefrom, we chose to segment a torso from a lower resolution
MRI image of a different patient. The heart as been placed manually inside the segmented
torso.

The mesh is created using the signed distance to the torso to define the domain. The
signed distance function to the heart is used so that the resulting mesh follows the heart’s
surfaces. Figure 8.8 and 8.9 show an example of a mesh created in this way. It contains
in total 288 000 vertices and 1 724 000 tetrahedra. The sub-region corresponding to the
myocardium has 267 000 vertices and 1 389 000 tetrahedra.



(a)

(b)

Figure 8.8: Different views of a 3D mesh of the torso and heart containing 288 000 vertices
et 1 724 000 cells. (a) An outside view. (b) Inside view with the heart.
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Figure 8.9: Two closeup views of a 3D mesh of the torso and heart containing 288 000
vertices et 1 724 000 cells.
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Fiber Orientation

In Section 7.3, we obtained a precise and realistic segmentation of the human heart from
a CT image. In Section 8.3.4, we presented how the segmented geometry can be meshed.
The last step towards a model that can be used for realistic numerical simulations of heart’s
physiology consists of adding the fiber orientation information to the model. As we de-
scribed in the introduction, the fibers are very important in the trans-membrane potential
wave propagation as well as in the heart’s contraction.

The heart muscle is structured in sheets that are wrapped around to form the heart.
The sheets are attached one to another by a small layer of collagen. Each sheet is made
of aligned fibers. At any point in the heart, the direction of the highest conductivity is
along the cardiac fibers, the second is the direction normal to the fibers that is tangent
to the sheet. The direction of smallest conductivity is the direction normal to the sheets.
Nevertheless, in many numerical simulations, only the fiber direction is considered. For
example in electrophysiology, it is common to assume that the conductivity in plane normal
to the fibers is isotropic. Thus we will concentrate on recovering only the fiber orientation.

There have been many studies of the heart fibers geometry. For example it has been
studied by dissection of a dog heart by LeGrice, Hunter and Smaill [57]. The development
of the DTMRI technology that we briefly outlined in Section 1.2.1 provides the community
with the best source of data. Kocica et al. [55] provide a very complete review of attempts
to model the fiber geometry.

Only a few labs have the DTMRI technology and to our knowledge, only the Center for
Cardiovascular Bio-informatics and Modeling at the John Hopkins University has this data
available for public download. There are seven different data sets of canine hearts and one
data set of a human heart available.

The data sets contain the images as well as the diffusion tensor field. The highest
eigenvalue of the tensor corresponds to the direction of the highest conductivity, that is the
direction of the cardiac fibers. The second eigenvector is believed to be the direction of
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(a) (b) (c)

Figure 9.1: The atlas built from the seven canine hearts (a) the geometry (b) and (c) the
fibers.

the heart sheets. As we mentioned in Section 1.2.1, hearts can not be imaged by DTMRI
in a living patient. The available data sets correspond to ex-vivo hearts that are artificially
maintained in life. Their shape may not correspond to those of in-vivo hearts. The human
heart imaged by the John Hopkins group cannot be used since its shape is not realistic.

To compensate for the several anatomical anomalies of the data set as well as the noise in
the diffusion tensor information, Peyrat et al. [89] used the seven data sets of canine hearts
to construct an atlas. This atlas consists of a mean heart shape, and a mean orientation of the
fibers. This is the data set that we will use to deduce the fiber direction on our model. The
geometry of the heart is given as a coarse volumetric mesh. The geometry and the fibers of
the Asclepios model is depicted in Figure 9.1.

9.1. THE DIFFEOMORPHIC DEMONS REGISTRATION METHOD

To get the fiber orientation on our model, we need to be able to map the Asclepios model
onto our heart model. The process of mapping a model to another is a registration process.
This mapping needs to be a diffeomorphism, i.e. a differentiable map with differentiable
inverse, so that the transformed fiber orientations are consistent with the orientation on the
Asclepios model.

To do so, we used pre-coded classes in the Insight Toolkit (ITK) for diffeomorphic
registration. The main class is called itkDiffeomorphicDemonsRegistrationFilter.
This class has been written by Vercauteren et al. [115] and implements the diffeomorphic
demons algorithm introduced by the same authors in [116]. It allows to control the degree
of smoothness of the diffeomorphism.

By fixed image, we mean the image that we want to register. In the context of this work,



9.2. The registration 167

it will be the image containing the segmentation result. The moving image is the one that
is deformed to fit the fixed image in the registration process. Here it will be the atlas image
that will be deformed. Given a fixed image g and a moving image u the diffeomorphic
demons methods consists in minimizing an energy E(c, s) given by

E(c, s) =
1
σ2

i

Sim(g, u ◦ c) +
1
σ2

x
dist(s, c)2 +

1
σ2

T

Reg(s), (9.1)

Sim(g, u ◦ c) =
1
2
||g − u ◦ c||. (9.2)

The variable c is an hidden variable that corresponds to the direct transformation, without
any smoothing constraint. As such, it is a diffeomorphism that is given as a vector field
of pixel correspondence. s is a blurred version of the diffeomorphism c. s is the diffeo-
morphism required to map the fibers. In general Reg(s) = ||∇s||2 and dist(s, c) = ||c − s||.
Sim(g, u ◦ c) measures the distance between the fixed image g and the warped image u ◦ c.

The problem is solved by an iterative optimization method [116]. At each step, it
computes a new diffeomorphism c and then set s = Kσ ∗ c, where Kσ is a convolution
kernel. The parameter σ is a parameter that is related to the three parameters σi, σx and
σT . It controls the degree of regularization needed for the diffeomorphism. For details, the
reader is referred to [115, 116].

9.2. THE REGISTRATION

Before attempting the diffeomorphic registration, it is a good idea to run an affine registra-
tion on the images in order to align the two hearts. In order to do so, we created binary
images, having the same domain, that represent the two hearts. In both images, a pixel has
value 1 if the pixel is in the heart muscle, and value -1 otherwise. We used a standard affine
registration method implemented in ITK using the class itkAffineTransform. Let again
u denote the moving image (the Asclepios model) and g denote our heart segmentation. The
algorithm then looks for an affine transformation T minimizing

E(T ) = ||T (u) − g||2L2 , (9.3)

which is simply the L2 distance between g and T (u). A gradient descent method is used for
minimizing E, starting from the initial transformation T = I. Figure 9.2 shows two views
of the aligned hearts.

Having the actual affine transformation T (x) = A + Bx, the fibers vectors can be trans-
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Figure 9.2: An affine alignment of the atlas (in yellow) and the segmented heart (in gray)

formed by multiplying them by the matrix B. It may change the vector size, but it is not a
concern since only their direction is of interest.

With this affinely transformed atlas, it is now possible to run the diffeomorphic demons
algorithm. There is a choice to make on the degree of smoothness of the diffeomorphic.
Figure 9.3 shows the result of the registration algorithm with a low smoothing parameter
σ = 2. The diffeomorphism s2 was obtained in 186 min on an AMD Opteron 64 bit, 2.4
Ghz computer. The atlas is mapped to our segmented heart with great fidelity.

In Figure 9.4 are shown the result of the same registration with a higher smoothing
parameter σ = 10. The diffeomorphism s10 was obtained in 257 min. The resulting mapped
atlas is smoother and some details like the pillars are almost gone. This causes no problem
since the pillars are made of a different type of tissue than the heart walls and there is no
physiological reason for mapping the fibers onto the pillars.

In order to compare the two registrations, one can look at how the regular image grid is
deformed using the diffeomorphisms s2 and s10. Figure 9.5 shows the two grids on a plane
normal to the heart. It can be seen from this figure that the diffeomorphism s10 is much
smoother than the diffeomorphism s2. In the first registration, only points near the surfaces
of the atlas have moved. The diffeomorphism s10 is more rigid: interior points are attracted
by the moving surfaces. This helps in mapping the fibers in a manner that is physiologically
relevant.
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Figure 9.3: Two views of the Asclepios atlas mapped with the diffeomorphism s2 (σ = 2).
For each view, the warped atlas is on the left. On the right, the segmented heart (in gray) is
shown overlaid with the warped atlas (in yellow)
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Figure 9.4: Two views of the Asclepios atlas mapped with the diffeomorphism s10 (σ = 10).
For each view, the warped atlas is on the left. On the right, the segmented heart (in gray) is
shown overlaid with the warped atlas (in yellow)
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(a) (b)

Figure 9.5: An image of atlas image regular grid after transformation. (a) When σ = 2, the
grid is mostly locally deformed. (b) When σ = 10, the grid is more uniformly deformed.
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(a) (b)

Figure 9.6: A 2D view of the registration result on a horizontal cut plane. (a) the atlas
before the transformation. (b) the warped atlas overlaid with the segmentation result. Deep
blue corresponds to the common region, pale blue to the region of the warped atlas that is
not in the segmented heart and black region is the region of the segmented image that is not
covered by the warped atlas.

For these reasons, we decided to map the fibers using the diffeomorphism s10. Assume
that the fiber direction at a point P on the Asclepios model is represented by a vector f (P) ∈
R3. At a point Q in the segmented heart, the fiber direction is then

f̃ (Q) = Js10(s−1(Q) f (s−1(Q)), (9.4)

where Js10(P) is the Jacobian matrix of s10 at point P.
This transform yields the fiber orientation on the segmented heart. It can be calcu-

lated on an image grid, or on a 3D mesh of the myocardium like the ones obtained in
Section 8.3.4.

Figure 9.6 and 9.7 show two 2D views on cut planes through the 3D domain, of the
mapping of the Asclepios atlas on the segmented image using the diffeomorphism s10. On
the left is the atlas before the transformation. On the right, the warped atlas is shown
overlaid with the segmentation result. The warped atlas is shown in blue. The region in
deep blue is the one that is common with the segmented image while the pale blue one
is the region of the warped atlas that is not in the segmented heart. Conversely, the black
region is the region of the segmented image that is not covered by the warped atlas.
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(a) (b)

Figure 9.7: A different 2D view of the registration result on a vertical cut plane. (a) the atlas
before the transformation. (b) the warped atlas overlaid with the segmentation result. Deep
blue corresponds to the common region, pale blue to the region of the warped atlas that is
not in the segmented heart and black region is the region of the segmented image that is not
covered by the warped atlas.

9.3. INPAINTING

The fact that there exist regions Ωmissing of the segmented image that are not covered by
the warped atlas may cause problems since in this region, there will be no fiber direction
assigned. On has to provide a fiber orientation to the voxels in the region Ωmissing. The
problem that consists in recovering missing parts of an image is called the image inpainting
problem. Let Ωseg denote region of the segmented myocardium. Ωseg is the domain of
interest in this application. There is a sub-region of the domain where the fiber orientation
is known via the Equation 9.4. Let Ωfibers denote this region. The fiber orientation is then
missing on the other sub-domain Ωmissing and

Ωseg = Ωfibers ∪Ωmissing (9.5)

Recall that the total variation model for denoising looks for steady state of the following
equation

ut = div
(
∇u
|∇u|

)
+ λ(g − u), (9.6)

where g is the image to be denoised. An easy solution to the inpainting problem consists
in solving Equation 9.6 with particular boundary conditions. Let g denote the image of
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Figure 9.8: An example of a region belonging to Ωmissing (in grey). Dirichlet boundary
conditions are used on the black line and homogeneous Neumann boundary conditions are
used on the white line.

the fibers. Then g has accurate values in Ωfibers and can be set to 0 on Ωmissing. Then the
following problem is solved.

ut = div
(
∇u
|∇u|

)
+ λ(g − u), on Ωmissing

u = g on ∂Ωmissing ∩ ∂Ωfibers

∂u
∂n = 0 on ∂Ωmissing ∩ ∂Ωseg

(9.7)

As an example, Figure 9.8 shows in gray a region belonging to Ωmissing. The total variation
problem is solved with a Dirichlet boundary condition on the black boundary of the gray
region and with the homogeneous Neumann boundary condition on the white boundary of
the gray region. The inpainting problem is as easy to solve in parallel as the Chan-Vese and
the subjective surfaces problem. Figure 9.9 shows the region before and after inpainting.
The use of the total variation equation prevent the inpainted region from being too blurry.
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Figure 9.9: The result of inpainting. (a) The region before inpainting. (b) The region after
inpainting.

Figure 9.10: Two views of the mapped fibers together with the segmented heart surface.
The arrows are colored according to their orientation.

9.4. THE FINAL RESULT

Having solved the inpainting problem, the fibers are now defined over the whole my-
ocardium (the region Ωseg). Figures 9.10 and 9.11 show the resulting fibers with and without
the segmented heart surface.



Figure 9.11: Two views of the mapped fibers without the segmented heart surface.
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Conclusion

10.1. SCIENTIFIC CONTRIBUTIONS

This thesis has scientific contributions of different nature. First, we provided in this thesis
careful analysis of known segmentation methods. Next we introduce variants of these algo-
rithms to address our segmentation problem as well as computing issues. With our results,
we provide the scientific community with a realistic 3D model of the human heart that is
anatomically accurate and has fiber orientation information. Finally we made available to
the community a small C++ toolkit named SPDEIPTK for PDE methods in image process-
ing. This toolkit is intended as research oriented: it is easy to learn and use and it features
an almost transparent parallel implementation. We expand on each of these aspects below.

10.1.1. Algorithm analysis

In Chapter 5, we present a careful analysis of the active contour without edges algorithm.
To our knowledge, the aspects considered there constitute original material.

First we compared the impact of different discretizations of the Mumford-Shah energy
and of its Euler-Lagrange equation on the numerical solution of the problem. We concluded
that some discretizations, while being more natural, do not behave as well as some others.

We also evaluated the impact of the initial condition that is chosen on the speed of
convergence of the algorithm.

We studied carefully the hierarchical method of Gao and Bui [39], and show test cases
where it performs better than the original multiphase algorithm of Vese and Chan [117].
We show that the hierarchical segmentation is a more natural framework for segmenting
junctions with three segments.
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10.1.2. Proposed variants

In Chapter 5, we introduced two new types of initial conditions that make the active contour
without edges algorithm converge more quickly. We defined a random initial curve, that
has values between −1 and 1. We also proposed the use of an initial curve φ̄0 that is the
solution of the problem when there is no curvature term. We tested the initial conditions on
many images and in all cases the initial condition φ̄0 converges more quickly. However, the
random initial, which still converges quickly, has no bias and is less prone to be stuck in a
local minimum.

In this chapter, we also introduced the hierarchical segmentation algorithm with a L1

fidelity term. The L1 fidelity is less sensitive to noise and tends to split the image into
regions of relatively close size. Using this fidelity term, the hierarchical segmentation of
the heart is done in less computational time than with the original L2 fidelity. It also requires
fewer hierarchical steps.

This analysis of the active contour without edges is then applied in Chapter 6 to the
segmentation of the heart chambers. To the best of our knowledge, this is the first time that
the method of active contour without edges is applied to cardiac segmentation. In fact, to
our knowledge, it is the first time that it is applied to such a large data set. The new parallel
implementation made this computation affordable.

In Chapter 7, we present a variant of the subjective surface problem introduced by
Sarti, Malladi and Sethian [98, 99]. We propose to solve the problem on an annulus around
the heart chambers. The problem is solved with Dirichlet boundary conditions: 1 on the
chambers side, 0 on the exterior side. This choice of domain and boundary conditions
prevent the surface from leaking and yields a nicely segmented epicardial surface.

The full heart segmentation is the first success of a heart segmentation that is not using
a model based approach.

10.1.3. 3D heart model

The 3D heart model that is presented constitutes the main contribution of this thesis. The
model is made from a 3D CT cardiac image of a living patient. In principle, all the work
done to build this model can be reproduced with other images. This could be used to build
patient specific geometries and to perform simulations that could assess for example the
feasibility of a surgical operation for a given patient.

The model consists in a high quality mesh, for which there is an associated fiber orienta-
tion vector on each node. The mesh has been generated from segmentation results obtained
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with a combination of the Chan-Vese method and of the subjective surface method. The
fiber orientation was obtained by mapping the Asclepios atlas on the segmented heart with
a diffeomorphic demons registration algorithm. Since the 3D heart contains an orientation
of the fibers, it is suitable for simulating electrophysiological waves and the mechanical
deformation of the heart.

It is the most precise and accurate model of the heart that is publicly available for
researchers. Also, it is among the few, if not the sole model, publicly available or not, that
has the geometry of the pillars included.

The plan is to add features to this model in the future, to make it even more complete.

10.1.4. SPDEIPTK

During this project, we have developed C++ classes that handles images that are in the
standard meta-image format (.mhd). It is easy to learn and use. The classes are designed so
that they can be used in parallel computing with very little effort.

The result is a small image processing toolkit that is suitable for research use. It is
mostly centered on PDE methods in image processing but the parallel implementation
would also accommodate filters that use minimal global information on the image.

The toolkit is publicly available from the website:
http://www.mathstat.uottawa.ca/~orous272/spdeiptk/index.html.

10.2. PERSPECTIVES

10.2.1. Applications

The resulting 3D model of the heart will be used to perform numerical simulations in elec-
trophysiology. Such simulations have already been made on the 2D version of the heart
model shown in Figures 8.1. This has been done by Coudière et al. [29] and Pierre,
Rousseau and Bourgault [90]. There will also be attempts to numerically simulate trans-
membrane potential wave propagation using mesh adaptation on this model.

The model may also serve for numerical simulations of the coupling between the me-
chanical deformation of the heart and the blood flow inside the heart. In that case the cardiac
chambers would also need to be meshed.
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10.2.2. Improvement of the model

The model could be improved in many ways. First the model would gain if the method was
applied successfully to multiple data sets. In that eventuality the shape variability of the
heart and of the recovery of fine anatomical features could be evaluated. Also, the impact
on numerical simulations of heart physiology could be assessed.

The model would gain interest from adding more anatomical structures. In the future,
we plan on adding both atria and the aorta to the model. These structures are already
segmented, and they just need to be meshed together with the ventricle. We also plan on
building a valve geometry that could be added to the model. The valve geometry would
consists of three triangular surface meshes. With this information, issues of leaking valves
can be studied.

10.2.3. Methodology

In Section 7.2 we proposed a modification of the subjective surface algorithm that takes into
account the cavity segmentation. It performs the computation only in a narrow band around
the cavities. The evolution is made using the geodesic active contour equation. We believe
that it would be possible to add a term to the evolution equation that would favor the level
curves to be parallel to the cavities. This could probably be done in the same flavor as the
work of Kimmel [53].

Solving the subjective surface problem was the part of the model building that required
longest computing times. However, it would be possible to solve it with a semi implicit time
stepping scheme like the one introduced by Mikula, Sarti and Sgallari [68, 69]. Using that
scheme decreases considerably the computing time. Mikula and Sarti [67] even proposed
a parallel implementation of that method.



A

Code

During this thesis, a considerable amount of C++ code has been written for solving PDE
problems in image processing. The code has been gathered in a small set of classes and
functions that are intended to be used mainly for PDE methods in image processing, but not
restricted to this.

The main interesting feature of the code is that it may process large 3D images in
parallel. For most parallelizable image processing algorithm, the algorithm can be written
in its standard form, and called by a parallel code in an almost transparent way.

This toolkit is to be used for research purposes and provided as is with no guarantee
that it is bug free. There exists toolkits far more complete and stable among which is the
excellent ITK (Insight Toolkit) [49].

There are several reasons why the ITK has not been used for this project. Programming
efficient filters in ITK is an art. Hard coding algorithms within the ITK framework is easy,
but leads to slow algorithms. A simple C++ implementation can increase the speed by a
factor of 2 to 5 depending on the algorithm. The other main reason is that ITK does not
have parallel capabilities.

The hope is that this set of code could be useful for someone testing image processing
algorithms by providing a simple serial and parallel code set.

The input and output format available can easily be created or viewed by the visualiza-
tion software Paraview1.

In this Toolkit, there are four main classes:

1. Image2D : a class that handles 2D images. It reads and outputs .vtk format.

2. Image3D : a class that handles 3D images. It reads and outputs meta-image format
(.mhd).

1http://www.paraview.org
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3. PImage3D : A class that inherits of Image3D. It is the parallel version of Image3D.
All functions of Image3D that require processor interactions are redefined.

4. Mesh3D : A class that handles 3D volumetric meshes. It reads and writes .vtk legacy
(ASCII) format. This class is more rudimentary and does not have a lot of functions
associated with it.

Along with those, there are many sample codes provided that implement standard algo-
rithms. For example:

• the Chan-Vese algorithm (also known as active contours without edges) in 2D, 3D,
and parallel 3D.

• The total variation denoising algorithm, again in 2D, 3D and parallel 3D.

• The subjective surface algorithm in 2D, 3D and parallel 3D.

• The reinitialization equation in 2D and parallel 3D.

• The heat equation in 2D and parallel 3D.

• Many codes that performs simple operations.

The code is freely available from the website:
http://www.mathstat.uottawa.ca/~orous272/spdeiptk.
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