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Abstract

The goal of this thesis is to solve numerically the equations for viscoelastic fluid

flow that arise from a model of human blood. The model accounts for the elastic

stress acting on the flow using a microstructure variable which itself depends on the

flow. The resulting coupling offers a challenging numerical problem which however is

capable of reproducing experimental results. This work implements a general Finite

Element Code for solving the equations of motion, stress and microstructure state.

Our work sought to validate the numerical scheme in two geometries, coaxial cylinders

and a flat channel, and to further explore the model under a pulsatile flow regime in

a non-trivial geometry – a dilated channel.
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Chapter 1

Mathematical Modelling of Blood

Flow

This thesis seeks to demonstrate the numerical resolution in arbitrary geometries of a

very recent (2006) mechanical model for blood flow. It uses the finite element method

for discretizing the resulting partial differential equations (PDE’s). The model, due

to Owens (the original reference is [20]), describes the effect of blood cells suspended

in its plasma solvent on the overall macroscopic properties of the fluid such as viscous

and elastic stress. The original content of our work lies primarily in the fact that

a numerical resolution of the model under study has not yet been implemented in

arbitrary spatial domains.

The current chapter on mathematical modeling first introduces the Navier-Stokes and

Oldroyd-B equations, which are fundamental to the rheology of viscoelastic fluids. It

then discusses several existing rheological models for blood and finally it introduces,

in minimum detail necessary to appreciate the resulting numerical challenges and

physical implications, the model of Owens [20] and the final form of the equations to

be solved.

1
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1.1 Introduction

Haemorheology is the study of how blood flows. Its primary variables of interest are

the velocity at a given point in space (i.e we will take the Eulerian viewpoint), which

will be denoted u; the scalar pressure, denoted p, and the total stress on the fluid,

σ, a tensor conventionally known as the Cauchy stress tensor. As for all fluids, the

motion of blood is dictated by a balance of mass and forces. Given that for practical

applications blood is incompressible, its conservation of mass equation also known as

the continuity equation becomes:

∇ · u = 0 (1.1.1)

The forces acting on the fluid can be decomposed into body forces, f , such as gravity

or fictitious forces, and the pressure and stress, p and σ. Coarsely speaking, σ lumps

in all other internal or boundary forces such as traction. Balance of linear momentum

then gives,

ρf
Du

Dt
= −∇p+ ρff +∇ · σ (1.1.2)

where ρf is the fluid density and D
Dt

is the material derivative of u associated with

the fact that variables at a given point in space are advected downstream by the flow,

D
Dt

:= ∂
∂t

+ (u · ∇).

1.2 Navier-Stokes Equations

Fluids differ in type by the expression for their internal stress σ. The most fundamen-

tal case, viz. Newtonian fluids, expresses σ as proportional to the deformation-rate

tensor, γ̇(u) = 1
2
(∇u+∇uT ). Then σ = 2ηN γ̇, where ηN is a constant scalar called

the viscosity. In this case, and neglecting body forces, we obtain the Navier-Stokes

equations for a Newtonian fluid:

ρf
Du

Dt
= −∇p+∇ · (2ηN γ̇) (1.2.1)
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The incompressible Navier-Stokes equations, (1.1.1) - (1.1.2), form the founda-

tions of classical fluid dynamics. Relatively simple derivations can be found in [14]

or [21]. Detailed discussions of their physics can be found in [2]. A classical reference

for their mathematical analysis is [16].

1.3 Oldroyd-B Equation

The Newtonian expression for the internal stress is sufficient for simple fluids such

as water or air, but not so for more complex ones such as molten plastics or body

fluids. Much can be accomplished in this regard by considering the mechanical effect

of microstructures such as long polymer chains suspended in the fluid . The Oldroyd-

B equation expresses one of the simplest such relations and is derivable from kinetic

theory if the microstructures are modeled as infinitely extensible Hookean dumbbells.

A Hookean dumbbell is an elementary physical object representing two spherical

masses connected by a Hookean spring. Derivations of the constitutive equation for

the extra-stress tensor due to interactions between an ensemble of dumbbells and an

immersing solvent can be found in [21] or [3]. Decomposing the stress tensor into

viscous and elastic parts, σ = 2ηN γ̇ + τ , where γ̇ is the rate-of-deformation tensor,

on the other hand, ηN is the plasma viscosity and τ is the contribution of the elastic

dumbbells to the stress, gives the following equation for τ :

τ + µ

(
∂τ

∂t
+ (u · ∇)τ −∇u · τ − τ · ∇uT

)
= 2ηpγ̇(u) (1.3.1)

The parameter µ is called the relaxation time and controls the delay between a change

in the flow’s shear rate γ̇ and the ensuing response in τ . In the case of simple

shearing flow in the x-y plane such that u = (ux(y), 0, 0)T , then γ̇ = |∂yux(y)|. In

the general case, γ̇ =
√

2γ̇ : γ̇, i.e. the shear rate is proportional to the modulus of

the deformation-rate tensor. The coefficient ηp is called the polymeric viscosity.
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1.4 Rheological Models for Blood

Several experimental studies have been done on the rheological properties of blood

(e.g. [4], [22]). Notably they demonstrate that blood has non-constant viscosity with

respect to shear, displays hysteresis, and is elastic at low shear rates.

A first attempt at modeling these phenomena is made by the class of models called

Generalized Newtonian. In this case the viscosity in equation (1.2.1) becomes a

function of the local shear-rate, ηN = ηN(γ̇). An example, the application of the

Herschel-Bulkley model to pulsatile flow through a stenosis is discussed in [23]. A

similar comparison but with different expressions for the viscosity can be found in a

2003 paper of Neofytou et al. [19]. It compares the Quemada, Power-Law and Casson

models. Another example is the Cross model [24]:

η(γ̇) = η0

(
1 + η∞β/η0γ̇

m

1 + βγ̇m

)
(1.4.1)

In a broad review of this and several similar constitutive equations, Zhang and Kuang,

[24], also introduce their bi-exponent equation in which an attempt is made to relate

the parameters in the expression for ηN with the propensity of red blood cells to

aggregate into and fragment out of network-like microstructures called rouleaux.

None of these however can account for the elasticity of blood, for example the residual

stress on the fluid after a flow has come to rest. More generally they cannot describe

hysteresis in the stress, i.e that given an applied increase and then symmetric decrease

in the shear-rate, the stress evolution will not be asymmetric. Accounting for these

however is possible with a more general model like Oldroyd-B. Using an Oldroyd-B

type constitutive equation allows for a more physically-grounded description, since

the peculiar features of the bulk flow can be seen to arise directly out of the effect

of the cells suspended in it. An example of such a model is developed by Owens et

al. in a series of papers starting with [20] and it is this that serves as basis for our

numerical work.
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-

Figure 1.1: Hookean dumbbell model. Representation of a blood cell aggrega-
tion as a Hookean dumbbell

1.5 A Microstructure-Based Model for Blood Fluid

Mechanics

The main difference between blood and water is that alongside the plasma about half

of its volume is occupied by red blood cells (RBC’s). Since an RBC is significantly

larger than water molecules, but still significantly smaller than the diameter of any-

thing but the smallest arterioles (an RBC has diameter of 8µm, while vessel diameters

considered here have diameter on the order of 0.5mm), this makes them appropriate

to be represented by the Oldroyd-B model. The original paper of Owens [20] derives a

model where the Oldroyd-B Hookean dumbbells correspond to coin-stack like columns

called rouleaux (see Fig. 1.1). The difference with the classical Oldroyd-B model is

that in the Owens model, a Hookean dumbbell can change its constitution during the

flow as the cells aggregate and fragment out of a rouleau. Thus additionally to the

stress due to the dumbbells (rouleaux) one must also consider the evolution of the

dumbbell size.

Here we will quickly and roughly go over the equations related to the fluid model.

A thorough discussion of their derivation can be found in the original papers [20],[17].

A representative length of the dumbbells is obtained by considering the number of

cells in a rouleau. A complication immediately seen is that at any given time and point
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in space there are rouleaux of various sizes which would have to be represented by

dumbbells of various lengths and tensile properties. Working with this will necessitate

a multi-mode Oldroyd-B equation where the elastic stress is a sum of all the stresses

corresponding to the different dumbbells lengths, τ = τ k. A simplification is to

consider a representative rouleau size, N(x, t), assume all stacks in a control volume

are of length N and set it to be the average length, N = N̂ . A rouleau of cells is a

transient object whose interaction with other rouleaux or with the flow itself results

in it aggregating with others to form bigger rouleaux or in itself fragmenting into

smaller ones. Resolving the resulting aggregation-fragmentation equations results in

the following advection-reaction equation for N̂

DN̂

Dt
+

1

2
b(γ̇)(N̂ − N̂st)(N̂ + N̂st − 1) = 0 (1.5.1)

Here b(γ̇) is a fragmentation rate and N̂st = N̂st(γ̇) is the equilibrium value of N̂

given a steady flow. The value of N̂ , the average rouleau size, has an effect over the

macroscopic elastic stress, τ in (1.3.1), via its relaxation time, µ, in the following

manner:

µ = µ(N̂) =
λHN̂

1 + gN̂N̂λH
, (1.5.2)

where gN̂ is an aggregation coefficient associated with stacks of length N̂ , such that

gN̂N̂ = (1/2)b(γ̇)N̂(N̂ − 1) + a(γ̇), a(γ̇) is an aggregation rate for the RBC’s and

λH is the relaxation time associated with a single blood cell. In particular we would

expect that at infinite shear-rates, all rouleaux would break up and therefore µ→λH
as γ̇→∞. There is no experimental or theoretical form for the exact expression of

the aggregation rate, a(γ̇). Heuristically, a(γ̇) has been assumed to be concave down

such that it is linearly increasing at low shear-rates and goes to zero at very large

shear-rates. Strictly speaking, a(γ̇) represents a sticking probability and therefore is

a function of the RBC number density. However, since we assume the same RBC

number density throughout the computational domain, we will ignore that. The later
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papers of Owens et al., [17][8], take into account that in small vessels the cell density

is not uniform and that in particular there is a cell-depleted slippage layer near the

walls. We will ignore this effect here. The assumed form for the aggregation rate will

be a piecewise cubic polynomial in γ̇ as follows:

a(γ̇) =


Σi≤3a1,iγ̇

i if γ̇ ≤ γ̇crit

Σi≤3a2,iγ̇
i if γ̇ ∈ (γ̇crit, γ̇max)

0 if γ̇ ≥ γ̇max

(1.5.3)

The values of aj,i, γ̇crit, γ̇max can be found tabulated along with the other parameter

values in Ch. 3. The expression for b(γ̇) can then be determined by considering a

balance in the case of steady shear such that:

b(γ̇) =
a(γ̇)

N̂st(N̂st − 1)
(1.5.4)

What remains is to express N̂st in terms of measurable quantities. Supposing

that the polymeric viscosity ηp is proportional to the relaxation time µ and using the

expression for µ, (1.5.2), implies that in a steady shear flow:

ηp =
η∞N̂st

1 + (3/2)a(γ̇)λH
(1.5.5)

Here η∞ refers to the asymptotic value of ηp at infinite shear.

On the other hand, one can fit experimental data for steady shear to a Cross model

(see Eq. (1.4.1)) such that the polymeric viscosity, ηp, is set to:

ηp(γ̇) = η0

(
1 + θγ̇m

1 + βγ̇m

)
(1.5.6)

where η0 is the zero-shear polymeric viscosity, β and m are Cross Model parameters

and θ := η∞β/η0.

Combining equations (1.5.5) and (1.5.6) one can solve for the average rouleau size,

N̂st to obtain:

N̂st =
η0

η∞

(
1 + θγ̇m

1 + βγ̇m

)
(1 + (3/2)a(γ̇)λH) (1.5.7)
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With that we can refer anew to the equation for the elastic stress in an Oldroyd-B

fluid (1.3.1) where the functional form for its parameters, namely ηp and µ, have now

been fully described.

1.5.1 Non-dimensionalizing the Equations

Similarly to what is done in [17], characteristic scales can be introduced as follows:

Define characteristic length L and velocity U . From this one obtains a corresponding

characteristic time T = L
U

. Then non-dimensional variables can defined as :

x′ = x
L

t′ = t
T

u′ = u
U

τ ′ = τ λH

η∞
p′ = pλH

η∞
N̂ ′ = N̂

Introduce the shear-rate dependent Deborah number De and its corresponding value

at infinite shear De∞

De = µ
U

L
De∞ = λH

U

L
(1.5.8)

After non-dimensionalizing our aggregation-fragmentation rates the constitutive equa-

tion, Eq. (1.3.1) is transformed to read:

τ ′ + De

(
∂τ ′

∂t′
+ u′ · ∇′τ −∇′u′ · τ ′ − τ ′ · ∇′u′T

)
= 2De γ̇ ′(u′)

The second important non-dimensional number in viscoelastic flows is the Reynolds

number, Re, whose definition here differs slightly from what is standard in the case

of a Newtonian fluid.

Re =
ρfULDe∞

η∞

We also define a non-dimensional plasma viscosity, ηs.

ηs =
ηNDe∞
η∞
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The non-dimensional momentum equation becomes:

Re
Du

Dt
− ηs∇ · γ̇ −∇ · τ +∇p = 0 (1.5.9)

The advection-reaction equation for N̂ , (1.5.1), is easily transformed after re-

placing the dimensional rates, b(γ̇) and a(γ̇) with their non-dimensional versions,

respectively b′(γ̇′) and a′(γ̇′), where

b′(γ̇′) =
L

U
b(γ̇) a′(γ̇′) = L

U
a(γ̇)

Finally dropping the primes we have the complete set of equations to be solved:

Re
Du

Dt
− 2ηs∇ · γ̇ −∇ · τ +∇p = 0 (1.5.10)

∇ · u = 0 (1.5.11)

DN̂

Dt
+

1

2
b(γ̇)(N̂ − N̂st)(N̂ + N̂st − 1) = 0 (1.5.12)

τ + De

(
∂τ

∂t
+ (u · ∇)τ −∇u · τ − τ · ∇uT

)
= 2De γ̇(u) (1.5.13)

1.5.2 Boundary Conditions

In order to close the system (1.5.10) - (1.5.13), an appropriate set of boundary condi-

tions (BCs) is required. Once we have a domain Ω with boundary Γ, we will impose

BCs as follows. First split Γ into three disjoint sets, Γi, Γo, Γw, respectively the

inlet boundary, the outlet boundary and the walls. Along Γi, we will specify Dirich-

let boundary conditions for u, N̂ and τ . Since equations (1.5.12) and (1.5.13) are

advection-reaction equations for a given velocity u, Γi is the only place where we

need to specify boundary conditions for N̂ and τ . For the velocity, we will further

specify a no-slip condition along Γw, which means that u moves with the walls and

in particular that along fixed walls u = 0. Finally along Γo, we will specify a mixed

Dirichlet-Neumann boundary condition for the velocity. We will impose u ‖ no and

[−pI + 2ηsγ̇]no = 0, where no is normal to Γo and u ‖ no indicates that the velocity



1.6. Outline of the Thesis 10

is prescribed to be parallel to the normal. These boundary conditions anticipate the

treatment of the various terms in the weak form of the equations as discussed in Ch.

2.

This thesis is the first instance, to our knowledge, where equations (1.5.10)-(1.5.13)

are solved for in arbitrary spatial geometries. Note that although we restrict our-

selves to 2D geometries here, the code ’as is’ is capable of handling three dimensional

problems.

1.6 Outline of the Thesis

The thesis is structured as follows: In chapter 1, we have described the physical

background and the mathematical details of the model. In chapter 2, we discuss the

discretization techniques necessary to solve the PDE’s numerically. In chapter 3, we

discuss numerical results including code validation. Finally the last chapter concludes

with some general remarks including suggested future work.



Chapter 2

Finite Element Approximation

This chapter on the numerical discretization of the viscoelastic model (1.5.10)-(1.5.13),

is divided into five sections. In the first section, we introduce the basics of the finite

element method, while in the second we discuss the details most pertinent to vis-

coelastic flows. The third section presents the methods used to deal with transient

(i.e. time-dependent) solutions. Once these are detailed, we restate Eqs. (1.5.10)-

(1.5.13) in the weak discretized form used for the numerical solution. In section five,

we mention a few words about the software packages used to implement our scheme.

2.1 Finite Element Fundamentals

2.1.1 Weak Formulation of a PDE

The principle of the finite element method arises naturally from the variational or

weak formulation of a PDE. Take for example the Navier-Stokes equations (1.5.10)

- (1.5.11). If we assume that the equation is satisfied for some pair (u, p), then

multiplying the momentum equation by a test function φu and the continuity equation

by a test function φp will not alter the equality.

Consider the functional space U = {u ∈ L2(Ω);∇u ∈ L2(Ω);u|Γi
= uΓi

,u|Γw =

11
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uΓw ,u|Γo ‖ nΓo}, where uΓi
,uΓw are given functions on the inlet and the walls re-

spectively, nΓo is the normal to the outlet and u|Γo ‖ nΓo indicates that at the outlet,

the velocity is prescribed to be parallel to the outlet’s normal. Also consider the

functional space P = {p ∈ L2(Ω),
∫

Ω
p = 0}. U and P are the spaces in which we will

seek our solution pair (u, p).

We will take the multiplying test functions φu to be in Utest and φp to be in

Ptest, which are defined as: Utest = {(φu ∈ L2(Ω);∇φu ∈ L2(Ω);φu|Γi
= φu|Γw =

0, φu · to|Γo = 0}, Ptest = {φp ∈ L2(Ω),
∫

Ω
p = 0}, where to is a tangent to the outlet

Then after multiplying the equations by the test functions and integrating by

parts the viscosity term, −∇ · γ̇(u), and the pressure gradient, ∇p, and using the

BC’s we obtain the variational form of the Navier-Stokes equations:

Find u ∈ U and p ∈ P such that:

Re
d

dt
< u, φu > +Re c(u,u, φu)+

b(φu, p) + ηs a(u, φu) = 0, ∀φu ∈ Utest, (2.1.1)

b(u, φq) = 0, ∀φp ∈ Ptest, (2.1.2)

where the bilinear and trilinear forms are defined as follows:

< u,v >=

∫
Ω

u · v ; a(u,v) =

∫
Ω

γ̇(u) : γ̇(v)

b(u, p) =

∫
Ω

p∇ · u ; c(u,v,w) =

∫
Ω

(u · ∇)v ·w

The numerical approach to this problem is to reduce the solution and test spaces

to finite dimensions. The first fundamental technique, the Galerkin approach, used

primarily for elliptic or parabolic PDE’s, is now detailed. The second technique, the

Petrov-Galerkin approach, used for advection-dominated equations, is detailed in sec-

tion 2.2.2.
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2.1.2 The Galerkin Approach

The finite element method approximates the solution of the PDE by a finite linear

combination of basis functions defined on the domain which is decomposed into a

finite number of elements (also called cells). We need the following definitions.

Definition 2.1.1 (Mesh) A mesh or a tesselation Mh of a domain Ω is a disjoint

cover of Ω such thatMh =
⋃
iKi, Ki is a polygonal geometrical shape and Ki

⋂
Kj 6=i

is at most a vertex, an edge or a face (in 3D).

There are no theoretical restrictions on the type of polygons used. In practice one

uses triangles or quadrilaterals in 2D and tetrahedra, pyramids, prisms or hexahedra

in 3D. In this work all our meshes are triangular. Note that the term ’cover’ is used

loosely. If Ω itself is not a polygon, all one can hope for (and insist on) is that the

element vertices lying on the exterior boundary of Mh also lie on ∂Ω. The subscript

h on an object is used to indicate that the object is mesh-dependent. h itself denotes

in some sense the size of the largest element in a mesh, for example the length of the

longest edge. It is expected that as h→0, then Mh →Ω.

With the domain thus partitioned into finite elements, one can now define a finite

element basis on the mesh Mh by:

Definition 2.1.2 (Basis Functions) The family of functions {φj} defines basis

functions if these functions are defined on the mesh Mh and form a linearly in-

dependent set.

A special type of a basis is called the nodal or Lagrangian basis.

Definition 2.1.3 (Lagrangian Basis) A basis {φj} is Lagrangian if ∃ a set of

points {pj} on Mh, such that the basis functions {φi} satisfy φi(pj) = δij
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There are a number of alternatives to Lagrangian-type elements, e.g the Crouzeix-

Raviart elements, which are also frequently used for viscoelastic flow (see [11]), the

Raviart-Thomas elements, or more exotically the Nedelec elements used in electro-

magnetism. Ern and Guermond [6] give a thorough discussion on finite elements.

Now consider again a domain Ω where the Navier-Stokes equations (1.5.10)-(1.5.11)

are to be solved. LetMh be a mesh on Ω. Let {φu,i} be a vectorial Lagrangian basis

on Mh and let Uh = {uh ∈ span(φu,i);uh|Γi
= ΠhuΓi

,uh|Γw = ΠhuΓw ,uh|Γo||nΓo , },

where Πh is the Lagrange interpolation operator (see [6]). Let {φp,i} be a scalar La-

grangian basis on Mh and let Ph = {ph ∈ span(φp,i) ⊂ P} The Galerkin approach

uses basis {φu,i} and {φp,i} that are the same for both the trial and test spaces. For

the Navier-Stokes equations this means:

Find uh ∈ Uh and ph ∈ Ph such that:

d

dt
< uh, φu > +c(uh,uh, φu) + b(φu, p) + a(u, φu) = 0, ∀φu ∈ Utest,h, (2.1.3)

b(uh, φp) = 0, ∀φp ∈ Ptest,h, (2.1.4)

where Utest,h = span(φu,i) ∩ Utest and Ptest,h = span(φp,i) ∩ Ptest.

Common spaces used in the Galerkin approach are continuous, piecewise polynomials,

which are here defined:

Definition 2.1.4 (Pn spaces) Let Mh be a mesh on Ω. Given a cell K ∈ Mh, let

Pn(K) be the space of polynomials of degree ≤ n restricted to K. Then the space Pn on

Mh is defined such that φ ∈ Pn whenever φ ∈ C0(Ω) and φ|K ∈ Pn(K), ∀K ∈Mh.

In the case of multi-dimensional variables (vectors or tensors), then a multi-dimensional

Pn space is understood to have each of its components in Pn as a scalar.
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2.1.3 inf-sup Conditions - Well-Posedness of the Discrete

Problem

The spaces chosen in the continuous case satisfy an important well-posedness crite-

rion, that is the spaces U and P are such that there exists a constant β > 0 for

which

inf
p∈P

sup
u∈U

b(u, p)

‖u‖1‖p‖0

> β,

where ‖ · ‖1 and ‖ · ‖0 indicate the H1(Ω) and L2(Ω) norms, respectively.

When one chooses discrete approximation spaces, Uh and Ph that are conformal,

meaning they are subspaces of U and P , one still has to ensure that the discrete spaces

for the velocity and the pressure satisfy the discrete version of the inf-sup condition.

Inf-sup conditions are fundamental in the theoretical study of finite element methods.

The velocity-pressure case is amongst the first pair of finite element spaces that

demonstrated the importance of the discrete inf-sup condition, which bears the name

(L)BB-condition after (Ladyzhenskaya), Babuska and Brezzi (see [6], [18]). A pair

of approximation spaces known to satisfy an (L)BB-condition is the P2/P1 element

also known as the Taylor-Hood element (a proof can be found in [6]), i.e. velocity is

taken to be quadratic on each element and pressure is taken linear. An alternative

is to use the Pressure-Stabilized Petrov-Galerkin method (PSPG) where instead of

testing the momentum equation with φu, we instead test with φu + τK∇φp (see [18]

for instance). This approach is not explored in this work.

The zero-mean condition on p in the formulation of the problem, i.e. the re-

quirement that
∫

Ω
p = 0 guarantees the uniqueness of the solution, since without

this zero-average condition, if p is a solution so would be p + α, for any constant

α. Therefore insisting that
∫

Ω
p = 0 is a way of removing one degree of freedom

from the solution space for the pressure. But though removing this degree-of-freedom

by requiring the pressure average to be zero is convenient theoretically, it is expen-
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sive computationally. There are other tricks to accomplish the removal of that extra

degree-of-freedom, such as imposing the value of the pressure at a single node on the

mesh. Our solver for the momentum-continuity equations applies a technique which

is referred to as ’artificial compressibility’ [6]. Namely, we add the term εh
∫
pφpdΩ

to the continuity equation (2.1.4) so that it becomes∫
Ω

φp∇ · uh + εh

∫
Ω

phφp = 0; ∀φp ∈ Ptest,h, (2.1.5)

where εh is normally set to a very small value such as 1e−7. As discussed in Sec. 4.4 of

Ern and Guermond, [6], this will have the dual effect of removing the extra-degree for

the pressure (i.e. making the discrete problem well-posed) and rendering the matrix

of the resulting linear system positive-definite, thus improving the performance of

the linear solvers. The fact that the solution is changed only slightly by the added

’artificial compressibility’ term is proven in Sec. 4.4. of [6].

2.2 Finite Element Methods for Viscoelastic Flows

The extension of the finite elements techniques used in classical fluid mechanics to vis-

coelastic flows is not trivial. The problem in (uh, ph) becomes a problem in (uh, ph, τ h)

and in the case when ηs = 0 in (1.5.10) one needs that the discrete deformation-rate

tensor γ̇(uh) ∈ Th, where Th is the test space for τ h. This implies for example that if

we choose Th ⊂ C0(Ω), then we must have Uh ⊂ C1, which puts a significant compu-

tational overhead. In that case or even in the case where ηs is small a commonly used

technique to overcome this compatibility condition is to introduce artificial viscosity

(i.e ’increase’ ηs) and compensate for that by introducing an extra variable to keep

the problem consistent. There are several ways to do this. In this work we have used

the Discrete Elastic-Viscous Stress Splitting method (DEVSS) of Guénette, Fortin et

al. (see e.g. [11]). This allows us to work with the standard continuous P1 elements

for the elastic stress. Another concern is the propensity of first-order advection equa-
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tions to give rise to spurious oscillations near the boundary. These can occur for both

the upper-convected derivative for τ h and the material derivative for N̂h appearing

in the PDE’s for these unknowns and must be addressed in both cases.

2.2.1 Discrete Elastic-Viscous Stress Splitting - DEVSS

One of the major tools in ensuring convergence in viscoelastic flow simulations is

by enlarging the coercivity of the elliptic operator in the momentum equation while

retaining the consistency of the discretization. This is performed by introducing an

auxiliary variable d and its corresponding discrete space Dh, adding a term to the

momentum equation, increasing the solvent viscosity and adding an extra equation

for d, which can be termed the projection equation for the deformation-rate tensor

γ̇(uh). This gives:

Re <
Duh
Dt

, φu > −α < d,∇φu > +(α + 2ηs) < γ̇(uh),∇φu >

− < ∇ · τ h, φu > − < p,∇ · φu > = 0; ∀φu ∈ Utest,h,

< d− γ̇(uh), φd > = 0; ∀φd ∈ Dtest,h,

The proper choice of α is elucidated in Fortin et al. [11] and like there we usually set

α = De. However note that it has been suggested in informal talks with students at

l’Université Laval that in smooth geometries one can take α to be much smaller and

thus speed up convergence. A full numerical analysis of the DEVSS method can be

found in the series of papers by Fortin et al. ([12],[10], [11]).

2.2.2 The Petrov-Galerkin Approach - Streamline Upwind-

ing

Advection equations require a departure from the standard Galerkin approach [21],[18].

Coarsely speaking, standard Galerkin approximation often results in spurious oscil-



2.2. Finite Element Methods for Viscoelastic Flows 18

lations in the discrete solution that are not present in the true solution. A possible

rectification consists in using modified test functions [18].

Consider the residual of the equation for τ h in (1.5.13):

R(τ h) := τ h + De

(
∂τ h
∂t

+ (u · ∇)τ h −∇u · τ h − τ h · ∇uT
)
− 2De γ̇(u),

Then the Petrov-Galerkin approach to testing this equation is by changing the test

functions as:

φτ−→φτ + αSUh u · ∇φτ ,

where αSUh is a stabilization parameter. The definition of αSUh is element-dependent

and is dictated in the case of advection-diffusion equations with diffusivity κ by the

local element Peclet number Peh = ‖u‖ ∗ hK/κ [18]. Treating a pure-advection

equation as the case Pe→∞, the inferred form for αSUh is:

αSUh :=
hK
‖u‖

Note that when coupled to the Navier-Stokes equations, instead of being given, the

velocity is obtained from the most recent solution to (1.5.10), (i.e. u = uh(t)).

Moreover to avoid numerical problems when uh→0 we modify the definition to read:

αSUh :=
hK√
‖u‖2 + 1

(2.2.1)

There are several variants such as setting αSUh = 0 if ‖u‖ < ε for some ε or changing

the denominator as in: αSUh := hK/
√
‖u‖2 + ε. But experimenting with all three did

not result in significant differences in the results.

Having thus introduced the Petrov-Galerkin technique, we can state succinctly its

application to the second pure-advection equation in our system, namely the mi-

crostructure evolution equation (1.5.12).

Let Nh be an approximation space for the average rouleau size, N̂ , and consider the

residual of Eq. (1.5.12):
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R(N̂h) :=
DN̂h

Dt
+

1

2
b(γ̇)(N̂h − N̂st)(N̂ + N̂st − 1)

Then we seek an N̂h ∈ Nh such that:

< R(N̂h), φN̂ + αSUh u · ∇φN̂ >= 0; ∀φN̂ ∈ Ntest,h (2.2.2)

SUPG methods are also indicated for the treatment of the classical Navier-Stokes

equations at high Reynolds numbers. However since Re � 1000 in our case, we do

not use this approach for the momentum equation (1.5.10).

2.3 Time-Stepping

All weak formulations presented so far include a continuous expression for the time

derivative. The final step then is to discretize the equations in time. Ch. 6 of [6] de-

tails the general approach for transient solutions with finite element methods. More

specifically, section 6.4 of [21] is dedicated to the treatment of time-dependent vis-

coelastic flows such as the Oldroyd-B equation. As is standard in the finite element

method, we first discretize in space and then in time. Consider the equation for N̂ :

dN̂

dt
+ u · ∇N̂ + f(N̂) = 0

where f(N̂) = 1
2
b(γ̇)(N̂ − N̂st)(N̂ + N̂st − 1) is the reaction term.

Discretizing in space gives (we assume a Galerkin method here for simplifying

notation):

<
dN̂h

dt
+ u · ∇N̂h + f(N̂h), φN̂ >= 0; ∀φN̂ ∈ Ntest,h

Finally we discretize in time using an Euler implicit method. Given an initial condi-

tion, N̂h|t=0 = N̂{0}, we solve :

<
N̂
{n}
h − N̂{n−1}

h

∆t
+ u · ∇N̂{n}h + f(N̂

{n}
h ), φN̂ >= 0; ∀φN̂ ∈ Ntest,h
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for N̂
{n}
h at all times tn = n∆t, n = 1, 2, 3, . . ..

The final issue is how to linearize, the nonlinear reaction term, f . The standard

approach is to apply Newton’s method and solve iteratively at each time, tn the

following system until convergence:

<
N̂
{n,k}
h − N̂{n−1}

h

∆t
, φN̂ > + <

∂f(N̂
{n,k−1}
h )

∂N̂
N̂n,k
h , φN̂ >= 0; ∀φN̂ ∈ Nh

where k indexes the successive iterates of Newton’s method. We have chosen instead

to do something else. Instead of evaluating both terms that appear in the expression

for f we evaluate only one and use the already calculated value from the previous

time step. That is we approximate

f(N̂
{n}
h ) =

1

2
b(γ̇)(N̂

{n}
h − N̂{n}st )(N̂

{n}
h + N̂

{n}
st − 1)

by

f(N̂
{n}
h ) =

1

2
b(γ̇)(N̂

{n}
h − N̂{n}st )(N̂

{n−1}
h + N̂

{n}
st − 1)

This makes f linear in N̂
{n}
h and completes both the space and time discretization.

The discretization for the other time operators is very similar and we simply state

the equations in the next section.

2.4 The Weak System

We now state in full the discrete system to be solved.

Let Mh be a tesselation on Ω. Let Uh = {uh ∈ R3|uh ∈ P2}, let Ph = {ph ∈ R|ph ∈

P1}, let Nh = {N̂h ∈ R|N̂h ∈ P1}, let Th = {τ h ∈ R3×3,sym|τ h ∈ P1}, and let Dh = Th.

Note that the tensor fields Th and Dh are specified to contain symmetric tensors.

Then, given initial values, (u0
h, p

0
h, N̂

0
h , τ

0
h,d

0
h) at t = 0 we seek iteratively at each time

tn = n∆t, n = 1, 2, 3 . . ., a quintuplet (unh, p
n
h, N̂

n
h , τ

n
h,d

n
h) ∈ (Uh×Ph×Nh×Th×Dh)

such that:
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Re <
(unh − un−1

h )

∆t
, φu > +Re c(unh,u

n
h, φu)+

b(pnh, φu) + (α + 2ηs)a(unh, φu) = (2.4.1)

< ∇ · τ nh, φu > +α < dnh,∇φu >; ∀φu ∈ Utest,h,

b(unh, φp) + εh < pnh, φp >= 0; ∀φp ∈ Ptest,h, (2.4.2)

< dnh, φd >=< γ̇(unh), φd > ∀φd ∈ Dtest,h, (2.4.3)

<
N̂n
h − N̂n−1

h

∆t
, φN̂ > +c(unh, N̂

n
h , φN̂) +

<
1

2
b(γ̇n)(N̂n−1

h + N̂st(γ̇
n)− 1)N̂n

h , φN̂ >= (2.4.4)

<
1

2
b(γ̇n)(N̂n−1

h + N̂st(γ̇
n)− 1)N̂st(γ̇

n), φN̂ > ∀φN̂ ∈ Ntest,h,

< τ nh, φτ > + < De(N̂n
h )(
τ nh − τ n−1

h

∆t
+ (unh · ∇)τ nh−

∇unh · τ nh − τ nh · ∇unh), φτ >= (2.4.5)

< De γ̇(unh), φτ > ∀φτ ∈ Ttest,h,

For readability we will henceforth drop the h subscript from the variables.

2.4.1 Picard Iteration

The system of equations (2.4.1) - (2.4.5) is tightly coupled and highly non-linear, for

one when considering all the places the shear-rate γ̇(u) comes up in the microstruc-

ture equation (2.4.4) and also due to the terms ∇u · τ and u · ∇u. The Deborah

number itself, De is a rather complicated function of N̂ and γ̇. Therefore before the

application of dedicated linear solvers, one must linearize the system. There are two

main techniques for this, commonly called Picard iteration and Newton’s method.

Picard iteration solves one of the five equations at a time and loops over the equa-

tions until convergence of the unknowns, before stepping forward in time. Newton’s

method is based on linearizing the system all at once. A discussion of both methods
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in the context of viscoelastic flows is given in Sec. 6.2 of [21].

For our purposes, we use a Picard-type iteration at each time-step to solve the system

of equations (2.4.1) - (2.4.5). We first solve the momentum and continuity equations

simultaneously (2.4.1) - (2.4.2), then we perform the discrete strain projection (2.4.3)

using the newly obtained γ̇(u), then the advection-reaction equation, Eq. (2.4.4), is

solved for N̂ using the newly obtained u and γ̇ and finally the constitutive equa-

tion, (2.4.5), is solved using the newly obtained De(N̂). This cycle continues until

some threshold of convergence. More precisely, at any fixed time tn = n∆t, we per-

form an inner loop over the Picard indices k = 1, 2, . . . , kmax, and at each Picard

step, k, we will look for a quintuplet (un,k, pn,k, N̂n,k, τ n,k,dn,k) using the initial val-

ues (un,0, pn,0, N̂n,0, τ n,0,dn,0) = (un−1, pn−1, N̂n−1, τ n−1,dn−1) - the solution of the

previous time-step. The system of equations is presented in the order in which the

individual equations are solved:

Re <
un,k − un−1

∆t
, φu > +Re c(un,k,un,k, φu)+

b(pn,k, φu) + (α + 2ηs)a(un,k, φu) = (2.4.6)

< ∇ · τ n,k−1, φu) + α < dn,k−1,∇φu >; ∀φu ∈ Utest,h,

b(un,k, φp) + ε < pn,k, φp >= 0; ∀φp ∈ Ptest,h, (2.4.7)

< dn,k, φd >=< γ̇(un,k), φd > ∀φd ∈ Dtest,h,(2.4.8)

<
N̂n,k − N̂n−1

∆t
, φN̂ > +c(un,k, N̂n,k, φN̂) +

<
1

2
b(γ̇n,k)(N̂n−1 + N̂st(γ̇

n,k)− 1)N̂n,k, φN̂ >= (2.4.9)

<
1

2
b(γ̇n,k)(N̂n−1 + N̂st(γ̇

n,k)− 1)N̂st(γ̇
n,k), φN̂ > ∀φN̂ ∈ Ntest,h,

< τ n,k, φτ > + < De (N̂n,k)(
τ n,k − τ n−1

∆t
+ (un,k · ∇)τ n,k−

∇un,k · τ n,k − τ n,k · ∇un,k), φτ >= (2.4.10)

< De γ̇(un,k), φτ > ∀φτ ∈ Ttest,h,
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Note that we will use a newly computed solution for a quantity (say u in Eq.

(2.4.10)) as soon as it is available from the same Picard iteration, rather than wait

until the next iteration. This is analogous to using the Gauss-Seidel method for the

iterative solution of a linear system vs. the Jacobi method.

We have chosen for our Picard iteration convergence criterion, the max norm of the

incremental difference in the discrete vectors representing the variables (u, N̂ , τ ).

Letting U represent the coefficients of {φu,i} in the solution for uk, the system is

considered resolved if ‖Uk − Uk−1‖∞ < εpicard and similarly for τ k and N̂k. We have

set εpicard = 1e− 5.

Once decoupled in this manner, the system retains only one non-linearity, the advec-

tion term u · ∇u in (2.4.6). To deal with it, we linearize and solve it using Newton’s

method at each Picard iteration. This is a standard technique in the finite elements

treatment of the Navier-Stokes equations that will not be discussed here.

2.5 MEF++

The C++-based finite element code MEF++ ([5]) is developed under le Groupe

Interdisciplinaire de Recherche en Éléments Finis (GIREF) at l’Université Laval. It

has an object-oriented design that allows for adding arbitrary terms in a PDE. It

links to the Portable Extensible Toolkit for Scientific Computations (PETSc) library

([1]) for the solution of the resulting linear system. All finite element calculations

presented have been performed using the MEF++ suite of libraries.



Chapter 3

Numerical Experiments

This chapter is about the validation of our numerical scheme and a series of compu-

tational experiments inside a 2D geometry that have not been previously performed

with this rheological model. In the first section we discuss results in a coaxial rheome-

ter where we duplicate some results from the original paper of Owens [20]. In the

second section we perform several experiments in a channel, which is a geometry of-

ten used to validate the numerical schemes for Oldroyd-B and related models. We

also determine the apparent viscosity of an equivalent Newtonian fluid. In the final

section we discuss new results obtained in a dilated channel under steady and, more

interestingly, pulsatile flow conditions. In particular we compare the results of the

viscoelastic model against the behaviour of a Newtonian fluid given the same flow

set-up.

Note that throughout the three sections there are several discussions about the major

numerical techniques used in this paper. In particular why we need DEVSS is quickly

discussed in Sec. 3.2.2, while a deleterious effect of not using SUPG is pointed out in

Sec. 3.3.4.

24
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Figure 3.1: Flow in a coaxial rheometer - geometry and boundary conditions.
See text for details.

3.1 Coaxial Rheometer

The original paper of Owens [20] replicates results in a coaxial rheometer of Bureau

et al. [4]. The geometrical set-up for this problem is illustrated in Fig. 3.1. A coaxial

rheometer consists of two concentric cylinders separated by a narrow gap. Also called

a viscometer, it is used primarily for measuring the shear-dependence of a fluid’s vis-

cosity. In the experiment, the inner cylinder is held fixed, while the outer cylinder

is accelerated for time t ∈ [0, tf/2] and then decelerated over t ∈ [tf/2, tf ]. Experi-

mentally this can be done such that the shear-rate γ̇ is a piecewise-linear function of

time, as in see Fig. 3.2, increasing from [0, γ̇max] and then decreasing to 0, and such

that γ̇ is almost independent of space. Experimentally, the shear-stress, τrθ, can be

inferred by measuring the torque on the inner wall. In our numerical experiments

this is represented as follows (refer to Fig. 3.1): Γr is the outer, rotating wall and

Γf is the inner, fixed wall. At both locations, we impose no-slip on u, i.e. u rotates

with Γr and is fixed at Γf . Since the flow does not enter or leave the geometry, no

boundary conditions need to be imposed on N̂ or τ .
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Figure 3.2: Functional form of the applied shear rate, γ̇(t), for the coaxial
rheometer experiment.

3.1.1 Imposed Velocity

If we take the flow as imposed, i.e that u is known on the geometry such that ∇u is

constant then the solution for N̂ and τ will also be uniform in space. More specifically,

given the geometry dimensionalized as in Fig. 3.1 and a piecewise-linear γ̇(t) as in Fig.

3.2, then the velocity is assumed to be a radial function everywhere on the domain,

which in polar coordinates is:

ur = 0 (3.1.1)

uθ = γ̇(t) r log r (3.1.2)

The shear-rate γ̇ and the deformation-rate tensor γ̇ are then uniform in space implying

that so should N̂ and τ . Therefore the entire problem reduces to a system of coupled

ODE’s in time, which looks as follows:.

dN̂

dt
= −b(γ̇)(N̂ − N̂st)(N̂ + N̂st − 1) (3.1.3)

dτrθ
dt

=
De(N̂)γ̇(t)− τrθ

De(N̂)
(3.1.4)
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Figure 3.3: Close-up of the mesh for the coaxial rheometer experiment.

Such a system can be solved in any numerical package such as Matlab. This is the

first step we take so that we can use the results from the ODE’s calculations for

comparison with our finite element (FE) calculations from the 2D coaxial rheometer

geometry. This will also serve as an illustration of the behaviour of the various non-

constant parameters in the system as functions of the shear rate, γ̇ (see Fig. 3.4).

Three different test cases are shown matching what is in the original paper by

Owens, [20]. The difference between the three cases is the maximum value of the

shear-rate, γ̇max, at the experiment’s midtime, tf/2. The three values are γ̇max =

0.1, 0.29, 0.84s−1. For all three experiments we have tf = 40s. Table 3.1 shows the

parameter values used in the coaxial rheometer simulations. Figure 3.5 shows the

results for N̂ and τrθ obtained by solving the ODE’s in Matlab. As is done in [20],

the values of the variables during the second portion of the experiment (when shear

is decreasing) are plotted on top of the values from the first portion. This highlights

the hysteresis in the evolution of τrθ.

In order to validate our finite element code, we seek to match the results in
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Figure 3.4: Graphs of model parameters as functions of γ̇. Going left-to-right,
top-to-bottom, they are the aggregation rate, a(γ̇), the fragmentation rate,
b(γ̇), the steady average rouleaux size, N̂st, the disaggregation coefficient,
gN̂st

, the dumbbell relaxation time µ, and the polymeric viscosity, ηp. Note

that some of these quantities are functions of both γ̇ and N̂ . In such a case
we set N̂ = N̂st. Refer to Ch. 1 for their physical meaning and algebraic
form. For details see [20] and [17].
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Figure 3.5: Time plot of the solution N̂ (at top) and τrθ (at bottom) for
γ̇max = 0.1, 0.29, 0.84. All solutions are plotted from N̂(0) = 50 and τrθ(0) =
0 over t ∈ [0, tf/2] for increasing γ̇ and over t ∈ [tf , tf/2] for decreasing γ̇.
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parameter value comments, (units)
η0 0.14 zero-shear polymeric viscosity, (kg s−1m−1)
η∞ 0.004 infinite-shear polymeric viscosity, (kg s−1m−1)
β 7.2 Cross model coefficient
m .6 Cross model exponent
λH 0.145 single cell relaxation time, (s)
ηN .001 plasma (Newtonian) viscosity, (kg s−1m−1)
ρf 1053.6 plasma fluid density , (kg m−3)

Table 3.1: Parameter values for the coaxial rheometer test case. The model’s
parameters used for the numerical experiment in the coaxials rheometer ge-
ometry. For the coefficients in the functional form for a(γ̇) we have used the
values as in [20]

Fig. 3.5. Since our model is implemented in dimensionless units one needs to keep

track of the corresponding dimensional units in the experiment. However since the

triangular-ramp shear-rate experiment is characterized by the dimensional values of

the shear-rate, it is not really important what the characteristic length and velocity

scales are, as long as the corresponding dimensional shear-rate is the same as in

[20]. For our characteristic scales we set Uchar = 0.0229, Lchar = 0.0066. In order to

measure τrθ from a Cartesian coordinate system, which is what we employ for our FE

calculations, we probe τxy at the top of the inner cylinder, (x, y) = (0, 1). For this

point τrθ = τxy. Figure 3.3 shows a closeup of the mesh used and the point (thick

grey dot) where τxy and N̂ are measured for comparison with the solutions of the

ODE’s shown in Fig. 3.5. The measurement point is also marked on Fig. 3.1.

This somewhat coarse mesh has 4320 vertices and 7356 elements, which leaves

about 5-6 elements across the gap. We take ∆t = 0.1Uchar/Lchar, i.e. 400 time steps

are done for the entire FE simulation. This is of the same order of magnitude as

the time step taken by the Matlab ODE solvers (though of course Matlab employs

methods with a higher order of convergence in time.) The FE solutions can be seen

in Fig.3.6 plotted on the same graph as the Matlab solution. The ODE and FE

solutions are almost identical, the maximum difference being about 1%. Finally we
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Figure 3.6: Comparison of Matlab and FE numerical solutions. Time-history
of N̂ (at top) and τrθ (at bottom). Results obtained from Matlab (i.e. from the
ODE’s) are in blue, the finite element results are in red. These are solutions
for γ̇max = 0.84s−1 and the velocity given in Eq. (3.1.1).

look at the distribution of N̂ and τ in space, which should be constant. We find this

to be indeed the case when we take a look at surface plots of both variables in Fig.

3.7. The spatial variation in the variables is on the order of less than .2% for |τ |Frob
and less than .001% for N̂ .

3.1.2 Resolution of Fully Coupled System

The next test case is to attempt to solve the fully coupled problem, Eqs. (2.4.1)-

(2.4.5). For the boundary conditions on u, we set u|Γf
= 0 on the fixed wall and we
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Figure 3.7: Surface plots of N̂ and |τ |Frob in the coaxial rheometer. N̂ (left)
and |τ |Frob (right) at the midtime, tf/2 of the triangular-ramp shear exper-
iment assuming the given velocity, Eq. (3.1.1). Noting the scale, there is
almost no cross-sectional variation.

prescribe an accelerating rotation at Γr:

ur|Γr = 0 (3.1.5)

uθ|Γr = γ̇(t)R log(R) (3.1.6)

where R = 1.05 is the radius of the outer wall and γ̇(t) has exactly the same form as in

Fig. 3.2. Using the same mesh, the results from the fully coupled problem can be seen

in Fig. 3.8, where we have also included the results from the uncoupled simulation

for comparison.

It is immediately clear that the shape and scale are very similar. In fact whatever

discrepancy between values coming from the coupled vs. the non-coupled solutions

can be explained by the fact that the shear-rate is no longer radially constant in

the fully coupled problem. Instead, in the fully coupled problem, the shear rate is a

radially decreasing function, such that near Γf it is slightly higher than the imposed

value from the non-coupled case. Thus if near the wall, γ̇ is larger, we would expect

τrθ to be also larger and N̂ to be slightly smaller. This is indeed what is observed in

Fig. 3.8.
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Figure 3.8: Comparison of coupled vs. uncoupled solutions. Time-history of
N̂ (at top) and τrθ (at bottom). Results obtained from the uncoupled problem
are in black, results from the fully coupled problem are in red. γ̇max = 0.84s−1
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Figure 3.9: Surface plots of N̂ and |τ |Frob in the coaxial rheometer for the
coupled problem. N̂ (left) and |τ |Frob (right) at the midtime, tf/2 of the
triangular-ramp shear experiment after solving the complete problem

Note further that the radial variation in the shear-rate induces a variation in N̂

as well as τ (see Fig. 3.9).

In summary we feel satisfied that our code correctly represents the model at least

in this geometry and we have seen the first example of the complete coupling between

all the variables in 2D. Now we can proceed to the main type of experiments we want

to perform, viz. flow in channels.

3.2 Flows in a Straight Channel

Since blood vessels have a tubular, pipe-like shape, it makes sense to explore this

rheological model in pipe-like or, in the 2D case, channel geometries. A straight

channel allows for further testing of our numerical scheme and it gives us a convenient

test-bed for determining the value of the viscosity in an ’equivalent’ Newtonian fluid,

which is done in Sec. 3.2.5.

Table 3.2 shows the parameter values used in experiments in channel-type ge-
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Parameter Value Comments
η0 0.0326 zero-shear polymeric viscosity, (kg s−1m−1)
η∞ 0.0030 infinite-shear polymeric viscosity, (kg s−1m−1)
β 1.0 Cross model coefficient
m 1 Cross model exponent
λH 0.005 single cell relaxation time, (s)
ηN .001 plasma (Newtonian) viscosity, (kg s−1m−1)
ρf 1053.6 plasma fluid density, (kg m−3)

Table 3.2: Parameter values for the channel test cases. The model’s param-
eters used for the numerical experiment in the channel geometries. For the
coefficients in the functional form for a(γ̇) we have used the values as in [8]

ometries for both straight and dilated channels in all numerical simulations in both

this and the next sections. The values have been taken from the later papers of Owens

et al. [17], [8].

3.2.1 Geometry and Boundary Conditions for Flow in a Straight

Channel

Consider the problem illustrated in Fig. 3.10, which we term flow in a straight channel.

Our domain is simply a rectangle of length 5 and width 1. The flow goes from left

to right, entering the domain at the inlet, Γi, and exiting at the outlet, Γo. At Γi

we impose values for all u, τ and N̂ . At Γo we set uy = 0 and the natural outflow

condition, −p + 2ηs∂xux = 0. Along both walls, Γw, we put no-slip condition on the

velocity, u = 0.

The simplest such flow is a steady, shear flow such that u = (ux(y), 0)T , for any

function ux = ux(y). If so, then the solution for the microstructure equation, (1.5.12)

and the extra stress equations (1.5.13) is given by:

N̂ = N̂st(|∂yux|)

τxx = 2 De2(N̂st) (∂yux)
2 (3.2.1)
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Figure 3.10: Flow in a straight channel - geometry and boundary conditions.
See text for details.

τxy = De(N̂st) ∂yux

τyy = 0

as long as we add the following right-hand function, f to the momentum equation,

(1.5.10).

f =

[
−(De + ηs)

∂2ux
∂y2

− ∂De

∂y

∂ux
∂y

, 0

]T
(3.2.2)

i.e Eq. (1.5.10) becomes

Re
Du

Dt
− 2ηs∇ · γ̇ −∇ · τ +∇p = f (3.2.3)

3.2.2 Steady Flow Experiment

We choose a mesh with 4482 elements, mesh X1 in Tab. 3.4. The mesh is shown in Fig.

3.11. The black, vertical line across in Fig. 3.11 indicates a cut along which we later

plot our variables. With this mesh we have about 20 elements across the width of the

channel. For this test case, we set the inflow to be a quadratic, ux(y)|Γi
= 4(1− y)y,

and we apply the expressions from Eq. 3.2.1 as both inlet BC’s and initial conditions.

However evaluating the derivative ∂De
∂y

is a cumbersome and error-prone task and so we

instead simply set fx = −(De + ηs)
∂2ux

∂y2
|Γi

= 8(De + ηs). The values for the Reynolds
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Figure 3.11: Mesh X1 for the straight channel.

and the infinite-shear Deborah numbers are Re = 25.45 and De∞ = 0.1. Surface plots

for the solutions over the entire domain are shown in Fig. 3.12. In Fig. 3.13 we plot

cuts of the variables along a vertical line at x = 4. Note that we are solving the fully

coupled problem such that De = De(N̂) and thus given our simplified form for f , Eq.

3.2.1 is not a solution (except of course that N̂ = N̂st). Nevertheless to a large extent

the variables behave as in Eq. 3.2.1. With the shear-rate, γ̇ increasing linearly from

the midline of the channel, N̂ has a bell-like profile centred at the midline. This has

the effect of reducing De near the walls and thus tempering the growth of τxx and τxy

near the walls.

Remark 3.2.1 Using the same parameters we tried to perform our simulations with-

out using the DEVSS technique, i.e. setting α = 0 in Eq. (2.4.1) and ignoring the

d variable altogether. However we found that we could no longer obtain convergent

solutions.

3.2.3 Numerical Validation - Steady Shear Flows

In order to validate our schemes we compare the results from our FE code to the

analytical solutions in Eq. 3.2.1. Since we need to evaluate the y-partial derivative

of De, ∂De
∂y

in the expression for fx, Eq. 3.2.2, we will simplify the expression of De in

order to simplify calculations. We compute two different flows as test cases with two

different expressions for De. For our first new test case we set De = Deconst = 0.137
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Figure 3.12: Steady flow in a straight channel. Plotted from top to bottom
are: ux, N̂ , De, τxx and τxy.
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Figure 3.13: Steady flow in a straight channel, cut at x = 4. Plotted from
top to bottom are: ux, N̂ , and τ . On the bottom graph, the two variables are
τxx (in solid) and τxy (dashed).
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Figure 3.14: Cross-wise distribution for different profiles for De. Deconst
(blue), Dequad (green) and DeN̂ (red)

everywhere on Ω, effectively removing the effect of N̂ on the other variables. We have

chosen this value since it equals the average value of De(N̂) in the straight channel

experiment computed in the previous section. We also want to see what is the effect

of having a y-dependent De on the accuracy of our solution. Thus for our second test

case we set De = Dequad = 0.137(5/6+(1−y)y). This is just a scaled quadratic whose

average over the domain will be the same as Deconst. We will compare the solutions

arising from both test cases against the analytic solution given in Eq. 3.2.1. Note that

in assuming these expressions for De, the entire role of N̂ has been eliminated from

the system of equations. For comparison, in Fig. 3.14 we plot the profiles of Deconst,

Dequad and our solution from the previous section, De = De(N̂), along a vertical cut

at x = 4 .

We will look at the L1(Ω) errors for the two test cases for the variables, ux, τxx
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Test Case Ẽτxx Ẽτxy Ẽux

Deconst 0.0044 0.0001 0.0000
Dequad 0.0226 0.0109 0.0035

Table 3.3: Errors for the viscoelastic variables in a straight channel.

and τxy. We define the local error on, for example, τxx as:

eτxx(x, y) := |τhxx − τaxx|

where τhxx is the FE solution and τaxx is the analytical solution from Eq. 3.2.1.

Again using τxx as an example, we define the relative local error, ẽτxx(x, y) as:

ẽτxx(x, y) := eτxx(x, y)/(|τhxx|+ 0.01) ∗ 100

And the relative global error, Ẽτxx on τxx as:

Ẽτxx := ‖eτxx‖L1(Ω)/‖τxx‖L1(Ω)

The relative global errors for the two cases are given in Tab. 3.3.

We see that the case of Dequad is more difficult and we incur a higher error, but

nevertheless our scheme is quite accurate. We also plot the relative error ẽτxy in Fig.

3.15 over a vertical cut at x = 4. The areas where ẽ is largest is in the middle and

it corresponds to areas of very low values for τxx, τxy, i.e. this is less a symptom of

inaccuracy than of dividing by a small number.

With this we feel that our scheme accurately captures the features for Oldroyd-B type

fluids in steady flow.

3.2.4 Mesh Convergence

As is standard in numerical PDE’s experiments, we now proceed to establish that

our solution converges with mesh refinement. We return to steady flow for the fully

coupled problem with De = De(N̂) and consider three meshes on the channel, whose
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Figure 3.15: ẽτxx, ẽτxy for different De’s. ẽτxx (top), ẽτxy (bottom) The relative
error for Deconst is plotted in blue, the relative error for Dequad is plotted in
green.
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Mesh ID # Elements # Vertices
X1 4482 2360
X2 17928 9201
X3 39374 20040

Table 3.4: Straight Channel Meshes.

Figure 3.16: N̂ with mesh refinement. N̂ on mesh X1 is plotted in blue. N̂ on
mesh X2 is plotted in red. N̂ on mesh X3 is plotted in green. N̂st calculated
on the finest mesh, X3, is plotted in black. These are plotted on a vertical
cut through the channel taken at x = 4.

characteristics are provided in Tab. 3.4. X2 is obtained from X1 by splitting uniformly

every edge of the mesh in two. This creates four triangles in X2 for every triangle in

X1. X3 is obtained by reducing the length of an edge in X2 by a factor of about 1.5.

In this steady flow test case, one of the biggest challenges turns out to be cap-

turing the steep peak in the value of N̂st in the FE solution of N̂ near areas of low

shear-rate such as near the axis of the channel. Recall that according to Eq. 3.2.1 N̂

should equal N̂st. Figure 3.16 shows that even though the finer meshes improve the

solution, there is still a gap between N̂ and N̂st near the middle of the flow, where

the shear-rate vanishes.

We observe however that the incremental changes on De with mesh refinement

have only a negligible effect on the behaviour of the elastic stress and the velocity.
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Figure 3.17: ux in straight channel with mesh refinement. ux on mesh X1
blue, ux on mesh X2 red, ux on mesh X3 green

Plotting u, τxx and τxy along the same vertical cut shows almost no change in their

profile for the finer meshes (see Figs. 3.17 - 3.19). We conclude then that using a

mesh resolution as in X1 is sufficient to provide accurate solutions for this rheological

model.

3.2.5 Determination of the apparent viscosity, ηa, for an equiv-

alent Newtonian fluid

Here we sketch out the procedure for determining the apparent viscosity ηa needed to

make a Newtonian fluid ’equivalent’ to the viscoelastic fluid modelled by (1.5.10)-

(1.5.13). The two fluids are deemed equivalent if given identical values for the

Reynolds number, Re, and velocity at the inlet, u|Γi
, they have identical pressure

gradients longitudinally along the channel. Consider the following expression for the

Navier-Stokes equations for a Newtonian fluid in non-dimensional form:

Re
Du

Dt
= −∇p+∇ · (2ηaγ̇) (3.2.4)

We solve Eq. (3.2.4) together with the incompressibility condition, Eq. (1.5.11) in the

straight channel domain detailed in Sec. 3.2.1 subject to exactly the same BC’s for
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Figure 3.18: τxx with mesh refinement. τxx on mesh X1 blue, τxx on mesh
X2 red, τxx on mesh X3 green

Figure 3.19: τxy with mesh refinement. τxy on mesh X1 blue, τxy on mesh
X2 red, τxy on mesh X3 green
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the velocity u as for the viscoelastic fluid, with one notable exception, the inlet profile

for the velocity. In particular we impose a constant inlet velocity ux = 1/2 on both

the Newtonian fluid model and the viscoelastic model. This is done in anticipation of

the pulsatile simulations in Sec. 3.3. With this inlet velocity, we will obtain exactly

the average of the time-varying volume influx during the pulsatile simulations. The

determination of an equivalent Newtonian fluid is done in an ad-hoc way by varying

the viscosity ηa in Eq. (3.2.4) until one obtains a pressure gradient in the Newtonian

model that is identical to the one obtained from the viscoelastic model. Fig. 3.20

shows the difference between the pressures along the x-direction calculated with the

fully coupled viscoelastic model vs. the pressure solution for the Newtonian model.

Though the pressure gradients are almost identical in the downstream part of the

channel, there is some discrepancy near the inlet. This, we attribute to the fact that

the constant velocity across the inlet is transformed into a Poiseuille profile as the

flow progresses into the geometry, but this has a different effect on the pressure in

the momentum equation depending on whether the stress tensor has an elastic part,

τ , or not. Indeed if we were to try to match the viscoelastic pressure near the inlet,

by lowering ηa we will have worse agreement between the curves downstream. We

have decided that the appropriate thing to match is the pressure downstream from

the inlet, which is why we have chosen the ηa which gives us the blue curve in Fig.

3.20. The exact value is ηa = 0.1532 = 4.6ηs, where the value of the solvent viscosity,

ηs, is taken from the equivalent viscoelastic simulation.

3.3 Flows in a Dilated Channel

Ultimately our goal is to perform pulsating flow experiments simulating physiological

conditions in blood vessels. Of particular interest would be to investigate the model’s

behaviour near geometric features which allow for stagnant or recirculatory flow. An

example is the case of an abrupt dilation in a channel, which is what we now pursue.
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Figure 3.20: Pressure drops for Newtonian and viscoelastic fluids in straight
channel. Newtonian fluid is in blue and the viscoelastic fluid is in red. For
the Newtonian fluid we have ηa = 4.6ηs.

3.3.1 Geometry and Boundary Conditions for Flow in a Di-

lated Channel

The configuration for this experiment is illustrated in Fig. 3.21. As explained in Sec.

1.5.2, we separate the boundary in three segments: inlet, Γi; walls, Γw, and outlet,

Γo. At Γi, we impose values for u, τ and N̂ . We impose a time-dependent plug flow

in the lateral direction, u|Γi
= (ux(t), 0)T , for some time dependent ux(t). In the

case of a plug flow, the consistent values to impose for τ and N̂ are: τ |Γi
= 0 and

N̂ |Γi
= N̂st(γ̇ = 0). On Γw we impose no-slip condition on the velocity, u = 0. At

the outlet, Γo, we impose the natural outflow condition, −p + 2ηs∂xux = 0, and no

flow in the y-direction, uy = 0.

Note that applying a plug inflow for the velocity allows to write down simple inlet

conditions for N̂ and τ . If we choose to use other profiles for the velocity, for example

pressure-driven Womersley-like flow, then we would have to solve a simplified version
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Figure 3.21: Flow in a dilated channel - geometry and boundary conditions.
See text for details.

of the system of equations, (1.5.10)-(1.5.13), for the case of an infinite channel that

is for a 1D geometry and then apply the 1D solution as an inlet BC.

For the majority of our pulsatile experiments we will use the mesh shown in Fig. 3.22.

It has 5760 triangular elements and 3049 nodes. What is immediately clear from a

visual inspection of the mesh are the regions of larger elements near the inlet and

outlet. This was an artifact of the meshing algorithm, but we also generated meshes

where the element size was uniform throughout. However we found that having the

mesh coarser near the inlet allowed us to compute at higher values of De∞. While

it is not exactly clear why that is, a possible explanation might be that the coarser

elements near the inlet, rectify the plug inflow near the corners and thus reduce the

strength of the corner singularities for γ̇xy and∇u, which both appear in the equation,

(1.5.13), for τ .

The black, vertical lines crossing the mesh in Fig. 3.22 indicate the locations of the

cuts across the geometry along which we later plot the variables; the precise locations

are x = 3.3, 4.7, 5.3.

Note that we have smoothed the corners where the dilation begins and ends by using
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Figure 3.22: The mesh X8 for the dilated channel. Entire mesh on the left,
close-up of the dilation on the right.

the MEF++ tool iMEF++ which has an internal mechanism for eliminating sharp

corners in the geometry. .

3.3.2 Steady Flow

We first compute a steady flow in the dilated channel. This steady flow will be used to

initiate pulsatile flow simulations in this geometry. At the inflow, we set u|Γi
= (1, 0)T .

The surface plots for the variables can be seen in Fig. 3.23. Longitudinally the flow

goes through three distinct sections. In the first section, between the inlet and the

dilation, we see the plug inflow developing into a Poiseuille flow. In the next sec-

tion where the dilation occurs, the flow slows down and diverts upward to follow the

geometry. And in the third section, past the dilation, the flow evolves again into

the Poiseuille flow of an infinite straight channel. Prescribing a plug inflow generates

very high shear stresses along the walls immediately past the inlet. This is seen in the

high values for all components of τ near the inlet walls. Though the shear decreases

downstream from the inlet as the plug profile for ux is rectified into a parabolic pro-

file, these high value for τ only progressively relax downstream since the large elastic

stress, τ , near the inlet is advected by the flow into the domain. Note for example

the difference in the elastic stress between the area of the channel just before and just

past the dilation. These differences occur even though the velocity and thus viscous

shear stresses, 2ηs γ̇, are roughly identical in both areas. The high-shear stresses near
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Figure 3.23: Steady Flow in a Dilated Channel. The steady state solution
given a plug inflow. From top to bottom, ux, uy, N̂ , τxx, τxy, τyy. Re =
25.4553, De∞ = 0.1.
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the walls induce the opposite reaction for the average rouleau size, N̂ . The inlet value

for N̂ is high given the absence of shear in the assumed incoming flow for the inlet

BC, but the wall induced viscous shear immediately reduces the average rouleau size

near the walls. Nevertheless the high values for N̂ entering at the inlet do continue

to have some effect on the cross-sectional profile of N̂ as they are advected well into

the dilation.

At Re ≈ 25, the flow is well in the laminar regime and the velocity varies smoothly

through the dilation, symmetrically rising and falling in direction to follow the bound-

ary of the geometry. On the other hand the distribution of the elastic stress through

the dilation is rather asymmetric. We see that the corners of the dilation have a

strong effect on the elastic stress, with τyy increasing near the downstream corner,

while τxx being greatest near the upstream corner after which it makes a shallow arch

across the dilation before reentering the post-dilation channel. The behaviour of N̂ is

dictated by the local shear-rate and the flow direction. With the fluid moving upward,

the distribution of N̂ entering the dilation from the pre-dilation channel also shifts to

follow the flow. More interestingly, there is an area of quite low viscous shear, γ̇, and

flow stagnation near the upper wall of the dilation and this causes the largest values

of N̂ to appear near that upper wall. An increase in N̂ implies an increase in De and

so near the upper wall a tug-of-war occurs in the behaviour of τ . On one hand we

have low shear-rates and therefore low values for the components of γ̇. On the other

hand, the local Deborah number, De, is increased. In effect this results in a rather

uniform value for τ cross-sectionally within the dilation.

The effect of the dilation over the flow is quite short in space. As can be seen in Fig.

3.26, by x = 5.3, which is .3 non-dimensional length units past the end of the dilation,

the velocity and rouleau size have already re-assumed their straight channel profiles.

The effect on τ lasts a little further downstream, but not much before the elastic

stress also recovers its infinite straight channel profile. This is another example of the

viscoelastic response of the fluid.
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Mesh # Elements # Vertices
X4 1440 805
X8 5760 3049

Table 3.5: Dilated channel meshes.

3.3.3 Mesh Independence Study

We now compare the solutions over two meshes to see the effect of mesh refinement.

The mesh characteristics are given in Tab. 3.5. Mesh X4 is not shown here, but it

is coarser than X8 (shown in Fig. 3.22) by a factor of two. In fact we obtain X8 by

cutting all edges in X4 in two, thus creating four smaller triangle elements in X8 for

every element in X4.

As indicated in Fig. 3.22, by the vertical black lines, we take three cuts across

the geometry and compare the variables along them. The cuts are at x = 3.3, 4.7, 5.3,

respectively at the beginning of the dilation, towards its end and just past the dilation.

We compare the variables in Figs. 3.24 - 3.26. Note that the dilation is on top of the

geometry and the abscissa on the graphs has y = 0 on its left so on the graphs the

region with the dilation appears on the right.

We see then that the difference between the solution on the two meshes is not large.

Moreover, the element size in X8 is close to the element size of mesh X1 for the

straight channel, which was fine enough to obtain good solutions. Therefore we feel

confident in using mesh X8 for the rest of the dilated channel simulations.

3.3.4 Pulsatile Experiments

For the pulsatile flow in the dilated channel we impose the following boundary con-

dition on the inlet boundary, Γi:

ux(t)|Γi
= (1 + cos(2πωt))/2 (3.3.1)
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Figure 3.24: Steady Flow – cut at x = 3.3. From top-to-bottom: ux, N̂ , τxx.
In dashed blue is the value for mesh X4, in red is the value for mesh X8.
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Figure 3.25: Steady Flow – cut at x = 4.7. From top-to-bottom: ux, N̂ , τxx.
In dashed blue is the value for mesh X4, in red is the value for mesh X8.
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Figure 3.26: Steady Flow – cut at x = 5.3. From top-to-bottom: ux, N̂ , τxx.
In dashed blue is the value for mesh X4, in red is the value for mesh X8.
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Parameter Value Comments (units)
Re 25.4553 Reynolds number
De∞ 0.1 Deborah number at infinite shear
ω′ 1 physical frequency (Hz)
ω 0.05 non-dimensional frequency

Cycles 3 number of cycles computed
∆t 0.01/ω time-step size

Table 3.6: Pulsatile Parameters.

The steady solution obtained in Sec. 3.3.2 is used as initial condition for the pulsatile

simulations. Tab. 3.6 shows the parameter values used in the computations. We have

chosen Re and De∞ as in the most recent papers of Owens et al. [8]. Unfortunately

with our computational scheme and this form of the constitutive model, there is a

limit on the values of De∞ at which we can obtain convergent solutions. De∞ = 0.1

is quite close to what we found to be an upper bound. For our physical frequency we

have chosen a physiologically-reasonable value corresponding to 60 heart beats per

minutes.

Snapshots of the flow variables during a single cycle over four equally spaced time

intervals can be seen in Figs. 3.28 - 3.33. These are taken from the last (third) cycle

of the simulation. The pressure p is not shown since essentially it is falling linearly

across the domain. The time instances during the cycle when we show the variables

are illustrated in Fig. 3.27. Time I corresponds to peak deceleration, time II to the

minimal inflow velocity (peak diastole), time III to peak acceleration and time IV

to maximum inflow velocity (peak systole).

A few things are notable when looking at the pulsatile solution. At this low

Reynolds number, we have a lot of damping on the fluid and thus there is almost no

flow at peak diastole, time II. At peak systole, time IV , we have a lot of shear which

generates large values for the components of τ . De ≈ .26 at time II and De ≈ .31 at
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Figure 3.27: Observation time instances for pulsatile flows.

time IV is not a very high range for the Deborah number and so the delay in τ is

not long.

With this parameter set, the solutions for u and τ are quite symmetric in time around

the middle of a cycle. That is u and τ behave in the same way during the deceleration

of the inlet velocity as they do during the acceleration as can be seen by comparing

their respective surface plots at times I and III, which are very similar. We do not

see the hysteresis for τ displayed in the coaxial rheometer experiment in Sec. 3.1.

Moreover, we do not see a significant difference in the variables between different

cycles; it seems a periodic solution is reached quickly. This is most obvious when

we consider the graphs in Fig. 3.34, which detail the time evolution of the variables

inside the dilation. We have chosen to sample them at the point (x, y) = (3.7, 1.45),

which is close to the middle of the dilation both laterally and longitudinally. What

is interesting is that while u and τ both oscillate in time due to the pulsation, N̂

remains quite constant. A similar behaviour was observed in the time-dependent

simulations in the original papers of Owens et al. [20], [7], and we see that again here.

Our initial conditions correspond to peak systole and correspondingly a low value

for the average rouleau size across the domain. Even though during each pulse cycle

the shear is reduced, the time-scales inherent in the parameter values for N̂ imply
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Figure 3.28: Horizontal velocity, ux, at times I - IV of the pulsating test
case.
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Figure 3.29: Vertical velocity, uy, at times I - IV of the pulsating test case.
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Figure 3.30: Average rouleau size, N̂ , at times I - IV of the pulsating test
case.
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Figure 3.31: Component τxx of the elastic-stress tensor, at times I - IV of
the pulsating test case.
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Figure 3.32: Component τxy of the elastic-stress tensor, at times I - IV of
the pulsating test case.
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Figure 3.33: Component τyy of the elastic-stress tensor, at times I - IV of
the pulsating test case.
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that there is not enough time in this flow regime for the RBC’s to aggregate into

larger rouleaux. Therefore N̂ remains relatively constant despite the relatively large

oscillations in u and γ̇.

Remark 3.3.1 Note that the pulsatile experiment in the dilated channel provided a

posteriori one of the justifications for applying the SUPG technique on the equations.

In particular setting αSUh to zero in Eqs. (2.4.4) and (2.4.5) (i.e if not utilizing SUPG)

will result in a divergent solution during the middle of the first pulse cycle, whereas

solutions can be obtained otherwise.

3.3.5 Comparison against Newtonian Flows

Having defined and established in Sec. 3.2.5 the Newtonian fluid equivalent to the

viscoelastic fluid, we now proceed to compare the viscoelastic pulsatile flow against an

equivalent Newtonian fluid. We solve for the Newtonian fluid as for the viscoelastic

fluid by first obtaining a steady solution and then using this steady solution as an

initial condition the time-dependent problem. The boundary conditions for the New-

tonian model are just the velocity, u, that was prescribed on the viscoelastic model.

We use the value of ηa obtained in Sec. 3.2.5, ηa = 4.6ηs.

We first verify that the steady viscoelastic and Newtonian flows are indeed equiva-

lent. This is roughly the case as could be seen by looking at the pressures from steady

flow inside the dilated channel for both rheological models (see Fig. 3.35). As in the

numerical experiment used to determine the value of ηa for the equivalent Newtonian

fluid in the straight channel, there is a discrepancy in the area near the inlet between

the pressures for the viscoelastic and the Newtonian models. This discrepancy is

slightly more significant in the dilated channel. There is more restriction to flow and

hence higher pressure drop induced by the inlet plug flow in the viscoelastic case than

for the Newtonian model.

To analyze the differences between the two models, we will again consider the spatial
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Figure 3.34: Time evolution for u, N̂ , τ over three pulsatile cycles inside the
dilation of the dilated channel. From top to bottom u, N̂ and τ . Top - ux
(blue) and uy (red). Middle - N̂ (red) and N̂st (black). Bottom - τxx (blue),
τxy (red) and τyy (green).
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Figure 3.35: Pressure drops for a Newtonian fluid and a viscoelastic fluid in
a dilated channel. The Newtonian fluid is in blue and the viscoelastic fluid -
in red

distribution of the variables at the four instants in time defined by the peaks and

the inflection points of the inlet velocity, ux|Γi
, as indicated in Fig. 3.27, during the

third, last cycle of the simulation. In particular we will inspect the variables along

the following lines x = 3.3, 4.7, 5.3, respectively labelled as Increasing Dilation (ID),

Diminishing Dilation (DD) and No Dilation (ND). We will see then what happens to

the flow as it enters the dilation, as it begins to leave it and just after it has left it.

In particular we will focus on the velocity components, ux, uy, and the components of

the Cauchy stress tensor, σxx, σxy, and σyy. Recall that for a Newtonian model, the

Cauchy stress tensor is given by

σ = 2ηa γ̇ (3.3.2)

and that for the viscoelastic model, the Cauchy stress tensor is given by

σ = τ + 2ηs γ̇ . (3.3.3)

The comparisons between the variables from the two models can be seen in Figs.
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3.36 to 3.40. As is typical for this type of viscoelastic fluid, the viscoelastic velocity

profile is smeared in comparison to the velocity of the Newtonian fluid; that is the

viscoelastic velocity has a flatter profile near the middle and then it falls off more

steeply to reach zero near the walls. This behaviour remains true at all times during

the cycle. The differences in ux are on the order of 10%, the differences in uy up to

30%. With regards to stress, the viscoelastic model has consistently higher values for

all components of the Cauchy stress tensor, most dramatically for the tensile stresses,

i.e. σxx and σyy.

We also looked at the evolution in time of the Cauchy stress near the wall inside

the dilation. In Fig. 3.41 we plot the time evolution of σxy, the shear-stress component

of σ, as computed at the top of the dilation, i.e. (x, y) = (4, 1.81). The probe location

is also highlighted as a black dot in Fig. 3.22. We observed that the viscoelastic shear

stress has a slightly delayed response and shows variation with larger amplitude than

the Newtonian shear stress. Similarly to the timeplots in Fig. 3.34, the timeplot in

Fig. 3.41 again demonstrates, at least heuristically, that the system quickly reaches a

periodic state for both the viscoelastic as well as the Newtonian models.
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Figure 3.36: Comparison between ux for a Newtonian fluid (blue) and the
viscoelastic fluid (red) at four different times. The cut is taken along x = 3.3.
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Figure 3.37: Comparison between uy for a Newtonian fluid (blue) and a
viscoelastic fluid (red) at four different times. The cut is taken along x = 3.3.



3.3. Flows in a Dilated Channel 70

ID σxx

I

II

III

IV

Figure 3.38: Comparison between σxx for a Newtonian fluid (blue) and a
viscoelastic fluid (red) at four different times. The cut is taken along x = 3.3.
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Figure 3.39: Comparison between σxy for a Newtonian fluid (blue) and a
viscoelastic fluid (red) at four different times. The cut is taken along x = 3.3.
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Figure 3.40: Comparison between σyy for a Newtonian fluid (blue) and a
viscoelastic fluid (red) at four different times. The cut is taken along x = 3.3.
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Figure 3.41: Comparison between σxy for a Newtonian fluid (blue) and a
viscoelastic fluid (red) over three pulsatile cycles at the top of the dilation,
(x, y) = (4, 1.81).



Chapter 4

Conclusions

This work sets up the framework for the numerical, in particular finite element, so-

lution of microstructure-based, Oldroyd-B type models for blood. Following the 0-D

computations in [20] and the 1-D oscillatory flow simulations in [7], we were able to

employ the finite element method to perform 2-dimensional pulsatile flow simulations

in a non-trivial geometry (our dilated channel). Using physiologically plausible val-

ues for the model’s parameters in this geometry we found differences in the velocity

profiles predicted by the viscoelastic blood model and an equivalent Newtonian fluid.

There were also notable differences in the predicted internal stresses. It would be

interesting to see how this translates into more complex geometries and in 3D, e.g.

for flows in an aneurysm.

From a numerical point-of-view we showed the necessity for utilizing stabilized FEM

methods such as the SUPG and DEVSS techniques.

We encountered several roadblocks. As expected, our methods were limited in the

range of Deborah number, De, for which we could successfully perform numerical

experiments. Also our current computational scheme incurs a rather high computa-

tional cost.

There are several possibilities for overcoming those two problems. To overcome the
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high De problem one could employ the Log-Conformation method introduced by Fat-

tal et al. [9] where a change of variables introduces the log of the conformation tensor

s = log(τ + I). This has been shown to raise the maximum achievable value for De.

Another technique is to couple the solver to a mesh adaptation algorithm, as in [13],

which refines the mesh selectively near critical areas of the flow. A more fundamental

resort involves what is already done in Owens’ newer version of his model [17], which

is to change the constitutive relation. There are variations on the Oldroyd-B model

such as the Giesekus model which can be simulated at much higher values for De (e.g.

see [15]).

In terms of performance, the two major improvements would be to implement New-

ton’s method in order to solve the full system at each time step and to approximate

τ and d with less computationally demanding finite element spaces such as the MIX2

element used in [11].

Given the herein studied physical model’s rich rheological behaviour as revealed in

ours and others’ work, it is hoped that the future implementation of the aforemen-

tioned techniques will allow the model’s features to enter the mainstream of compu-

tational haemorheology.
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[5] É. Chamberlain, R. Guénette, MEF++ v4.0: Les grands concepts,

http://www.giref.ulaval.ca/coursmefpp/mefpp40grand.pdf, 2006.

[6] A. Ern, J.L. Guermond, Theory and Practice of Finite Elements, Applied

Mathematical Sciences, Springer 2005.

[7] J. Fang, R. G. Owens, A new microstructure-based constitutive model for human

blood, Biorheology, 43, 637-660, 2006.

[8] J. Fang, R. G. Owens, A non-homogeneous constitutive model for human blood

Part III. Oscillatory flow, J. Non-Newtonian Fluid Mech, 155, 161-173, 2008.

76



BIBLIOGRAPHY 77

[9] R. Fattal, R. Kupferman, Time-dependent simulation of viscoelastic flows at

high Weissenberg number using the log-conformation representation, J. Non-

Newtonian Fluid Mech, 126, 23-37, 2005.
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