P

[

uOttawa

L'Université canadienne
Canada’s university



Numerical computations of action potentials for the

heart-torso coupling problem.

Myriam Rioux

Thesis submitted to the Faculty of Graduate and Postdoctoral Studies
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
Mathematics [1

Department of Mathematics and Statistics
Faculty of Science

University of Ottawa

(© Myriam Rioux, Ottawa, Canada, 2011

!The Ph.D. program is a joint program with Carleton University, administered by the Ottawa-
Carleton Institute of Mathematics and Statistics



Abstract

The work developed in this thesis focusses on the electrical activity of the heart, from
the modeling of the action potential originating from cardiac cells and propagating
through the heart, as well as its electrical manifestation at the body surface. The
study is divided in two main parts: modeling the action potential, and numerical
simulations.

For modeling the action potential a dimensional and asymptotic analysis is done.
The key advance in this part of the work is that this analysis gives the steps to
reliably control the action potential. It allows predicting the time/space scales and
speed of any action potential that is to say the shape of the action potential and
its propagation. This can be done as the explicit relations on all the physiological
constants are defined precisely. This method facilitates the integrative modeling of a
complete human heart with tissue-specific ionic models. It even proves that using a
single model for the cardiac action potential is enough in many situations.

For efficient numerical simulations, a numerical method for solving the heart-
torso coupling problem is explored according to a level set description of the domains.
This is done in the perspective of using directly medical images for building compu-
tational domains. A finite element method is then developed to manage meshes not
adapted to internal interfaces. Finally, an anisotropic adaptive remeshing methods for
unstructured finite element meshes is used to efficiently capture propagating action

potentials within complex, realistic two dimensional geometries.
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Résumé

Le travail développé dans cette these s’intéresse a l'activité électrique du coeur, en
passant par la modélisation du potentiel d’action des cellules cardiaques, sa propaga-
tion dans les tissus, jusqu’a sa manifestation électrique a la surface du corps. L’étude
se divide principalement en deux parties: la modélisation du potentiel d’action et les
simulations numériques.

Afin de modéliser le potentiel d’action, une analyse asymptotique et dimension-
nelle est effectuée. Une avancée remarquable de cet aspect du travail est que cette
analyse donne les étapes précises pour controler efficacement le potentiel d’action.
Cette méthode permet donc de prédire les échelles de temps et d’espace de n’importe
quel potentiel d’action, c’est-a-dire son profil et sa propagation. Cela est rendu
possible grace a la définition précise de relations explicites dépendant de toutes
les constantes physiologiques impliquées dans le modele. Cette méthode facilite la
modélisation d’un cceur humain avec des modeles ioniques spécifiques aux différents
tissus. Cela prouve également que I'utilisation d’un seul modele ionique est suffisante
dans plusieurs situations pour modéliser le potentiel d’action cardiaque.

Pour des simulations précises et efficaces, une méthode numérique pour résoudre
le probleme de couplage cocur-thorax est explorée. Cette méthode est basée sur une
description des domaines par ensembles de niveau dans la perspective d’utiliser di-
rectement les images médicales segmentées pour construire les domaines de calcul.

Une méthode par éléments finis est aussi développée pour calculer sur des maillages

il



Résumé iv

non adaptés aux interface internes. Finalement, une stratégie d’adaptation de mail-
lage anisotrope est utilisée pour capturer efficacement les variations rapides de la

solution dans des géométries complexes et réalistes en deux dimensions.
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Chapter 1

Introduction

The heart is a vital organ responsible for pumping blood throughout the body by
rhythmic cycles of contractions and relaxations. Every day, the human heart can
pump about 8,000 liters of blood with up to 100,000 heart beats|81]. The pumping
function of the heart relies on the collective coordinated action and reaction of billions
of cells, in order to ensure that each part of the heart contracts at the correct time.
Heart failure is one of the most important causes of death in Canada. This is a great
motivation for heart related research as an improved understanding of heart functions
may lead to new treatments and diagnostic techniques. There exists a remarkable
amount of knowledge about the mechanisms at the cellular and organ levels, where

there is a complex interaction between a wide variety of phenomena:

e The electrochemical phenomena, where ion exchanges at the cell level are trans-
lated at the organ level by the propagation of a potential wave (cardiac action

potential).

e The mechanical phenomena, which are initiated by the electrical activity and

are affected by the blood pressure.

e The blood flow in heart cavities (blood propelled by the heart) and blood flow
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in the myocardium vessels (blood supplying the heart). For example, ischemia
or restriction in blood supply to a portion of the heart, can lead to conduction

abnormalities and stimulus current pathologies.

Although a relatively complete understanding of separate small-scale processes
can be obtained, it is very hard to understand the details of how these processes
interact to form the functioning organ. Moreover, the behavior of the heart under
pathological conditions is even more difficult to understand.

The electrocardiogram (ECG) is still the most widely used tool for heart diagno-
sis. ECG is a very powerful tool having the benefit of being non-invasive, but which
is unfortunately not able to reveal all the detailed functions and dysfunctions of the
heart. In fact, there remain many unresolved questions. For example, the under-
standing of defibrillation and its onset is still limited, for instance the application of
a large electrical shock ends the ventricular fibrillation (rapid irregular contractions)
with a high success rate, but the way the electrical current gets into the heart is not
really known. As a consequence, there is a great need to refine existing techniques as
well as developing new ones for the examination of the heart and the analysis of the

heart functions.

1.1 The heart at the cell level

1.1.1 The cell membrane

The cell membrane provides a boundary separating the intracellular and extracellular
environment. It consists of a bilayer of phospholipids with water-filled pores and
protein-lined pores, called channels, which allow the passage of specific molecules.

Typical values of ionic concentrations are given in Table [I.1]
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Table 1.1: Typical values for intracellular and extracellular ionic concentra-

tions and resting potentials for human cardiac cells. Source: [29].

Ion | Intracellular | Extracellular | Equilibrium
concentration | concentration potential
(mmol/L) (mmol/L) (mV)
Nat 10 135 - 145 72
K+ 155 3.5-5.0 -95
Ca?* 10~ 2 134

Ion transport

Osmosis is a passive process by which water is transported through a semipermeable
membrane to balance the osmotic pressure, which is the hydrostatic pressure due
to a difference in the concentrations of solute from one side to the other side of the
membrane. Diffusion accounts for the passage of small molecules through pores and of
lipid soluble molecules through the bilipid layer. For example, sodium and potassium
ions pass through their specific channels and the process is driven by diffusion and
electrical forces.

Concentration differences are maintained by active mechanisms, e.g. pumping
ions against their concentration gradient, which require the expenditure of energy. For
example, the Na™ — K pump, which uses the energy stored in ATP to pump three
Na™ out of the cell and two K in, resulting a high intracellular K+ concentration
and a low intracellular Na™ concentration. This pump regulates the cell volume and
maintains an intra/extracellular difference of potential.

Another example of an important type of pump is the Nat — Ca?t exchanger,
which uses the energy inherent in the concentration gradient of one ion to pump the
other ion against its concentration gradient. This pump removes Ca®* from the cell

at the expense of Na™ entry.
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The transmembrane potential

It is a consequence of the control of the cell volume that the cell develops a potential
difference across its membrane. In this thesis, we follow the standard convention for

the transmembrane potential, which is given by
U= U — Ue (1.1.1)

i.e. the intracellular minus the extracellular potential.
For a given ion, say S, the equilibrium is reached when the electric field exactly
balances the diffusion of that ion. At equilibrium, the current must be zero and the

potential difference across the membrane is given by the Nernst potential for ion S,

ug = —]Z—Zln Gg]]) (1.1.2)

7

where T' is the temperature, k£ is the Boltzmann’s constant, e is the charge of an
electron, ¢ is the valence of the ion S, and [S] denotes the concentration of ion S.
The Nernst potential is independent of how the ions move across the membrane and
is dependent only on the concentration difference. It is in a sense a universal law and
it can be derived from many different principles[43].

Although the current is zero when a single ion species is considered, it is much
more complicated when more than one ion can move through the membrane. In
this case, the transmembrane potential that generates zero total current does not

necessarily have no net current for each ion.
Electrical circuit model of the cell membrane and the voltage-current re-
lation

The basis for many of the theoretical models in electrophysiology is derived from

Kirchhoff’s laws of electrical circuits. An example of a simple electrical circuit used
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to model the cell membrane is shown in figure [I.TI} where I,,, is the sum of all ionic

currents. The cell membrane acts as a capacitor. Although many processes make

1, ion

e

W

| |
I
—_—

Cpn du/dt

Figure 1.1: An electrical circuit model of the cell membrane.

the ions cross the membrane causing an electrical potential to develop, the medium
on both sides of the membrane remains electrically neutral to a good approximation.
Only a small amount of ions cross the membrane and the excess of charge accumulates
near the interface. For an isolated cell not subject to any external stimuli, there is
no production of charge on either sides of the membrane so the sum of the currents
at one or the other side (outside or inside) of the membrane is zero. With the net

transmembrane current f;,,, = » ¢ Ig, we have

du
m” 7, [z‘on == V. 1.1.
C o + 0 (1.1.3)

The typical value of the capacitance of a cell membrane is C,, = 1.0 uF/cm?.
At equilibrium the potential difference due to the difference of concentration for
a given ion S is given by the Nernst potential ug(eq. (1.1.2])). The net current flow

due to the potential difference follows Ohm’s law

Is =g (u—ug), (1.1.4)

where [g is the transmembrane current for ion S, g is the conductance of the “ohmic”
channel and u is a potential resulting from all ions of the system. This linear current-

voltage relation is also called the linear I — u curve. Note that g is usually non
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constant since the ability of cells to generate an electrical signal results from voltage
and time dependence of the conductance.
Finally, remark that [;,, = 0 at equilibrium but each of the ionic current Ig is

not necessarily null, meaning that u is not necessarily equal to ug for all ions S.

Membrane Ion Channels

There are mainly two steps to simulate current in ionic channels. First, one needs
to properly model the voltage-current relation to describe how the ions flow through
open channels. Secondly, one needs to model the kinetics of channel gating, describing
how the channels open or close in response to a change of voltage.

An open channel can be modeled as a sequence of binding sites, separated by
barriers of potential: the passage of an ion through the channel is determined by the
“probability” to go from one binding site to an other. The rate at which ions traverse
the channel depends on both transmembrane potential and channel type (various
heights of barriers and deepness of sites along the channel).

The opening and closing of ionic channels in response to changes in the trans-
membrane potential is the basis for electrical excitability. The current through a
population of channels depends on the I —u curve ¢ (u) (equation ((1.1.4])) of a single

open channel and on the fraction x (u,t) of open channels.

I=x(u,t)¢(u) (1.1.5)

Let us present the simplest gating model for an ion channel. Suppose the channel
can only take two states, either open, O, or close, C, and that the rates of conversion

from one state to the other (a(u) and ((u)) are voltage dependent.

a(u)

C (1.1.6)

B(u)
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The rate of change of x can be written as follows

dx _

i a(u) (1 —=x) = Bu)x, (1.1.7)

where the fraction of closed channels is 1 — y because of conservation. Under voltage
clamp conditions (see Remark [1| below), a(u) and ((u) are constants and then we

can solve for y as a function of time. It is convenient to write (1.1.7)) as

dx
T (u) = = Xoo(u) — X (1.1.8)
dt
where xoo(u) = ;45 is the steady state of x and 7, (u) = a+rﬂ is the characteristic

time to approach the steady state. As there are many channels, the average rates
a(u) and G(u) can be determined from experimental data. However, this model is not
enough representative of experimental data[43]. The analysis can then be extended
to the case of channels with multiple sites where ions can be bound. More possible
channel states than open O and closed C' have to be considered. The sodium and
potassium conductances in the Hodgkin-Huxley model are of that kind. The sites

can be of different type and the rates of conversion from one state to another differ.

Remark 1 (Voltage Clamp) The voltage clamp technique is used experimentally
to measure the ion currents across a cell membrane. It operates by negative feedback
holding the membrane voltage at a set level. It allows the membrane voltage to be
manipulated independently of the ionic currents, allowing the voltage-current relation

of channels to be studied.

1.1.2 Excitability and action potential

For electrically excitable cells, an action potential (AP) is a biological manifestation

described by a fast rise (depolarization) and fall (repolarization) of the transmembrane
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potential. The AP of a cell is the result of the movement of ions through the cell
membrane (passive transport and active transport e.g. voltage-gated channels), and
this electrical activity is triggered typically by the electrical activity of adjacent cells.
The propagation of the AP in the heart stimulates the myocardium and subsequently
follows the contraction, allowing blood to be pumped throughout the body. An
efficient contraction is ensured by a well-regulated stimulation, hence it is crucial to
understand the inherent physiology.

If a heart beat results from the complex interaction of different APs in different
portions of the heart, the model of the ventricular AP reveals far enough to have a
good overall understanding of the cardiac AP. Here is a brief description (see [16])
of the ventricular AP featuring the most important four phases. Figure [1.2]| shows a
typical ventricular AP separated in phases and the relative ion flows with an example

of a concurrent electrocardiogram.

Phase I: Transmembrane potential upstroke or depolarization (short time scale)
The transmembrane potential is initially at its resting state (V,es ~-85 mV),
where all the fast Na™ channels are closed. A partial depolarization opens these
channels causing a large influx of Na* ions, further increasing the depolariza-

tion. The cell gets positively charged (V4. ~ 40 mV) or depolarized.

Phase II: Excited phase (long time scale) An outward current of potassium ions
is balanced by an inward movement of calcium ions, causing a plateau. Sodium
ions are still flooding in and just about keep pace. The transmembrane po-
tential falls slowly. Note: The transient net outward current causing the small
downward deflection (such an overshoot is observed for some cardiomyocyte) is,

among others, due to the movement of K* ions.

Phase III: Downstroke or repolarization (short time scale) The calcium chan-

nels close while potassium channels are still open. The net outward positive
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current causes the cell to repolarize until the transmembrane potential is re-

stored to about -85 mV. The cell may pass its equilibrium polarization, and

becomes hyperpolarized.

Phase IV: Refractory period (long time scale) Most of the sodium channels
are inactive, and need time to recover before they can open again. The cell

has already recovered its polarization but is nevertheless not susceptible to re-

act to any external stimulus.

I

ur

v

(a) The transmembrane potential ver-
sus time with the four main phases of
the cardiac AP. This is the typical shape
of a ventricular AP.

Na’ ~v
el n

K
Ca"
influx
R

P QS T

(b) Relative ion flows (three
curves at top) and the concur-
rent electrocardiogram (bottom
curve).

Figure 1.2: The cardiac action potential.

1.1.3 Modeling the action potential

A first crucial step in setting simulations in cardiac electrophysiology consists in
choosing the ionic model, which are systems of ODEs able to reproduce the shape of
the AP through time. The ionic models available (see www.cellML.org) are numerous
and it is important to understand the benefits and the limitations of each model so
that an appropriate choice can be made [22]. They can be classified in two types

respective to the way these models are constructed. Accordingly, they are intended

to simulate different phenomena.
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Physiological cell ionic models give a detailed description of ions currents,
ion channels and pumps because they are aimed to reproduce experimental data
(Luo-Rudy [54], Beeler-Reuter [5], Hodgkin-Huxley [41], [63], Ten Tusscher [46], etc.).
They are usually stiff, and their numerical solutions are time-consuming because of
the necessity of using many descriptive variables and very short time scales.

A second class of ionic models contains the phenomenological models (FitzHugh-
Nagumo (FHN) [33, 58], Aliev-Panfilov [4], Mitchell-Schaeffer [83] [56], etc.). The set
of variables is usually reduced to two: one describes the activation and the other
the recovery (u and v in the text). For the sake of simplicity the specific behavior of
channels and ions currents are ignored, hence the phenomenological models are rather
used to determine general propagation profiles. The number of unknowns and param-
eters is small, and the computational cost is appreciably reduced. This advantage is
exploited for example in patient-specific modeling [71], [72] where multiple parameters

adjustments are required and numerical solutions have to be readily obtained.

1.2 The heart at the organ level

1.2.1 Modeling propagation - The bidomain model

The most accepted model in the literature for cardiac AP propagation is the bido-
main model (see [43],81] and references therein). This mathematical model for cardiac
tissues is based on volume averaging, the cardiac cells being too numerous to be mod-
eled individually. To combine the effects of the potential difference through the cell
membrane, the tissue is divided in two domains, which are the intracellular and the
extracellular media (H; and H, resp.). A surface I';, separates these two domains.
The presence of gap junctions (non selective channels that form direct intracellular

connections) is taken into account and the intracellular domain is considered con-

nected (see figure [1.3(a))).
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(a) Periodic cell structure with gap (b) Tons exchange between the

junctions that form intracellular intra- and extra-cellular spaces

connections. The normal to the in- H; and H. through the cell

tracellular domain H; is by conven- membrane I',,. A control vol-

tion the outward unit normal vector ume V with a surface S is de-

ng. fined for the process of homoge-
nization.

Figure 1.3: Geometrical considerations for the homogenization process used
to derive the bidomain model.

Both domains are considered as passive conductors at the quasistatic state (time
scales in electrophysiology are of the order of the ms and are way larger than time
scales in electromagnetism), so that the potentials and the volume current densities

can be related by Ohm’s law:

Ji,e = _O-i,evui,m

where o; and 0., assumed space dependent, are the conductivity tensors of intra
and extracellular domains, respectively. There is no charge source and sink inside
H; or H, and the ion dynamics occurs at the membrane to a good approximation.
The transmembrane current density I is introduced and quantifies the ionic surface

current flowing through the membrane by the following equation

It = J;i-n; = —Je - ne,
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representing a charge conservation (the ions leaving the intracellular domain go nec-
essarily in the extracellular domain). As seen in section , the cell membrane that
separates both media is considered as a electrical insulator (capacitive behavior) with
channels specific to the passage of ions (resistive behavior). The total transmembrane

current is then the sum of the capacitive and ionic currents:

ou

I = _
T Cmat

+ Lion = —o;Vu; - ny,

where u is the transmembrane potential (equation (1.1.1))).

Let us now derive the bidomain equations according to heuristic arguments.
Details of a rigorous proof are given in [60]. We consider a volume V' with a surface
S containing a large number of cells. The volume V' could be the "cube” illustrated

in figure|1.3(a)l On the one hand we have that

—/ (o;Vu;) - nidS = —/ (o;Vu;) - nidS
VAl

(VA )US

because of charge conservation in H;, and

—/ (UquZ) : nZdS = / C’ma_u + ]ionds-
VA, VN, ot

We now define S; =V NI,,uUS and V; =V N H;. On the other hand we have that
S; Vi

using the divergence theorem. All the variables are averaged over the volume V; to

get the variables denoted with a prime:

|‘/Z‘V : (O’zVU;) = ‘Sl‘ (Cmaa_z + [z{on) :
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For the charge conservation, an averaged result is also obtained

V- (0;Vu;) + V- (0.Vu,) = 0.

From an homogenization argument, the intra and extracellular domains are con-
sidered continuous and cover the whole cardiac muscle (H = H; = H.). To each point
x in the heart H are associated intracellular and extracellular potentials, respectively
u; and u.. For more details on the homogenization for the derivation of the bidomain
model, see [36]. For the boundary conditions, we assumed that the heart is electrically
insulated if the bidomain model is solved for the heart only. The bidomain model for

an isolated heart consists in finding (u, v, u.) such that

ov

5 = 9(wv) in A, (1.2.1)

X (C’m% + Lion (u, v)) =V . (o;Vu)+ V- (o;Vu,) in H, (1.2.2)
V- (o;Vu)+ V- ((0; +0.) Vu,) =0 in H, (1.2.3)

nyg - (o;Vu+ (0; + 0¢)Vu.) = ny - (orVur) on 0H, (1.2.4)

ng - (0;Vu;) =0 on 0H (1.2.5)

with v the vector of variables for the ionic model, x is the cell membrane surface
to volume ratio |S;|/|Vi| and C,, is the specific capacitance per unit area of the
cell membrane. The last equation comes from the assumption that the intracellular
domain is isolated from the extracardiac domain.

The first equation represents the system of equations of the ionic model, which
is coupled with the bidomain model via the current [;,,. For a simple 2-variable
phenomenological model, the reaction term I;,, is expressed as an algebraic function
F(u,v). The vector function G(u,v) is used for modeling the dynamics of every

variable v;, component of the vector v.
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If the bidomain model is solved over the heart and the torso, we assume continuity

of potentials between the extracellular domain and the extracardiac domain 7" (see

figure

Ue = UT, on 0H,

where ur is the potential in the extracardiac domain. We assume moreover that the

intracellular domain is isolated from the extracardiac domain
ny - (o;Vu;) =0, on 0H,
and finally that the extracellular and the extracardiac domains are in direct contact
ny - (0.Vue) = ny - (orVur), on 0H,

where ny is the outward unit normal to the heart and o7 is the conductivity tensor of
the extracardiac domain. The bidomain model for the heart-torso coupling problem

consists in finding (u, v, u., ur) such that

V- (O'TVUT) =0 in T, (1211

% =g(u,v) in H, (1.2.6)

X (C’m% + Lion (u,v)) =V - (o;Vu)+ V- (0;Vu,) in H, (1.2.7)
V- (o;Vu)+V - ((0;+0.)Vu,) =0 in H, (1.2.8)

ng - (0;Vu+ (05 + 0.)Vue) = ny - (orVur) on 0H, (1.2.9)

ng - (0;Vu;)) =0 on 0H, (1.2.10)

)

)

nr - (orVur) =0 on 07T, (1.2.12

where we consider the extracardiac domain 7" as a passive conductor insulated, hence

the two last equations.
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Figure 1.4: The heart H embedded in the extracardiac domain 7.

1.2.2 The monodomain model

In the attempt of reducing the computational burden, the variable u. can be elimi-
nated for the one dimensional bidomain model for the isolated heart problem. This
can be done by combining equations (1.2.2) and (1.2.3). The following model is

equivalent to the bidomain model in 1D: finding (u,v) in [0, Z;4.) such that

ou 0%u
X (Cmg —l— ]ion (U/, U)) — O-harm@7 (1213)
v
= 1.2.14
at g (u7 ,U)’ ( )

with opgrm = (0; Ly o, 1)71 is the harmonic average of the intra and extracellular
conductivities in the z-direction. As the monodomain model is defined on the isolated

heart only, a homogeneous Neumann boundary condition is applied on w.

The monodomain model can be seen as an extension of equations ((1.2.13)-([1.2.14))

in more than one dimension, and reads as

X (Cm% + Lion (u, v)) = V: OnonoV (1), (1.2.15)
ov
5 =Y (u,v), (1.2.16)

with 0,000 the conductivity tensor of the monodomain model.
In the particular case of equal anisotropy ratios between intra and extracellular

media, that is o.(z) = ko;(x) for all x € H and for k > 0, then 0,000 = kiﬂai and
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the equations (1.2.15)-(1.2.16)) are called the monodomain equations.

The monodomain model cannot be applied in all situations because it does not
permit currents in the extracellular domain to influence the transmembrane potential
u and ionic currents [70]. This influence has to be taken into account when there are
applied currents due to pacing or defibrillation[28] [88].

But even when there are no applied currents, the heart-torso coupling problem
turns out to be an example where the monodomain model is not suitable. Indeed,
the current flow through the extracellular and extracardiac domains may influence
cardiac sources in a way that can only be represented by a bidomain model (see for
instance [92]). Finally, there exist models for the heart-torso coupling problem using
the monodomain model, and where solutions are comparable to the bidomain solution

in some specific situations[9).

1.2.3 Heart tissue and fiber arrangement

As mentioned above, the conductivity values in both the bidomain and monodomain
models are represented at each point in space by a tensor o, which is justified by the
anisotropic conductivity properties of the heart tissue. The anisotropy comes from the
fact that the heart muscle is composed of fibers. The conductivity is higher in the fiber
direction while it is lower in the cross-fiber direction. The muscle fibers are arranged
in sheets, which leads to the introduction of three different eigendirections for the
conductivity tensor: along the fibers (longitudinal direction a;), perpendicular to the
fibers but along the sheet (transverse direction a;) and perpendicular to the sheet

(normal direction a,). The local conductivity tensor o expressed in this eigenbasis
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(of unit vectors a;, a; and a,) is diagonal:

(o] 0 0
g = 0 O¢ 0
0 0 o,

Values of the conductivities eigenvalues 0y, o, and o, for different media (intracellular,
extracellular media, and any other extracardiac media) can be found in the literature
(see section . Let A be a local orthogonal matrix having the vectors a;, a; and
a, as columns. Then the intracellular and extracellular conductivity tensors can be

written as

Oje = AELQAT (].2].7)

in the Cartesian coordinate system.

1.2.4 The conduction system

The electrical basis of the heart provides rhythmicity to cause the mechanical func-
tioning of the heart. Figure [I.5] shows what is known as the conduction system. The
conduction system constitutes only a small part of the total mass of the myocardium.
Therefore, the myocardial cells of the atria and ventricles provide a larger electrical
signal than the whole of the specialized conduction tissue.

The sequence of excitation starts at the sinoatrial node which is the physiological
pacemaker of the heart. From the sinoatrial node, excitation spreads through both
atria to the atrioventricular node, then, via the bundle of His and its two branches
which carries the impulse to the ventricular muscle through a specialized collection
of fibers called the Purkinje fibers. Activation of the ventricular muscle takes place
from endocardium (internal surface) to epicardium (external surface) and from the

apex (lowest part of the heart) of the ventricles to the base (up to the atrial)[43].
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Figure 1.5: The cardiac conduction system with the shapes of the action
potentials in different tissues of a human heart. Source: [6§].
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1.3 Perspective of heart simulation

The quest for knowledge in this field inspires many researchers interacting in many
domains: physicians, physiologists, specialists in functional imaging, physicists, math-
ematicians, etc. In the current biomedical research, numerical simulations are a pow-
erful tool in helping scientists solve complex cardiac problems. The use of computer
simulations based on mathematical modeling in physiology is a very active field of
research. Advanced simulations can be used to study detailed heart functions over
long time periods. Interconnected and multiscale models are implemented includ-
ing biomechanics, electrophysiology, and the underlying mechanisms of cardiac cells.
With appropriate combinations of mathematical models, it is possible to perform sim-
ulations that not only reproduce data from experiments, but that also have a predic-
tive power. In fact, there is a growing need for patient-specific and complete modeling
of the heart to support comprehensive disease assessment and therapy planning[85].

Personalization is a key aspect of biophysical models in order to impact clinical
practice like therapy planning[24]. A complete description of the heart includes both
physiological and anatomical data, and numerical simulations must be performed with
such data in order to get realistic results. Realistic modeling remains a great chal-
lenge, just considering a priori the complex anatomy of the heart circulatory system
(including valves, blood vessels), the muscle (including fiber arrangement, heteroge-
neous mechanical properties of the myocardium), the conducting system, etc. Exper-
imental data are essential to integrate within models but they are difficult to obtain.
They are even more difficult to integrate in a whole patient specific model, because
of the variability between individuals. The development of experimental techniques
provides more and more information, leading to the development of increasingly so-
phisticated models. It drives continuously research advances because of the strong
and continuous interaction with modeling.

Finally, performing realistic simulations does not depend only on setting up accu-
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rate models with suitable data. It also depends on the ability to solve accurately and
efficiently the resulting equations using numerical techniques. The multiscale aspects
of the equations makes it very challenging to solve, and the numerical techniques

employed are still a very debated issue.

1.3.1 Computational cardiac electrophysiology

The cardiac electrical activity results of small-scale processes and transports informa-
tion at the organ level, where the overall forms a complex heterogeneous system for
conduction and contraction. There are many ways to take advantage of the numerical
simulations for a better understanding of the heart functions and dysfunctions from
the electrical point of view. Numerical cardiac electrophysiology can be divided in

two main classes of problems: the direct problem and the inverse problem.

Direct (forward) problem: The forward problem of cardiac electrophysiology
consists in studying the electrical activity of the heart, from the description of cardiac
activity from sub-cellular and cellular level to the level of the whole organ, and finally
to the non-invasive recording of this activity at the body surface[52]. Despite the
conceptual simplicity of the problem, the task is far from trivial, and to date we
still cannot consider this problem to be solved in any true meaning of the word. An
example of application of the direct problem is in therapy planning, where the location
of the ablation site of an infarct scar can be confirmed to be successful or not[85].
This modeling framework also allows to carefully examine the effects of cellular level

activity on the recorded ECGs.

Inverse problem: The inverse problem of cardiac electrophysiology can be sum-
marized as the computation of the cause at the cellular level and/or at the organ
level (e.g. location of an infarct) of a given measured effect (e.g. ECG)[RI]. A great

difficulty of inverse problems is that the same set of non-invasive measurements could
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result from more than one source configuration. Hence the inverse problems are often
ill-posed, i.e. fail to satisfy at least one of the following solution conditions (in the

sense of Hadamard): existence, uniqueness and continuous dependance on the data.

Remark 2 In many cases, the cause we want to identify is the set of parameters
of the model equations from measurements of the solution of the associated direct
problem. This situation refers as the parameter identification problem[12], and a

variant of this type of problem will be treated in chapter 2

1.3.2 Geometrical model of the heart and level sets

Simulations in cardiac electrophysiology are often made using the finite difference,
the finite element or the finite volume methods. These methods require a mesh
of the computational domain. Two types of geometrical models are typically used:
models of simplified representation of cardiac geometry[87, [62], and high-resolution
image-based models of cardiac structure and geometry[89]. A simplified geometry
enables propagation to be studied in the absence of anatomical detail, whereas more
detailed geometrical models with high spatial resolution enable the role of anatomical
structures to be evaluated[21].

As the computational domain of a realistic human heart has a complex geometry,
most computations are made on meshes of simplified geometries. The mesh can also
be deformed to fit a medical image with increasingly refined models where a fiber
mapping is involved[84) 88]. Though these methods are very robust, they rely on a
standard mean shape of the heart, hence the complex details of the geometry can be
lost (see [93] for an overview of model-to-image adaptation techniques).

It is important to build accurate geometrical models of the heart for under-
standing phenomena like defibrillation and the study of an infarcted heart, as these
phenomena are highly influenced by the propagation through fine anatomical struc-

tures. Realistic geometrical models of the heart containing fine anatomical features
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can be obtained directly from segmentations of medical images (e.g. CT scan, MRI,
echocardiography, Visible Human Project). The finite element simulations presented
in this thesis use precise human heart segmentations based on an original method de-
veloped by Olivier Rousseau[74]. His work had allowed to achieve the construction of
two and three dimensional geometrical models (figures for a 2D model and figure
for a 3D model) of the human heart using an iterative Chan-Vese model. It is pub-
licly available to the scientific community[73]. The segmentation process developed
provides a level set description of the heart (see next section), a framework allowing
the possibility of dealing with moving geometry and facilitating the integration of
patient-specific cardiac geometries. In the lack of data time series, we restrained our
analysis to fixed geometries but the extension to a realistic time deforming geometry

would be natural.

Level set method

The level set method devised by Sethian and Osher [65] gives tools for computing and
analyzing the motion of an interface I' in two or three dimensions. In the context of
describing the heart H embedded in the extracardiac domain T as in section [1.2.1}
the interface of the heart is I' = OH, where the whole domain Q. = HUJH UT. The

idea is to define a continuous function ¢ : 2 — R with

(

<0 forxze H,

¢(x)§ =0 for z on OH, (1.3.1)

> (0 otherwise,
\

with z € Q C R? or R®. The level curve ¢ = 0 represents the interface OH. For

p > 0, we denote by
NI, p) ={z € Q:dist(z, ') < p}
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Figure 1.6: 2D iterative segmentation of the heart from a CT scan image.
(a) The image to be segmented, (b) the result of the first application of
the Chan-Vese model using the original image, (c)-(e) second step, obtained
using a blurred versions of the image (a), (f) the final segmentation of the
heart muscle over the 2D image. Source: Olivier Rousseau [74].
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Figure 1.7: 3D segmentation of the human heart ventricles from a 3D CT im-
age. (a)-(b) Different views of the segmentation, (c) a view of the segmented
exterior surface over the original image, (d) a view of the segmented ventri-
cles together with the atria cavities and the aorte. Source: Olivier Rousseau

[74].
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the p-neighborhood of T, where dist(x,T") is the distance between x and T, i.e. the
shortest distance between z and all xr € I'. Suppose that it exists a pg such that
N(0H, py) C Q, ¢ is a regular function and |Vp| > 0 in N(90H, py). The normal

vector n pointing outward H is given by

Ve
V|

The signed distance function

(

—dist(z,0H) forx € H,

p(z) =140 for x on OH, (1.3.2)

dist(z,0H)  otherwise.
\

is a typical function which satisfies the hypothesis for the definition of a level set
function.

An important advantage of describing the heart dynamics in the level-set frame-
work is the possibility of automatically dealing with moving and deforming walls.
Thus, the interface is captured for all time ¢, by locating the set {z € Q|p(z,t) = 0}.
This also allows for automatic integration of patient-specific cardiac segmentations
when time series of medical images are available.

Topology changes like merging and breaking do not require special care using
level set functions (figure . They occur naturally as nothing special happens to
the level set function when the topology of its level sets changes. As a comparison
the active contour approach (energy-minimizing spline guided by external constraint
forces and influenced by image forces that pull it toward features such as lines and
edges[42]) handles topology changes with difficulty.

Finally, level set methods have achieved success in the recent years in dealing

with computations of free surface fluid dynamics[34], deforming objects and liquids,
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nt

X

Figure 1.8: The level set method can manage topology changes. Slices are
shown at different times for illustrating the curve evolution process. Remark
that ¢ < 0 inside the cones, ¢ = 0 at the surface of the cones and ¢ > 0
outside the cones.

and even blood fluid dynamics from four-dimensional cardiac CT images[55]. We
finally suggest that level set methods could be also applied to other types of problems
in numerical simulations of the heart like in electrophysiology and electromechanical

coupling.

1.3.3 Finite element method

The literature in cardiac numerical electrophysiology is vast. The numerical meth-
ods employed with their numerous variants go in all directions. The finite difference
method, the finite volume method and the finite element method are the most com-
monly applied techniques to discretize spatially the monodomain or bidomain equa-
tions. Other methods have also been used like the boundary element method, mesh
free methods, spectral methods, etc (see [21] and references therein). Let us first
depict a general portrait of the most commonly used numerical methods with their
advantages and disadvantages.

The finite difference method uses finite difference formula to discretize derivatives

in order to approximate the solutions of differential equations (see [70] for applica-
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tions in electrophysiology). The spatial mesh has to be usually structured though
this approach can be generalised for grids with irregular spacing (see [86]). The ad-
vantage of the finite difference method is the straightforward implementation of the
method. The disadvantage is that it is difficult to describe smooth curved surfaces, so
that it becomes difficult to implement boundary conditions[21]. For the finite volume
method, volume integrals in a PDE involving a divergence component are converted
to surface integrals applying the divergence theorem. Finite volumes schemes exhibit
good stability properties with regard to the sharpness of the reaction terms in bido-
main modeling[23]. The finite volume is conservative and can be formulated to allow
for unstructured meshes. Finally, the finite element method seeks the approximate
solution of partial differential equations using its weak form discretized in a finite
dimensional space. It is widely used for solving differential equations over complex,
curved geometries, see for example [89]. Let us see the details of how the standard

finite element method is applied to a simplified problem.

Definition of a simplified problem and weak formulation

In this section, we focus on the finite element method for solving Poisson’s equation, as

the monodomain (equations ([1.2.15)-(1.2.16))) and bidomain (equations (|1.2.1])-(1.2.5))

models are based on Ohmic law and Poisson’s equation for stationary electrical cur-

rents. This approach allows for a description of the anisotropic electrical properties
of cardiac tissue by studying a diffusion problem with subregions of different conduc-
tivities.

Let © = Q- UQ"UT be a domain with subdomains Q- and Q*(see figure [L.9)).
The domain Q™ is embedded in the domain Q7 (see figure . Note that TNIQ = ()
and the specific shape illustrated in figure has no importance in this section. The
internal interface I' separates the two subdomains that have a different conductivity

constant o.
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d 2

Figure 1.9: Domains for the elliptic problem (|1.3.3)).

The problem consists of finding u such that

—V-(oc7Vu)=f inQ,

(1.3.3)
—V - (c"Vu)=f inQ7,
with the following transmission conditions on I', namely the continuity on u

where [u]r denotes the jump of u on I', and the continuity on the normal flux of u
l[oVu - n|p =0, (1.3.5)

and finally the boundary conditions on 0f2, which could be either of Dirichlet (u = g)
or Neumann type (0tVu-n =0 in the homogeneous case).
The diffusion problem in its weak form consists in finding u in the appropriate

function space V € H'(Q) such that

/avu.v¢:/f¢, Vo € Vy (1.3.6)
Q Q



1. Introduction 29

with
ot inQF
o~ in Q.

Let f € L?(Q2) and 0 € L>(Q) with the ellipticity condition o(z) > oo > 0. Then
the problem has a unique solution v in H'(Q). Precisely, let V = {v s.t. v|g- =
u™ € H'(Q7), vlgr = ut € HY(QT), wu|r = u™|r}. For Dirichlet boundary
conditions on 0f, w is found in V = {v € V st Ulr = Uegact}- For Neumann

boundary conditions,  is found in V =V /R and V = Vj in the homogeneous case.

The exact and the approximate problems

Consider the following linear abstract variational problem: find « in V' such that:

a(u,¢) = (f,4), VoeV. (1.3.7)

This abstract problem represents the problem , with a(u, ¢) = fQ oVu-V¢ and
(f.¢) = [ [¢. When one attempts to solve such a problem with the finite element
method, one rather writes an approximated formulation of the problem for
finding an approximate solution.

The finite element approach relies on a discretization of the continuous domain
into discrete subdomains, called elements and usually denoted by K[20]. The set
of all the elements is called the mesh, denoted by 7. As the calculations are done
on a mesh 7, with a mesh size h, one expects to find formulations that allow the
convergence of the approximate solution u; towards the exact solution u as h — 0.

With any finite dimensional subspace V}, of V, the approximate (discrete) problem

associated to ([1.3.7)) reads as: find wuy, in V}, such that

a’h(uha ¢h) = (f> ¢h)7 v¢h € %ir (138)
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Definition 1.3.1 Approximating the solution of problem by defining a simi-
lar problem in a finite dimensional subspace of V' refers to the Galerkin method.
The approzimate space V, is said conforming if V), is a subspace of the space V.

Otherwise, Vj, is said non conforming.

Let us examine how the discrete problem (|1.3.8)) is solved in practice. Let (wy,)3,
be a basis in the space V},. Then the solution u;, = 22/121 upwy of problem 1’ is

such that the coefficients uy are solutions of the linear system

k=1
Definition 1.3.2 (Finite element [20]) A finite element is a triple (K, P,X) where

1. K is a closed subset of R™ with a non empty interior and a Lipschitz-continuous

boundary,

2. P is a space of real-valued functions (usually called the basis functions of the

finite element) defined over the set K,

3. ¥ is a finite set of linearly independent linear forms ¢;, i =1 < i < M (usually
called the degrees of freedom of the finite element) defined over the set P. It
1s assumed that there exists functions p; € P, i = 1 <1 < M which satisfy
®j(pi) = 0i5, 1 =1 <1i < M so that we have p = Zf\il o:(p)p;-

The finite elements most commonly used by engineers are Lagrange finite ele-
ments, where the degrees of freedom are point values, i.e. w; = u(x;). The basic
idea is to use polynomial approximations. Let us denote by Py(K) the space of
all polynomials p : © € K — p(z) of degree < k. Then the finite element space
must be built such that the restriction of the solution on each element K satisfies

u;p = )i 1<ienr Uipi (i) = u(w;). In order to give a very simple example in 1D, the



1. Introduction 31

piecewise linear Lagrange polynomial (in P;) associated to a given node z; is the hat

function illustrated in figure [1.10}

A

X2 Xi1 X; Xi+1

Figure 1.10: Lagrange FE basis functions in P;.

The next step consists in computing the bilinear form a(-,-) which is now a ma-
trix with entries a(wy, w;). Referring to the problem discretized with Lagrange
finite elements, the values of entries a(wg,w;) = ZKGT fK oVuw,, - Vw; can be com-
puted using a Gauss quadrature to give the result aj(wg, w;). If the numerical result
of the integral is exact, then a,(+,-) = a(-,-) and the method is said consistent. The

consistency can also be obtained asymptotically as h — 0.

Theoretical order of convergence

Depending on the finite element formulation, some theoretical results exist [20], [49],
[51], [53], [67], even about the order of convergence with discontinuous coefficients. If
the exact solution of the problem is known, a finite element method is said to converge

with order p in the norm of the space V' if the following error estimate holds
[u = upllv.a < Ch”

. The order of convergence is then a measure of how the error e, = u — uy, tends to

zero with the mesh size h.
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From the theorems and [C.0.2] one can deduce the optimal order of con-
vergence in the H' and the L? norms, respectively, when the mesh is adapted to the
piecewise linear internal interface and the domain is polygonal. The solution of prob-
lem with a standard Galerkin FE formulation and P basis functions converges
with order k in the H'-norm [20] if u is sufficiently smooth. It converges with order
k + 1 in the L?-norm for the same regularity condition on u, i.e. w in H*1(Q). If
a finite element method is endowed with one of these orders of convergence, we say
that the method is optimal in the respective norm.

Finally, remark that when the domain has a curved boundary, isoparametric

finite element methods are optimal, and the order of convergence is limited to 3/2 in

the H'-norm[79)].

Time discretization and stability

Most finite element methods use finite difference schemes for time discretization.
Explicit, implicit, and semi-implicit methods can be used to solve the equations de-
scribing the time dependence of action potential propagation. The choice of numerical
method influences the stability, computational cost and the accuracy of the imple-
mented model. Explicit methods can be used (for instance in [84] 90]), because they
are easy to implement. However, even though the computational cost for each time
step is low in an explicit method, the time step may need to be small to guarantee
stability. Implicit and semi-implicit schemes can be stable with larger time steps[15],
but are more computationally expensive. Semi-implicit methods turn out to be a good
compromise as their stability does not depend on the mesh size unlike the explicit
methods. In addition, they do not require the resolution of a system of nonlinear
equations unlike the implicit methods|30]. We consider only two methods in this

thesis:

Definition 1.3.3 (Euler and Gear time-stepping schemes) The following dif-
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ferential equation

du
% = f(U,t),

18 discretized with the forward Fuler time integration scheme as

UteAt — U
M S

and with the implicit Gear time integration scheme as

Suprar — dup + Uy

N :f(ut+At7t+At)‘

1.4 The scope of this thesis

The work developed in this thesis focusses on the electrical activity of the heart, from

the modeling of the action potential originating from cardiac cells and propagating

through the heart, as well as its electrical manifestation at the body surface (electro-

cardiogram). The study is divided in two main parts: modeling the action potential,

and numerical simulations. It addresses the three following problems in an original

way.

1. Problem: One of the current debates about simulating the electrical activity

in the heart is the following: Using a realistic anatomical setting, i.e. realistic

geometries, fibers orientations, etc., is it enough to use a simplified 2-variable

phenomenological model to reproduce almost all cardiac electrical propagation

behaviors, and in what sense is that sufficient?

Solution: A dimensional asymptotic analysis is developed in order to predict

the time/space scales and speed of an action potential wave simulated with a

selected ionic model. It allows to control the solution in a region of constant

conductivity. This is made possible as explicit relations on all the physiological

constants are obtained.



1. Introduction 34

2. Problem: Time and space discretization is difficult to manage when several
models are coupled together, not to mention when realistic patient data are
considered and model parameters have to be modified in order to reproduce the
most exactly an experimental sequence of data.

Solution: We explore the influence of the space and time discretization on a
1D finite elements (FE) solution of selected ionic models. Theoretical stability
conditions are derived for a selection of time integration schemes, and are veri-
fied numerically. Stability conditions are derived in such a way that any model

parameter dependence is revealed explicitly.

3. Problem: For the last decade, there is a clear trend of using as much experi-
mental data (e.g. medical images) as possible in numerical cardiac electrophysi-
ology. Patient specific simulations is a very popular concept but simulations are
often performed on the same geometrical models. There is a need in adapting
numerical methods to the data available from the geometrical models (e.g. level
sets from segmentations of medical images).

Solution: A numerical method for solving the heart-torso coupling problem is
explored according to a level set description of the domains coming from seg-
mented medical images. Mesh adaptation is used to improve the accuracy and

the efficiency of the numerical method developed.



Chapter 2

A predictive method allowing the
use of a single ionic model in
numerical cardiac

electrophysiology

2.1 Introduction

For the last decade there is an increasingly popular trend to patient-specific modeling,
where the predictions in clinical applications rely on the personalization of cardiac
electrophysiology models. There is great need in developing prediction tools that
could be used for example to improve therapy planning. For instance, mapping
models are used in [71l [72] to estimate the model parameters, resulting in model
predictions similar to the actual clinical data.

These applications require doing realistic numerical simulations, which imply
playing with space/time varying parameters. These parameters are either associated

with models at the cell scale (the ionic models) or associated with models at the

35
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myocardium scale (models for propagation, e.g. the monodomain or bidomain model).
The problem arises mainly when one wants to incorporate ionic models in the model
of propagation: the time and space scales have to match and some parameters have
to be tuned properly. The ionic models are systems of ODEs that are particularly
sensitive to the variation of the parameters. It is hard to change the parameters in the
equations so that the whole system of differential equations reacts with the right time
and space scales. As a result, doing realistic simulations implies that the influence of
every single involved parameter has to be well understood.

This overall understanding is hard to achieve and to address this difficulty we
propose to reduce the set of parameters in the equations. First of all, a non dimen-
sionalization is performed and much less parameters are necessary that is to say a
single nondimensional number replaces all parameters related to the propagation of
the potential. Second, the Mitchell-Schaeffer phenomenological ionic model is used
to reproduce the action potential dynamics. See section for the justification of
this choice. Using an asymptotic analysis, a bijective relation between the set of the
ionic model parameters and the set of solution features is built. The combination of
the dimensional analysis and the asymptotic analysis makes possible to fix precisely
the parameters of the ionic model and the bidomain model.

Aside from its theoretical interest, this work gives the steps to control the wave’s
shape and its propagation in a local region of constant conductivity. This is a huge
step towards the inverse problem (introduced section because it removes many
unknowns in the system. If the use of the Mitchell-Schaeffer model turns out to be
sufficient, every model parameter and numerical scheme can be chosen properly by
virtue of the knowledge of the resulting solution. The approach is then predictive.
Remark that a similar approach could probably be successfully applied to another
ionic model.

As a last comment, this work results from a combination of methods that have

been used extensively. In previous works in this domain, e.g. [43] [16] for ODE models
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and [56, [75, [76] for mapping models, the results of the analysis portrays a general
behavior of the solution features. It gives some dependences on some parameters of
the model, but not all possibly influent parameters. Our analysis allows to reliably
predict a desired solution with explicit dependences on all model parameters and all
the physiological constants. Our approach is not only able to deal with isolated as
well as sequences APs, but it also can be used to precisely shape propagated APs.
This approach is then suitable for predictions and the results could also be extended

in mapping models.

2.2 lonic models

Within the framework of fully integrative modeling, as much knowledge as possible is
integrated at each level of organization. Many submodels are then coupled together,
their complexities making each of them hard to handle (adjustments of parameters,
different time/space scales) among others submodels within the whole model. For
most applications, it may not be necessary to construct a highly detailed and ex-
pensive to compute physiological ionic model [22]. Phenomenological models become
worthy in this situation (see section and it turns out that this is our choice of
framework. This section reviews a selection of phenomenological models, some are
introduced for completing the understanding, the others are used in numerical simu-
lations under various contexts treated throughout the whole thesis. Note that in this
section, ODE models are presented in order to analyze the behavior of a single cell
only. This is the phenomena at the membrane that are described here, hence there
is no need for considering variables such as u; or wu,.

More precisely, two well-known phenomenological models are used in this thesis:
the FitzHugh-Nagumo (FHN) model and a modified Mitchell-Schaeffer (MS) model.
The FHN model, with all its limitations, is introduced for comparison only because

it is the most known and pedagogical model. The Fenton-Karma model is introduced
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as it is from where the MS is derived. It is the goal of this chapter to provide a
justification for using the MS model within the framework of realistic modeling and
patient-specific modeling. It will be used for most subsequent analysis and numerical

simulations.

2.2.1 FitzHugh-Nagumo model[32] 59]

The FHN model is a simplified version of the Hodgkin-Huxley model that was orig-
inally developed to reproduce the AP in squid giant axons. A wave resembling a
cardiac AP (figure can be obtained when other parameters than the original

model are used. The model equations in 0D are given by

Cfl—:; + f(u,v) =0,  where f(u,v) = fou(u —a)(u—1)+v (2.2.1)
% = g(u,v),  where g(u,v) = e(yu — [v), (2.2.2)

where fo =1, 6 =1, v = 0.16875, ¢ = 0.01 and o = 0.25 (parameters taken from
[7]). Remark that the transmembrane potential u joins two equilibrium states 0 and

1, hence u is without dimension.

2.2.2 Fenton-Karma model

The version of the model presented here is a slightly modified version proposed in [83]
that originates from the model of [31]. The Fenton-Karma model is a three variable
ionic model where the nondimensionalized transmembrane potential u is coupled with
a fast gating variable vy and a slow gating variable v;. The voltage changes in response

to the ionic currents according to

du
a + (Ifast + Lgow + [ung + [stim) = 07
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Figure 2.1: AP of the FHN model.

where the fast inward current is

1

Ttast

’Uf(u — ucrit)(l - U) if u > Uerit,
Ifast =
0 otherwise.

and Ty is a characteristic time for the current /4. The fast gating variable vy is

given by
dvf . Uf,oo — Uf
dt N Tf(u) ’

where

Vfoo = 0 and Tf(U) = Tfclose if u < Ufgate,
Vfoo = 1 and 74(u) = Tfopen  Otherwise.

The slow inward current has the following sigmoid form

1 [1+ tanh(k (u — ugy))]

Islow = —Us
Tslow
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and the gate variable v, is governed by

dvs Vs o — Us

dt — 1(u)

where

Usoo = 1 and 7p(u) = Tserose  if U > Uggate,
Vsoo = 0 and 7f(u) = Tyopen,  Otherwise.

The ungated current I, is defined by

1
if u > ugys
Tun
Iung - 1 g u
otherwise.
7_ung Uout

The stimulus current Iy, is an external current applied by the experimenter. Typi-

cally, Iy consists of a periodic train of brief pulses (e.g. with duration of 1 ms), each

of approximately twice the strength required to excite fully recovered tissue[83]. The

currents /s, Isiow, and I,,, may be identified with sodium, calcium, and potassium

currents, respectively. Table lists the values of the parameters used in the 0D

simulation illustrated in figure 2.2

Table 2.1: FK parameters proposed in [83].

Parameters | Values | Parameters | Values
Tfast 0.25 Uerit 0.13
Tslow 127 Usig 0.85
Tung 130 Uput 0.1

Ttclose 10 Ufgate Ucrit
Tfopen 18 Usgate Uerit
Tsclose 1000 K 10
Tsopen 80
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Figure 2.2: AP for the FK model.

2.2.3 Mitchell-Shaeffer model

The Mitchell-Schaeffer (MS) model was first introduced in [83]. This 2-variable phe-
nomenological model has several qualities that makes it a candidate of choice for
achieving our goal of matching several AP features (conduction speed, time scales,
restitution) with the simplest possible model. First of all, because it is derived from
the Fenton-Karma ionic model, it has benefits of an ionic model though it is a phe-
nomenological model. Moreover, many authors have used the MS model for realistic
clinical applications. In order to simulate a right bundle-branch block Boulakia and
al. [I1] used the MS model on the one hand to keep as low as possible the com-
plexity of the model and on the other hand to model as accurately as possible the
physical phenomena. As an other example, mapping models for predictions of the
excited phase duration and the recovery duration (derived in [83] [56]) were proved to
be efficient for cardiac model personalization using real patient data in [71], [72]. For
these reasons, the MS model will be used for all subsequent analysis and numerical

simulations.
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The original MS model reads as

d 1 1
d_:f + f(u,v) =0,  where f(u,v) = fUuQ(u - 1)+ u, (2.2.3)
Tin Tout
dv (1—wv) for u < ugge,
E = g(“v U)a where g(u7 U) Toperi (224)
— v for u > ugate,
Telose

with 7, = 0.3 ms, 7oy = 6 MS, Topen, = 120 mS, Tyose = 150 ms and ugqe = 0.13,
a set of parameter values proposed in [56]. The AP with this set of parameters is

illustrated in figure [2.3
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Figure 2.3: AP of the original MS model.

Note that the 0D MS model solution presented in figure varies between the
rest state at u = 0 and the excited state at u = 1. The original MS model found
in the literature is then partly nondimensional, i.e. it has nondimensional variables
u and v but dimensional parameters 7. Without considering any dimension or units

aspect, the source term f(u,v) represents the ionic transmembrane current as Iy,

does in equation (1.1.3)).



2. A predictive method allowing the use of a single ionic model in numerical
cardiac electrophysiology 43

Several modified versions of the MS model are brought in the literature (see for
example [44, 20| [75] [76]). The following text outlines the subtleties of the different
versions of the reaction terms.

Keener presents a continuous version in [44] where the source term g(u,v) is

smoothed with a tanh() function:

g(u,v) = * (1 = s(u, Ky Ugate)) (1 — v) — s(u, K, Ugqte )V (2.2.5)

Tu

with

Ty = Topen + (Tclose - Topen)s(uy R, ugate)

and

1
s(u, K, Ugate) = 5 (14 tanh(k(u — ugate))) -

An other variant of the MS model is presented in [26]. A noticeable difference
between the original MS and this modified version is the introduction of the parameter
ain f(u,v)

£, 0) = —v(u+ a)*(u— 1) + ——u, (2.2.6)

Tin Tout

where a = 0.02 is suggested. It can be used to control the excitability and mimic a
pacemaker activity. Sorine et al. [26] also use a regularization of the step in g(u,v)
and their whole model is continuously differentiable. The property of continuous
differentiability is preferable when an algorithm like Newton’s method is required to
linearize the equation before solving them. That being said, both smoothed version
in [44] and [26] have a new parameter k that has to be fixed. This parameter tunes
the width of the smoothed jump in g(u,v). We briefly discuss how its value could be
determined.

The smooth function s(u, K, Uyt ) replaces a step function, where an increasing
sharpens the smoothed jump. This step function also indicates a change in time scales

from 7,pen, t0 Teiose and vice-versa that reflects a state change in the wave, respectively
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from the recovery phase to the excited phase and vice-versa. In the original MS model
the parameters 7y, Tout, Topen and Teose are meaningful time parameters reflecting time
scales in the solution. The state change has to be similar to the one in the original MS
model. If not, the correspondence between these time parameters and solution time
scales will be lost. First of all, the state change in the MS model is instantaneous.
As a consequence, s(u, K, Ugqte) has to be sharp enough so that the excited phase
duration and the recovery duration are not affected.

Figure illustrates the possible overlaps. The excited phase occurs chrono-
logically for values of u between 1 (end of the depolarization) and 0.5 (beginning
of the repolarization). If the smoothed jump overlaps this interval, it means that
the transition between the times scales T,pen, t0 Teose 18 not completed. The excited
phase duration T'4p could be modified considerably, only because this period depends
mainly on Tuese [83]. Similarly, there could be an overlap during the recovery phase
which occurs in the neighborhood of w = 0. If s(0, k, tate) is not sufficiently close to
zero, then the recovery time T,.. will be different than for the original model. This
is because this period depends mainly on 7.,. Remark that in [26], simulations are

performed with x = 1000.

Schaeffer and al. [75, [76] brought an extension to the original MS model. The
new model has three variables, where the third variable is concentration-like and
acts as a memory variable. It also helps the charge balance through time. This
model improves predictions where rate dependence and accommodation are involved.
Besides this, a relevant change is brought to the source term g(u,v) upon what the

solution features the overshoot after the depolarization as illustrated in figure [1.2(a)}
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Figure 2.4: The smoothed step function s(u, &, tugae) for different values of
and ugqre = 0.13.

The closing rate 7,5 becomes voltage-dependent and reads as

1 1 1 1—-u .
| _ _ it u > Usldn
— Tfclose Tfclose Tsclose I Usidn (227)
Telose (1) 1 otherwise
Tsclose 7

where Tfeose and Tgeose are time scale parameters referring, respectively, to a fast
and slow closing rate. Right after the depolarization, the closing rate slows down
progressively until © = w4, where the rest of the phase II happens similarly as in
the original MS model. In [70], the following set of parameters {1, = 0.28, T =
3.2, Ugate = 0.13, Ugian, = 0.89, Topen, = 500, Tseiose = 22, Tfeiose = 320} is proposed.

In the text, what is called the modified MS model has the reaction terms f(u,v)
of equation and g(u,v) of equation (2.2.4) with the associated time scale
Teose(w) of equation . Suppose that the overshoot is considered useless in
some simulations for any reason. One can set Tuose(t) = Tseose and then the system

degenerates to the original MS model if a = 0.
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2.2.4 Modeling realistic APs

Now that ionic models are available, we want to reproduce AP measured experimen-
tally using these models. The very first step is gathering experimental data (measures
of AP, anatomical data, etc.) from many sources. Collecting information can become
a huge task just to characterize a healthy human heart not to mention when heart
abnormalities are studied [81, 43]. Moreover, depending in which tissue the AP is
propagated, the cells are different and so are the features of the AP (see table .
The AP is a phenomenon that exists in every single excitable cell. It can be measured
and through time, it has the shape of a pulse, as illustrated in figure[I.2h. We attempt
to reproduce the most exactly the AP shape by adjusting the parameters of the ionic
models and the bidomain model.

One way of setting this parameter identification problem (see section is
by defining quantities that describe the AP wave measured experimentally. These
quantities can also describe the numerical AP obtained with the ionic model. In
this case, these quantities depend on the model parameters. Throughout the text,
the term solution feature is any quantity characterizing the solution. For instance
the duration of every phase and the speed of the propagated potential wavefront are

solution features that are going to be studied.

2.3 Nondimensionalization

In the sequel, we start with all the dimensional parameters to keep in sight their
influence and we perform a dimensional analysis of the bidomain model coupled with
any nondimensional ionic model. One of the usual ways found in the literature of

writing the source terms describing the transmembrane current of a specific ion is

Iion - hp(u’ U>7 (231)
T
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Table 2.2: Speeds and recovery duration are taken in [47] where the heart
cycle is of 700 ms. Similar values for speed can also be found in [I].

Speed | Phase I | Phase II | Phase IV
Tissue cm/s ms ms ms
Ventricle 35-55 1-3 150-200 | 255-275
Atria 60 250-270
SA node 5 430
AV node 5 300
Bundle of His 170 210
Bundle Branches | 200 270-310
Purkinje fibers 180 320

where h is a gating variable, p(u,v) is a function of the transmembrane potential and
7 is the time scale of this charge flow. As p(u,v) can be any function (combination
of exponentials, polynomials, etc.), h, u and v are often taken dimensionless and 7
dimensional (in seconds) in order to preserve the balance of the units in the equations.
As a consequence of using nondimensional potentials, the source terms proposed in
the literature have most of the time the units s~ to match the units of the terms
Ov /0t or du/ot.

Let us perform the usual steps of a nondimensionalization and start from the
unit-balancing dimensional bidomain model for an isolated heart —. We
define nondimensional variables and nondimensional parameters, denoted with a ~.
The dimensional transmembrane potential u is rescaled using u = V,,u + V,.cs; With
Vi = Vinar — Viyest, where V., V. and V.., are, respectively, the characteristic
action potential amplitude, the maximal potential attained once the cell is depolarized
and the resting potential. The extra-cellular potential is also rescaled with u, =
Vintle + Vyest. For the independent variables, the time is rescaled with ¢ = tT and
the space with x = TL. The eigenvalues of the conductivity tensor are rescaled
with o, = 00,, with indices o = (3,1), (i,t), (e,1), (e,t), where i and e refer to the

intracellular and the extracellular medium, respectively, the indices t and [ refer to the
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transverse and the longitudinal eigendirections, both related to the fiber arrangement
of the myocardium. Finally, v is already taken nondimensional, in order to use directly
the source terms given in the literature.

The following equations form the nondimensional version of the bidomain model
coupled with any nondimensional ionic model with source terms of the form ,

written with the explicit dependence on the time parameters 7.

g—; ~G(@,v) in H, (2.3.2)

g—? 4 Toon (W, 0) = NV - (&ﬁ (@ + @)) in H, (2.3.3)

V- (6Va) + V- ((Gi+6) Vi) =0 in A, (2.3.4)

nr - (5 + (6 + 6.)Vi. ) = nr - (FrViir) on O, (2.3.5)
- (3}%@-) — 0 on OH, (2.3.6)

v (aﬁaﬁ —0 inT, (2.3.7)

nr - (aﬁm —0 ondT. (2.3.8)

~ T
with N = To/C,,xL?. Note that [;y,(u,v) = oV
In general, the explicit versions of I;,, and g of equations (1.2.6])-(1.2.12)) are useless

because most of the phenomenological models are already written for nondimensional

[z'on(u>v) and g(ua U) = %g(uav)'

potentials. For the MS model or for any model with source terms of the form ([2.3.1)),

1 - ~ 1. -~
note that Tlion(u,v) = f(u,v) with f of equation (2.2.3)), and Tg(u,v) = g(u,v)

with g of equation ([2.2.4)).

The dimensionless number N can also be found with the Buckingham II-theorem
(see for example [57]). We have 5 physical variables T, C,,, V;,,, 0/x and L expressible
in terms of 4 independent fundamental units seconds s, Amperes A, Volts V' and me-
ters m. The theorem says that the physically meaningful equation ((¢, C,,, Vi, 0/x, L)
0 is equivalent to an equation involving a single (#variables - #units = 1) dimen-

sionless variable N constructed from the original variables. We equivalently have
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((N) =0 with N =T™Cr2vnms(g/x)™ L. Written in terms of fundamental units,

the equation becomes
L= ()" (As/(Vm?)"™ (V)" (A/V)™ (m)"™.

The remaining problem consists in solving a homogeneous linear system of dimension
5 and as all the units are useful, the rank of the matrix involved is 4. The dimension
of the kernel of this matrix is the number of nondimensional numbers prescribed by
the theorem (a single number here). Choosing one basis vector in the kernel, one gets
the dimensionless number N given in the text.

One is then left with a single nondimensional number N, and finding a value for
it. The parameters C,,, V,,, x and o are fixed, but the time scale T" and the space
scale L are still free. Fixing these is not necessarily obvious, especially because each
phase (described in section has its own time and space scales. Any choice made
for T'and L in a dimensional scaling specific to a phase is justified by the fact that it
is preferable to have a maximal value for D;u and Dzu of about 1 during this phase.
This way, it is easier to compare the contribution of every term in the differential
equations during this phase.

In the following, we propose values for the time and the space scales based on
what is observed for a healthy human heart. The parameters defined for three different
dimensional scalings and the parameters of the model are given in Table A typical
AP upstroke (depolarization) of a ventricle is used to scale the time and space for the
first proposed dimensional scaling Adim1. The excited phase duration and width are
used to scale for the second dimensional scaling Adim2. The last dimensional scaling
Adim3 is not justified by any physiological manifestation but is practical in terms of

units (time measured in ms and space in mm).
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Table 2.3: Parameters of the bidomain model for a human heart. Three
different dimensional scalings are proposed. Adim1: based on the transmem-
brane potential upstroke. Adim2: based on the action potential duration
and width. Adim3: based on convenient units. The values are taken from
[81], [21] and [6§].

Description Param. | Values | Values | Values | Units
Adiml | Adim2 | Adim3
Threshold potential Vin -0.065 \Y
Maximum potential Vinaz 0.040 \Y%
Resting potential Visest -0.085 A%
Characteristic potential Vin 0.125 \Y
Cell surface to volume ratio X 2-10° m~1
Transmembrane specific capacitance Cn 1-1072 F/m?
Characteristic conductivity o 1-1071 S/m
Intracellular conductivity Oil 1.741 -
Tin 0.1934 -
Extracellular conductivity Oe.l 3.906 -
Oen 1.970 -
Characteristic time T 1-1073 0.2 1-1073 s
Characteristic length L 5-107* 0.1 1-1073 m
Nondimensional number N 0.2 1-1072 | 5-1072 -
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2.3.1 A nondimensionalization specific to the asymptotic anal-
ysis

The estimation of the magnitude of every term is crucial in the asymptotic analysis
of section 2.4 To achieve this comparison for the MS model, the time scales T and
Ty, associated respectively with sources terms f and g, are introduced. The resulting
time parameters are not only dimensionless, but of order one as they are rescaled
With Tinout = TinoutTr and Topen close = Tinoutly. Note that this method is general
enough that it is applicable for any ionic model constructed with source terms of
the form (2.3.1)). From the equations (2.2.3)-(2.2.4)), T} (resp. T,) depends only on
Tin aNd Ty (T€SP. Topen and Tuose). From the values proposed for the parameters
7’s, T is necessarily a short time scale and 7}, is a long time scale. The following
nondimensionalization of the conduction model with MS, using these two new time

scales, is brought in order to facilitate the asymptotic analysis.

%ﬂ _ %g(a, v) in H (2.3.9)
9 T rw U)_N%.(546(a+g)> in H (2.3.10)
o Tyt Z ’ -

Remark that when numerical simulations are performed with nondimensional
equations, it is neither useful nor practical to find values for the time scales Ty and Tj,.
Absorbing T'/T (vesp. T)/T,) in f (resp. in §) is a better choice in this circumstance,
where the only relevant non dimensional number is N and the only parameters that

remain to be fixed are 7" and L. This is why there is a factor T'/T (resp. T/T,)

between the f (resp. in g) of equations - and equations -.
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2.4 Asymptotic analysis

This section is devoted to the analysis of the solution’s features via an asymptotic
analysis. The choice of the phenomenological models to describe the ionic activity
becomes obvious here, as their 0D (resp. the 1D) solutions can be readily analyzed in
the (u,v) phase space (resp. the (u,,u,v) phase space). This is done for instance in
[43] and [16] for the FHN equations using the singular perturbation theory. The latter
reference uses the smallness of a parameter e, which is related to ratios of time and
space scales, but which has nothing to do with physical parameters (conductivity o,
cell surface to volume ratio x, membrane specific capacitance C,,). They even prove
the convergence in terms of the parameter e of the numerical solutions with diffusion
to the asymptotic solution.

Our approach is different because the equations are all set with their physiological
parameters (see section [2.3)). The smallness of some terms compared to others allows
to simplify the equations and get the asymptotic 1D model and solutions. There is
no convergence result because varying the parameters is not an option. The problem
is addressed that way in the hope of finding as many relations as possible between
the parameters of the equations and the features of the solution.

This is also why the MS model is chosen. There exists already many results in
the literature allowing to characterize the solution of the MS model in terms of the
model parameters. In [83], Mitchell and Schaeffer first characterized the 0D solution
by giving mappings predicting for instance the next APD according to the last APD,
diastolic interval and pacing interval. Schaeffer and al. [75], [76] refined the MS model
and the associated prediction mappings. Starting from these valuable results, the
analysis is pushed further and leads to the achievement of this chapter: being able

to control locally a propagated AP by controlling the model parameters (see section

23).
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2.4.1 Definitions

To allow a clear description of the AP, we define the following time scales, quantifying
each specific phases. During the depolarization (phase I), the AP can be character-
ized with its upstroke duration 7,,. T4p is defined to measure the duration of the
excitation phase (phase II) and it is commonly called the AP duration (APD) in the
literature. Though it seems to be of less importance in the literature, the phase III has
to be somehow measured so the downstroke duration 7y, is defined to characterize
the repolarization. Finally, the recovery duration 7,.. characterizes the period dur-
ing which the cell remains repolarized but is not responsive to any further electrical
stimuli (phase IV).

Every temporal manifestation occurring in the AP is propagated in the tissue.
The propagation of the AP in a tissue due to the conductive properties of the media
adds a spatial dimension to the phenomenon. Hence the AP has to be quantified in
terms of space scales considering the propagation at a given speed c. For the overall
description of the propagated AP, we define also the upstroke length L, the excited
phase length L 4p, the downstroke length L4, and the recovery length L,... These
spatial scales are going to be used in the dimensional analysis in order to compare
the magnitude of phenomena, as well as in the asymptotic analysis in order to allow

a spatial description of the propagated AP.

Remark 3 The depolarization can be characterized also with the mazimum rate of
depolarization of the cells AV /dt .. This way of measuring the depolarization is not
going to be used.

The time of depolarization (resp. repolarization), which is the time taken for the
depolarization (resp. repolarization) front to sweep the heart, is commonly used to
describe the dynamic associated with the propagation. These values can be recovered

with the speed of propagation and the size of the heart. i
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2.4.2 Analysis of the phase space

We start analyzing the 0D system in order to understand the behavior of an isolated
cardiac cell. For the MS model, as for any 2 variable models, the work relies on the
analysis of a 2D phase space. The nullclines and the equilibrium points are defined
so that the four phases appear by themselves.

First of all, when there is no propagation involved, the nondimensional equations

(2.3.2)-(2.3.8)) reduce to the simple system

ouw T ~, _
—a%v + Tff (U, U) = 0, (2'4'1)
ov T_

The modified MS model retained is endowed with the following nondimensional source

terms:
< 1 1
fuv) = =—v(u+a)’(u—-1)+ =—u,
Tin Tout

(1—wv) for u < Uygte,

— ?open
§(@,0) :

v for u > gate

Telose

where the time scale 7 are nondimensionalized with Ty and T}, and 7.s equals
Teiose() of equation . In the following the ~ are removed for the sake of
convenience. Remark that the source terms given in [83], [75] [76], referring to f(u,v)
of equation (2.2.6) and g(u,v) of equation , are partially nondimensionalized.
On the one hand, the time scales are dimensional (e.g. 7, = 0.3 ms, 7, = 6
ms, Topen = 130 ms, etc.). On the other hand, u and v are nondimensional (e.g.
Ugate = 0.13) because they both vary within the interval [0, 1] given standard initial
conditions (u(0),v(0)) € (0,1) x (0, 1).
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In the MS model, the transmembrane potential u is considered as the fast variable
and the recovery variable v is considered as the slow variable. The solutions of the
original MS model and modified MS models are illustrated in figure[2.5] Their respec-
tive phase spaces are illustrated with the four phases in figures|2.6, The phase spaces
are going to be thoroughly described for a better understanding of the asymptotic

analysis.

Remark 4 The analysis of the modified version of the MS model featuring the over-
shoot is very similar to that of the original MS model when ugqre < Usian; the nullclines

are the same though the vector field is different in the half-plane u > ugqy,. i

For the original MS model (see figure , there is a local minimum on the
nullcline f(u,v) = 0 at (u.,v.) = (1/2,47;/Tout). Note that the point at which
this minimum occurs is not on the solution curve (u(v),v) with the initial condition
(u(0),v(0)) = (0.13,0.99). This local minimum separates the nullcline in 2 branches:
the left-hand side branch is denoted u = hg(v) and the right-hand side branch u =
hs(v) with

Tin

u = h273(’0) = 1—4

F (2.4.3)

N | —

1
2 ToutV
There are 3 equilibrium points, (0, 1), (h2(1), 1) and one on the line u = g4, precisely
the point (Ugate, Tin/[ToutUgate (1 — Ugate)]). For the set of parameters given above, the
equilibria (0,1) and (hy(1),1) are saddle points. Their stability can be studied with
a standard analysis of the linearized version of system (2.4.1)-(2.4.2). The third
equilibrium (wgqte, ho(v)) is an unstable focus, which can be seen by inspection of the
vector

field in the phase plane. During phase I the solution starts at the initial condition

point A to reach quickly the point B while the recovery variable v barely varies. Phase

IT is characterized by a solution following very closely the branch u = hg(v) of the
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(¢) Modified MS model illustrating the over-
shoot after the depolarization (with non di-

mensional parameters a = 0, ugg, = 0.89,
Tselose = 150, Trciose = 10 and Tejose(u) is given
by equation (2.2.7)).

Figure 2.5: Numerical simulation of the electrical activity of a single cell
using various versions of the MS model. With the characteristic time 7' =1
ms, all simulations use the non dimensional parameters 7;, = 0.3, T, = 6,
Topen. = 130 and ugqre = 0.13.
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(b) The phase plane for 0D modified MS model with a numerical so-
lution for a = 0.02.

Figure 2.6: The phase space for both the MS and modified MS models.
Numerical simulations are performed with 7" = 0.001 s, 7, = 0.3 (ms),
Tout = 6 (18), Topen = 130 (mS), Teose = 150 (ms) and ugqre = 0.13. See text
for definitions of curves, points, etc identified.
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nullcline f(u,v) = 0, i.e. from point B to C. During phase III, the solution leaves the
nullcline f(u,v) = 0 at the point C, u goes fast to zero while v varies only slightly.
In phase IV the solution goes along the nullcline v = 0 from the point D while v
increases slowly. The solution reaches asymptotically the equilibrium point (0, 1).

For the modified MS model (see figure[2.6(b))), the nullcline f(u,v) = 0 has a local
minimum at (u,,v,) with u, = 1/4 (1 — /1 —8a) and a local maximum at (u*,v*)
with u* = 1/4 (1 + M) These local extrema separate the nullcline in 3 branches
denoted by u = hy(v), u = he(v) and u = hz(v) with hy(v) < he(v) < hg(v). The
solution starts at the initial condition point A and follows a trajectory close to that
of the original MS model until phase IV, where the solution goes along u = hy(v) = 0
from the point D while v increases slowly. The solution eventually leaves the nullcline
near the point (u*,v*). Finally, the solution goes again by itself in the phase I
(from point A’) after a complete heart cycle. This model is clearly suitable for auto-
excitable cells because of the repeating cycles. There is no assumption here about
the periodicity of the solution.

Following the same idea as in [43] for the FHN model, a similar asymptotic
analysis could be done for the MS model by regarding the 0D solution separately in
its phases I, II, IIT and IV. In both models phases I and III are characterized by a time
scale that is so short for the slow variable v that it remains almost constant during
these periods. The solution moves along the nullclines during phases II and IV. Each
part of the solution can be approximated with a simplified trajectory (moving along
a nullcline or at a constant v). We define the 0D asymptotic solution by connecting
these simplified trajectories together.

We are rather interested in an asymptotic analysis of the 1D solution, so let us
now explore the phenomenological MS model coupled with a 1D model of propagation.

Using the nondimensional 1D bidomain model (~ are removed for simplicity) with a
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constant conductivity, the problem consists in finding (u, u,, v) in [0, Z;q.] such that

ou T 0*(u + ue)
i — N e
ot T, (u,0) T gz
0%u 0?u,
Ui@+(ai+ge)ﬁ =0
o _ T (u, v, 1)
ot — 1,0\

with N; = To;/CpxL?* the nondimensional number associated to the intracellular
medium of conductivity ¢;. On the boundaries x = 0 and * = ,,4,, homogeneous
Neumann boundary conditions are applied for both u and u.. A zero mean condition
can be applied on the potential u, so that the degeneracy is removed.

The following monodomain model is equivalent to the bidomain model in 1D:

finding (u,v) in [0, Zna] such that

ou T 0%

a + Tff (u7 U) = Nharm 972’ (244)
v T
% ng (u,v,1), (2.4.5)

with Nygrm = T0harm/CrXxL? and Oharm = (0[ '4oo 1)_1 is the harmonic average
of the intra and extracellular conductivities in the z-direction. As the analysis is
done in 1D, the monodomain model is used because of its low computational cost
and because it gives exactly the same solution as the bidomain model.

The next step is to verify that under physiologically plausible conditions, the MS
model with spatial propagation is suitable for an asymptotic analysis. A 1D solution
is computed beforehand with the parameters of the third column of table together
with the dimensioning parameters L = 0.001 m, 7" = 0.001 s and Npgrm = 0.05. The

domain is the interval [0, 600] and the simulation is performed over the time interval
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[0,1000]. The initial condition is given by

0 for x € [0,570)
u(0) =

0.8 otherwise

and v(0) = 0.99.

At one coordinate point (z = 300), the solution is plotted in the phase space of
the 0D model, with its corresponding nullclines (see figure [2.7)). There are obvious
similarities between the solution of the system with diffusion in 1D and the solution
of the equations for an isolated cell in 0D (see figure [2.7).

Again, it follows that the solution can be separated in four parts respect to the
four phases. The solution parts are matched together to give the so-called asymptotic

1D solution.

1.2
1t
0.8}
0.6}
>
0.4f
|
Q= | ~— —f(uv)=0
[ ~g(u,v)=0
of | —— solution 0D (u,v)
| e solution 1D (u,v)
-0.2 : ' ‘ ‘ —
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

u

Figure 2.7: 0D and 1D solutions in the phase space of the phase space of the
0D system.

The time and space scales of the asymptotical solution are defined (as it is done

in section [2.4.1} e.g. T, and L, were defined) and they are denoted with a hat (~).



2. A predictive method allowing the use of a single ionic model in numerical
cardiac electrophysiology 61

~

For instance, the asymptotic upstroke duration is denoted by 7),, the asymptotic

upstroke width by Eup, etc.

2.4.3 Asymptotic characterization of the depolarization front

In order to find the asymptotic regime of the depolarization, the magnitude of each
term in the equations — is estimated in phase I. The leading terms will
form the equations to solve for the asymptotic solution in phase I. Known values for
the depolarization duration and width can be used (see table for this purpose.
For example, the ventricle characteristic depolarization duration is about 1 ms and
the speed of the wave is about 0.5 m/s. Using 7" = 1 ms and L = 0.5 mm, the
terms in the equations are of order one and they are weighted by the nondimensional
numbers multiplying them. Because T/Tf ~ 1, Npgrm = Nyp = 0.2 and T/T, ~
7 x 1073, the term T/T,g(u,v) is considered as negligible compared to the other
terms. The system to solve for the asymptotic solution in phase I becomes: find

(u,v) in [0, Zymaz] X [0, tmaz] such that

ou T 0*u :

n + Tff (u,v_) = Nup@ with u(t = 0) = uy, (2.4.6)
v
i 0 ©v=v(t=0)=uv_, (2.4.7)

with the domain and initial conditions given in section [2.4.2] The fact that the
transmembrane potential u has a depolarization occurring at a nearly constant v is
then justifiable with simple arguments of magnitude analysis. The value of v at which
phase I occurs will be called v_, where v_ can be interpreted as the value of v facing
the arrival of the wave. As the wave can be paced at almost any value of v, v_ is not
specified unless an isolated wave is analyzed. In this case, v_ = 1, i.e. the value at

the equilibrium.
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Now that the system to solve for the asymptotic solution in phase I is known,
we now change voluntarily the parameters 7" and L so that the asymptotic upstroke
has a duration of 1 and a width of 1 in the nondimensional frame. The appropriate
choice for the nondimensionalization is then to use T" = fup and L = Zup. Doing this
allows to do the same analysis whatever the choice of the parameters of the models

(ionic and propagation). The system then reduces to

A~

ou T, 0*u
—_— 4+ — )=N,,— 2.4.
oty () = Ny (248)

where the solution u goes from u(0) to hs(v_).

It is known that under appropriate assumptions, reaction-diffusion equations
such as equation have travelling wave solutions, i.e. solutions of the form
u(z,t) = v(x + ct), propagating at the speed ¢ in the direction of decreasing z if
¢ > 0. As a simple and well-known example, for f(u,v_) = —au, the existence of a
planar travelling wave solution can be easily proved in a constructive way (see [16]).
This wave is asymptotically stable, with wave speeds approaching the constant value
c as t — oo for any initial solution that leads to the asymptotic state. However,
for more complicated ionic models, the proof of existence of travelling waves requires
care as it is highly dependent on the form of the ionic terms. For instance, the 1D
travelling solution of the FHN model is thoroughly analyzed in [40, 25] including the
existence of different modes. For the MS model, we are not aware of any published
proof of existence for travelling waves but we present a detailed argument for the
existence of such wave in section 2.6

We summarize the argument and clarify notations here for the sequel of the
text. The necessary conditions for the existence of travelling wave can be studied
by analyzing the (v,1’)-phase plane. The speed ¢ must be properly set, say to ¢,
so that a travelling wave exists, which amounts to the existence of a heteroclinic

connection of the equilibrium points (v,v') = (0,0) and (v,') = (hs(v-),0). It is
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easy to show that non-monotonous orbits starting at v = 0 and reaching v = hg(v_)
are impossible. By monotonicity, the heteroclinic orbit is attained in a unique way
referring to a specific speed ¢*, where the uniqueness holds for any fixed value of v_.
If a bounded positive speed for the monotonous orbit can be found, the necessary
conditions for the existence of such heteroclinic orbit are going to be all satisfied (see
section for more details). The next step concerns the computation of that unique
and bounded speed.

Speed of the asymptotic traveling wave solution

Using similar arguments as in [43] and [16], the propagation speed will be found by
analyzing the formation of a traveling wave in 1D. The traveling wave is formed in
the phase I, so the speed is that of the depolarization front. Remark that ¢ = Eup / T up
and nondimensional speed is equal to 1 in the nondimensional frame.

The asymptotic traveling wave solution u(x,t) = v(x + ct) = v(s) solves the
equation ([2.4.8)) so

T
'+ —f(v,vo_) = Nv" (2.4.9)
T

The matching condition to find the speed, referring to ¢ = ¢* , where the hetero-
clinic orbit connects the points v = 0 and v = hg(v_) as s — Foo, respectively, reads
as the following integral

400 T hs(v_)
c*/ V(s)?ds = —— f(v,v)dv.
Ty Jo

The dimensional asymptotic speed ¢ is then

L % FAB(U_)

c=—-—Cc=-L—"""~ 2.4.10
T ff;o V'(s)2ds ( )
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with
h3(v=)

Fap(v-) f(v,v_)dv

) f ( )t hy( )3) 1 hg( )2}
vt hg(oo L Lhatv )1
Fap(v 3 .

_) (in s71; recall that the 7’s are nondimensionalized

For v_ € (47in/Tous, 1],
with T) is well defined and negative as f(v,v_) < 0 during phase L.

As L = Zup and T = T\up are used to nondimensionalize the equations in this sec-
tion, the dimensionless speed ¢* is equal to 1. The consequence is that the dimensional

asymptotic upstroke duration can be written as

=)
|

—;) /+OO V' (s)?ds. (2.4.11)

P FAB(’U_ — 00

The expression (2.4.10) for the asymptotic speed is a known result derived for
instance in [43] while analyzing the FHN model. It cannot be used directly to predict

the speed of the travelling wave because the value of the integral fj;o V' (s)%ds is

not known so far. With the analysis of Sections [2.4.3| and [2.4.4] this integral will be

estimated in terms of the parameters of the equations.

Calculation of the speed using an ansatz

In this section, an approximation of the traveling wave solution is constructed espe-
cially for the phase I. At the very beginning of the formation of the wave, the rise of

the potential is assumed to occur exponentially. The ansatz then reads as
v(s) = ugatees/‘s, (2.4.12)

where ¢ is nondimensional and is chosen to be

1

n <h3(v7>>
Ugate

5:
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for the upstroke to be between g4 and hs(v_) and have a width of 1 in the nondi-
mensional frame (because nondimensionalization uses L = Zup and T = T\up).

In the same spirit as collocation methods, we want the ansatz to solve
the equation at a given point, say at the location where v = wgyq.. Other
collocation points could be chosen and one would end up with similar results. The
choice of the point with v = 144 seems to be the most appropriate since this is where

the solution resemble the most an exponential. Substituting e*/? in equation (2.4.9)

gives
% + ¢(Ugate; v_) = %
at s = 0, where
w(ugatea U—) = %U—Ugate(ugate - 1) + Tout

and ¢** is the dimensionless speed of a travelling wave of this shape. As L = Eup and

T = T\up, the dimensionless speed ¢** is again equal to 1, then

52 )
A—w(ugate, U_) + == LAQ (2413)
Top T, CuxL2,

The next discussion is about general dependences between the solution features
and the model parameters using equation . First of all, the shape of the wave
is something dictated by the behavior of the cells, mathematically dictated by ionic
models. If a cell is excited by an external stimulus, it reacts with certain time delays
which have nothing to do with the properties of the surrounding media, e.g. its
conductivity. Intuitively, the nondimensional integral fj;o V'(s)%ds does not depend
on the group o/(Cp,x). In addition, Fup (equation (2.4.3)) depends only on the
parameters of the ionic model, so does T,. Extracting the time scales of the 0D
solution to predict those of the 1D solution is expected to be fruitful according to
this last qualitative argument, and figure 2.8 is the confirmation.

The left hand side of equation ([2.4.13)) is constant for given values of 7’s, ugqe
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Figure 2.8: Upstroke duration versus C:Lx for the MS model. The asymptotic

prediction is detailed in section [2.4.5]

and v_, as the dimensional asymptotic upstroke duration does not depend on the
group o/(Cp,x). Consequently, Zup behaves as y/0/(Cpx), and as ¢ = Zup/fup, c
behaves as m too. The asymptotic behaviors of the travelling wave speed
and upstroke width can be verified numerically as shown on figure [2.9]

In summary, the characterization of the depolarization front rises the following

important facts, for given values of 7’s, ugqe and v_.
1. The asymptotic upstroke duration fup is independant of the group o/(Cp,x)-

2. The asymptotic upstroke width /L\up behaves as y/0/(Cy,x). This holds also for

the numerical solution.

3. The asymptotic speed ¢ behaves as \/o/(Cp,x). This holds also for the numer-

ical solution.

4. The dimensionless number J\?W calculated using the length and time scales of

the upstroke phase is constant with respect to the group o/(Cp,x).
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Upstroke Length (mm)
S
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(a) Upstroke length.
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(b) Speed.

Figure 2.9: Upstroke length (a) and speed (b) versus z>— for the MS model.

The asymptotic prediction is detailed in section [2.4.5]
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2.4.4 Overall characterization of the asymptotic solution

In this section, the features of the asymptotic solution are studied. With a judicious
combination of assumptions, algebraic expressions for short time scale features (du-
rations) are derived, followed by long time scale features and finally, spatial features
(length and speed). These expressions depend on the parameters of the model, and
describe the asymptotic solution. In section [2.4.5] these results are used to predict

the numerical solution of the action potential.

The asymptotic short time scales: Phases I and 111

In order to find an expression for the nondimensional asymptotic upstroke duration
T, up, the remaining integral in equation ([2.4.11)) has to be somehow estimated. To do

so0, a linear rise of u is assumed during the upstroke and

hs(v_) for 0 < s <1,
Y (2.4.14)

0 otherwise,

The asymptotic upstroke duration is then deduced with simple calculation

~ 1 9
Ty =~y oo (2.4.15)

Note that the asymptotic upstroke duration depends nonlinearly on the following
set parameters T;,, Tou, V- and ugqe. If the action potential pulse is considered as
isolated the solution before and after the pulse goes towards the equilibrium point
(u,v) = (0,1). In this case, using v_ = 1 gives a very good estimate.

Finally, it is impossible to measure the upstroke duration of a numerical sim-
ulation using the depolarization threshold v = 0, with © = v in the depolarization
phase. The following two remarks bring alternative ways of measuring and predicting

the upstroke duration.
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Remark 5 Justified by the ansatz , an exponential rise of u is assumed during

the asymptotic upstroke and

U
) %tees/‘s for0 < s <1,
V Y

0 otherwise.

The upstroke needs to be measured between w = ugqre (at s =0) and hg(v_) (at s =1).

Consequently, the integral in Fap is rather estimated using

Tf Ugate
_ [ve (hs(oo)t hs(vo)? n 1 hy(v-)?
T 4 3 2 Tout

o U_— ugate o ugate + lugate
Tin 4 3 2 Tout
and the asymptotic upstroke duration becomes

e Ugate
T —=_ g 2 ) — 2 .
up 25FAB (U,) (h3 (U ) ugate)

Remark 6 If a linear rise between u = ugqe and hs(v_) is assumed during the asymp-

totic upstroke,

hs(v_) — ugare for 0 < s <1,

0 otherwise,
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and the asymptotic upstroke duration becomes

N 1 )
Tup = ———F— (h3(v=) — Ugate )
P FAB(U—) ( 3(U ) Ugat )
using Fap(v_) of Remark [3] i

If 7, and 7, vary, the behaviors of the three ways of estimating the asymptotic
upstroke duration are very similar (see figure2.10)). One or the other way of estimating
the asymptotic upstroke duration is then equivalent. The approach of Remark [0] is

going to be used in the following.

Remark 7 To find a relation for fup, either the whole integral

400
/ V' (s)%ds

or V'(s) has to be estimated. In equation (2.4.14), V'(s) during the upstroke is esti-
mated as if the upstroke of u was piecewise linear. FEquivalently, this is the average
speed of depolarization.

To estimate the integral directly, remark first that

/+Oo V' (s)%ds > /01 V' (s)%ds. (2.4.16)

o0

The transmembrane potential crosses the excitation threshold ugee at © = 0 when
L= Eup and T = fup are used in the nondimensionalization. Note that both integrals
are constants in this nondimensional frame.

This estimate, which is actually a lower bound, can be found formally since V'(s)
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Figure 2.10: The three proposed ways of estimating the asymptotic upstroke
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s a non negative real valued Lebesgue integrable function. Jensen’s inequality

o([ o) < [ewona

can be used with ©(s) = s, a convex function on the real line, hence

2

/ (s > { / 1 u’(s>ds] — (hav-) = tgare)*. (2.4.17)

The estimation of T\up proposed in Remark@ 1s then a lower bound.

For a stable travelling wave the repolarization speed is the same as the depo-
larization speed and one has that ¢* = Edown /f down- In phase III, the asymptotic
solution consists in a trajectory connecting (u.,v.) = (1/2,47;n/Tour) and (0,v,) =
(0,47, /Tour). Estimating that the decay of u is linear, the dimensional asymptotic

downstroke duration reads now as

ul 1

*

Fop  4Fop

Tdown = -

with

2 Tout

Fop = _T/Q (v, 4Tin/ Tout)dV
( /4 1/2) )+1(1/2)2 (2.4.18)
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The asymptotic long time scales: Phases II and IV

In phase II, the nondimensional equations — are used in order to find
the asymptotic action potential duration T up. The time scale of phase II has to
characterize the period of excitation so T = pr can be chosen. However, pr is
not known yet in terms of the parameters of the equations. Let 7" = T, so that T'
is a long time scale and depends on T,pe, and 7gese, Which is enough to allow the
comparison between the magnitude of the terms in the equations and furthermore
gives an estimate of how good is the asymptotic approximation. Recall that T}
depends on 7;, and 7,4, time scales of f, so it is a short time scale (that now can
be taken equal to the predicted value of T,,). Now that du/dt and 0*u/dz?* are of
order one in magnitude, one gets T, /Ty = Tap/Typ ~ 100 and (GparmT)/(XCrmL?) =
1x 1073

Remark 8 In the asymptotic analysis of the FHN model done in [{3], T¢/T, can be

compared to the parameter €. i

Because the coefficients of the nondimensionalized model (GparmTy)/(XCrmL?)
and 1 are negligible compared to T,/7Ty, we expect the solution to stay within the
neighborhood {(u,v)||f(u,v)| < 1072} but we are going to assume that the solution
goes along the nullcline f(u,v) = 0 during this phase. In other words, the equation
becomes f(u,v) = 0 (or equivalently u = h3(v)) to leading order. Matching

the solution with that of phase I, the recovery variable is described using

ov T
— = —g(h3(v),v) withv(0) =v_,
o T,
where v_ is the (given) value of v facing the arrival of the wave (v_ = 1 for a isolated

wave). The trajectory goes along the branch u = h3(v) because it follows f(u,v) =0
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and v decreases until it reaches v, beyond hs3(v) ceases to exist. The dimensional time

taken for this phase is

~ Vs 1
Tip =T - d
AP / g (hs(v),0)""

where g (h3(v),v) has nondimensional parameters and variables.

During this phase, tyqte < u. = 1/2 and then g (h3(v),v) /Ty, = —v/Teiose SO

4 Tin

Tup = —/ o Teose gy — Telose 1N <Tomv_) (2.4.19)

) 47

This is a well established result first published in [56]. With the dimensional values

of 7 and v_ =1, one gets Tap =~ 241 ms for the MS model 1}1)

Remark 9 (Characterization of the overshoot) The overshoot duration and height
can be characterized as for the AP duration. The overshoot is a part of the phase II
because the trajectory is along the branch u = hs(v) even if the time scale is tem-
porarily shortened with Tuese(w). The overshoot features a peak of height given by

hs(v_) — Ugan and duration given by the following integral

e Usldn 1 dv
Toeak = 1, / ————du
peak 7 hs(v_) g(u7h31(u)) du

with v = h3 " (u) = Tin/ [Towt(1 — w)]. As 1/Teiose(u) = m(u-+b) with m = (1/Tfeclose —
1/Tsctose)/ (1 — Usian) and b = (1 — wgign) /(1 — Tfeiose/ Tsciose) — 1 the integral becomes
1 fuan 9y — 1

= —— du.
m Jpywy (u+b)u(u —1)

The latter integral is easily computed and the result gives

~ 1 20+ 1 1 1 Ustdn
cak = — | b —1 | —1 .
Deak m[ o1 1) n(u + )—l—b n(u)+b+1 n(u—1) .
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The asymptotic AP duration is now slightly modified as

A~

~ Touths ' (Ustdn
TAP = Tpeak + Tsclose In <M>

4r, in

Tpeak — Tsclose In (4usldn(1 - usldn))~

In phase IV, the asymptotic recovery duration and length can be derived with
assumptions very similar as for phase II. The dimensional scaling is based on the
refractory period, then 7' = T, and again the equation ({2.4.5)) reduces to f(u,v) =0
to the leading order.

The system for the recovery variable reads as

ov T
9 jng (h1(v),v) < v(0) = v,

with u = hy(v) for the asymptotic solution to be continuous (matching condition with
phase III). For the original MS model, v increases and the solution goes to the stable
point (0,1) so the time to reach this equilibrium is infinitely long. If a region of the
domain is paced at a certain value of v, say Vpace, the recovery time for the MS model

can be approximated by

Upace -

. |
Trec = Topen In (th—l . (2420)

The last expression is obtained using similar arguments than those used in the phase

IT.
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When a # 0, the upper bound for v in this phase cannot be found exactly
unless an analysis of the periodic solution is performed. This is not going to be done
just because doing such a laborious analysis is pointless considering the objective:

evaluating the following time scale

~ Vup,periodic 1
Trec,a = / dU,
o g (h1(v),v)

where vy periodgic 15 the value of v during the upstroke of an asymptotic periodic
solution, i.e. a wave train in dimension one.
One can however estimate an upper bound with v going from v* to 0.8 (values

suggested from numerical simulations). The dimensional time taken for this phase is

v* 1 0.8
—v 1—v
/ dv 5 Trec,a 5 / dv.
ve Topen ve Topen

as for the modified MS model, u < ugqe and then g (hq(v),v) = (1—v)/Topen. With the

then

dimensional values of 7, the recovery time can be estimated with 122 < T}, < 211

ms.

The asymptotic space scales and speed

Now that it is known that T\up does not depend on the group o/(C,,x) for a chosen
set of parameters 7’s (see section equation (2.4.15))), it is possible to find an
expression for the asymptotic upstroke width Eup with equation ([2.4.13)).

~ [~ [ o
Lup = kup Tup m
In the right hand side, the factor k., T, up does not depend on the group o/(Ci,x).

It depends only on the parameters of the ionic model. The remaining factor depends

only on the parameters of the propagation (monodomain or bidomain) model.
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Using equation ([2.4.10) with L = Zu,,, one has

g= —— faply (2.4.21)

(hs(v-) — tigate)*’

Similarly, the other asymptotic widths are all given by

2—: — I Tdown,AP,rch
down,AP,rec — Ndown,AP,rec C—
m

2.4.5 Using the asymptotic solution to predict the numerical

solution

The first aim of this section is estimating the time required for the rise of the numerical
solution u from wgue to hs(v_), which is by definition the upstroke time T;,. The
asymptotic upstroke time T\up is suggested as an approximation of the numerical
upstroke time T, and it turns out that this approximation is good enough to be used
for the prediction of T, in the heart (see section [2.5)).

The asymptotic upstroke duration T\up (equation ([2.4.15))) involves the assump-
tion that the upstroke occurs linearly and at a constant v = v_. This approximation
makes the values of fup a bit off the values of T}, though the behavior with respect

to the parameters remains satisfactory. For fup to be convenient to estimate T, it

can be scaled with a constant k4p > 0 as

hs(v-)

Tup = kABfup = kABm;

(2.4.22)

and the constant ksp can be found using a single numerical simulation for a given
set of data {7, Tour}. An exponential upstroke for the traveling wave, as proposed
in section [2.4.3] could be an other choice. At the end, another constant like kap

would be needed to compensate for this other approximation of T\up. For the sake of
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simplicity, it turns out that the linear rise is a good choice: simple calculations and
satisfactory predictions.

In a certain neighborhood of the data set {7, Tow }o initially used for a 1D
simulation, if {7;,, Tous} changes for any reason (for example, from one tissue of the
heart to an other, where the AP is different), one could assume that k4p remains the
same as the one calculated with {7;,, Tous }o. This assumption can be explained by the
fact that kap compensates for an integral of the upstroke’s profile (the integral of the
square of the upstroke slope), which remains nearly the same: if {7;,, 7,.:} change,
fup and Eup changes so impact the nondimensionalization of the phase I. The new
profile is simply a scaling with the new T up and Zup. As a result, the approximation
(2.4.14) used to estimate the upstroke is scaled in the same way.

For simulations with spatial propagation, the constant k4p can be fixed from
a single simulation in 1D. We will see later that this way of estimating T, works
in a reliable way, as long as g4 remains the same. Changing the value of ugq. is
equivalent to change the threshold of the upstroke. Consequently, it could modify
considerably the upstroke profile, then the integral of its derivative and so the scaling
factor kap (see section for examples where k4p has to be recalculated).

The dimensional downstroke duration can also be predicted with
Tdown =~ kCDfdoum - 12kCDTout, (2423)

where the constant kcp > 0 emerges from the same arguments as for k4p. Assuming
that the phase I1I occurs for a constant v = v, is not as nearly true as for the upstroke.
However, the scaling constant kcp is enough to compensate for the approximations
used to find fdm,m.

The extracted information in these phases gives a relation £ between model’s
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parameters and the asymptotic solution’s features:

f . (TinaTout) - (kABj:u}n kCDfdown>-

For solution’s features T, and Ty, of physiological relevance, it turns out that ¢ is

bijective. The asymptotic 1D solution is then controllable, giving a reasonably good

handleability of the solution (figures and [2.12)).

10— | A G T 7
| | | ] | i ‘//
9 3 4 5 6 7 8 9 10 12 151
| | ! /
‘ / /

(ms)

out
(o2}

0.3 4 0.5 0.6

3 | A
0.1 0.2 .
T (ms)

Figure 2.11: Asymptotic approximations of the durations (kagTp, kc Dfdown)
Versus (Tin, Tout) for v— =1, kap = 2.15 and kcp = 0.45. Level sets for T,
are rather vertical (plain labels) and level sets for Ty, are horizontal (boxed

labels).
In phase II, the goal is again to find an approximation of the action potential
duration T4 p using the behavior of the asymptotic 1D solution. Contrary to equations

for fup and fdown, fA p needs not to be scaled

Tap ~ Tap, (2.4.24)

and this is simply because the asymptotic approximation is better (asymptotic and

numerical solution both go very closely along the nullcline f(u,v) = 0) and no as-

sumption is done on the shape of this part of the wave. Remark that one also have
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Topen = 130 mS, Toose = 150 ms. Level sets for T, are rather vertical (plain
labels) and level sets for Ty, are rather horizontal (boxed labels). Note
that the ranges for the 7, and 7,,; axis are not the same as in figure

Theak ~ fpeak-

In phase IV, the recovery duration can be predicted as long as the next wave is
paced at a given value vpgee and Tre. = ﬁec with equation . For waves paced
at various values of vp,.., the asymptotic analysis is as well predictive (see section

2.4.0)).
The numerical upstroke length is predicted using

Tupo
Cr X'

Lup ~ \kapLup = kup (2.4.25)
If one assumes that (2.4.25|) holds for any values of model’s parameters, this means
that k,;, has the same value whatever the values of the model’s parameters. In other
words, the nondimensional number associated with the phase I N, = 0T,/ (Crnx L2,) =
1/ kgp is assumed to be a constant.

The numerical results predicted by equation ([2.4.25) are illustrated in figure
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Figure 2.13: Asymptotic approximations of the durations (TA” AP, T\peak) Versus

(Tfetoses Tseiose) for v— = 1. Level sets for fpeak are rather vertical (plain labels)
and level sets for T4p are horizontal (boxed labels).
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Figure 2.14: 1D numerical solution. (Tap,Tpear) Versus (Tfeoses Tsciose) for

U= = 1, Topen = 130 ms, Tepse = 150 ms. Level sets for T, are rather

vertical (plain labels) and level sets for Typ are rather horizontal (boxed
labels).
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2.9(a)l To fit the asymptotic behavior to the data (see figure 2.9(a))), the nondimen-

sional number was N, = 0.1149. The numerical speed can be predicted as well with

the asymptotic speed as

L. Kap Ly, 1
=2 Y 2AB T ¢ (2.4.26)
Tup Kap up Kap

and the numerical results predicted are illustrated in figure [2.9(b)| still with N, =
0.1149.

Remark 10 (Precisions about the numerical simulations) The numerical val-
ues Ty, and Ly, are averaged over the total time of the simulation. The time and space
discretization was precise enough that the solution was converged in time and space
(less than 1% of variation on Ty, Lyy, Tap, Lap and speed compared to an abusively

precise solution,). i

Similarly, the value of the nondimensional number Nyouwn = (Tiown0)/(ConX L2gwn)
associated with the phase III can be found using the same 1D simulation as it is as-

sumed to be a constant. The downstroke width can estimated as well using equation

(2.4.23) and
/ T 1 / kC’Dj—\'downO-
L own == k L own — . 24.27
‘ cpd Vv Ndoum C1m ( )

The validity of the approximation is striking. Using the same 1D simulation, one gets

kep = 0.45 and Ny = 0.02601. Tyown and Lge,, could be plotted versus o/(C, ).

The figure is very similar than figure [2.9| and will not be showed to avoid redundancy.

The behavior of the AP length is asymptotically of the form

TAP(T

1
LA >~ .
d Vv NAP CmX
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The nondimensional number associated to the phase II is N4p = 3.3029 x 1073
and is found using the same 1D numerical simulation than the one used to fit the
upstroke length. Again, the behavior of the action potential duration and width
can be predicted accurately. Finally, the recovery length can be found by fixing the
nondimensional number for this phase (using again the same simulation than the one
used to fit the upstroke width). Again, the asymptotic results fit almost perfectly the
numerical solutions (as illustrated in figure [2.9).

2.4.6 Periodic excitations

The asymptotic speed (equations ) as well as the asymptotic upstroke dura-
tion (equation ([2.4.15))) depend on the state v_. This dependence has a considerable
impact on the solutions if the waves are very close to each other. For instance, when
waves are paced at a high frequency, v_ does not have a chance to reach the equi-
librium v = 1 between each pacing. Consequently, the action potential considerably
changes. This kind of phenomenon can occur in real life in pathological situations like
arrhythmia and fibrillation. The last example is often modeled with spiral waves (e.g.
see [40]), where the wave fronts propagate side by side very closely. In the following,
relations obtained from the asymptotic analysis are going to be used to predict what
happen to the solution of the MS model when there is a periodic pacing.

In the numerical simulations used to illustrate our results, a new wave is started
in a pacing region any time the recovery variable v is equal to a prescribed vpgee = v—
in that region. A sequence of waves is thus generated. They are constrained to move
together, pushed in the back by a following wave. In the long run, the wave train
is stable, i.e. all the waves have the same speed, action potential duration, recovery
time, etc. To get values of these wave features depending on v_, it suffices to excite

the new wave at that v_. The dependences are analyzed once a stable wave train is

obtained (figure [2.15)).
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Figure 2.15: The simulations are calculated over 5000 ms. The dimensionless
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Figure shows that the asymptotic analysis is still very reliable to predict T'4p
and T,¢.. Predicting T, for wave trains is more difficult because the approximation
of the integral (see remark with the corresponding scaling kap for v— = 1 no
longer holds when v_ varies. The approximation T up 15 as bad as 35% off T, when
v_ = 0.6. The approximation for the speed ¢ is also affected by the approximation of
the integral. It is nonetheless reliable since in the worst case (v_ = 0.6), ¢ is less than
6% off ¢. The approximation for T}, seems to be very poor because fdown does not
depend on v_. It is not the case because Ty, varies less than 4% from v_ = 0.6
to v_ = 1. The asymptotic approximation describing the behavior of wave trains is

finally very good as long as the prediction of the upstroke duration is.

2.4.7 Predicting the restitution curves

Using equation [2.4.20, the restitution curves can be plotted (figure [2.17) for the

upstroke duration, the action potential, the downstroke duration and the speed.

2.5 Modeling physiological AP propagating in var-
ious tissues of the heart

This section is devoted to the application of the asymptotic analysis to model various
APs. In the human heart, there are different tissues with different APs (figure
propagating at different speeds. In the same perspective than in integrative modeling,
a Purkinje fibers AP as well as a ventricle AP of a healthy human heart are going to
be modeled in order to prove the efficiency of our asymptotic analysis.

The very first step is to simulate one AP in 1D using a given set of parameters
{Wgates Tins Touts Topen, Teiose ;- Note here that the same ugqe has to be used for every
simulation unless a new 1D simulation is computed any time ugq changes. Using the

results of the 1D simulation, the constants k4p and kcp can be fixed to match the
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asymptotic predictions at such ugqze.
The second step is to impose the desired time scales of the AP. From equations

(2.4.15)), (2.4.19), (2.4.23)) and (2.4.20)), the relations are summed up as

~

Tup (Tin ) 7-out)

12

Tup
TAP ~ TAP (Tcloseu Tin, Tout)
Tdown =~ Tdown (Tout )

Trec =~ Trec<7—open7 Tin, 7-out>

and the order in which the parameters of the MS model have to be fixed is obvious:
Tout from T down followed by 7;, from fup followed by Topen, and 7gjose from ﬁec and T AP,
respectively. If for any reason the overshoot is important in the simulation, one more

relation is considered

~

Tpeak = Lpeak (usld’m Tiny Touts Tfclose) Tsclose)7

and the parameters are fixed in the following order: ugg, from the overshoot height,
followed by the same steps as without the overshoot and finally, 7¢q0se from the
overshoot duration.

The third step is to impose the speed of propagation by fixing the group of
parameters o/(Cy,x) in the bidomain model using equation (2.4.21]). Using the results
of the 1D simulation, the nondimensional numbers N,;,, Ngown, Nap and N,.. are
automatically set. The space scales L, Laown, Lap and L,.. are thus deduced.

Finally, the characteristic potential V,, is fixed so that the AP sweeps an appro-
priate range in Volts. Any characteristic time T and length L can be chosen as long as
the domain is already scaled in the right way. For instance, if a numerical simulation
is done on a mesh of a human heart, L has to be fixed so that the heart have an
appropriate dimension and 7' can be chosen arbitrarily. The nondimensional values

of 7’s in the MS model will have to be adjusted consequently because the original MS
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model is designed for T'= 1 ms.

2.5.1 Ventricle

In the intent of reproducing the ventricle’s AP, which is the most representative AP
of the heart, the first numerical simulation uses parameters such that the AP is
physiological, i.e. has time scales and speed of real patient data.

In order to see the entire cycle with the four phases in the numerical simulation,
the interval [0,%,,,,] over which the simulation is done is chosen such that t,,,, >
T up T up + T\down + ﬁec. The size of the domain has to be larger than ¢t,,q..

The numerical solution is performed on a domain of 1000 mm-long and of 1000
ms. A forward Euler time scheme is used with 80,000 time steps and a finite difference
method is used with 4,000 degrees of freedom. A characteristic time 7" = 1 ms and
length L = 1 mm are used for the nondimensionalization. wugqe = 0.13 and the
scaling constants kag, kcp as well as the nondimensional numbers of every phase are
the same as those used in section [2.4.5] The results of the asymptotic predictions are
presented in table[2.4]and the numerical simulation gives a solution with no more than
5 % off the predicted time scales. Note that ¢ is 12.6% off its asymptotic prediction.
As ¢ = v/N, the number N is readily adjustable so that the desired speed is exactly

obtained.

2.5.2 Purkinje fibers

This is an example where the AP has time scales of the order of magnitude of those
of the ventricle’s AP. However, the speed of propagation is way larger. The scaling
constants k4, kop as well as the nondimensional numbers of every phase are the same
as those used for the simulation of the ventricle’s AP. The results of the asymptotic
predictions are presented in table and the numerical simulation gives a solution

with no more than 10 % off the predicted time scales and speed.
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Table 2.4: Model’s parameters for a physiological ventricle to get the asymp-

totic ~-quantities.

Phase | Duration T MS parameters T T —T|/T
(ms) (ms) (ms) (%)
I Upstroke 8 Tin 0.3150 7.9750 0.313
II AP 250 | Teiose 168.50 260.93 4.38
111 Downstroke 30 Tout 5.5556 31.196 4.00
v Recovery 260 | Topen 94.942 257.41 0.996
Phase Speed ¢ | Bidomain parameter c lc—cl|/c
(m/s) | (nondimensional) (m/s) (%)
I 0.5 N ‘ 1.8508e-04 | 0.4368 12.6

Table 2.5: MS and bidomain model’s parameters for a physiological Purk-
inje system to get the asymptotic ~-quantities. The numerical solution is
performed on a domain of 2000 mm-long and of 1000 ms. Discretization:
Forward Euler time scheme with 100,000 time steps and 8,000 degrees of

freedom.

Phase | Duration T MS parameters T T —T|/T

(1ms) (mns) (ms) | (%)

I Upstroke 8 Tin 0.3590 8.77 9.7

II AP 380 | Telose 178.73 401.12 5.6

111 Downstroke 65 Tout 12.037 61.54 5.4

v Recovery 320 | Topen 111.55 305.29 4.6
Phase Speed ¢ | Bidomain parameter c lc—cl|/c

(m/s) | (nondimensional) (m/s) (%)

I 18 | N [ 0.0024 1.65 8.4
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Table 2.6: MS and bidomain model’s parameters for a physiological Purkinje
system to get the asymptotic ~-quantities for a very steep upstroke. The
numerical solution is performed on a domain of 1000 mm-long and of 1000

ms.
Phase | Duration T MS parameters T T —T|/T
(ms) (ms) (ms) (%)
I Upstroke 1 Tin 0.02 0.9554 4.46
11 AP 380 | Teiose 71.026 407.68 7.28
I11 Downstroke 65 Tout 16.852 58.940 9.32
v Recovery 320 | Topen 106.989 360.05 12.52
Phase Speed ¢ | Bidomain parameter c lc—c|/¢
(m/s) | (nondimensional) (m/s) (%)
I 18 | N | 16175e-04 |1.7975| 0.03

2.5.3 Considerations to take for a narrower upstroke

For a very steep upstroke of 1 ms-long, 7;, has to be reduced to 0.0827. This affects
considerably the phase space. For a complete cycle to occur during the simulation,
Ugate has to be reduced otherwise the domain gets re-depolarized prematurely. This
example of simulation uses ugqe = 0.005, with 100,000 time steps and 4,000 degrees
of freedom. The scaling constants ksg, kcp had to be re-calculated. The 7’s are
obtained using the results of a numerical simulation with the T calculated with the
constants kap and kcp of ugee = 0.13. Obviously this preliminary 1D simulation
gives wrong results in time scales and speed, but it is essential to find kap, kcp
as well as the nondimensional numbers of every phase associated with ugqe = 0.005.
Once these constants are found, a new numerical simulation is performed. The results
of the asymptotic predictions for a Purkinje fiber are presented in table [2.6] and the
numerical simulation gives a solution with no more than 13 % off the predicted long
time scales and no more than 10 % off the predicted short time scales. The speed is

perfectly predicted.
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2.6 Existence and uniqueness of a traveling wave
for the asymptotic solution

The conditions establishing the existence of travelling wave solutions for the reaction-
diffusion equation have been studied thoroughly in [91] for a general source
term f. The properties of the source term determine the existence of waves, their
number, their kind (monotone, non monotone, periodic), and their stability. For 2-
variable models, the analysis is done in a two- or three-dimensional phase space, often
resulting in simpler existence proofs (at least in comparison with higher dimensional
space). In [25] and [40], the existence of many types of travelling waves is proven
for the FHN model. The argument is relatively difficult given the several travelling
modes.

In the following we will see that the source term of the MS model is constructed so
that under certain conditions the travelling wave is unique. We are going to establish

the necessary conditions for the existence of this wave.

Remark 11 In this section, N = Npqrm and the value of N represents that of phase
Ieg. N =N, =02 as in table[2.9 i

With the equation (2.4.8), one gets that the traveling wave solution u(x,t) =

v(x + ct) solves the equation ([2.4.9)
c' + f(v,v_) = NV,

Let n = 1/ and the last equation can be written as a system of two ordinary differential
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equations.

Vo=
(2.6.1)

/

no= %f(l/, vo) + %77
For the original MS model the system of ODEs has three equilibrium points, and
for the modified MS with a # 0 there is only a single equilibrium point. The vector
fields and the equilibrium points for the reduced systems for both the MS and
modified MS models are illustrated in figure

For the MS model, a traveling wave corresponds to an orbit connecting the
equilibrium points (vf,n;) = (0,0) and (v,n;) = (hs(v-),0) (i.e. a heteroclinic
orbit) such that

lim (v(s),n(s)) =(0,0) and lim (v(s),n(s)) = (hs(v_),0).

§——00 s§—+00

A heteroclinic orbit cannot be found for the modified MS model (single equilibrium
point). In the sequel we are going to focus on the traveling waves for the MS model
only.

The existence of a heteroclinic orbit depends on f. In fact, the local stability of
an equilibrium point depends on the eigenvalues of the Jacobian matrix of the right
hand side of evaluated at equilibrium points as long as no eigenvalue is null
(see [19] and [80]). The Jacobian matrix is

7 0 1
() = 10f(wv-) ¢
N v N

Computing the eigenvalues of J(0,0) for ¢ € [0,1] (note that this remains true for
all ¢ > 0), one finds that (0,0) is a saddle point (see figure [2.19). The equilibrium
(v5,0) is either an unstable focus (eigenvalues with non zero imaginary parts and

positive real parts) or an unstable node. The transition between the two states of
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Figure 2.18: Phase planes for both MS and modified MS models. The equi-
librium points in the phase I (see on the v — axis) are denoted v7 , 5 on figure
a) and v* on figure b). The solutions plotted for both models use the physi-
ological parameters indicated in the second column of the table together
with the dimensioning parameters L = 0.001 m and 7" = 0.001 s, i.e. with
N = 0.10212. The nullclines and the vector field are for v_ = 0.99. Solu-
tions for the indicated values of ¢ are plotted in black. The nullclines and
the vector fields vary with ¢ but as ¢ varies only slightly, they appear to be
superposed.
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stability depends on where the wave starts in the phase plane (depends on v_). The
eigenvalues are plotted in figure 2.19(d)|, showing clearly the transition. It looks like
a bifurcation but it is not because of the absence stability change. The value of
the speed at which the transition occurs depends on v_ (see figure . The third
equilibrium (v, 0) is a saddle point. We are interested in finding a heteroclinic orbit
between the equilibrium points (v;,0) and (v, 0).

In [91] traveling waves are studied for a scalar (monostable and bistable) equation

of the form:
ou 0*u
ot 0x2?

+ F(u).
A key criteria for uniqueness of a heteroclinic orbit relies on the monotonicity of the
trajectory[91]. Let us show that the asymptotic wave is monotonous, provided the
value of v_ is fixed. First of all, the last equation is general enough so that it applies
exactly in our case, where F(u) = f(u,v_) and N = 1 can be obtained without loss
of generality as long as the domain and the duration of the simulation are rescaled.
Both (v1,0) and (v5,0) are saddle points. For the upstroke to be monotonous, the
heteroclinic orbit connecting (v5,0) to (v3,0) has to stay in the half-plane v/ = n > 0.
In this half-plane and for v € [V}, ;] an unstable manifold crosses v and a stable
manifold crosses v3. In fact, f(v,v_) > 0 in this region, suggesting a global behavior
for this heteroclinic orbit. From figure the possible behaviors of trajectories in
the phase plane can be explained for various speeds ¢, at a given v_ > 47, /Ty, for
definiteness of ;. We are going to show that non-monotonous orbits starting at v
and reaching v; are impossible. As a consequence, the orbit is unique for a fixed v_.
Let us suppose that one has a solution with an initial condition in the neigh-
borhood of v} in the half-plane v/ > 0. Suppose also that the speed ¢ < ¢* is such
that the solution crosses v/ = 0 from above between the points (v5,0) and (3, 0) (see
figure 2.21(a)). In other words, the solution misses the point (13, 0) (like the solution
for ¢ = 0.634 in the figure 2.18] the kick given by ¢ is not enough to reach (vj,0)).
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(f) Eigenvalues of J(v3,n%) as a func-

tion of the speed c.

(e) Vector field around (v3,n3), a

saddle point. ¢ = 0.6.

Figure 2.19: Real part of the eigenvalues of the equilibrium points in the
phase I for the MS ionic model. We take ¢ = 0.6 because the dimensional

speed (in m/s) is already close to the physiological speed of the depolariza-
tion front in the ventricle (around 0.5 m/s).

considered so v_ = 1.

An isolated traveling wave is
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Figure 2.20: Value of the speed where there is a transition from an unstable
focus to an unstable node. The threshold 47;, /7. for the existence of the
transition comes from the threshold for the existence of the third equilibrium
point v5 = h3(v_) = 1/2 + 1/2/1 — 4750,/ Tousv—.

We wonder if it could reach (v,0) in another way than directly and monotonically
from (vf,0). It means that v would need to increase again or equivalently that the
solution returns to the half-plane v/ > 0.

When the solution is in the half-plane v/ < 0, the only leak possible to reach
again the half-plane v/ > 0 would be between the points (vf,0) and (v5,0). The
interval [v], V5] is actually the only region on the v-axis where the vector field points
upward. If it does cross again v/ = 0 between the points (v;,0) and (v5,0), it is
impossible that the solution hits (v}, 0) without crossing its own trajectory, which is
forbidden by the uniqueness of the solution. Hence the non-monotonous orbit joining
v1 and v does not exist. In conclusion the heteroclinic orbit has to reach v; without
leaving the half-plane v/ > 0.

We emphasize that in equation , as well as in the equations , the
speed ¢ must be properly set say to ¢* so that a traveling wave exists, which amounts
to the existence of a heteroclinic connection for these ODEs. The monotonous orbits
coming from (v,0) either reach (v3,0) or go to the infinity (like the solution for
¢ > ¢* in the figure . By monotonicity, the heteroclinic orbit is attained in a

unique way referring to a specific speed ¢*. Remark that this uniqueness is achieved
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a) ¢ < c*, the orbit starting at v{ (b) ¢ = c¢*, the orbit starting at vf
g 1 g 1
misses 3. reaches v3.

(c) ¢ > c*, the orbit starting at v; passes
V3.

Figure 2.21: Schematic representation of what happen when the speed is
augmented progressively. In order to see details that are not distinguishable
in the real phase space (figure , this is a modified version of the real
phase space, .
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only for a fixed value of v_. Recall that section concerns the computation of

that unique and bounded speed.



Chapter 3

Influence of discretization

This chapter deals with the important question of choosing the right temporal /spatial
discretization when modeling phenomena in cardiac electrophysiology. There are
generally two effects that are related to a coarse discretization: numerical instability
and errors affecting the action potential wave form and speed propagation. This
chapter analyzes both phenomena.

Section discusses the problem of numerical stability, starting from a standard
finite element formulation of the bidomain model. The goal of this section is to
provide a ground for choosing the time step and mesh size on a quantitative basis, i.e.
from a criteria directly based on the model parameters. Section 3.2 describes how the

discretization affects the action potential shape and propagation in one dimension.

3.1 Stability of the time integration scheme

In chapter [2] an asymptotic analysis is made in order to find the parameters of the
MS model coupled with a 1D monodomain model for almost any desired AP (realistic
or not). Because of very small scale phenomena, time-stepping schemes for solving

these equations are numerically unstable unless the time step is taken to be extremely

100
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small. The aim of this section is to show how critical is the choice of the time step with
respect to the space discretization and model parameters to preserve stability. Based
on the arguments developed in [30], [14] and [13], stability conditions depending on
all possible parameters are derived for the Gear and the forward Euler time-stepping
schemes (see section [1.3.3] for definitions) for the FHN and the MS ionic models.
First, the bidomain equations in the isolated heart (equations —)
are discretized in space with a finite element method. Assuming that the solution is

smooth enough, the variational formulation of these equations is

" %% + /HNN(u + ) - Vo + /Hf(u, V)pu = [ NiV(u+ue) nupp, =0

oH

/ o;Vu - Vo, + / (0; + 0¢)Vue - Vo, = / (o;Vu+ (0, + 0¢)Vue) - ngd, =0
H oH

H
ov
[ Siont [ atuo. =0

for all ¢, ¢,, ¢, in appropriate test functions spaces, resp. H'(H), L*(H), H*(H),

and with N; = 0,T/(C,,xL?). The first two equations have null right hand side terms

because of the homogeneous Neumann boundary conditions in the isolated heart.
Provided the test functions ¢, = u(t), ¢, = u.(t) and ¢, = v(t) in these three

variational equations, respectively, we have first for the Gear time-stepping scheme

/ [SU”“ —4du"™ + un_l} ut = _/ Flumtt oyt
o 2At H

that

—/ NV (u" 2ty - vyt (3.1.1)
H
/ o Vu vt / (05 + o) Vu - Vultt =0 (3.1.2)
H H

n+l Qo™ n—1
/ v v+ ot — / glum™ )l (3.1.3)

For the sake of self-consistency the most relevant theorems and steps of the
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stability analysis are going to be integrally transcribed from [30]. Using the following

lower bound for the diffusive terms

/Q (o:V (u~+ u))V (u+ ue)+/Q (0.Vue)-Vue = milutueli+me|ue|; > m (|u|% + |ue|§)

with m; . = infq {U(i,e),la O(ie)ms O'(i76)7t} and

1
m:§ (2mi+me—\/4m§—|—mg>,

as well as the identity
9 (3an+1 _ 4q™ +an—1) at — (an+1)2+(2an+1 _ an)2_(an>2_(2an _ an_1)2+(5ttan+l)2

with dga™t = "t — 24" 4+ a™ !, one can get the following inequality by summing

the equations (3.1.1)-(3.1.3)

o3+ 20+ = = ol — 120 = ) +
20 = 0" ([g = [[o"[Ig — (120" — "G + At (Ju T + ug )
< —4At/ f(u"“,v”“)u"“+4At/g(u”+1,v"+1)v"+1.
? ? (3.1.4)

Remark 12 The value of m is obtained considering that m;|r + y|> + m.|y|* =
mg|z)? + 2mi(x,y) + (m; + me)|y|? is a quadratic form that can be written in the

following way

m; m; T . 9 9
(v ) > mi(lal? + |y,
m; Mg + Me Y

with m > 0 the smallest eigenvalue of the above matrix.

The crucial step (useful for any implicit time integration scheme) is getting a
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bound for the ionic terms:

—/f(u,v)u+/g(u,v)v:f0/ (—u'+ (1 + a)u® — au?) ~|—/(€y—1)uv—eﬁv2
’ . s =1 e =11
< fo [ (maut+b0?) = foalfull + 257 kol — el

< Crungear (lull + [10]l5) -

lullg +

(3.1.5)

where

b>(1+a)2 /4 2k 2
k>0

—1 — 1|k
CrunGear = inf  max {fo(b —a)+ ey ” ey | _ 66} '

Note that for & > 0, we have xy < x?/2k + y?k/2 for z,y € R. Also, we have used
that

ut — (1+a)u® > au* —bu? ifa <1 — (1 +a)?/4band b > (1 + a)?/4.

Remark that taking the infimum allows to get a constant Crpn Geqr independent of
b and k. The requirement that Cryn Gesr be positive is satisfied as the infimum is
taken over two quantities with one always positive. In fact, by analyzing the phase
space one can show that fo(b— )+ |ey —1|/2k is bounded uniformly away from zero.
First of all, we have ey = 1 in the worst case, and a > 0 for having the equilibrium
state at (u,v) = (0,0). In addition, the u-nullcline has a local maximum (u*,v*)
located between two zeros u = a and u = 1, hence o < v* < 1. Finally, the value of
fo can be viewed as a time scale that can be fixed to a strictly positive value without

loss of generality.

The equation (3.1.4) is combined with (3.1.5) and the sum of the resulting in-
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equalities when n varies from 0 to m — 1 gives

(1 = ADCruN Gear) [Ilw™ 6 + 1™ IF] + 488w (lu"F + [ug]?)

o1t (3.1.6)
< 2 (|[uClf5 + [10°113) + 4AtCraN Gear D, 1017 + [[0"3,
n=0

where m is an integer between 1 and M, the index of the final time step. Choosing

1
the time step such that At < e the following estimate is derived
FHN,Gear
2 ANEC =
m||2 my2 < 012 02 FHN,Gear ny2 ny)2
I+ < 5 g (W + 11+ T A Z; ™ 3+ l0™ 5

(3.1.7)
The next step uses the following discrete version of the Gronwall lemma (see for

example [19]).

Lemma 3.1.1 (Discrete Gronwall) Let {k,} and {p,} be to sequences of non-
negative real numbers, ™ a discrete real-valued function and gy a non-negative real

number such that ©° < go. Also suppose that ¥Ym > 1,

m—1 m—1
PTG+ Y Pot Y k"
n=0 n=0

Then the following estimate is true

m—1
m—1
" < (90 + Zm) g2en=o kn,
n=0
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The application of lemma to equation (3.1.7)) yields for any n =1,..., M

2

e ls 11018 < gz (1l + [1o75) ¥t Cromceer AR CrN Geor),
,Gear

The (non-dimensional) stability condition for the Gear time-stepping scheme

(depending only on the parameters of the problem) is then simply given by At <
1

4CrEN Gear

With the FHN model’s parameters given in section [2.2] the stability condition
is At < 0.5946 while it is At < 5 numerically. The energy method used above
gives a critical time step that is sufficient for stability, while larger time steps can
often be used in numerical simulations. Moreover the critical time step for stability
is difficult to identify in practice as higher order time-stepping schemes often give
rise to non-monotone solutions for time steps just below the critical value. This
loss of monotonicity is seen as oscillations near regions with sharp gradients, such
as the depolarization front, which oscillations do not grow with time and eventually
disappear at larger times. This loss of monotonicity may easily be confused with an
unstable numerical solution that eventually blows up after a finite but large number

of time steps.

From [I3] and [26], a physiological stability condition can be derived for the MS
ionic model presented in the section 2.2.3] Defining Q, = {z € Q|u(z) > uga.} and

rewriting for convenience (similarly as in equation (2.2.4)) the source term g(u,v) as

9(u;v) = = [(1 = oo (1, Ugate) ) (1 = 0) = Soo (s Ugare V]

with

Tu = Topen + (Tclose - Topen>soo<u7 ugate)



3. Influence of discretization 106

and

(1 + sgn(u = ugate)) ,

N | —

Soo (u, ugate) -

one gets the following bound for the ionic terms (see also equation (2.2.3) for the

_/Qf(u,v)w/gg(u,v)vz...

v 1 1
= /Q a(—u‘*%—ug) — 5_Voqu%—/Q p [(1 = Soo(, Ugate)) (v = 1%) = Soo (U, Ugare)V?] < ..

1 1 1
S/i(—au4+bu2)—~—u2+~ / (v—?) — = /v2§...
Q Tin Tout Topen O\ Qyq Telose Qq

Umazx 1 1 1
s<~ b — >||u||%2(9)+~ /(U+v2)+~ /&g...
Tin Tout Topen JQ Telose JQ

Umae, 1 , 1 1 1 ,
< (22220 ) Nl + s lolloey + (2= + 5 ) el < -

in Tout open open Tclose

v 1 1 k 1 1
< T(wb - = 2 — Q — = = 2 = ...
N < Tin Tout) ||u||L2(Q) * 2k70p6n| | + (2Topen * Topen * Tclose) HUHL2(Q)

with @ > 0 and b > 1/4. It can be proved [13] that v,,,, = 1. Remark that the

source term f(u,v))

last inequality is obtained with the Cauchy-Schwarz inequality, followed with the
application of the identity zy < x?/2k +y*k/2 that holds for z,y € R and any & > 0.

Hence

1
—/f@wm+/9wwv§ L1014 Cusicear (lull2 + 1012)
Q Q 2kTopen

where the stability constant is

1 1 1
CMS,G’ear = inf max {U:mmb — — (E + 1) _ } ‘

~ >
b>1/4 Tin Tout Topen 2 Telose
k>0

The term [Q|/(2kTopen) is kept aside as it is taken into account in the terms p,, in the
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Gronwall lemma, which gives

™[I + flo™115 <
1
1 - 4AtCMS,Gear

9 (||U0||(2) + ||v0||§) _'_4% eMtnCOns Gear/(1=40tC M s,Gear)
2Topen
Remark that as 7, o, are small time scales and Typen ciose are large scale. In addition,

if k is taken small enough, the stability constant is given by
Umaa: ]‘

C1MS,Gea7' = o= T = > 0,
4Tin Tout

meaning that the stability condition At < 1/(4Cs.Gear) is controlled by the smallest
time scales of the ionic model. We recall that the existence of two distinct nullcline
branches in the phase space requires that 1/47;, — 1/ > 0 (see equation [2.4.3)).

This explains why Cirs.Gear > 0 provided vy, = 1. Finally, the condition on the

1 1 1
0<k<?2 Topen AT —T—t—Tl —1

only imposes a gap between small scales and large scales.

Recalling the following asymptotic dependences (see equations (2.4.15)) and (2.4.23))),

values of k

Tup = fup(’rinv Tout)

Tdown ~ Tdown (Tout)

this can also be viewed as a stability condition depending on the AP upstroke and
downstroke durations. With parameters given in section [2.2.3| and also in Table
with Adim3 the stability condition is At < 0.25 (ms). The stability condition has

not been fully explored numerically but at At = 0.5 (ms), the solution is still stable.
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It is proved in [30] that the forward Euler scheme has a stability constant that is
independent of the ionic source terms. For completeness, we repeat the result which
holds for any ionic model.

If a forward Euler scheme is used, the stability criteria is

At < Cpph?
where
2xC,, L*m 2m
Crp = " 7 = v 2
20T, _ Ay (2 i
TC MZ <1 + (mi+me)> Nsup,zc <1 + (mi+me)>

with M; . = supq {U(@e)’l, T(ie)ns 0(i7e)7t}, Neupi = CTm—]\X@Q, C=2v31in 1D, C =6v2 in
2D. The inverse inequality presented in Appendix [C] is used.

In conclusion, the ionic model itself and the non dimensional number N affects
the stability of the time-stepping scheme. The explicit dependences on all implied
parameters are given and this reflects the fact that the sharpness of the upstroke as
well as the speed of the wave are of first importance when a simulation is performed.
Precisely, when an implicit Gear time-stepping scheme is used with the MS model the
stability constant depends only on the parameters controlling the small time scales of
the AP, i.e. the upstroke and the downstroke durations. In contrast with the implicit
Gear time-stepping scheme, the forward Euler time-stepping scheme has a stability
constant which depends only on the non dimensional number N, a criteria in relation
with the propagation speed of the AP.

In a physiological simulation the upstroke can be very steep and the propagation
speed very high, depending on which tissue is simulated. These stability conditions
are very useful to assess discretization requirements and obtain a numerical solution
with the least computational resources possible. A time step near the critical value

for stability is usually not sufficient for obtaining an accurate solution. In some

situations, getting a solution is a first step which is not necessarily easy when using
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new sets of parameters. Having these stability conditions ensures to have a solution,
and then an analysis of the convergence of the solution with respect to the time and
space discretization can be done. A precise numerical solution can finally be obtained

for the new set of parameters.

3.2 General influence of the time/space discretiza-
tion

The numerical results presented in [30] (with the bidomain model and the FitzHugh-
Nagumo ionic model) clearly show that one cannot reliably compute waves if the
spatial grid is too coarse and the time steps are too large, irrespective of the time-
stepping scheme used. This means that to test the parameters of any ionic model i.e.
to see the effect of their variations on the solution, the time and space discretizations
have to be such that the solution is converged. Furthermore, it is said, again in [30],
that higher order methods are necessary to solve the bidomain model, second order
methods being in fact the optimal choice in terms of accuracy and computational
cost. Remark that higher order methods are not the optimal choice in the special
case where they are used with linear of quadratic finite elements. Many aspects of the
discretization are thus important, from the choice of the discretization scheme with
its associated order of convergence, to the number of spatial and temporal degrees of
freedom.

This section presents unidimensional numerical simulations for the FHN and the
MS models in order to evaluate the effects of the discretization. The goal is to see
how the use of the MS model, set so that scales of the AP are properly represented,

influence the numerical accuracy in comparison to the FHN model that was used in

[30] to do such a numerical study. For the MS model (equations (2.2.3) and ([2.2.4))),

the simulations are done with the dimensional scaling Adim3 presented in the table
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2.3 The domain is /4, = 600 mm-long, and the final time is ¢,,,, = 1000 ms. The
domain is larger than a human heart (around 70 mm) and the simulation longer than
a heart beat (around 600 ms) to see the propagation of the wave over a large time.
The MS model parameters are those presented in Table and for the monodomain
model, we take the nondimensional number N = 0.3.

For the FHN model (equations and (2.2.2))), no dimensional scaling is
specified and the monodomain model with N = 1 together with the parameters given
in section [2.2.1| are used. The domain is of /,,,,, = 200 space units, and the final time
is of 4z = 500 time units.

Note that the following results hold also for the unidimensional bidomain model.
In 1D, the monodomain model with the harmonic approximation of the conductivity
tensor, i.e. Oparm = (07 ' +0.1)7L, gives a system of PDEs which is equivalent to the
bidomain model (see section [2.4.2). The results for the monodomain model only are
presented, but the correspondence with the bidomain numerical solutions has been
verified.

The problem consists in finding (u,v) in [0, lyaz] X [0, tmaez] such that

ou 0*u

E‘i‘f(U,U) = Nharm@7
Y )
5 = 9wut).

The initial conditions for the MS model are given by

0.8 for z € (0,0.9504z),
u(z,0) =

0 fOI' T € [0.95lmazv lmax)7

and

v(z,0) = 1 Vz € (0,lnaw)-
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Homogeneous Neumann boundary condition is applied for u. Figure 3.1 shows the

spatial profile of the APs for both ionic models.

u u
1 ~ \4 177777\;»—7 = \2
(o N
0.8 [ 0.8 .
[ \ : %
0.6 ‘ | 0.6 4
0.4 [ 0.4
ozf | | 0.2 |
o—"--"" i o——
—0.2 ‘/ - -0.2
0 50 100 150 200 600 700 800 900 1000
X X
(a) FHN, Solution at t=500 ms. Time (b) Original MS [56], Solution at t=500
step: 0.25 time units, Mesh size: 0.005 ms. Time step: 0.075 ms, Mesh size:
space units. 0.0125 mm.

Figure 3.1: Transmembrane potential v and the recovery variable v for the
FHN model on © X [0,t,4.] = [0,200] x [0,500] and the MS model on
Q x [0,tmez) = [0,1000] x [0,1000]. Remark that the FHN features the
hyperpolarization after the wave, contrary to the MS models. The waves
move from right to left.

For the time discretization a forward Euler (explicit first order) and a Gear
(implicit second order) time integration schemes are used (see section for defi-
nitions). For the space discretization a second order finite difference method is used,
which is equivalent in 1D to P; finite elements over a uniform grid. With a constant

conductivity, the diffusion operator is simply a second derivative discretized as
Pu, o ulxr+h)—2u(x)+u(z—h)

~

522 @) 2 ’

where h is the mesh size. For a comparison with the finite element, the variational
formulation is presented in section [1.3.3]

For both ionic models, the convergence of the solution with respect to the time
and the space discretization is verified. It is already known that many features of the
solutions are affected by the discretization. In [69], the influence of the discretization

on the speed of the depolarization front is analyzed. Here, the influence on the
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excited phase duration T4p (a long time scale) and the upstroke duration 7y, (short
time scale) is also analyzed.

In order to analyze the solutions, four types of isochrons are calculated. The
first are the isochrons of depolarization is04ep01, Which are updated at each time step.
1504epor has a value on every degree of freedom in the domain and is defined as the first
time the given degrees of freedom z; is depolarized i.e the transmembrane potential

u crosses from below a threshold wuy,. We compute i50gep01(7;) as follows:

Initialize with i50gepoi(7i,0) = —1,and set at time ¢
150depot (T, 1) =t if w(xy, t) = g, and i504epor (i, t — At) < 0. (3.2.1)

Here uy, was set to 0.13 or —68.75 mV. The value 0.1 is suggested in [56] as the usual
experimental way to measure the APD. However, in their own ionic model, they use
Ugate=0.13 as the threshold for the APD (see section[2.2.3). Colli Franzone et al. [37]
use 0.2. This threshold is also used for the FHN model.

The three other types of isochrons are 50,44, 50repor and iso,.. that are de-
fined similarly with ¢504epor < ©50mez < 150pepor < 150p¢. and with the thresholds
0.95 maxq(u), 0.5 and 0.05 maxq(u) for the last three of these, respectively. These
thresholds are justified in chapter [2| by the asymptotic analysis of the MS model .

The excited phase duration T4p is calculated at every time step by performing
180repol — 150mae- We avoid considering the early time steps where the wave is not
completely formed and where solution’s features are not yet stabilized. The upstroke
duration Ty, is also calculated at every time step by performing 7504, — 7504epor. The
speed of the depolarization front c is the inverse of the slope of i504epe for the last
time steps. The slope is calculated with a least square fit of an affine function on the
last time steps data. Tables to show how the time and space discretization
can affect the solution features T,,,, T4p and c.

Reference values are presented in table (3.5 For the FHN model, the reference
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solution is calculated with 4,000 nodes and 1,000,000 time steps using a forward Euler
time-stepping scheme. To give an idea of how the solution is converged, the difference
between the two most precise solution (two last rows of Table is less than 0.4 %
for T, less than 0.15 % for T4p and less than 0.7 % for ¢. For the MS model, the
reference solution is calculated with 8,000 nodes and 32,000 time steps using a Gear
time-stepping scheme. To give an idea of how the solution is converged, the difference

between the two most precise solution (Table [3.4)) is less than 0.7 % for T,,,, less than

0.04 % for T'yp and less than 0.02 % for c.

Table 3.1: Monodomain model with FHN ionic model and the forward Eu-
ler time-stepping scheme: convergence study. The shadowed rows are close
to the limit of stability. Reference solution’s features are T, .y = 29.9,
Taprer = 69.5 and c,ef = 0.32 calculated with 4,000 nodes and 1,000,000

time steps.

Ny o Toup Tap c
200 2,000 28.579392 | 68.269231 | 0.319834
200 5,000 28.625503 | 68.061832 | 0.321946
200 10,000 28.634564 | 68.026718 | 0.322845
200 100,000 | 28.646577 | 67.988321 | 0.323671
200 | 1,000,000 | 28.647674 | 67.984908 | 0.323772
400 10,000 29.232167 | 68.916540 | 0.319095
400 100,000 | 29.243405 | 68.879829 | 0.319657
400 | 1,000,000 | 29.244638 | 68.876029 | 0.319720
800 100,000 | 29.586567 | 69.236638 | 0.319745

1,000,000 | 29.587695 | 69.232934 | 0.319802
1600 | 100,000 | 29.769179 | 69.429422 | 0.321715
1600 | 1,000,000 | 29.770309 | 69.425768 | 0.321775
4000 | 1,000,000 | 29.883481 | 69.528513 | 0.320456
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Table 3.2: Monodomain model with FHN ionic model and the Gear time-
stepping scheme: convergence study. The limit of stability is experimentally
about n; > 40, or At < 12. Reference solution’s features are T, .y = 29.9,

Taprer = 69.5 and ¢,y = 0.32 calculated with 4,000 nodes and 1,000,000

time steps.

Ny Ty Toup Tap c

200 100 30.000000 | 64.871795 | 0.312657
200 500 28.702703 | 67.969231 | 0.323652
200 1000 | 28.674497 | 67.946565 | 0.322461
200 5000 | 28.651007 | 67.982443 | 0.323911
200 | 10000 | 28.648658 | 67.982061 | 0.323853
200 | 100000 | 28.647886 | 67.984618 | 0.323797
400 100 30.000000 | 70.000000 | 0.309531
400 500 29.324415 | 67.737255 | 0.319453
400 1000 | 29.261667 | 68.847909 | 0.318883
400 5000 | 29.246179 | 68.872243 | 0.319742
400 | 10000 | 29.244186 | 68.875475 | 0.319766
400 | 100000 | 29.244651 | 68.875760 | 0.319754
800 100 30.000000 | 72.142857 | 0.313340
800 500 29.785075 | 66.583333 | 0.319049
800 1000 | 29.605482 | 68.246589 | 0.318946
800 5000 | 29.588226 | 69.252372 | 0.319808
800 | 10000 | 29.587811 | 69.233049 | 0.319863
800 | 100000 | 29.587894 | 69.232547 | 0.319819
1600 100 30.000000 | 68.750000 | 0.310783
1600 500 29.993103 | 64.111111 | 0.321064
1600 | 1000 | 29.824888 | 66.636445 | 0.320576
1600 | 5000 | 29.771310 | 69.423886 | 0.321934
1600 | 10000 | 29.770813 | 69.424408 | 0.321864
1600 | 100000 | 29.770431 | 69.425346 | 0.321804
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Table 3.3: Monodomain model with the original MS ionic model: convergence
study with forward Euler time-stepping scheme. The shadowed rows are close

to the limit of stability.

Ty

1000
1000
1000
1000

2000
2000
2000
2000

4000
4000
4000

8000
8000
8000

Ty

4000
8000
16000
32000

8000
16000
32000
64000

60000
120000
240000

200000
400000
800000

Tup

7.948399
7.933046
7.926342
7.928356

7.970268
7.978101
7.985711
7.983088

8.066963
8.067838
8.067376

8.121770
8.121628
8.121635

Tap

260.269386
260.361111
260.395994
260.412452

260.900115
260.917566
260.923050
260.931875

261.121130
261.123158
261.124901

261.205022
261.205844
261.206181

C

0.515709
0.532357
0.543236
0.550199

0.541443
0.552278
0.553882
0.556807

0.560039
0.559651
0.560555

0.561118
0.560930
0.561807
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Table 3.4: Monodomain model with the original MS ionic model: convergence
study with Gear time-stepping scheme. The shadowed rows are close to the

limit of stability.

Ty

1000
1000
1000
1000
1000
1000

2000
2000
2000
2000
2000
2000

4000
4000
4000
4000
4000
4000

8000
8000
8000
8000
8000
8000

Ty

1000
2000
4000
8000
16000
32000

1000
2000
4000
8000
16000
32000

1000
2000
4000
8000
16000
32000

1000
2000
4000
8000
16000
32000

Top

6.636073
7.823626
7.911863
7.912917
7.914931
7.919444

6.987469
7.848862
7.948389
7.968084
7.975964
7.987162

6.967033
8.000000
7.996979
8.075776
8.061053
8.066731

6.666667
8.000000
8.000263
8.105303
8.117320
8.121670

Tap

261.888252
260.552395
260.457326
260.445537
260.443835
260.439911

261.933544
261.072009
260.975074
260.954732
260.944765
260.934519

262.060606
261.375000
261.195962
261.119200
261.131452
261.126601

262.192308
261.345420
261.215900
261.225033
261.210756
261.206815

Cc

0.584623
0.558457
0.549307
0.550212
0.549338
0.548990

0.590235
0.565129
0.558741
0.557799
0.560978
0.560243

0.591367
0.567278
0.561705
0.560944
0.562256
0.561865

0.591777
0.567332
0.562645
0.561984
0.561333
0.561942

Table 3.5: Features of the converged solution of the ionic models under study.

Tonic Model

Tup TAP

c L

up

Lap

FHN
MS

29.9  69.5

0.320 9.58 22.28
81 261.2 0.562 4.55 146.8
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General behaviors of the effect of the discretization on the solution features can
be extracted. For the FHN ionic model with both the forward Euler and the Gear
time-stepping schemes, the solution’s features are very stable or very close to their
converged values even when the time step is close to the critical value for instability.

For the MS model with the forward Euler scheme, one can observe that for a
number of nodes n, fixed, if the number n; of time steps is increased, the speed of
the depolarization front increases, the upstroke duration slightly decreases and the
excited phase duration is stable. One can also observe that if the number n, of nodes
is increased, the speed of the depolarization front increases, the upstroke duration
and the excited phase duration slightly increase.

For the MS model with the Gear scheme, one can observe that for a number of

nodes n, fixed, if the number n; of time steps is increased,

e the speed of the depolarization front ¢ decreases (e.g. from the limit of stability

to convergence, ¢ decreases by 5%),

e the upstroke duration T, increases (e.g. from the limit of stability to conver-

gence, T, increases by 12%),

e the upstroke length L,, increases (e.g. from the limit of stability to convergence,

L, increases by 7%),

e the excited phase duration Tsp is stable (e.g. from the limit of stability to

convergence, less that 0.4% of variation)and
e the excited phase length L4p decreases (by about 5%).

One can also observe that for a number of time steps n; fixed, if the number n, of

nodes is increased,

e the speed of the depolarization front ¢ increases,
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the upstroke duration T, increases,

the upstroke length L., is increases,

the excited phase duration Typ is stable and

the excited phase length L4p increases.

Estimate of requirements in 2D and 3D Table [3.6] summarizes the number of

nodes required for a simulation with the MS model ionic model for different level

of numerical error on the solution. The area of the 2D myocardium (third column)

is the area of our 2D realistic model used for numerical simulations in chapter [4]

The volume of the 3D myocardium (last column) is taken from 3D echocardiography

measurements[48]. The reference solution is calculated in 1D with 8000 nodes and

32000 time steps on a domain of [600 mm]x[1000 ms| using a Gear time-stepping

scheme. Finally, the number of nodes is estimated by assuming that the 1D nodes

are equally spaced, as well as the 2D and 3D meshes are uniform.

Table 3.6: Number of nodes required on a heart to have the prescribed relative
error (1st column to 3rd column) on the upstroke duration, excited phase
duration and speed. These results are calculated for simulations of 1000 ms
and 8000 time steps with a Gear time-stepping scheme.

Relative error (%) on Number of nodes suggested At (ms)
Tup | Tap c 1D (10 cm) | 2D (48 cm?) | 3D (174 cm?)

2.6 | 0.29 2.1 166 13,300 800,000 0.125
1.9 | 2.8 2.3 333 53,300 6,500,000 0.125
0.57 | 0.03 0.18 666 213,300 51,500,000 0.125
18.3 | 0.26 4.0 166 13,300 800,000 1




Chapter 4

On the convergence of the
heart-torso coupling problem using

non-body fitted meshes.

4.1 Introduction

The aim of this chapter is to demonstrate numerically the accuracy and the order of
convergence of an algorithm solving the heart-torso coupling problem, using a level
set description of the domains (see section and using non-body fitted meshes
(see figure . The goal of choosing this way of tackling the problem is to be able to
use realistic geometries coming from segmented medical images (see figure .2) while
keeping the code implementation as minimal as possible.

In this chapter a diffusion problem with subdomains of different conductivities is
first studied in section In fact, the last five equations of the heart-torso coupling
problem (1.2.6)-(1.2.12) can be viewed as a diffusion problem with discontinuous
conductivities. Moreover, this type of problem is well documented in the literature

(see section [1.3.3). Numerical methods for dealing with complex geometries and

119
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(a) Body  fitted (b) Body fitted (¢) Non body fitted
mesh, polygonal mesh, domain with mesh.
domain. a curved boundary.

Figure 4.1: Body fitted meshes vs a non body fitted mesh. The internal
interface between subdomains is in red.

(a)  Medical image. (b) Segmentation. (¢) Non Dbody fitted
Source:  University of Source: Olivier Rousseau mesh
Ottawa Heart Institute

Figure 4.2: Preliminary steps of a realistic simulation with non body fitted
mesh. From a medical image (a), a segmentation (b) is done to capture the
complicated internal interfaces between the heart and the torso. A simple
(non body fitted) mesh (c) is built on the whole image.
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jumps in the conductivities are one of our first concern. A review of finite element
methods for complex geometries and fixed meshes is done in section [4.2.2] and the
analysis of the method is done for a diffusion problem. In section [4.2.3] we describe
two original finite element method which use a level set description of the domain
and a non-body fitted meshes. We then quantify numerically in section what is
the loss in precision and the loss in the order of convergence for a diffusion problem.

In section [4.3] we quantify what is the loss in precision and the loss in the
order of convergence for the heart-torso coupling problem. Finally, the heart-torso
coupling problem is solved in section using 2D realistic patient data. The method
is obviously not optimal in terms of order of convergence (see section . We will
see in chapter [5| that mesh adaptation can be used to improve the accuracy of the

method.

4.2 Convergence of the diffusion problem

The bidomain model will be reformulated below in the way that there will be a dif-
fusion equation with discontinuous coefficients. We are interested in the order of
convergence of the whole heart-torso coupling problem, but studying first the diffu-
sion problem with discontinuous coefficients is very important for instance to see the
limitation of the numerical method. The diffusion problem is also well documented

in the literature (see for instance [20],[49],[51],[53],[67]).

4.2.1 Definition of the problem

We recall and generalized the Poisson elliptic problem or diffusion problem with

interface presented in section [1.3.3} Find u such that:

—V-(c"Vu)=f inQ, (4.2.1a)
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~V - (6*Vu)=f inQF, (4.2.1b)
[u]r = w, (4.2.1c)
[oVu-nlp =Q, (4.2.1d)
u=g¢g on 0N (4.2.1e)
where

ot ifxeQr,

o ifzxeQ

with n the normal outward vector of 27, w is the value of the jump of the solution
on I' and @ is the value of the normal flux jump on I'.

In reference to the bidomain model, u is the extracellular and extracardiac
potentials and o the conductivity. If ' separates two different media (like the
heart, the torso, the lungs, the heart cavities, etc), the conductivity ¢ may be dis-
continuous. Physically the potential is continuous, which could be translated into
[ulp = ut —up = 0, i.e. the jump of u is null at the interface. If the source term
f(x) is continuous, then [cVu - n]. = 0, that is to say the normal flux oVu - n is
continuous, but Vu - n is in general discontinuous, because of the jump on o.

The diffusion problem with the transmission conditions — isa
special case of the problem . Note that the weak form of the simplified problem
(1.3.3]) is written in section m Theoretical results of convergence for the simplified
problem are given in section We also analyze the order of convergence in
practice by solving this problem in section using the finite element code MEF++
[2]. The problem is used in section for a review of existing finite element

methods with internal interfaces.
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4.2.2 Review of finite element methods for problems with

internal interfaces and fixed meshes.

This section depicts some finite elements (FE) methods that have all something in
common: they can be used for solving problems with discontinuous coefficients and
domains with irregular interfaces described with level sets. FE methods with optimal
order of convergence are preferable. As there exists many FE methods and variants,

optimal or not, the interest will be focussed on four methods applied on the elliptic

problem (4.2.1]) in Q.

IITFEM: Immersed-Interface Finite-Element Methods

The method called IIFEM was developed by Z. Li and al. [49, 511, 39] for solving
elliptic problems on regular grids with non homogeneous jumps on internal inter-
faces. The interfaces are allowed to cut the elements of the mesh so that it is a
non-body-fitted mesh. With a finite element formulation using level sets, an “exten-
sion” function w is built in order to satisfy the non homogeneous jump conditions
on the interfaces. With such an extension function jumps on solution and fluxes are
removed. An elliptic problem is then obtained with homogeneous jumps on interfaces.
This problem is equivalent to the simplified problem . A special finite element
basis is built for elements near the interface which provides a way to represent so-
lutions with homogeneous jumps. The resulting linear system is symmetric positive
definite. Optimal convergence rates are attained, i.e. similar to those for methods

with interfaces passing through the mesh nodes (see section [1.3.3)).

Fictitious domain methods

Fictitious domain methods constitute a whole class of methods for efficiently solving
problems with complex external boundaries. The first step consists in embedding the

domain with a complex or moving boundary in a “fictitious” domain with a simple
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and fixed boundary, e.g. a square. In a method developed by Glowinski and al.[3§]
a Lagrange multiplier is used to impose the boundary conditions at the complex
boundary. This method allows for solving the problem without having to cut the
mesh at the interface.

The problem consists in finding the solution in {2~ with Dirichlet boundary con-
ditions u = u, on I'. The solution u is calculated in all 2 with a mixed variational
formulation which imposes transmission conditions at the interface like the Dirich-
let boundary conditions on I'. For the fictitious domain formulation, we define the

Lagrangian £ : V x H~'/2(T') — R by

£ =5 [ oVoR = [ o= tuo =)

where (-, -) indicates here the duality between H~'/2(T") and H/?(T'), and V is an ap-
propriate subspace of H'(£2). The first order optimality condition gives the following
saddle-point problem: find {u, x} € V x H~Y/2(T') such that:

(u,v) /fv+ X,V Yo eV,
—u,) =0 Yue HYT),

In [38] an appropriate choice of finite element spaces is done and the linear system
is solved with a preconditioned conjugate gradient method. The convergence of the

approximate solution u; to the solution w is demonstrated for u, = 0.

A non-conforming FE approximation with a Lagrange multiplier

This method was developed by Peichl and Touzani [67] for the resolution of the sim-
plified elliptic problem (1.3.3]) with discontinuous coefficients and homogeneous jumps
(problem (4.2.1)) with w = 0 and @ = 0). This method is designed to solve more elab-

orate problems like time dependent problems on fixed meshes, e.g. where the interface



4. On the convergence of the heart-torso coupling problem using non-body
fitted meshes. 125

I’ moves, and nonlinear problems. In fact, this finite element method starts from a
fixed cartesian grid with a complex interface intersecting the mesh edges. A prelimi-
nary step consists in cutting the interface elements in three sub-elements. Then the
linear finite element basis functions on the original mesh is enriched with linear basis
functions on the sub-elements. The added degrees of freedom have local supports and
then yield a non-conforming finite element method. A Lagrange multiplier removes
this non-conformity and ensures an optimal convergence rate, if the exact solution u
and the mesh satisfy certain regularity conditions. The following saddle point prob-
lem indicates that the continuity of v across the edges e of &, which designates the set

of all the edges of the sub-elements, is enforced by a Lagrange multiplier technique.

A(u,v) — B(x,v) = (f,v) Yv €V,

B(pu)= 0  Vu€ Qs

where

Alu,v) = /ahVu -V,

Blo,p) = /u[v]

e V€
and where o}, is the piecewise linear interpolant of ¢ on the set of all the elements
and sub-elements obtained from cutting at the interface, V), is the space with the
enriched basis and @)}, is the space of the Lagrange multiplier. Remark that in [67],
the Lagrange multiplier is taken constant along the edges e € &, and the system
is solved with iterative process like the Uzawa method. In such situations, each
iteration step consists in solving an elliptic problem with a given y. In this method,
the interface supports the added degrees of freedom but the Lagrange multipliers are
defined on the edges intersected by the interface and thus serve to compensate the

nonconformity of the finite element space rather than enforcing interface conditions,
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which are being naturally ensured by the variational formulation.

Regularizing methods for discontinuous coefficients

A simple approach is to smoothen jumps on the coefficient o. The expression of the
interface through a level set description makes the regularizing methods simpler for
2D and 3D problems[65), [64]. The solutions are also smoothen at the interface. This
method has been implemented for finite difference simulations as well as for finite
element simulations (see for instance [82] and [34]).

An other method used with finite difference methods is the harmonic average
technique[50]. This method is of second order for particular problems in 1D, but
generally is not for 2D and 3D problems. In order to guarantee a second order
of convergence, it is necessary to precisely compute the integral for the harmonic
average. This integral is not necessarily easy to calculate precisely, especially near
discontinuities. The second order of convergence may be lost in case of an inaccurate

computation of the integral, unless the interface is aligned with the mesh nodes.

4.2.3 Two finite element methods for the use of non body-

fitted meshes

A drawback of using finite element methods described in the previous section is that
these techniques require elaborate techniques like element cutting, modifying the finite
element basis for the set of elements intersected at the interface, or the introduction
of a Lagrange multiplier. The choice of the enriched basis having for support the in-
tersected elements, or the choice of the discretization space of the Lagrange multiplier
is a delicate issue.

In order to keep the code implementation as minimal as possible, two simple
finite element methods are implemented for the use of non-body fitted meshes. Both

methods use the same finite element formulation as the one used for body fitted
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meshes (section [1.3.3)) and the names of the methods refer to the way the conductivity

tensor is handled.

By level set

The first method consists in defining the conductivity constant with the use of a
level set function. Precisely, if Q™ is described with a level set function ¢(x) as it is

explained in section for the domain H, then

o~ for x such that p(z) <0,
o(x) = (4.2.2)

ot for x such that ¢(x) > 0.

We recall here the finite element formulation: find u; in V3, such that

a<uh7 ¢h) = (f7 (bh): V(bh € Vh- (423)

with a(uy, @) = [, oVuy - Vou, (f,én) = [o fén. Let (wk) M | be a basis in the space
V},. Then the solution u;, = Zk | Ugwy, of problem (4 is such that the coefficients

uy, are solutions of the linear system
M
Zawk,wl =(f,w), 1<I<M.
k=1

In practice, we use Lagrange polynomials for basis functions (see section m
for more details) and wuy are nodal values of the approximate solution wuy. The next
step consists in computing integrals for evaluating the elementary matrix with entry

Ay, = a(wg, w;). This is done with a n-point Gaussian quadrature

/JVwk-le sz o(z;)Vwg(z;) - Vuwy(x;),
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where w; is a weight associated to the quadrature point x;. Finally, we use equation

[E22) and

Ay = Z wio~Vwy(z;) - Vw(z;) + Z w;o " Vwy(z;) - Vw(z;).

il(z;)<0 ile(zi)>0

By element

An other simple way to tackle the problem consists in defining {2~ as the largest set

of elements which are completely inside the level set description of Q~ (figure .

Figure 4.3: Left: The heart domain defined by a level set is in red. Right:
The heart domain defined as the largest set of elements inside the level set
description of €2~.

For a non-body fitted mesh, denoted by 7yp, over a polygonal domain € we
define
KeTng
p(x)<0VzeK

and denote its boundary by
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The problem (4.2.3]) allows to satisfy naturally the transmission conditions [oVu - n]. =
0, at least for the continuous problem before discretization (see Remark. However,

this is the following discrete variational form that is solved for wuy,

an(un, dn) = Y /0 VunVont Y / o Vuy: V¢h—/f¢h— (¢n),Von € V.

KeQyp KeQl g

The method is non conformal as the bilinear form ay(-,-), built with the discrete
domain Qyp = Qyp U QL p, replaces the bilinear form a(-,-) built with the exact
domain Q = Q- U QF. By refining the mesh, a(-,-) approaches a(-,-) as h — 0.
When the problem is solved on a non body fitted mesh the transmission condition is
satisfied on I'yp, not on I'. In the worst case, 'yg NI = ). In addition, there could

be a bad approximation of the normal vector when the mesh is coarse (figure |4.4)).

Figure 4.4: Bad approximation of the normal vector for a coarse non-body
fitted mesh.

Remark 13 (Satisfaction of the transmission conditions) Suppose that u is a
sufficiently reqular solution (except maybe on I where only continuity on u is enforced)

of the following variational equation:

/ aVu~Vv—i—/ J+Vu-Vv:/fv
- ot Q

Applying one of the Green’s identities over each subdomain Qt or Q~, provided nr is



4. On the convergence of the heart-torso coupling problem using non-body
fitted meshes. 130

the outward normal vector to 2™, gives

—/ UV-U_VU—/ vV - otVu
—i—/vaVu'np—/va*anp—l—/ va*an:/fv, Yv € V.
r r o0 Q

We first assume the following regularity properties: ulg- € H?*(27) and ulg+ €
H?(QT). As the last equation holds for all v in 'V, consider the three following special

cases.

1. Take v € HY(Q™) and v|g+ = 0, and then

—/ vV .0 Vu = fo.
_ o-

Then u is the solution of the partial differential equation V - o~Vu = f in Q™.

2. Take v € HY(Q) and v|g- =0, and then

—/ vV - o0tVu = fo.
o+ o+

Then u is the solution of the partial differential equation V - c™Vu = f in QF.

3. Take v € H}(Q), and then

—/ UV-U_VU—/ UV-J+Vu+/va_Vu~np—/v0+Vu-np:/fv.
- ot r r Q

As [o fv= [q v+ [o fv, one gets

—/_U(V-J_Vu—i—f)—/ v(V-o"Vu+ f)

+
+/QvaVu-np—/va+Vu-np:O.
r r
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By virtue of 1. and 2. the two first terms cancel, then
/U (6c"Vu-nr —otVu-nr) =0
r

forv # 0 on T so the transmission condition 0~ Vu - np = c"Vu - nr is satisfied on
r.
Finally, assuming that the transmission condition is satisfied on I and taking

v € HY(Q) gives

—/ UV-UVU—/ UV~U+VU+/ vo*Vu-n:/fv.
- o+ a0 0

Performing similar steps as above shows that the boundary condition c*Vu-n =0 is

satisfied on Of). i

The next section is devoted to the estimates of the order of convergence for these
two methods specially designed for non-body fitted meshes. We name the methods
by the way the conductivity tensor is defined: by level sets, or by element. Building
a reference solution with an algebraic expression, the error can be computed and the

order of convergence can be estimated from numerical computations.

4.2.4 Order of convergence of the methods

Meshing complicated geometries coming from segmented medical images or moving
geometries is not necessarily obvious, especially when combined with mesh adaptation
strategies. As an alternative, the problem can be solved with interfaces which do not
pass on the nodes of a fixed mesh, called a non-body fitted mesh (see figure [4.1)).
A standard FE formulation of such a problem does not converge generally at the

optimal order in the H*(Q2) norm. However, it is well known that the solution of the
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same problem with a mesh adapted to the interface (body fitted mesh) and a standard
Galerkin FE formulation with P, basis functions converges at the order & [20] if u
is sufficiently smooth (in H**1(Q)). For a domain that has a curved boundary, the
error can be estimated for linear and quadratic finite elements. In [79], the result
is derived only in 2D, but could be easily extended in 3D. For either Dirichlet or
Neumann problems, homogeneous or inhomogeneous, the geometrical error induced
by the change of domain is O(h*?) in the energy norm (i.e. the H'! semi-norm).
The approximation error is still O(h*)[20] in the H! semi-norm. The inequality
lu — uplloo < Chllu — up||1o is obtained with the Aubin-Nitsche lemma, and the
order of convergence in the L?-norm are deduced. Table summarizes the optimal
order of convergence in the L2-norm that are discussed in section [1.3.3] Remark that
with quadratic finite elements basis functions, the error is dominated by the change

of domain and half of an order of convergence is lost.

Table 4.1: Theoretical order of convergence of ||u — uplloq. The domain
QcC R

Test | Body fitted mesh | Body fitted mesh | Non body fitted mesh
space | Polygonal domain | Curved boundary
P O(h?) O(h?) unknown
Py O(h?) O(h°/?) unknown

These theoretical results of convergence are confirmed for body fitted meshes in
the following. The orders of convergence for non body fitted meshes are also estimated
with computations. To this end, a test problem is built with the diffusion problem
on the square domain Q = [—L, L] x [-L, L] = Q= U Q" UT with the square
subdomain Q= = [—L/2,L/2] x [-L/2,L/2] (see figure [A.F)). The exact solution of
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problem is given by the following function

g T T in O+
N cos <Lx> cos (Ly) in Q
coS (%x) cos (%y) in Q.

The source term f (continuously differentiable), obtained by applying the Laplacian

tO Uegact, 1S then
T 2 s s
) =20 (3 ) cos (F) cos (Fv).
flx,y) o~ (1) cos(g@)cos( Ty

The computational domain used in our simulations is dimensioned with L = 100.

ﬂ+
Q-
r
i 02
Figure 4.5: Domains for the elliptic problem with Q = [-100,100] x
[-100,100] = Q- UQF UT with Q~ = [=50,50] x [~50, 50].

We can easily see that the exact solution satisfies the transmission conditions
(note that wu is zero on I'). There may be a loss of precision near the corners of {2~
as the normal derivative is not even defined at the corners of {2~ and transmission
condition are ill-defined. Note that ... given above is a C'* function with a gradient
vanishing at the corners of {2~.

The order of convergence is calculated both for the Dirichlet and Neumann
boundary conditions. We use the analytical solution ... evaluated on 02 to impose
the boundary conditions for the Dirichlet problem. For the Neumann problem, we

impose homogeneous boundary conditions on 0f). Remark that this problem satisfies
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the compatibility condition, i.e.

/f:/ n-otVu,
Q B

with n the outward normal to €). Precisely, f has a null average for homogeneous
Neumann boundary conditions. The choice of the resolution technique to solve the
Neumann problem can be tricky as it leads to a singular problem. Various numerical
method were tested for the Neumann problem and they are discussed in the appendix
[A] and Bl We finally decided to remove the singularity by perturbing the matrix, but
not the residual. This is made by adding a mass matrix of order ¢ with € small, and
we solve the linear system by the iterative correction method. Let u = ug + du with
up the initial guess and du the correction. The new approximate problem becomes:

Find du € P, such that
Adu + Mdoéu = F — Auy,

where

Aij ZEK:/KV%'V%
M, ZE;/K%@

with du =) du;¢;, ¢; are basis functions, namely piecewise polynomials of degree k
on elements K of the mesh. The iterative correction method requires that we solve
for ou and update wug until the right hand side becomes zero. Once converged, the
residual of the non modified approximate problem (without the mass matrix) is zero
and we have a solution of Au = F. We used body fitted meshes described in Table
[4.2] and non-body fitted meshes described in Table [4.3] for the analysis of the error
and convergence.

We first confirmed the theoretical order of convergence in the L?-norm (table
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Table 4.2: Statistics for the body fitted meshes.

Mesh || # Elmts | # dofs in P, # dofs in P, | h/L (adim.)
T 760 419 1,597 0.1
Tpo || 3,040 1,597 6,233 0.05
Tp3 12,160 6,233 24,625 0.025
Tp.4 194,560 97,889 390,337 0.00625
Tps 778,240 390,337 1,558,913 0.003125

Table 4.3: Statistics for the non body fitted meshes.

Mesh || # Elmts | # dofs in P, # dofs in P, | h/L (adim.)
InB1 204 121 445 0.2
Tvps | 812 445 1,701 0.1
InB3 3,338 1,748 6,833 0.05
INBa 13,154 6,735 26,625 0.025
Inps || 52,756 26,687 106.139 0.0125
Tnpe || 212,062 106,670 425,401 0.00625

when the mesh is body fitted and the conductivity coefficient is

1 for p(z) <0

o(z) =

when defined by level set and

2  otherwise.

1 forz e Qyg

o(x) =

2 otherwise.

when defined by element. Again, the finite element code MEF++ [2]is used and the

numerical results are presented in figure After, we calculated what was the order

of convergence when we have non-body fitted meshes and the conductivity constant

is defined either by level set or by element. Figure 4.7| shows that using P, or P,

finite element basis, and whatever the way the conductivity is defined, the order

of convergence is around one. However, the error can be ten times smaller for the
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method by level sets compared to the method by element, e.g. for P, basis functions.
The method by level set is better than the method by elements, and using P, basis
functions instead of P; basis functions improves the accuracy of the solution.

Also, the map of the difference between the exact solution and the solution on
the non body fitted mesh (figure shows that the error is concentrated in the
internal domain 2~ and especially near the interface I'. For the method defining the
conductivity by element, one can explain this error distribution with the fact that the
transmission condition is not satisfied at I" but at I'yg. For the method defining the
conductivity by level set, figure illustrates that error in the transmission condition
can introduce a shift of the solution inside 27. Finally, we experimented the effect of
the magnitude of the conductivity jump on I'. Figure indicates that the higher

is the jump the higher is error on the solution in the L?-norm.

10°
—2 B
10
S
E 4 . P, Body Fitted Mesh, n = 1.9853
g 10 . P, Body Fitted Mesh, n = 2.9892
S y . P., Non-Body Fitted Mesh, n = 1.1087
E [ -6 / 1 )
5 10 ¢ 1 P2, Non-Body Fitted Mesh, n = 1.0401
_,N /
10—8 o4
-10
10 :
107 1072 10™ 10°

h/L

Figure 4.6: Error on the solution as a function of the mesh size h for the
diffusion problem with Neumann boundary conditions on body fitted meshes
compared to non-body fitted meshes with the conductivity defined by level
sets. Remark that n refers to the order of convergence. Results for the
Dirichlet boundary conditions are very similar.
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Figure 4.7: Error on the solution as a function of the mesh size h for the
diffusion problem on non-body fitted meshes and with Neumann boundary
conditions. Remark that n refers to the order of convergence. Results for
the Dirichlet boundary conditions are very similar.
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Figure 4.8: Difference between the non body fitted solution (using quadratic
elements on mesh 7y p5) and the exact solution of the diffusion problem with
discontinuous conductivities defined by level sets.
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Figure 4.9: The exact solution (in black) and the non body fitted solution
(in red) (using quadratic elements on mesh 7Zyp ) of the diffusion problem
with discontinuous conductivities defined by level sets.
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Figure 4.10: Lo-norm of the error versus the jump of conductivities o on I'.
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4.3 Convergence of the heart-torso coupling prob-

lem

4.3.1 Variational formulation and resolution with a finite el-

ement method

The version of the heart-torso coupling problem which was used is given by the
equations ([1.2.6))-(1.2.12))) with the ionic model given by (2.2.1)-(2.2.2)). Assuming
that the strong solution of these equations is enough smooth, the brute variational

formulation of these equations is

/H W o+ /H 9, ), = 0

du
XCmL Egbu"i_/l‘{ Uivue'v¢u+/l‘{ Uzvuv¢u+XLf(uav>¢u = /;H (O’ZV(U + ue))'nH¢u

/ o;Vu -V, + / (0; + 0)Vue - Vo, = / (0:Vu+ (05 + 0¢)Vue) - ngdw
H H OH

/ orVur - Vo, = / orVur - npgy, + / orVur - Ny,
T OTNOH AT —TNOH

for all ¢, € H'(H), ¢, € L*(H) and ¢, € H'(HUT).

Using the boundary conditions and defining these following new quantities

o;+o., inH
Ow =

or inT

o, inH
o; =
0 inT
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u, inH
Uy =

up in T,

we get the variational formulation that we discretize and solve with Newton’s method.

d
/Hd—:% +/Hg(u,v)<bv =0 (4.3.1)
du
XC, /H %qu + /HO'iv(Uw|H) Vo, + /I{U¢Vu -V, + X/Hf(u,v)gzﬁu =0 (4.3.2)
/ iV - Vy +/ 0wV - Ve, =0 (4.3.3)
HUT HUT

The spaces in which we seek the weak solutions are
v € L*([0, tyax); L*(H)),

u € L*([0, tae); H' (H)),
v € {U s.t. vl € L2([0, tmae); H'(H)), vl7 € LA([0, tmaz); HY(T)), te|on = u:r|aH} /R.

Note that the equation ng - (0;Vu + (0; + 0.)Vu.) = ny - (orVur) is naturally
satisfied on OH by the variational formulation (see Remark (13| above for a similar
derivation). The functional spaces are chosen according to [I3] and [I4]. This choice
of functional spaces is appropriate for proving the existence of a solution for the
coupled variational problem. Higher regularity on the exact solution is needed to

ensure the convergence of the numerical solution to the exact solution.

4.3.2 Resolution technique using a level set description of

the domains and non body-fitted meshes

The time scheme chosen is an implicit Gear scheme (justified in [30] and [6]), so the

time discretization was of order 2 whatever the order of the space discretization. We
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did not investigate more about the time discretization, but we rather focussed on the
space discretization. We already calculated what was the order of convergence and the
behavior of the error on the solution for the diffusion problem. In fact, the equation
(4.3.3) is a diffusion problem with discontinuous coefficients. The expectations are
an order of less than one for the convergence on the isochrons of depolarization.
Now, the problem is slightly more complex. We have different domains with
different equations. We still have jumps on the conductivities. We have the equa-
tions (4.3.1)-(4.3.2) defined only in the heart (H), and the equation defined
everywhere (H UT). We would like to solve this problem with a level set description

of the domains and a non body-fitted mesh.

4.3.3 Order of convergence for a simple test case

The problem solved on a geometry illustrated in figure A circular disc defining
the heart is embedded in a square, which defines the thorax. The total domain 2 is
the square [—100, 100] x [-100, 100] and H = D ((0,0); 30), i.e. an open disc of radius
30 centered at (0,0). The activation zone is A = D ((0, —30); 10) N H and the initial

T

oT
Activation OH

zone — |

Figure 4.11: Domain used for the simulations of the heart-torso coupling
problem. The red region is depolarized at the initial time.

conditions are

1 forxz € A,
u(z,0) =

0 otherwise,
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—0.5 forxz € A,
Uy (2,0) =

0 otherwise
and for the ionic variable s(x,0) = v(x,0) = 0 on all Q. The reference solution is
calculated with quadratic finite elements on a body-fitted mesh, i.e. a mesh with
nodes on the boundary of the interior disc H. The number of degrees of freedom
and the corresponding mesh size h for this reference solution are indicated in the
shadowed cells in the table 4.4l The mesh for this reference solution is fine enough so
that the solution is converged with respect to the space discretization. The criteria
for convergence consists in requiring a difference of less than 1% between the reference
isochrons of depolarization for a mesh size h and the isochrons of depolarization for

a mesh size 2h.

Table 4.4: Degrees of freedom for the body fitted meshes.

Table 4.5: Degrees of freedom for the non body fitted meshes.

# Elmts | # dofsin P, # dofs in P, | h (adim.)
3,338 1,748 6,833 )
13,154 6,736 26,625 2.9
52,756 26,697 106,149 1.25

215002 | 106,070 SO

# Elmts | # dofsin P, # dofs in P, | h (adim.)
3,648 1,897 7,741 5
14,592 7,441 29,473 2.5
58,368 29,473 117,313 1.25

233,472 117,313 468,097 0.625

As the problem is time dependent, we have to find a way to compare time de-
pendent solutions. It is done via the isochrons of depolarization is0gepor, Which are
updated at each time step. We refer the reader to section for the definition of the
isochrons @504epr and the other isochrons 50,4z, 150repor and 150y¢c, as well as Ty,

Tsp are measured on the numerical solution.
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To draw the contours, ¢504ep0 is interpolated linearly on every element K. For

example, the contour associated to the time 7 is

while it should be

r, ={r € Qst. ulr,7) =um}.

The error between the two last quantities is always less than the mesh size h as long
as the contour where u(x,7) = uy, does not cross a whole element during a single
time step. In our simulations, the time step and the speed of the action potential
are such that this condition is satisfied. Because of time discretization an error of at
most cAt can be expected between the two contours defined above. As the wavefront
propagates at a nearly constant speed ¢, this can be seen as a shift introduced by
time discretization.

The order of convergence for both methods for non-body fitted meshes is n ~ 1
when solving a simple elliptic problem. We expect a lower order of convergence for
the heart-torso coupling problem. There are several sources of error that could be

responsible for this limited order of convergence:
1. The problem is solved on an approximate domain (non conformity of the method).

2. The error is calculated on the isochrons of depolarization $04epoi(;), not on

the solution. The isochrons are linearly interpolated.

3. The value of i504epoi(x;) for a given mesh node z; is not even the exact time the

solution u crossed u, at x; because of the time discretization.

For a bad approximation of the domain by a coarse non body fitted mesh, as
illustrated in figure [4.4] the propagation of the AP is spoiled near the internal in-

terface OH. In figure 4.12(b), the difference between the isochrons of depolarization
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is shown near the interface OH. The level set description of the heart (¢ = 0) is
represented by a circular arc (in black). The body fitted mesh edges are drawn in
black (it is a mesh with 194,560 elements) and the values of the difference between
the isochrons are showed only in the subdomain €2 5. To visualize how deformed are
the isochrons, figure shows a series of contours at various times. The isochrons
are well calculated (error of 5%) even if the non body fitted mesh has an irregular
boundary that could lead to spurious propagation. This is however an encouraging
result. Remark that the non body fitted mesh covers the surface area of the domain

H with an error of at most 3% in this case.

(b) Zoom near the boundary.

Figure 4.12: Difference between the isochrons of depolarization for the body
vs non-body fitted meshes. There is a maximal difference of 10 ms for a
depolarization time of 200 ms near the heart surface (5% of error).

P /\/\/\
v N

gg/\\ 180 ms
L iToms

—__,__P-/-—L 160 ms
w—/__g,_/‘\\ISOms
140 ms
-:\ 130 ms
.,\ 120 ms
_

110 ms

100 ms

Figure 4.13: The isochrons of depolarization for a simulation using non body
fitted mesh (black isochrons) versus body fitted mesh (colored isochrons).
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Figure |4.14] shows the orders of convergence of the finite element methods when
using body fitted and non body fitted meshes with conductivity defined by level
set. The error is calculated on normalized isochrons of depolarization. ie. 0 <
150depol () / Max, (1504epor (7)) < 1, on the non body fitted subdomain H = Q5.
When using body or non body fitted meshes for computing the heart-torso coupling
problem, it turns out that the order of convergence for the isochrons is about 0.5.
The level of error is lower for quadratic finite elements on body fitted meshes, than
for the three other methods. For non body fitted meshes, linear finite elements have
the highest order of convergence and the lowest level of error asymptotically. We
expect from these results that the method used to compute the isochrons is more
critical than the selection of a body vs non body fitted finite element method to solve
the bidomain model, at least to control the level of error on the isochrons. Indeed
a possible reason why figure shows higher orders of convergence than figure [4.14]
is that in the latter case the error is calculated on a derived variable, the isochrons,
while in the former case the error is calculated directly on the solution. Of course,
this conclusion must be tempered by the fact that we are comparing the solution of
a simple linear diffusion problem with the nonlinear propagation of cardiac potential
waves.

Finally, the fact that P; finite elements are better for the level of error than
P, finite elements came as a surprise. We hypothesize that this behavior may come
from an inappropriate combination of interpolation and resolution methods: linear
interpolation of isochrons computed from a solution calculated with a quadratic fi-
nite element method on non body fitted meshes that use a piecewise linear level set

description of domains.
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Figure 4.14: Error on the isochrons as a function of the mesh size h for non
body-fitted meshes and a level set description of the domains. The order of
convergence obtained with a linear fit is given by n.
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4.4 2D simulation using realistic patient data

The problem is solved on a geometry based on the segmented medical image of figure
. The segmentation process gives the level set description of the heart, the heart
cavities and the lungs. The whole domain is shaped to resemble a torso, where the
heart is embedded. The conductivity tensors are defined with the eigenvalues given
in table .6l The non dimensional number N and the parameters of the MS model

are calculated as it is done in section 2.5.11

Table 4.6: Parameters of the bidomain model for a human heart.

Description Param. | Value | Units
Characteristic conductivity o 1-1071 | S/m
Intracellular conductivity Oil 1.741 -
Oin 0.1934 -
Extracellular conductivity Oel 3.906 -
Oen 1.970 -
Torso conductivity or 2.2 -
Lung conductivity oL 0.5 -
Heart cavity conductivity oc 6.7 -

The heart is activated by setting the transmembrane potential equals to 0.8 in
the activation zones shown in figure [4.15] The recovery variable is also set to 0.1 in
the heart. The activation zones are defined to approach the early activation regions
suggested by the isochrons of depolarization measured experimentally in [27]. Figure
4.17 shows isochrons of depolarization that can be compared with that of [27] in figure
[4.16] The isochrons of repolarization are also presented. The solutions u, v and u,
are showed for selected time steps in figure 4.18 to see the propagation of the wave
front through the tissue. The action potential in figure 4.20 is plotted with point
values for all time steps. Remark on figure that the solution variations during

the depolarization are not well captured , the mesh being too coarse.
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V1l v2 V3

Figure 4.15: Computational domain of the heart-torso coupling problem with
lungs and heart cavities. Activation zones are shown in black. The ECG can
be plotted using probes V1 to V6.

Figure 4.16: Isochrons of depolarization of an isolated human heart, based
on measurements at 870 electrodes[27].
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(a) Isochrons of depolarization (b) Isochrons of depolarization

Figure 4.17: Isochrons of depolarization and repolarization.

In the following, we compare numerical simulations done over body and non body
fitted meshes. We also want to see the effect of the extracardiac conductivity on the
solution. We use isochrons of depolarization (figures to [£.24)) and the ECG
(figure 4.25) to measure the impact of both the type of meshes and the extracardiac
conductivity. The ECG are plotted using probes V1 to V6, illustrated on figure [4.15]

Figure indicates that when using the same body fitted mesh the isochrons
of depolarization are only slightly modified (<3%) if the extracardiac conductivity is
composed of a single domain (torso) instead of multiple domains (heart cavities, lungs
and torso). The extracardiac domain, even passive, can influence slightly the propa-
gation inside the heart through the transmission conditions. This is also observed for
non body fitted meshes (figure . In counterpart, the isochrons of depolarization
are more modified if the extracardiac domain is the same but we rather compare
body and non body fitted meshes. This is illustrated in figures and where a
difference of at most 9% is observed (in the infinity norm). The geometrical descrip-
tion of the heart is thus more important than the extracardiac properties in order to
simulate accurate isochrons (measured in the heart only).

If we are interested in simulating accurately ECGs, the conclusions are not the

same (see figure 4.25). The extracardiac measures at the body surface are almost
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(a) u at 25 ms (b) v at 25 ms (¢) uy at 25 ms

(d) uw at 50 ms (e) v at 50 ms (f) uy at 50 ms

(g) wat 75 ms (h) v at 75 ms (i) uy at 75 ms

(§) w at 325 ms (k) v at 325 ms (1) uy at 325 ms

Figure 4.18: The transmembrane potential u, the recovery variable v and
the extracellular/extracardiac potential w,, at selected time steps. Figures
(a) to (i) show the depolarization phase, and figures (j) to (1) show the

repolarization phase.
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Figure 4.19: Zoom of the solution to see that the mesh does not capture
very well the depolarization front. The region illustrated shows in grey the
bottom of the left cavity.

superposed if the extracardiac domain is the same no matter the mesh is body or non
body fitted. However, more obvious modifications occur if the extracardiac domain
is not the same. An inaccurate geometrical description of the heart and extracardiac
organs is then of second importance when simulating ECGs.

We finally put in perspective the use of an inaccurate geometrical description
of the domains. It could be an important lack in situations of complex propagation
behaviors, like spiral waves initiated by the propagation around subregion of highest
conductivity (e.g. infarct scars). A possibly small subregion of highest conductivity
could be defined with a level set function, and its shape could be under-resolved with
a non body fitted mesh that is too coarse. The problem of remeshing is addressed
in the next chapter, where mesh adaptation is used not only to remesh where an
accurate geometrical description is needed, but also where the solution varies rapidly.

In conclusion, a numerical analysis of convergence and accuracy of the two pro-
posed finite element methods approximating the heart-torso coupling problem was

investigated. First, a purely diffusive problem with discontinuous conductivity on
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Figure 4.20: The solutions u, v and u,, for all time steps at a given point of
the septum. The small oscillations observed on the solution on both sides of
the depolarisation front are likely coming from the fact that the time step
0.3 used in this simulation is too close to the critical time step for stability.
This is an illustration of the loss of monotonicity of the solution discussed in
section for time steps just below the critical value.
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Figure 4.21: Isochrons of depolarization for the body fitted mesh. Contours
are separated by 10 ms. There is a maximal difference of 3 ms between the
geometry containing the heart, the lungs, the heart cavities and the torso
(black contours) and the heart and the torso only (red contours).

Figure 4.22: Isochrons of depolarization for the non-body fitted mesh. Con-
tours are separated by 10 ms. There is a maximal difference of 3 ms between
the geometry containing the heart, the lungs, the heart cavities and the torso
(blue contours) and the heart and the torso only (green contours).



4. On the convergence of the heart-torso coupling problem using non-body
fitted meshes. 154

Figure 4.23: Isochrons of depolarization of the geometry containing the heart,
the lungs, the heart cavities and the torso. Contours are separated by 10 ms.
There is a maximal difference of 10 ms between the body and the non body
fitted meshes (black and blue contours, resp.).

Figure 4.24: Isochrons of depolarization of the geometry containing the heart
and the torso only. Contours are separated by 10 ms. There is a maximal
difference of 5 ms between the body and the non body fitted meshes (red
and green contours, resp.).
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Figure 4.25: ECG with probes V1 to V6 (illustrated in figure [4.15). Blue:
Heart-torso with a body fitted mesh. Green dash-dot: Heart-torso with a non
body fitted mesh. Red dash: Heart-lungs-cavities-torso with a body fitted

mesh.
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a square was proposed as a benchmark to study the order of convergence for non
body fitted meshes and recover analytical convergence for body fitted meshes. First
order accuracy is obtained for numerical solutions using linear and quadratic finite
elements on non body fitted meshes. The convergence of numerical solutions for the
general bidomain model was considered in a simplified geometry. The error is cal-
culated on the depolarization isochrons, as opposed to the diffusion problem where
the error is calculated directly on the solution. Orders of convergence less than one
(approximately between 0.4 and 0.7) are obtained on non body fitted meshes. Our
results show that the accuracy and convergence of isochrons is a limitation that would

eventually have to be addressed.



Chapter 5

Mesh Adaptation

5.1 Introduction: the need for mesh adaptation

In this chapter, a time-dependent mesh adaptation strategy is used for numerical
simulations of traveling cardiac APs in the heart and propagating electrical potential
throughout the body. Cardiac AP waves have sharp depolarization and repolarization
fronts. They propagate across the myocardium leading to the requirements of uni-
formly fine meshes over the whole heart domain. When using very complicated ionic
models and realistic geometries, the complexity and the size of the problem make
its resolution a challenge, even with the increasing availability of computational re-
sources. It is now well established that coarse meshes lead to wrong propagation
speed and wave trajectories [15]. Moreover, the anisotropic nature of conductivities
in the human heart leads to differences in wave speed and front width depending
on the direction of propagation. For strongly anisotropic conductivities, achieving
an adequate spatial resolution is important to prevent distorted wavefronts during
propagation (see [7], [68] and [I§]).

To address these difficulties, many authors use uniformly fine meshes and par-

allel computing to reduce the computational time (see [61] and [70] for instance).

157
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Mesh adaptation is an other avenue that has been introduced in finite element based
simulations to improve the accuracy of the solutions as well as to capture the be-
havior of physical phenomena. The technique consists in maintaining the extremely
fine resolution only where it is needed while coarsening elsewhere. It results in faster
calculations (much smaller number of degrees of freedom) and a lower memory re-
quirement. For post-processing there are smaller output files that are analyzed in
order to extract the important information. The efficiency of this strategy has also
been proved for cardiac electrophysiology (see [6], [7] for spatial adaptivity and [7§]
for spatiotemporal adaptivity), where the mesh adaptation strategy is used in the
heart only. To our knowledge, there is no work for the heart-torso coupling problem
using any unstructured mesh adaptation method.

The originality of this work results first from the use of an anisotropic adaptive
remeshing method to efficiently capture solution variations within complex, realistic
geometries for the heart-torso coupling problem; and second from the reduction of the
frequency at which the mesh is adapted to reduce the computational burden caused
by remeshing and reinterpolation operations.

Section [5.2| reviews briefly the basis of metric error estimation that is used in our
mesh adaptation strategy. The mesh adaptation step is integrated in a resolution-
adaptation loop for solving the whole heart-torso coupling problem. In section [5.3.1],
two different resolution-adaptation loops are presented. The integration of level set
based geometry and myocardial fiber arrangement as well as computing isochrons can
cause some difficulties that are discussed and addressed. Then the mesh adaptation
strategies are tested and optimized in section [5.3.6| with a 2D heart-torso simulation.
We finally test our mesh adaptation strategy in section [5.4]on a more complex system,

i.e. when the heart geometry moves during the propagation of the potential.
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5.2 Overview of techniques and algorithms used in
mesh adaptation

In addition to the discretization methods, computational mesh quality is crucial, in
order to have an accurate representation of the dynamic phenomena simulated. In our
approach, unstructured mesh adaptation is achieved through a geometrical a posteri-
ort error estimator based on a discrete approximation of the Hessian of the solution.
There are several types of error estimator that could be used to control the error
made on the solution. For instance, a hierarchical error estimator can be used, where
information from higher order reinterpolations of the solution is exploited (see [35]
for details). Metric error estimation is another method that is briefly described in the
following section. Note that a remeshing method based on such an error estimator has
already been used for obtaining 2D numerical solutions in cardiac electrophysiology
[6].

Optimization of the mesh progresses by improving the elements through a series
of local operations in an attempt to equidistribute the solution error and hence im-
prove the overall quality of the mesh. By repeating this procedure, an optimal mesh

is obtained that leads to a numerical solution with the desired accuracy.

5.2.1 Metric error estimation

The problem consists in computing the approximation error e, = u — u between
the exact and the numerical solutions on the mesh 7. Using this error, a new mesh
7, is generated on which the error is bounded by a given tolerance value tol. The
dynamic mesh optimization is achieved through the construction of discrete metric
(defined at the mesh nodes), which is itself dependent on the computed solution. This
metric relies on an error estimate which is derived from the interpolation error. For

elliptic problems, Céa’s lemma shows that the error e on the finite element solution
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is bounded by the interpolation error in the energy norm || - |:
lell < ellu = Myul],

where the function v is approximated by its interpolant II,u (e.g. piecewise linear
Lagrange interpolant) and ¢ is a constant independent of the mesh 7. In practice,
minimizing the interpolation error in this manner has been found to be a reasonable
way to control the discretization error, even for non-elliptic problems (see for instance
[35]).

We next bound the interpolation error using the second derivatives, as it is done
for a priori error estimation. For instance, the interpolation error over a linear element
is bounded by the second derivative of the function. For a sufficiently smooth function
u approximated by its piecewise linear Lagrange interpolant II,u, the interpolation

error on element K satisfies[3]
|u — Mpul|oox < cmaxo”|Hlv,
veEK

with ¢ a constant independent of the mesh, £k the set of edges of K, and |H| is an
element-valued Hessian defined such that the above inequality holds. |H| denotes the
positive definite metric formed by taking the absolute value of the eigenvalues of H
and reflects the fact that it is the magnitude of the curvature that is of interest, rather
than the sign of the curvature. As the Hessian describes the curvature of the solution
at each point in every direction, the use of the Hessian for the error metric is ideal
to guide anisotropic mesh adaptivity and place resolution in zones of high solution
curvature. The local anisotropic features in a solution are made isotropic in a warped

domain through a coordinate transformation specified by means of a Hessian based
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metric. The optimized mesh is expected to satisfy
v |H|v = tol,

for every edge v of every element of the mesh. This allows a description of the ideal
element sizing and orientation at every point in space. The goal of this adaptive
method is then to build a mesh with nearly equilateral tetrahedra in a Riemannian

metric space, where the error is equidistributed.

5.2.2 Pre-intersection of metrics

In this work, the metric was designed to resolve efficiently not only the transmembrane
potential but also the recovery variable in the heart, as well as the extracellular
potential in the heart and the torso. When several metrics are specified at the same
mesh node, a single metric tensor must be defined taking into account all given
metrics. To this end, a metric intersection procedure is used so that the interpolation
error for each variable is bounded by the given tolerance value. The details of the
method are given in [3].

In practice, metric intersection is obtained by the simultaneous reduction of two
quadratic forms corresponding to the two metrics M; and M,. This is possible as both
metrics are positive definite. The idea is to find a basis (eg, ez, €3), not necessarily
orthogonal, such that M; and M, are diagonal in this basis. The next step is to deduce
the intersected metric. Terms of the diagonal matrix associated to the metrics M,
and Mj are given by

A = e;fFMlei, fort=1,2,3

and

i = el Mae;, for i = 1,2, 3.

Let P be the matrix having for column vectors ey, e, and e3. P is invertible
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since (e, e, e3) is a basis in R3. We have

A1 00
My=FPH"[ 0o x o | P
0 0 As
and
pr 00

My=(P ' 0 w o | P
0 0 pus

The metric intersection M = M; N M, is then given by

maX(/\l, ,ul) 0 0
M = M1 N M2 = (P_l)T 0 max()\Q,ug) 0 P_l'
0 0 max (g, 13)

In the mesh adaptation framework, metrics allow to compute lengths h. Recall
that the interpolation error on a element K is estimated by max,ecge, v7|Hv. If a

metric M such that

me?vT|H(x)|v < v M(K)v, for all v € &
TE

can be found, then the interpolation error on that element K is proportional to the
square of the highest edge length of K in the metric M. Imposing vT M (K)v = tol on
any adapted element consists then in imposing the element to be of size h; = \/tol—/)\i
along direction e;. Consequently, controlling the length of the element edges allows

to control the interpolation error on the mesh.
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5.2.3 Error estimation for piecewise continuous functions

The transmembrane potential and the recovery variable are defined only in the heart.
Moreover, with the imposition of the condition of the total current continuity, it
introduces a discontinuity in the first derivative of the extracellular potential any
time there is a discontinuity in the conductivities. These discontinuities arise at the
internal interfaces, where the error estimation cannot be performed properly. To
address this difficulty and avoid spurious mesh refinement near the interfaces, the
error was estimated in subregions of constant conductivities. For instance, the error
on the transmembrane potential is evaluated only in the heart, where the error on the
extracellular /extracardiac potential is evaluated separately on the heart and the torso.
The error estimation is based on the estimation of first and second derivatives by a
superconvergent method described in [8], where the error estimation at boundaries is

also treated.

5.3 Numerical results in 2D with mesh adaptation

This section shows the details of how the adaptation is integrated to the resolution
process, using the finite element code MEF++ [2] together with its mesh adaptation
library. Indeed, the mesh adaptation is based on the solution and this necessitates
the use of a resolution-adaptation loop. In the following, two loops are presented
under the form of pseudo-code, where the details are skipped for simplicity. These
supplementary specifications will be detailed in sections[5.3.2]to[5.3.4L Note that both

loops carefully avoid reinterpolation of interpolated quantities.

5.3.1 Pseudo-code for the resolution-adaptation loop

Let us start with Loop 1, where the adaptation strategy is used at every time step.

The index ¢ runs over the time steps from 1 to NV, as well as the index m runs over
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the resolution-adaptation steps from 1 to M. The solution (u, v, u,,) for the bidomain
model or (u,v) for the monodomain model is represented by U. More precisely,
Us.m(T) stands for the solution U at the time step ¢ calculated at the m™ adaptation
step (i.e. calculated on the mesh 7;,,), and U exists on the mesh 7. The mesh
7 on which the solution exists could be different from the mesh 7;,, where it was

calculated.
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Loop 1: Adaptation at every time step.
t=20
while (¢ < N: number of time steps)

I: Solution of prevision: — Uy10(7; )

Resolution(7Z+1,0="7: ) using Crank-Nicholson (¢ = 1) or Gear (t > 1)
LC: Uy = Un(Temn), if t > 1, Uy = Upm1 i (Ty )

First Newton guess: Uy ar(Z¢r)

m=1

Resolution-adaptation loop:
while (m < M: number of resolution-adaptation steps)

If m=1, 7;+1,m71 = 7;,M-

II: Adaptation on the solution — Ty ,,
- on Ut—i—l,m—l(,];—i—l,m—l)a

and

- on Ut,M(ZH,mq),

and if t > 1,

- on Ut—l,M(Z—l—l,m—l)-

III: Reinterpolation of the first guess of the Newton iterations:
reinterpole Uit m—1(Zev1.m—1) = Uitt.m—1(Tit1.m)

I'V: Reinterpolation of the IC of the next resolution:
if ¢ > 1, reinterpole Uy p(Zenr) — U (Te1m)
if t > 2, reinterpole U1y (Ti—1.00) — U100 (Te1,m)

V: Resolution — Uii1 1 (7i41,m)

IC: Uy = Ut,M(ZH,m)

ift > 1, Uy = Upmi, i (Ti1,m)

Ist Newton guess: Upi1m—1(Zi+1.m)

resolution(7;; 1 ) using Crank-Nicholson (¢t = 1) or Gear (¢t > 1)

m=m-++1
end

end
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It is worth mentioning a few words about this strategy. The first step of a loop
iteration consists in calculating a solution of prevision on the last mesh, i.e. the mesh
resulting from the previous iteration. This mesh is obviously not suitable for solving
the current time step. However, this solution of prevision provides what is needed
for the mesh adaptation at the current time step. The mesh adaptation is based on
metric error estimation of the solution. As the solution is calculated with an implicit
Gear time-stepping scheme, calculating precisely a solution U;.; requires a precise
representation of solutions of the two previous time steps U; and U;_;. The metric for
error estimation is then the intersection of metrics for the three solutions, and other
variables for which the details are explained in section [5.3.4. The mesh adaptation
procedure is based on a number of local operations (described in [§]) on the initial

mesh:

1. Edge refinement,
2. Edge swapping,
3. Vertex suppression,

4. Vertex displacement.

After the calculation of the solution of prevision, the adaptation-resolution steps are
repeated M times at each loop iteration.

In order to have a good mesh for the first iteration, many iterations of the
internal resolution-adaptation loop are required at the first time step. Starting from
a regular grid, five to ten iterations are imposed to obtain a stabilized mesh well-
adapted according to the initial conditions. The time step is so small (0.1 to 0.5 ms)
that the solution barely changes in one time step. For the other time steps, only one

adaptation-resolution iteration is needed at each time step.

To date, almost all papers report remeshing strategies that re-adapt the mesh at
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each time step (for instance in [I§], [6] and [7]). It turns out that this is unnecessary
as the solution does not change very much from one time step to the next, the
time step being limited for accuracy. The computation of the error and matrix re-
assembling are a significant part of the overall computational work. For example in
[7], a factor of 43 of reduction in the number of degrees of freedom corresponds to a
computational speedup of 6.4 on a cubic geometry. The work of Southern and al.[7§]
shows that a speedup factor of 11.2 can be obtained for a realistic heart geometry. In
general, reducing the number of degrees of freedom reduces the memory requirements.
However, the reduction factor in the number of degrees of freedom is considerably
higher than the reduction factor for the CPU requirements. Here, our work is focussed
on an effective way of representing the geometry (with level sets) combined with an
attempt at reducing the number of nodes in an embedded complex geometry: the
heart in the torso. The following mesh adaptation strategy (Loop 2) does not update
the mesh every time step, i.e. less time is spent for adaptation and reinterpolation.
The mesh is adapted when the solution changes significantly, i.e. at every S time
steps. The index n is the iteration number of Loop 2, not the time step as for Loop
1.

If there is any region of the heart undergoing a depolarization, Loop 2 can be
used only for a number S of time steps between two consecutive mesh adaptations,
such that the refined mesh region containing the depolarization front at time step
nS + 1 overlaps the depolarization front at time step (n — 1)S + 1. Remark that
the mesh is adapted according to the initial conditions of iteration n, i.e. U s for
t=(n—1)S—1and (n—1)S, and the solution of prevision Uy s for t = nS + 1.
This way, the mesh is assumed to be good for all the S time steps of iteration n, only
because the refined region covers all points in the depolarization front. For large S
which does not satisfy this condition, another strategy should be used, for instance,
using solutions of intermediate time steps. When there is no region in depolarization

(cells in repolarization and at rest only), a larger S can be used while keeping the
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same accuracy.
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Loop 2: Adaptation at every S time steps.
n = 0: 1 iteration of Loop 1.

n=1

while (n < N: maximal number of iterations)

I: Solution of prevision (¢t + 1 runs from (n —1)S + 2 to nS + 1):
Resolution(7,, 0=7,-1,m) using Gear

LC.(t=n—-1)S+1): Uy =Um(Thp) and Uiy = Up—1,m(700)

First Newton guess (t = (n — 1)S + 1): Uy n (7o)

— Gives the solution Uii1,0(7p0)

m=1

Resolution-adaptation loop:
while (m < M: number of resolution-adaptation steps)

If m=1, %,m—1 = Tn—1,M~

II: Adaptation on

® Uii1m-1(Znm-1), the first Newton guess of time step t+1 = (n—1)5+2,
o Uy ni(Tom—1) and U1 a1 (7T m—1), the L.C. of time step t+1 = (n—1)5+2,
and

® Uii1.0(7nm—1), the solution of prevision of time step ¢t +1 =nS + 1.
— Gives the mesh 7,, ,,

III: Reinterpolation of the first Newton guess and the I.C. of the next
resolution:

reinterpole Uy 1 m—1(Znm-1) = Ur1,m—1(Tnm)

reinterpole Uy ar(Zn—1.01) — Ui (Tnim)

reinterpole Uy 1 p(Zn—1.0) — U100 (Zoim)

IV: Resolution

I.C.: Ut = Ut,M(ZL,m) and Ut—l = Ut—l,M(,];z,m)
First Newton guess: Uit m—1(Znm)
resolution(7,, ,,) using Gear

— Gives the solution Uyt m(Znm)

m=m-++1
end

end
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5.3.2 Using level sets and fiber arrangement in a resolution-

adaptation loop

The distance function originates from the segmentation process, so it exists on the
first mesh generated on the medical image. For instance, it could be simply a regular
grid with the nodes centered on the image pixels. Any time the mesh is adapted, the
distance function has to be reinterpolated from the original mesh and not from the last
mesh it was reinterpolated. This strategy is used in the resolution-adaptation loop
in order to keep the best level set description of geometries and avoid reinterpolation
errors.

Using either calculated vector field or data coming from diffusion tensor MRI,
the fibers orientation is information which also exists on the original mesh. The rein-
terpolation procedure in the loop requires care. Figure illustrates the problem of
reinterpolating a vector field from the original mesh 7y (in black) to the destination
mesh (in red). Suppose that there exists a vector field interpolated in P;(K), for
K € 7y. In figure there are two vectors illustrated on the end nodes of an edge
of the original mesh. One points upward and the other, downward. Pointing upward
or downward is not important, as the vertical eigendirection is as well represented. If
this vector field is reinterpolated on the red mesh, all the components of the vector on

the red node (on the same edge) could be zero, while this vector should be vertical.

Figure 5.1: Problems in reinterpolating a vector field.

To address this problem, the conductivity tensor is built on the original mesh
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using equation . Instead of reinterpolating the fiber vector field, this is the
conductivity tensor (a 2x2 symmetric matrix in 2D) which is reinterpolated any time
a new mesh results from the adaptation. Recall that equation is used for
transforming the conductivity tensor in a local system of coordinates given by the
eigendirections of the fibers. Figure 5.2 illustrates that reinterpolating the conduc-
tivity tensor gives better results. The notches appearing in the depolarization front
(figure caused by the error introduced by the reinterpolation of fibers vector
field are attenuated when reinterpolating the conductivity tensor (figure |5.2(b))).

(a) Reinterpolation of fibers vector field in the (b) Reinterpolation of conductivity tensor in
adaptation loop. the adaptation loop.

Figure 5.2: The transmembrane potential propagating through the my-
ocardium with a fiber arrangement. The notches (in boxes) appearing the
depolarization front (figure caused by the error introduced by the
reinterpolation of fibers vector field are attenuated when reinterpolating the
conductivity tensor (figure |5.2(b)).

5.3.3 Calculating isochrons in a resolution-adaptation loop

The isochrons of depolarization, repolarization, etc. (see equation (3.2.1)) for a defini-
tion) are very useful for summarizing a whole numerical simulation. They are updated
at each time step. For obvious reasons, they have to be calculated on a different mesh

from all adapted meshes. In fact, an adapted mesh at a given loop iteration minimizes
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the error for the solution at that iteration loop, but can be very poor for solutions of
other loop iterations. Moreover, information can be lost definitively by interpolating
solutions of previous time steps, e.g. when the depolarization front existed on a region
where the mesh is now coarse.

The support mesh for computing the isochrons is called the background mesh.
It has to be fine enough that the isochrons satisfy a certain error tolerance. However,
if the background mesh is too fine, i.e. the wave front passes more than one mesh
element in a time step, then the resulting isochron function can be constant on a
whole element. The background mesh used in the 2D simulations with a realistic
geometry has 243, 039 nodes (see figure . The mesh is finer in the heart; the
mesh size is about twenty times finer in the heart than in the torso and can be up
to thirty times smaller near the boundary of the heart than in the torso. Precisely,
the background meshsize is h ~ 3 mm and represents twice the front displacement

during a time step of 0.3 ms.
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Figure 5.3: Background mesh used to calculate the isochrons. The figure is
zoomed near the smallest cavity of the heart.
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5.3.4 Refining the mesh near the internal interfaces

For simplicity, the pseudo-code of loops 1 and 2 does not take into account of the
mesh adaptation on variables other than solutions, though it is done in the actual
adaptation code. For instance, for the heart-torso coupling problem with non body
fitted meshes, there is a mesh refinement in the neighborhood of the surface of the
heart. A distance function ¢ is available directly from the segmentation of the medical
image. It is a scalar function giving the signed distance from the surface of the heart.
It is negative inside the heart and positive otherwise. The level set ¢ = 0 defines
the surface of the heart (see section [1.3.2). The following function, built from the
distance function, is used with various values of § to refine the mesh near the surface
of the heart. Most of the simulations used two functions to refine the mesh near the
interface, one with § = 1.2 mm and another with 6 = 2.4 mm. Both functions are

considered in the metric intersection.

Fo) = cos(F) —0 < <4,

-1 otherwise.

5.3.5 First numerical solutions with mesh adaptation

We now present the action potential computed on the 2D realistic geometry illustrated
on figure[d.2(b)] The parameters of the models are all given in section The action
potential is initiated with localized super-threshold regions showed in figure .15 and
evolves throughout the cardiac tissue as in figure 4.18. Loop 1 is used so the mesh
is adapted every time step. The number of nodes is limited to 20,000. Figures 5.4
and 5.5 clearly demonstrate that solution variations are efficiently captured by the
remeshing method. During depolarization, the solution varies from 0 to 1 in 8 ms, a
very sudden variation compared to the repolarization where solution varies from 0.5

to 0 in 30 ms. This can be seen directly in the mesh, where no obvious refinement is
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necessary during repolarization.

Anisotropic mesh adaptation provides means to control and mitigate the loss of
accuracy for non body fitted meshes, by refining and aligning the elements along the
interface. This is illustrated on figure [5.6] where mesh elements follow very precisely

the interface even in regions with high curvature.

(a) t = 28 ms (b) t = 62 ms

(¢) t =76 ms (d) t = 350 ms

Figure 5.4: The solution at selected times for the non body fitted simulation
with the adaptive strategy.

Whether or not the mesh is body fitted, it is worth verifying if adapting the mesh
near the interface improves the accuracy of the solution. By comparing two simu-
lations on body-fitted meshes (with one using adaptation according to the functions

described above), one can note a slight difference between the isochrons of depolar-
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Figure 5.5: The adapted mesh at selected times for the non body fitted
simulation. During the repolarization (d), solution variations are smoother
than in depolarization (a), (b) and (¢). The mesh is refined where the solution
gradient is high, i.e. in the depolarization front.
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Figure 5.6: The anisotropic mesh is refined near internal interfaces. The
red curve represents the level set ¢ = 0 of the distance function ¢ from the
surface of the heart. The domain of the heart (colored in blue) is defined
as the largest set of elements completely inside ¢ < 0. This figure shows a
portion of the heart cavity with the largest interface curvature.



5. Mesh Adaptation 177

ization. The maximal difference between the isochrons of depolarization is about 0.5
ms when limiting the number of nodes to 20,000 (figure 5.7). The shift between two
contours after 80 ms is comparable to the mesh size of the background mesh used for
computing isochrons. Note that the wavefront of the simulation without adaptation
near the interface is in advance (of 0.5 ms for a simulation of 80 ms) compared to the

solution with adaptation near the interface.

5.3.6 Optimization of the adaptation-resolution loop
Adapting every time step or not

Using Loop 1 is not very efficient in terms of CPU time. The mesh is adapted each
time step and if the time step is very small, the solution barely changes from one time
step to another. The operations performed in pre- and post-processing (reading and
writing data, assembling matrices, etc.), and for the adaptation (error estimation,
reinterpolation, reading and writing data, etc.) are computationally intensive. Using
Loop 1 to analyze the influence of the time discretization is inadequate. For example,
simulating a whole cycle of 1000 ms can take about 18 days when using Loop 1 with
a time step of 0.3 ms, when imposing a maximal number of 20,000 mesh nodes . The
gain is then of 6.3 when imposing a maximal number of mesh nodes at 20,000 with
Loop 2.

Table summarizes the results obtained with Loop 2. The notation “/20”
means that the WC (Wall Clock) or CPU time is the total time for 20 occurrences of
the process mentioned in the first column. The simulation with time steps of 1 ms is
then equivalent to a simulation performed with Loop 1 as adaptation is done every
ms. The gain of using Loop 2 is estimated in the last row. For instance, the gain of
using Loop 2 instead of Loop 1 for a time step of 0.05 ms is obtained by factoring out
the jobs in Loop 2 that are repeated every iterations of Loop 1, i.e. the assembling

and the whole adaptation process. The CPU times associated with these jobs in one



5. Mesh Adaptation 178

)

Y%

(a) Mesh refined along the internal interfaces.  (b) Mesh NOT refined along the internal in-
terfaces.

(c) Isovalue v = 0.13 at t=80 ms for both
adaptation strategies (a) in red and (b) in
black.

Figure 5.7: Body fitted mesh at time 80 ms using different adaptation strate-
gies: (a) refining along the internal interfaces, and (b) not refining along the
internal interfaces. Isovalue u = 0.13 at t=80 ms are shown in (c) for both
adaptation strategies (a) and (b). The isovalue for the strategy without adap-
tation along the internal interfaces is ahead with about 0.5 ms compared to
the isovalue for the strategy with adaptation along the internal interfaces.
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iteration of Loop 2 are then estimated with 20 times the CPU time using Loop 1 with
a time step of 1 ms (last column). Finally, a whole iteration with time step 0.05 ms
using Loop 1 is estimated with (281 —227+ 20 x 20) + (20 x 70) + (289 — 232420 x 17)
which gives 2251 ms.

Time step (ms) | 0.05 | 0.1 [05 ] 1
Solution of prevision

Resolution (WC) 330/20 | 185/10 | 61/2 | 37

Resolution (CPU) 281/20 | 156/10 | 51/2 | 28
Assembling (CPU) 227/20 | 123/10 | 38/2 | 20
Newton’s iterations (CPU) | 28/20 | 18/10 | 9/2 | 6

Adaptation

Total (WC) 122 | 117 | 93 | 80

Total (CPU) 101 93 | 83 | 70
Error estimation (CPU) 13 13 13 195
Adaptation (CPU) 54 43 41 | 30

Solution

Resolution (WC) 336/20 | 196/10 | 63/2 | 30

Resolution (CPU) 289/20 | 167/10 | 54/2 | 25
Assembling (CPU) 232/20 | 133/10 | 39/2 | 17
Newton’s iterations (CPU) | 31/20 | 19/10 | 10/2| 6

Total (CPU) 671 | 416 | 188 | 123

Estimated gain when using 3.35 2.73 1.29 | 1

Loop 2 instead of Loop 1

Table 5.1: Wall clock (WC) and CPU times (s) for a typical iteration of Loop
2 for simulations with various time steps during the depolarization.

A more systematic way of determining when it is necessary to adapt should be
investigated, rather than simply adapting every n steps. For example, unnecessary

mesh adaptations during the recovery phase could be avoided.

Influence of the time discretization

We use Loop 2 with an adaptation procedure limiting the number of nodes to 20, 000

in order to analyze the effect of the time step on the solution accuracy during the
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depolarization. Remark that the following results are valid only for the MS model
with the parameters proposed in section [2.4] giving an AP with an upstroke duration
of about 8 ms. We also use body fitted meshes to make sure that there is no error
introduced by boundary effects. Then we shorten the time step until the isochrons
of depolarization are converged, for instance with less than a certain percentage of
error. The reference solution is calculated with a time step of 0.01 ms with 40,000
elements. Table|5.2]illustrates the gain in CPU time and the associated maximal error
on the isochrons of depolarization when using various time steps. The simulations are
performed for a time interval of 80 ms, and the relative CPU time (second column)
is calculated with a ratio of the total CPU time of the whole simulation to the total

CPU time of the whole reference simulation. Positive values of delays (third column)

Time step | Relative | Maximal delay in | Relative error on | Relative error on
(ms) CPU time 1SOgepor (M) 180gepor (%0) the speed (%)
0.01 1 0 0 0
0.02 0.543 <0.5 <0.625 <0.63
0.05 0.248 <0.5 <0.625 <0.63
0.1 0.188 0.5 0.625 0.63
0.5 0.102 +1 1.25 1.27

1 0.091 +5 6.25 6.67
0.048 +19 23.75 31.15

Table 5.2: Accuracy of the solution during the depolarization.

mean that the solution has a higher speed than the reference solution (with a time
step of 0.01 ms). The values "< 0.5 ms” mean that the background mesh used to
compute the isochrons of depolarization was not fine enough to detect delays of less
than 0.5 ms.

We decided to afford an error of propagation of about 1.25% for the further
simulations by taking a time step of 0.5 ms. Taking the largest time step to reach
this error is important also because of the CPU time taken for the calculation. For

this error threshold, doubling the number of time step roughly doubles the amount
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of work (see the second column). Remark that this time step may not be appropriate
for an other set of model’s parameters.

A delay on the isochrons of depolarization is translated in an error on the speed
of the depolarization wavefront (see the third and last columns). The isochrons of
maximal depolarization iso,,., were also computed so that the upstroke duration
could be analyzed. It turns out that the upstroke duration is not affected by the time
discretization. This is also observed in section |3.2| when the time steps are far from
the valued indicated for instability (see Table [3.4)).

The next step is to analyze the effect of the time discretization on the solution
accuracy right after the heart depolarization, while cells start repolarizing. Again,
body fitted meshes and Loop 2 are used together with an adaptation procedure lim-
iting the number of nodes to 20,000. Using the same model parameters as for the
depolarization gives an AP with an downstroke duration of about 32 ms. For the
initial conditions, we use the result of a numerical simulation previously calculated
up to 280 ms with a time step of 0.3 ms. At 280 ms, there is already a repolariza-
tion front forming in the region of the activation zone. We then perform simulations
for a supplementary 80 ms with various time steps and measure the CPU times and

solution accuracies with the isochrons of repolarization (see table [5.3)).

Time step | Relative CPU time | Maximal delay in
(ms) 1S0¢por (m1S)
0.5 1 0
1 0.437 <0.5
2 0.232 +2
5 0.110 +5
10 0.058 +11

Table 5.3: Accuracy of the solution during the repolarization.

For the same error threshold as in depolarization, we can use a time step up to

1 ms. Taking a time step of 1 ms in the repolarization instead of 0.5 ms (used for the
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depolarization) gives a considerable gain of 50% in CPU time. For a rule of thumb,
we could say that in order to study a phenomena 4 times longer (repolarization vs
depolarization), we can use a time step which is roughly twice longer. Note that again,
the speed of the repolarization front is obviously altered by the time discretization

though the downstroke duration is not.

Influence of the space discretization

To analyze the influence of the space discretization in the depolarization phase (the
first 80 ms), we use a time step of 0.1 ms and Loop 2 with an adaptation procedure
limiting the number of nodes to different values. The mesh is adapted every 1 ms, so
S is equal to 10. Table gather the WC and CPU times while using Loop 2 with a

single step of adaptation-resolution after the calculation of the solution of prevision.

Nb of nodes | 5,000 | 10,000 | 20,000
Solution of prevision

Resolution (WC) 87 126 185

Resolution (CPU) 54 86 156
Assembling (CPU) 23 36 123
Newton’s iterations (CPU) 4 8 18

Adaptation

Total (WC) 55 76 117

Total (CPU) 34 55 93
Error estimation (CPU) 5 9 13
Adaptation (CPU) 16 25 43

Solution

Resolution (WC) 88 121 196

Resolution (CPU) 54 83 167
Assembling (CPU) 23 35 133
Newton’s iterations (CPU) 4 8 19

Total (CPU) 192 | 224 416

Table 5.4: Wall clock (WC) and CPU times (s) for a typical iteration of Loop
2 for simulations with various number of nodes (imposed at the adaptation
step) during the depolarization. The time step is 0.1 ms.
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It is not clear that using less nodes is better. In fact, the adaptation is rather
unstable with 5,000 nodes, stable with 10,000 nodes and very stable and reliable with
20,000 nodes. With 5,000 nodes for instance, it is difficult to manage the adjustment
of the error threshold on several variables, while keeping the number of nodes this
low. This is why the remeshing strategy does not capture very well either the solution
variations or the heart surface. See figure 5.8 for a comparison of the meshes at a given
time of the simulations presented in table 5.4, One way to stabilize the adaptation
is by doing several resolution-adaptation iterations at each loop iteration. However,
we may loose all the gain of using less nodes as we solve and adapt more than once
every iteration.

Estimating the error on the isochrons of depolarization by comparing with isochrons

calculated when limiting the number of nodes to 40,000, we find that:

e if limiting the number of nodes to 5,000, the wavefront is in advance of 5 ms

after a simulation of 80 ms,

e if limiting the number of nodes to 10,000, the wavefront is in advance of 0.5 ms

after a simulation of 80 ms,

e if limiting the number of nodes to 20,000, the wavefront is in late of 0.5 ms after

a simulation of 80 ms.

This means that using 10,000 nodes is about the minimal number of nodes that we can
afford to have an error of less than 1% in the isochrons of depolarization. We mention
finally that the analysis of the convergence of the method with adaptation cannot be
performed correctly using the isochrons as these are calculated on a background mesh

of constant meshsize.

Remark 14 (Comparison with uniform meshes) Using uniform meshes is nec-
essary to evaluate the precision of simulations with adaptation, as well as to estimate

the real gain of using mesh adaptation. However, this has already been proved in [7]
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(¢) 20,000

Figure 5.8: Zoom of the adapted meshes along an internal interface. The
region illustrated is near the bottom of the heart. Meshes at time ¢ = 62 ms
with a number of nodes limited to 5,000 (a), 10,000 (b) and 20,000 (c). The
background color is the magnitude of u with v = 1 in red and v = 0 in dark
blue.
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for a mesh adaptation strategy with a remeshing every time step. The depolarization
time of the solution of the adaptive method was compared with the asymptotic value
computed on uniform meshes as if we were keeping refining these uniform meshes.
As obtaining the asymptotic solution was not even possible with the available compu-
tational resources, the depolarization time on the finer uniform meshes was obtained
using Richardson extrapolation. The asymptotic solution recovered from Richardson
formula were found to be close to the values computed on adapted meshes. We de-
cided to prevent from doing this laborious study as it was not necessary to validate

our adaptation strategy.

5.4 Simulating the movement of the heart embed-

ded in the torso

Level set methods turn out to be very efficient methods when considering moving
geometries. This section demonstrates the application of level set methods in cardiac
electrophysiology when moving domains with complex geometries are involved. We
first briefly review the considerations to take when modeling and solving the conduc-
tion contraction coupling, and then bring an alternative way of solving the problem

when using a level set description of the domains.

5.4.1 Deforming the heart geometry using small/large defor-

mations

The conduction contraction coupling can be modeled with different approaches. See
[45] for a good review. We present here the idea of a model where the electrical
simulation is used as an input in the mechanical model without mechano-electrical
feedback. The work of Chapelle and al. [I7] is an example of this type of model.

The model includes mainly three mechanical components: transmembrane potential
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propagation, active contraction forces, and passive biomechanics. The evolution of

the displacement \ of each mesh node is governed by the following equation:
MA+CA+ K\ =F,+F,,

where M, C'; and K are the mass, damping, and stiffness matrices, respectively, Fy is
the external load from boundary conditions (blood pressure, valves), F, is the force
vector for active contraction. This contraction force is applied along a local fiber
orientation and is controlled by the transmembrane potential v and several other
parameters. Remark that the segmentation of time series of medical images can be
integrated in the model equations. We voluntarily avoid the details for simplicity and
we refer the reader to [77].

In this method, the displacement vector field A is calculated and the mesh nodes
are displaced accordingly. In the following section, we introduce a method that con-
vects the level set using a velocity vector field. We attempt to use such a method in

the perspective of using, in addition, mesh adaptation and non-body fitted meshes.

5.4.2 Deforming the heart geometry using non-body fitted

meshes and level sets

The aim of the simulation presented here is to prove the use of a time sequence of
segmented medical images for defining the motion of cardiac geometries. No model of
electromechanical coupling is explicitly used here. The computational mesh could be
eventually built from time interpolation of patient-specific anatomical data based on
medical image segmentations. In the lack of these time series, we build a fictitious time
dependent level set description of the heart based on the same level set description
as in section .4l In the simulations, the initial conditions and the parameters of the

equations are also the same.
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The distance function from the heart surface p(x) and the sign function for the
cavities s.(x) are used for defining the heart domain H. The function s.(z) is a
piecewise constant function illustrated in figure that is equal to 1 in the heart

cavities, and -1 elsewhere.

Dist (cm)

15

12

(a) The distance function from the heart surface ¢(x).

(b) The sign function for the cavities s.(x), a piecewise constant
function obtained from segmentation of a medical image.

Figure 5.9: The data coming from a segmented CT scan used to build the
fictitious moving heart.



5. Mesh Adaptation 188

H = {x € Qlp(z) < endo(t) and s.(z) > 0} U {z € Q|p(x) < epi(t) and s.(x) < 0},

where endo(t) and epi(t) are the time varying thresholds, respectively, for the endo-

cardium and the epicardium,
endo(t) = endo; + (endoy — endo;) ((t)
with endo; = 0.5 cm and endo; = 6 cm, and
epi(t) = epi; + (epiy — epi;) C(t)

with ept; = 10 and epi; = 1. Both threshold functions are defined with the following
piecewise sigmoid function ((¢):

K Pye"st .
W_PO 1ft<300ms,

€(300)e~m(t=300) if ¢ > 300 ms,

C(t) =

with Py = 0.0002, K = 14+ Py, rs = 0.05 and r4 = 0.03. Figure shows that
the function ((¢) is chosen so that it approaches qualitatively experimental measures
performed on cardiac cells of a carp[66].

Figures to show selected time steps of a numerical simulation with mesh
adaptation of a moving heart described by level sets. The heart depolarizes (a) and
when it is completely depolarized (b), muscle contraction has already been initiated.
Just before repolarizing (c), the heart reaches maximal contraction resulting in muscle
thickening in the cross section illustrated in (d) and (e). The muscle progressively
returns to its rest state in terms of potential and force contraction after a certain

portion of the heart is repolarized (f).
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(c) The fictitious contraction function ((t) used to deform the heart geometry.

Figure 5.10: Comparison of experimental measures and our model for the
relation between the transmembrane potential and the force of contraction.
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(b) 300 ms

(d) 500 ms

(f) 700 ms

(e) 600 ms

Figure 5.11: The transmembrane potential u calculated on an adapted non
body fitted mesh of a moving level set based geometry.
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(c) 400 ms (d) 500 ms

(e) 600 ms (f) 700 ms

Figure 5.12: The recovery variable v of the MS model calculated on an
adapted non body fitted mesh of a moving level set based geometry.
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(e) 600 ms (f) 700 ms

Figure 5.13: The extracellular/extracardiac potential u, calculated on an
adapted non body fitted mesh of a moving level set based geometry.



5. Mesh Adaptation 193

(e) 600 ms (f) 700 ms

Figure 5.14: The non body fitted mesh adapted every 1 ms (every 10 time
steps) of a moving level set based geometry.
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A major drawback of this simplified method comes from solution reinterpolations
between two different heart geometries. Suppose that the heart domain H at a given
time ¢ is different from the heart domain H’ at the next time step. The solution is
reinterpolated from H to H' in this simplified method. Recall that the transmembrane
potential u and the recovery variable v are solutions that exist only in the heart. At
the time ¢t + At, these solutions wu;ya; and vy a; are computed on H' using solutions
of previous time steps, for instance u; that exists on H. The time steps are so small
(At < 0.5 ms required for the resolution of the ionic model) that the domain moves
only slightly. The solutions v and v have to be transported in some way from H to
H’. In this method, the solutions are simply reinterpolated for regions common to
both domains. If the heart enlarges in a certain neighborhood of the interface, then
the solution at a point x| of H' outside H is taken as the solution at the nearest
point x; of H via a projection. Problems arise when doing both reinterpolation and
projection if the heart gets smaller or bigger, respectively (see figure . On the
one hand, when the heart gets smaller with a given displacement A\ = J: the solution
calculated on H \ H’ is lost in the reinterpolation. On the other hand, when the
heart enlarges in a given region, the solution calculated at the point x} of H' uses the
solution state at the point x; of H through a projection, while it should use the state
at a point, e.g. o, of H displaced at a point, e.g. x5, of H' using the displacement d.

This simplified method is not suitable for computing the conduction contraction
problem with level sets in realistic conditions. It rather proves the use of level sets,
non body fitted meshes and moving geometries in a context of mesh adaptation.

Moving (convecting) level sets is done very often for instance in numerical simula-
tions of free surface fluids and fluid-structure coupling. The displacement or velocity

vector field is calculated with continuum mechanics models e.g. Navier-Stokes equa-

tions and equation of section Provided a velocity vector field given by A, the
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)

T

(a) Inward displace- (b) Outward displacement
ment d. d.

Figure 5.15: For inward displacements (a), a part of the solution may be
lost. For outward displacements (b), the solution may be misdiplaced with

a projection (e.g. x; to #). It should have to be displaced with d (e.g. s
to ).

level set equation is

dp .

This equation could be solved eventually in an improved version of our moving geo-

metrical model.



Conclusion

This thesis makes contributions to the following two aspects of cardiac electrophys-
iology: predicting the shape of a propagated action potential wave, simulated with
the MS model, is made possible with a dimensional and asymptotic analysis, and a
numerical method involving unstructured mesh adaptation is proved to be efficient
for solving the heart-torso coupling problem on domains described by level sets.
The dimensional asymptotic analysis gives the steps to predict the solution shape
and propagation in a local region of constant conductivity. The application of the
method was done successfully on two very different tissues of the heart, the ventricle
and the Purkinje fibers. Even when time scales differ by many orders of magnitude
in the same AP, the reliability of the method with the MS phenomenological model
has been demonstrated. This method proves that using a single simple model for the
membrane potential is possible and replaces the use of complicated combinations of
tissue-specific ionic models. This remains true only when the phenomena under study
involves no complicated dynamics other than the four AP phases: depolarization,
excitation, repolarization and recovery. For example, if an electrocardiogram is used
together with numerical simulations, studying very short scale AP manifestations is
probably useless because these details would not appear on the electrocardiogram.
Our method would then open the door to many applications like the inverse problem,
at least diagnosing propagation problems like infarct scars, and hopefully much more.

Testing the predictions using realistic patient data would be a great advance.

196
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In this thesis, we have also discussed and tested the new capability of an anisotropic
adaptive remeshing method applied to the heart-torso coupling problem with realistic
and complex computational domains. Not only does the method allows to capture the
rapid variations of the solution, but it also allows to solve accurately and efficiently
the heart-torso coupling problem on non body fitted meshes. We have also demon-
strated the application of the method to moving domains. It then opens the door to
combine the electrocardiology problem to other problems like the electromechanical
coupling and blood flow in the heart cavities, problems for which the efficiency of
level sets methods have already been proven.

Finally, it would be very interesting to apply our asymptotic analysis combined
with our adaptive strategy to the bidomain model on 3D regional domains (defined
by level sets and using non body fitted meshes) with specific and realistic patient
conditions. These problems occur for instance in situations of complex propagation
behaviors, like spiral waves initiated by the propagation around subregions of lowest
conductivity (e.g. infarct scars). This would be a perfect occasion to test the effi-
ciency and the predictive capability of our method for such problems at the heart of

computational therapy planning.



Appendix A

Solving the Neumann problem

with a finite element method

When the problem is solved with Dirichlet BCs, the problem is naturally well-
posed for u|x € P, and u € C°(Q). When the problem is solved with Neumann BCs,
the problem is not necessarily well-posed, depending on the choice of the function
space in which we seek u. In fact, using V' (see section for definition), the
problem is well-posed because f o0 Vlezact " N = fQ f = 0. However, using the same
space as the one used for the Dirichlet problem, the problem is no longer well-posed.
Many approaches can be used to solve this problemE] . The approach that we finally
retain consists first in modifying the problem so that it becomes well-posed and we

solve it in correction. The algorithm is the following:

11) Imposing a Dirichlet BC at one point. 2) Perturbing A with a small mass matrix, solving it
once with a CG and adjusting the average (the initial guess for the CG was not necessarily good).

198
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With the initial guess Uy, solve
For n = 0 to a maximal number of it-
erations

(A+eM)oU, = F — AU,

Uny1 = U, + 06U,

If 6U,, < stopping criteria (small),
break.
End of the loop

with ¢ € Py, Ajj = [,0Ve; - Vo, M = [,¢;- ¢, F = |, f¢ and € a constant.
At each step, the solution u = > ; Ujd; is obviously not the solution of the original
problem, but A+eM is symmetric positive definite. To get the solution of the original
problem, we had to impose an initial guess Uy which has the same average than the
exact solution, i.e. Uy = 1/7%(1 — 0~ /oT). Indeed, the solution §U, of the linear
problem (A+€M)oU,, = F — AU, is of zero mean. The following remark is devoted to
the demonstration of the last assertion. We actually want to prove that the solution
of the approximate problem leads asymptotically to a solution with a zero mean.
We start with a solution with a non zero mean and we will prove that the mean is

asymptotically zero.

Remark 15 Suppose that we have the solution Szh,n = Oup, + An of the problem
which arise at each step m of the iterative process, with h the mesh size and X\, an
arbitrary constant. We know that constant functions are in ker A. For any h (then
also when h tends to zero), this modified problem has a unique solution.

As we have (fﬁhm m Py, it is at least twice differentiable on every element K and

the divergence theorem can be used on every element. Up to a consistency error due
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to the integration of f, %hﬂ is the solution of variational problem

Kz{ [ oV oe [ G} - (A0.1)
2:{Lﬂ—LkVMWV%'WGHWU (A.0.2)

KeQp

Without any consistency error (integrals calculated exactly), integrating the last

equation over the whole domain 2 we get the exact compatibility condition

V%h,n ‘n+ EE;W =f+ Vup, - n. (A.0.3)
09 o9
Both su and u, satisfy the homogeneous Neumann boundary condition and for this
problem f is of zero mean. Then Su is necessarily of zero mean.

Let us come back to the consistency error. This consistency error is important
because it can be accumulated through the iterative process (problem solved in correc-
tion). When h is still large, we make sure that integral involved in Ehm 15 calculated
exactly. Indeed, the quadrature is chosen properly so that integrals of polynomials of
order 2k (product of 5Nuh,n and v in the mass term) are exact. The only integral which
is not exact is [, f. This introduces a consistency error that is O(R*) [20]. Let us
see what could be the order of magnitude of the mean of the final solution.

As is true for allv € HY(Q), it is true for v = 1 and so we get the following

discrete compatibility condition

— 1
ou n+)\n:—/f.
" €|Q’ Q

By assumption duy,p s of zero mean, then

R S PRy
M_dm[ﬁ O(hF).



A. Solving the Neumann problem with a finite element method 201

In the limit h — 0, we have gﬁh,n — du, with du, solution of —Adu, + edu, =
f+ Au,. As h — 0, the integrals are calculated exactly and so the consistency error
vanishes, meaning that the problem is asymptotically consistent. Though X, is never
calculated explicitly, it is estimated to be O(h¥) and it tends to zero as h — 0.

In correction, one solves the problem until the residue be less than the stopping
criteria, 1.e. fQ fu— fQ oVup, - Vv < stopping criteria. Because of the gradient of
Up,n, N0 matter the average of uy,,, the last condition can be satisfied and the numerical
solution is up to a constant to the exact solution. If Upg = 0, Up, = Y oy A and
if the number of iterations in correction is significantly less than the number of the

degrees of freedom, one can say that the mean of the final numerical solution uy,, is

O(R¥) too.

Note that the method described before is explained for f in L2(€2). But the
remark remains valid for f in L?() as long as the compatibility condition is satisfied.
Suppose that we want to solve the homogeneous Neumann problem and we have
a given f in LZ(Q)). In practice, the source term f is computed in floating point
arithmetic via quadrature. As a result, the linear system to solve may becomes
numerically inconsistent and the conjugate gradient could diverge. To restore the
consistency, one can use a projection operator for the discrete source term have a
zero mean to machine precision. Such a projection operator is proposed in [10]. It is

considered as the unconstrained optimization setting of the problem, i.e.

min _ J(v, f) with J(U,f):%/|Vv|2—/fv
Q Q

veHL(Q)/R

and f in L3(Q).
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A.0.3 Other ways to solve the Neumann problem [10]

The constrained optimization setting is also discussed and a vanishing w-mean is

imposed. The problem considered is the following

U, W
min J(v, f) subject to wu, = ﬂ _

0,
veH1(Q)/R (1,w)L2(Q)

The choice of w and the handling of the constraint provide a template for many finite
element methods for the Neumann problem.
Saddle-point formulation

With a Lagrange multiplier 7 € R, the saddle-point formulation can be written as

inf sup (J(u, f) + Tuy) .
uGHl(Q)reIIR)( (. f) )

The saddle-point solves the first-order optimality condition: Find (u,7) € H'(Q) x R

such that

a(u,v) + v, = f(v) Yv e HY(Q)

Oy, =0 Vo e R

which is equivalent to the reduced problem: Find u € H.(Q) = {u € H'(Q)|(u,w) =
0} such that

a(u,v) = f(v) Yo € HL(Q).

For any f € L*(Q), existence and uniqueness of the solution can be proved. How-
ever, the solutions of the reduced problem does not solve the original exact problem

unless f € L3(9).
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The choice of w is crucial. If w approaches a delta function as h — 0, the
method corresponds to the one of specifying a solution value at a node. For the
singular N x N matrix A (for the original ill-posed problem) with ordered eigenvalues
0=X < X <... < Ay, the rate of convergence of the conjugate gradient algorithm
depends on the ratio kK(A) = Ay(A)/A2(A) or the effective condition number. For
this particular choice of w, the condition numbers of the resulting matrices are larger
than the effective condition number of the singular matrix. Moreover, as the delta
function is in the dual of H'(Q) in one dimension only, the constraint (u,w) = 0
becomes ill-posed in two or three dimensions as h — 0. Specifying the solution at
a node leads to an ill-posed variational problem in 2D and 3D and so impacts the

resulting linear system.

Stabilized saddle-point formulation

With a Lagrange multiplier 7 € R, the saddle-point formulation can be written as

ueHY(Q) reR 2p

1
inf sup (J(u, )+ Tuy — —7'2) :

The saddle-point solves the first-order optimality condition: Find (u,7) € H*(Q2) x R
such that

a(u,v) + 1v, = f(v) Yv € HY(Q)

1
OUy = —OT Vo eR

p

which is equivalent to the reduced problem: Find u € H.(Q) = {u € H'(Q)|(u,w) =
0} such that

ap(u,v) = alu, v) + puyv, = f(v) Yo e HL(Q).
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Remark that the last problem can be seen as the first-order optimality system for the
unconstrained minimization of the penalized energy functional

min (J(u, )+ gufv) :

ueH(Q)

For any f € L%*(Q), existence and uniqueness of the solution can be proved.
However, the solutions of the reduced problem do not solve the original exact problem
unless f € L3(Q). An advantage of such a method is that the discretized version of
a,(u,v) is symmetric positive definite and its sparsity can be controlled so as to match
the sparsity of the singular matrix by taking w with the appropriate support. For
instance, if w = 1, a, is dense, but with an appropriate choice of p, the number of
CG iterations is less than when we specify a solution value at a node. The choice of
w and p seems to be not necessarily obvious. This s why we choose the method of the

modified problem solved in correction.

Remark 16 Because the overall problem was solved iteratively, we had to impose
that the initial guess uy be such that fQ Uy = fQ Uegact, for the final solution (once
converged) have the right mean. If we do not do that, the final solution is up to a

constant to the exact solution.



Appendix B

Complement on the Conjugate

Gradient (CQG)

With Neumann boundary conditions, the stiffness matrix A is symmetric positive
semi-definite. This comes from the fact that we find our solution in Py, the space
of piecewise polynomials of order k£, where the constant functions are possible. The
problem is then ill-posed. For the conjugacy be well-defined, one absolutely needs a
positive definite matrix. We slightly modified the approximate problem by adding a
mass matrix of order e small, and we solve it in correction (set u = ug + du, ug is the
initial guess and du the correction). Note that the new problem is well-posed because
fBQ Viegact - 1+ € [ Uezact = [ f = 0 (each term is zero). The new approximate
problem becomes:
Find du € P, s.t.
Adu + Mdoéu = F — Auy,

where

Aij—;/ij-wi

205
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M;; = E;/K%‘@

with du = ) du;¢;, ¢ are basis functions in P, and K represents the elements in
the mesh. Working in correction implies that we solve for du and update uy until
the right hand side becomes zero. Once converged, the residual of the non modified
approximate problem (without the mass matrix) is zero and we have a solution to
Au = F. In each iteration, we solve this linear problem using a CG solver, which is

described below (d; are the search directions, r; are the residuals and B = A + M).

Algorithm
Set d() =Ty = F— AUO - B(5u0

For 7 equals 0 to size(du)
T‘iTT'i

~ dTBd,

&

duir1 = 0u; + oud;

riy1 =1 — o Bd;

if ;41 is less than the stopping criteria, break.

div1 =Tit1 — Pind;

End of the for loop.

The search directions are built (via a Gram-Schmith process using the B-conjugacy)
with a set of linearly independent vectors, which are here the gradients ¢g; = —r;. In
consequence, we have d; € span{rg, 71,79, ...,7;_1} = span{dy, Bdy, B%dy, ..., B 'dy} =
span{ry, Bro, B*r, ..., B 'ry}. The before last equality comes from the fact that r; is
just a linear combination of the previous residual and Bd; ;. The last equality holds
from the initial choice of dy. If the conjugacy is good, the solution stays in this Krylov
space through the CG iterations. We would like to have an algorithm which preserves

the average of the initial guess through the iterations. If we write the initial guess as

an orthogonal decomposition, we have 5710 = dug + Mw with dug € ker A+, w € ker A
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and A is a constant. Note that the kernel of A is the set of constant functions, but the
kernel of B is zero. For guesses 5710 and dug, we have the following first directions.

Fo = F — Aug — Béuy = F — Aug — Adug — Mdug

To :F—AUO—36U0 :F—AUO—A5UO—M(5U0

The results are not the same and an error could grow up through the iterations, even

if € is small. It means that using the CG to solve this equation is not suitable to

preserve the average of the initial guess.



Appendix C

Definitions and theorems [20]

Hypothesis 1 Let hy be the diameter of element K of the triangulation. We consider

a reqular family of triangulations T, in the following sense:

o There exists a constant o such that

VKGU’]}Z,h—K <o.
h PK

o The quantity h = maxger, hix approaches zero.

Hypothesis 2 All the finite elements (K, Px,Xk), K € U, Tn, are affine equivalent

to a single reference finite element (I?, 13, f])
Hypothesis 3 All the finite elements (K, Px,Xk), K € U, Tn, are of class C°.

Theorem C.0.1 Consider the hypothesis [1, [4 and [3 Assume that there exists an

integer k > 1 such that the following inclusions are satisfied:

P.(K) c P c HY(K),

H*(K) < C(K),

208
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where s is the maximal order of partial derivatives occurring in the definition of the
set 3.
Then if the solutionu € V' of the variational problem is also in the space H*1(Q),

then there exists a constant C' independent of h such that
v —up |0 < ChF|ulkira (C.0.1)

Remark 17 The last theorem assumes that u is sufficiently smooth, i.e. in H*1(Q)
for some k > 1. If u does not satisfy this regularity condition, i.e. w € H" () with

d/2 <r < k+1, the estimate becomes
Ju = upllro < Ch™Hulrg

Moreover, the assumption H* ' (K) < C*(K) is valid if d/2 + s < k+ 1. If this
condition is not satisfied, it is still possible to prove the convergence of the method with

an appropriate choice of the space in which we seek u and with a density argument

120].

Theorem C.0.2 Consider the hypothesis [1, [3 and [ Assume that d < 3, and that
there exists an integer k > 1 such that the solution u € H**1(Q) and such that the

inclusions hold:

P.(K) c P c HY(K).

Moreover, if the adjoint problem s reqular, there exists a constant C' independent
of h such that

|U - uh|0’Q S Chk+1|u‘k+1,9 (002)

Lemma C.0.3 (Inverse Inequality) With notation defined in hypothesis (1|, suppose
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that the finite element space Vi, C C° N HY(Q) and that the triangulation T satisfies
the following regularity condition[20)]:

h
v such that — < v
K

for v independent of K. Then Vv, € Vj,

C

ouls < T llnllo,
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