
2-D, 3-D and 4-D Anisotropic Mesh Adaptation for the
Time-Continuous Space-Time Finite Element Method with
Applications to the Incompressible Navier-Stokes Equations

by

Pascal Tremblay

A thesis presented to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the

requirement for the degree of

DOCTOR OF PHILOSOPHY

in

MECHANICAL ENGINEERING

Ottawa-Carleton Institute for Mechanical and Aerospace Engineering

Department of Mechanical Engineering

University of Ottawa

Ottawa, Ontario, Canada

Copyright 2007 Pascal Tremblay

December 2007

Abstract

A mesh adaptation strategy suitable for unsteady partial differential equations

has been developed to control both the spatial and temporal discretization errors in a

unified fashion. The aims are to provide a methodology that prevents the accumulation of

discretization error associated with time stepping approaches and is also flexible enough to

adjust the density of the space-time mesh to varying time scales in the solution domain.

The primary focus of this thesis has been the development of anisotropic mesh-

ing algorithms that can operate in 2-D, 3-D and 4-D on unstructured simplicial meshes.

The mesh modification operators include edge splitting, edge collapsing, simulated edge

swapping, and mesh smoothing and are driven by an anisotropic metric field.

The mesh adaptation methodology has been coupled with a time-continuous space-

time finite element flow solver for the incompressible Navier-Stokes equations. The space

and time finite element discretizations have been treated in a fully coupled manner using a

Galerkin/Least-Squares formulation on a simplicial mesh that covers the entire space-time

solution domain. The anisotropic metric field governing the mesh modification algorithms

is constructed from an interpolation based error estimate using a modified Hessian of the

magnitude of the velocity in the flow field. It provides a specification of the desired mesh

size and orientation for the simplicial elements to refine and coarsen the space-time mesh

while stretching the elements in preferred directions to reduce the number of mesh points

necessary to achieve a solution of a given accuracy.

The anisotropic meshing algorithms have been tested in 2-D, 3-D and 4-D with an

analytical metric field and also with a simple heat transfer problem. The resulting element

iii

quality was found to be very high for the 2-D cases, comparable to those produced by

methods found in the literature for the 3-D cases, but unsatisfactory for the 4-D cases.

The ratio for the number of elements to the number of points in the mesh has been found

to grow by a factor of about 3 when increasing the space dimension by one. To the best

of our knowledge, this is the first time that mesh modifications were shown to operate in

a dimension higher than 3 with the ability to modify the boundary mesh. In contrast,

previously existing methods that operate on higher dimensional meshes cannot keep track

of the boundary of the domain.

Verifications for the unified space-time adaptive finite element method have been

done using manufactured solutions for a linear heat equation and for the incompressible

Navier-Stokes equations. The behaviour of the L2 norm, computed on the entire space-

time domain, shows a good agreement between the numerical and the analytical solutions

indicating that the unsteady mesh adaptation procedure can control the discretization error

in both space and time.

Applications to the incompressible Navier-Stokes problems have been shown with

unsteady 2-D flows to demonstrate the ability of the method. Numerical solutions are

presented for the flow past a circular cylinder at a Reynolds number of 100, the flow over a

backward facing step at a Reynolds number of 800 and the flow in a lid-driven cavity at a

Reynolds number of 400. For these test cases, the Picard method with the combined mesh

adaptation strategy and solution interpolation, introduced to provide a restart solution for

the solver after mesh adaptation, exhibit excellent convergence behaviour.

iv

Acknowledgements

I would like to thank Professor Stavros Tavoularis for serving as my Thesis supervi-

sor and Professor Yves Bourgault for serving as my Thesis co-supervisor. They gave me the

leeway to explore my ideas on space-time mesh adaptation and offered me the opportunity

to live my passion for numerical simulation in the context of a PhD Thesis.

I am grateful for all the financial support that I have received during the course of

my Thesis. More specifically, my thanks go to the Government of Quebec for their funding

through the “Fonds Québécois de la Recherche sur la Nature et les Technologies”, the

Government of Ontario through the Ontario Graduate Scholarship, the Faculty of Graduate

and Postdoctoral Studies of the University of Ottawa, the Natural Sciences and Engineering

Research Council of Canada, Professor Tavoularis and Professor Bourgault, the National

Bank of Canada and my parents.

I am also grateful for the free availability of the Visual Toolkit (VTK), the Portable,

Extensible Toolkit for Scientific Computation (PETSc) and the CFD General Notation

System (CGNS). The use of these libraries has allowed me to focus on other aspects of this

Thesis. Availability of such open source codes makes it possible for people in the academia

to explore original concepts on numerical simulations in a way that would otherwise be very

difficult in view of the commercial simulation packages that are now available.

I would also like to thank the students with whom I have shared the adventure

of graduate studies over these years. My thoughts go to Matthew Doyle, Warren Dunn,

Dong Il Chang and several others whom I have met in conferences and who inspired me by

sharing their ideas.

v

Finally, I would like to express my deep appreciation to my family for their un-

conditional financial and moral support and for encouraging me to persevere to complete

this Thesis.

vi

vii

Contents

List of Figures x

List of Tables xvi

List of Algorithms xvii

Nomenclature xviii

1 Introduction 1
1.1 Perspective on the Evolution of CFD . 1
1.2 Space-Time Formulations . 3
1.3 Motivation and Scope of the Present Study 9
1.4 Objectives and Outline of the Thesis . 10

2 Background and Literature Review 14
2.1 Introduction . 14
2.2 Basic Mesh Definitions . 15

2.2.1 Solution Domain and Boundaries . 15
2.2.2 Mesh Points and Elements . 15

2.3 Mesh Adaptation Definitions and Objectives 16
2.3.1 Open-Loop versus Closed-Loop FEM Processes 17
2.3.2 Objectives of Mesh Adaptation . 19
2.3.3 Adaptive Time Stepping vs. Mesh Adaptation 20

2.4 Mesh Adaptation Requirements . 21
2.4.1 Error Estimator . 21
2.4.2 Anisotropic Extension and Metric Construction 24
2.4.3 Element Size and Quality . 31
2.4.4 Performance . 34
2.4.5 Mesh Optimization Algorithms in Higher Dimensions 35

2.5 Anisotropic Mesh Modification Methods . 38

3 2-D, 3-D and 4-D Parametric Data Structure 40
3.1 Introduction . 40

3.1.1 Finite Element Data . 41
3.1.2 Design Criteria . 42

3.2 Mesh Data Structure . 44
3.2.1 Parametrization: Separating Geometry from Topology 46
3.2.2 Dynamic Data Arrays . 47
3.2.3 Point Storage . 48
3.2.4 Element Storage . 50
3.2.5 Unstructured Mesh . 52

3.3 Implementing Dimension Independent/Dependent Algorithms 53
3.4 File Input-Output . 56

4 Mesh-Based Geometry Reconstruction 57
4.1 Introduction . 57
4.2 Surface Mesh Topology Reconstruction . 59
4.3 Quadratic Geometry Reconstruction . 63

4.3.1 Point Normal Estimation . 65
4.3.2 Geometric Reconstruction Algorithm 69

4.4 Projection of Points on a Curve or Surface 70
4.5 Possible Higher Order Extensions . 74
4.6 Implementation Note on the Mesh-Based Data Structure 75
4.7 Pseudo-Code for the Geometry Algorithms 76

5 Governing Flow Equations and Space-Time Finite Element Discretization 81
5.1 Introduction . 81
5.2 Governing Equations for Viscous Incompressible Flows 83

5.2.1 Unsteady Incompressible Navier-Stokes Equations 83
5.2.2 Space-Time Domain . 84
5.2.3 Boundary and Initial Conditions . 85

5.3 Finite Element Discretization . 87
5.3.1 Overview of the Galerkin Finite Element Formulation 87
5.3.2 Choice of Elements . 91
5.3.3 Galerkin / Least-Squares Formulation 92

5.4 Solution of Nonlinear Equations Using the Picard Method 96

6 Anisotropic Mesh Optimization Algorithms in 2-D, 3-D and 4-D 98
6.1 Introduction . 98
6.2 Anisotropic Element Quality Measure . 99
6.3 Mesh Modification Operators in 2-D, 3-D and 4-D 103

6.3.1 Edge Splitting . 103
6.3.2 Edge Collapsing . 106
6.3.3 Simulated Edge Swapping . 110

6.4 Mesh Optimization Procedure . 115
6.4.1 Overview . 115

viii

6.4.2 Target Mesh Size . 116
6.4.3 Refinement . 120
6.4.4 Coarsening . 123
6.4.5 Topology Improvement . 125
6.4.6 Smoothing . 129

6.5 Mesh Smoothing Based on Inscribed Ellipsoid 130
6.6 Sliver Perturbation by Random Point Relocation 136
6.7 Pseudo-Code for the Meshing Algorithms 137

7 Space-Time Mesh Adaptation and Solution Procedure 142
7.1 Introduction . 142
7.2 Comparison of Decoupled and Fully Coupled Space-Time Formulations . . . 143
7.3 Computational Cost of Fully Coupled Space-Time Solution Procedures . . . 148
7.4 Flow Solver Algorithm . 149
7.5 Interpolation of the Re-start Solution on the Adapted Mesh 152
7.6 Summary of the Adaptive Solution Algorithm 153

8 Numerical Results 157
8.1 Introduction . 157
8.2 Mesh Optimization Using an Analytical Metric with 2-D, 3-D and 4-D Meshes159
8.3 Unsteady Heat Transfer in Boxes with 2-D, 3-D and 4-D Meshes 178
8.4 Unsteady Flow in a Cavity with a Manufactured Solution 200
8.5 Unsteady Flow Past a Circular Cylinder . 219
8.6 Unsteady Flow Over a Backward-Facing Step 230
8.7 Unsteady Flow in a Lid-Driven Cavity . 239

9 Conclusions and Recommendations for Future Research 249
9.1 Conclusions . 249
9.2 Recommendations for Future Research . 253

References 255

ix

x

List of Figures

2.1 An open-loop control system representing the FEM without mesh adaptation. 18
2.2 A closed-loop control system representing the FEM with mesh adaptation. . 19
2.3 Illustration of a metric tensor defined at a point. The eigenvectors corre-

sponds to the minor and major axis of the ellipsoid with the size of the
ellipsoid along these directions corresponds to the desired mesh size. 26

2.4 Illustration of the transformation of an element to a transformed space using
two different linear tranformation. 27

2.5 Illustration of the ellipsoid associated with the metric tensor and its trans-
formation to a sphere in the transformed space. 27

3.1 Representation of the 1-D contiguous data array with tuples having three
components each . 47

3.2 Representation of an array of arrays. 49
3.3 Representation of the point storage. 49
3.4 Illustration of the element types supported by STK along with their local

node numbering. 51
3.5 Example of how the elements are stored in STK using an array of pointers

toward 1-D contiguous data arrays. 51
3.6 Illustration of the unstructured mesh. The dark arrows represent the con-

nectivity from elements to their verticies while the gray arrows represent the
inverse connectivity. 54

4.1 Illustration of the topological elements of the surface mesh that forms the
boundary of the volume mesh. 60

4.2 Illustration of the boundary face normals. 62
4.3 Illustration of the difference between the normal at a point on a curve ob-

tained as the curvature-weighted average nW of the normals nF1 and nF2 to
the adjacent faces and the unweighted average nA of the two normals. . . . 66

4.4 Illustration of the point normals and face size used to compute the approxi-
mate curvature (1/ρ). 68

4.5 Illustration of the Bezier curve used to compute the additional point required
to form a quadratic edge on the boundary. The Bezier curve passes through
both end points of the linear edge and is perpendicular to the normals at
these points. 70

4.6 Illustration of the contruction of a quadratic triangular element T1.The nor-
mals n1 and n2, and their respective points, are used to contruct the Bezier
curve to determine the new quadratic point P1 shared by the quadratic tri-
angle T1 and the quadratic edge C1. Point P2, which is shared by T1 and
T2, is constructed in a similar manner. 71

4.7 Illustration of the projection of a point to a quadratic edge on the left (a) and
a quadratic triangle on the right (b). The dotted lines represent the linear
elements corresponding to the quadratic entities. 72

5.1 Illustration of representative meshes for a space-time slab (left) and a fully
coupled, or time-continuous, space-time mesh (right). 85

6.1 Isocontours of the anisotropic measure of quality given by equation 6.1 (left)
and its square root (right). The quality is measured for a triangle with two
fixed vertices at (0.0,−0, 5) and (0.0, 0.5) and a third vertex at the position
(x, y). 103

6.2 Illustration of edge splitting procedure by making two copies of each element
to split and replacing one edge end point by the split point for each copy. . 104

6.3 Illustration of splitting an edge on the boundary mesh. On the left, the
split point is projected to the boundary of a convex geometry. On the right,
splitting the triangle T3 near the boundary of a concave geometry by point
projection would result in inverted elements. 105

6.4 Illustration of edge collapsing. 107
6.5 Illustrations of an edge that is not topologically collapsible and an edge that

is topologically collapsible. 108
6.6 Illustration of an edge (P3,P4) that cannot be collapsed because it would

result in the triangle (P1,P2,P3) being inverted. 109
6.7 Illustration of a simulated edge swap in 2-D. 111
6.8 Illustration of a simulated edge swapping in 3-D for edge (P1, P2) by splitting

edge (P1, P2) and collapsing edge (P3, PT) to remove the tempory split point
PT. 112

6.9 Illustrations of the variations of the metric edge length treshold for collapsing,
on the left, and refinement, on the right, as the global adaptation iteration
progresses from the first iteration on the top to the last iteration at the bottom.119

6.10 Illustration of the impact of splitting the longest edge first and splitting the
shortest edge first. 122

6.11 Illustration of a simple spoke wheel mesh with a large number of edges inci-
dent to the centre point. The eigenvectors for a point on the rim of the wheel
are chosen with the first eigenvector in the radial direction and the second
eigenvector in the tangential direction. 128

xi

6.12 Illustration of the point relocation strategy based on the average inscribed
ellipsoid of the elements incident to a point. The dark arrow shows the
potential displacement from the previous point location to the new trial point
location. 131

7.1 Illustration of a decoupled space-time mesh (left side) and a fully coupled
space-time mesh (right side). 143

7.2 Mesh adaptation loop for a time-stepping procedure where the discretization
error from the previous time step cannot be controlled by reducing the size
of the current time step. 145

7.3 Illustration of the accumulation of the discretization error with a time-stepping
procedure. 146

7.4 Fully coupled space-time mesh adaptation loop, in which the complete space-
time solution comprising the entire time range is recomputed at each mesh
adaptation iteration. 147

7.5 Schematic representation of the combined space-time FEM solver and the
space-time mesh adaptation procedures. 156

8.1 Analytic metric 2-D. a) Initial mesh; b) optimized mesh. 166
8.2 Analytic metric 2-D. a) Histogram of element quality; b) histogram of metric

edge length. 167
8.3 Analytic metric 2-D. a) Number of mesh points and elements; b) number

of edge coarsening, edge splitting and edge swapping operations per internal
mesh adaptation iteration. 168

8.4 Analytic metric 3-D. a) Initial mesh; b) optimized mesh. 169
8.5 Analytic metric 3-D. Details of mesh faces corresponding to a) x = 1 and

z = 1; b) z = 1. 170
8.6 Analytic metric 3- D. a) Histogram of element quality; b) histogram of metric

edge length. 171
8.7 Analytic metric 3-D. a) Number of mesh points and elements; b) number

of edge coarsening, edge splitting and edge swapping operations per internal
mesh adaptation iteration. 172

8.8 Analytic metric 4-D. a) Initial mesh at t = 0; b) optimized mesh at t = 0. . 173
8.9 Analytic metric 4-D. a) Initial mesh at t = 1; b) optimized mesh at t = 1. . 174
8.10 Analytic metric 4-D. Adapted mesh for plane a) x = 0; b) y = 0; c) z = 0;

d) z = 1. 175
8.11 Analyic metric 4-D. a) Histogram of element quality; b) histogram of metric

edge length. 176
8.12 Analytic metric 4-D. a) Number of mesh points and elements; b) number

of edge coarsening, edge splitting and edge swapping operations per internal
mesh adaptation iteration. 177

8.13 Unsteady 1-D heat transfer. a) Initial mesh; b) adapted mesh. 182
8.14 Unsteady 1-D heat transfer. a) Initial temperature field; b) adapted temper-

ature field. 183

xii

8.15 Unsteady 1-D heat transfer. a) Temperature field and mesh near corner point
(1,1); b) temperature field and mesh near point (0.5,0.2). 184

8.16 Unsteady 1-D heat transfer. a) Histogram of element quality; b) histogram
of metric edge length. 185

8.17 Unsteady 1-D heat transfer. a) Numbers of mesh points and elements; b) L2

error norm as a function of 1/N1/d
p . 186

8.18 Unsteady 2-D heat transfer. a) Initial mesh; b) adapted mesh. 187
8.19 Unsteady 2-D heat transfer. a) Initial temperature field; b) adapted temper-

ature field. 188
8.20 Unsteady 2-D heat transfer. a) Temperature field and mesh near corner point

(1,1,1); b) Temperature field and mesh near point (1,0.5,1). 189
8.21 Unsteady 2-D heat transfer. a) Histogram of element quality; b) histogram

of metric edge length. 190
8.22 Unsteady 2-D heat transfer. a) Numbers of mesh points and elements; b) L2

error norm as a function of 1/N1/d
p . 191

8.23 Unsteady 3-D heat transfer. a) Initial mesh at t = 0; b) adapted mesh at t = 0.192
8.24 Unsteady 3-D heat transfer. a) Initial mesh at t = 1; b) adapted mesh at t = 1.193
8.25 Unsteady 3-D heat transfer. a) Initial temperature field at t = 1; b) adapted

solution at t = 1. 194
8.26 Unsteady 3-D heat transfer. a) Initial temperature field at x = 0; b) adapted

solution at x = 0. 195
8.27 Unsteady 3-D heat transfer. a) Initial temperature field at y = 0; b) adapted

solution at y = 0. 196
8.28 Unsteady 3-D heat transfer. a) Initial solution at z = 0; b) adapted solution

at z = 0. 197
8.29 Unsteady 3-D heat transfer. a) Histogram of element quality; b) histogram

of metric edge length. 198
8.30 Unsteady 3-D heat transfer. a) Numbers of mesh points and elements; b) L2

error norm as a function of 1/N1/d
p . 199

8.31 Steady and unsteady 2-D flow in a cavity. L2 error norm as a function of the
characteristic mesh size for a) the steady case and b) the unsteady case. . . 205

8.32 Steady 2-D flow in a cavity. a) Initial mesh; b) adapted mesh. 206
8.33 Steady 2-D flow in a cavity. a) u; b) v; c) pressure; d) velocity vector field. 207
8.34 Steady 2-D flow in a cavity. Streamlines a) general pattern; b) detail. . . . 208
8.35 Steady 2-D flow in a cavity. a) Histogram of element quality; b) histogram

of metric edge length. 209
8.36 Steady 2-D flow in a cavity. a) Numbers of mesh points and elements; b) L2

error norm as a function of 1/N1/d
p . 210

8.37 Steady 2-D flow in a cavity. Relative norm of the difference between two con-
secutive solutions as a function of the cumulative number of Picard iterations.211

8.38 Unsteady 2-D flow in a cavity. a) Initial mesh; b) adapted mesh. 212
8.39 Unsteady 2-D flow in a cavity. Isovelocity contours a) u at t = 0.5; b) u at

x = 0.5; c) v at t = 0.5; d) v at y = 0.5. 213

xiii

8.40 Unsteady 2-D flow in a cavity. a) Pressute at t = 0.5; b) pressure at x = 0.5;
c) streamlines and pressure at t = 0.5; d) streamlines and pressure at t = 0.25.214

8.41 Unsteady 2-D flow in a cavity. Streamlines and pressure at t = 0.5. a)
General view; b) detail near point (0.5,0.5,0.5). 215

8.42 Unsteady 2-D flow in a cavity. a) Histogram of element quality; b) histogram
of metric edge length. 216

8.43 Unsteady 2-D flow in a cavity. a) Number of mesh points and elements; b)
L2 error norm as a function of 1/N1/d

p . 217
8.44 Unsteady 2-D flow in a cavity. Relative norm of the difference between

two consecutive solutions as a function of the cumulative number of Picard
iterations. 218

8.45 Unsteady 2-D flow past a circular cylinder. Initial mesh. 222
8.46 Unsteady 2-D flow past a circular cylinder. Adapted mesh. 223
8.47 Unsteady 2-D flow past a circular cylinder. Detail of the adapted mesh near

the cylinder at t = 10. 224
8.48 Unsteady 2-D flow past a circular cylinder. a) Scalar field for u velocity at

t = 10; b) scalar field for the v velocity at t = 10. 225
8.49 Unsteady 2-D flow past a circular cylinder. Detail of the velocity vector field

neat the cylinder at t = 10. 226
8.50 Unsteady 2-D flow past a circular cylinder. a) Pressure isocontours at t = 0.2;

b) isocontours of u and velocity vector field at t = 9.9. 227
8.51 Unsteady 2-D flow past a circular cylinder. a) Histogram of element quality;

b) histogram of metric edge length. 228
8.52 Unsteady 2-D flow past a circular cylinder. a) Numbers of mesh points and

elements; b) relative norm of the difference between two consecutive solutions
as a function of the cumulative number of Picard iterations. 229

8.53 Unsteady 2-D flow past a back-facing step. Illustration of the space domain,
which is extruded along the time axis for the space-time mesh. 232

8.54 Unsteady 2-D flow past a back-facing step. a) Initial mesh; b) adapted mesh. 233
8.55 Unsteady 2-D flow past a back-facing step. Adapted mesh near the step at

t = 10. 234
8.56 Unsteady 2-D flow past a back-facing step.Velocity vectors near the step at

t = 10. 235
8.57 Unsteady 2-D flow past a back-facing step. a) Pressure contours at t = 0.2;

b) u contours and velocity vectors at t = 9.9. 236
8.58 Unsteady 2-D flow past a back-facing step. a) Histogram of element quality;

b) histogram of metric edge length. 237
8.59 Unsteady 2-D flow past a back-facing step. a) Numbers of mesh points and

elements; b) relative norm of the difference between two consecutive solutions
as a function of the cumulative number of Picard iterations. 238

8.60 Unsteady 2-D flow in a lid-driven cavity. Initial mesh, in which the z axis
corresponds to time. 242

8.61 Unsteady 2-D flow in a lid-driven cavity. Adapted mesh, in which the z axis
corresponds to time. 243

xiv

8.62 Unsteady 2-D flow in a lid-driven cavity. Adapted mesh near the point (1,
1, 6), in which the z axis corresponds to time. 244

8.63 Unsteady 2-D flow in a lid-driven cavity. Streamlines at t = 0.2, 1.0, 2.5 and
6.0. 245

8.64 Unsteady 2-D flow in a lid-driven cavity. Solutions at t = 6 using the adapted
mesh, in which the z axis corresponds to time. a) Isocontours of u; b)
isocontours of v. 246

8.65 Unsteady 2-D flow in a lid-driven cavity. a) Histogram of element quality;
b) histogram of metric edge length. 247

8.66 Unsteady 2-D flow in a lid-driven cavity. a) Numbers of mesh points and
elements; b) relative norm of the difference between two consecutive solutions
as a function of the cumulative number of Picard iterations. 248

xv

xvi

List of Tables

3.1 Comparison of design criteria for STK and VTK. 44

8.1 Analytic metric. Element quality, number of mesh points and number of
elements for the mesh optimization procedure. 162

8.2 Analytic metric. Execution time and memory consumption per 1000 points
for the mesh optimization procedure. 164

8.3 Analytic metric. Percentage of execution time for each mesh operator for the
mesh optimization procedure. 165

8.4 Heat equation. Element quality and numbers of mesh points and elements
for the mesh optimization procedure. 181

8.5 Heat equation. Norm of the error. 181
8.6 Flow in Cavity. Error norms for the convergence analysis. 201
8.7 Flow in Cavity. Element quality and numbers of mesh points and elements

for the mesh optimization procedure. 203
8.8 Flow in Cavity. Norms of the errors. 204

xvii

List of Algorithms

1 Surface Mesh Reconstruction . 77
2 Create Families . 77
3 Find Elements in Topological Patch . 78
4 Point Normal Computation on Curves . 79
5 Quadratic Geometry Reconstruction . 80
6 Edge Splitting . 138
7 Edge Collapsing . 139
8 Simulated Edge Swapping . 140
9 Improve Edge Topology . 140
10 Mesh Point Smoothing . 141
11 Mesh Optimization . 141

xviii

Nomenclature

A matrix
a angle between two vectors
b right hand side vector
C curvaturefCi average curvature for the face i
C0 piecewise continuous functions
c0 constant
C (t) time function for manufactured flow solution
D dilatation matrix
d space dimension
det (M) determinant of the metric tensor M
e eigenvector
f body force vector (per unit mass)
Fran random factor with a real value in the interval [0, 1]
g values of a Dirichlet boundary condition
ġ rate at which energy is generated per unit volume of a medium
G0 constant for manufactured solution in a heat equation
H (η) Hessian matrix
Hij the component of the Hessian matrix at row i and column j
Hk
ij discrete approximation of the Hessian at a vertex k

Hm (Ω) Sobolev space of functions
H1h finite dimensional subspace
h values of a Neumann boundary condition
h element mesh size
he element mesh size for stabilization parameters in the GLS method
I identity matrix
K mesh element
Lavg average Euclidean length of edges incident to a point
L∞ (Ω) space of finite functions
Lm(P,Q) length of a mesh edge measured in a Riemannian space
Lp (Ω) space for functions that are Lp-integrable
M metric tensor
MLp metric tensor weighted with an Lp norm related factor
N linear transformation matrix; also number of time intervals

Ne number of edges of the element
Nelem number of elements
NI number of subdivision intervals along a coordinate axis
Np number of points in a mesh
n unit normal
n topological dimension of an element
nel number of element in the finite element mesh
O origine of coordinate system
O (np) time complexity of order p for an input of size n
Pi point in a Cartesian coordinate system
Pm polynomial of order m
p pressure
ph discrete approximation of the pressure
pj pressure at node j of the element
Q element quality
qh test functions for pressure
R rotation matrix
< space for real numbers
<d Euclidean d-dimensional space
Re Reynolds number
r inscribed radius of an element
Si sub-volume for the surface of a face i of a simplex
Sen space-time element
Sn time slab of a space-time domain
Shp space for trial functions for pressure
Shu space for trial functions for velocities
T temperature
Th finite element mesh; also discrete approximation of temperature
Ti triangle element i
t barycentric coordinate; also Cartesian coordinates
tn time at interval n
U solution vector
Uk solution vector at Picard iteration k
u velocity vector
u0 initial solution for the velocity in the space domain
uh discrete approximation of the velocity vector
uj velocity vector at node j of the element
un+ velocity at time t = tn on time slab (tn−1, tn)
un− velocity at time t = tn on time slab (tn, tn+1)
umax maximum magnitude of the velocity
uq quadratic function used for inlet flow boundary condition
u (x) velocity as a function of the coordinate x
VE volume of an element in the Euclidean space
VUnitEdge volume of an element with edges of unit length

xix

VMK volume of an element in a Riemannian space
V hu space for test functions for velocities
V hp space for test functions for pressure
vh test functions for velocity
vh continuous piecewise linear functions
vkh piecewise linear finite element hat function at vertex k
x vector of coordinates for a mesh point
xc inscribed ellipsoid center
xopt optimal point position
xprev previous point position
xtrial trial point position
(xi)prev previous value for point coordinate i
(xi)rand randomized location for point coordinate i
x, y, z, t Cartesian coordinates

Greek Symbols
α degree of anisotropy; also thermal diffusivity
β constant for boundary condition in lid-driven cavity
Γ boundary of the space domain
ΓD boundary of the space domain with Dirichlet boundary conditions
ΓN boundary of the space domain with Neumann boundary conditions
∆t length of a space-time element along the time axis
ε finite element interpolation error
ε (u) viscous stress tensor
η exact solution
ηh numerical approximation of the solution
λ eigenvalue
µ shear viscosity of the fluid
ν kinematic viscosity
ρ radius of curvature; also density
σ total stress tensor
τ time period
τ cont, τmom stabilization parameters for the GLS method
φj interpolation functions for pressure
ϕh interpolation functions
ψj interpolation functions for velocity
Ω space domain
Ω0 space domain at time t = t0
Ωe element of the the finite element mesh Th
∂Ω boundary of the space domain
$ relaxation factor in the point relocation equation

Other Symbols
2-D two-dimensional

xx

3-D three-dimensional
4-D four-dimensional
|u| absolute value
kuk norm of a vector
kuk0 norm in L2 (Ω)
kuk1 norm in H1 (Ω)
kuk∞ L∞ norm
kukLp Lp norm
(u, v) inner product in L2 (Ω)
(u, v)1 inner product in H1 (Ω)

Acronyms
AIAA american institute of aeronautics and astronautics
ALE arbitrary Lagrangian-Eulerian
BC boundary conditions
CAD computer aided design
CFD computational fluid dynamics
CGNS CFD general notation systems
CPU central processing unit
DSD/ST deforming-spatial-domain / space-time
FDM finite difference method
FEM finite element method
FVM finite volume method
GB gigabyte
GHz gigahertz
GLS Galerkin / least-square formulations
GMRES generalized minimum residual method
LBB Ladyzhenskaya-Babuska-Brezzi
MB megabyte
PDE partial differential equations
PETSc portable, extensible toolkit for scientific computation
PLC piecewise linear complex
RAM random access memory
STK simulation toolkit
STL stereolithography file format
STmom stabilization terms for the momentum equations
STcont stabilization terms for the continuity equation
TCSTFEM time-continuous space-time finite element method
VTK visualization toolkit

xxi

1

Chapter 1

Introduction

1.1 Perspective on the Evolution of CFD

Over the past three decades, CFD has evolved to handle problems of increasing

complexity. Numerical methods, including the finite difference (FDM), finite volume (FVM)

and finite element (FEM) methods, were first developed to handle flows in fixed geometries.

For these methods, the temporal derivatives of the flow variables in the unsteady Navier-

Stokes or Euler equations are discretized using finite differences, which, for the FEM and

FVM, introduces differences between the discretization techniques in space and time.

The extension of these methods to simulations of flows with moving boundaries has

been achieved through the deformation of the mesh to accommodate the moving geometry

from one time step to the next. This required the modification of the FDM, FVM and

FEM in order to account for the effects of boundary changes on the mass and momentum

balances. One of the first methods that have been developed to address this is the Arbitrary

Lagrangian-Eulerian (ALE) formulation (Donea et al. (1977), Belytschko et al. (1978),

Hughes et al. (1981)).

As one strives to obtain numerical solutions for problems of increasing complexity,

it is also necessary to quantify and control the accuracy of the numerical solution. Mesh

adaptation schemes addressing this accuracy have been developed over the past twenty-five

years with varying degrees of success (George and Borouchaki (1997), Thompson et al.

(1999)). Unfortunately, the vast majority of these schemes are limited to controlling the

accuracy of steady solutions in fixed geometries.

In the case of changing geometries, the ALE approach does not allow the con-

nectivity of the mesh to be modified from one time step to the next. Thus, once the

discretization approach has been chosen, the discretization error in time can only be re-

duced by reducing the size of the time step. Although the discretization error in space can

be reduced by relocating the nodes, the priority for node movement in this context has to

be given to adjusting the mesh to follow the changes in geometry as the solution procedure

advances in time. This necessarily limits the possible discretization error reduction that

can be accomplished by node movement.

In recent years, a few mesh adaptation strategies have been extended to unsteady

problems (Alauzet et al. (2003), Remacle et al. (2005), Alauzet et al. (2007)). In general,

they approach unsteady problems by combining a time stepping approach with adapting

the space mesh and the size of the time step using the solution computed for the next

time step. In the work of Alauzet et al. (2007), the mesh is adapted at the current time

step, taking into account the interpolation error in both space and time, until the relative

difference between the solution at the current time step and the next time step measure in

2

the L1 norm is below a given threshold value. Once the mesh and the solution for the next

time step are considered of sufficient accuracy, then the solution procedure advances to the

subsequent time step.

Such an approach to mesh adaptation for unsteady problems can greatly increase

the robustness and the accuracy of the solution procedure by reducing the discretization

error at each time step. However, this cannot prevent entirely the accumulation of the

discretization error from one time step to the next, because the discretization error that

occurs at one time step is outside the mesh adaptation loop for the subsequent time step.

Consequently, the temporal discretization error may accumulate as the solution procedure

advances in time if the transient solution varies significantly over one time step.

1.2 Space-Time Formulations

Instead of using a finite difference scheme to discretize the temporal derivatives

in the Navier-Stokes equations, a number of authors have presented unified finite element

(Shakib et al. (1991), Masud and Hughes (1997), Hand and Lu (1999), N’dri (2001), Pontaza

and Reddy (2004), Réthoré et al. (2005)) or finite volume formulations (Zwart et al. (1999)),

which are collectively known as space-time formulations. These formulations possess many

known interesting properties. They utilize the same formulation for the solution of steady or

unsteady problems in fixed domains, or in domains with moving boundaries (N’dri (2001))

and even domains with topological changes (Zwart et al. (1999)).

Available space-time solvers advance in time by extruding the 2-D mesh into time

by consecutive discrete amounts equal to the time-step (Jamet (1978), Shakib et al. (1991),

3

Zwart et al. (1999)) . At the junctions between two layers of elements extruded in time

(time slabs), the nodes of the mesh do not need to match one to one. For these reasons,

these are known as time-discontinuous space-time formulations (N’dri (2001)).

From the perspective of mesh adaptation, the flexibility allowed by time-discontinuous

space-time formulations to control the discretization error in time is limited. For time slabs

composed of extruded elements, the mesh is essentially structured in time, but, even if the

extruded elements are divided into simplicial elements, once a discretization approach is

chosen, the only way to significantly reduce the discretization error in time is to reduce the

thickness of the time slabs, which is equivalent to reducing the size of the time-step used in

more conventional approaches.

Some methods use the alternative approach of increasing the order of the polyno-

mial basis used in the discretization method; these are generally referred to as p-methods.

In this approach, for a given time-slab of a fixed time period, the discretization error can

be reduced by some amount by increasing the order of the polynomial basis. Even with

p-methods, one still needs to address the issue of connecting these high order polynomial

bases between consecutive time-slabs to minimize the discretization error and also that of

selecting the time step size. Although consideration of p-methods is beyond the scope of

this thesis, it is worth mentioning that they could be combined with space-time formula-

tions along with mesh refinement or coarsening (h-methods). As the accuracy of p-methods

depends not only on the order of the method, but also on the density and distribution of

mesh points, they would also benefit from mesh adaptation based on h-methods. In the

light of the above, the choice was made in this thesis to focus on h-methods, anticipating

4

that most of the meshing technology developed here can be transferred to higher order

methods, provided that a suitable error estimator is employed.

Time-adaptive procedures for space-time formulations are rather rare, but a few

such strategies have been found (Li and Wiberg (1998), Karakashian and Makridakis (1999),

Feng and Peric (2001), Feng and Peric (2003), Cascon et al. (2006)). Feng and Peric mention

the potential for combining spatial mesh adaptation with their time-adaptive strategy, but

they did not pursue this approach. Li and Wiberg are the only previous authors who have

combined both approaches using essentially two error estimators, one for the discretization

error in space and another for the discretization error in time. In this approach, a solution

is first calculated for a given time slab and, if the error in space is too large, the space mesh

is adapted, in a manner similar to that for a steady problem. At the same time, an error

estimator in time is applied to determine whether the thickness of the time slab should be

reduced to reduce the discretization error or increased to reduce the computational cost

while maintaining an accuracy considered to be reasonable. Once the time slab size is

adjusted, the solution is recomputed at this time step until the error estimator criterion is

satisfied. Of course, there is an added computational cost to repeating the computation of

the solution for several iterations at the same time step, but this can still be beneficial if the

initial time steps are chosen to be large and only reduced as required by the error estimator

rather than using very small time steps to begin with. These approaches are similar to

an adaptive time stepping approach (Alauzet et al. (2007)), but with the added benefit of

being able to handle domains with moving boundaries without further modifications.

In view of the above discussion, it becomes evident that complete control of all

5

sources of discretization error in unsteady flow solutions can only be achieved by devising a

method of mesh adaptation suitable for both spatial and temporal formulations. A possible

approach is to extend existing mesh adaptation techniques in steady, 3-D flows, by treating

time as a fourth dimension and applying an unstructured 4-D mesh to the continuous space-

time domain (Tremblay et al. (2003), Pontaza and Reddy (2004), Alam et al. (2006)).

Traditionally, time-discontinuous space-time formulations have been favoured over

time-continuous space-time formulations, because the former have lower memory require-

ments as they treat only one layer of elements at a time, whereas the latter treat the

entire space-time domain as one entity (N’dri (2001)). However, when combined with mesh

adaptation, solving only one layer of elements at a time prevents the full benefits of mesh

adaptation, because the discretization error in time cannot be fully controlled and invari-

ably accumulates as the solution progresses from one time step to the next (Alam et al.

(2006)).

An improved approach would be to apply mesh adaptation on completely unstruc-

tured 4-D space-time domains in a manner similar to those applied to steady flows in 2-D

and 3-D space domains (Vallet (1992), Castro-Díaz et al. (1995), Castro-Diaz et al. (1997),

Buscaglia and Dari (1997), Tam et al. (1998), Tam et al. (2000), Fortin et al. (2000),

Dompierre et al. (2002), Du et al. (2005)). This approach would permit the computation

of time-accurate numerical solutions (see the following definition 1), for geometries with

prescribed boundary motions for which the space-time mesh can be refined at any point

in the space-time domain. Hence, the resolution of the mesh can be increased not only in

space, but in time as well. Similarly, the gain achieved by coarsening the mesh where the

6

error estimator indicates that the error is lower than in other regions can be also extended

with regards to time. This benefit cannot be achieved by standard methods or by time-

discontinuous space-time methods, in which each node in the space mesh is duplicated at

each time step regardless of whether the solution changes significantly in time or not. In

the time-continuous formulation, it is not necessary to maintain a small time step in the

entire space-time domain, because the time-step size is adapted locally to the largest value

that will produce a solution of a desired accuracy. This method is expected to result in

significant savings for the solution of problems in which the characteristic time-scales of

various physical parameters vary widely in the space domain.

Definition 1 (TIME-ACCURATE NUMERICAL SOLUTION) A time-accurate nu-

merical solution of a system of partial differential equations with mathematically appropriate

boundary conditions can be defined as a numerical solution for which the difference with the

exact solution measured in a suitable norm is bound by a finite constant whose maximum

value in the space domain does not increase as function of time.

A time-continuous space-time formulation requires the computation of all values of

the unknown variables in the entire space-time domain rather than separately for each time

slab. This may require very large memory capabilities to solve some problems. To reduce

memory and computational time requirements, it is possible to combine this approach with

a time-discontinuous formulation. The combined method would still utilize time slabs, but

each slab would be completely unstructured and would permit mesh refinement so that

it could locally have more than one elements across its thickness. The solution would

then be re-interpolated from one time slab to the next using existing approaches for time-

7

discontinuous space-time methods.

Time-continuous space-time formulations are rare in the literature, but a few

authors have investigated them in 2-D or 3-D space-time domains for the heat equation

(French (1999)), wave equation (French and Peterson (1996)), shallow water equations

(Chippada et al. (1998)), nonlinear hyperbolic equations (Chen and Huang (2001)), non-

linear Schrödinger equation (Karakashian and Makridakis (1999)) and a pure advection

equation (Perrochet and Azérad (1995)). Pontaza and Reddy (2004) have recently pre-

sented results for the incompressible Navier-Stokes equations, comparing a fully coupled

space-time formulation (here referred to as a time-continuous space-time formulation), with

a space-time formulation using space-time slabs. Based on the few 2-D cases studied, which

required 3-D space-time slabs or space-time meshes, these authors concluded that a fully

coupled approach is more robust and computationally cost effective compared to a time-

slab formulation (Pontaza and Reddy (2004)). Although they did not combine their fully

coupled space-time formulation with an error estimator and mesh adaptation procedure,

they clearly indicated the possibility of using existing error estimators to control the dis-

cretization errors both in space and in time in a unified fashion.

Recognizing the potential benefit of a fully coupled adaptive space-time approach

in controlling the temporal discretization error, Alam et al. have developed an adaptive

wavelet method for parabolic differential equations that operates on the entire space-time

domain simultaneously (Alam et al. (2006)). Although wavelet methods use a different

approach to discretize PDE than that used by FEM, it is important to highlight that the

idea of using a unified space-time approach is increasingly receiving more attention in several

8

fields, including the solution of structural problems (Hand and Lu (1999)) and the FEM in

general (Réthoré et al. (2005)).

1.3 Motivation and Scope of the Present Study

The motivation for the present study stems from the need to improve the abil-

ity of the finite element method to solve unsteady partial differential equations in fixed or

changing domains in a time-accurate manner. The range of applications in engineering is

very wide, because the FEM has been applied to many types of problems in fluid flow, heat

transfer, stress analysis, magnetic fields and quantum mechanics. Of particular interest

to mechanical engineers are flows in fluid machinery, including reciprocating, rotary and

turbo-machines. Another type of applications of particular interest are blood flows in the

cardiovascular system and various prosthetic devices. The recent development of noninva-

sive medical imaging method, combined with image processing techniques has permitted

the reconstruction of 3-D surfaces moving in time (Bonciu et al. (1998), Delibasis et al.

(1999), Mcinerney and Terzopoulos (1995), Reinhardt et al. (2000)). Currently, these im-

ages are mainly used to visually detect anomalies in the heart, but some projects under

development (Abdoulaev et al. (1998)) have focused on the development of virtual reality

tools to eventually assist physicians and surgeons in the refinement of surgical procedures

and in predicting the effects of surgical interventions (Leval et al. (1996), Migliavacca et al.

(1996)). The accuracy of the numerical simulation of hemodynamic flows is important,

because it is known that flow features such as separation, recirculation and oscillatory shear

stresses play an important role in the development of arterial diseases (Deplano and Siouffi

9

(1999), Perktold et al. (1998)).

As a first step in the development of this novel approach, the present work will be

limited to laminar flows of incompressible fluids and the emphasis will be on the development

and validation of the methodology. Nevertheless, the exploration of adaptive unified space-

time solution procedures extends to the finite element method in general and can be also

applied to other discretization techniques, such as the FVM and wavelet methods (Alam

et al. (2006)).

1.4 Objectives and Outline of the Thesis

The primary objective of this thesis has been the development of anisotropic mesh-

ing algorithms that can be operated on unstructured simplicial meshes in 2-D, 3-D and 4-D.

4-D anisotropic mesh adaptation makes it possible to extend the benefit of fully coupled

space-time formulations to 3-D space domains, while controlling and reducing the discretiza-

tion error both in space and in time in a unified fashion. This opens up the possibility of

exploring the benefits of mesh adaptation for unsteady problems on domains with moving

boundaries.

Chapter 2 introduces background information concerning mesh adaptation, high-

lights basic mesh definition terminologies and more formally presents the objectives of a

mesh adaptation procedure. It also presents the rationale for the selection of the Hessian

based error estimator used it this thesis, as research on this topic is considered outside

the scope of the present study. A brief review of existing anisotropic meshing algorithms is

presented with a special emphasis on meshing algorithms that have been extended to higher

10

dimensions. It is emphasized that existing meshing algorithms that operate in dimensions

higher than three are limited to handling meshes with volume meshes only and do not have

the ability to manipulate and preserve a boundary mesh in contrast to the method presented

in this thesis.

Chapter 3 presents the data-structure developed from the ground up to allow the

implementation of meshing algorithms in a dimension independent manner. Although it is a

simple extension of concepts found in existing data structures, it is important in the current

context because the development of meshing algorithms in higher dimensions is facilitated

by implementing them first in 2-D and in 3-D before applying them to 4-D.

Considering that even the most basic engineering simulations require the repre-

sentation of solution domains that have curved boundaries, such as fluid flow in a circular

tube, Chapter 4 presents a simple approach to reconstructing a curved geometry made of

second order polynomials using only a surface mesh of triangular elements as an input. Such

triangular mesh inputs are frequently used in numerical simulations of medical processes, in

which medical images are processed to extract an approximate representation of the bound-

ary of the solution domain. The method presented in this Chapter is simple and can be

implemented with a finite element mesh data structure, as long as this structure supports

quadratic elements. Although this is a secondary part of the thesis, it is of practical inter-

est for a FEM adaptive solver, because it allows it to modify the mesh while preserving a

reasonably close fit to the initial geometry without having to link the FEM solver with a

CAD package.

Chapter 5 presents the incompressible fluid flow solver implemented using a Galerkin-

11

Least-Squares space-time formulation. It is a rather simple classical incompressible flow

solver using linear interpolation basis functions and a Picard method, but exposes the

salient characteristics of using a fully coupled space-time formulation to handle unsteady

fluid flows. It has been fully embedded with the mesh adaptation procedure to form an

automatic adaptive space-time FEM procedure.

Chapter 6 presents the anisotropic meshing algorithms developed to operate on

2-D, 3-D and 4-D simplicial meshes. It is a direct extension of an existing edge-based ap-

proach that combines edge refinement, edge collapsing, edge swapping and edge smoothing.

However, to enable it to operate in higher dimensions, both inside the mesh domain and

on its boundaries, an edge swapping algorithm is implemented using a combination of edge

splitting and edge collapsing that simulates the effect of classical edge swapping algorithms.

A novel mesh smoothing algorithm based on the inscribed ellipsoid is also presented and

integrated with the mesh optimization procedure. To the best of the author’s knowledge,

this is the first extension of such mesh modification algorithms to higher dimensions.

Chapter 7 briefly presents the iterative procedure that combines the solution com-

putation with the FEM solver, the estimation of the discretization error, the mesh adapta-

tion and the interpolation of the previous solution onto the adapted mesh. The fully coupled

space-time adaptive procedure presented is functionally the same as those used in previous

mesh adaptation procedures for steady problems, except that the present one operates on

a fully unstructured space-time mesh that comprises the entire solution domain including

the time axis.

Chapter 8 presents the numerical simulations that were performed to verify and

12

validate the proposed procedure. First, an analytical metric field is used to test the

anisotropic mesh optimization procedure on 2-D, 3-D and 4-D meshes on a simple unit

box domain. Second, test cases are included for the solution of the linear heat equation,

also for 2-D, 3-D and 4-D unit box domains. Third, some classical problems are solved for

the unsteady incompressible Navier-Stokes equations using a 3-D mesh. Some test cases

include a comparison with analytical solutions to measure the ability of the space-time

method to reduce the discretization error in both space and time.

Finally, Chapter 9 presents the conclusions of the present work and briefly high-

lights possible future research work on unified space-time mesh adaptation methods.

13

14

Chapter 2

Background and Literature Review

2.1 Introduction

This chapter presents the basic definitions and terminology that are necessary to

discuss in more detail mesh adaptation methodologies. Basic mesh definitions for the FEM

are first presented, followed by the objectives of mesh adaptation. A special emphasis is

placed on the requirements for mesh adaptation, because these will be used as guiding

criteria to select, among the algorithms available in the mesh algorithm literature, the ones

that are best suited to form the basis of a mesh adaptation code in four dimensions.

Classical mesh generation and mesh adaptation methods have been described in

detail by several authors (George and Borouchaki (1997), Frey and George (1999), Thomp-

son et al. (1999), George (2001)). Therefore, the following literature review will be focused

on specific points of interest rather than on general approaches.

2.2 Basic Mesh Definitions

2.2.1 Solution Domain and Boundaries

The finite element method is a method that seeks a numerical solution to a math-

ematical model expressed in the form of a system of partial differential equations (PDE)

with suitable boundary conditions (Cook et al. (2002)). The problem formulation starts

by defining a geometry, which is the shape of an object. The solution domain is generally

bounded by this geometry, on the surface of which boundary conditions are specified. In

CFD, the geometry is usually represented as a surface without thickness and the solution

extends only in the domain occupied by the fluid. In stress analysis and heat transfer, the

solution domain may also include solid geometries with a thickness.

2.2.2 Mesh Points and Elements

The FEM seeks a discrete solution to the PDE in the solution domain and requires

that the domain and its boundaries be divided into sub-regions, which are called elements.

Inside the elements, the dependent variables of interest vary according to simple functions,

most frequently linear or quadratic polynomials. The unknown values of the dependent

variables are defined at the nodes of the elements. Nodes may be defined both on the

boundary of an element and in its interior.

A finite element mesh is a subdivision of the solution domain in which the arrange-

ment of elements covers the entire domain and has no overlapping elements; furthermore,

adjacent elements are connected to the nodes they share across an adjacent face.

Consider a general FEM mesh in d-dimensions (d = 2, 3, 4). The elements that

15

compose the sub-regions of this mesh delimit a closed volume using curved or planar sub-

surfaces. Curved surfaces made of quadratic polynomials are most often used in stress

analysis, but not in CFD. The simplest element, called simplex, is defined using d + 1

points, which is the minimum number of points that are necessary to specify a volume in a

d-dimensional space using plane faces (George (2001)).

2.3 Mesh Adaptation Definitions and Objectives

Because the numerical solution is not known at the time of mesh generation, the

choice of initial mesh density is essentially arbitrary (Habashi et al. (1996), Dompierre

et al. (2002)) and left to the discretion of the user of the mesh generation code to the

degree permissible by the software package. Mesh adaptation methods were introduced as

a means to automate this choice in order to control and minimize the discretization error.

In defining the objectives of mesh adaptation, it is important to specify the types

of errors that are affected by this process. In numerical simulations, two types of errors

can be distinguished: modelling errors and numerical errors. Modelling errors arise from

the discrepancy between the mathematical model (the PDE and its boundary conditions)

and the physical phenomena it attempts to represent. The numerical errors represent the

difference between the approximate numerical solution of the PDE and the “exact” mathe-

matical solution, which is usually unknown. The numerical errors can further be sub-divided

into three main categories: the discretization error, the iterative convergence error and the

rounding error. The rounding error is due to the approximate nature of floating point arith-

metic on computers and is usually negligible compared to the other two (Wesseling (2001)).

16

The discretization error is due to the replacement of the partial differential equations with

an algebraic system of equations. Finally, the iterative convergence error is due to inaccu-

racies in the solution of these algebraic equations by iterative methods (Wesseling (2001)).

Mesh adaptation aims specifically at reducing and minimizing the discretization error and

has also been found to reduce the convergence error (Tam et al. (1998)). Modelling and

rounding errors are not affected by mesh adaptation.

2.3.1 Open-Loop versus Closed-Loop FEM Processes

From a control systems perspective, mesh adaptation can be viewed as the conver-

sion of an open-loop simulation process to a closed-loop one. In the open-loop system, the

mesh is considered to be the input, the FEM solver is the process and the solution is the

output (Figure 2.1). In the closed-loop system, an error feedback, based on the solution,

is used to modify the input mesh (Figure 2.2). Mesh adaptation has been clearly shown

to reduce the discrepancy between the numerical solution and the “exact” solution for the

Navier-Stokes equations (Habashi et al. (1998), Nithiarasu and Zienkiewicz (2000)). These

benefits are not specific to CFD, but applicable to the FEM in general (Zienkiewicz and Zhu

(1992)) and correspond to the reduced steady-state error of a transient closed-loop control

system.

A closed-loop FEM process has an increased complexity associated with the mesh

adaptation procedure and a potential increase in computational time, because the mesh

adaptation process must be repeated. After each mesh adaptation cycle, the solution must

also be re-computed on the new adapted mesh. On the other hand, the improved positioning

of mesh points by the mesh adaptation procedure makes it possible to reduce the number

17

Mesh, BC,
Parameters

FEM
Solver

FEM
Solution

INPUT PROCESS OUTPUT

Figure 2.1: An open-loop control system representing the FEM without mesh adaptation.

of mesh points needed to obtain a solution of a desired accuracy, which partially offsets the

additional cost of mesh adaptation (Tam et al. (1998)). It is also important to keep in

mind that the Navier-Stokes equations are non-linear and require iterative algebraic solvers

whose convergence depends on the proximity of the initial solution to the final one, which

is unknown a priori. Mesh adaptation procedures usually include a re-interpolation of the

previous solution, which was used to compute the error estimate, on the new adapted mesh

to provide a re-start solution for the solver. If the mesh adaptation process is convergent,

then at each cycle the computed solution comes closer to the exact solution. Consequently,

the iterative solver tends to converge at a faster rate and to satisfy the convergence criteria

in fewer iterations. The entire process also becomes more robust, because, even in cases in

which the initial solution was too far from the exact one for the iterative solver to converge,

that initial non-converged solution can still be used to adapt the mesh, which results in

an increased density of the mesh, even before the desired solution is reached (Tam et al.

(1998)). In order to understand fully the benefits and drawbacks of mesh adaptation, one

should consider not only the mesh modification phase, but the closed-loop FEM process as

a whole.

18

Mesh, BC,
Parameters,

Restart Solution

FEM
Solver

FEM
Solution

INPUT PROCESS OUTPUT

Mesh
Adaptation

ERROR FEEDBACK

Figure 2.2: A closed-loop control system representing the FEM with mesh adaptation.

2.3.2 Objectives of Mesh Adaptation

In light of the above discussion, the objectives of mesh adaptation can be summa-

rized as follows.

1. To improve the accuracy of the numerical solution by reducing the discretization error

using an error feedback mechanism to adapt the mesh; closed-loop systems are known

for their ability to control the steady-state error of the transient response of the control

system, in sharp contrast to open-loop systems, which do not correct the discrepancy

between the actual output and the desired output.

2. To eliminate the dependence of the numerical solution on the user’s choice of the

density and distribution of mesh points in the solution domain by making the process

fully automated and driven by an error estimate.

3. To make the solver and adaptation process more robust; the convergence of iterative

algebraic solvers has been found to improve when the mesh is adapted and a re-start

solution is used (Tam et al. (1998)).

19

4. To reduce as much as possible the total computational time necessary to reach a

numerical solution at a desired accuracy level; it is obvious that the added complexity

and potential cost of mesh adaptation can only be justified if it produces better and

faster solutions than indiscriminate mesh refinement would.

2.3.3 Adaptive Time Stepping vs. Mesh Adaptation

It is important to emphasize that, although mesh adaptation procedures have

been very successful for steady problems, their applications to unsteady problems is still

very limited. At its current state, the closest that mesh adaptation technology has come

to handling unsteady problems has been to use adaptive time stepping combined with

spatial mesh adaptation at each time step (Li and Wiberg (1998), Remacle et al. (2005),

Alauzet et al. (2007)). Although this is certainly an improvement over fixed time stepping

methods, these methods still suffer from the accumulation of the temporal discretization

error in time because the errors committed at the previous time steps are outside of the

error feedback loop (Figure 2.2). In practice, the solution extends over thousands, and even

hundreds of thousands, of time steps and the cumulative error may become substantial.

Mesh adaptation for steady problems has been shown to drastically improve the capturing

of localized flow patterns, such as shock waves and boundary layers, even on meshes that

were reasonably refined prior to mesh adaptation. Comparable improvements are to be

expected by applying space-time mesh adaptation to unsteady flows with time-dependent

localized flow patterns. In such cases, it appears necessary to quantify and control both the

spatial and the temporal discretization errors.

20

2.4 Mesh Adaptation Requirements

2.4.1 Error Estimator

In contrast to many other control systems, the desired output response of the

closed-loop FEM process is not known in advance. Hence, it is necessary to estimate the

error before adapting the mesh.

Error estimators have been the subject of extensive research (Ainsworth and Oden

(2000), George (2001)), so the purpose of this section is not to provide a complete review on

the subject, but rather to present the reasoning behind the selection of an error estimator

that is suitable for a space-time mesh adaptation procedure coupled to the time-continuous

space-time finite element method (TCSTFEM).

Error estimators available in the literature can generally be classified in two broad

categories: residual-based error estimators and interpolation-based error estimators (George

(2001)). Residual-based error estimators depend on the residual of the partial differential

equation being solved. Although they have a strong mathematical foundation, their direct

dependence on the PDE results in coupling the mesh adaptation code with the FEM solver.

Furthermore, they generally only provide information about the magnitude of the error in

a certain region of the mesh without any directional information. For these reasons, these

estimators are mostly limited to isotropic mesh adaptation.

In contrast, interpolation-based error estimators, in the context of FEM, depend

only on the finite element interpolation function being used to construct an approximate

solution to the PDE, the discrete values of that solution found at mesh points and the

coordinates of the mesh points. Their dependence on the specific PDE being solved is

21

minimal. They usually operate on a scalar field, which changes for different PDE, but

remains unchanged for finite element interpolation functions of a given order. This makes

them easily applicable to a wide range of PDE, without the need to re-derive and implement

the error estimator for each one. Furthermore, interpolation based-estimators have been

used to derive anisotropic error estimates that provide not only information about the

element size needed to bound the local element error, but also the directions in which the

error increases the most and the least. That directional information about the error can be

used to create anisotropic meshes with elements that are thin along the direction in which

the error increases the most and elongated along the direction in which it increases the

least, thereby reducing the number of mesh points needed to keep the error lower than the

target level. Interpolation-based error estimators have already been generalized to higher

dimensions (George (2001)) and are preferable in the present study because they are directly

applicable to the TCSTFEM in 4-D without the need for additional derivations, and also

they are already available in anisotropic versions and are independent of the PDE being

solved.

The specific error estimator selected for the present work is one that has already

been successfully applied to both the incompressible and the compressible Navier-Stokes

equations (Frey and Alauzet (2005)). So far, it has only be applied to steady flows or for

the spatial discretization error of unsteady problems (Alauzet et al. (2007)). Fortunately,

its extension to the full discretization error, comprising both the spatial and temporal

discretization errors, is rather straightforward in the context of a unified TCSTFEM for-

mulation.

22

This error estimator is based on the finite element interpolation error (D’Azevedo

and Simpson (1991)), given by

ε = kη (x, y, z, t)− ηh (x, y, z, t)k ≤ c0h2 kH (η (x, y, z, t))k (2.1)

where k·k is the L∞ (Ω) or the H1 (Ω) norm, η is the exact solution, ηh is the numerical

approximation of the solution and the Hessian is given by

H(η(x, y, z, t)) =



∂2η
∂x2

∂2η
∂x∂y

∂2η
∂x∂z

∂2η
∂x∂t

∂2η
∂y∂x

∂2η
∂y2

∂2η
∂y∂z

∂2η
∂y∂t

∂2η
∂z∂x

∂2η
∂z∂y

∂2η
∂z2

∂2η
∂z∂t

∂2η
∂t∂x

∂2η
∂t∂y

∂2η
∂t∂z

∂2η
∂t2


(2.2)

It is important to note here that the Hessian is constructed using time as the

fourth independent variable, so that the temporal discretization error is taken into account

in exactly the same manner as the spatial discretization error.

Because the chosen interpolation functions are piecewise linear, their second deriv-

atives would vanish on each simplicial element. In order to permit an approximate compu-

tation of the Hessian, a weak formulation has to be used (Thompson et al. (1999))Z
Ω
Hij · vhdΩ = −

Z
Ω

∂ηh
∂xi

∂vh
∂xj

dΩ+

Z
∂Ω

∂ηh
∂xi

· vhdS (i = 1, 4, j = 1, 4) (2.3)

where Hij is the component of the Hessian matrix at row i and column j, vh are taken in

the set of continuous piecewise linear functions and ηh is the numerical approximation of η.

In order to solve that linear problem to recover the Hessian, the mass lumping technique is

used to obtain a diagonal system. Thus, the discrete Hessian Hk
ij at a vertex k is computed

by

Hk
ij =

³
− RΩ ∂ηh

∂xi

∂vkh
∂xj
dΩ+

R
∂Ω

∂ηh
∂xi

· vkhdS
´

R
Ω v

k
hdΩ

(2.4)

23

where vkh is the piecewise linear finite element hat function associated with the vertex k.

In practice, this mass lumping gives poor results for mesh points on the boundary.

This can be verified by creating a scalar field with a second order polynomial for which the

expected second derivatives are known and constant over the domain (Mohammadi et al.

(2000)). However, this problem can be circumvented, for the most part, by dropping the

surface integral from 2.4 to get (Mohammadi et al. (2000)):

Hk
ij =

− RΩ ∂ηh
∂xi

∂vkh
∂xj
dΩR

Ω v
k
hdΩ

(2.5)

2.4.2 Anisotropic Extension and Metric Construction

The most prevalent strategy to extend meshing algorithms to the anisotropic case,

whether using a Delaunay based method (Borouchaki et al. (1997)) or other meshing

strategies such as edge based modifications (Vallet (1992)), is to employ a metric to modify

the measure of distance between points in the usual Euclidean space.

The metric is typically provided at every point in the mesh in the form of a

positive-definite symmetric d×d matrix. In 2-D, this matrix is defined as (Frey and George

(1999))

M(−→x) =

 ax bx

bx cx

 (2.6)

with ax > 0, cx > 0 and axcx − b2x > 0.

This metric field defines a Riemannian structure, unless the metrics at all points

in the field are identical, in which case it becomes a Euclidean structure (Borouchaki et al.

(1997)).

24

This metric is constructed from the Hessian matrix 2.2 by computing the eigenval-

ues and the eigenvectors of the Hessian (George (2001)) and forming the following product

of three tensors:

M = |H(η(x, y, z, t))| = RDR−1 (2.7)

where

D =



|λ1| 0 0 0

0 |λ2| 0 0

0 0 |λ3| 0

0 0 0 |λ4|


(2.8)

and R is composed of the eigenvectors as columns.

The metric can also be associated to a linear transformation N , with a dilatation

transformation matrix D having the square of the eigenvalues as its diagonal and a rotation

matrix R containing the eigenvectors as columns:

N =
√
DR =



√
λ1 0 0 0

0
√
λ2 0 0

0 0
√
λ3 0

0 0 0
√
λ4


R (2.9)

The square root of the eigenvalues in the linear transformation corresponds to the

inverse of the desired element size along the eigenvectors such that λi = h−1i . This metric

tensor is illustrated in Figure 2.3 by an ellipsoid with the eigenvectors as the minor and

major axes and the desired element sizes along these directions.

The metric tensor 2.6 and the linear transform 2.9 are related as follows (George

25

x

y

O

e1

e2

h1

h2

P

Figure 2.3: Illustration of a metric tensor defined at a point. The eigenvectors corresponds to
the minor and major axis of the ellipsoid with the size of the ellipsoid along these directions
corresponds to the desired mesh size.

(2001)):

M = NTN (2.10)

Hence, for every (column) vector X, the following equivalence holds (George

(2001)):

XTMX = XTNTNX = (NX)T NX = kNXk2 (2.11)

With this notion of linear transformation, meshing algorithms can be transformed

to anisotropic meshing algorithms by measuring the property of elements, such as their

length along a particular direction or their volume in the transformed space. Figure 2.4

illustrate how elements are transformed from the Euclidean space to the transformed space.

It is also interesting to note that the ellipsoid associated with the metric tensor

becomes a sphere in the transformed space (see Figure 2.5).

26

Tb

Ta

Euclidean Space

Transformed Space

Na(PC)

PC

Nb(PC)

Figure 2.4: Illustration of the transformation of an element to a transformed space using
two different linear tranformation.

XTMX = 1

X′ X′T = 1

X′ = NX

Figure 2.5: Illustration of the ellipsoid associated with the metric tensor and its transfor-
mation to a sphere in the transformed space.

27

Using this symmetric positive-definite metricM(−→x), the length of the edge [P,Q] =³
P + t

−−→
PQ

´
0≤t≤1

can be measured in the Riemannian space defined by
¡
Ω, (M (X))X∈Ω

¢
with

Lm(P,Q) =

Z 1

0

q
t
−−→
PQM(P + t

−−→
PQ)
−−→
PQdt (2.12)

where
−−→
PQ is the column vector with origin P and extremity Q, and M(P + t

−−→
PQ) is the

metric at point P + t
−−→
PQ.

The volume of the simplex K in the Riemannian space is given by (George (2001))

VMK =

Z
K

p
det (M)dV (2.13)

If a metric is specified at each mesh point, its value would vary inside the simplex

and the volume would need to be computed by numerical integration. On the other hand,

if the metric were chosen at a fixed point, for example the centroid of the simplex, then the

determinant of the metric would be a constant and can be taken out of the integral.

Alternatively, if the metric is constant over an element, then each of its points can

be transformed using the linear transformation:

x0 = Nx (2.14)

Then, any property, such as the metric distance along an edge of the element or

its metric volume can be computed using the same formula as in the standard Euclidean

space after the element has been transformed to the Euclidean metric space using the linear

transformation 2.14. This facilitates the implementation of meshing algorithms that can

operate isotropically or anisotropically, depending on whether the elements are transformed

before measuring any property needed by the particular meshing algorithms.

28

In practice, the second derivatives for the Hessian can range from zero to very

large values, so the corresponding eigenvalues in the metric could lead to element sizes that

are not acceptable for a mesh adaptation procedure. Recalling that the absolute values

of eigenvalues of the Hessian matrix are related to the inverse of the desired mesh size,

they can be restricted between a maximum and a minimum mesh size to avoid problematic

extremum cases (George and Borouchaki (1997)):

eλi = minµmaxµλi, 1

h2max

¶
,
1

h2min

¶
(2.15)

Furthermore, as the ratio of the smallest to largest element size specified through

the metric increases, it becomes increasingly difficult for the meshing algorithms to satisfy

the request for highly stretched elements (Borouchaki et al. (1998)). In this thesis, the

degree of stretching is controlled by limiting the range of eigenvalues, which is directly

related to the range of mesh sizes. The first step is to compute the radius (or range) of the

eigenvalues and multiply it by the desired degree of anisotropy α:

eλradius = ¯̄̄eλmax − eλmin ¯̄̄ · α (2.16)

where eλmax and eλmin are the maximum and minimum values of eλi computed from equation

2.15 (the absolute value is used to eliminate the possibility of getting zero values with a

negative sign due to round-off errors in floating point arithmetic).

The radius of the eigenvalues can then be used to limit the minimum eigenvalues

as follows:

eλi ← max
³
min

³eλi, eλmax´ , ¯̄̄eλmax − eλradius ¯̄̄´ (2.17)

If the degree of anisotropy α is set to zero, then the radius of eigenvalues becomes

zero and the metric would be isotropic. The maximum degree of anisotropy is obtained

29

when α is set to 1. Notice that the largest eigenvalue is used as a reference value because

it corresponds to the maximum error associated with a given Hessian matrix 2.2; in other

words, if the rotation matrix of the linear transform is the identity matrix, then the max-

imum eigenvalue corresponds to the maximum second derivative of the Hessian matrix in

absolute value.

Although this strategy of limiting the desired degree of anisotropy has successfully

been used previously (Tam et al. (1998)), it is not sufficient for the present purposes. The

error estimator specified by the Hessian has a tendency to cluster too many mesh points

in regions of the solution domain where the second derivatives are high. This may cause

the solution to miss weaker phenomena which may occur in other regions (Alauzet et al.

(2006)). In order to address this problem, the Lp norm of the error is used instead of the

infinity norm, following the work of Alauzet et al. (2006), where the Lp norm of a function

f is given by:

kfkLp =
µZ

Ω
|f |p dΩ

¶ 1
p

(2.18)

In short, with a suitable choice for the function f related to the interpolation error

and the Hessian matrix, Alauzet et al. (2006) contrived a weighting factor for the metric

given by:

MLp = (det |H(η(x, y, z, t))|)
−1
2p+3 M (2.19)

where det |H(η(x, y, z, t))| is the determinant of the Hessian, p is the order of the Lp error

norm used and M it the metric before the scaling.

Another issue concerning the construction of a metric field to drive the meshing

algorithm is the notion of mesh gradation control. When the desired mesh size and orien-

30

tation specified through the metric vary strongly from one point of the mesh to the next, it

may become increasingly difficult to construct meshes that have a good quality (Borouchaki

et al. (1998), Li et al. (2004)). This problem is most prevalent for compressible flows where

shocks occur with sharp variations in flow properties. Because only incompressible flows

are considered in this thesis, no mesh gradation control has been used. Although mesh

gradation is recognized as being important, its implementation is left as future work.

2.4.3 Element Size and Quality

Although the quality of elements can be measured in many different ways (George

(2001)), the important objective for mesh adaptation purposes is to maximize the accuracy

of the FEM solution while minimizing its computational cost.

From equation 2.1, it can be seen that, for the interpolation error ε to be bound

by the same constant everywhere in the solution domain, the characteristic size of each

element h must be inversely proportional to the magnitude of the error measured by the

Hessian. The larger the local interpolation error is, the more the elements in the mesh must

be refined. On the other hand, at locations at which the error is smaller than the maximum

desired value, one may tolerate larger elements, which means that one may be able to

remove nodes from the mesh. Removing mesh points can help reduce the computational

cost, but can never improve the numerical accuracy of the solution. Therefore, from the

viewpoint of accuracy, it is the mesh refinement algorithm which is the crucial element in a

mesh adaptation procedure.

Another issue of concern is the effect of the element shape and orientation on

the quality of the numerical solution. Certain types of element shapes, commonly called

31

degenerate elements, are known to cause difficulties for FEM solvers. A complete taxonomy

of degenerate elements has been presented by (George (2001)). Succinctly, if the volume

of an element or the area of one of its faces approach zero, then the FEM solver would

experience numerical difficulties that would compromise the quality of the solution and

possibly even the convergence of the iterative solver. Therefore, one has to ensure that such

defective elements would not be created by mesh adaptation.

Before anisotropic mesh adaptation became available, it was believed that, if an

element were highly elongated (namely if the smallest interior angle of a simplex were smaller

than a certain value), then the FEM would experience numerical difficulties. No distinction

was made as to the effect of the orientation of such elements. Research in anisotropic mesh

adaptation has led to the realization that elongated elements would not adversely affect

the quality of the solution if they were properly aligned with the physical patterns of the

numerical solution (Vallet (1992)). As an example, consider a boundary layer, in which the

flow velocity changes rapidly in the direction normal to the wall, but much more slowly in

the direction tangent to the wall. In this case, it is preferable to have a higher mesh density

in the direction normal to the wall than in the direction tangent to the wall, which results

in a mesh with elements elongated in the direction tangent to the wall. Such elements have

been found to give excellent results, albeit at a reduced computational cost compared to

approximately equilateral elements. However, if the same elements were rotated to have

their longest side in the direction normal to the wall, the quality of the numerical solution

would suffer drastically and the convergence of the iteration solver could be compromised.

Shock waves are another example in which elongated elements are suitable and cost effective.

32

Experience in anisotropic mesh adaptation indicates that it is important for the measure

of quality of a simplex to take into account the alignment of the element with physical flow

patterns (Borouchaki et al. (1997)).

The measure of quality of elements used in a mesh adaptation procedure affects

not only the output of the mesh, but also the convergence of the mesh adaptation process

itself. Hence, the specific selection of a measure of quality for simplicial elements will be

deferred to a later section, after the context of the chosen mesh adaptation algorithm has

been clarified. On the other hand, some properties of the element, called shape criteria, are

known to be important as measures of the quality of an element. Such criteria are based

on the following definition (Liu and Joe (1994), Dompierre et al. (1998), George (2001)) 1:

Definition 2 (SIMPLICIAL SHAPE CRITERION) A simplicial shape criterion is

a continuous function that evaluates the shape of a simplex and is invariant with respect

to translation, rotation, reflection and homothety of the simplex. It is said to be valid if it

is maximal only for a regular simplex and it is minimal for all degenerate simplices. To

facilitate comparisons, valid simplicial shape criteria are normalized in the interval [0, 1],

with 1 applying to the regular simplex and 0 to the degenerate simplex.

A few clarifications are in order. In this definition, independence with respect to

translation, rotation and reflection means that the shape criterion must be independent of

the coordinate system. It is noted that the desired orientation of an element is detected

through the Hessian and not by the orientation of the coordinate axes. Anisotropic shape

criteria take that into account in ways that will be clarified later when specific shape criteria
1Translated from the French.

33

are formally introduced. Not only must the shape measure be independent of any arbitrary

coordinate system, but it must also be independent of units used, which is what is meant

by invariance with respect to homothety. The requirement that the shape criterion be a

continuous function means that, if a simplex is almost regular, then its shape criterion

should be almost 1 and, if it is almost completely degenerate, then it should be almost 0.

Although the requirement imposed by this definition is straightforward, many algorithms

presented in the literature have used ill-defined shape criteria, which indeed caused problems

when the resulting elements were used by a FEM solver. To avoid such problems, the choice

of shape criterion must be done formally rather than intuitively.

2.4.4 Performance

Mesh adaptation is meant to be a cost effective alternative, in terms of CPU time

and memory usage, to indiscriminate mesh refinement. Hence, the primary performance

criterion of a mesh adaptation method is the total cost of a numerical solution at a given

accuracy level. It is important to keep in mind that the total cost should account not only

for the time spent adapting the mesh once, but also for the time needed for the overall mesh

adaptation process, which includes re-computing the solution and re-adapting the mesh a

few times. Experience in 3-D mesh adaptation has shown that 3 to 5 mesh adaptation

cycles are sufficient in most cases, although the number of cycles needed also depends on

the choice of initial mesh (Tam et al. (1998)), the particular PDE and the method used to

find an approximate numerical solution to the PDE.

Another performance criterion for mesh adaptation procedures is the memory re-

quirement. Normally, this does not impose a stringent constraint, because the mesh adap-

34

tation procedure is usually executed between solver runs. Therefore, as long as the mesh

adaptation algorithm uses less memory than the flow solver, the upper bound on the mem-

ory usage by the FEM process would remain unchanged. However, the objective of mesh

adaptation is to achieve a solution at a given accuracy with fewer mesh points, which would

reduce the overall memory requirement to solve a given problem.

Mesh adaptation procedures can be classified in two broad categories: re-meshing

methods, which essentially create a completely new mesh at each mesh adaptation cycle,

and mesh modification methods, which modify the mesh from the previous mesh adaptation

cycle. Experience in the use of 2-D and 3-D spatial mesh modification methods (Dompierre

et al. (1997), Tam et al. (1998)) has shown that most of the mesh modification happens

during the first and second mesh adaptation cycles, whereas mesh modification in subse-

quent cycles is minimal, compared to the initial ones. Thus, mesh modification methods can

potentially lead to significant computation cost savings, compared to re-meshing methods

using algorithms of comparable efficiency. For this reason, we will prefer to use algorithms

that permit mesh modification.

2.4.5 Mesh Optimization Algorithms in Higher Dimensions

The primary advantage of the time-continuous space-time finite element method

over a time-discontinuous approach is the elegance with which an error estimator comprising

both the spatial and the temporal discretization errors can be formulated and used as the

basis for a space-time mesh adaptation procedure (French and Peterson (1996)). Before

applying TCSTFEM to solve unsteady flows of engineering interest in 3-D geometries, it is

necessary to demonstrate theoretically that 4-D mesh adaptation is possible.

35

This task is facilitated by the fact that theoretical studies in computational geom-

etry and mesh generation have proved the existence of meshes in higher dimensions for

non-convex input domains defined by a piecewise linear complex (PLC), with the con-

straint of not having “small” input angles in adjacent elements of the PLC. In the current

context, a PLC can be defined as a valid finite element surface mesh with elements having

an arbitrary number of planar sides. In practice, the PLC can be subdivided to form a

simplicial surface mesh.

At least three different types of algorithms have been developed for mesh gener-

ation in higher dimensions on PLC, with formal proofs that each algorithm will terminate

after adding a finite number of points to the mesh and yielding meshes of quality suitable

for the FEM. The first algorithm is a quadtree based method developed by (Mitchell and

Vavasis (2000)). The basic principle of a quadtree method is to create a bounding box of

d-dimensions that contains in its interior all the input points and recursively subdivides

that box into smaller boxes until the desired density of points has been reached. Then, the

small boxes are subdivided into simplices and the faces of the surface mesh are recovered.

The main drawback of quadtree methods is that the boxes created are aligned with the

coordinates axes. Removing this alignment requires additional algorithms to modify the

mesh. Furthermore, these algorithms have not yet been extended to the anisotropic case,

in which elements are elongated along a certain direction (Frey and George (1999)).

A second method available is the sweep algorithm (Shewchuk (2000)), which is a

one-pass algorithm to generate a mesh from a PLC. It is not suitable for mesh adaptation

because it would require the mesh to be completely re-created at each mesh adaptation

36

cycle. Furthermore, it is not clear whether this algorithm could be governed by a size map

to control the concentration of points in the mesh, even in the isotropic case.

A third method available is the Delaunay refinement method, first pioneered by

Chew (1989), Ruppert (1995), and extended to 3-D by Shewchuk (1997). Li (2000) made a

significant contribution by providing an improved version of the algorithm that can generate

Delaunay meshes without any defective elements (sliver free) and by generalizing the theory

to an arbitrary number of dimensions. Delaunay refinement has been shown to perform

well in 2-D (Ruppert (1995)) and in 3-D (Shewchuk (1997)) in terms of the quality of mesh

they produce. The problem of small input angle in the PLC has also been circumvented

in practice for 2-D meshes (Shewchuk (2002)) leading to meshes of good quality that are

suitable for the finite element method. However, Miller et al. (2002) mentions that although

the algorithm is proved to terminate with a finite number of mesh points, the final mesh

can possibly be very large. It remains to be shown in practice that these algorithms can

perform reliably with a controllable number of mesh points on 3-D geometries that are of

engineering interests.

Although most of the theoretical work aimed at proving that it is possible to con-

struct meshes in higher dimensions was done for a set of mesh points in general positions

(Joe (1993)), namely without the ability to conform to the surface mesh of a geometry, it is

worthwhile to mention some properties of such volume meshes. First, in the worst case, the

number of simplices for a Delaunay mesh is of the order O
¡
nd/2

¢
, where n is the number of

input mesh points and d is the space dimension (Joe (1993)). Specifically, this means that,

for 2-D, 3-D and 4-D meshes, the number of simplices can reach a maximum of the order

37

of O (n), O
¡
n3/2

¢
, O

¡
n2
¢
, respectively. In practice, a quadratic increase of the number of

simplices for 4-D simplicial meshes is problematic in terms of performance. However, this is

the theoretical worst case among all possible cases, so it remains to be seen empirically how

algorithms generating such meshes behave. Second, it has been shown in 2-D that Delaunay

meshes have properties that make them highly suitable for simulations based on the finite

element method; an example is the maximization of the minimum interior angle, although

this property does not scale to dimensions higher than two (Rajan (1994)). Third, it is

known that Delaunay meshes in 3-D, although satisfying the Delaunay empty circumsphere

criterion, can have tetrahedral elements of zero volume with four points that are cocircu-

lar (Frey and George (1999)). Theoretical studies on Delaunay meshes are an interesting

starting point for meshing in higher dimensions, but their current state of development is

not sufficient to lead to algorithms that are usable for engineering problems.

In this thesis, simplicial meshes will be considered, because they are the easiest to

manipulate in 2-D, 3-D and 4-D and their theoretical treatment has proved that modifying

meshes in higher dimensions is possible. Methods based on other types of elements, such

as hexahedral elements, or even meshfree methods, which operate on points themselves

without explicitly needing elements, could be considered in future work.

2.5 Anisotropic Mesh Modification Methods

Given that in 4-D the number of simplices increases faster than in 3-D or 2-D,

it is imperative to seek to minimize the number of points that are required to compute a

numerical solution of a given accuracy. Toward that end, anisotropic mesh modifications

38

were proved to be successful in 2-D (Vallet (1992), Castro-Díaz et al. (1995), Buscaglia

and Dari (1997), Castro-Diaz et al. (1997), Fortin et al. (2000), Dompierre et al. (2002),

Belhamadia et al. (2004a)) and have also been extended to 3-D (Tam et al. (1998), Tam

et al. (2000), Belhamadia et al. (2004b), Bottasso (2004), Li et al. (2005)). Anisotropic

mesh generation methods governed by metric size map have also been developed (Borouchaki

et al. (1997), Borouchaki et al. (1997), George et al. (2002), Yamakawa and Shimada

(2003), Du and Wang (2005), Frey and Alauzet (2005), Gruau and Coupez (2005)), but the

added cost of remeshing at each mesh adaptation cycle is even more problematic for meshes

in 4-D, because the boundary recovery procedures that they employ have so far been limited

to 3-D (Du and Wang (2004b), Du and Wang (2004a), George (2003)). In this thesis, it

was chosen to extend existing anisotropic edge based mesh modifications methods to 4-D,

which to the best of our knowledge is used for the first time. The details of the anisotropic

meshing algorithms developed are presented in Chapter 6.

39

40

Chapter 3

2-D, 3-D and 4-D Parametric Data

Structure

3.1 Introduction

This chapter briefly presents the salient features of the parametric data structure

created to implement the mesh adaptation algorithms and the finite element method in 2-D,

3-D and 4-D. The emphasis of the presentation is on the mesh data structure, because it is

this aspect of the data structure that makes it possible to explore the proposed space-time

mesh adaptation procedure in 4-D. It is crucial to the success of the proposed strategy to be

able to implement algorithms in a dimension-independent manner, so that each algorithm

can be tested first in 2-D, then in 3-D and finally in 4-D. Furthermore, this makes it

possible to use the same unified numerical simulation strategy for both steady and unsteady

problems.

3.1.1 Finite Element Data

As previously mentioned, the proposed mesh adaptation procedure is based on

an unstructured finite element mesh. The type of information that needs to be stored in

such meshes is well understood and clearly defined (Cook et al. (2002)). This includes mesh

points, with a number of coordinates determined by the space dimension of the finite element

solution domain Ω, and elements that constitute a partition of the space domain. Elements

determine how an ordered list of points are connected together to define sub-regions of

the solution domain. Each element is characterized by its type and topological dimension.

Although the current study focuses on unstructured meshes composed of simplicial elements,

a finite element data structure should be flexible enough to support other common element

types as well. Elements supported by the Simulation Toolkit (STK) will be presented in

the following.

In general, discrete data associated to points and elements also need to be stored

in the finite element mesh. An essential set of data that need to be stored at the nodes

is the computed finite element solution. In the case of the incompressible Navier-Stokes

equations, this includes the velocity vector and the pressure. Material properties varying

with location in the space-time domain must also be stored on the elements. A generic

finite element data structure requires the ability to store data associated with both mesh

points or/and elements.

41

3.1.2 Design Criteria

After the characteristics of the data to be stored have been identified, the next

step is to define appropriate design criteria to guide the process of storing these data so

that they can fulfill the desired purpose. In the context of this thesis, the data structure

must be suitable for implementing an efficient space-time unstructured mesh adaptation

procedure in 2-D, 3-D and 4-D, along with a space-time finite element fluid flow solver. In

consequence, the following design criteria were chosen.

Parametric form. It must be possible to conveniently implement mesh modifica-

tion algorithms, or the FEM procedure, in a dimension-independent or semi-independent

manner, as needed. The dimension of the space domain should have to be specified only at

runtime, so that the code can be executed for different space dimensions without having to

be recompiled or requiring one to keep separate copies compiled for specific space dimen-

sions. It is also necessary to be able to manipulate meshes of two different dimensions at

the same time for some algorithms; an example would be mesh extrusion.

Compactness. Considering that the number of mesh points and elements in a FEM

mesh typically range from several thousands to several millions, the storage of data should

minimize the computer memory requirements.

Efficiency. In order to maximize the performance of the FEM procedure and mesh

adaptation code, the data must be accessible in a manner that is independent of the data

size (i.e., data should be retrieved and stored in constant time) . This makes it possible to

implement algorithms that are proportional to the number of points or elements whenever

possible (O (n) in time complexity).

42

Flexibility. Because the data that need to be stored at runtime for the FEM and

mesh adaptation procedure can be significantly different, the data structure must be flexible

enough to permit the addition or removal of data at runtime rather than at compilation

time. This way, the two procedures can be tightly integrated and the necessary data can

be stored only for the period of time that they are needed, thus avoiding excessive memory

usage. Moreover, because optimization of such algorithms is often achieved as a compromise

between minimizing memory usage and maximizing speed, the flexibility to add or remove

data at runtime makes it easier to pursue such optimization. This is very important for a

research-oriented code, whose initial use aims at exploring the application of new numerical

methods and algorithms.

Resizeability. Mesh modification requires the efficient addition and removal of

points and elements. This is usually not necessary for the FEM when the mesh remains

fixed during the computation of the numerical solution, but it is vital for the performance

of mesh adaptation and mesh generation algorithms. Furthermore, the evolution of FEM

codes tends toward a tighter integration of mesh adaptation within the FEM procedure, so

it is necessary to have a data structure that provides the necessary functionalities for both.

Simplicity. Simpler data structures are easier to understand, debug and optimize.

In general, simplicity in software correlates well with productivity for the developer and the

ease with which new programmers can join in during software development.

Portability. The data structure and all procedures implemented on top of it should

be able to be compiled on all major operating systems.

The remainder of this Chapter briefly describes the core of the data structure,

43

Data Structure Aspect STK VTK
Application field FEM and meshing Visualization
Space dimension Parametric (2-D, 3-D, 4-D) Hard coded in 3-D

Deleting points/elements Explicitly supported Not explicitly supported
Discrete mesh data resizing Automatic Explicit
Element storage and access By type and id By id

Table 3.1: Comparison of design criteria for STK and VTK.

which is the unstructured FEM mesh, and its evaluation with respect to the previously

presented design criteria.

3.2 Mesh Data Structure

The mesh data structure is a C++ class that groups together the mesh points and

elements with their associated data along with methods to manipulate them. Its design is

strongly inspired by the Visualization Toolkit (VTK) (Schroeder et al. (1998)), but was

adapted to meet design criteria specific to the FEM rather than visualization. By analogy

to the source from which it was inspired, the mesh data structure has been named the STK.

The primary differences in the design criteria between the two frameworks is summarized

in Table 3.1.

The first fundamental difference is that VTK is hard coded to operate on mesh

points in 3-D, whereas the current project requires to implement algorithms that can operate

in 2-D, 3-D and 4-D. Modifying VTK to meet this requirement would require to branch

out the code to create a new incompatible version. Although VTK is open sourced and, in

principle, it would have been possible to modify the source code, this approach has been

rejected because it would have required an excessive amount of effort and time.

44

The second fundamental difference is that VTK is not designed to explicitly man-

age the deletion of points or elements. The general philosophy in VTK is to copy a subset

of data if some part of it is no longer needed or needed only for a specific algorithm. This is

appropriate for visualization software, because selecting a subset of data to operate on or to

display on screen is a common operation. In the context of mesh modification algorithms,

however, it must be possible to efficiently remove unneeded points or elements.

The third fundamental difference is that VTK allows data to be added and removed

on a mesh, but does not automatically resize these data when the mesh is resized through

the addition or removal of mesh points or elements. In VTK, the mesh is either assumed to

be fixed or the added data must be explicitly resized when the mesh is resized. However,

this approach is highly inappropriate for mesh modification algorithms, because it increases

the complexity of the code and requires a strong coupling of different parts of the code to

appropriately maintain the coherence of the data with the mesh. Therefore, in STK, when

the mesh is resized, its associated data are also automatically resized. This applies to both

data added at runtime and at compilation time.

The fourth difference is that VTK stores all elements for its unstructured mesh

in a single array and identifies an element in the array by a unique identification integer

(id) which is also the index in the array. This makes it necessary to traverse elements

of all types even when an algorithm is designed to operate only on elements of a specific

type. For example, in a FEM code, it is typical to traverse all volume elements to compute

the elementary system, add their contributions to the global system of equations, and only

traverse faces on the boundary of the domain to compute fluxes, as in the case of boundary

45

conditions. Similarly, mesh modification usually proceeds by traversing volume elements

and not boundary elements. In STK, elements are stored by type and id to make it possible

to efficiently traverse only one type of elements at a time.

The next sections present overviews of the individual components of the mesh data

structure, followed by a brief description of the grouping procedure so that they can form

the unstructured mesh data structure of STK.

3.2.1 Parametrization: Separating Geometry from Topology

The principle behind the parametrization of the data structure is the separation

of the geometry from the topology of the mesh. Geometry deals with the properties of

points in space, whereas topology remains invariant under geometric transformations (Frey

and George (1999)). In the current context, the geometric properties are functions of the

mesh points whereas the topology is a function of the mesh element connectivity. In STK,

elements only contain topological information with indirect references to the mesh points

used by the elements. Hence, an element contains no information on the space dimension

of its mesh points.

By separating geometry from topology, it is possible to manipulate or modify the

topology of the mesh purely by manipulating the elements of the mesh without regards for

the space dimension. If a part of an algorithm requires knowledge of the geometry, then the

mesh points associated with an element can be read and this computation can be isolated

in such a way as to make the space-dependent computation part transparent to the rest of

the algorithm.

46

Tuple 0 Tuple 1 Tuple n Free

C0 C1 C2 C0 C1 C2 … … … C0 C1 C2 F F F

Figure 3.1: Representation of the 1-D contiguous data array with tuples having three com-
ponents each .

3.2.2 Dynamic Data Arrays

The primary data container in STK are a memory contiguous data array of native

types (e.g., float, int, char, bool etc.) that stores a series of tuples, each having the same

number of components of the same basic type. A specific data entity in the array is identified

by the integer id of its tuple and the component id marking the offset from the beginning

of the tuple. The array is contained in a C++ class that provides methods to manipulate

the data, such as traversing the data, read/write operations, resizing the array, dynamic

resizing etc. Figure 3.1 illustrates a contiguous data array with each tuple having three

components.

Because the entity in the data array is referenced by id and not by a pointer to a

specific memory location, the data array can be copied and moved to a different memory

location or even across a network for parallel computing while preserving the ids for its

data. The memory allocation scheme in STK leverages this to resize arrays by first trying

to extend its last element further in the computer’s memory, if possible (a call to realloc),

or else allocating a new larger contiguous array in which the data are recopied. Because

the pointer to the beginning of the array is hiding inside the C++ array class and all

references to the data in the array are done through integer ids, this recopying does not

47

affect algorithms that reference data in the array.

Contiguous resizeable arrays present several performance benefits, if used properly.

First, data entity can be accessed in constant time using the integer ids. Second, traversing

a contiguous piece of computer memory is faster then traversing several pieces of memory

that may be spread at different locations of the memory, primarily because of the operation

of memory caching in computers. Third, it is possible to over-allocate the contiguous data

array to minimize the number of resize operations during the execution of an algorithm,

such as during mesh refinement. Memory allocation is a very expensive operating system

call and meshing algorithms were shown to perform better with pre-allocation memory

schemes. Furthermore, the array would always remain contiguous after a resize operation,

which prevents memory fragmentation problems that can significantly degrade performance.

In STK this basic data array is considered to be a 1-D array, because the number

of components for each tuple must be constant for the array, so that only one index is

needed to identify a tuple from the beginning of the array. There is also a 2-D array, which

is essentially an array of 1-D arrays with support for tuples. In the 2-D array illustrated in

Figure 3.2, the first index is the array index and the second index is the tuple’s id for the

given 1-D array.

3.2.3 Point Storage

Points are stored in a 1-D array of floats, where the tuple corresponds to the integer

point id and the number of components to the space dimension of the points. Although the

basic 1-D array of data of STK does not support the deletion of tuples, the management of

deleted points is added to the point class. Points that are deleted are automatically skipped

48

...

Array 5

Array 4

Array 3

Array 2

Array 1

Array 0

Figure 3.2: Representation of an array of arrays.

Point 0 Point 1 Point n Free

X0 Y0 Z0 X1 Y1 Z1 Xn Yn Zn F F F

Figure 3.3: Representation of the point storage.

during later traverses of the array. When a new point is added, it replaces a previously

deleted point until the deleted points are exhausted, so that the number of unused tuples

in the array is minimized.

The point class also supports the dynamic addition and removal of data arrays

through the collection of data arrays mechanisms. A collection of data for points is composed

of a list of 1-D arrays, each having as many tuples as the number of mesh points. Each

array can be of a different basic data type (float, int, char, bool etc.) and have a different

number of components per tuple. For example, the velocity at nodes can be stored in a 1-D

array of floats with the number of components equal to 3 for a flow in a 3-D geometry and

the pressure can be stored in a different array with one component per tuple. The class

49

managing the collection of 1-D arrays of data for points automatically allocates arrays with

a number of tuples that corresponds to the number of points in the array, with an one-to-

one correspondence between the point id and its tuple in the data array, and automatically

resizes the data arrays as needed when points are added or removed. Therefore, when

traversing points of the mesh, it is sufficient to know the point id and a pointer to the class

of the added data to retrieve the tuple associated with a particular point and for a given data

value. In summary, data of any basic type can be dynamically added or removed on points

and retrieved in constant time. Such data arrays are always automatically resized whenever

points are added or deleted to maintain the coherence of each point and its associated data.

3.2.4 Element Storage

In STK, the connectivity of elements is stored in a 2-D array of integers in which

the first index corresponds to the element type and the second index to the element id.

The tuple associated with an element has a number of components equal to the number

of points in the element and contains the list of point ids used by that element. Figure

3.4 illustrates the various element types that are supported by STK and Figure 3.5 gives a

simplified example of how the element connectivity is stored.

The runtime addition or removal of data for elements follows the same pattern

and mechanisms as for points, but the collection of data is composed of 2-D arrays of data,

rather 1-D arrays, and tuples are identified through an element key (element type, element

id), rather than a point id. This way, the storage of elements is memory compact, making

it easy to traverse elements of a given type and whatever data an algorithm has added and

needs to retrieve.

50

(d) stkTetrahedron

(g) stkQuadrilateral

(a) stkVertex (b) stkEdge (c) stkTriangle

(h) stkHexahedron (i) stkPyramid

(f) stkPrism

0 1

2

0 1

2 3
6

0

7

5

4
3 2

1 0 1

23

4

0 1

2

3

4

0 0 1

1

2

3

0 0 1

2

3
4

5

(e) stkSimplex4D

Figure 3.4: Illustration of the element types supported by STK along with their local node
numbering.

stkPrism

stkPyra

stkHexa

stkQuad

stkSimplex

stkTetra

stkTriangle

stkEdge

stkVertex P1 P6P3

P2,P5 P3,P9

P6,P7,P3 P4,P5,P8 P7,P1,P2

P3,P8,P5,P9 P1,P2,P5,P7

P1,P6,P3,P4,P2P2,P3,P1,P7,P9

P1,P8,P2,P9 P3,P6,P5,P7

P1,P8,P2,P9,P7,P6,P5,P3

P2,P3,P1,P7,P9,P5

P7,P6,P3,P4,P2P5,P3,P1,P7,P9

Figure 3.5: Example of how the elements are stored in STK using an array of pointers
toward 1-D contiguous data arrays.

51

As a consequence of storing the element connectivity and its associated information

in arrays, the element classes, one for each type of element and all inherited from a common

base class, no longer store the information for an element. The element class becomes

more like a mediator through which the information associated with an element can be

conveniently retrieved. Experience with object oriented design in VTK has shown that this

type of storage for elements leads to a more efficient implementation than storing a series

of element classes either in a list or an array (Schroeder et al. (1998)).

In the current context, it is important to mention that the element classes contain

no information on the space dimension of the mesh points. Elements are only topological en-

tities that reference point ids . Furthermore, methods are provided that make it convenient

to manipulate the topology of the mesh without knowing the specific element used.

3.2.5 Unstructured Mesh

The unstructured mesh class groups together the classes for mesh points and mesh

elements, along with their respective collection of data mechanisms. It also provides meth-

ods to efficiently recover topological information that is frequently used for mesh modifica-

tion algorithms, such as the list of elements that use a point id or the list of elements that

have an element as their neighbour.

Recovering this type of information efficiently requires building an inverse connec-

tivity. Several ways of storing this information exist (Frey and George (1999)), but the one

chosen in STK is illustrated in Figure 3.6. In this Figure, the black dots represent points,

the circles vertices of elements. The black arrows indicate direct connectivity links going

from the vertex of an element to a specific point, whereas the grey arrows indicate inverse

52

connectivity links. Each point in the mesh has an inverse link pointing to one element that

uses that point and to the corresponding vertex in that element. From that vertex, the

next element and vertex in the list can be retrieved. Functionally, this is equivalent to a

pointer from the mesh points to the list of elements using this point. However, here only

the first link of the list is stored on points, while the other links are stored on elements.

Although the number of elements using a point varies for unstructured meshes, the number

of vertices that an element contributes to the inverse connectivity list is pre-determined by

the element type and hence can be allocated at the same time as the elements themselves.

This is important because, as the mesh is being modified by being refined or coarsened, the

number of elements around points changes, so, if this information was stored in standard

lists, one per point, it would require to be resized every time the mesh connectivity were

changed. With the chosen scheme in STK, no memory allocation is required by changing

the inverse connectivity of the mesh. Convenient methods are also provided in the mesh

class to automatically update the inverse connectivity of the mesh when elements are added

or removed.

3.3 Implementing Dimension Independent/Dependent Algo-

rithms

A fundamental requirement of STK is to be able to implement dimension inde-

pendent algorithms that operate on meshes in 2-D, 3-D and 4-D conveniently. Dimension

independent codes have been developed by researchers in the computational geometry com-

munity (CGAL (2007)), but they all use one element type, a simplicial element, that has

53

Figure 3.6: Illustration of the unstructured mesh. The dark arrows represent the connectiv-
ity from elements to their verticies while the gray arrows represent the inverse connectivity.

d+ 1 mesh points, where d is the space dimension.

This approach is not appropriate for numerical simulations, because of the need

to differentiate between volume elements, which have a topological dimension equal to the

space dimension, and boundary elements of lower topological dimension that are required

to conveniently represent the boundary of the solution domain. For example, in a 3-D

domain, tetrahedral elements cover the volume of the domain, triangular elements represent

the surface of the boundaries, edge elements represent the delimitation between different

adjacent surfaces of the boundary and vertex elements represent discontinuities in boundary

curves approximated by a set of adjacent edges. Mesh modification algorithms need to

operate differently on simplicial elements, depending on whether they are on the boundary

or inside the domain. Therefore, it is appropriate to have different concrete element types

54

for each simplicial element of topological dimension 0, 1, 2, 3 and 4.

However, the consequence of this approach is that a mesh modification algorithm

that operates on volume simplicial elements, for example, would need to operate on triangles

in 2-D, tetrahedral elements in 3-D and simplex elements in 4-D, but all those elements are

of different concrete types. An elegant method to address this problem without adding

cumbersome and expensive conditional (if else) statements in the code is available under

the name visitor pattern (Gamma et al. (1995)).

The visitor pattern is applied to solve the current dilemma by adding a class

called stkElementVisitor that has a virtual method for each element type. Adding new

functionality is done by inheriting from this base class to implement specific operations.

A simple example is the computation of the volume of simplicial elements that differs for

simplicial volume elements, boundary elements and non-simplicial elements.

The mechanism to call this element-type-specific method conveniently is imple-

mented by adding a virtual method to the base class element called AcceptVisitor and

receiving a pointer to the abstract class stkElementVisitor. Concrete element classes re-

implement the AcceptVisitor method and provide an implementation in which the specific

visitors method for the current concrete type is called. For example, the tetrahedral el-

ement class will always call the method VisitTetrahedralElement for the element visitor,

irrespectively of what that visitor is.

In short, the visitor pattern provides a mechanism for conveniently adding new

methods to operate on elements and automatically calling the specific method for the spe-

cific element type. Furthermore, it does this without cluttering the element classes with

55

new methods that might only be useful in some part of the code and not others. New

functionalities are added to elements by adding new element visitors without modifying the

original element classes.

Using this approach, implementing dimension independent algorithms can be done

by hiding the topological dimension dependent part into element visitors. If some part of

the algorithm requires knowledge of the space dimension, for example when it operates on

mesh points, this information can also be hidden in the concrete visitor. Several algorithms

were successfully implemented in a dimension independent manner this way. These will be

presented in Chapter 6.

3.4 File Input-Output

The file storage and retrieval of the mesh and its associated data are done through

the CFD General Notation Systems (CGNS), which is now a recommended practice by

AIAA to facilitate the exchange of CFD data between codes (Poirier et al. (1998), Legensky

et al. (2002)). Using CGNS for file input-output in STK makes it possible to import

meshes from standard commercial meshers and export solutions to standard post-processing

software. Furthermore, CGNS is freely available with source code1, efficient, cross-platform

and capable of storing meshes in 2-D, 3-D or 4-D. It may be noted here that, although

it was not intended to support 4-D meshes, the CGNS format is sufficiently flexible to be

easily extendable to storing 4-D mesh points and simplicial elements.

1http://www.cgns.org/

56

57

Chapter 4

Mesh-Based Geometry

Reconstruction

4.1 Introduction

The objective of this chapter is to present a geometry reconstruction algorithm that

is as simple as possible, yet sufficiently accurate for the purposes of both mesh generation

and mesh adaptation for the finite element method using linear interpolation functions. To

facilitate its implementation, the geometry is stored and manipulated using the same finite

element mesh data structure as the one presented in Chapter 3. Conveniently, this also

makes it accessible and suitable for finite element codes that need a lightweight geometry

representation to add support for mesh adaptation procedures without having to link with

a specific CAD package or more complex geometry library.

The algorithms used in mesh generation and adaptation may require to refine,

coarsen or smooth the surface mesh. In order for these algorithms to preserve the char-

acteristics of the geometry, modifying the elements of the surface mesh requires to take

into account the topology of the geometry, while inserting or moving points of the surface

mesh requires to project these points on the geometry. Furthermore, it is necessary that

the geometry representation be sufficiently smooth compared to the finite element surface

mesh such that discontinuities of tangent planes on the geometry does not cause numerical

errors in the analysis. The geometry reconstruction algorithm presented in this chapter was

designed with these requirements in mind.

Several factors motivate the construction of a geometry rather then interfacing

directly with a CAD system. First, in some biomedical applications, the starting point is

not a CAD geometry, but rather a medical image that can be processed to get a tesselation

(Cebral and Lohner (1999)). In this case, the tesselation is treated to recreate the topology

of a surface mesh to represent curves that may need to be preserved or points that must be

fixed during mesh generation or mesh modification. Second, CAD geometries are known for

having several defects that can be catastrophic for meshing algorithms, for example small

gaps between adjacent surfaces or topological inconsistencies that are of no consequence for

a CAD geometry, but can cause the meshing algorithms to fail. Third, mesh adaptation

requires a geometry to modify the mesh and it is convenient to have a lightweight geometry

representation that can eventually be partitioned to run on parallel computers without

requiring a CAD license on each processor. Fourth, it is faster for the meshing algorithms

to project a point on a simpler geometry representation rather than on the actual CAD

model. Fifth, reconstructing a geometry representation purely from a finite element mesh

58

can facilitate the exchange of finite element meshes and solutions coming from different

packages that may themselves depend on a specific CAD package.

The chapter begins with the presentation of the surface mesh topology reconstruc-

tion, followed by the quadratic geometry reconstruction and briefly mentions some issues

concerning the projection of points to the reconstructed geometry. Pseudo-code for the

algorithms is presented at the end of the Chapter.

4.2 Surface Mesh Topology Reconstruction

When the input is a tesselation made of only triangular elements (quadrilateral

elements can be easily subdivided into triangles), it is necessary to first reconstruct the

topology of the surface mesh using simplicial elements of lower topological dimensions. In

order to represent discontinuities between two adjacent topological surfaces, edge elements

are used to approximate a curve. Similarly, discontinuities in adjacent curves are represented

with vertex elements. Representing the topology of the surface mesh this way makes it easier

to preserve that topology during the modification of the mesh, because points added to a

topological surface are projected on that surface and are constrained by a perimeter of edges

representing curves. Points added to a curve are also confined to that curve and, in the case

of an open curve, they are bounded by the end points of that curve represented by vertex

elements that are not allowed to move. Figure 4.1 illustrates the topology of a surface mesh

where curves are approximated by a set of edges, vertex elements identify the end point of

open curves and triangular elements compose the interior of a boundary patch.

The objective of the surface mesh topology reconstruction is to create simplicial el-

59

Edge 6 Edge 5

Curve 3
Curve 1

Vertex 0

Vertex 2

Vertex 1
Edge 0

Edge 1 Edge 2
Edge 3

Edge 4

Edge 7
Edge 8

Edge 9

Vertex 3

Curve 0

Curve 2

Figure 4.1: Illustration of the topological elements of the surface mesh that forms the
boundary of the volume mesh.

ements of lower topological dimension to group elements of the surface mesh into topological

element patches, which can be defined as:

Definition 3 (TOPOLOGICAL ELEMENT PATCH) A topological element patch

groups elements of the same topological dimension, but not necessarily of the same element

type, that are adjacent to each other across common element boundaries not having elements

of lower topological dimensions between them.

The topological element patches created in this process would not be unique and

would depend on the criterion used to decide whether adjacent elements of the surface need

to be grouped together in the same patch or are separated by an element of lower topological

dimension. The approach presented here is relatively simple and uses the angle between two

adjacent elements as a topological patch separator criterion (Cebral and Lohner (1999)).

More sophisticated methods, based on the estimation of the normals and the curvatures,

have also been developed by other investigators (Baker (2004)), but their implementation are

60

left as future work and are compatible with the rest of the quadratic geometry reconstruction

presented here.

The surface mesh reconstruction algorithm begins by adjusting the faces to make

sure that the orientation of the normals for faces grouped in the same topological patch

is consistent. This is done by marking all faces as not visited, then picking a first face

and visiting its adjacent faces to flip them if they are not oriented in the same direction.

Notice that this is done by relying on the local numbering of points on the element and

not using normals. This way, the ordering only depends on the topology of elements in

the patch. Using the normals of the faces for orientation could be misleading if few faces

are used to represent a highly curved geometry. After a first face has been checked, it is

marked verified and its neighbors are inserted in a list of faces to process. The procedure

is repeated recursively until all faces in the list have been treated and no new faces marked

unprocessed are found. Since a tessellation can be composed of several topological patches

that are disjoint from each other, for example as in the case of the flow around a sphere

enclosed inside a bounding box, it is necessary to search for unprocessed topological patches.

This is done by searching for a face marked as not processed in the initial tessellation and

using it to start the orientation for this new topological patch. The process terminates when

all faces are marked as processed.

Once the faces are properly oriented, the normals are computed and stored on the

faces until they are no longer needed. Then, a first iteration over all triangles is done to

create edge element between two adjacent triangular elements if the angle between their

respective normals is greater than a threshold value. After the first pass is completed, as

61

n0
n1 n2

n3

n4

n5 n6

n7

n8

n9

Figure 4.2: Illustration of the boundary face normals.

shown in Figure 4.2, a second pass is performed over the edges to create vertex elements

between adjacent edges if their angle is greater than the same threshold value minus 180

degrees (a zero angle between edges corresponds to the two elements being parallel whereas

for triangles it corresponds to their normals being parallel). Although this approach is very

simple, it works fairly well in practice for surfaces with sharp discontinuities (Owen and

White (2003)). However, it may become problematic when the variation of the curvature

of a surface is progressive, for example in the case of an ellipsoid, for which methods based

on curvatures are more suitable (Baker (2004)).

Once the surface mesh topology is reconstructed using the algorithm 1, it is useful

to group all elements of the same topological patch and attribute them a unique topological

patch identifier, which is done using the algorithm 3. Following the nomenclature of the

CGNS library (Poirier et al. (1998)), this is named a family. Family ids are not only

useful for the mesh generation or modification algorithms, but also to impose boundary

62

conditions on a group of boundary elements at the same time. This is especially important

in the context of mesh adaptation because the list of boundary face elements on which

Neumann boundary conditions are applied and the list of boundary mesh points on which

Dirichlet boundary conditions are applied must be regenerated after each mesh adaptation

cycle before the finite element assembly procedure. By specifying the boundary conditions

on the families and not on specific surface elements or mesh points, any mesh modification

procedure only need to preserve family ids as it refines or coarsen the mesh without any

knowledge of boundary conditions. This also avoids creating a dependence between the

mesh adaptation procedure and any specificity concerning the boundary conditions of a

specific FEM solver package.

4.3 Quadratic Geometry Reconstruction

The objective of the quadratic geometry reconstruction algorithm is to build a

smoother representation of the surface mesh than the initial ones made of linear simplicial

elements. This is necessary to allow points to be added to or relocated on the surface mesh,

while preserving a reasonable good fit to the initial geometry. For example, even a geometry

as simple as a sphere requires a higher order reconstruction than a simple linear one to be

able to move points on the surface and preserve the shape of the geometry.

An important issue concerns the minimal order of the geometry reconstruction

that is appropriate for mesh generation and adaptation. In the case of tesselation derived

from the processing of medical images, the constructed tesselation is so rough that the order

of geometry reconstruction is not the most significant source of inaccuracy of the process.

63

However, CAD-generated geometries are much more precise (Meek and Walton (2000))

and they require higher order surfaces to accurately represent 3-D surfaces with torsion

or saddle points than the simple quadratic one presented here (Walton and Meek (1996)).

A practical requirement is that the reconstructed geometry be smooth enough such that

a tangent plane along the boundary of adjacent elements in the same topological patch is

constant across adjacent elements of the same topological patch (Walton and Meek (1996)),

which for triangular elements requires at least fourth order Bezier patches (Piper (1987)).

Here, a simpler quadratic geometry construction will be presented using quadratic

finite element interpolation functions for edge and triangular elements. Although this ap-

proach might not be sufficient to accurately represent warped surfaces, in practice it may

be adequate for FEM using linear shape functions, if the starting point is a tesselation gen-

erated by a CAD package in the form of an STL (stereolithography) file. These tesselations

are generated in the CAD package by specifying a maximum angle of deviation between

triangular elements and the actual CAD geometry, so that warped surfaces will be repre-

sented by several triangles. Because the deviation angle is bounded, it seems reasonable

for CFD applications to use quadratic finite element functions, as linear functions will be

used to compute the solution inside the fluid domain. For other applications, like structural

analysis, for which a higher order reconstruction may be necessary, the method presented

here can easily be extended to higher order following the work of Walton and Meek (1996),

Xue et al. (2004).

The geometry reconstruction algorithm presented builds upon the work of Walton

and Meek (1996), in a fashion similar to Owen and White (2003), and requires that the

64

normals at the points of the surface be known in order to construct higher-order curves

and surfaces. When the geometry is reconstructed from a CAD file before passing it to a

mesh generation package or FEM software, the CAD system can be queried to return the

normal at a point of a given surface. However, the objective here is to make the geometry

reconstruction operational for tesselations coming from medical images and also to make it

independent of any specific CAD package, so it is not acceptable to call a CAD function.

Consequently, the first step of the geometry reconstruction algorithm is the estimation of

the surface normals at points assuming that only linear elements are available for the surface

mesh.

4.3.1 Point Normal Estimation

Several methods for reconstructing normals from a boundary surface are available

(Walton and Meek (1995), Baker (2004)). Because the constructions of the higher-order

curves and surfaces rely upon the normals at points, it is important that the determination of

normals be as accurate as possible. The salient aspect of the following method is that it takes

into account both the topology of the linear surface mesh and an estimate of its local average

(isotropic) curvature. This approach permits the reconstruction of curves and surfaces at

junctions between different topological patches on which different boundary conditions need

to be imposed. As illustrated in Figure 4.3, a normal (nA) that is evaluated at a point on

a curve by summing the normals for the neighboring points on the surfaces adjacent to

the curve (nF1 + nF2) and normalizing the resulting vector would be incorrect because it

would not be tangent to the plane containing the circle shown in Figure 4.3. Although

this is typically handled by decomposing the normals on curves to assign a different normal

65

nA
nF2nW

nF1

Figure 4.3: Illustration of the difference between the normal at a point on a curve obtained
as the curvature-weighted average nW of the normals nF1 and nF2 to the adjacent faces
and the unweighted average nA of the two normals.

to the topological patch corresponding to each surface adjacent to the curve (Owen and

White (2003)), the method presented here does not require decomposing normals. Instead,

normals are conveniently uniquely defined at boundary mesh points as weighted averages.

The point normals are computed using two different strategies depending on

whether the point is on a surface or a curve. If a point is on a surface, it only has in-

cident triangle elements to it and the normal for such point is simply computed as the

average of the normals of the faces around that point, as follow:

NPsurface =
nX
i=1

ni (4.1)

where NPsurface is the normal at a point on the surface (not touching any curves) and ni

is the unit normal of the face i. The point normals are not normalized at this stage of the

algorithm. Instead, it is kept as the last step to normalize both the normals for points on

the interior of surfaces and the normals on points touching curves in one iteration for all

boundary points.

66

Going back to the example for the cylinder in Figure 4.3, it can be deduced that

the estimation of the point normals on curves can be improved using of the local curvature

of the adjacent surfaces. However, at this stage of the reconstruction, the surface is still

composed of linear elements for which the curvature cannot be directly computed. Hence,

the curvature needs to be estimated from this linear surface mesh, if it is to be used to

improve the normal estimation.

A simple approach to estimating the curvature between two points can be done

using the normals at the two points, as shown in Figure 4.4, and using basic trigonometry,

which leads to:

C =
1

ρ
' 2

h

r
1− n1 · n2

2
(4.2)

where C is the curvature, ρ is the radius of curvature, which is the radius of the osculating

circle passing through the two points, n1, n2 are the unit normals at the two points and h

is the distance between these two points.

Using formula 4.2, the curvature can be estimated between two adjacent faces

using their normals and the centroid of each face as the two points. Then, the average

curvature for a face is defined as the average curvature computed using all sides of the face

(three for the triangles used here). The normals for points on curves of the boundary are

then computed as the weighted average of the normals of the faces incident to a particular

point, with the weight factor for each normal taken as the average curvature associated to

that face divided by the square of the distance between the point and the centroid of the

face, which gives:

NPcurve =
nX
i=1

ni
fCi
h2i

(4.3)

67

a

n1 n2

ρ ρ

h

Figure 4.4: Illustration of the point normals and face size used to compute the approximate
curvature (1/ρ).

where NPcurve is the normal at a point on a curve of the surface mesh, ni is the normal

for the face i incident at the point, fCi is the average curvature for the face i and h2i is the
square of the distance between the point where the normal is evaluated and the centroid of

the face. The last step of the algorithm 4, which is detailed in pseudo-code form at the end

of the Chapter, is to iterate over all points to normalize the point normals.

It is important to emphasize that the computation of the normal for the purpose

of a geometry reconstruction, even for a geometry as simple as a cylinder, would face

serious problems if the normals were simply averaged for point on curves. This can cause

significant error in some numerical simulations where boundary conditions are imposed on

such surfaces, as it is frequently the case for internal flows. For a cylinder to be properly

reconstructed with higher order curves delimiting the plane faces, the normals need to be

perpendicular to the circular section, which means that they need to be perpendicular to

68

the longitudinal axis. Without weighting the normals with the curvature, the normals on

the end curves of a cylinder would be a mix between the normals of the triangular elements

on the plane end section and those on the circular section of the cylinder. Using a splitting

normal approach, it would not be clear for the construction of the curve whether the normal

should be estimated using the faces on one side of the curve or the other (a curvature based

criteria could be used to make this decision, but this would become very similar to what is

presented here). Because the construction of higher-order curves relies on the point normals,

incorrect normal estimation would lead to higher order curves at the end of the cylinder

that are not in the plane of the end section of the cylinder. The approach presented here

does not suffer from this problem and offers the advantage of having normals being uniquely

defined at each point, which is simpler to store and manipulate.

It would be interesting to study the accuracy of the presented approach more

precisely using a tessellation constructed from a smooth surface, for example a CAD surface,

and compare their accuracy with the normals computed from the CAD package using the

technique presented by Meek and Walton (2000), but this is left for future work.

4.3.2 Geometric Reconstruction Algorithm

The geometry reconstruction begins by computing the normals as previously de-

scribed and then uses these normals to construct quadratic edges followed by quadratic

triangular elements.

The specification of a quadratic finite element edge requires three points. The first

two points are taken as the end points of the linear edge element, while a third, mid-point is

computed using a Bezier curve constructed by the method described by Walton and Meek

69

New quadratic point

Bezier curve
P1 P2

n1 n2

Figure 4.5: Illustration of the Bezier curve used to compute the additional point required to
form a quadratic edge on the boundary. The Bezier curve passes through both end points
of the linear edge and is perpendicular to the normals at these points.

(1995), Walton and Meek (1996) using the positions of these two points and the weighted

normals at these two points, as shown in Figure 4.5.

After all quadratic topological edges have been created, the quadratic triangular

elements are created by using the same approach for each of the three edges of a quadratic

element shown in Figure 4.6. If the triangle element has a quadratic curve adjacent to one

of its sides, then the mid-point from that quadratic edge is recovered and connected to the

quadratic triangle. If the triangle element has another element adjacent to it across this

side, then the mid-point is recovered from the neighbouring triangular element, if this has

already been constructed. Otherwise, it is constructed using a Bezier curve in the exact

same manner as for a curve. Details of the algorithm are presented in section 4.7.

4.4 Projection of Points on a Curve or Surface

During a mesh optimization procedure, new mesh points can be added to or moved

on the finite element surface mesh. For the surface mesh to remain in good agreement with

the geometry, each new point added or moved need to be projected to the closest quadratic

70

C1

P3

P2 P1

n3

n2

n1

T1

T2

Figure 4.6: Illustration of the contruction of a quadratic triangular element T1.The normals
n1 and n2, and their respective points, are used to contruct the Bezier curve to determine
the new quadratic point P1 shared by the quadratic triangle T1 and the quadratic edge C1.
Point P2, which is shared by T1 and T2, is constructed in a similar manner.

edge or quadratic triangular element.

The first step in the process of projecting a point to the geometry is to locate

the closest specific quadratic edge or triangle and then compute the closest point of that

entity to the point to project. To facilitate the location of the point on the boundary, an

association between the surface mesh used to create the geometry and the finite element

surface mesh forming the boundary of the volume mesh used in the finite element analysis

is maintained. This association is stored in file and updated during the mesh modification

procedure such that an edge always knows its closest quadratic element and a triangular

element its closest quadratic triangular element.

The projection of a point on a quadratic edge begins by projecting the point to a

linear edge element having the same two end points as the quadratic edge as shown on the

left side of Figure 4.7. This projection is done by evaluating the barycentric coordinate of

71

 a) Quadratic edge of the geometry

P

Pproj

Edge of the FEM surface mesh

Pin Pout

b) Quadratic triangle of the geometry

Figure 4.7: Illustration of the projection of a point to a quadratic edge on the left (a)
and a quadratic triangle on the right (b). The dotted lines represent the linear elements
corresponding to the quadratic entities.

the point to project on the linear edge, shown in dashed in the Figure, to find the closest

point of that edge to the projection point. If the projected point is inside that linear element,

then that closest point is projected to the associated quadratic curved giving the desired

location on the quadratic curve. If the closest point is outside the segment, as indicated by

the value of the barycentric coordinates previously evaluated, then the adjacent element in

the same topological patch is tested using the same procedure. If the adjacent element is a

vertex element, shown as small circle in the Figure, then the end of a topological curve is

reached and the point associated to the vertex element is returned as the projected location.

For quadratic triangular elements, it is necessary to modify that method to take

into account the curvature of the boundary of the element. This is illustrated on the

right side of Figure 4.7, in which the quadratic triangle is shown with its associated linear

triangle. In this Figure, the point Pin is inside the quadratic element, but outside of the

linear element, while point Pout is outside of the quadratic element and inside the linear

associated one. In the case of triangular elements, the location step is the same as for

72

the quadratic edge case. The quadratic triangular element that is the closest to the linear

triangle element of the FEM surface mesh is retrieved (recall that this mapping is stored)

and the point is projected to the linear element associated to that quadratic element, that

is a linear element with the same corner points as the quadratic one. Then the search

proceeds through adjacent neighbouring elements until a quadratic element is found for

which its associated linear element contains the projected point. It is here that an extra

step is added compared to the edge case to determine whether the point projected to the

linear element is inside the quadratic element or outside of it (again using the barycentric

coordinate value as an indicator). If it is inside, then the point evaluated on that quadratic

element is returned. If it is outside, the neighbouring element is used instead and the

projected point on that quadratic element is returned.

This strategy is efficient because the mapping between the linear elements of the

surface finite element mesh and the corresponding quadratic closest elements is updated as

the mesh is refined or as points are moved. This mapping is also stored on file when the mesh

and the geometry are written and is recovered when they are read. Because a point added to

refine an edge or a triangle is always on that entity, it is always close to the initial quadratic

element and the location procedure only needs to visit a few elements. Furthermore, the

projection always constrains a point to be projected on elements of the same topological

patch to avoid deforming the surface mesh. It is also important to highlight that projecting

the point to the linear element associated to the quadratic element and travelling along

the surface of the geometry avoids problems that could occur when using a spatial location

approach, that is a search that considers the entire volume contained by the geometry rather

73

than travelling along the surface of the geometry, when another part of the same topological

patch would be close to itself. A simple example is that of a cylinder squashed to be nearly

flat with two parts of the surface of the same topological patch being at a close distance

from each other. If a spatial search was used on a squashed cylinder, a point added to

split a triangular element on the top surface could possibly end up being projected on the

bottom part of the cylinder, which would result in a defective mesh.

4.5 Possible Higher Order Extensions

Although the geometry reconstruction presented here uses quadratic finite ele-

ments, it could easily be extended to the use of higher order polynomials or Bezier curves.

Such extension has been presented by Owen and White (2003), who have also leveraged

the work of Walton and Meek (1996). To accomplish this, one does not need to change the

procedures for topological surface reconstruction and normal estimation, which are actually

very similar to the procedures used by Owen and White (2003). The main difference is

the need to store the reconstructed Bezier curves, or the normals used to construct them.

Moreover, each fourth-order Bezier patch, which can be constructed from these Bezier curves

following the approach suggested by Walton and Meek (1996), would require the storage of

additional control points.

It is worthwhile to mention that the estimation of the normals presented here,

which takes into account both the topology and the curvature of the geometry, can also be

beneficial for the case of higher-order extensions, because the construction of higher order

curves with improper normals, such as in the cylinder example mentioned earlier, would

74

lead to similar problems as for lower-order elements.

In the present thesis, the decision was made to use quadratic elements, rather

than higher-order ones, because the former are simple to implement and sufficient for mesh

adaptation using linear finite element interpolation functions. Higher-order elements would

have the advantage of being sufficiently smooth for use in higher-order FEM and would also

allow an evaluation of the maximum and minimum curvatures of the surface at a point,

which would be beneficial in future work on anisotropic mesh generation (see Frey and

George (1999) for a different approximate approach).

4.6 Implementation Note on theMesh-Based Data Structure

In order to minimize the amount of code needed for manipulating the geometry,

it is stored with a combination of a mesh class, as presented in Chapter 3, and a list

of geometric elements. The mesh class stores the topology of the geometry along with

the point coordinates associated with the geometry elements. To each geometric element

corresponds a linear element in the mesh class for the geometry. The list of points for

each geometric element is ordered such that the first points are the ones corresponding to

the linear element. This way, the linear element associated to a quadratic element can be

reconstructed simply by reading the first points of the quadratic element and can be used

in the projection procedure as explained previously.

The significant advantage of using an FEM mesh class to store the topology of the

geometry is that all algorithms implemented to manipulate the topology of the mesh are

available to manipulate the geometry simply by using the topological cell key for geometric

75

elements. This greatly facilitates the implementation of the projection of points to geometric

entities.

Furthermore, the implementation already makes it possible to modify the geometry

to add or remove geometric elements and dynamically adjust the topology of the geometry.

This allows for future improvements, such as optimizing the geometry construction to mini-

mize its deviation from an available CAD geometry, or to minimize the number of elements

used in the geometry to represent a surface, which can lead to significant improvement in

performance.

4.7 Pseudo-Code for the Geometry Algorithms

This section presents the pseudo-code for the algorithms described in this chapter,

which briefly are:

• Algorithm 1: the reconstruction of the topology of a surface mesh from a tessellation

• Algorithm 2: the identification of elements of a same topological patch with a unique

family id

• Algorithm 3: the identification of elements that need to be grouped in the same

topological patch

• Algorithm 4: the computation of normals on topological curves of the surface

• Algorithm 5: the reconstruction of quadratic edges and triangles from a topologically

valid FEM surface mesh

76

Algorithm 1 Surface Mesh Reconstruction
Input. A tessellation T , made of a set of n triangular elements representing the surface of
a geometry, but without any elements of lower topological dimension to represent discon-
tinuities in surfaces and curves. The maximum angle β between two adjacent elements, to
indicate that there is a discontinuity in a surface or curve.
Output. A surface meshM with edge elements to represent discontinuities in surfaces and
vertex elements to represent discontinuities in curves.
1: Orient faces in each topological patch to have consistent normals
2: for each triangle elements t ∈ T do
3: for each face f of triangle t do
4: Find element neighbor Eneighbor of lowest topological dimension across face f
5: if Eneighbor is a triangle element and has a lower element id than t then
6: Compute angle θ between triangle t and Eneighbor
7: if θ is greater than β then
8: Create new edge element on face f and insert it in T
9: for each edge element e ∈ T do
10: for each end point p of edge e do
11: Find element neighbor Eneighbor of lowest topological dimension across end point p
12: if Eneighbor is an edge element and has a lower element id than e then
13: Compute angle θ between edge e and Eneighbor
14: if θ is greater than β then
15: Create new vertex element on end point p and insert it in T

Algorithm 2 Create Families
Input. A mesh M .
Output. A set of n family ids F , stored on the mesh M , with one family flag per element.
Each family id uniquely identifies one topological element patch.

1: Set number of families Nf to zero.
2: Create an integer data on element to store the family id for each element.
3: Initialize family id on all elements to -1 (not set yet).
4: Initialize FindElementsInTopologicalPatch.
5: for topological dimension td = 0 to SpaceDimension do
6: while Found a new element Etd of topological dimension td, with the family id not

set yet. do
7: Increment Nf
8: FindElementsInTopologicalPatch(M,Etd, Epatch)
9: Set family id for all elements in Epatch to Nf

77

Algorithm 3 Find Elements in Topological Patch
Input. A mesh M and an initial element Ei.
Output. The list of elements that belong to the same topological element patch as Ei.
1: Create data on mesh elements to store a Boolean flag Ftraversed for element that have
been traversed.

2: Set all flags Ftraversed to false.
3: Create an element stack Selement.
4: Initialize Selement with first element Ei in topological element patch.
5: Set Ftraversed to true for Ei
6: Create an array of element key Epatch to store the keys of elements that were found to
be in the current patch.

7: Initialize Epatch with first element Ei in topological element patch.
8: while Stack Selement is not empty do
9: Remove element Ej off the stack Selement
10: for each face f of element Ej do
11: Get the neighboring element Eneighbor of lowest topological dimension for Ej

across f
12: if the topological dimension of Eneighbor equals that of Ej and Eneighbor has not

been traversed then
13: Set Ftraversed to true for Eneighbor
14: Add Eneighbor to stack Selement to check its neighbors
15: Add Eneighbor to Epatch

78

Algorithm 4 Point Normal Computation on Curves
Input. A mesh M .
Output. Unit normals at points of the surface mesh.
1: Allocate data for point normals and set all normals to zero.
2: Compute and store the normals to each face of the surface mesh.
3: for each surface element Es in M do
4: Retrieve normal Enormal for face Es
5: for each point Pi of Es do
6: Add Enormal to the normal at the point Pnormal
7: Reset all normal for points of edge elements to zero.
8: for each edge element Eedge in M do
9: Find triangular element neighbors Etriangle of Eedge
10: Set the number of weights nw and the weights W to zero.
11: for each Etriangle do
12: Compute the average curvature C on Etriangle
13: Compute the distance D between the center of Etriangle and Eedge
14: Set Wnw = C / D
15: Increment nw
16: if the sum of W is smaller than 0.001 then
17: Reset W to 0.5
18: else
19: Normalize W with the sum of W
20: Set edge normal Nedge to zero.
21: for each Etriangle do
22: Multiply the face normal of Etriangle by W for that triangle and add it to Nedge
23: Add Nedge to Pnormal for each point of Eedge
24: Make all point normal unit normals.

79

Algorithm 5 Quadratic Geometry Reconstruction
Input. A mesh M .
Output. A geometryG representing a smoother version of the surface mesh using quadratic
polynomials.
1: Compute the surface normals using SurfaceNormalComputation(M,N).
2: Create one vertex geometric element for each vertex element in M .
3: for each edge element Eedge in M do
4: ComputeTopologicallyAdjustedNormals(Eedge, Fedge, Nadjusted).
5: ComputeMidPointUsingBezierCurve(Eedge,Nadjusted, Pm).
6: Insert the mid-point Pm in G.
7: Create a quadratic geometric element using the Pm and the end points of Eedge and

insert in G.
8: for each triangle element Etriangle in M do
9: Create a new quadratic triangle element Gtriangle using the points of Etriangle and

insert it in G.
10: for each face F of Etriangle do
11: Initialize mid-point id to null Pmid.
12: Find the neigbor element Eneighbor across face F .
13: if Eneighbor is an edge then
14: Recover the geometry edge Gedge associated to Eneighbor
15: Set Pmid to the mid-point of Gedge.
16: else if Eneighbor is a triangle and element id of Etriangle is less than that of Eneighbor

then
17: Recover edge face Fedge of Etriangle
18: ComputeTopologicallyAdjustedNormals(Etriangle, Fedge, Nadjusted)
19: ComputeMidPointUsingBezierCurve(Fedge, Nadjusted, Pm).
20: Insert new point in G using coordinates Pm and set new point id to Pmid.
21: else if Eneighbor is a triangle and element id of Etriangle is greater than that of

Eneighbor then
22: Recover the mid-point Pmid−face of the face of the triangle Eneighbor that corre-

sponds to F .
23: Set Pmid to the mid-point of Gedge.
24: Set Pmid for face F of Gtriangle.

80

81

Chapter 5

Governing Flow Equations and

Space-Time Finite Element

Discretization

5.1 Introduction

This chapter presents the governing equations for laminar incompressible unsteady

flows and the selected finite element discretization. In the context of the current research,

the emphasis for the solver was on the selection of an existing time-discontinuous space-time

formulation that could easily be extended to a time-continuous space-time formulation to

investigate the proposed unsteady mesh adaptation method. For this thesis, the application

examples will be limited to incompressible laminar flows. It is for these cases that a time-

continuous space-time formulation has been developed and compared to an available time-

discontinuous formulation using spectral finite elements (Pontaza and Reddy (2004)).

The present approach could potentially extend to other partial differential equa-

tions treatable with the finite element method, provided that a suitable time-continuous

formulation and an error estimator can be derived. In that respect, it has been observed

that the time-discontinuous Galerkin formulation for unsteady problems has mathematical

properties that are analogous to that of the steady case (Johnson et al. (1984)). Further-

more, it has been shown that, for the finite element method, the proofs of solution existence,

stability and uniqueness for an advective-diffusive problem are the same for time-continuous

and time-discontinuous space-time formulations with the exception that, in the latter case,

an additional term is present in the variational formulation to account for projection of the

solution from one time slab to the next (Onate and Manzan (1999)). Consequently, properly

derived and verified finite element formulations for steady problems can readily be extended

to the unsteady case using a space-time formulation (Shakib (1988)), either time-continuous

or time-discontinuous. In practice, this facilitates the derivation of time-continuous space-

time formulations for various partial differential equations. More research is needed on error

estimators, especially for the case for which multi-criteria error estimators are needed, but

there is sufficient evidence to indicate that the proposed unsteady mesh adaptation method

may possibly be extended to all partial differential equations, making it a potent method

to explore (French and Peterson (1996), French (1999), Onate and Manzan (1999), Pontaza

and Reddy (2004), Réthoré et al. (2005)).

82

5.2 Governing Equations for Viscous Incompressible Flows

5.2.1 Unsteady Incompressible Navier-Stokes Equations

Consider an incompressible viscous fluid in a space domain Ω ∈ <d, d = 2 or 3,

during a time interval t ∈ (0, T) . The governing equations for laminar incompressible flows

include the equation for the conservation of mass and the momentum equation (Newton’s

second law). In Cartesian coordinates, they are written as (Gresho and Sani (1998)):

Conservation of Mass:

∇ · u = 0 (5.1)

Momentum:

ρ

µ
∂u

∂t
+ (u ·∇)u+ f

¶
−∇ · σ=0 (5.2)

where f is the body force vector (per unit mass) and ρ is the density. Besides the velocity

vector u, the system of the above equations contains the total stress tensor σ, which is also

unknown; to ensure closure, it is supplemented by a stress-strain relationship, also referred

to as a constitutive relationship. For the simple case of Newtonian fluids, this relationship

is taken to be (Gresho and Sani (1998)):

σ (u, p) = −pI+ 2µε (u) (5.3)

ε (u) =
1

2

³
∇u+ (∇u)T

´
where ε (u) is the viscous stress tensor, µ is the shear viscosity of the fluid and p is the

pressure. The resulting momentum equations are known as the Navier-Stokes equations.

In many applications, the equations are presented in dimensionless form by nor-

malizing the variables by appropriate scales. Numerically, this has the additional advantage

83

of making the solution variables of order unity, which minimizes the round off errors re-

sulting from large differences in flow variable numerical values (Gresho and Sani (1998),

Langtangen (1999)).

5.2.2 Space-Time Domain

In a space-time approach, the d-dimensional spatial domain Ω in <d, with d = 2 or

3 for the Navier-Stokes equations, is extended to include the time axis leading to a unified

space-time domain Ω× (0, T) of dimension d+1. The dependent variables for the problem

and the interpolation functions used in the finite element discretization are therefore a

function of both space and time.

In the time-discontinuous case, the time domain (0, T) is partitioned into N time

intervals, such that 0 = t0 ≤ t1 ≤ ... ≤ tN = T . A subinterval of the time domain will be

referred to as a slab with Sn = Ω× (tn, tn+1), where 0 ≤ n ≤ N − 1. Figure 5.1 illustrates

a time slab on the left and contrasts it with the time-continuous case on the right where a

fully unstructured mesh is used for the entire time interval (0, T).

In the time-discontinuous case, solving an unsteady problem involves computing

the solution sequentially for each time slab, starting with an initial solution at t0, in a

fashion analogous to that used by classical time-stepping approaches. In contrast, in the

time-continuous case, the entire space-time domain is considered at once, which is analogous

to the solution of a steady problem in the entire space domain.

84

Unstructured M esh for
Fully Coupled Space-T ime
Formulations

x

t

t0

tT

x

t

tn

tn+1

Unstructured M esh for
Decoupled Space-Time
Formulations

Figure 5.1: Illustration of representative meshes for a space-time slab (left) and a fully
coupled, or time-continuous, space-time mesh (right).

5.2.3 Boundary and Initial Conditions

For the problem modelled by the Navier-Stokes equations to be well defined math-

ematically, proper boundary conditions must be imposed on the boundary of the solution

domain along with a compatible initial condition. In this thesis, boundary conditions of the

Dirichlet and Neumann type will be applied as shown below:

u = g, on ΓD

n · σ = h, on ΓN

(5.4)

where ΓD and ΓN are complementary subsets of the boundary Γ and n is a normal unit

vector pointing outwards of the domain Ω.

Note that the stress-divergence form of the viscous term in the Navier-Stokes

equations was chosen because it leads, in the weak formulation shown later, to natural

boundary conditions of the Neumann type that represent the physical forces (Gresho and

Sani (1998)).

The initial condition for the incompressible Navier-Stokes equations consists of a

85

divergence-free velocity field everywhere in the domain Ω0:

u (x, 0) = u0 (5.5)

where u0 satisfies the equation 5.1. Note that there is an infinite number of such fields and

the one chosen must satisfy the boundary conditions at time t = 0 for the incompressibility

condition to be satisfied. An improper initial condition, such as imposing a null velocity

field when it does not satisfy the boundary condition for the problem at t = 0, violates the

incompressibility condition and can compromise the convergence of the solution procedure

Gresho and Sani (1998).

In this thesis, in a fashion similar to the suggestion of Gresho and Sani (1998) for

time-stepping methods, it is chosen to use a boundary condition that is a function of time

to simulate the acceleration of the flow from rest at t = 0. This approach ensures that

the incompressibility condition is satisfied at t = 0 not only inside the solution domain,

but also at its junction with the boundary of the domain where the boundary conditions

are imposed. The same approach was also chosen by Pontaza and Reddy (2004) for their

fully coupled space-time formulation of the incompressible Navier-Stokes equations. Two

functions are employed. The first one is a linear ramp:

n · u = umax tτ for 0 ≤ t ≤ τ

n · u = umax for τ ≤ t ≤ T
(5.6)

where n is a normal unit vector pointing outwards of the domain Ω, u is the velocity vector,

umax is the maximum magnitude of the velocity (with an algebraic sign), t is the time and

τ is the time period for which the boundary condition is modified by the ramp function.

86

The second time function used varies smoothly and includes a hyperbolic tangent function:

n · u = umax tanh
¡
t
τ

¢
for 0 ≤ t ≤ T (5.7)

5.3 Finite Element Discretization

5.3.1 Overview of the Galerkin Finite Element Formulation

In the finite element method, a solution to a partial differential equation is sought

on a partition of the solution domain, which was previously defined as the finite element

mesh. On that mesh, the primary variables for the PDE problem are approximated over

an element using piecewise functions, here polynomial expressions are considered. For the

Navier-Stokes equations, using a formulation over the space-time domain with polynomial

interpolation functions, the primary variables, which are the velocity and pressure, take the

forms (Donea and Huerta (2003)):

uh (x, t) =
mX
j=1

ψj (x, t)uj (5.8)

ph (x, t) =
mX
j=1

φj (x, t) pj

where ψj and φj are the interpolation (or shape) functions for velocity and pressure re-

spectively, uh is the interpolated velocity vector on the element, uj is the velocity vector

at node j of the element, ph is the interpolated pressure and pj the pressure at node j.

Notice here that the interpolation functions are a function of both the space and time co-

ordinates since a combined space-time discretization is used. This is in contrast to a more

classical discretization in space where the interpolation function are only a function of the

space coordinates and a different discretization in time is used (frequently a finite difference

87

discretization in time) (Donea and Huerta (2003)):

uh (x, t) =
mX
j=1

ψj (x)uj (t) (5.9)

ph (x, t) =
mX
j=1

φj (x) pj (t)

In a weighted-residual method, the original PDE is modified by being multiplied

by test functions, vh for velocity and qh for pressure and integrating by parts the solution

domain Ω such that the weak formulation for the discretization in space becomes (Donea

and Huerta (2003)):Z
Ω
vh ·

µ
ρ
∂uh
∂t

¶
dΩ+

Z
Ω
vh · (ρuh ·∇)uhdΩ+

Z
Ω
∇vh· (−phI+ 2µε (uh)) dΩ (5.10)

+

Z
Γn

vh · hdΓ−
Z
Ω
ρvhfdΩ+

Z
Sn

qh∇ · uhdΩ = 0

The interpolation functions cannot be chosen arbitrarily for the problem to be

properly mathematically defined and have a unique solution. The polynomial interpolation

functions for the velocity ψj and for the pressure φj are chosen from wider spaces of trial

functions that are not necessarily polynomials. In the case of the Navier-Stokes equations,

the finite element method requires that these trial functions for velocity and their first

derivatives be square-integrable, while it is sufficient for trial function for the pressure to be

square-integrable in the solution domain Ω (Donea and Huerta (2003)). This will be briefly

formally introduced, but more details can be found in books on the finite element methods

such as Donea and Huerta (2003).

First, the space of functions that are square integrable over the domain Ω is noted

L2 (Ω) and defined as:

L2 (Ω) =

½
f : Ω→ <|

Z
Ω
f2dΩ <∞

¾
(5.11)

88

where f is a function of a point x ∈ Ω such that f (x) ∈ < and the square of the integral

of such function is finite. This space is equipped with the inner product :

(u, v) =

Z
Ω
uvdΩ (5.12)

and its induced norm:

kuk0 =
q
(u, u)0 (5.13)

Next, the Sobolev space of order 1 for functions and derivatives that are square

integrable is defined as:

H1 (Ω) =

½
u ∈ L2 (Ω) | ∂u

∂xi
∈ L2 (Ω)

¾
i = 1, ..., d (5.14)

and is equipped with the inner product:

(u, v)1 =

Z
Ω

Ã
uv +

nX
i=1

∂u

∂xi

∂v

∂xi

!
dΩ (5.15)

and its induced norm:

kuk1 =
q
(u, u)1 (5.16)

This Sobolev space H1 (Ω) contains infinitely many functions (Donea and Huerta

(2003)). For the current purposes, it is necessary to constrain these possible functions to a

set of finite functions that can be used on the partition of the domain Ω previously defined

in Chapter 2 as the finite element mesh. Therefore, a finite dimensional subspace H1h ⊂

H1 (Ω) is defined here for piecewise-polynomial C0-continuous interpolation functions over

the elements of the finite element mesh as:

H1h =
n
ϕh|ϕh ∈ C0 ¡Ω¢ ,ϕh|Ωe ∈ Pm,∀Ωe ∈ Tho (5.17)

89

where ϕh is the interpolation function, Ωe denotes the element of the the finite element

mesh Th and Pm is a polynomial of order m.

Furthermore, the test functions must properly be chosen for the set of equations

generated from the weak form 5.10 to be independent from each other and for the solution

to the problem to be uniquely defined. In a Galerkin method, these test functions are chosen

from the same space as for the trial functions, but with a small distinction for their values on

the boundary of the domain ΓD where Dirichlet boundary conditions are imposed. The trial

functions must be such that they satisfy the Dirichlet boundary conditions on ΓD, whereas

the test functions must vanish on ΓD. More precisely, for the incompressible Navier-Stokes

equations, the trial functions and test functions are chosen here as (Donea and Huerta

(2003)):

Shu =
n
uh|uh ∈ H1h, uh = u on ΓD

o
(5.18)

V hu =
n
vh|vh ∈ H1h, vh = 0 on ΓD

o
Shp =

n
ph|ph ∈ H1h

o
V hp =

n
qh|qh ∈ H1h

o
(5.19)

where Shu is the space for trial functions for velocities, V
h
u the space for test functions for

velocities, Shp the space for trial function for pressure and V
h
p the space for test functions

for pressure.

Going back to the Navier-Stokes equations, the elementary finite element system

of equations is obtained by substituting the equations for the interpolation functions from

equations 5.8 into equations 5.10, the details of which can be found in (Donea and Huerta

(2003), Gresho and Sani (1998)).

90

A global system of algebraic equations for the entire PDE is obtained by assem-

bling the contributions of the elementary system for each element in the mesh assuming

that the primary variables are continuous across adjacent elements and that the net flux

across adjacent faces vanishes. With the inclusion of proper boundary conditions and initial

conditions, an approximate solution to the resulting system of algebraic equations is sought

using appropriate numerical methods, to be discussed briefly in the section 5.4. The reader

interested in a more detailed discussion on assembly procedures for the FEM can consult

Langtangen (1999) among others.

5.3.2 Choice of Elements

The choice of elements in the application of the finite element method to the

incompressible Navier-Stokes equations is a very delicate process. Not all choices lead

to numerical schemes with a unique and stable numerical solution, even for well-posed

mathematical problems (Gresho and Sani (1998)).

One criterion that can be used to select a numerically stable element is the

so called Ladyzhenskaya-Babuska-Brezzi (LBB) (Ladyshenskaya (1969), Babuska (1973),

Brezzi (1974)) or “inf-sup” condition, which is for steady Stokes flow (Donea and Huerta

(2003)). The LBB compatibility condition impose requirements on the dimension of the

continuous and discrete spaces for the velocity and pressure. In terms of the polynomial

interpolation functions used this translates to the requirement that the order of the poly-

nomial for the velocity be of higher order than that of the pressure. If this requirement is

satisfied, then the LBB compatibility condition guarantees the existence and uniqueness of

the solution. It is considered beyond the scope of this thesis to discuss this in details, but

91

the references above can be consulted for a more in depth treatment.

Although the LBB compatibility condition precludes the use of equal order inter-

polation functions for the velocity and pressure, so called stabilization methods have been

developed to circumvent the LBB compatibility condition and thereby allow for equal-order

interpolations for velocity and pressure (Donea and Huerta (2003)). Furthermore, they

have also been extended to the incompressible Navier-Stokes equations and such stabiliza-

tion methods are now considered standard practice for the finite element method (Donea

and Huerta (2003)).

For the stabilization method selected in the next section, linear finite element

interpolation functions are chosen because they are known to be of sufficiently high order

for the incompressible Navier-Stokes equations (Donea and Huerta (2003)), have been widely

studied (Franca and Frey (1992), Tezduyar and Behr (1994)), and have been also well tested

with the Hessian based error estimator briefly presented in the Chapter 2.

5.3.3 Galerkin / Least-Squares Formulation

In the context of the proposed space-time mesh adaptation, the primary selection

criterion for a stabilized formulation of the incompressible Navier-Stokes equations is its

applicability to unsteady problems and its extensibility to a time-continuous formulation.

Among the stabilization methods available, the category of methods referred to as Galerkin

/ Least-Squares formulations meet these requirements, although they are usually used in a

time-discontinuous framework (Donea and Huerta (2003)).

The formulation presented here follows the work of Tezduyar and Behr (1994),

Tezduyar et al. (1992), which was introduced under the name “Deforming-Spatial-Domain

92

/ Space-Time”, but is considered to be part of a wider family of stabilization methods

generally referred to a Galerkin / Least-Square formulations (GLS). Although the GLS

method was shown to be equivalent to the mini-element (N’dri et al. (2002)), the GLS

method was chosen over the mini-element approach because it is simpler to implement in

a fashion that is dimension independent. Furthermore, during the FEM assembly process,

the GLS method only requires that the first derivatives of the interpolation functions be

computed once per element. In contrast, the macro-element used in the approach of N’dri

(2001), requires that first derivatives be evaluated for the pressure interpolation functions

and for each of the sub-elements for the velocity interpolation functions. As that requires

d+ 1 evaluations of the first derivatives per element (recall that d is the space dimension),

as opposed to one evaluation per element for the GLS method, it appears that the GLS

method is more computationally cost-effective, especially in higher dimensions.

The GLS (or DSD/ST) method of Tezduyar and Behr (1994) can be summarized

as follows. For a slab element Sn, given un−, one needs to find uh ∈ Shu and ph ∈ Shp , with

∀vh ∈ V hu and ∀qh ∈ V hp , such that:
Z
Sn

vh ·
µ
ρ
∂uh
∂t

¶
dΩdt+

Z
Sn

vh · (ρuh ·∇)uhdΩdt+
Z
Sn

∇vh· (−phI+ 2µε (uh)) dΩdt

(5.20)

+

Z
Γn

vh · hdΓdt−
Z
Sn

ρvhfdΩdt+

Z
Sn

qh∇ · uhdΩdt

+

Z
Ωn

vn+ · ρ
¡
un+ − un−

¢
dΩdt+ STmom + STcont = 0 (5.21)

where the stabilization terms for the momentum equations STmom and for the continuity

93

equation STcont are

STmom =

nelX
e=1

Z
Sen

τmom
ρ

·
ρ

µ
∂vh
∂t

+ uh ·∇vh
¶
+∇qh −∇ · (µε (vh))

¸
(5.22)

·
·
ρ

µ
∂uh
∂t

+ uh ·∇uh
¶
+∇ph −∇ · (µε (uh))

¸
dΩdt (5.23)

STcont =

nelX
e=1

Z
Sen

τ cont∇ · uhρ∇ · vhdΩdt

and the stabilization coefficients are

τmom =

"µ
2

∆t

¶2
+

µ
2 kuhk
he

¶2
+

µ
4ν

h2e

¶2#−1/2
(5.24)

τ cont =
he
2
kuhk z (5.25)

with z = Re /3 if Re ≤ 3 or z = 1 otherwise. The local Reynolds number used to compute

z is defined as

Re =
kuhkhe
2ν

(5.26)

where kuhk is the average velocity on the element Sen, he is the element size defined below

(see equation 5.27) and ν is the kinematic viscosity.

Notice that this stabilized discretization is performed over the space-time domain

Sn = Ω × (tn, tn+1) and can be extended to the entire space-time domain Ω × (0, T), not

just a time slab, since nothing precludes the slabs from being refined and containing several

layers of elements. Furthermore, if time-continuous approximations are chosen, then the

term
R
Ωn
vn+ · ρ

¡
un+ − un−

¢
dΩdt that was necessary to transfer the solution from one time

slab to the next now vanishes (Onate and Manzan (1999)). However, with a finite element

method using piecewise-polynomials that are C0-continuous, this imposes the requirement

that the mesh points between the time slabs matches one to one. In this thesis, rather

94

then using fixed time slabs with continuous in time approximations, a fully unstructured

space-time mesh comprising the entire space-time domain Ω × (0, T) is chosen because of

the flexibility with which such a space-time mesh can be adapted. As mentioned before,

such a space-time mesh is of dimension d+1, which requires a 4-D mesh to address PDE’s

solved on a 3-D space domain.

The stabilization coefficients τmom and τ cont, which weigh the contributions of

the stabilization terms STmom and STcont with respect to the rest of the formulation, are

functions of ∆t and he, which are, respectively, the temporal and spatial lengths of the

element. The values of these characteristic lengths are known to have a strong effect on

the behaviour of the stabilized formulation (Mittal (2000)). For very small values of these

lengths, the formulation can exhibit oscillations in the pressure field, as for the case of a

standard Galerkin formulation, or oscillations in the velocity field at high Reynolds numbers.

To avoid excessive stabilization, it has been suggested that, for anisotropic simplicial meshes,

the most appropriate choice of spatial length he would be the minimum edge length for the

simplex (Mittal (2000)). However, in this thesis a more conservative approach was chosen,

in which the characteristic length was taken as

he = V
1
d
E (5.27)

where VE is the volume of the simplex and d is the space dimension. Further investiga-

tion would be needed in order to assess what is the most appropriate choice, but this is

considered future work that is beyond the scope of this thesis. It is recognized that over-

stabilization could lead to numerical solutions that are affected excessively by numerical

viscosity, thus corresponding to lower Reynolds numbers than the one computed from the

95

physical parameters for the problem (Gresho and Sani (1998)). This is a drawback from

which the mini-element of N’dri et al. (2002) does not suffer (there is no stabilization coef-

ficient to set in this case), but this is without loss of generality for the unified space-time

approach considered in this thesis.

5.4 Solution of Nonlinear Equations Using the PicardMethod

The presence of the nonlinear convective term in the Navier-Stokes equations re-

quires an appropriate treatment. Among the several available methods (Turek (1999)), it

was chosen in this thesis to use the simplest one, namely a simple Picard iteration method

(Langtangen (1999)), which will be briefly presented here.

The discretization of the Navier-Stokes equations leads to a nonlinear set of alge-

braic equations of the form:

A (U)U = b (5.28)

This can be linearized by lagging the solution vector by one iteration to solve the linear

system

A
³
Uk
´
Uk+1 = b (5.29)

iteratively by substituting Uk ← Uk+1 after each iteration. This process starts from a

specified initial solutionU0 and is repeated until either convergence is reached or the number

of iterations reaches a maximum value. In this thesis, the convergence criterion was chosen

as: °°Uk+1 −Uk
°°

kUkk ≤ 10−4 (5.30)

96

As mentioned previously, the present approach uses the null velocity field (and

pressure field) with suitable time-varying boundary conditions. Notice that, for the in-

compressible Navier-Stokes equations and the null initial solution, the first Picard iteration

corresponds to solving a Stokes problem with the same boundary conditions. Because the

boundary conditions are chosen to simulate the acceleration of the fluid from rest, then this

choice seems congruent with the physical problem.

It is known that the convergence of the Picard method can become progressively

slower as the Reynolds number is increased, and even suffer from oscillations. Nevertheless,

this should not be a problem for the cases considered in this thesis, which correspond to

relatively low Reynolds number flows (Re ≤ 800). Faster and more sophisticated methods

can be considered in future extensions of this work (Turek (1999), Lohner (2001)).

97

98

Chapter 6

Anisotropic Mesh Optimization

Algorithms in 2-D, 3-D and 4-D

6.1 Introduction

This chapter presents the mesh optimization algorithms used in the mesh adapta-

tion procedure to directionally adjust the number and locations of mesh points in order to

better satisfy the error estimator.

The present approach makes two original contributions, which distinguish it from

previous 3-D anisotropic mesh modification procedures (Tam et al. (1998), Tam et al.

(2000), Belhamadia et al. (2004b), Bottasso (2004), Gruau and Coupez (2005), Li et al.

(2005)). First, the mesh modification algorithms have been designed to operate in spatial

domains of dimensions 2, 3 and 4, which paves the way towards the extension of mesh

adaptation to the time-continuous space-time formulation in 4-D. Second, a novel mesh

smoothing algorithm based on the inscribed ellipsoid was conceived and shown to be suc-

cessful in improving the quality of the mesh without compromising its anisotropy.

The presentation of the algorithms begins with the anisotropic measure of quality

integrated in the mesh optimization procedure. The next section describes the fundamental

mesh modification algorithms employed, followed by explanations of the manner by which

they are combined together to form a mesh adaptation procedure driven by the error esti-

mator, which was presented in Chapter 2. The mesh smoothing algorithms are presented

afterwards and the chapter ends with the presentation of the pseudo-code for the meshing

algorithms.

6.2 Anisotropic Element Quality Measure

Several of the mesh optimization algorithms presented in the remaining of this

chapter utilize an anisotropic measure of quality for mesh elements. The choice of element

quality measure is important, because it is used in the edge collapsing, edge swapping and

point relocation operations, such that these mesh modifications are accepted only if they

locally improve the quality of the mesh. As mentioned in Chapter 2, an appropriate element

quality measure should be able to detect all types of problematic elements.

Since the primary objective of the mesh optimization presented subsequently is

to modify the density of the mesh by adjusting the metric edge length, a quality measure

was chosen, among the ones available in the literature (George (2001)), that includes the

metric edge length among the quantities used to measure the quality. More specifically, the

99

element quality measure is defined as:

Q =
1

V 2UnitEdge

det (M) · VE · |VE |³
1
Ne

PNe
i=1 Lmi

´2n (6.1)

where n is the topological dimension of the element, det (M) is the determinant of the

average metric on the element, VE is the Euclidean volume given and |VE| is its absolute

value, Lmi is the metric edge length and Ne is the number of edges of the element. The

measure of quality Q is normalized such that the minimum quality is zero and the maximum

quality is 1.0; note that the Euclidean volume of a simplex of unit edge length is given by:

VUnitEdge =

√
n+ 1

n!
√
2n

(6.2)

and the signed volume of a d-dimensional simplex in a d-dimensional space is given by

(Heckbert (1994)):

Vd =
1

d!
det

·
(x1 − x0) (x2 − x0) ... (xd − x0)

¸
(6.3)

where each column of the d × d determinant is the difference between two vertices of the

simplex. The non-signed volume of a simplex of topological dimension n ≤ d is computed

by (Heckbert (1994)):

(Vn)
2 =

µ
1

n!

¶2
det



v(1, 1) v (1, 2) ... v (1, n)

v(2, 1) v (2, 2) .. v (2, n)

...

v (n, 1) v (n, 2) ... v (n, n)


(6.4)

where v (i, j) = (xi − x0) · (xj − x0). Note that equation 6.4 is used only for a simplex of

topological dimension lower than the space dimension (n < d) and does not provide any

information concerning the sign of the volume, in contrast to equation 6.3.

100

Also, the sign of the volume of the simplex VE is preserved in equation 6.1 through

the use of the absolute value to ensure that the measure of quality can detect elements that

may become inverted during intermediate stages of the mesh optimization process (in which

case the edge collapsing, edge swapping or point relocation would be rejected to prevent

the creation of elements with negative volumes).

The metric used to evaluate the element quality, through equation 6.1, is a constant

metric for the element taken as the arithmetic average of the metrics stored at the points

of the element. This choice was made because it is faster to compute the quality using

one metric rather than several (recall from Chapter 2 that computing the volume with a

metric that varies on the element requires numerical integrations). The question can be

raised as to whether a constant metric is sufficiently accurate for the current purposes. In

the mesh optimization algorithms presented in the following sections, the decision to refine

or coarsen the mesh is based on the measure of the metric length of edges, not on the

basis of the element quality, which is only used to prevent collapsing an edge if this would

result in deterioration of the mesh quality (this is discussed in more detail in the sections

to follow). Furthermore, as the mesh adaptation process is repeated for several cycles,

and the FEM solution is recomputed between cycles, the mesh would become more refined

in regions where the error estimator requires it. Therefore, the metric variation over the

element would tend to diminish, which would also reduce the difference between the quality

measured with a constant average metric and that from a varying metric over the element.

Consequently, as a compromise, it was chosen to use a constant metric for the evaluation of

the quality, although a precise measurement of the impact on the accuracy of the measured

101

quality on the mesh optimization procedure is left as future work.

Following the technique presented by George (2001), the variation of this measure

of quality for a triangle in a 2-D space has been plotted in Figure 6.1. In order to assess

how the measure of quality varies when an element is deformed, a simple experiment was

performed with the triangle having two fixed vertices located at (0.0,−0.5) and (0.5, 0.0)

in the x − y plane and a third vertex moving on the nodes of a 100 × 100 mesh within

the intervals 0 ≤ x ≤ 2 and −1 ≤ y ≤ 1. Isocontours of the element quality for different

positions of the movable vertex have been plotted in Figure 6.1. As expected, when this

vertex is located at (1.0, 0.0), the triangle is equilateral and its quality is equal to 1, whereas,

when it is on the y−axis, the element has a zero volume and its quality takes the value 0.

The quality of the element diminishes progressively when this vertex moves away from the

location at which the triangle is equilateral.

Two variations of the same measure of quality were compared. The first one,

corresponding to the left side of Figure 6.1, was computed with equation 6.1, whereas the

one on the right was computed with the square root of the same quantity. By inspection

of the plots for these two measures of quality, the quality for the one on the left shows a

more rapid change as the moving vertex moves away from the location (1, 0) for which the

quality has a maximum value of 1. Therefore, the quality measure given by equation 6.1

was chosen instead of its square root because it is more sensitive to the variation of the

shape of the element.

102

Figure 6.1: Isocontours of the anisotropic measure of quality given by equation 6.1 (left)
and its square root (right). The quality is measured for a triangle with two fixed vertices
at (0.0,−0, 5) and (0.0, 0.5) and a third vertex at the position (x, y).

6.3 Mesh Modification Operators in 2-D, 3-D and 4-D

6.3.1 Edge Splitting

In order to increase the density of mesh points, a simple edge splitting procedure

is used. Conveniently, edge splitting is very easy to implement in a dimension independent

way to operate in 2-D, 3-D, and 4-D, both inside the mesh and on its boundaries.

The key idea to implement the edge splitting in an arbitrary dimension is to realize

that all elements using the two points of the edges need to be split into two copies, as shown

in Figure 6.2. The first element copy has the same mesh point ids as the original element

to be split, but with the point id corresponding to the first edge point that is replaced with

the point id for the new splitting point. Recall from Chapter 3 that each element stores

its point ids in a tuple, so the point id to replace, here the point id for the first point of

the edge, can be found simply by searching through the tuple of point ids for the element

103

First Copy

Second Copy

Edge to Split

Split Edge

Figure 6.2: Illustration of edge splitting procedure by making two copies of each element to
split and replacing one edge end point by the split point for each copy.

(which contains at most five points for a simplex in 4-D). Similarly, the second element

copy has the same mesh point ids as the original element to be split, but the mesh point id

corresponding to second edge point id is now replaced by the new splitting point id. Hence,

with this simple approach splitting an edge in arbitrary dimensions is reduced to finding

the list of elements that are neighbours of the edge, making two copies of each element,

replacing the point id corresponding to the first edge point in one copy with the split point

id and replacing the point id corresponding to the second edge point in the second copy.

Conveniently, this procedure works equally for edges that are inside the mesh domain or on

its boundaries and properly handles elements of all topological dimensions (recall that the

topology of the mesh is stored using edges in 2-D, edges and triangles in 3-D and edges,

triangles, and tetrahedra in 4-D).

104

T3
T1 T2

Split Point Projected to
Convex Geometry

Split Point Projected to
Non-Convex Geometry

Figure 6.3: Illustration of splitting an edge on the boundary mesh. On the left, the split
point is projected to the boundary of a convex geometry. On the right, splitting the triangle
T3 near the boundary of a concave geometry by point projection would result in inverted
elements.

When edge splitting is performed on the boundary of the mesh, this simple pro-

cedure needs to be enhanced to ensure that the new splitting point is located as closely

as possible to the physical boundary of the geometry. For convex geometries, the splitting

point is simply projected to the geometrical boundary, as shown on the left side of Fig-

ure 6.3, using the projection procedure that was described in Chapter 4 and the splitting

procedure explained previously.

When applied to non-convex geometries, however, simple projection of the splitting

point on the geometrical boundary may produce interior elements that are inverted such

that their volume would become negative. This problem is illustrated in Figure 6.3, in

which projecting the splitting point to the non-convex geometry after splitting the triangle

T3 would result in inverted elements. Some authors have addressed this problem by first

splitting all edges that need to be split, then projecting the splitting point to the geometry

105

and finally correcting the shapes of the problematic elements (Li et al. (2005)).

Here, a different approach is used, in which, before it is completed, splitting is

first simulated to determine whether it would lead to invalid elements. Recall that element

splitting operates by making two copies of each element 6.2. The locations of the points

for the first element copy can be simulated by temporarily displacing the second point of

the edge to the splitting point location. The element quality is measured for all elements,

using the formula in equation 6.1, in this configuration and if any elements have a quality

below a specified threshold, then the split is rejected and the edge end point is restored to

its initial location. The second copy can be simulated by moving the first edge end point,

after the first one has been restored to its original location.

As explained in a subsequent section, the splitting is applied to longer edges first.

It was found by testing this splitting simulation strategy on non-convex geometries that

this strategy had a tendency to prevent the splitting of edges too frequently on non-convex

geometries whose curvatures were large by comparison to the local mesh size. In other

words, when the longest edges were not split first, the simulated approach was found to

prevent the surface mesh from being sufficiently refined (such that most edges would be

below a specified metric edge length threshold).

6.3.2 Edge Collapsing

The edge collapsing algorithm, illustrated in Figure 6.4, requires more attention

than the splitting algorithm, because it needs to be constrained to avoid damaging the

topology of the boundary mesh in some cases and also to avoid creating inverted elements

inside the domain as well as near the boundary.

106

Edge
Collapsing

Figure 6.4: Illustration of edge collapsing.

Definition 4 (POINT TOPOLOGICAL DIMENSION) The topological dimension of

a point in a finite element mesh is the topological dimension of the element1, among the

elements using that point, that has the minimum topological dimension.

The collapsing algorithm begins by determining whether the edge collapsing is

topologically admissible. Two tests are made. First, the topological dimension of the end

point (as defined above) of the edge to be removed is compared with that of the end point

to be retained. If the topological dimension of the point to be removed is lower than that

of the point to be retained, edge collapsing is rejected. Illustrations of an edge that is not

topologically collapsible and one that is topologically collapsible are shown in Figure 6.5.

When the topological dimensions of both end points of an edge are equal and lower

than the space dimension, an additional test must be performed to determine whether the

edge is on the boundary mesh or in the interior of the mesh. In this case, edge collapsing can
1The topological dimension of an element can be defined as the number of independent parameters needed

to locate a point on that element. Hence, the topological dimension of a vertex is 0, an edge is 1, a triangle
is 2, a tetrahedral element is 3 and a simplex in a 4-D space is 4.

107

P1

E2

P4

E1

P3

Non-collapsible edge E1 Collapsible edge E2

P2

Boundary
edges

Figure 6.5: Illustrations of an edge that is not topologically collapsible and an edge that is
topologically collapsible.

only be attempted if both end points of the edge belong to the same topological patch (please

refer to the definition of topological patch in Chapter 4). This condition can be verified

by searching the list of elements that are neighbours of the edge under consideration for

collapsing to find an element of topological dimension equal to that of the point. If such an

element is found, then the edge would be inside the topological patch, which means that it

is on the boundary of the mesh and edge collapsing can proceed to the next step. If no such

element is found, then the edge collapsing must be rejected because this is an edge that,

although within the volume of the mesh, has end points that are located on the boundary

mesh. Collapsing a volume edge that has end points belonging to the boundary mesh would

alter the topology of the mesh and must be rejected, as illustrated on the left side of Figure

6.5.

After collapsing of an edge is found to be topologically valid, an additional test

needs to be made to ensure that collapsing this edge is not going to lead to inverted elements

108

P1

P4

P3

P2
Edge

collapsing
invalid

P1
P3

P2

Figure 6.6: Illustration of an edge (P3,P4) that cannot be collapsed because it would result
in the triangle (P1,P2,P3) being inverted.

or elements of unacceptably low quality. Inverted elements can result from collapsing an

edge when the envelop formed by all the elements using at least one point of the edge is

non-convex, as shown in Figure 6.6. The approach chosen here is to move the points of

the edge to the location where they would be left after the edge collapsing and loop over

elements that are not to be deleted (namely the ones containing either of the end points

of the edge but not both) to compute their quality in this position, which simulates the

configuration that would result after the collapsing. If one element has a quality that is

below the desired threshold, then the collapsing is rejected and the points are restored to

their original locations.

Conveniently, this collapse simulation not only prevents the creation of inverted

elements, but also offers several other benefits. It can be used as a condition to accept the

collapse only if the anisotropic quality of the elements satisfies a prescribed threshold or

if the quality of the mesh improves (by using the minimum quality among the elements

affected by the collapsing as the threshold). Furthermore, this strategy for verifying that

109

edge collapsing leads to elements of an acceptable quality can be easily applied to curved

geometries. The point to preserve after the collapsing is simply projected to the geometry

before the simulated collapsing is performed to verify that the quality is acceptable. Finally,

notice that this edge collapsing algorithm scales to higher dimensions without any special

modification that would be dimension specific.

6.3.3 Simulated Edge Swapping

The most challenging algorithms to scale to higher dimension are algorithms used

to improve the topology of the mesh. In the present work, the choice was made to use

an edge swapping algorithm. To facilitate the implementation of such an algorithm in 4-D,

it is important to realize that, unlike fundamental mesh modification algorithms, an edge

swapping algorithm can be decomposed into a sequence of two simpler mesh modification

algorithms, more specifically into an edge splitting algorithm followed by an edge collapsing

one. This compound algorithm is illustrated in 2-D in Figure 6.7 and in 3-D in Figure 6.8.

The first step in the simulated swap procedure is to split the edge to swap at its

mid-point to create a temporary split point, which is labelled PT in figures 6.7 and 6.8.

This temporary split point PT is connected to several edges, two of which have among their

respective list of points the two points of the edge to swap. As collapsing either of these two

edges would recover this initial configuration before the edge was split with the addition of

point PT, only the other edges are possible candidates for collapsing for the combined edge

splitting and collapsing to be equivalent to swapping the initial edge.

Considering that the objective of an edge swap is to improve the topology of the

mesh, this operation is performed only if a combination of split-collapse is found such that

110

 P2

Swap edge (P2, P4)
to become
edge (P1, P3)

Collapse edge
(P1, PT) or (P3, PT)
to remove the
temporary split
point PT

PT

P4

P3
P1

P2

P1
Split edge (P2, P4)

P3

P4

P4

P1

P2

P3

Figure 6.7: Illustration of a simulated edge swap in 2-D.

111

P3

P1
Collapse edge (P3, PT)
to remove temporary

point PT

P7

P6
P5

P4
P3

P2

P7

P6
P5

P4
P3

Split edge (P1, P2)

Swap edge (P1, P2) to become edges (P3, P5) and (P3, P6)

PT

P2

P1

Figure 6.8: Illustration of a simulated edge swapping in 3-D for edge (P1, P2) by splitting
edge (P1, P2) and collapsing edge (P3, PT) to remove the tempory split point PT.

112

the quality of the initial mesh is improved. In order to measure this, the minimum quality

of the elements that are neighbours to the initial edge to swap is first computed. Then, an

attempt can be made to collapse any of the potential candidate edges around the temporary

points with the exception of the ones that would recover the initial configuration before the

edge split.

The list of elements to test for the edge collapsing differs depending on whether

edge collapsing is performed by leaving the end point to preserve at its initial location or

whether this end point is relocated to the mid-point of the edge to collapse (point relocation).

If the end point is not relocated, then the list of elements to verify for quality improvement

includes all elements attached to the temporary point, except for the ones that are also

connected to the point to preserve (the elements that could be deleted do not need to be

tested). If the end point is moved to the mid-point of the edge, then the list of elements

to verify would be the same as for the edge collapsing presented in the previous section. It

was found by experimenting with the test cases presented in Chapter 8 that swapping with

point relocation is more likely to successfully improve the quality of the mesh than without

it.

It is necessary to reject the edge swapping if it does not improve the quality of

the mesh. Consequently, the temporary point that was inserted in the mesh during the

simulated edge swap must be removed for the mesh to recover its initial configuration. This

is accomplished by collapsing one of the edges formed by the temporary point and either of

the previous end points of the initial edge to swap. The choice of end point is not important

as long as the associated edge is topologically collapsible, which is always the case (because

113

the temporary splitting point is added on the edge to swap so it can only be of a topological

dimension higher than or equal to that of the point with the lowest topological dimension).

Furthermore, the test for quality improvement in the edge collapsing is skipped in this case,

so it cannot prevent the edge collapsing from recovering the initial configuration (there is

no need to prevent it because the objective of this edge collapsing is to recover the initial

configuration that was of better quality than what would result from the rejected edge

swap).

Because edge splitting and edge collapsing are implemented to scale to an arbi-

trary dimension, this simulated edge swapping is also scaled to an arbitrary dimension.

Furthermore, because both edge splitting and edge collapsing are implemented to work in

the interior of the volume mesh or its boundary, it follows that the simulated swap is also

capable of modifying the boundary mesh. To the best of our knowledge, no previously

presented meshing algorithms have been shown to be able to modify a boundary mesh in

a dimension higher than 3. The existing meshing algorithms that operate in higher dimen-

sions are usually restricted to operate on a set of points with a mesh that contains only

volume elements of topological dimension equal to that of the space dimension, and they

do not keep track of a boundary mesh (see Chapter 2).

The computation cost of the previously presented simulated edge swap would

clearly be higher than that of specialized operators that work only in 2-D or 3-D, because

the former requires extra steps, but the present objective was to ensure that this operation

applies equally to 2-D, 3-D and 4-D without further modification. By implementing the

edge swapping this way, it was found possible to test it first in 2-D and then in 3-D and

114

finally to run it in 4-D without problems (some examples of 4-D meshes will be shown in

Chapter 8).

It should be noted that a face swap can also be implemented with a similar strategy.

This would require first to split the face and then to collapse an edge not having a point

belonging to the face. As for the case of the simulated edge swap, the simulated face swap

could be rejected if it is found not to improve the quality the affected mesh elements. If

the quality does not improve, then an edge formed by a temporary split point on the face

and any of the previous points used by the face can be collapsed to recover the initial

configuration. This simulated face swap also scales to arbitrary dimensions and works on

the boundary mesh as well. It was implemented and tested, but not used in the current

version of the mesh optimization procedure presented in the next section.

6.4 Mesh Optimization Procedure

6.4.1 Overview

The objective of the mesh optimization procedure is to adjust the density of the

input mesh while maintaining a mesh quality and an agreement between the boundary

mesh and its associated geometry that are suitable for the finite element method (or other

numerical simulation approaches that can use a finite element mesh). The density of the

mesh is measured locally along the edges by measuring the length of the edge in the trans-

formed space. The quality of element is also measured in the transformed space so that

this procedure results in meshes that are anisotropic when the metric field is anisotropic.

The mesh optimization procedure proceeds by splitting edges whose length exceeds some

115

threshold and collapsing edges whose length is shorter than some other threshold, while

improving the mesh quality using a combination of edge swapping and mesh smoothing.

The subsequent sections discuss in more detail the rationale for each of the stages of the

mesh optimization procedure.

6.4.2 Target Mesh Size

This first step in the mesh optimization procedure is to determine the final target

metric edge length used to specify a threshold for the edge splitting and edge collapsing

operation, which indirectly controls the mesh size. In the context of mesh adaptation, the

target mesh size is driven by the requirement of the error estimator from which a metric

is computed at each point of the mesh, as previously explained in Chapter 2. Note that in

the context of mesh generation, a mesh could be optimized using a metric field constructed

from the curvature of a geometry rather then an error estimator and the procedure would

remain the same (Borouchaki et al. (1997)).

For mesh adaptation, the metric constructed from the error estimator prescribes

a relative desired mesh size and orientation through the metric at each mesh point, but not

an absolute mesh size. What is meant by relative is that regions of the mesh with a higher

interpolation error need to be refined to reduce that error, whereas regions of low error can

be coarsened to reduce the number of mesh points. This would result in a more uniform

distribution of the error throughout the mesh, but does not specify the global target error

which will control the final mesh density. This is a recognized weakness of mesh adaptation,

because it requires the user of a mesh adaptation code to specify an arbitrary parameter.

Further research is needed on the subject (Alauzet et al. (2006), Alauzet et al. (2007)).

116

In this thesis, a simple error reduction approach is chosen, in which the average

metric edge length is computed on the mesh, without scaling the metric field with a constant

factor (Dompierre et al. (2002)), and the target metric edge length is set as the average

metric edge length multiplied by a reduction factor varying in the interval]0, 1]. With this

strategy, it is convenient to start the mesh adaptation process with a coarse mesh, on which

the solution can rapidly be computed, and reduce the discretization error progressively

as the mesh adaptation increases the mesh density and the FEM solver computes a more

accurate solution on the adapted mesh. The coupling of the mesh adaptation and the FEM

procedure is described in Chapter 7.

Another problem that needs to be addressed to complete the specification of the

target metric edge length concerns the compatibility between this requirement for the edge

splitting and edge collapsing procedures. More specifically, an edge that is considered too

long and split could create two smaller edges that could be found to be too short and need

to be collapsed. This kind of oscillation between refining and coarsening results in a loss of

efficiency and could even prevent the overall procedure from terminating if an additional

stopping criteria was not used (such as a maximum number of times that the edges of the

mesh are traversed to determine if they need refinement or coarsening).

This problem can be significantly reduced by setting the threshold for refinement

to a metric edge length that is slightly more than twice the threshold for collapsing. This

way, an edge split is only performed if it does not produce a metric edge length that is short

enough to necessitate edge collapse. In practice, some destructive interference between the

two algorithms may still exist, because, as the edges are split, the metric at the split point

117

is interpolated from the background mesh and the metric lengths of the two segments are

not exactly half of the previous segment. In any case, some interference between splitting

and collapsing would always occur, because edges are swapped and points are moved and

that also modifies the metric length of edges in the mesh.

In order to give priority to regions of the mesh which require refinement or coars-

ening the most, the thresholds for refinement and coarsening are progressively adjusted at

each global iteration of the mesh adaptation procedure. This is done following a simple

heuristic strategy, in which the starting value for the threshold for collapsing is taken to be

close to the minimum edge length in the mesh and the starting value for the threshold for

refinement is taken to be close to the maximum edge length and these threshold values are

then progressively modified to approach the final target threshold as Figure 6.9 illustrates.

The specific approach chosen is to linearly reduce the threshold for edge splitting

and linearly increase the threshold for edge collapsing during the first half of the specified

maximum number of global iterations over the edge splitting, edge collapsing, edge swapping

and mesh smoothing phases. For the second half of the global iterations, the final target

thresholds for both the refinement and coarsening are used. Several other strategies could

be devised and a more in-depth investigation could be done to quantify the impact of

this strategy on the mesh adaptation procedure. Some experiments using this strategy

are discussed for the test cases of this thesis in Chapter 8. The number of global iterations

required to reach a state at which no edge needs to be split or collapse is problem dependent;

this is discussed further in Chapter 8.

118

Lm
min

Lm
max

Lm
target

Lm treshold
collapsing

Lm treshold
splitting

First
global
iteration

Last
global
iteration

Figure 6.9: Illustrations of the variations of the metric edge length treshold for collapsing,
on the left, and refinement, on the right, as the global adaptation iteration progresses from
the first iteration on the top to the last iteration at the bottom.

119

6.4.3 Refinement

Several combinations of refinement, collapsing, swapping and smoothing could

be employed. As edge splitting can create unacceptably small edges, namely leading to

elements with a very low quality, edge splitting is performed first and then it is followed

by edge collapsing to ensure that small edges are removed before an attempt is made to

improve quality by swapping edges.

Furthermore, because the location of the splitting point only takes into account

the distance from the end points of the edge and not distances from the other neighbouring

points, it was decided to relocate the splitting point, using the procedure described in

section 6.4.6, right after the edge split in order to improve the local mesh quality as much

as possible. This approach was found to reduce the number of poor quality elements that

may be created when point splitting results in points of an element being nearly coplanar,

colinear or cocircular (in 3 and higher dimensions recursively splitting edges can produce a

simplex with points that are lying on the same circle). Reducing the creation of poor quality

elements during the split phase through the use of local mesh smoothing subsequently

reduces the amount of work needed by the edge swapping algorithm to improve the mesh

quality. The smoothing algorithm used is presented in section 6.4.6.

As previously mentioned, the splitting is prevented on the boundary of non-convex

geometries if splitting this edge would lead to elements of very poor quality or negative

volumes. In the context of the entire mesh optimization algorithm, splitting the longer

edges first is important because, for non-convex geometries, problems may arise when the

boundary edge is much longer than edges of the neighbouring elements (see Figure 6.3).

120

Splitting interior edges before the boundary edges is more likely to introduce elements

of very low quality, and, for this reason, it is preferable to create smaller edges on the

boundary mesh before creating them in the interior of the mesh. Recall that when edges of

the boundary mesh are split, the split point is projected on the geometry, which affects the

shape of the elements that were split. The longer the distance between the splitting point

before and after its projection to the geometry is, compared to the length of the other edges

of the elements that are split, the more likely it is that inverted or low quality elements will

be created.

Rather than considering for splitting all candidate boundary edges first and then

inner edges afterwards, it was decided to sort the edges that are longer than the current

threshold for splitting in decreasing order of metric length. This strategy of sorting edges to

split the longest first was found to work well in practice, for example on the test case for the

flow behind a cylinder presented in Chapter 8, when combined with the simulated split to

prevent the creation of inverted elements. The sorting is done using a radix sort (Terdiman

(2000)), which is linear in the number of entities to sort, so the linear time complexity of

the mesh optimization algorithm is not lost by adding the sorting step.

It is also important to highlight that splitting edges by priority assigned to their

length has a favourable impact on the quality of the mesh, compared to the same mesh

optimization procedure without the sorting step. If all edges of the mesh are sorted and

the longest edge is split first, then this longest edge would not only be the longest in the

mesh globally, but it would also be the longest locally. Furthermore, the longest edge of a

simplex lies, in general, opposite to the largest solid angle. Consequently, when this edge is

121

Splitting Longest
Edges First

Splitting Shortest
Edges First

Figure 6.10: Illustration of the impact of splitting the longest edge first and splitting the
shortest edge first.

split, the largest angle receives at least one new incident edge and splitting the longest edge

results in reducing the largest solid angle of the simplex, which necessary gives a better

mesh quality than the case of generating a new incident edge (edges) for a smaller angle.

The impact of sorting on element quality can be illustrated by a simple example, shown in

Figure 6.10.

Refinement strategies based on inserting points on the longest edges first have

been explored previously for 2-D isotropic meshes in combination with Delaunay based

methods (Rivara and Hitschfeld (1999)) and edge refinement improvement methods (Plaza

et al. (2004)) and both approaches were found very effective in improving the quality of

the mesh. Here, a similar idea was used, but in the context of an anisotropic edge based

method in 2-D, 3-D and 4-D and using a sorting approach rather than locally searching the

mesh for the longest edge to split. Further improvements are certainly possible along this

122

direction, but simply sorting the list of edges to split was found to be significantly beneficial,

especially if the initial mesh contains very small interior angles that would otherwise make

it more difficult for the edge swapping procedure to improve the quality of the mesh. It

also worth noting that performing a radix sort on the edge list is very fast in comparison

to other aspects of the mesh optimization procedure; consequently, this step does not add

significantly to the computational cost.

To prevent unnecessarily excessive mesh refinement, it is important to create a list

of edges that are longer than the current refinement threshold and only split those edges

before performing other mesh operations. Splitting the edges of the mesh and dynamically

adding newly created edges that are also longer than the threshold to the list of edges

to split could lead to over-refining the mesh in some region of the domain before other

mesh modification algorithms (edge collapsing, edge swapping and mesh smoothing) have

an opportunity to improve the quality of the mesh.

6.4.4 Coarsening

Mesh coarsening is enacted as the second stage of the overall procedure to remove

excessively small edges that might have been created by the edge splitting algorithm or that

might have been present in the initial mesh.

As explained previously, edge collapsing needs to be constrained to prevent the

creation of elements that are inverted or of very poor quality. It is also important to realize

that the operation of first splitting edges and then collapsing edges has similarities with the

simulated edge swap that operates by first splitting an edge and collapsing another one to

perform an edge swap. Recall that such edge swaps are desired only if they improve element

123

quality, so it seems advisable to also constrain collapsing, such that it is applied only if it

improves quality. However, this condition may become too restrictive when it is applied to

regions with very high mesh quality. To avoid this, the following simple heuristic strategy

is used. The quality of the initial configuration of elements affected by edge collapsing

is measured and the threshold to accept the edge collapsing is defined as the minimum

of this initial quality and a low quality threshold, whose value has been set to 0.1 (the

threshold 0.1 was chosen after experimenting with some of the test cases of this thesis, but

no claim is made that this is optimal). Consequently, if the element quality in the original

configuration is lower than 0.1, then the collapsing is performed only if the quality of the

element is improved. However, if the quality of the element in the original configuration is

higher than or equal to 0.1, then the edge collapsing is accepted if no newly created element

has a quality that is lower than 0.1. With this simple modification, the collapsing avoids

excessive deterioration of the mesh quality and is given enough opportunity to adjust the

density of the mesh. Note that it is important to have a quality threshold significantly

higher than 0.0 to avoid the generation of nearly inverted elements by edge collapsing.

Another problem that may arise from multiple edge collapses in a region of the

mesh is creating a mesh in which the number of edges incident to one particular point is

much higher than the average in the mesh. This results in the elements incident to that

point having very small interior angles and therefore a poor quality. In order to reduce this

possibility, a marking strategy that prevents both end points of an edge from being removed

in the same iteration on the list of edges to collapse has been employed. This strategy is

similar to one presented by Li et al. (2005), which evaluates all edges terminating at each

124

mesh point and collapses the shortest one, if it is found to be shorter than the threshold.

In the present approach, however, it was chosen to build a list of edges that are in the

range for collapsing and sort that list to collapse the shortest edge first. When an edge is

collapsed, the end point of the edges incident to the point left after the collapse are marked

as blocked for this iteration. After one complete pass on the list of edges to collapse has

been performed, then the point marking is reset and the edges that have been blocked from

collapsing in the first pass are considered for collapse again following the same blocking

strategy. This strategy effectively reduced the creation of small angles during the edge

collapsing phase.

In contrast to edge splitting, edge collapsing affects other edges of the mesh by

elongating them. To avoid excessive coarsening of the mesh, the length of edges that are

removed from the list of edges to collapse are reevaluated to ensure that they still fall in the

range for collapsing (they might have been stretched sufficiently, after they were inserted in

the list, by the impact of collapsing other neighbouring edges). Finally, locally smoothing

the mesh by relocating the point that remains after the edge collapsing was found to interfere

with the marking strategy, so such smoothing was not used in this case, in contrast to the

edge splitting case. Notice that the edge collapsing includes a test to reject it if it would

deteriorate the mesh quality too much, as described previously, whereas the edge splitting

contains no such tests for interior edges.

6.4.5 Topology Improvement

The objective of the topological improvement is to increase the quality of the mesh

without affecting its density and with minimal, if any at all, impact on the location of the

125

points. This is done using the edge swapping algorithm presented earlier.

The topological improvement phase begins by traversing the list of elements to

evaluate their quality and identify the ones that potentially need improvement. This way,

edges of elements with a low quality can be marked for swapping, while edges of elements

for which edge swapping is unlikely to improve the mesh quality are marked as not for

swapping.

Because edge swapping is less likely to improve the mesh when the quality is very

low, two variants of the edge swapping method are used. If the quality is lower than 0.5,

but higher than 0.1, the edge swapping method used follows conventional edge swapping

algorithms (Frey and George (1999)), namely the edge collapsing step uses the end point of

the edge to collapse as the final point location. If the quality of the element is lower than 0.1,

the edge collapsing step of the edge swapping uses the mid-point option. This is functionally

equivalent to swapping the edge with the conventional approach, but with a build-in point

relocation which is done before evaluating whether the quality of the combined procedure

improves the quality of the mesh sufficiently to be accepted. This was found to be more

successful in removing elements that are of very low quality by monitoring the minimum

quality of the mesh for several test cases with this option turned on or off. However, in the

general case, when element quality is not too low, it is preferable to use the conventional

edge swapping to avoid moving the node to improve quality, because this affects the metric

edge length and may cause an edge whose length was previously close to the target length

to fall into the range for splitting or collapsing. Care needs to be taken when combining

meshing algorithms to avoid compromising the convergence of the global mesh optimization

126

procedure.

It is known that the number of possible edge swappings rapidly increases when

the number of volume edge neighbours around a point increases (Frey and George (1999)).

Seeking among all possible edge swap cases the one which successfully improves the mesh

quality or the one that improves the mesh quality the most is very expensive computation-

ally. Hence, it was found preferable to use a simple heuristic procedure to identify one case

that is most likely to succeed. More specifically, the end point for the edge to collapse in the

second step of the simulated edge swap is chosen as the one among all the possible choices

that is the closest to the temporary split point (the distance measured is the standard

Euclidean distance, not the one using the metric field). The rationale behind this choice is

that the closest point among the set of points around the edge to swap is approximately

the one with the largest solid angle. This point is a suitable candidate to receive the newly

created edges by the swap procedure, because this operation would be more likely to suc-

ceed in improving the quality than using a point having an associated smaller solid angle.

This simple approach was found to work well in practice and is significantly less expensive

computationally than trying all the possible edge swaps, especially in 3-D and 4-D since

the number of possible edge swap increases with the space dimension (there is only one

swap possibility in 2-D). Further investigation is necessary to determine if this compromise

is sufficient, especially in 4-D.

Another important aspect to highlight concerning the mesh quality for anisotropic

meshes is that some anisotropic metric fields can naturally lead to meshes having a large

number of edges incident to a point, which is generally considered as a sign of a poor mesh

127

e1

e2

Figure 6.11: Illustration of a simple spoke wheel mesh with a large number of edges incident
to the centre point. The eigenvectors for a point on the rim of the wheel are chosen with
the first eigenvector in the radial direction and the second eigenvector in the tangential
direction.

quality (and leads to increased storage space for sparse matrices, which are frequently used

in FEM). This can be illustrated by the simple example of a spoke-wheel-like mesh shown

in Figure 6.11.

In this spoke-wheel-like mesh, all the elements are incident to a single point at the

centre of the wheel. The edges of the mesh forming the spokes of the wheel are chosen as

having a length of one and the metric at the center is the identity matrix. Then, the metric

associated to each point on the rim of the wheel can be chosen to have one eigenvector

along the spoke of the wheel and the other one tangent to the rim. If the eigenvalue of the

metric corresponding to the spoke of the wheel is unity, then the eigenvalue corresponding

to the tangent eigenvector can be chosen such that the edges having both points on the

rim have a metric length of one. In this example, the number of edges on the rim can be

increased arbitrarily but the metric edge lengths in the mesh will always be one. Hence, the

128

metric quality measured in the transformed space would never detect any need for swapping,

because the quality is high (actually, it has the maximum possible value of 1.0) and yet the

number of edges incident to the centre of the wheel can become arbitrarily large.

One strategy to avoid this problem that has been employed by previous authors

is to adjust the variation of the metric field in the mesh (Borouchaki et al. (1998), Li

et al. (2004)). Here it was chosen to perform a second pass of edge swapping on edges that

are incident to points having a higher number of incident edges than the average in the

mesh (this is generally referred to as degree relaxation (Frey and George (1999))). In 2-D,

the number of expected edges incident to a point can be computed from Euler’s formula

(O’Rourke (1998)). However, it was chosen to compute the average number of edges incident

to a point in the mesh and use that as a threshold, because it also works for 3-D and 4-D.

A possible improvement of the present approach would be to modify the edge swapping to

select as the receiving point for the collapse the point with the lowest degree, but to preserve

the anisotropy using the same criterion of quality improvement. One may further speculate

that another improvement would be possible by accepting the swapping if it locally reduces

the degree of the mesh but without decreasing the mesh quality too much; this possibility

is left for future work.

6.4.6 Smoothing

The last phase of the mesh optimization procedure is the mesh smoothing. As

described in section 6.4.3, when an edge is split, the point inserted in the mesh at the

mid-point of that edge is relocated, using the mesh smoothing technique to be described

in the next section, before splitting other edges or modifying the mesh through the edge

129

collapsing and edge swapping phases. However, the edge splitting may affect only certain

regions of the mesh, where the metric edges are too long, and not others. Consequently, a

mesh smoothing pass is performed to relocate the mesh points to attempt to locally improve

the quality of the elements, which, in case of a point relocation strategy, does not change

the topology of the mesh.

6.5 Mesh Smoothing Based on Inscribed Ellipsoid

In the context of anisotropic meshing, previous authors have presented mesh

smoothing algorithms that seek to equidistribute the metric length of edges (Tam (1998),

Dompierre et al. (2002)). Although this is in harmony with the objective of the mesh opti-

mization procedure that splits long edges and collapses short edges to approach a specified

target metric edge length, these smoothing strategies do not improve the quality of the

mesh elements and even need to be constrained to prevent the creation of inverted elements

(Tam (1998)).

Mesh smoothing based on optimization strategies exist (Freitag (1997), Diachin

and Knupp (2006)), but are considered to be too computationally expensive by Bottasso

(2004) who compared them with a metric edge based approach. Other strategies based on

linear programming paradigm may be more efficient than optimization strategies, but were

developed only for isotropic meshes (Amenta (1999)). Several other methods exist (Baker

(2002)), some authors have also compared more common methods (Hyun and Lindgren

(2001)), but most of them are for isotropic meshes. Smoothing methods that are based on

improving the quality of the elements through the solid angle were recently introduced in

130

Figure 6.12: Illustration of the point relocation strategy based on the average inscribed el-
lipsoid of the elements incident to a point. The dark arrow shows the potential displacement
from the previous point location to the new trial point location.

2-D (Xu and Newman (2006)), and could possibly extended to 3-D or higher dimensions,

but to the best of our knowledge they are currently limited to isotropic meshes (which does

not preclude their future extension to the anisotropic cases).

In the context of the present thesis, it was necessary to devise a mesh smoothing

strategy that improves the anisotropic quality of the mesh, operates in 2-D, 3-D and 4-D, is

compatible with the edge based optimization procedure presented previously, is relatively

simple to implement and is efficient in terms of computational cost compared to other mesh

optimization algorithms. This anisotropic mesh smoothing method can be summarized as a

strategy that seeks to relocate a mesh point to the average location of the inscribed ellipsoid

centre of the elements incident to that point. It is illustrated in Figure 6.12.

This smoothing approach based on the inscribed ellipsoid was inspired by the

realization that the inscribed radius, defined as

r =
d · VPd+1
i=1 Si

(6.5)

131

where d is the space dimension, V is the volume of the simplex and Si is the surface of the

face i of the simplex, is closely related to a measure of element quality that is frequently used,

namely the non-dimensionalized volume to surface ratio of the element (George (2001)). The

inscribed radius is itself proportional to the ratio of the volume of the element and the sum

of the sub-volumes of the faces of that element. Hence, it was postulated that a strategy

based on improving the equidistribution of the inscribed radius would also to some degree

improve the mesh quality.

Such methods require the computation of the inscribed center of the ellipsoid for

the elements of the mesh. Recall that the inscribed sphere of a simplex is the sphere of

maximum radius that is tangent to all the planar faces of the simplex and can be computed

from:

n1 · (xc − x0) = r (6.6)

n2 · (xc − x0) = r

n3 · (xc − x0) = r

n4 · (xc − x0) = r

where x0 is the coordinate of a first point of the simplex, xc is the inscribed center of the

sphere, ni is the normal of the face opposing the point i of the simplex (pointing toward the

inside of the element) and r is the inscribed radius, given by equation 6.5. The solution to

this system of linear algebraic equations would give the desired xc. A solution would only

be possible if the points of the element are linearly independent. This might not be the case

if points are coplanar or colinear, but for the current purposes the centroid of the element

can be used as an approximation to ensure that the method is robust even in degenerate

132

cases. To find the inscribed sphere centre on a boundary element, this system of equations

can be augmented with the equations for the barycentric coordinates of xc on that element

to constrain the inscribed centre, such as to be a linear combination of the other points of

the boundary simplex.

Furthermore, by transforming the points of the element to the metric space, using

the metric transform x0 = Nx presented earlier in Chapter 2, the same equation can be used

to compute the inscribed centre in the transformed space, after which it can be transformed

back to the standard Euclidean space using the inverse transform xc = N
−1x0c. A constant

linear transform N per element was used by averaging the transforms stored at each mesh

point of the element. In the anisotropic case, with a linear transform N that is constant

per element, computing the inscribed sphere centre in the transformed space is equivalent

to computing the inscribed centre of an ellipsoid in the standard Euclidean space (Li et al.

(2005)).

The potentially optimal location for the new point position is determined as the

average position of the inscribed ellipsoid centres for all the elements incident to that point

and having a topological dimension higher than zero, as follows:

xopt =
1

Nelem

NelemX
i=1

xc|i (6.7)

In order to ensure that mesh smoothing always improves the local quality of the

mesh, the optimal position is relaxed to be an intermediate value between the previous

point position and the optimal position using:

xtrial = (1−$)xprev +$xopt (6.8)

where xopt is the optimal position given by equation 6.7, $ is the relaxation factor, xprev

133

is the previous point position before smoothing is attempted and −→x trial is the new trial

position used to test if the minimum element quality of the affected element is improved. If

the smoothing does not improve the quality of the elements with an initial value of 1.0 for

$, then $ is reduced by a factor of 0.5 for two other trials. If after three attempts the mesh

is not improved, the smoothing is rejected for this point to avoid excessive computational

cost and because the displacement would most likely become too small to be significantly

beneficial. Furthermore, after completing a smoothing pass on all points, other neighbouring

points might have moved, which may enable the movement of a point that was previously

rejected.

A small caveat concerning the relocation of points on the boundary of the geom-

etry needs to be highlighted. The trial point position xtrial needs to be projected to the

geometry, using the method described in Chapter 4, to remain on the surface of that geome-

try. However, it is possible that xtrial would be at greater distance from xprev than another

adjacent part of the geometry (for example, near the junction of two adjacent faces of a

cube). To avoid problems that this may cause in the location routine of the projection

routine, an additional step is performed in which xtrial is projected first to a plane defined

by the point xprev and the approximate normal to the geometry at that point. The ap-

proximate normal is computed using the average normal of the neighbouring faces as this

is sufficient for this purpose and does not depend on locating the point on the geometry.

With this additional step, the modified proj (xtrial) can be used without problem with the

projection routine described in Chapter 4. Notice that this projection is done before the

test is made to evaluate whether the point relocation improves the quality of the mesh or

134

not, thus ensuring that the mesh quality is always improved, or remain the same, as was

the case for points inside the volume mesh.

Going back to the mesh optimization procedure, the mesh smoothing presented is

used at three different steps of the procedure. First, it is used to relocate each point that

is inserted to split an edge just after the edge splitting; second, it is used after the pass on

edge swapping; and, finally, it is used after the mesh global iterations on the edge splitting,

edge collapsing, edge swapping and edge smoothing phases have been completed to finalize

and fine tune the location of the mesh point in an attempt to improve as much as possible

the quality of the mesh once its density and topology have been adjusted. It is important to

smoothen the mesh after its topology has been improved, and not before, because the mesh

smoothing does not modify the topology and its ability to improve the mesh quality can

be severely limited if, for example, some mesh points have a very large number of incident

edges.

To limit the computational cost of smoothing mesh points after the adjustment of

the density of the mesh, a simple heuristic approach is used to select the mesh points to

relocate, based on the quality of the element incident to them. This is done by first traversing

all volume elements of the mesh to compute their quality and mark as for smoothing all

the points corresponding to an element quality that is lower than a specified threshold.

After experimenting with the test cases presented in Chapter 8, it was chosen to iterate

five times over the mesh points marked for smoothing using a threshold for quality that

is progressively reduced for each mesh smoothing pass on all points from 1.0, to 0.8, 0.6,

0.4, and finally 0.3. This progressive reduction of the threshold for smoothing allows for

135

all points to be initially potentially relocated, if this improves quality, to progressively

concentrate the computational expense on elements that need quality improvements the

most. Of course, other strategies could be employed in the future with the same inscribed

ellipsoid based approach, but this simple one was found to be an acceptable compromise

between reducing the computational cost and improving the quality of the mesh.

6.6 Sliver Perturbation by Random Point Relocation

Another point relocation strategy was devised to attempt to improve the quality

of elements of very low quality. The algorithm for this is structurally the same as for the

ellipsoid based one presented in section 6.5, with a few small exceptions. First, the quality is

measured isotropically using equation 6.1, but without the determinant of the metric, such

that the point relocation is only accepted if the isotropic quality improves. Second, points

are selected for this attempt to improve quality only if they are incident to elements having

a very low isotropic quality below a threshold of 0.01. Third, rather than computing the

optimal position based on the average ellipsoid using equation 6.7, the following equation

is used instead:

(xi)rand = (xi)prev LavgFran (6.9)

where (xi)rand is the randomized location for the coordinate i of the point under considera-

tion, (xi)prev is the previous value for that point coordinate, Lavg is the average Euclidean

length of edges incident to the point multiplied by 0.1 and Fran is a random factor with a

real value in the interval [0, 1].

The sliver perturbation by random point relocation is performed at each internal

136

mesh iteration just before the mesh smoothing based on the ellipsoid. Perturbing elements

with a near zero volume can improve the computation of the inscribed radius (recall that

computing the inscribed radius requires the face normals which cannot be properly com-

puted if the sub-volume of the face of a simplex is zero). Furthermore, it can help to

disturb the mesh points where the quality is very low and thereby increase the probability

that swapping edges with be successful in improving the anisotropic quality in subsequent

internal iterations of the mesh optimization procedure.

6.7 Pseudo-Code for the Meshing Algorithms

This section presents the pseudo-code for the algorithms described in this chapter,

which briefly are:

• Algorithm 6: the splitting of an edge by adding a new mesh point at its mid-point

• Algorithm 7: the collapsing of an edge to remove a point in the mesh

• Algorithm 8: the swapping of an edge through a combined sequence of edge splitting

and edge collapsing

• Algorithm 9: the algorithm to decide what edge swap possibility to attempt and call

the simulated edge swapping

• Algorithm 10: the smoothing of the mesh element incident to one mesh point

• Algorithm 11: the combined mesh optimization procedure with edge splitting, edge

collapsing, edge swapping and mesh smoothing

137

Algorithm 6 Edge Splitting
Input. The mesh with its associated geometry and the list of split point ids, which are the
end point ids for an edge.
Output. The point id created if the split was successful and the list of new elements.
1: Reset list of new elements to empty state
2: Create the split point Ps at the mid-point of the edge
3: Find the list of elements Esneighbors that are neighbors of the edge
4: if Esneighbors is empty then
5: Delete split point Ps
6: Return false
7: Find among Esneighbors the element neighbor that is of the lowest topological dimension
8: Set the topological dimension of the point to that lowest topological dimension
9: if point topological dimension is lower than space dimension then
10: Project the split point Ps to the geometry
11: Simulate the split to verify if the quality of elements would be sufficient
12: if any element during the simulated split has a quality below the treshold then
13: Delete the split point Ps
14: Return false
15: for each element E in Esneighbors do
16: Copy the element’s point ids Epids
17: if element E is of topological dimension lower than the space dimension then
18: Retrieve and store the surface to geometry mapping element key Egeo
19: Retrieve the family id for the element E
20: Delete the element E from the mesh
21: for each copy index in the list split point ids do
22: Retrieve the copy point id in the list split point ids at the copy index
23: Retrieve the local element point index for the current copy point id
24: Replace the current element copy point id with the split point id
25: Insert the new element in the mesh
26: Set the family id for the new element
27: Set the geometry element mapping if it is a boundary element
28: Reset the list of element point ids Epids to its original state for next use
29: Insert the created element in the list of new elements

138

Algorithm 7 Edge Collapsing
Input. The mesh with its associated geometry and the list of split point ids for the edge
to collapse.
Output. The point id left after the edge collapse and the list of modified elements.
1: Reset list of elements to be modified Esmodified
2: Verify if collapsing this edge would preserve the topology of the surface mesh
3: if edge is not topologically collapsible then
4: Return false
5: Create the list of elements to be deleted Esdelete by finding the element neighbors for
the edge

6: Create the list of elements that survives the collapsing Esmodified by finding elements
using only one edge point

7: if use mid-point option and both edge end points are the same topological dimension
then

8: Compute the location of the mid-point of the edge
9: Project the mid-point to the geometry if the edge is on the boundary of the mesh
10: Set the collapse end point location to the mid-point location
11: else
12: Set the collapse end point location to the edge point id to preserve after the collapse
13: if collapse only if the quality improves then
14: Find the minimum element quality among the list of elements to be modified

Esmodified and deleted Esdelete
15: if minimum element quality is higher than 0.1 then
16: Set minimum element quality to 0.1
17: if mid-point option then
18: Move both end points of the edge to the collapse end point location
19: else
20: Move the point to remove to the location of the point to preserve
21: for list of elements to be modified Esmodified do
22: Compute element quality
23: if element quality is below acceptable treshold then
24: Reset points to original location
25: Return false
26: Delete all elements in the list of elements to be deleted Esdelete
27: for each element the list of elements that survives the collapsing Esmodified do
28: if element has the point id to remove then
29: Disconnect the element from the mesh to remove it from the inverse connectivity
30: Replace the point id to remove with the point id to preserve
31: Reconnect the element to the mesh to update the inverse connectivity
32: Update the topological point id for the point to preserve
33: Delete the point id to remove from the mesh
34: Update the surface to geometry mapping if necessary

139

Algorithm 8 Simulated Edge Swapping
Input. The mesh with its associated geometry, the list of point ids for the edge to swap,
the list of edge element neighbours and the final point id receiving the edge swapped.
Output. The list of created elements.
1: if the edge to swap corresponds to a topological edge then
2: Return false
3: if swap only if quality improves then
4: Compute the minimum element quality for the initial configuration Qmin
5: Increase the minimum element quality Qmin by 5
6: Compute the temporary split point at the mid-point of the edge to swap
7: Create the split point
8: Split the edge to swap at the mid-point
9: if the split was rejected then
10: Return false
11: Verify if the collapsing the edge going from the temporary mid-point to the final point

id would improve quality
12: if quality would improves then
13: Collapse the edge going from the temporary split point to the final point id to remove

the temporary split point
14: if collapse was successful then
15: Return true
16: Collapse the edge going from the temporary mid-point to an end point of the initial

edge to remove the temporary point and recover the initial configuration

Algorithm 9 Improve Edge Topology
Input. The mesh with its associated geometry and the list of point ids for the edge to
swap.
Output. The list of created elements.
1: Find the list of element neighbors to the edge to swap
2: Compute the mid-point of the edge to swap
3: Use the list of element neighbors to find the list of ring points
4: Use the list of ring points compute the point closest to the edge mid-point
5: Try to swap the edge using the simulated edge swap with the final point id as the closest
point id

6: if not successful and try all possibility is turned on then
7: Try to swap using as the final point each point in the list of ring point ids until one

is successful

140

Algorithm 10 Mesh Point Smoothing
Input. A point in the mesh.
Output.
1: Find the list of elements neighbors Eneighbors to the point to smooth
2: Compute the optimal location Popt as the average location of the inscribed ellipsoid for
the Eneighbors including the boundary elements (except for vertex elements)

3: Compute the displacement vector going from the previous point location to Popt
4: Compute the minimum initial element quality of Eneighbors
5: for conformity loop going up to three do
6: if point to move is on boundary then
7: Project Popt to the geometry
8: for element in Eneighbors do
9: Compute element quality and volume (at the same time)
10: if element quality is below minimum initial element quality or volume too low

then
11: Reduce the length of the displacement vector by half and recompute the new

Popt
12: Break out of the for loop
13: if node movement does not improve quality then
14: Restore the point location to its original location
15: Update the surface to geometry mapping if necessary

Algorithm 11 Mesh Optimization
Input. A simplicial mesh with a metric field.
Output. A mesh adapted to the metric field.
1: Create metric edges
2: Compute the target metric edge length to collapse Lmcollapse and to refine an edge
Lmrefine

3: Compute the range for collapsing as the difference between the minimum edge length
to the Lmcollapse

4: Compute the range for refining as the difference between the maximum edge length to
the Lmrefine

5: for iteration 1 to 10 do
6: Compute current collapse threshold by reducing range for collapsing by a percentage

of 20
7: Compute current refinement threshold by reducing range by a percentage factor
8: Refine edges in the range for splitting by refining the longest in range first and smooth-

ing each inserted point
9: Collapse edges in range by collapsing shortest edges first
10: smooth mesh (five iterations on all points with element having a minimum quality below

1.0, 0.8, 0.6, 0.4, 0.3)

141

142

Chapter 7

Space-Time Mesh Adaptation and

Solution Procedure

7.1 Introduction

This chapter presents the rationale for developing a fully coupled space-time FEM

formulation in the context of unsteady mesh adaptation. The limitations of a decoupled

space-time formulations are highlighted first. Then, the fully coupled space-time FEM pro-

cedure with an embedded space-time mesh adaptation is proposed as a solution to address

these limitations followed by a brief discussion of its associated computational costs. The

flow solver algorithms used are also presented along with a short note concerning the solu-

tion interpolation necessary to bridge the FEM solver and the mesh adaptation procedure.

The chapter concludes with a summary of the overall adaptive space-time FEM solution

procedure.

Unstructured M esh for
Fully Coupled Space-T ime
Formulat ions

x

t

t0

tT

x

t

tn

tn+1

Unstructured M esh for
Decoupled Space-Time
Formulat ions

Figure 7.1: Illustration of a decoupled space-time mesh (left side) and a fully coupled space-
time mesh (right side).

7.2 Comparison of Decoupled and Fully Coupled Space-Time

Formulations

In a fashion similar to classical time stepping approaches, a fully decoupled space

time formulation proceeds by computing the solution from one time step to the next. How-

ever, instead of using a spatial mesh, in which the mesh points depend only on the spatial

coordinates, a decoupled space-time formulation requires a space-time mesh with points

which depend on both the space and time coordinates. The sketch on the left side of Figure

7.1 illustrates the progression of a space-time mesh from the time step tn, at which com-

putations have been completed, to the next time step tn+1, at which computations need to

be made. In contrast to the decoupled formulation, a fully coupled formulation can use a

mesh that extends to the entire space-time domain, as shown on the right side of Figure

7.1, and hence covers the full range of the time period that is of interest for the simulation.

143

From the perspective of mesh adaptation, it is possible to add mesh adaptation to a

decoupled formulation in a fashion analogous to some adaptive time stepping approaches (Li

and Wiberg (1998), Alauzet et al. (2007)). The general strategy is to compute the solution

at time tn+1 from the solution at tn (higher order methods would use the solution from

additional previous time steps as well), and then estimate the error committed at this time

step and determine whether it exceeds an acceptable level (Alauzet et al. (2007)). If the

error estimate for the current time step is larger then a specific threshold, the solution can be

recomputed with a smaller time step (for p-methods the order of the temporal discretization

could be increased, but only methods that adjust the size of the time step are considered

here). Once the acceptable error threshold at the current time step is approached, or a

minimum time step size is reached, the solution procedure can move to the next time step.

This process is illustrated in Figure 7.2 for time stepping methods using only the solution

at the previous time step.

It is crucial to note that an adaptive time stepping procedure adjusts the size of

the current time step to recompute tn+1, but once this solution is computed it remains fixed

for all subsequent iterations because the solutions at times t0, t1, ..., tn are all outside of the

error feedback loop. Because, in general, both discretization and convergence errors occur

at each time step, it follows that these errors can accumulate from one time step to the

next. The accumulation of the discretization error is schematically represented in Figure

7.3.

Clearly this illustration is an over-simplification, because the discretization error

does not necessarily accumulate in a linear fashion. The accumulation of the discretization

144

Mesh +
Solution

t + n

FEM Solver
Computes Next

Time Step

Mesh +
Solution
t + n + 1

INPUT PROCESS OUTPUT

Reduce Time
Step Size

ERROR
FEEDBACK

Is Time
Step Error Too

Large?

Increment Time
Step

n = n + 1

NO

YES

TIME - STEPPING
MESH ADAPTATION LOOP

Figure 7.2: Mesh adaptation loop for a time-stepping procedure where the discretization
error from the previous time step cannot be controlled by reducing the size of the current
time step.

error is not only a function of the order of the decoupled space-time method (or of the

time stepping method), but it is also a function of how rapidly the solution changes as a

function of time. In certain parts of the space domain, the solution can remain the same for

a certain period of time and then go through abrupt changes. In other cases, the solution

could be approaching a steady regime for which the temporal discretization can be reduced

and even become negligible (some convergence and round-off errors could remain). The key

difference is that, for a time stepping approach, the possibility of the accumulation of the

discretization error exists, and its assessment is difficult and problem dependent (Hand and

Lu (1999)), whereas, for the fully coupled space-time approach, it is possible to refine the

mesh in any region of the space-time domain until the error estimator requirement is satisfied

(with some constraint on mesh size as explained in Chapter 2). Therefore, the fully coupled

145

tn-1 Tim

∆En+1

∆tn+1

Discretization Error

t0 tn+1

∆tn

tn

∆En

Figure 7.3: Illustration of the accumulation of the discretization error with a time-stepping
procedure.

146

Space-Time
Mesh for (t0,T]

+
Restart Solution

FEM Solver Computes
Space-Time Solution

Space-Time
Mesh for (t0,T]

+
Solution

INPUT PROCESS OUTPUT

Adapt Mesh for
Entire Space -Time

Domain

ERROR FEEDBACK

SPACE - TIM E
M ESH ADAPTATION LOOP

Figure 7.4: Fully coupled space-time mesh adaptation loop, in which the complete space-
time solution comprising the entire time range is recomputed at each mesh adaptation
iteration.

approach offers the possibility of bounding the maximum discretization error everywhere

in the space-time domain, until the resolution of the solution is considered acceptable,

in the same manner that mesh adaptation has been used to bound the maximum space

discretization error for steady problems. Previous authors, including (French and Peterson

(1996), French (1999), Karakashian and Makridakis (1999), Pontaza and Reddy (2004)),

have mentioned this possibility, but have not presented such a mesh adaptation scheme.

The mesh adaptation loop for the unified space-time approach, in which the entire space-

time mesh is used to compute the solution and the space-time error estimate over the entire

range of space and time in the solution domain, and to adapt the mesh is illustrated in

Figure 7.4.

Hence, the accumulation of the discretization error in time can be avoided, because

the solution on the entire space-time domain is recomputed after each mesh adaptation

iteration. The space-time solution in the previous iteration is only used as a restart solution

147

to accelerate the convergence of the non-linear flow solver, which will be discussed briefly in

section 7.5. This does not mean that there is no discretization error associated with a fully

coupled space-time strategy, but simply that it can be controlled with mesh adaptation

throughout the space-time domain in the same manner as it can be controlled throughout

the space domain for steady problems.

7.3 Computational Cost of Fully Coupled Space-Time Solu-

tion Procedures

Despite their advantages, space-time approaches also have some drawbacks. The

first complication is that a space mesh of dimension d needs to be extended in time to

become a mesh of dimension d + 1. For a decoupled formulation, this is relatively simple

because the mesh can be extruded in time and subdivided, if a simplicial mesh is used.

However, a fully coupled approach requires that the entire space-time domain be meshed,

which requires considerably more memory. Nevertheless, even with this limitation, a fully

coupled approach is more flexible from the perspective of mesh adaptation, because it allows

for the addition of mesh points only where indicated by the error estimator, which accounts

for both the spatial and the temporal errors. Consequently, it is possible to start the

mesh adaptation process with a very coarse mesh, which does not take much memory and

time to compute, and progressively add points as the mesh adaptation procedure iterates

(again in a fashion similar to what is done for steady mesh adaptation). In cases in which

the solution evolves with a varying time scale in the solution domain, this can lead to a

significant reduction in the number of mesh points required, because it is possible to use

148

elements which are elongated along the time direction in a manner that varies across the

space domain. In contrast, a decoupled space-time approach requires that the solution at

each mesh point be repeated with the same time step size, regardless of the local time scale.

It remains to be seen whether a fully coupled approach can be competitive in

terms of CPU time compared to a time stepping approach for solving 3-D space problems,

which require a 4-D mesh. However, for the case of 2-D space problems with a 3-D space-

time mesh, Potenza and Reddy, who compared both approaches without the use of mesh

adaptation, have reported that a fully coupled approach is cost effective (Pontaza and

Reddy (2004)). It is also important to stress that, for the classical benchmark problem of

a backward facing step flow, these authors have shown that the decoupled approach leads

to a solution that is numerically unstable when the time step size is too large compared to

the space mesh, whereas instability did not arise in their fully coupled formulation.

7.4 Flow Solver Algorithm

In order to solve the non-linear Navier-Stokes equations, a simple Picard method,

briefly presented in Chapter 5, is used with PETSc as the algebraic solver (Balay et al.

(1997), Balay et al. (2001), Balay et al. (2004)), a Jacobi preconditioner and GMRES

(Generalized Minimum Residual Method). Although the convergence of Picard method is

known to be generally slow, whereas Newton methods can exhibit a quadratic convergence,

it offers several advantages (Reddy and Gartling (1994)). First, the Picard method has a

larger radius of convergence than the Newton method, which allows for an initial guess to

the final solution that is further away from the final solution. Second, it is simpler to imple-

149

ment, because it does not require programming a Jacobian correction matrix (Langtangen

(1999)), which is not only tedious with a GLS method, but also error prone. Third, for

the incompressible Navier-Stokes equations, it conveniently allows one to start the solution

process with a null velocity field, such that for the first Picard iteration the convective term

cancels out and the problem is reduced to solving a Stokes problem with the same bound-

ary conditions. Also recall that, as described in Chapter 5, the boundary conditions to the

incompressible Navier-Stokes are chosen to accelerate the fluid from rest progressively by

ramping up the value for the boundary conditions, which reduces the problem associated

with having an initial guess solution in the Picard method that is too far from the final

one. More precisely, at time t = 0 the null velocity field is the solution satisfying the in-

compressible Navier-Stokes equations, but because a fully coupled space-time formulation

is used, then the null velocity field is actually the initial solution for the entire space-time

domain, whereas for time stepping methods it is usually the initial solution for the space

domain only and at time t = 0.

Under certain flow conditions, for example strong convective flows, the Picard

method may be slow to converge, oscillate and even diverge (Reddy and Gartling (1994)).

However, the GLS formulation of the Navier-Stokes equations contains stabilization terms

that are designed to dampen out oscillations that could otherwise occur at large Reynolds

numbers (Tezduyar and Behr (1994)). Furthermore, the flow solver is not used on its own,

but it is embedded within a mesh adaptation loop. In this case, it is possible to start the

iteration using a very coarse mesh, which allows the solution to be computed relatively fast

and several Picard iterations to be done rapidly. As the mesh is being refined during the

150

mesh adaptation phase, each iteration of the flow solver does not start from a null solution

field, but from the solution obtained at the previous solver iteration interpolated on the

adapted mesh. Hence, as the mesh is being adapted and refined, the restart solution passed

to the flow solver becomes closer and closer to the desired final solution, assuming of course

that the process converges. Therefore, the total number of Picard iterations that would

typically be necessary for the convergence of an incompressible Navier-Stokes solver are

spread over several solver runs, the first one being on a very coarse mesh and the subsequent

ones being on finer and finer meshes, according to the requirements of the error estimator

(and available computer memory and CPU time). Consequently, the total computational

cost of solving a problem using a Picard method with mesh adaptation can potentially be

lower than the one that would incur if the final adapted mesh were used from the start.

The computational cost for the flow solver operation would also be lower, compared to

the one incurred if a fine mesh were used without mesh adaptation. It cannot be assessed

whether the total cost, namely the sum of the costs for flow solver activity and for mesh

adaptation, would be lower than without mesh adaptation, because this is highly problem

dependent. However, mesh adaptation has been known to greatly increase the robustness

of the solution process (Tam et al. (1998)); unless the flow field is uniform, the number of

mesh points needed to obtain a solution at a given level of accuracy is significantly reduced

(Tam (1998)).

Besides the present simple approach, one may possibly explore the use of sophisti-

cated solution algorithms (Turek (1999)), but these are considered outside the scope of this

thesis.

151

7.5 Interpolation of the Re-start Solution on the Adapted

Mesh

Interpolating a solution from one mesh to another usually requires looping over the

mesh points of the receiving mesh, locating each mesh point in the mesh with the solution

to determine its containing element and then using finite element interpolation functions to

evaluate the solution at that point within the element. Various point location procedures

can be used and the fastest ones, presuming no prior information is known between the two

meshes, have a computational cost that increases at a rate of O(n log (n)), where n is the

number of mesh points in the input mesh (Lohner (2001)).

However, in the context of mesh adaptation, this can be improved upon by noticing

that it is not necessary to interpolate the solution from an arbitrary mesh to another, but

specifically from the initial mesh that was passed on to the mesh optimization process

to the adapted mesh resulting from the mesh optimization process. This simpler case

can be easily taken advantage of here, because, before the mesh modification begins, a

copy of the input mesh is made and used to store the metric field (computed from the

error estimator). Each mesh point in the mesh to be adapted (the “foreground mesh”) is

initialized with the element id of its containing element in the background mesh. Also,

during the mesh adaptation process, this containing element in the background mesh for

each point in the foreground mesh is continuously updated, so this information is available

at the end of the mesh adaptation process. Consequently, to interpolate the solution on the

new adapted mesh is simply a matter of reading back the solution associated to the initial

non-adapted mesh and evaluating the linear finite element shape function to interpolate the

152

solution. This is done by calling a walkthrough search routine, which makes use of the linear

shape function, with the initial containing element already available. The interpolation of

the solution requires the algorithm to loop on all the points of the adapted mesh and to

call the search routine once for each point, in order to evaluate the linear finite element

shape functions and also to ensure that the containing element is correct. As a result, this

interpolation algorithm has a computational cost that increases linearly with the number of

mesh points in the input mesh, i.e. it is O(n), rather than O(n log (n)), if a spatial search

were used instead.

Although this search routine is not conservative, in the sense that the interpolated

velocity field might not exactly satisfy the incompressibility condition for the Navier-Stokes

equations, it was found to work very well in practice. Recall that a Picard method is used for

the nonlinear Navier-Stokes equations, so that the interpolated velocity field and pressure

fields are only used for the first Picard iteration.

Finally, it is worth mentioning that the solution interpolation procedure is the

same for steady and unsteady problems, because a fully coupled space-time procedure is

used.

7.6 Summary of the Adaptive Solution Algorithm

The overall adaptive solution algorithm, containing both the FEM flow solver

and the mesh adaptation procedure, is summarized in Figure 7.5. The process begins by

specifying an initial space-time mesh, boundary conditions and values of parameters such as

the Reynolds number that are passed on to the flow solver. As part of the flow solver process,

153

Picard iterations are performed until the following convergence criterion is satisfied. This

criterion was the L2 norm of the difference between the solution from the previous Picard

iteration to the current one divided by L2 norm of the current solution:

ε =
kUi−1 −Uik0

kUik0
(7.1)

where Ui is the solution vector at the Picard iteration i. A condition of ε ≤ 10−4 was

used for stopping the iterations and a maximum of 10 Picard iterations per solver run were

allowed.

Once the Picard iteration has converged or reached the maximum number of iter-

ations, if a specified maximum number of mesh adaptation iterations has not been reached,

the solution is passed on to the mesh adaptation process, along with the geometry corre-

sponding to the initial mesh. The error estimator is computed first and the resulting metric

tensor field is passed on to the mesh optimization process along with the minimum and

maximum mesh size, maximum allowed aspect ratio and metric reduction factor. For the

test cases presented in this thesis, typically three or four mesh adaptation passes were used

with four or five solver runs for a maximum of 50 Picard iterations in total. Once the mesh

optimization process is completed, the solution is interpolated from the initial mesh to the

adapted mesh and passed on to the flow solver to recompute the solution again, but this

time using the interpolated solution as the restart solution; this way, the Picard method

does not start from a null solution field as was the case for the first solver run.

As described in Chapter 6, a simple error reduction technique was used to reduce

the average error measured by the error estimator along the edges of the mesh. This was

preferred over specifying a target error, because, for an interpolation based error estimator,

154

the meaning of the value of the target error is not clear and it is problem dependent. Mesh

adaptation strategies that normalize the metric, such that the target mesh size as measured

by the metric is one, are not easy to use, because they require the scaling factor to be

adjusted by trial and error. A wrong guess can result in a mesh that is unnecessarily refined

or, even worse, coarsened (Tam et al. (1998), Dompierre et al. (2002)). A mesh reduction

strategy is therefore safer and easier to use, although it remains a heuristic approach that

can certainly be improved upon. A possible choice could be to use a residual based error

estimator, but this is left to future work (Ainsworth and Oden (2000)).

155

Initial Space-Time
Mesh, BC's and

Parameters

Solve Incompressible
Navier-Stokes Equations

for Picard Iteration p

Solution for Fluid at
Rest or Re-Start

Solution

Converged or Max. Picard
Iteration Reached?

Picard Iteration
p = p + 1

Space-Time Mesh
and Solution

NO

Mesh Adaptation
Converged or Max

Iterations?

STOP

NO

YES

Compute
Space-Time

Error Estimate

Interpolate
Solution onto

Adapted Mesh

Geometry

Space-
Time Flow
Solution

Adapt
Space-Time

Mesh

Figure 7.5: Schematic representation of the combined space-time FEM solver and the space-
time mesh adaptation procedures.

156

157

Chapter 8

Numerical Results

8.1 Introduction

This chapter presents the test cases used to investigate the applicability of the

fully coupled space-time adaptive finite element method developed in this thesis. All test

cases presented use simplicial meshes in 2-D and 3-D and, in two simple cases, in 4-D. The

space-time finite element method is investigated using an unsteady linear heat equation and

also the incompressible Navier-Stokes equations for flows with Reynolds numbers from 100

to 800. In summary, the test cases are as follows:

• Section 8.2 assesses the performance of the anisotropic mesh optimization procedure

inside unit domains in 2-D, 3-D and 4-D using analytical metric fields. These examples

focus on the performance of the meshing algorithms, without giving consideration to

the error estimator and the finite element method.

• Section 8.3 is a first test for the adaptive space-time procedure. It considers an

unsteady linear heat equation problem with a manufactured solution used to compare

the numerical solution with the expected analytical solution. The L2 norm of the

error on the temperature field on 2-D, 3-D and 4-D space-time meshes inside a unit

domain is used for that comparison.

• Section 8.4 describes verification cases for the incompressible Navier-Stokes equations,

also using manufactured solutions. A first test is performed for a steady 2-D flow field

on a 2-D mesh. A second test is performed with a similar analytical solution, but

for an unsteady flow using a fully coupled space-time flow solver and 3-D meshes, in

which time is the third dimension. The numerical solutions are compared with the

analytical solutions for isotropic uniform meshes as well as for adapted meshes.

• Section 8.5 presents the solution of the classical benchmark problem of flow past

a circular cylinder at Reynolds number of 100. Again, a fully-coupled space-time

approach is used on a solution domain with a dimensionless time extending from zero

to ten units.

• Section 8.6 considers the flow behind a backward facing step at Reynolds number of

800 using the same adaptive space-time procedure as that in the previous example

and also for a dimensionless time range from zero to ten units.

• Section 8.7 presents the impulsively started flow in a lid-driven cavity for a Reynolds

number of 400 using the same boundary conditions and problem specifications as those

in the work of Pontaza and Reddy (2004); however, the present approach uses a fully

coupled Galerkin/least-square finite element method combined with an anisotropic

158

space-time mesh adaptation procedure, rather than a higher order finite element spec-

tral method without any mesh adaptation.

All numerical solutions were computed using a personal computer with a Pentium

4 processor, running at 3.2 GHz and using 1 GB of RAM; the code was compiled using

double precision floating point arithmetics.

8.2 Mesh Optimization Using an Analytical Metric with 2-D,

3-D and 4-D Meshes

To access the effectiveness of the mesh optimization procedure on 2-D, 3-D and

4-D unstructured simplicial meshes, tests were performed on meshes with an analytical

metric specified as

N (x, y, z, t) =



1/h0 0 0 0

0 1/h1 0 0

0 0 1/h2 0

0 0 0 1/h3


I (8.1)

where N is a linear transform, as presented in equation 2.9, I is the identity matrix and hi

is the length along the coordinates axis i, given as

h0 = 0.025, if |x− 0.5| ≤ 0.1 (8.2)

h1 = 0.025, if |y − 0.5| ≤ 0.1

hi = 0.25, otherwise

The domain for the mesh spans the region [0, 1] for each of the x, y, z coordinates

159

of the space domain, while the time axis for the 4-D case only ranges between [0, 0.2] to

restrict the number of points in the mesh. For the 2-D case, the initial mesh is constructed

by dividing the unit square in 10 intervals along each axis and subdividing the quadrilateral

elements in two triangles leading to an initial mesh with 200 simplicial elements and 121

points. For the 3-D case, the initial mesh is also constructed by dividing a unit cube with 10

intervals and subdividing the hexahedral elements into six tetrahedral elements leading to a

mesh with 6,000 simplicial elements and 1,331 points. For the 4-D case, a 3-D unit cube is

divided in six tetrahedral elements, extruded to 4-D and refined with the mesh optimization

procedure with a uniform metric with hi = 0.1, which leads to a starting mesh with 684,869

4-D simplicial elements and 42,974 points. The initial meshes were chosen to be of sufficient

resolution to capture the variation of the metric field computed with the analytical metric

of equation 8.1; they were stored in the background mesh during the mesh optimization

procedure.

For the 2-D case, Figure 8.1 shows the meshes before and after 10 internal cycles of

mesh optimization, where the density was adjusted followed by 5 cycles of mesh smoothing

(the numbers of cycles are the same for all test cases). The histograms for the element

quality and the metric edge length are shown in Figure 8.2. The number of mesh points

and elements as well as the numbers of edge collapses, edge splits and edge swaps as functions

of the number of internal iterations in the mesh optimization procedure are shown in Figure

8.3.

For the 3-D case, Figure 8.4 shows the meshes before and after optimization, while

Figure 8.5 shows two details on the mesh. Histograms for the element quality and the metric

160

edge lengths are presented in Figure 8.6 and the numbers of mesh points and elements as

well as the numbers of mesh modification operations are shown in Figure 8.7. Notice that

some residual edge splitting and edge collapsing operations are still present after 10 internal

iterations of the mesh optimization procedure, but from the top part of Figure 8.7 it can

be seen that the numbers of mesh points and elements are not fully stabilized so that

this is to be expected. Nevertheless, the numbers of residual mesh operations are small

compared to their peak values. Furthermore, each internal iteration includes an attempt to

swap edges for elements that have a quality lower than 0.5 and to smoothen the mesh as

well. These mesh improvement operations may perturb the metric edges and are also more

expensive than splitting or collapsing. Consequently, it is important to stop the internal

mesh optimization procedure as soon as possible to minimize its computational cost.

For the 4-D case, the meshes before and after the mesh optimization procedure

are shown for the boundary of the domain corresponding to t = 0 in Figure 8.8 and for the

boundary of the domain corresponding to t = 0.2 in Figure 8.9. The faces of the optimized

mesh for the hypercube are shown in Figure 8.10 for x = 0, y = 0, z = 0, and z = 1.

The meshes shown for the 4-D cases were generated by selecting the tetrahedral elements

composing the faces of the 4-D hypercube domain (using their topological family id) and

writing them into a CGNS file so that they could be processed with a standard CFD post-

processor (Tecplot). The mesh points are modified by dropping the time coordinate for faces

for which the time coordinate is equal to a constant. For the other faces, the coordinate

held constant is removed and the mesh point coordinates are contracted to give a 3-D

point that is composed of (y, z, t) or (x, z, t) or (x, y, t) (although it is stored as (x, y, z)

161

d MinQ MaxQ AvgQ StdQ NumPoints NumElems
2-D 0.5 0.97 0.82 0.08 344 617
3-D 0.03 0.99 0.49 0.21 5,158 26,678
4-D 0.00 0.95 0.058 0.11 124,917 1,927,662

Table 8.1: Analytic metric. Element quality, number of mesh points and number of elements
for the mesh optimization procedure.

in the CGNS file to be compatible with the post-processor format). More sophisticated

visualization techniques, such as slicing the 4-D fully unstructured simplicial mesh with an

hyperplane at a constant time inside the domain rather than simply on its faces, are left

for future work. The histograms for the element quality and the metric edge lengths are

shown in Figure 8.11 and the ones for the number of mesh points and elements and mesh

operations are shown in Figure 8.12.

The trends for the element quality for the 2-D, 3-D and 4-D cases are summarized

in Table 8.1. For the 2-D case, the minimum element quality is 0.5 and the average quality

is 0.97; considering that the maximum quality value is 1.0, the quality of these elements

may be assessed to be excellent. The average element quality for the 3-D case is 0.45,

which may be assessed as very good and about the same as for the results of Li et al.

(2005), although not for the same metric field. In contrast, the minimum quality for the

4-D case is 0.0 and most of the element have a quality that is below 0.05, which is clearly

unsatisfactory. Note that the quality is measured using equation 6.1, which uses the square

of the quality, so a quality of 0.03 for the 3-D case would have been 0.17, if the quality

were not squared. Furthermore, notice that the squared quality, containing the V 2E in the

numerator, is proportional to h2d, where d is the space dimension. Hence, the increase in

the exponent of h with the increase of the space dimension also accentuates the sensitivity

162

of the measure of quality in a fashion similar to the one shown by Figure 6.1. It would

be interesting to study the variation of the element quality with other measures of element

quality across space dimensions to evaluate how the trends are affected by this, but here

a commonly used measure of element quality was chosen to facilitate comparison with the

work of other authors (e.g., (Li et al. (2005))), even though this might not be an optimal

choice for quality comparisons across space dimensions.

Another observation concerns the number of mesh points as a function of the space

dimension. Even with almost two million elements for the 4-D case, the adapted meshes

shown in figures 8.8 and 8.9 are not fully converged, when compared with the ones for

the 3-D case in Figure 8.4. The number of points was increased to high levels in 4-D to

investigate how the meshing procedure would behave in 4-D compared to the 2-D and 3-D

cases. At this time, these results are considered preliminary and further investigations are

necessary to determine the reasons for the degradation of the mesh quality in 4-D for the

anisotropic case. However, it is possible that at least a portion of the problem is due to the

surface mesh of the 4-D meshes, which is composed of tetrahedral elements that can have

zero or nearly zero volumes even if none of their metric edge lengths are near zero (sliver

elements). Further improvements on the topological operators to remove those elements

are clearly needed. Even so, in 2-D and 3-D, the edge swapping procedure was successful

in producing meshes of a quality suitable for use in a finite element method.

Another interesting trend across space dimensions is the ratio of the number of

elements to the number of mesh points. This ratio is 1.79, 5.17, 15.43 for the 2-D, 3-D

and 4-D cases, respectively. Notice that this corresponds approximately to the number

163

d Time (s) Memory (MB)
per 1000 points per 1000 points

2-D 3.04 0.60
3-D 54.26 4.17
4-D 374.9 4.38

Table 8.2: Analytic metric. Execution time and memory consumption per 1000 points for
the mesh optimization procedure.

of simplicial elements needed to subdivide a quadrilateral element in 2-D (two simplicial

elements) and a hexahedral element in 3-D (five or six simplicial elements). Interestingly,

the value of this ratio increases by a factor of approximately 3, when going from 2-D to

3-D, and also by the same factor of approximately 3 when going from 3-D to 4-D.

The execution times for the mesh optimization procedure, not counting the CGNS

file reading and writing, and the memory usage per 1,000 mesh points are presented in

Table 8.2. The 3-D and 4-D anisotropic mesh adaptation procedures are, respectively,

about 18 and 123 times more expensive than the 2-D case. The 4-D case is about 7 times

more expensive than the 3-D case. It is important to highlight that the 2-D case started

with a rather small mesh with 121 points compared to 1331 points for the 3-D case and

42974 points for the 4-D case. However, the general trend clearly indicates that the cost of

anisotropic mesh adaptation drastically increases as the number of space dimension increases

and generalizing about what can be obtained with such techniques only by studying 2-D

meshes can be very misleading.

The percentages of execution time spent for splitting edges, collapsing edges, swap-

ping edges and smoothing the mesh are shown in Table 8.3. The relative cost of splitting

and collapsing compared to other mesh operations seems to decrease as the space dimension

increases, whereas the cost of swapping edges and smoothing the mesh increases. Consid-

164

d Splitting Collapsing Swapping Smoothing
time % time % time % time %

2-D 24.7 25.3 8.9 41.1
3-D 8.1 32.1 13.0 46.8
4-D 1.7 18.4 21.6 58.3

Table 8.3: Analytic metric. Percentage of execution time for each mesh operator for the
mesh optimization procedure.

ering that about 50% of the time is spent for smoothing, one may explore the possibility

of saving computational time by adjusting this procedure. However, smoothing was found

necessary to maintain a good mesh quality, so that reducing the mesh smoothing could

result in time saving but at the risk of compromizing element quality. For the percentage

of time spent swapping edges, the heuristic strategy of selecting only one edge swap possi-

bility, described in Chapter 6, keeps the cost of edge swapping relatively low compared to

the smoothing and is sufficient to maintain a quality that is excellent in 2-D, good in 3-D,

but insufficient in 4-D (at least for this anisotropic case with the current measure of quality

that was used).

165

CoordinateX

C
oo

rd
in

at
eY

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a)

CoordinateX

C
oo

rd
in

at
eY

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b)

Figure 8.1: Analytic metric 2-D. a) Initial mesh; b) optimized mesh.

166

0

50

100

150

200

250

300

0.
5

0.
53

0.
55

0.
58 0.
6

0.
63

0.
65

0.
68 0.
7

0.
73

0.
75

0.
78 0.
8

0.
83

0.
85

0.
88 0.
9

0.
93

0.
95

0.
98

Element Quality

Nu
m

be
r o

f E
le

m
en

ts

MinQ = 0.5
MaxQ = 0.97

MeanQ = 0.82
StdQ = 0.08

a)

0

50

100

150

200

250

300

350

400

0.
46

0.
55

0.
64

0.
73

0.
82

0.
91 1

1.
09

1.
18

1.
27

1.
36

1.
45

1.
54

1.
63

1.
72

1.
81 1.
9

1.
99

2.
08

2.
17

Metric Edge Length Intervals

N
um

be
r

of
 E

le
m

en
ts

MinLm = 0.46
MaxLm = 2.26

MeanLm = 0.85
StdLm = 0.22

b)

Figure 8.2: Analytic metric 2-D. a) Histogram of element quality; b) histogram of metric
edge length.

167

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

Iteration Number

Number of Points Number of Elementsa)

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Iteration Number

Edge Coarsening Edge Splitting Edge Swappingb)

Figure 8.3: Analytic metric 2-D. a) Number of mesh points and elements; b) number of
edge coarsening, edge splitting and edge swapping operations per internal mesh adaptation
iteration.

168

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

X Y

Z
a)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

X Y

Z

b)

Figure 8.4: Analytic metric 3-D. a) Initial mesh; b) optimized mesh.

169

X Y

Zb)

X Y

Z
a)

Figure 8.5: Analytic metric 3-D. Details of mesh faces corresponding to a) x = 1 and z = 1;
b) z = 1.

170

0

500

1,000

1,500

2,000

2,500

0.
03

0.
08

0.
13

0.
18

0.
22

0.
27

0.
32

0.
37

0.
42

0.
46

0.
51

0.
56

0.
61

0.
66 0.
7

0.
75 0.
8

0.
85

0.
89

0.
94

Element Quality

Nu
m

be
r o

f E
le

m
en

ts

MinQ = 0.03
MaxQ = 0.99

MeanQ = 0.49
StdQ = 0.21

a)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0.
12

0.
21 0.
3

0.
39

0.
48

0.
57

0.
66

0.
75

0.
84

0.
93

1.
02

1.
11 1.
2

1.
29

1.
38

1.
47

1.
56

1.
65

1.
74

1.
83

Metric Edge Length Intervals

N
um

be
r

of
 E

le
m

en
ts

MinLm = 0.12
MaxLm = 1.91

MeanLm = 0.65
StdLm = 0.19

b)

Figure 8.6: Analytic metric 3- D. a) Histogram of element quality; b) histogram of metric
edge length.

171

0

10,000

20,000

30,000

40,000

50,000

60,000

1 2 3 4 5 6 7 8 9 10

Iteration Number

Number of Points Number of Elementsa)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

1 2 3 4 5 6 7 8 9 10

Iteration Number

Edge Coarsening Edge Collapsing Edge Swappingb)

Figure 8.7: Analytic metric 3-D. a) Number of mesh points and elements; b) number of
edge coarsening, edge splitting and edge swapping operations per internal mesh adaptation
iteration.

172

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

X Y

Z

a)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

X Y

Z

b)

Figure 8.8: Analytic metric 4-D. a) Initial mesh at t = 0; b) optimized mesh at t = 0.

173

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

X Y

Z

a)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

X Y

Z

b)

Figure 8.9: Analytic metric 4-D. a) Initial mesh at t = 1; b) optimized mesh at t = 1.

174

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

X Y

Za)

0

0.1

0.2

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateY

0

0.2

0.4

0.6

0.8

1

CoordinateZ

a)

0

0.1

0.2

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

b)

0

0.1

0.2

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

c)

0

0.1

0.2

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

d)

Figure 8.10: Analytic metric 4-D. Adapted mesh for plane a) x = 0; b) y = 0; c) z = 0; d)
z = 1.

175

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

0
0.

05 0.
1

0.
14

0.
19

0.
24

0.
29

0.
33

0.
38

0.
43

0.
48

0.
52

0.
57

0.
62

0.
67

0.
71

0.
76

0.
81

0.
86 0.
9

Element Quality

Nu
m

be
r o

f E
le

m
en

ts

MinQ = 0.00
MaxQ = 0.95

MeanQ = 0.058
StdQ = 0.11

a)

0

50,000

100,000
150,000

200,000

250,000

300,000
350,000

400,000

450,000

0
0.

15 0.
3

0.
45

0.
59

0.
74

0.
89

1.
04

1.
18

1.
33

1.
48

1.
62

1.
77

1.
92

2.
07

2.
21

2.
36

2.
51

2.
66 2.
8

Metric Edge Length Intervals

N
um

be
r

of
 E

le
m

en
ts

b)
MinLm = 0.0037
MaxLm = 2.95
MeanLm = 0.55
StdLm = 0.37

Figure 8.11: Analyic metric 4-D. a) Histogram of element quality; b) histogram of metric
edge length.

176

0
200,000
400,000
600,000
800,000

1,000,000
1,200,000
1,400,000
1,600,000
1,800,000
2,000,000

1 2 3 4 5 6 7 8 9 10

Iteration Number

Number of Points Number of Elementsa)

0

10,000

20,000

30,000

40,000

50,000

60,000

1 2 3 4 5 6 7 8 9 10

Iteration Number

Edge Coarsening Edge Splitting Edge Swappingb

Figure 8.12: Analytic metric 4-D. a) Number of mesh points and elements; b) number of
edge coarsening, edge splitting and edge swapping operations per internal mesh adaptation
iteration.

177

8.3 Unsteady Heat Transfer in Boxes with 2-D, 3-D and 4-D

Meshes

The first test case of the unified space-time finite element adaptive procedure is

the solution of the linear unsteady heat equation

∂T

∂t
= α∇2T + ġ (8.3)

where α is the thermal diffusivity, T is the temperature and ġ is the rate at which energy

is generated per unit volume of the medium. For a space-time formulation, the solution

domain comprises both space and time, such that x ∈ Ω× (0, T) ∈ <d, with d = 2, 3 or 4.

Following the method of manufactured solutions (Roache (2002)), the analytical

solution

T (x) = G0 tanh

µ
t

τ

¶ dY
i=1

cos (xi) (8.4)

where

α = 1, G0 = 1, τ = 0.2 (8.5)

is inserted in equation 8.3 to compute the corresponding term ġ. The specification of

the problem is completed with the use of Dirichlet boundary conditions on the boundary

∂Ω× (0, T) using the manufactured solution 8.4, as recommended by Roache (2002).

This test case was repeated in 2-D, 3-D and 4-D space-time domains of unit length

along all space and time axes. The initial meshes use 10 intervals along the coordinate axes,

as for the previous case of section 8.2, leading to a mesh with 200 simplicial elements and

121 points for the 2-D case and 6,000 simplicial elements and 1,331 points for the 3-D case.

The initial mesh for the 4-D was generated as previously described in section 8.2, but with a

178

mesh size of hi = 1.0 with a target metric edge length size of 0.5 leading to 4,557 simplicial

elements and 417 mesh points.

For the 2-D case, 3 cycles of mesh adaptation were performed for a total of 4

solver executions. The error reduction factors for each mesh adaptation iteration were

chosen, respectively, as 0.5, 0.5 and 0.8. The initial and adapted meshes after the 4 solver

executions are shown in Figure 8.13, while the solutions before and after these operations

are shown in Figure 8.14. Two details of the solution field with the mesh super-imposed are

shown in Figure 8.15. Figures 8.16 show histograms for the element quality and the metric

edge lengths.

The variation of L2 error norm kT − Thk0 is shown in the lower part of Figure 8.17.

The variation of error norm is usually shown in convergence analyses as a function of the

characteristics element size h on uniform meshes. In the test cases presented in this thesis,

the meshes are adapted anisotropically, so that the mesh size is not uniform throughout

the mesh. Because the characteristics element size h is usually taken as the inverse of the

number of subdivision intervals along each axis NI , such that h = 1/NI , and the volume

of an element is proportional to hd, where d is the dimension of the space-time domain,

the characteristic size was chosen as h = 1/N1/d
p , where Np is the number of points in the

space-time domain.

For the 3-D case, the error reduction factors used were 0.5 and 0.8 with 3 solver

executions. Similar figures are shown for the 3-D case, where Figure 8.18 shows the 3-D

initial and adapted meshes, Figure 8.19 shows the solutions on the initial and final adapted

meshes, Figure 8.20 shows details of the temperature field with the mesh super-imposed,

179

Figure 8.21 shows histograms of the element quality and the metric edges length, Figure

8.22 shows the variations of the numbers of mesh points and elements vs. the solver iteration

number and also the L2 norm of the error.

For the 4-D case, error reduction factors of 0.6 and 0.8 were used with 3 solver

executions. The initial and adapted meshes are shown in Figure 8.23 for the face elements

corresponding to t = 0 and in Figure 8.24 for the face elements corresponding to t = 1. The

solutions on the initial and adapted meshes are shown for t = 0, x = 0, y = 0, and z = 0 in

figures 8.25, 8.26 and 8.27, 8.28, respectively. Histograms for the element quality and the

metric edge lengths are shown in Figure 8.29. Notice that the minimum element quality for

the 4-D adapted mesh in this case is 10−5 and the average quality is 0.061, which is slightly

better than that for the previous case with the anisotropic analytical metric shown in section

8.2. By inspection of figures 8.23 and 8.24, it appears that the mesh is relatively coarse and

mostly isotropic and in this case the mesh optimization maintains a higher minimum and

average element quality than for the 4-D case with the anisotropic analytical metric field

presented previously in section 8.2.

Table 8.4 presents the minimum, maximum, average and standard deviation of the

mesh quality on the final adapted mesh as a function of the dimension of the space-time

domain along with the corresponding numbers of mesh points and elements. The minimum

element quality is higher in 2-D than in 3-D and 4-D, but in all cases the minimum quality

is sufficient for the finite element method.

Table 8.5 shows kT − Thk0 as a function of the approximate characteristic mesh

size h = 1/N1/d
p . In general, the numerical solution is in good agreement with the analytical

180

d MinQ MaxQ AvgQ StdQ NumPoints NumElems
2-D 0.069 1.0 0.77 0.18 121 200
3-D 0.0017 0.99 0.33 0.19 9,805 50,872
4-D 0.000010 0.89 0.061 0.075 49,941 764,056

Table 8.4: Heat equation. Element quality and numbers of mesh points and elements for
the mesh optimization procedure.

d SolverIt kT − Thk0 1/N
1/d
p

2-D 1 0.0878 0.0909
2 0.0246 0.0700
3 0.00702 0.0354
4 0.00630 0.0275

3-D 1 0.155 0.0909
2 0.0222 0.0467
3 0.00918 0.0313

4-D 1 0.603 0.221
2 0.187 0.109
3 0.0925 0.0669

Table 8.5: Heat equation. Norm of the error.

solution and drops rapidly as the number of mesh points increases in the space-time domain.

It is important to emphasize that this L2 norm is computed on the entire space-time domain

and therefore accounts for errors in both space and time.

The percentages of the total execution time, including both the mesh adaptation

and the solver execution, that is spent only on mesh adaptation are 96.8%, 99.3% and 99.8%

for the 2-D, 3-D and 4-D cases, respectively. Clearly, for this simple linear heat equation,

the time spent by the solver is negligible compared to the time spent for the anisotropic

mesh adaptation procedure.

181

CoordinateX

C
oo

rd
in

at
eT

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b)

CoordinateX

C
oo

rd
in

at
eT

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a)

Figure 8.13: Unsteady 1-D heat transfer. a) Initial mesh; b) adapted mesh.

182

CoordinateX

C
oo

rd
in

at
eT

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temperature
0.886781
0.773547
0.660314
0.547080
0.433847
0.320614
0.207380
0.094147

-0.019086
-0.132320
-0.245553
-0.358786
-0.472020
-0.585253
-0.698487

a)

CoordinateX

C
oo

rd
in

at
eT

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temperature
0.878282
0.752701
0.627120
0.501538
0.375957
0.250376
0.124794

-0.000787
-0.126368
-0.251950
-0.377531
-0.503112
-0.628693
-0.754275
-0.879856

b)

Figure 8.14: Unsteady 1-D heat transfer. a) Initial temperature field; b) adapted tempera-
ture field.

183

CoordinateX

C
oo

rd
in

at
eT

0.8 0.85 0.9 0.95 1

0.8

0.85

0.9

0.95

1

Temperature
0.878282
0.752701
0.627120
0.501538
0.375957
0.250376
0.124794

-0.000787
-0.126368
-0.251950
-0.377531
-0.503112
-0.628693
-0.754275
-0.879856

a)

CoordinateX

C
oo

rd
in

at
eT

0.4 0.5 0.6

0.1

0.2

0.3 Temperature
0.878282
0.752701
0.627120
0.501538
0.375957
0.250376
0.124794

-0.000787
-0.126368
-0.251950
-0.377531
-0.503112
-0.628693
-0.754275
-0.879856

b)

Figure 8.15: Unsteady 1-D heat transfer. a) Temperature field and mesh near corner point
(1,1); b) temperature field and mesh near point (0.5,0.2).

184

0

50

100

150

200

250

300

350

400

0.
07

0.
12

0.
16

0.
21

0.
26 0.
3

0.
35

0.
39

0.
44

0.
49

0.
53

0.
58

0.
63

0.
67

0.
72

0.
77

0.
81

0.
86

0.
91

0.
95

Element Quality

Nu
m

be
r o

f E
le

m
en

ts
a)

MinQ = 0.069
MaxQ = 1.0

MeanQ = 0.77
StdQ = 0.18

0

100

200

300

400

500

600

700

0.
03

0.
04

0.
04

0.
05

0.
06

0.
06

0.
07

0.
08

0.
09

0.
09 0.
1

0.
11

0.
12

0.
12

0.
13

0.
14

0.
14

0.
15

0.
16

0.
17

Metric Edge Length Intervals

N
um

be
r

of
 E

le
m

en
ts

b)
MinLm = 0.028
MaxLm = 0.17

MeanLm = 0.096
StdLm = 0.017

Figure 8.16: Unsteady 1-D heat transfer. a) Histogram of element quality; b) histogram of
metric edge length.

185

0

500

1,000

1,500

2,000

2,500

3,000

1 2 3 4

Solver Iteration Number

Number of Points Number of Elementsa)

1.E-03

1.E-02

1.E-01

0.010.1

1/(Number of Points)^(1/d)

Error Normb)

Figure 8.17: Unsteady 1-D heat transfer. a) Numbers of mesh points and elements; b) L2

error norm as a function of 1/N1/d
p .

186

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

a)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

b)

Figure 8.18: Unsteady 2-D heat transfer. a) Initial mesh; b) adapted mesh.

187

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
e

T

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

Temperature
0.886856
0.773803
0.660749
0.547696
0.434643
0.321589
0.208536
0.095483

-0.017570
-0.130624
-0.243677
-0.356730
-0.469784
-0.582837
-0.695890

a)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
e

T

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

Temperature
0.877204
0.751783
0.626363
0.500943
0.375523
0.250103
0.124683

-0.000737
-0.126157
-0.251577
-0.376997
-0.502417
-0.627837
-0.753257
-0.878677

b)

Figure 8.19: Unsteady 2-D heat transfer. a) Initial temperature field; b) adapted tempera-
ture field.

188

a)

b)

Figure 8.20: Unsteady 2-D heat transfer. a) Temperature field and mesh near corner point
(1,1,1); b) Temperature field and mesh near point (1,0.5,1).

189

0

5,000

10,000

15,000

20,000

25,000

0
0.

05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55

0.
59

0.
64

0.
69

0.
74

0.
79

0.
84

0.
89

0.
94

Element Quality

Nu
m

be
r o

f E
le

m
en

ts
a)

MinQ = 0.0017
MaxQ = 0.99
MeanQ = 0.33
StdQ = 0.19

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

0.
03

0.
05

0.
06

0.
07

0.
09 0.
1

0.
12

0.
13

0.
14

0.
16

0.
17

0.
18 0.
2

0.
21

0.
23

0.
24

0.
25

0.
27

0.
28

0.
29

Metric Edge Length Intervals

Nu
m

be
r o

f E
le

m
en

ts

b)
MinLm = 0.033
MaxLm = 0.31

MeanLm = 0.15
StdLm = 0.035

Figure 8.21: Unsteady 2-D heat transfer. a) Histogram of element quality; b) histogram of
metric edge length.

190

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000
200,000

1 2 3

Solver Iteration Number

Number of Points Number of Elementsa)

1.E-03

1.E-02

1.E-01

1.E+00

0.010.1

1/(Number of Points)^(1/d)

Error Normb)

Figure 8.22: Unsteady 2-D heat transfer. a) Numbers of mesh points and elements; b) L2

error norm as a function of 1/N1/d
p .

191

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

a)

0

0.2

0.4

0.6

0.8

1

C
oordinateZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

b)

Figure 8.23: Unsteady 3-D heat transfer. a) Initial mesh at t = 0; b) adapted mesh at
t = 0.

192

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

a)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

b)

Figure 8.24: Unsteady 3-D heat transfer. a) Initial mesh at t = 1; b) adapted mesh at
t = 1.

193

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

Temperature
0.874921
0.749932
0.624943
0.499955
0.374966
0.249977
0.124989
0.000000

-0.124989
-0.249977
-0.374966
-0.499955
-0.624943
-0.749932
-0.874921

a)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eZ

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

Temperature
0.875028
0.750148
0.625267
0.500386
0.375505
0.250625
0.125744
0.000863

-0.124018
-0.248898
-0.373779
-0.498660
-0.623541
-0.748421
-0.873302

b)

Figure 8.25: Unsteady 3-D heat transfer. a) Initial temperature field at t = 1; b) adapted
solution at t = 1.

194

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateY

0

0.2

0.4

0.6

0.8

1

CoordinateZ

Temperature
0.874921
0.749932
0.624943
0.499955
0.374966
0.249977
0.124989
0.000000

-0.124989
-0.249977
-0.374966
-0.499955
-0.624943
-0.749932
-0.874921

a)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateY

0

0.2

0.4

0.6

0.8

1

CoordinateZ

Temperature
0.875028
0.750148
0.625267
0.500386
0.375505
0.250625
0.125744
0.000863

-0.124018
-0.248898
-0.373779
-0.498660
-0.623541
-0.748421
-0.873302

b)

Figure 8.26: Unsteady 3-D heat transfer. a) Initial temperature field at x = 0; b) adapted
solution at x = 0.

195

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateZ

Temperature
0.875028
0.750148
0.625267
0.500386
0.375505
0.250625
0.125744
0.000863

-0.124018
-0.248898
-0.373779
-0.498660
-0.623541
-0.748421
-0.873302

b)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateZ

Temperature
0.874921
0.749932
0.624943
0.499955
0.374966
0.249977
0.124989
0.000000

-0.124989
-0.249977
-0.374966
-0.499955
-0.624943
-0.749932
-0.874921

a)

Figure 8.27: Unsteady 3-D heat transfer. a) Initial temperature field at y = 0; b) adapted
solution at y = 0.

196

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

Temperature
0.875028
0.750148
0.625267
0.500386
0.375505
0.250625
0.125744
0.000863

-0.124018
-0.248898
-0.373779
-0.498660
-0.623541
-0.748421
-0.873302

b)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

Temperature
0.874921
0.749932
0.624943
0.499955
0.374966
0.249977
0.124989
0.000000

-0.124989
-0.249977
-0.374966
-0.499955
-0.624943
-0.749932
-0.874921

a)

Figure 8.28: Unsteady 3-D heat transfer. a) Initial solution at z = 0; b) adapted solution
at z = 0.

197

0
50,000

100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000
500,000

0
0.

04
0.

09
0.

13
0.

18
0.

22
0.

27
0.

31
0.

36 0.
4

0.
44

0.
49

0.
53

0.
58

0.
62

0.
67

0.
71

0.
76 0.
8

0.
85

Element Quality

Nu
m

be
r o

f E
le

m
en

ts

MinQ = 0.000010
MaxQ = 0.89

MeanQ = 0.061
StdQ = 0.075

a)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

0.
04

0.
06

0.
09

0.
11

0.
14

0.
16

0.
18

0.
21

0.
23

0.
26

0.
28

0.
31

0.
33

0.
36

0.
38

0.
41

0.
43

0.
45

0.
48 0.
5

Metric Edge Length Intervals

N
um

be
r

of
 E

le
m

en
ts

b)
MinLm = 0.038
MaxLm = 0.53

MeanLm = 0.24
StdLm = 0.076

Figure 8.29: Unsteady 3-D heat transfer. a) Histogram of element quality; b) histogram of
metric edge length.

198

0

100,000

200,000

300,000

400,000
500,000

600,000

700,000

800,000

900,000

1 2 3

Solver Iteration Number

Number of Points Number of Elementsa)

1.E-02

1.E-01

1.E+00

0.010.11

1/(Number of Points)^(1/d)

Error Norm Temperatureb)

Figure 8.30: Unsteady 3-D heat transfer. a) Numbers of mesh points and elements; b) L2

error norm as a function of 1/N1/d
p .

199

8.4 Unsteady Flow in a Cavity with a Manufactured Solution

The first incompressible Navier-Stokes test case is designed to verify that the

solver works properly for steady flows and for unsteady flows with a fully coupled space-

time formulation. Following the method of manufactured solutions, an analytical solution

is chosen based on the work of Watanabe et al. (1999), but with an added term that is a

function of time, as

C (t) = sin (πt) (8.6)

u = C (t) sin (πx)2 sin (πy) cos (πy)

v = −C (t) sin (πy)2 sin (πx) cos (πx)

p = − 1
16
C2 (t) cos (2πx) cos (2πy)

Because this expression satisfies the continuity equation, only source terms corre-

sponding to the momentum equations need to be computed by inserting the manufactured

solution into the incompressible Navier-Stokes equations. The problem definition is com-

pleted by specifying a Dirichlet boundary condition using the analytical solution specified

by 8.6 over the entire boundary of the space-time domain and a Reynolds number of 100.

A convergence analysis is first performed for the 2-D steady case and then for the

2-D unsteady case using isotropic meshes in a unit domain with the number of intervals

NI along each axis taken as 10, 20, 30 and 40, respectively. The L2 norms of the error are

shown for u, v and p as functions of the characteristic mesh size h = 1/NI in Figure 8.31

and in Table 8.6. In both the steady and the unsteady 2-D cases, the numerical solutions

are in excellent agreement with the manufactured analytical solution.

200

d SolverIt ku− uhk0 kv − vhk0 kp− phk0 h = 1/NI

2-D 1 0.0301622 0.0176131 0.0142572 1/10
2 0.00664341 0.00444518 0.00299479 1/20
3 0.00270476 0.00196802 0.0011713 1/30
4 0.00145283 0.00111379 0.000620702 1/40

2-D+Time 1 0.0105763 0.0136233 0.00505374 1/10
2 0.00261793 0.00310698 0.00109538 1/20
3 0.00117717 0.0013415 0.000474425 1/30
4 0.000668394 0.000745813 0.000266375 1/40

Table 8.6: Flow in Cavity. Error norms for the convergence analysis.

Next, the verification proceeds with the same 2-D steady flow, but in combination

with the anisotropic mesh adaptation procedure rather than with isotropic meshes that

are progressively subdivided. The initial 2-D mesh used had 10 intervals along each axis,

which gives 121 mesh points and 200 triangular elements. The error reduction factors used

for the mesh adaptation procedure were 0.5, 0.8, and 1.0 for the 3 adaptive cycles, for a

total of 4 solver executions. The initial and adapted meshes are shown in Figure 8.32. The

isocontours of u, v and p along with the velocity vector field are shown in Figure 8.33. The

streamlines for the adapted mesh and a detail of the streamlines are shown in Figure 8.34.

Histograms for the element quality and the metric edge lengths are shown in Figure 8.35.

The numbers of mesh points and elements have been plotted vs. the solver iteration number

in Figure 8.36. The L2 norms of the errors for u, v and p, shown in the same Figure, indicate

good agreement with the analytical solution.

One is reminded that, in the case of the non-linear incompressible Navier-Stokes,

a Picard iteration method has been used. In Figure 8.37, the convergence criterion of

equation 5.30, which is the relative norm of the difference between the solution vector at

two consecutive Picard iterations, is plotted vs. the cumulative number of Picard iterations

201

for all the solver and adaptation cycles. The Picard method converges to a value below

10−4 in about 12 iterations for each of the solver runs. It can be seen that, after each mesh

adaptation cycle, the relative norm between two consecutive solutions in the Picard method

rises abruptly. Recall that, after each mesh adaptation execution, the previous solution, also

used to compute the error estimate driving the mesh optimization procedure, is interpolated

on the adapted mesh. The interpolation procedure, previously described in Chapter 7, only

uses linear finite element interpolation functions, so that it is not guaranteed to satisfy

the equation for the mass conservation. In spite of this, the Picard method exhibits a

rapid convergence after each of these abrupt increases. Notice also that the peaks in the

relative norm corresponding to the first Picard iteration after each mesh adaptation cycle

get progressively reduced at each solver executions. This indicates that, for this specific

case, which corresponds to the relative low Reynolds number of 100, the Picard methods

converges rapidly. Considering that the Picard method is known to suffer from oscillations

for flows at high Reynolds numbers, this rapid convergence cannot be expected to apply to

problems at high Reynolds numbers. Even so, the present results indicate that the chosen

method is sufficient for the purposes of the current investigation.

The same verification is performed using a 3-D mesh for an unsteady solution on a

space-time domain with a fully coupled space-time finite element formulation. In this case,

the flow problem is still 2-D, but the space-time domain now includes the time axis, so that

the mesh used is 3-D. This initial 3-D mesh uses 10 intervals along each axis, leading to

1,331 mesh points and 6,000 tetrahedral elements. The error reduction factors used for the

3 mesh adaptation cycles were also 0.5, 0.8 and 1.0. The initial and adapted meshes are

202

d MinQ MaxQ AvgQ StdQ NumPoints NumElems
2-D 0.15 1.0 0.75 0.18 812 1,524
3-D 0.000033 0.99 0.28 0.20 80,493 444,192

Table 8.7: Flow in Cavity. Element quality and numbers of mesh points and elements for
the mesh optimization procedure.

shown in Figure 8.38, where the time axis corresponds to the vertical axis in this Figure.

The isocontours for velocity components u and v are shown at the time t = 0.5 and for

x = 0.5 in Figure 8.39 and for the pressure in Figure 8.40. Two details of the streamlines

with the isocontours of the pressure at t = 0.5 are also shown in Figure 8.41. Histograms

for the element quality and the metric edge lengths are shown in Figure 8.42. The numbers

of mesh points and elements along with the L2 norms for u, v and p are shown in Figure

8.43. The convergence criterion for the Picard method is shown in Figure 8.44.

The statistics for the element quality on the final adapted mesh, along with the

numbers of mesh points and elements, are summarized in Table 8.7. The minimum quality

in 2-D is 0.15, which may be considered as acceptable. In contrast, the minimum quality

in the 3-D case is relatively low, at 0.000033, and the average quality is only 0.28.

The L2 error norms for the velocity components and pressure for the 2-D and

3-D cases are summarized in Table 8.8. The 2-D case approaches excellent agreement with

the analytical solution, as the mesh is refined. The 3-D case shows good agreement, but

seems to oscillate. It is suspected that this might, at least in part, be attributed to the

use of 1/N1/d
p as the characteristic mesh size when the mesh is actually anisotropic and

its size is not uniform. Another possibility is that the GLS formulation is over-stabilized,

as the stabilization factors use a characteristic size that was computed as function of the

volume through equation 5.27. Mittal (2000) recommend to use the minimum edge length

203

d SolverIt ku− uhk0 kv − vhk0 kp− phk0 1/N
1/d
p

2-D 1 0.0302 0.0176 0.0143 0.0909
2 0.0319 0.0197 0.0143 0.0469
3 0.00622 0.00663 0.00279 0.0370
4 0.00358 0.00361 0.00123 0.0351

3-D 1 0.0106 0.0136 0.00505 0.0909
2 0.0114 0.0143 0.00510 0.0423
3 0.00272 0.00254 0.000849 0.0287
4 0.00784 0.00702 0.00127 0.0232

Table 8.8: Flow in Cavity. Norms of the errors.

for elements with high aspect ratio. However, for the present numerical experiments, using

the minimum edge length seemed to understabilize the procedure (it was observed that, for

a highly stretched mesh in simple Poiseuille flow, oscillations in the pressure field appeared).

Further investigations are needed on this subject for highly anisotropic meshes.

204

1.E-04

1.E-03

1.E-02

1.E-01

0.0100.100

h = 1/(Number Of Intervals)

Error Norm Velocity X Error Norm Velocity Y
Error Norm Pressure

a)

1.E-04

1.E-03

1.E-02

1.E-01

0.0100.100

h = 1/(Number Of Intervals)

Error Norm Velocity X Error Norm Velocity Y
Error Norm Pressure

b)

Figure 8.31: Steady and unsteady 2-D flow in a cavity. L2 error norm as a function of the
characteristic mesh size for a) the steady case and b) the unsteady case.

205

CoordinateX

C
oo

rd
in

at
eY

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a)

CoordinateX

C
oo

rd
in

at
eY

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b)

Figure 8.32: Steady 2-D flow in a cavity. a) Initial mesh; b) adapted mesh.

206

CoordinateX

C
oo

rd
in

at
eY

0 0.25 0.5 0.75 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a)

CoordinateX

C
oo

rd
in

at
eY

0 0.25 0.5 0.75 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b)

CoordinateX

C
oo

rd
in

at
eY

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c)

CoordinateX

C
oo

rd
in

at
eY

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d)

Figure 8.33: Steady 2-D flow in a cavity. a) u; b) v; c) pressure; d) velocity vector field.

207

CoordinateX

C
oo

rd
in

at
eY

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a)

CoordinateX

C
oo

rd
in

at
eY

0.5 0.6 0.7 0.8

0.2

0.3

0.4

0.5

b)

Figure 8.34: Steady 2-D flow in a cavity. Streamlines a) general pattern; b) detail.

208

0

20

40
60

80

100

120
140

160

180

0.
15 0.
2

0.
24

0.
28

0.
32

0.
36

0.
41

0.
45

0.
49

0.
53

0.
58

0.
62

0.
66 0.
7

0.
75

0.
79

0.
83

0.
87

0.
92

0.
96

Element Quality

Nu
m

be
r o

f E
le

m
en

ts
a)

MinQ = 0.15
MaxQ = 1.0

MeanQ = 0.75
StdQ = 0.18

0

50

100

150

200

250

300

350

0.
05

0.
05

0.
05

0.
06

0.
06

0.
07

0.
07

0.
08

0.
08

0.
09

0.
09 0.
1

0.
1

0.
11

0.
11

0.
11

0.
12

0.
12

0.
13

0.
13

Metric Edge Length Intervals

N
um

be
r

of
 E

le
m

en
ts

b)
MinLm = 0.045
MaxLm = 0.14

MeanLm = 0.084
StdLm = 0.015

Figure 8.35: Steady 2-D flow in a cavity. a) Histogram of element quality; b) histogram of
metric edge length.

209

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800

1 2 3 4

Solver Iteration Number

Number of Points Number of Elementsa)

1.E-03

1.E-02

1.E-01

0.010.1

1/(Number of Points) (̂1/d)

Error Norm Velocity X Error Norm Velocity Y
Error Norm Pressure

b)

Figure 8.36: Steady 2-D flow in a cavity. a) Numbers of mesh points and elements; b) L2

error norm as a function of 1/N1/d
p .

210

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Cumulative Picard Iterations

No
rm

 D
iff

er
en

ce
 S

ol
ut

io
n

Figure 8.37: Steady 2-D flow in a cavity. Relative norm of the difference between two
consecutive solutions as a function of the cumulative number of Picard iterations.

211

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

a)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

b)

Figure 8.38: Unsteady 2-D flow in a cavity. a) Initial mesh; b) adapted mesh.

212

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

a)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

b)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

c)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

d)

Figure 8.39: Unsteady 2-D flow in a cavity. Isovelocity contours a) u at t = 0.5; b) u at
x = 0.5; c) v at t = 0.5; d) v at y = 0.5.

213

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

a)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

b)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

c)

0

0.2

0.4

0.6

0.8

1

C
oo

rd
in

at
eT

0

0.2

0.4

0.6

0.8

1

CoordinateX

0

0.2

0.4

0.6

0.8

1

CoordinateY

d)

Figure 8.40: Unsteady 2-D flow in a cavity. a) Pressute at t = 0.5; b) pressure at x = 0.5;
c) streamlines and pressure at t = 0.5; d) streamlines and pressure at t = 0.25.

214

a)

b)

Figure 8.41: Unsteady 2-D flow in a cavity. Streamlines and pressure at t = 0.5. a) General
view; b) detail near point (0.5,0.5,0.5).

215

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0
0.

05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

Element Quality

Nu
m

be
r o

f E
le

m
en

ts
a)

MinQ = 0.000033
MaxQ = 0.99
MeanQ = 0.28
StdQ = 0.20

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

0.
01

0.
01

0.
02

0.
02

0.
03

0.
03

0.
04

0.
04

0.
05

0.
06

0.
06

0.
07

0.
07

0.
08

0.
08

0.
09

0.
09 0.
1

0.
1

Metric Edge Length Intervals

N
um

be
r

of
 E

le
m

en
ts

b)
MinLm = 0.0062
MaxLm = 0.12

MeanLm = 0.051
StdLm = 0.013

Figure 8.42: Unsteady 2-D flow in a cavity. a) Histogram of element quality; b) histogram
of metric edge length.

216

0

100,000

200,000

300,000

400,000

500,000

1 2 3 4

Solver Iteration Number

Number of Points Number of Elementsa)

1.E-04

1.E-03

1.E-02

1.E-01

0.010.1

1/(Number of Points)^(1/d)

Error Norm Velocity X Error Norm Velocity Y
Error Norm Pressure

b)

Figure 8.43: Unsteady 2-D flow in a cavity. a) Number of mesh points and elements; b) L2

error norm as a function of 1/N1/d
p .

217

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Cumulative Picard Iterations

N
or

m
 D

iff
er

en
ce

 S
ol

ut
io

n

Figure 8.44: Unsteady 2-D flow in a cavity. Relative norm of the difference between two
consecutive solutions as a function of the cumulative number of Picard iterations.

218

8.5 Unsteady Flow Past a Circular Cylinder

The incompressible flow past a cylinder at a Reynolds number of 100 has been cho-

sen to evaluate the performance of the space-time adaptive method on a classical benchmark

problem.

In this test case, a cylinder of unit radius centred at the spatial origin is enclosed

into the rectangular domain with −4 ≤ x ≤ 25.2 and −4 ≤ y ≤ 4. This 2-D domain is

extruded along the time axis for 0 ≤ t ≤ 10 to form a 3-D space-time mesh.

The boundary conditions on the planes x = −4, y = −4 and y = 4 are

u = tanh

µ
t

τ

¶
(8.7)

v = 0

with τ = 1 such that, at t = 0, u = v = 0. The initial condition on the velocity field was

chosen to match these boundary conditions with a value of zero at t = 0 and to satisfy the

incompressibility condition. As explained in Chapter 5, this corresponds to accelerating

the fluid from rest at t = 0 by rapidly increasing the value of the velocity specified by

the Dirichlet boundary condition. Because a fully coupled space-time formulation is used,

the solution on the entire space-time domain is computed for each Picard iteration of the

non-linear flow solver. The exit boundary condition at the plane x = 25.2 is a Neumann

boundary condition with a zero value, which corresponds to a zero stress condition, as

a stress divergence form of the viscous term was used (see Chapter 5). Also, a no-slip

boundary condition is used at the surface of the cylinder.

The initial mesh used, shown in Figure 8.45, has 2,343 mesh points and 10,980

tetrahedral elements. The geometry for that test case, as for all the others except the

219

ones with 4-D meshes, was constructed from the simplicial surface mesh with the geometry

reconstruction algorithm presented in Chapter 4.

Three cycles of mesh adaptation were performed using error reduction factors of

0.5, 0.8 and 1.0, which corresponds to 4 solver executions. The final adapted mesh, shown

in Figure 8.46, has 123,313 mesh points and 645,158 tetrahedral elements. A detail of the

adapted mesh near the cylinder at t = 10 is shown in Figure 8.47.

Isocontours of the velocity components u and v are shown in Figure 8.48. Figure

8.49 shows details of the velocity vector field at t = 10 near the cylinder. Figure 8.50 shows

the pressure field at t = 0.2 and isocontours of u, together with velocity vectors, t = 9.9.

Histograms for the element quality and the metric edge length are shown in Figure

8.51, whereas Figure 8.59 shows the numbers of mesh points and elements as functions of

the solver iteration number and the convergence history of the Picard method.

The percentage of total computational time, comprising both the flow solver and

the mesh adaptation, spent for the mesh adaptation alone was 69%, with the remainder

of 31% spent for the flow solver (excluding the CGNS file reading and writing). Although

the mesh adaptation time remains the largest component of the total computation time,

it is significantly less than that for the heat equation solver, for which about 98% of the

time was spent for the mesh adaptation. It would be interesting to consider a non-adapted

isotropic mesh of density sufficiently high to have a comparable flow field resolution as

the adapted mesh shown here and compare the total time necessary to compute a similar

solution with the Picard method. Although this is left as future work, it is still important to

consider that mesh adaptation allows for the initial mesh to be coarser than without it and

220

to progressively refine the mesh during the cumulative Picard iterations needed. This is a

beneficial aspect, because the initial Picard iterations are done in a mesh with fewer points

than without mesh adaptation and would thus converge faster. In the present low Reynolds

number test case, the adaptive space-time solution procedure was found to be very robust,

although it remains to be seen how this approach would perform at much higher Reynolds

numbers.

The present computation was performed over the relatively short period of 10

non-dimensional time units. It would be interesting to pursue the investigation further to

examine the behaviour of the solution over a very long period of time, but due to memory

constraints of the available computer this is left for future work. Because of the use of a

GMRES method, as mentioned in Chapter 5, a global matrix needs to be assembled for the

entire space-time domain with the present fully coupled space-time approach. An element-

by-element solution procedure, such as the one used by Pontaza and Reddy (2004), would

alleviate this problem, provided that only a portion of the space-time mesh is read from file

and used to compute the solution. Even without this improvement, a qualitative assess-

ment of the solution for the time period investigated demonstrates that the flow solution is

developing in a manner compatible with expectations for this benchmark problem.

221

-5
0

5
10

15
20

25

CoordinateX0

5

10

CoordinateT

-4

-2

0

2

4C
o ordinateY

Figure 8.45: Unsteady 2-D flow past a circular cylinder. Initial mesh.

222

-5
0

5
10

15
20

25

CoordinateX0

5

10

CoordinateT

-4

-2

0

2

4C
oordin ateY

Figure 8.46: Unsteady 2-D flow past a circular cylinder. Adapted mesh.

223

Figure 8.47: Unsteady 2-D flow past a circular cylinder. Detail of the adapted mesh near
the cylinder at t = 10.

224

-5 0 5 10 15 20 25

CoordinateX

0
5
10

CoordinateT

VelocityX
1.563273
1.394168
1.225064
1.055959
0.886855
0.717750
0.548645
0.379541
0.210436
0.041331

-0.127773
-0.296878
-0.465983
-0.635087
-0.804192

a)

-5 0 5 10 15 20 25

CoordinateX

0
5
10

CoordinateT

VelocityY
0.787211
0.675669
0.564127
0.452585
0.341044
0.229502
0.117960
0.006418

-0.105124
-0.216666
-0.328208
-0.439750
-0.551292
-0.662834
-0.774375

b)

Figure 8.48: Unsteady 2-D flow past a circular cylinder. a) Scalar field for u velocity at
t = 10; b) scalar field for the v velocity at t = 10.

225

Figure 8.49: Unsteady 2-D flow past a circular cylinder. Detail of the velocity vector field
neat the cylinder at t = 10.

226

-5 0 5 10 15 20 25

CoordinateX

0
5
10

CoordinateT

Pressure
29.417773
27.381097
25.344420
23.307743
21.271066
19.234389
17.197712
15.161036
13.124359
11.087682

9.051005
7.014328
4.977651
2.940974
0.904298

a)

-5 0 5 10 15 20 25

CoordinateX

0
5
10

CoordinateT

VelocityX
1.923679
1.686587
1.449496
1.212404
0.975313
0.738221
0.501130
0.264038
0.026947

-0.210145
-0.447236
-0.684328
-0.921419
-1.158511
-1.395602

b)

Figure 8.50: Unsteady 2-D flow past a circular cylinder. a) Pressure isocontours at t = 0.2;
b) isocontours of u and velocity vector field at t = 9.9.

227

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

0
0.

0
0.

1
0.

1
0.

2
0.

2
0.

3
0.

3
0.

4
0.

4
0.

5
0.

5
0.

6
0.

6
0.

7
0.

7
0.

8
0.

8
0.

9
0.

9

Element Quality

N
um

be
r

of
 E

le
m

en
ts

a)

MinQ = 0.000082
MaxQ = 1.0

MeanQ = 0.25
StdQ = 0.18

0

10,000

20,000
30,000

40,000

50,000

60,000
70,000

80,000

90,000

0.
02

0.
04

0.
06

0.
08 0.
1

0.
12

0.
14

0.
16

0.
18 0.
2

0.
22

0.
24

0.
26

0.
28 0.
3

0.
32

0.
34

0.
36

0.
38

0.
39

Metric Edge Length Intervals

N
um

be
r

of
 E

le
m

en
ts

b)
MinLm = 0.016
MaxLm = 0.41

MeanLm = 0.19
StdLm = 0.069

Figure 8.51: Unsteady 2-D flow past a circular cylinder. a) Histogram of element quality;
b) histogram of metric edge length.

228

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

1 2 3 4

Solver Iteration Number

Number of Points Number of Elementsa)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Cumulative Picard Iterations

No
rm

 D
iff

er
en

ce
 S

ol
ut

io
n

b)

Figure 8.52: Unsteady 2-D flow past a circular cylinder. a) Numbers of mesh points and
elements; b) relative norm of the difference between two consecutive solutions as a function
of the cumulative number of Picard iterations.

229

8.6 Unsteady Flow Over a Backward-Facing Step

Another classical benchmark problem is considered here, namely the flow over a

backward facing step. The Reynolds number for this flow is 800, based on a velocity equal

to 2/3 of the maximum velocity of the quadratic profile imposed at the inlet of the solution

domain. The space domain for this problem is shown in Figure 8.53.

The inlet boundary conditions for this problem are:

u = tanh

µ
t

τ

¶
uq (y) (8.8)

v = 0

where uq is a quadratic function with a maximum of 1 at a y = 0 and a zero value at

y = ±0.5. Notice that, although the space-time mesh of the domain is 3-D, the velocity

profile is only 2-D. In a fashion similar to the previous test case for the flow cylinder,

presented in section 8.5, a null velocity field is used for the initial condition at t = 0, no

slip boundary conditions are applied on walls, a zero stress boundary condition is used at

the exit and the dimensionless time (assuming that τ = 1) spans the range from 0 to 10.

The initial mesh used, consisting of 6,204 mesh points and 28,710 tetrahedral

elements, is shown in the top part of Figure 8.54 whereas the adapted mesh, comprising

99,446 mesh points and 522,625 tetrahedral elements, is shown in the bottom half of the

same Figure. Three mesh adaptation cycles were used, with corresponding reduction factors

of 0.6, 0.75 and 1.0, for a total of 4 solver executions. The adapted solution near the step is

shown in Figure 8.55 and the local velocity field is shown in Figure 8.56. Figure 8.57 shows

pressure isocontours at t = 0.2 and streamwise velocity contours, together with velocity

vectors, at t = 9.9. Histograms for element quality and metric edge length are presented in

230

Figure 8.58. The numbers of mesh points and elements as a function of the solver iteration

number are shown in Figure 8.59, together with the convergence history of the Picard

method.

Qualitatively, the flow fields seems to develop according to expectations. A quan-

titative analysis, such as finding the precise location of the reattachment point, would be

interesting to perform, but this must also take into consideration the fact that the fluid

was accelerated from rest very rapidly. Using a more gradual time function (e.g., a ramp

function) instead of equation 8.8 would result in a shift in time for the evolution of the

solution. A precise analysis would be required to establish the proper initial condition for

this flow and this is left for future work. It would also be interesting to extend this solution

to a very long time range and to compare it with solutions using conventional approaches

to determine whether a difference in time origins can be identified. As previously men-

tioned in section 8.5, this would first require that the current method be extended with an

element-by-element solution method to limit the amount of memory required to determine

the solution for long time periods.

231

 (0,-0.5)

x

y

 (0,0.5) (21,0.5)

 (21,-1) (6,-1)

(6,-0.5)

Figure 8.53: Unsteady 2-D flow past a back-facing step. Illustration of the space domain,
which is extruded along the time axis for the space-time mesh.

232

0
5

10
15

20

CoordinateX

0
2

4
6

8
10

CoordinateT

-1
0

a)

0
5

10
15

20

CoordinateX

0
2

4
6

8
10

CoordinateT

-1
0

b)

Figure 8.54: Unsteady 2-D flow past a back-facing step. a) Initial mesh; b) adapted mesh.

233

Figure 8.55: Unsteady 2-D flow past a back-facing step. Adapted mesh near the step at
t = 10.

234

Figure 8.56: Unsteady 2-D flow past a back-facing step.Velocity vectors near the step at
t = 10.

235

VelocityX
0.934054
0.830255
0.726456
0.622658
0.518859
0.415060
0.311261
0.207463
0.103664

-0.000135
-0.103934
-0.207732
-0.311531
-0.415330
-0.519129

b)

0
5

10
15

20

CoordinateX

0
2

4
6

8
10

CoordinateT

-1
0

Pressure
13.536868
12.538803
11.540738
10.542672

9.544607
8.546541
7.548476
6.550411
5.552345
4.554280
3.556214
2.558149
1.560084
0.562018

-0.436047

a)

Figure 8.57: Unsteady 2-D flow past a back-facing step. a) Pressure contours at t = 0.2; b)
u contours and velocity vectors at t = 9.9.

236

0

50,000

100,000

150,000

200,000

250,000

300,000

0
0.

05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95

Element Quality

Nu
m

be
r o

f E
le

m
en

ts
a)

MinQ = 0.000001
MaxQ = 0.99
MeanQ = 0.15
StdQ = 0.16

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

0.
01

0.
03

0.
06

0.
08

0.
11

0.
13

0.
16

0.
19

0.
21

0.
24

0.
26

0.
29

0.
31

0.
34

0.
37

0.
39

0.
42

0.
44

0.
47

0.
49

Metric Edge Length Intervals

N
um

be
r

of
 E

le
m

en
ts

b)
MinLm = 0.0064
MaxLm = 0.52
MeanLm = 0.18
StdLm = 0.071

Figure 8.58: Unsteady 2-D flow past a back-facing step. a) Histogram of element quality;
b) histogram of metric edge length.

237

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

1 2 3 4

Solver Iteration Number

Number of Points Number of Elementsa)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Cumulative Picard Iterations

No
rm

 D
iff

er
en

ce
 S

ol
ut

io
n

b)

Figure 8.59: Unsteady 2-D flow past a back-facing step. a) Numbers of mesh points and
elements; b) relative norm of the difference between two consecutive solutions as a function
of the cumulative number of Picard iterations.

238

8.7 Unsteady Flow in a Lid-Driven Cavity

The incompressible flow in a lid-driven cavity at a Reynolds number of 400 is

investigated to facilitate the comparison with the solution obtained by Pontaza and Reddy

(2004) using a higher order spectral method. The space domain is a unit square with the

x and y coordinates each ranging between 0 and 1. This space domain is extruded in time

from t = 0 to t = 6.

The boundary conditions are the same as the ones specified by Pontaza and Reddy

(2004). More specifically, the velocity u at the plane y = 1 is given as

u (x) = tanh
¡
t
τ

¢
tanh (βx) 0 ≤ x ≤ 0.5

u (x) = − tanh ¡ tτ ¢ tanh (β (x− 1)) 0.5 < x ≤ 1
(8.9)

where τ = 1 and β = 50. The initial solution at t = 0 is the null velocity field and no-slip

boundary conditions are used for the other walls of the cavity. Notice that the boundary

conditions for the problem are chosen such that the velocity specified at the top of the

cavity matches the no-slip boundary condition at the walls x = 0 and x = 1 (without any

sudden jump in boundary conditions specified on the moving lid and the walls, where a

no-slip boundary condition is imposed).

The initial space-time mesh for the cavity is shown in Figure 8.60, where the z

axis corresponds to the time axis with t = 6 at the front. The number of mesh points in this

initial mesh is 12,221 and the number of elements is 60,000. Figure 8.61 shows the adapted

mesh and Figure 8.62 shows a detail of the adapted mesh.

Streamlines at times t = 0.2, 1.0, 2.5 and 6.0 (the same as the ones presented by

Pontaza and Reddy (2004) to facilitate a comparison) are shown in Figure 8.63. Details for

239

u and v are also shown close to t = 6.0 in Figure 8.64. Although the solution appears to

be qualitatively similar for the most part, some differences remain visible even after 3 mesh

adaptation cycles and 4 solver executions of the fully coupled space-time approach. First,

at time t = 0.2, the point in the centre of streamlines where the fluid is not moving seems to

be shifted slightly to the left. Second, at time t = 6.0 the recirculation that should appear

near the bottom right corner could not be captured. Further investigation is necessary to

know the exact cause for this, but it speculated that the GLS with linear shape functions

only is not of sufficiently high order to capture these fine details with the current level of

refinement for the mesh (having about 100,000 for the space-time domain). Recall that the

method of Pontaza and Reddy (2004) is of much higher order. On the other hand, it should

be noted that even with their high order method care was taken by these others to refine

the mesh further near the walls and close to t = 0 to better capture the rapid variation of

the solution in these region. This indicates that both these methods, a higher order method

and a mesh adaptation method, could benefit from being combined together.

The histograms for the element quality and the metric edge lengths are shown in

Figure 8.65. The Figure 8.66 shows the number of mesh points and elements for each solver

execution and the convergence criteria as a function of the cumulative Picard iteration.

The error reduction factor used were 0.6, 0.75, and 1.0 corresponding to 3 mesh

adaptation cycles and 4 solver executions. Notice that in Figure 8.66 the number of mesh

points levels out after the second mesh adaptation cycles because the maximum number

of mesh points allowed for the refinement was set to 100,000 to avoid excessive memory

consumption. This is a case where the arbitrary choice for the error reduction factor is

240

problematic and needs manual adjustment depending on how much computer memory and

CPU are available for the simulation.

241

0

0.5

1

C
oordina teY

0

0.5

1

CoordinateX

0

2

4

6

CoordinateZ

X

Y

Z

Figure 8.60: Unsteady 2-D flow in a lid-driven cavity. Initial mesh, in which the z axis
corresponds to time.

242

0

0.5

1

C
oordina teY

0

0.5

1

CoordinateX

0

2

4

6

CoordinateZ

X

Y

Z

Figure 8.61: Unsteady 2-D flow in a lid-driven cavity. Adapted mesh, in which the z axis
corresponds to time.

243

X

Y

Z

Figure 8.62: Unsteady 2-D flow in a lid-driven cavity. Adapted mesh near the point (1, 1,
6), in which the z axis corresponds to time.

244

t=1.00

t=2.50 t=6.00

t=0.20

Figure 8.63: Unsteady 2-D flow in a lid-driven cavity. Streamlines at t = 0.2, 1.0, 2.5 and
6.0.

245

X

Y

Z

VelocityX
0.918752
0.837515
0.756279
0.675043
0.593806
0.512570
0.431334
0.350097
0.268861
0.187625
0.106388
0.025152

-0.056084
-0.137321
-0.218557

a)

X

Y

Z

VelocityY
0.284300
0.220952
0.157604
0.094256
0.030908

-0.032439
-0.095787
-0.159135
-0.222483
-0.285831
-0.349179
-0.412527
-0.475875
-0.539223
-0.602571

b)

Figure 8.64: Unsteady 2-D flow in a lid-driven cavity. Solutions at t = 6 using the adapted
mesh, in which the z axis corresponds to time. a) Isocontours of u; b) isocontours of v.

246

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

0
0.

05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
44

0.
49

0.
54

0.
59

0.
64

0.
69

0.
74

0.
79

0.
84

0.
89

0.
94

Element Quality

Nu
m

be
r

of
 E

le
m

en
ts

a)

MinQ = 0.000011
MaxQ = 0.99
MeanQ = 0.16
StdQ = 0.17

0

20,000

40,000

60,000

80,000

100,000

120,000

0.
01

0.
03

0.
06

0.
09

0.
11

0.
14

0.
16

0.
19

0.
22

0.
24

0.
27 0.
3

0.
32

0.
35

0.
38 0.
4

0.
43

0.
45

0.
48

0.
51

Metric Edge Length Intervals

N
um

be
r

of
 E

le
m

en
ts

b)

MinLm = 0.0068
MaxLm = 0.53
MeanLm = 0.16
StdLm =0.067

Figure 8.65: Unsteady 2-D flow in a lid-driven cavity. a) Histogram of element quality; b)
histogram of metric edge length.

247

0

100,000

200,000

300,000

400,000

500,000

600,000

1 2 3 4

Solver Iteration Number

Number of Points Number of Elementsa)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Cumulative Picard Iterations

No
rm

 D
iff

er
en

ce
 S

ol
ut

io
n

b)

Figure 8.66: Unsteady 2-D flow in a lid-driven cavity. a) Numbers of mesh points and
elements; b) relative norm of the difference between two consecutive solutions as a function
of the cumulative number of Picard iterations.

248

249

Chapter 9

Conclusions and Recommendations

for Future Research

9.1 Conclusions

The primary objective of this research was to develop a mesh adaptation method-

ology that is suitable for solving unsteady partial differential equations discretized using the

finite element method. The approach chosen was to extend existing edge based anisotropic

mesh adaptation strategies to operate on meshes in 2-D, 3-D and 4-D, in combination

with a fully-coupled space-time finite element formulation and an interpolation-based error

estimator that accounts for error estimates in both space and time in a unified fashion.

The presented method can be viewed as a generalization of mesh adaptation strategies for

steady problems to unsteady ones by extending fully unstructured simplicial meshes of spa-

cial dimension d to simplicial meshes of dimension d+ 1 which cover the entire space-time

domain.

A data structure was written from the ground up, which is capable of implement-

ing mesh modification algorithms in a dimension-independent manner. Mesh modification

operators were developed, including edge splitting, edge collapsing and simulated edge swap-

ping algorithms and were combined with an anisotropic mesh smoothing strategy based on

the inscribed ellipsoids. The key in the successful extension of these algorithms to 4-D was

the realization that an edge swapping algorithm can be expressed by a sequence of two

simpler operators, namely an edge split algorithm followed by an edge collapse algorithm.

The advantage of this approach is that the simulated edge swapping can operate in 2-D,

3-D and 4-D both inside the mesh and on its boundary without any special treatments that

would be dimension-specific or that would be applied only on the boundary of the mesh.

To the best of our knowledge, this is the first time that mesh modifications were shown to

operate in a dimension higher than 3 with the ability to modify the boundary mesh. In

contrast, previously existing methods that operate on higher dimensional meshes cannot

keep track of the boundary of the domain.

An evaluation of the anisotropic meshing strategy on 2-D, 3-D and 4-D meshes

using an analytical metric and the unsteady heat equation was presented. The resulting

element quality was found to be very high for the 2-D cases, comparable to those produced

by methods found in the literature for the 3-D cases, but unsatisfactory for the 4-D cases.

For the analytical metric field, it appears that some low quality elements remain for the 4-

D case, resulting in a minimum element quality of 0.0 and an average quality of 0.058,

although the maximum quality was 0.95. For the heat equation with a manufactured

250

solution, the minimum element quality was 10−5 the average was 0.061, and the maximum

was 0.89. Further improvements appear to be necessary for the highly anisotropic case,

but, for the heat equation for which the anisotropic aspects of the metric field are much less

pronounced, the element quality was fair. The element quality seems to be highly correlated

to the degree of anisotropy required by the metric field that drives the mesh optimization

procedure, irrespectively of whether this metric field is specified by an analytical function

or constructed from an error estimator.

Another salient characteristic that appears when comparing results with the 2-D,

3-D and 4-D meshes is the ratio of the number of elements and the number of mesh points.

This ratio for the test case with the analytical metric was found to be 1.79, 5.17 and 15.43,

respectively, for the 2-D, 3-D and 4-D meshes, growing by a factor of approximately 3 when

increasing the space dimension by 1. The computation cost per 1000 mesh points increases

by a factor of 18, when moving from 2-D to 3-D, and by a factor of 7, when moving from

3-D to 4-D. The cost associated with simplicial meshes drastically increases with increasing

space dimension, which indicates that generalizing conclusions based on studies with 2-D

meshes to higher dimensions can be very misleading.

For the meshing algorithms to operate on geometries that are of engineering inter-

est, a geometry reconstruction algorithm was presented and implemented using the same

data structure as for the meshing algorithms. Because only linear interpolation functions

were used for the finite element method, it was found sufficient to use quadratic finite ele-

ment interpolation functions to represent the geometry for the simple cases of this thesis.

The geometry algorithm shown is relatively simple and can be implemented with most ex-

251

isting finite element solvers, provided that they support quadratic shape functions. This

permits the reconstruction of a geometry from existing finite element meshes while allowing

for the mesh to be modified without depending on a CAD package.

To investigate the fully coupled adaptive space-time approach, a finite element flow

solver for the incompressible Navier-Stokes equations was developed using a Galerkin/least-

square formulation, linear interpolation functions and a Picard method to handle the non-

linearity of the equations. The salient feature of this simple flow solver, compared to

approaches commonly found in the literature, is that the space-time formulation is fully

coupled, which allows the solution to the equations to be sought over the entire space-

time domain (without any time-stepping strategies). Time dependent boundary conditions

were also specified to simulate the acceleration of the flow from rest. This permits the use

of a null velocity field as the initial condition for the problem in a way that satisfies the

continuity equation. Verifications for the unified space-time flow solver were first done for

a problem using a manufactured solution; for this case, the behaviour of the L2 error norm

shows a good agreement between the numerical and the analytical solutions. The same

test was repeated for meshes that were adapted anisotropically. The agreement between

the numerical solution and the analytical solution was good, but it is was more difficult to

determine a characteristic mesh size on anisotropic meshes than on uniform meshes because

the element size can vary considerably throughout the space-time domain.

The anisotropic space-time mesh adaptation scheme was also evaluated by numer-

ical solutions of the flow past a circular cylinder at a Reynolds number of 100, the flow over

a backward facing step at a Reynolds number of 800 and the flow in a lid-driven cavity at a

252

Reynolds number of 400. For these test cases, the Picard method with the combined mesh

adaptation strategy and solution interpolation, introduced to provide a restart solution for

the solver after mesh adaptation, exhibit excellent convergence behaviour. These tests were

performed using 3-D space-time meshes only, so they correspond to 2-D space domains. The

qualitative development of these solutions appear to be in agreement with expected trends,

but these tests were limited because they extended only over a relatively short time span.

Overall, however, it may be concluded that the adaptive space-time flow solver behaves in

a robust manner for these simple problems at relatively low Reynolds numbers.

The research performed in this thesis has shown that extending meshing algorithms

to a dimension higher than three is possible. Furthermore, when combined with a fully-

coupled space-time finite element formulation and a suitable error estimator that accounts

for both the discretization errors in space and in time, this approach allows for existing

mesh adaptation strategies for steady problems to be extended to unsteady problems. The

proposed framework paves the way for further research on space-time mesh adaptation for

unsteady problems.

9.2 Recommendations for Future Research

Several recommendations can be made to pursue research on the proposed space-

time mesh adaptation method to increase its capability and efficiency. These include the

following:

• Adoption of mesh-free methods may alleviate problems associated with the increase

of the ratio of the number of elements to the number of mesh points in 4-D dimensions

253

and relax the requirement on mesh quality. It is believed that most of the meshing

algorithm presented here could be extended in such a context.

• It would be productive to implement higher order finite element methods on simplicial

meshes, such as the method presented by Pontaza and Reddy (2004), and to assess

the impact that the space-time mesh adaptation can have in this case compared to

standard time-stepping approaches, including also methods using hexahedral meshes.

• The impact of space-time mesh adaptation on the discretization error for unsteady

problems could be assessed for strongly time-dependent problems, such as moving

shock waves or sound waves.

• Different error estimators, for example a residual based error estimator, could be

evaluated and their relative impacts on the space-time mesh adaptation procedure

could be compared, thus extending their application to unsteady problems. It would

also be interesting to determine the impacts of different scaling methods used for the

temporal part of the error estimator and how they can affect the refinement of the

mesh in time versus in space.

• The stabilization parameters used in the Galerkin/least-square appear to be particu-

larly sensitive in the case of anisotropic meshes. Therefore, it would be preferable to

adopt methods that do not require such stabilization terms, for example discontinuous

Galerkin methods (Remacle et al. (2005)).

• The fully coupled approach presented leads to the assembly of a global matrix for the

solution on the entire space-time domain such that the size of the matrix grows as

254

the time span increases. To circumvent this limitation, iterative methods that do not

require the assembly of a global matrix could be employed and the space-time mesh

could be partitioned to compute the solution for only one partition in each step, while

temporarily storing the rest of the space-time solution and mesh on disk. Algebraic

or geometric multigrid methods could also be extended in a space-time context.

• For the pure advection equation, Perrochet and Azérad (1995) have shown that the

convective term can be combined with the temporal derivative to solve the equation

using a linear operator in a unified space-time domain. If this can be extended to the

Navier-Stokes equations, then iterative methods for linear problems could be directly

employed, which would result in significant computational savings.

• The impact of space-time mesh adaptation could be studied on a variety of problems

that are of engineering interest, including compressible flows, turbulent flows, struc-

tural dynamics, the Schrödinger equation, Maxwell equations and possibly others.

255

256

References

Abdoulaev, B., S. Cadeddu, G. Delussu, M. Donizelli, L. Formaggia, and A. Giachetti

(1998). Viva: The virtual vascular project. IEEE Transactions on Information Tech-

nology in Biomedicine 2 (4), 268—274.

Ainsworth, M. and J. T. Oden (2000). A Posteriori Error Estimation in Finite Element

Analysis. New York, U.S.A.: Wiley-Interscience.

Alam, J. M., N. K.-R. Kevlahan, and O. V. Vasilyeve (2006). Simultaneous space-time

adaptive wavelet solution of nonlinear parabolic differential equations. Journal of

Computational Physics 214, 829—857.

Alauzet, F., P. J. Frey, P. L. George, and B. Mohammadi (2007). 3d transient fixed

point mesh adaptation for time-dependent problems: Application to CFD simulations.

Journal of Computational Physics 222, 592—623.

Alauzet, F., P. L. George, B. Mohammadi, P. Frey, and H. Borouchaki (2003). Transient

fixed point-based unstructured mesh adaptation. International Journal for Numerical

Methods in Fluids 43, 729—745.

Alauzet, F., A. Loseille, A. Dervieux, and P. Frey (2006). Multi-dimensional continuous

metric for mesh adaptation. In 15th International Meshing Roundtable, Birmingham,

AL, USA, 2006.

Amenta, N. (1999). Optimal point placement for mesh smoothing. Journal of Algo-

rithms 30, 302—322.

Babuska, I. (1973). The finite element method with lagragian multipliers. Numer.

Math 20, 179—192.

Baker, T. J. (2002). Mesh movement and metamorphosis. Engineering with Computers 18,

188—198.

Baker, T. J. (2004). Identification and preservation of surface features. In International

Meshing Roundtable. Sandia National Laboratories.

Balay, S., K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.

McInnes, B. F. Smith, and H. Zhang (2004). PETSc users manual. Technical Report

ANL-95/11 - Revision 2.1.5, Argonne National Laboratory.

Balay, S., K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F.

Smith, and H. Zhang (2001). PETSc Web page. http://www.mcs.anl.gov/petsc.

Balay, S., V. Eijkhout, W. D. Gropp, L. C. McInnes, and B. F. Smith (1997). Efficient

management of parallelism in object oriented numerical software libraries. In E. Arge,

A. M. Bruaset, and H. P. Langtangen (Eds.), Modern Software Tools in Scientific

Computing, pp. 163—202. Birkhäuser Press.

Belhamadia, Y., A. Fortin, and É. Chamberland (2004a). Anisotropic mesh adaptation for

the solution of the stefan problem. Journal of Computational Physics 194, 233—255.

257

Belhamadia, Y., A. Fortin, and É. Chamberland (2004b). Three-dimensional anisotropic

mesh adaptation for phase change problems. Journal of Computational Physics 201,

753—770.

Belytschko, T., J. M. Kennedy, and D. F. Schoeberle (1978). Quasi-eulerian finite element

formulation for fluid-structure interaction. In Joint ASEM/CSME Pressure Vessels

and Piping Conference, New York, U.S.A., pp. 13. Americain Society of Mechanical

Engineers: ASME.

Bonciu, C. L., C. Leger, G. Lamarque, and L. D. Nguyen (1998). 4d reconstruction of

the left ventricule using two successive cardiac cycles. Innovation et technologie en

biologie et médecine 19 (4), 249—263.

Borouchaki, H., P. L. George, F. Hecht, P. Laug, and E. Saltel (1997). Delaunay mesh

generation governed by metric specifications. PART i. algorithms. Finite Elements in

Analysis and Design 25 (1), 61—83.

Borouchaki, H., P. L. George, and B. Mohammadi (1997). Delaunay mesh generation

governed by metric specifications. PART II. applications. Finite Elements in Analysis

and Design 25 (1), 85—109.

Borouchaki, H., F. Hecht, and P. J. Frey (1998). Mesh gradation control. International

Journal for Numerical Methods in Engineering 43, 1143—1165.

Bottasso, C. L. (2004). Anisotropic mesh adaptation by metric-driven optimization. In-

ternational Journal for Numerical Methods in Engineering 60, 597—639.

Brezzi, F. (1974). On the existence, uniqueness and approximation of saddle-point prob-

lems arising from lagrange multipliers. RAIRO Anal. Numér. R-2, 129—151.

258

Buscaglia, G. C. and E. A. Dari (1997). Anistropic mesh optimization and its application

in adaptivity. International Journal for Numerical Methods in Engineering 40, 4119—

4136.

Cascon, J. M., L. Ferragut, and M. I. Asensio (2006). Space-time adaptive algorithm for

the mixed parabolic problem. Numerische Mathematik 103, 367—392.

Castro-Díaz, M. J., F. Hecht, and B. Mohammadi (1995, October). New progress in

anisotropic grid adaptation for inviscid and viscous flows simulations. Technical Re-

port 2671, Institut National de Recherche en Informatique et en Automatique.

Castro-Diaz, M. J., F. Hecht, B. Mohammadi, and O. Pironneau (1997). Anisotropic un-

structured mesh adaptation for flow simulations. International Journal for Numerical

Methods in Fluids 25, 475—491.

Cebral, J. R. and R. Lohner (1999, October). From medical images to CFD meshes. In

Proceedings, 8th International Meshing Roundtable, South Lake Tahoe, CA, U.S.A.,

pp. 321—331.

CGAL (2007). Cgal, Computational Geometry Algorithms Library.

http://www.cgal.org.

Chen, Y.-P. and Y.-Q. Huang (2001). Improved error estimates for mixed finite element

for nonlinear hyperbolic equations: The continous-time case. Journal of Computa-

tional Mathematics 19 (4), 385—392.

Chew, L. P. (1989). Constrained delaunay triangulations. Algorithmica 4, 97—108.

Chippada, S., C. N. Dawson, M. L. Martinez, and M. F. Wheeler (1998). Finite element

259

approximations to the system of shallow water equations I: Continous-time a priori

error estimates. SIAM Journal of Numerical Analysis 35 (2), 692—711.

Cook, R. D., D. S. Malkus, M. E. Plesha, and R. J. Witt (2002). Concepts and Applica-

tions of Finite Element Analysis (Fourth ed.). Wiley.

D’Azevedo, E. and R. Simpson (1991). On optimal triangular-meshs for minimizing the

gradient error. Numerische Mathematik 59 (4), 321—348.

Delibasis, K. K., N. Mouravliansky, G. K. Matsopoulos, K. S. Nikita, and A. Marsh

(1999). MR functional cardiac imaging: Segmentation, measurement and WWW

based visualisation of 4d data. Future Generations in Computer Systems 15 (2), 185—

193.

Deplano, V. and M. Siouffi (1999). Experimental and numerical study of pulsatile flows

through stenosis: Wall shear stress analysis. Journal of Biomechanics 32 (10), 1081—

1090.

Diachin, L. F. and P. Knupp (2006). A comparison of two optimization methods for mesh

quality improvement. Engineering with Computers 22, 61—74.

Dompierre, J., P. Labbé, F. Guibault, and R. Camarero (1998). Proposal benchmarks for

3d unstructured tetrahedral mesh optimization. In 7th International Meshing Rount-

able, pp. 459—478.

Dompierre, J., M.-G. Vallet, Y. Bourgault, M. Fortin, and W. G. Habashi (2002).

Anisotropic mesh adaptation: Towards user-independent, mesh-independent and

solver-independent CFD. part III. unstructured meshes. International Journal for

Numerical Methods in Fluids 39, 675—702.

260

Dompierre, J., M.-G. Vallet, M. Fortin, Y. Bourgault, and W. Habashi (1997, January).

Anisotropic mesh adaptation: Towards a solver and user independent CFD. In AIAA

35th Aerospace Sciences Meeting & Exhibit, Number AIAA—97—0861, Reno, NV.

Donea, J., P. Fasoli-Stella, and S. Giuliani (1977). Lagrangian and eulerian finite element

techniques for transient fluid-structure interaction problems. Transaction of the 4th

SMIRT Conference B., paper B1/2.

Donea, J. D. and A. Huerta (2003). Finite Element Methods for Flow Problems. Wiley.

Du, Q., Z. Huang, and D. Wang (2005). Mesh and solver co-adaptation in finite ele-

ment methods for anisotropic problems. Numerical Methods for Partial Differential

Equations 21 (4), 859—874.

Du, Q. and D. Wang (2004a). Boundary recovery for three dimensional conforming de-

launay triangulation. Computer Methods in Applied Mechanics and Engineering 193,

2547—2563.

Du, Q. and D. Wang (2004b). Constrained boundary recovery for three dimensional delau-

nay triangulations. International Journal for Numerical Methods in Engineering 61,

1471—1500.

Du, Q. and D. Wang (2005). Anisotropic centroidal voronoi tessellations and their appli-

cations. SIAM Journal of Scientific Computing 26 (3), 737—761.

Feng, Y. T. and D. Peric (2001). A time-adaptive space-time finite element method for

incompressible lagrangian flows with free surfaces: Computational issues. Computer

Methods in Applied Mechanics and Engineering 190 (5-7), 499—518.

261

Feng, Y. T. and D. Peric (2003). A spatially adaptive linear space-time finite element so-

lution procedure for incompressible flows with moving domains. International Journal

for Numerical Methods in Fluids 43, 1099—1106.

Fortin, M., W. Habashi, M.-G. Vallet, J. Dompierre, Y. Bourgault, and D. Ait-Ali-

Yahia (2000, March). Anisotropic mesh adaptation: Towards user-independent, mesh-

independent and solver-independent CFD. Part I: General Principles. International

Journal for Numerical Methods in Fluids 32, 725—744.

Franca, L. P. and S. L. Frey (1992). Stabilized finite element methods: II. the incom-

pressible navier-stokes equations. Computer Methods in Applied Mechanics and En-

gineering 99, 209—233.

Freitag, L. A. (1997). On combining laplacian and optimization-based mesh smooth-

ing techniques. In Trends in Unstructured Mesh Generation, Volume AMD-Vol 220.

ASME Applied Mechanics Division.

French, D. A. (1999). Continuous Galerkin finite element methods for a forward-backward

heat equation. Numerical Methods for Partial Differential Equations 15 (2), 257—265.

French, D. A. and T. E. Peterson (1996). A continuous space-time finite element method

for the wave equation. Mathematics of Computations 65 (214), 491—506.

Frey, P. J. and F. Alauzet (2005). Anisotropic mesh adaptation for CFD computations.

Computer Methods in Applied Mechanics and Engineering 194, 5068—5082.

Frey, P. J. and P.-L. George (1999). Maillages. Paris: Hermes Science Publications.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns. Elements of

262

Reusable Object-Oriented Software. Addison-Wesley.

George, P. L. (2001). Maillage et Adaptation (Lavoisier ed.). 11, rue Lavoisier, 75008

Paris: Germes Science.

George, P. L. (2003). Back to edge flips in 3 dimensions. In 12th International Meshing

Roundtable, Santa Fe, New Mexico, U.S.A. Sandia National Laboratories.

George, P.-L. and H. Borouchaki (1997). Triangulation de Delaunay et Maillage. Paris:

Editions HERMES.

George, P. L., H. Borouchaki, and P. Laug (2002). An efficient algorithm for 3d adaptive

meshing. Advances in Engineering Software 33, 377—387.

Gresho, P. M. and R. L. Sani (1998). Incompressible Flow and the Finite Element Method.

Volume Two Isothermal Laminar Flow. Wiley.

Gruau, C. and T. Coupez (2005). 3d tetrahedral, unstructured and anisotropic mesh

generation with adaptation to natural and multidomain metric. Computer Methods

in Applied Mechanics and Engineering 194, 4951—4976.

Habashi, W., M. Fortin, D. Ait-Ali-Yahia, S. Boivin, Y. Bourgault, J. Dompierre, M. P.

Robichaud, A. Tam, and M.-G. Vallet (1996, August). Anisotropic mesh optimization:

Towards a solver-independent and mesh-independent CFD. In Computational Fluid

Dynamics, VKI Lecture Series 1996—06, Montréal. von Karman Institute for Fluid

Dynamics — Concordia University.

Habashi, W., M. Fortin, J. Dompierre, M.-G. Vallet, and Y. Bourgault (1998, May).

Certifiable CFD through mesh optimization. American Institute of Aeronautics and

263

Astronautics Journal 36 (5), 703—711.

Hand, R. P. and J. Lu (1999). A space-time finite element method for elasto-plastic shock

dynamics. Journal of Sound and Vibration 222 (1), 65—84.

Heckbert, P. S. (1994). Graphics Gems IV. The Graphics Gems Series. A Collection of

Practical Techniques for the Computer Graphics Programmer. San Francisco, CA,

U.S.A.: Morgan Kaufmann (Academic Press).

Hughes, T., W. Liu, and T. Zimmermann (1981). Lagrangian-eulerian finite element

formulation for incompressible viscous flows. Computer Methods in Applied Mechanics

and Engineering 66, 339—349.

Hyun, S. and L.-E. Lindgren (2001). Smoothing and adaptive remeshing schemes for

graded element. Communications in Numerical Methods in Engineering 17, 1—17.

Jamet, P. (1978). Galerkin-type approximations which are discontinuous in time for the

parabolic equations in a variable domain. Journal of Computational Physics 15 (5),

912—928.

Joe, B. (1993). Construction of k-dimensional delaunay triangulations using local trans-

formations. SIAM Journal of Scientific Computing 14 (6), 1415—1436.

Johnson, C., U. Nävert, and J. Pitkäranta (1984). Finite element methods for linear

hyperbolic problems. Computer Methods in Applied Mechanics and Engineering 45,

285—312.

Karakashian, O. and C. Makridakis (1999). A space-time finite element method for the

nonlinear schrödinger equation: The continuous galerking method. SIAM Journal of

264

Numerical Analysis 36 (6), 1779—1807.

Ladyshenskaya, O. (1969). The Mathematical Theory of Viscous Incompressible Flows.

Gordon and Breach.

Langtangen, H. P. (1999). Computational Partial Differential Equations, Numerical

Methods and Diffpack Programming. Lecture Notes in Computational Science and

Engineering. Springer.

Legensky, S. M., D. E. Edwards, R. G. Bush, D. M. A. Poirier, C. L. Rumsey, R. R.

Cosner, and C. E. Towne (2002). CFD general notation system (CGNS): Status and

future directions. In 40th Aerospace Sciences Meeting and Exhibit, Reno, Nevada,

USA. AIAA. AIAA-2002-0752.

Leval, M. R. D., G. Dubini, F. Migliavacca, H. Jalali, G. Camporini, and A. Redington

(1996). Use of computational fluid dynamics in the design of surgical procedures:

Application to the study of competitive flows in cavopulmonary connections. Journal

of Thoracic Cardiovascular Surgery 111 (3), 502—512.

Li, X., J.-F. Remacle, N. Chevaugeon, and M. S. Shephard (2004). Anisotropic mesh gra-

dation control. In 13th International Meshing Roundtable, Williamsburg, VA, U.S.A.

Li, X., M. S. Shephard, and M. W. Beall (2005). 3d anisotropic mesh adaptation by

mesh modification. Computer Methods in Applied Mechanics and Engineering 194,

4915—4950.

Li, X. and N.-E. Wiberg (1998). Implementation and adaptivity of a space-time finite

element method for structural dynamics. Computer Methods in Applied Mechanics

and Engineering 156 (1), 211—229.

265

Li, X.-Y. (2000). Sliver-Free Three Dimensional Delaunay Mesh Generation. Ph. D. the-

sis, University of Illinois at Urbana-Champaign.

Liu, A. and B. Joe (1994). Relationship between tetrahedron shape measures. Bit 34,

268—287.

Lohner, R. (2001). Applied CFD Techniques. An Introduction Based on Finite Element

Methods. 22 Worcester Road, Rexdale, Ontario M9W 1L1, Canada: Wiley.

Masud, A. and T. J. R. Hughes (1997). A space-time Galerkin/Least-squares finite ele-

ment formulation of the navier-stokes equations for moving domain problems. Com-

puter Methods in Applied Mechanics and Engineering 146 (1), 91—126.

Mcinerney, T. and D. Terzopoulos (1995). A dynamic finite element surface model for

segmentation and tracking in multidimensional medical images with application to

cardiac 4d image analysis. Computerized Medical Imaging and Graphics 19 (1), 69—

83.

Meek, D. S. and D. J. Walton (2000). On surface normal and gaussian curvature ap-

proximations given data sampled from a smooth surface. Computer Aided Geometric

Design 17 (6), 521—543.

Migliavacca, F., M. R. D. Leval, G. Dubini, and R. Pietrabissa (1996). A computational

pulsatile model of the bidirectional cavopulmonary anastomosis: The influence of

pulmonary forward flow. Journal of Biomechanics 118 (4), 520—529.

Miller, G. L., E. P. Steven, and J. W. Noel (2002). Fully incremental 3d delaunay refine-

ment mesh generation. In 11th International Meshing Roundtable, pp. 75—86. Sandia

National Laboratories.

266

Mitchell, S. A. and S. A. Vavasis (2000). Quality mesh generation in higher dimensions.

SIAM Journal on Computing 29 (4), 1334—1370.

Mittal, S. (2000). On the performance of high aspect ratio elements for incompressible

flows. Computer Methods in Applied Mechanics and Engineering 188, 269—287.

Mohammadi, B., P. L. George, F. Hecht, and E. Saltel (2000). 3d mesh adaptation by

metric control for CFD. In Revue Européene Des Éléments Finis, pp. 439—449.

N’dri, D. (2001, Juillet). Formulation éléments finis espace-temps pour les équations de

Navier-Stokes. Ph. D. thesis, Département de mathématiques et de génie industriel,

École Polytechnique de Montréal.

N’dri, D., A. Garon, and A. Fortin (2002). Incompressible navier-stokes computations

with stable and stabilized space-time formulations: A comparative study. Communi-

cations in Numerical Methods in Engineering 18, 495—512.

Nithiarasu, P. and O. C. Zienkiewicz (2000). Adaptive mesh generation for fluid mechanics

problems. International Journal for Numerical Methods in Engineering 47 (1-3), 629—

662.

Onate, E. and M. Manzan (1999). A general procedure for deriving stabilized space-

time finite element methods for advective-diffusive problems. International Journal

for Numerical Methods in Fluids 31 (1), 203—221.

O’Rourke, J. (1998). Computational Geometry in C (Second Edition ed.). New York:

Cambridge University Press.

Owen, S. J. and D. R. White (2003). Mesh-based geometry. International Journal for

267

Numerical Methods in Engineering 58 (2), 375—395.

Perktold, K., M. Hofer, G. Rappistsch, M. Loew, B. D. Kuban, and M. H. Friedman

(1998). Validated computation of physiologic flow in a realistic coronary artery branch.

Journal of Biomechanics 31 (3), 217—229.

Perrochet, P. and P. Azérad (1995). Space-time integrated least-squares: Solving a

pure advection equation with a pure diffusion operator. Journal of Computational

Physics 117, 183—193.

Piper, B. (1987). Visually smooth interpolation with triangular bezier patches. In G. Farin

(Ed.), Geometric Modeling: Algorithms and New Trends, Philadelphia, U.S.A., pp.

221—233. SIAM.

Plaza, A., J. P. Suarez, M. A. Padron, S. Falcon, and D. Amieiro (2004). Mesh quality im-

provement and other properties in the four-triangles longest-edge partition. Computer

Aided Geometric Design 21, 353—369.

Poirier, D., S. R. Allmaras, D. R. McCarthy, M. F. Smith, and F. Y. Enomoto (1998).

The CGNS system. In 36th Aerospace Sciences Meeting and Exhibit, Reno, Nevada,

USA. AIAA. http://www.cgns.org/.

Pontaza, J. P. and J. N. Reddy (2004). Space-time coupled spectral/hp least-squares

finite element formulation for the incompressible navier-stokes equations. Journal of

Computational Physics 197, 418—459.

Rajan, V. T. (1994). Optimality of the delaunay triangulation in RD. Discrete and Com-

putational Geoemetry 12 (2), 189—202.

268

Reddy, J. N. and D. K. Gartling (1994). The Finite Element Method in Heat Transfer

and Fluid Dynamics. CRC Press.

Reinhardt, J. M., A. J. Wang, P. T. Weldon, and W. E. Higgins (2000). Note - cue

- based segmentation of 4d cardiac image sequences. Computer Vision and Image

Understanding 77 (2), 251—262.

Remacle, J.-F., X. Li, M. S. Shephard, and J. E. Flaherty (2005). Anisotropic adap-

tive simulation of transient flows using discontinuous galerkin methods. International

Journal for Numerical Methods in Engineering 62, 899—923.

Réthoré, J., A. Gravouil, and A. Combescure (2005). A combined space-time extended fi-

nite element method. International Journal for Numerical Methods in Engineering 64,

260—284.

Rivara, M. and N. Hitschfeld (1999). LEPP-delaunay algorithm: A robust tool for pro-

ducing size-optimal quality triangulations. In 8th International Meshing Roundtable,

South Lake Tahoe, United States.

Roache, P. J. (2002). Code verification by the method of manufactured solutions. Journal

of Fluids Engineering 124 (1), 4—10.

Ruppert, J. (1995). A delaunay refinement algorithm for quality -dimensional mesh gen-

eration. Journal of Algorithms 18 (3), 548—585.

Schroeder, W., K. Martin, and B. Lorensen (1998). The Visualization Toolkit. An Object-

Oriented Approach to 3D Graphics. Upper Saddle River, NS 07458, U.S.A.: Prentice

Hall.

269

Shakib, F. (1988, November). Finite Element Analysis of the Compressible Euler and

Navier-Stokes Equations. Ph. D. thesis, Stanford University.

Shakib, F., T. J. R. Hughes, and Z. Johan (1991). A new finite element formulation for

computational fluid dynamics: X. the compressible euler and navier-stokes equations.

Computer Methods in Applied Mechanics and Engineering , 141—219.

Shewchuk, J. R. (1997). Delaunay Refinement Mesh Generation. Ph. D. thesis, Carnegie

Mellon University.

Shewchuk, J. R. (2000, June). Sweep algorithms for constructing higher-dimensional

constrained delaunay triangulations. In 14th Annual Symposium on Computational

Geometry, Hong Kong, pp. 350—359.

Shewchuk, J. R. (2002). Delaunay refinement algorithms for triangular mesh generation.

Computational Geometry Theory and Applications 22, 21—74.

Tam, A. (1998, April). An Anisotropic Adaptive Method for the Solution of 3-D Invis-

cid and Viscous Compressible Flows. Ph. D. thesis, Concordia University, Montreal,

Quebec, Canada.

Tam, A., D. Ait-Ali-Yahia, M. P. Robichaud, M. Moore, V. Kozel, and W. G. Habashi

(2000). Anisotropic mesh adaptation for 3d flows on structured and unstructured

grids. Computer Methods in Applied Mechanics and Engineering 189, 1205—1230.

Tam, A., M. Robichaud, P. Tremblay, W. Habashi, M. Hohmeyer, G. Guevremont,

M. Peeters, and P. Germain (1998). A 3-d adaptive anisotropic method for external

and internal flows. In 36th Aerospace Sciences Meeting and Exhibit, Reno, Nevada,

USA. AIAA. AIAA 98-0771.

270

Terdiman, P. (2000). Radix sort revisited. http://codercorner.com/RadixSortRevisited.htm.

Tezduyar, T. E. and M. Behr (1994). A new strategy for finite element computations

involving moving boundaries and interfaces — the deforming-spatial-domain / space-

time procedure: I. the concept and the preliminary numerical tests. Computer Methods

in Applied Mechanics and Engineering 94, 339—351.

Tezduyar, T. E., M. Behr, and S. Mittal (1992). A new strategy for finite element compu-

tations involving moving boundaries and interfaces — the deforming-spatial-domain /

space-time procedure: II. computation of free-surface flows, two-liquid flows, and flows

with drifting cylinders. Computer Methods in Applied Mechanics and Engineering 94,

353—371.

Thompson, J. F., B. K. Soni, and N. P. Weatherill (Eds.) (1999). Handbook of Grid

Generation. Washington, D.C.: CFC Press LLC.

Tremblay, P., Y. Bourgault, and S. Tavoularis (2003, June 17-20). Control of discretization

error for time-continuous space-time FEM through mesh movement. In K. J. Bathe

(Ed.), Computational Fluid and Solid Mechanics. Elsevier.

Turek, S. (1999). Efficient Solvers for Incompressible Flow Problems. An Algorithmic and

Computational Approach, Volume Vol. 6 of Lecture Notes in Computational Science

and Engineering. Springer.

Vallet, M.-G. (1992). Génération de maillages éléments finis anisotropes et adaptatifs.

Ph. D. thesis, Université Pierre et Marie Curie, Paris VI, France.

Walton, D. J. and D. S. Meek (1995). Point normal interpolation for stereolithography

modelling. Computers and Graphics 19 (3), 345—353.

271

Walton, D. J. and D. S. Meek (1996). A triangular g1 patch from boundary curves.

Computer Aided Design 28 (2), 113—123.

Watanabe, Y., N. Yamamoto, and M. T. Nakao (1999). A numerical verification method

of solutions for the navier-stokes equations. Reliable Computing 5 (3), 347—357.

Wesseling, P. (2001). Principles of Computational Fluid Dynamics. Springer.

Xu, H. and T. S. Newman (2006). An angle-based optimization approach for 2d finite

element mesh smoothing. Finite Elements in Analysis and Design 42, 1150—1164.

Xue, D., L. Demkowicz, and C. Baja (2004). Reconstruction of ǵz surfaces with bi-

quadratic patches for h p FE simulations. In 13th International Meshing Roundtable,

Williamburg, VA, U.S.A., pp. 323—332. Sandia National Laboratories.

Yamakawa, S. and K. Shimada (2003). Anisotropic tetrahedral meshing via bubble pack-

ing and advancing front. International Journal for Numerical Methods in Engineer-

ing 57, 1923—1942.

Zienkiewicz, O. C. and J. Z. Zhu (1992, May). The superconvergent patch recovery and a

posteriori error estimates. Part II: Error estimates and adaptivity. 33 (7), 1365—1382.

Zwart, P. J., G. D. Raithby, and M. J. Raw (1999). The integrated space-time finite

volume method and its application to moving boundary problems. Journal of Com-

putational Physics 154, 497—519.

272

