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Abstract

The goal of this thesis is to illustrate the effectiveness of iterative methods on the dis-

cretized Navier–Stokes equations. The standard lid-driven cavity in both 2-D and 3-D

test cases are examined and compared with published results of the same type. The

numerical results are obtained by reducing the partial differential equations (PDEs)

to a system of algebraic equations with a stabilized P1-P1 Finite Element Method

(FEM) in space. Gear’s Backward Difference Formula (BDF2) and an adaptive time

stepping scheme utilizing a first order Backward Euler (BE) startup and BDF2 are

then utilized to discretize the time derivative of the Navier–Stokes equations. The

iterative method used is the Generalized Minimal Residual (GMRES) along with the

selected preconditioners Incomplete LU Facorization (ILU), Jacobi preconditioner and

the Block Jacobi preconditioner.
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Chapter 1

Elementary Concepts

Numerical methods have a vast range of applications which include approximating

partial differential equations that appear in the study of fluid mechanics. The gov-

erning equations of motion in the study of fluids are the Navier–Stokes equations,

a system of partial differential equations due to Claude-Louis Navier and George

Gabriel Stokes. The problem of efficiently and accurately solving the Navier–Stokes

equations is not a simple process and is an on-going task that is being refined year

after year. The goal of this thesis is to analyze some of these methods in some simple

2D and 3D test cases. Simulating flows has many applications such as blood flow in

the circulatory system and air flow in the respiratory system just to name a few. A

relevant example would be to analyze the effects of installing a ventricular assist de-

vice, which acts as a mechanical pump for hearts that are too weak to pump the blood.

A first glance at the Navier–Stokes equations in their continuous form readily shows

difficulties, especially when the domain, boundary conditions and initial conditions

become complex. As we shall soon see, many methods have been derived to tackle this

problem with promising results. Discretization of the equations via a Finite Element

Method (FEM) aids in reducing them to a system of algebraic differential equations

1
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and then an appropriate time stepping scheme can be chosen to further reduce our

problem to a system of nonlinear iterative equations. One can then linearize the

equations via a method such as Newton’s method. Once the equations have been

linearized methods like the generalized minimal residual method (GMRES), least

squares method or in the case of a symmetric Jacobian matrix, the conjugate gradi-

ent method (CG) or conjugate residual method (CR) may be used. In our case the

Navier–Stokes equations generate a non-symmetric Jacobian matrix which leaves us

with few choices for an iterative solver. GMRES is a common choice here. Even once

linearized, other tricks are required. One being the use of a preconditioner. Precon-

ditioners are used when the condition number of the linear system of equations is too

large. Generally, a preconditioner will not require many extra computations but will

speed up the convergence.

In this first chapter we will introduce the Navier-Stokes Equations in their continuous

form and outline the process of using a finite element method to reduce the equations

to a fully discretized system of nonlinear algebraic equations.

1.1 Navier–Stokes Equations

Given a flow problem in Rd we shall set u = (u1, . . . , ud)
T to be the velocity vector of

the flow and p the pressure field. Let Ω ⊂ Rd be a bounded domain with boundary

Γ, then the Navier–Stokes equations for incompressible flow in their non-dimensional

form are
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∂u

∂t
+ u · ∇u+∇p− Re−1∆u = f in Ω,

∇ · u = 0 in Ω,

u = uΓ on Γ,

u(·, 0) = u0 in Ω.

(1.1.1)

The first equation is called the momentum equation, the second is the conservation of

mass and the third and fourth are the boundary and initial conditions, respectively.

The non-dimensional parameter Re represents the Reynolds number and is defined

as Re = V L/ν where V and L are the characteristic velocity and length of the flow,

respectively. The parameter ν is the kinematic viscosity, the function f is given and

represents a body force such as gravity, uΓ is the prescribed velocity on the boundary

Γ of the domain Ω and u0 is the initial velocity.

Now we want to state the Navier–Stokes equations in variational form. Let L2(Ω) be a

second order Lebesgue space on Ω. We define the Sobolev spaceH1
0 (Ω) = {u ∈ L2(Ω) :

∂u ∈ L2(Ω), u = 0 on Γ} and the Lebesgue space L2
0(Ω) = {q ∈ L2 :

∫
Ω
q = 0}.

We shall require test functions v ∈ [H1
0 (Ω)]d and q ∈ L2

0(Ω). We then multiply

the conservation of momentum and mass equations by v and q, respectively, and

integrate by parts over Ω yielding a variational form of the problem (1.1.1): Find

u ∈ {w ∈ [H1(Ω)]d : w|Γ = u|Γ} and p ∈ L2∫
=0

(Ω) such that

d

dt
(u, v) + c(u, u, v) + b(v, p) + a(u, v) = (f, v) for any v ∈ [H1

0 (Ω)]d,

b(u, q) = 0 for any q ∈ L2
0(Ω).

(1.1.2)

The above products are outlined in [7] and defined to be

(u, v) =

∫
Ω

u · v dx, c(u, v, w) =
∫

Ω
(u · ∇v) · w dx,

b(q, v) = −
∫

Ω

q∇ · v dx, a(u, v) = 1
Re

∫
Ω
∇u : ∇v dx,

(1.1.3)
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where ∇u : ∇v =
∑
i,j

∂ui
∂xj

∂vi
∂xj

.

The Navier–Stokes equations in their continuous form are of limited use until they

are fully discretized. For this, we use a Galerkin type finite element method (GFEM)

that will be discussed in the next section. The variational form of the Navier–Stokes

equations is our first bridge to this numerical approximation.

1.2 Discretization with Finite Element Method

To solve equations (1.1.1) we must use a finite element method for the velocity and

the pressure terms. In order to stabilize these elements a Streamline-Upwind Petrov

Galerkin / Pressure–Stabilized Petrov Galerkin (SUPG/PSPG) formulation is used.

A paper by P. Kjellgren [11] explains the need for the SUPG formulation saying that

the convective terms of the Navier–Stokes equations are the cause for some numerical

problems involving the appearance of oscillatory solutions and a means for stabilizing

these is with upwinding. Upwinding is a scheme that aids in properly simulating the

direction of propagation of a fluid flow. PSPG is required to bypass Brezzi–Babuska

conditions [4],[7]. In the following section we shall first see what is a mesh and how

to obtain the SUPG/PSPG formulation of (1.1.1). Following this we will obtain the

fully discretized Navier–Stokes equations using Galerkin’s method. For this let us

first define what is a mesh.

Definition 1.2.1 [4, p. 32][Mesh] Let Ω be a domain in Rd. A mesh is a union of

a finite number N of compact, connected, Lipschitz sets Km with non-empty interior

K̊m such that {Km}1≤m≤N forms a partition of Ω, i.e.,

Ω =
N⋃
m=1

Km and K̊m ∩ K̊n = ∅ for m 6= n.
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Denote the mesh by Th where h = max
1≤i≤N

diamKi

In practice, a mesh is generated from a reference finite element and a set of geomet-

ric transformations mapping the reference cell K̂ to the rest of the mesh cells. Let

K ∈ Th be any cell in the mesh then the geometric transformation is typically denoted

by Tk : K̂ → K. For our problem of discretizing the Navier–Stokes equations we shall

use a mesh consisting of triangles or tetrahedra, making a triangulation of the domain.

The SUPG/PSPG formulation is a Petrov–Galerkin formulation in which a weight

function is applied to all the terms in the Navier–Stokes equations. Let Th be a

triangulation of the domain Ω into elements K with diameter hk. We next define the

spaces of test functions for pressure and velocity as

Qh = {qh|qh ∈ P 1
h},

Vh = {uh|uh ∈ [P 1
h ]d, uh = ΠhuΓ on Γh},

Vh0 = {vh|vh ∈ [P 1
h ]d, vh = 0 on Γh},

where P 1
h is the set of continuous P 1 finite elements on the mesh Th and Πh the

usual P 1 Lagrange interpolation operator. The SUPG/PSPG formulation of the

semi-discretized problem (1.1.1) is as follows: Find (uh, ph) ∈ Vh × Qh such that for

all (vh, qh) ∈ Vh0 ×Qh

d
dt

(uh, vh) + b(uh, uh, vh) + a(uh, vh)− (∇ · vh, ph) + (qh,∇ · uh) + ST = (vh, f),

uh(·, 0) = Πhu0(·) in Ω.

(1.2.1)

The PSPG/SUPG stabilization term is given by

ST =
∑
Kh∈Th

∫
Kh

(τSUPGuh · ∇vh + τPSPG∇qh) ·R(uh, ph) dx,
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where R(uh, ph) = ∂
∂t
uh+uh ·∇uh−ν∆uh+∇ph−f is the residual of the momentum

equation. The coefficients τSUPG and τPSPG are defined as

τSUPG := αu
hk

2‖uh‖
ξ, τPSPG := αp

hk
2‖uh‖

ξ,

where ξ is a function of the element’s Reynolds number RK = 0.5||uh||hk

ν
and is given

by ξ(RK) = max {0,min {RK

3
, 1}}. The typical values for αu and αp are between 1

and 5.

We shall next use locally linear shape functions that are determined by the value at

the vertices of the triangle or tetrahedron. Essentially we are re-writing our problem

in a new basis, that of our local shape functions. This will simplify the calculations

needed to solve for the terms in the variational form of the Navier–Stokes equations

(1.1.2). The GFEM uses P 1 local shape functions, say {θ1, . . . , θn} for the velocity

and {ψ1, . . . , ψm} for the pressure terms, and estimates u by uh with uh =
n∑
j=1

Ujθj,

with Uj = (Uj1, . . . , Ujd] ∈ Rd and similarly estimates p by ph with ph =
m∑
j=1

Pjψj with

Pj ∈ R. We shall introduce two new vectors, U = [U1, . . . , Un]T and P = [P1, . . . , Pj]
T .

The next step is to replace these estimates into (1.2.1). Now since the test function

vh is arbitrary in Vh0 we can choose it to be one of our shape functions, say θ = θi,

i = 1, . . . , n for each velocity component. Let us look at what happens to our first

product (uh, vh) =
∫

Ω
uh · vh dx:∫

Ω

uh · vh dx =

∫
Ω

( n∑
j=1

Ujθj · θ
)
dx

=
n∑
j=1

∫
Ω

Ujθjθi dx, where i = 1, . . . , n

= U1

∫
Ω

θ1θi dx+ · · ·+ Un

∫
Ω

θnθi dx, where i = 1, . . . , n

= MijU

where Mij is an nu × nu matrix whose ijth entry is

∫
Ω

θiθj dx
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We shall set qh = 0 and let U̇ represent the time derivative. Applying similar tech-

niques as above to the other terms in equation (1.2.1) we obtain the following dis-

cretized form as in [11]:

MU̇ +N(U) +KU −BTP = F,

BU = 0,
(1.2.2)

where the matrices M , N , K, BT and B are the mass, convection, diffusion, gradient

and divergence matrices, respectively, and F is a vector representing an external force.

The ijth entries of the matrices corresponding to those just mentioned are defined as

Mij =

∫
Ω

θi · θj dx,

Nij =

∫
Ω

(uh · ∇θi) · θj dx

Kij =

∫
Ω

∇(θi) : ∇(θj) dx,

BT
ij =

∫
Ω

ψjdiv(θi) dx.

From the variational form we used a SUPG/PSPG finite element method to obtain

equation (1.2.2); however there is still a time derivative in this equation that needs

to be dealt with. This is where numerical methods in ordinary differential equations

(ODE’s) will be useful since our only independent variable is now that of time. There

are several different time-stepping schemes that can be used; Gresho[6] and [7], pro-

vides very good resources for instance, for choosing appropriate numerical methods

when dealing with PDE’s and outlines some good choices for dealing with advection-

diffusion problems such as the Navier–Stokes problem. The methods that were used

in this research will be outlined in Chapter 2.



Chapter 2

Iterative Methods Used for Solving

the Discretized Navier–Stokes

Equations

Now that we have used the FEM in space, chapter two will introduce the numerical

methods used to approximate the time derivative as well as the iterative methods

used to solve the fully discretized Navier–Stokes equations. The following diagram

shows a skeleton of the discretization process.

8
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2.1 Time Stepping Schemes

Several numerical methods are available for solving ordinary differential equations. To

name a few there are Backward Euler (BE), Forward Euler (FE), Adams–Bashforth

(AB), Runge–Kutta methods (RK), Backward Difference Formula (BDF), etc. . .Hairer

[8][9] as well as Gresho [6][7] present and analyze many of these time-stepping schemes.

A common choice that is used when dealing with the Navier–Stokes equations is the

Backward Difference Formula of order 2 (BDF2) as Gresho suggests in [7].

First let us take a look at how BDF2 works with a constant time step. We shall let

du
dt

= u̇ and ∆t be the time step size. Then,

given u̇ = f and u(0) = u0,

u̇n+1 ≈
3un+1 − 4un + un−1

2∆t
. (2.1.1)

This method is, however, not self-starting due to the need of two previous terms, un

and un−1, to find the solution at iteration n+ 1. This is why we implement it with a

first order BE startup. First order BE has the following form:
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u̇n+1 ≈
un+1 − un

∆t
. (2.1.2)

BE is used with u0 to get u1 and then after this first step we have enough values to

use BDF2 for all remaining steps. If we apply BDF2 to the Navier–Stokes equations

we have the following implicit scheme for a difference algebraic equation (DAE):

M

(
3Un+1 − 4Un + Un−1

2∆t

)
+KUn+1 +N(Un+1)Un+1 −BTPn+1 = Fn,

BUn+1 = 0,

(2.1.3)

that needs to be solved at each time step.

2.2 Iterative Solvers

Iterative solvers are essential tools for solving large systems of algebraic equations like

the discretized Navier–Stokes equations. Many methods have been developed like de-

scent methods, gradient methods and Newton’s method. Many of these methods are

described in Saad’s book [12]. Due to the nonlinearity of the discretized Navier–

Stokes equations, Newton’s method is a common starting point as it transforms the

problem into a linear system. This is the method that will be used in this thesis.

Given the nonlinear function G(U) = 0 and an initial guess of the solution U0, the

general step for a Newton iteration is

[DG(Un)]δU = −G(Un)

Un+1 = Un + δU.
(2.2.1)

From equation (2.1.3) we shall set

G(Un+1, Pn+1) =

 M
(

3Un+1−4Un+Un−1

2∆t

)
+KUn+1 +N(Un+1) +BTPn+1 − Fn

BUn+1

 .
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Applying Newton’s method to G yields[(
3

2∆t
M +K +DN(Un)

)
δUn+1 −BT δPn+1

]
Un+1 = G̃(Un),

BδUn+1 = 0,

(2.2.2)

where Un+1 = Un + δUn+1 and Pn+1 = Pn + δPn+1.

Now that the system has been linearized we must next choose an appropriate itera-

tive solver. In PETSC there are few options for this choice as the matrix obtained in

(2.2.2) is non-symmetric. The method available that best applies to the discretized

Navier–Stokes equations is the Generalized Minimal Residual Method (GMRES). It

is a generalization of the conjugate gradient algorithm as in [4, p. 405] and [12, p.

144–169]. In order to understand how GMRES works we need first to understand

projection-based iterative methods.

Before looking at the iterative methods let us quickly observe a direct method com-

monly used called LU factorization. Consider the system Ax = b. The first step is to

use Gaussian elimination to re-write the matrix A in the form

A = LU

where L and U are lower and upper triangular matrices, respectively. Now there are

two steps to solve our linear system:

(i) Solve Lx′ = b,

(ii) Solve Ux = x′.

For stability, pivoting needs to be used. Efficient as this method may be at getting ac-

curate solutions, the cost (number of operations) of using such a method for a system

of order n can be up to the order n3 if A is dense and this is due to the work involved

in getting the LU decomposition in the first place. The cost of solving the lower and

upper triangular systems can be up to the order n2 when A is dense. Sometimes an
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iterative method may be much more efficient though potentially less accurate.

Now consider the system Ax = b and assume A is non-singular. Let v ∈ Rn be an

approximation to the solution x. We will denote the error by e(v) = x − v and the

residual by r(v) = b− Av. Now we need two subspaces, K and L of Rn of the same

dimension. We shall try to improve the approximate solution v as in [4, p.402], by a

vector w that solves the problem{
Seek w ∈ v +K such that r(w)⊥L

}
. (2.2.3)

Since K and L have the same dimension and A is invertible, (2.2.3) is well posed [4].

Choosing L = AK we then seek the solution v of (2.2.3) that minimizes the residual

r(v) over the space v + K. There are many iterative methods based on the idea of

projection. The most commonly used are the conjugate gradient (CG) method and

GMRES. CG method applies to systems with symmetric, positive definite matrices

and GMRES applies to the general case.

In general, for an iterative projection method we are given u0 ∈ Rn; then at the mth

step of the iterative process we solve the problem{
Seek um ∈ u0 +Km such that r(um)⊥Lm

}
(2.2.4)

where {Km}m≥1 and {Lm}m≥1 are two sequences of subspaces of Rn.

We next introduce the notion of Krylov space since Km can be taken as a space of

this type. Let r ∈ Rn, then the space

K(A, r, k) = span{r, Ar, . . . , Ak−1r}

is called a Krylov space of order k generated by r and associated with the matrix

A. Arnoldi’s algorithm is one way of constructing an orthonormal basis for our space
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Km, a Krylov space of order m, associated with the matrix A. The norm ‖ · ‖n is the

Euclidean norm in Rn.

Arnoldi’s algorithm

Set r0 = b− Au0

Set β = ‖r0‖n, and v1 = r0/β

set j = 1

while j < m do

hi,j = (Avj, vi)N for i = 1, . . . , j

v̂j+1 = Avj −
∑j

i=1 hi,jvi

hj+1,j = ‖v̂j+1‖n; if hj+1,j = 0 stop

vj+1 = v̂j+1/hj+1,j

j ← j + 1

end while

Let us introduce two other matrices, Hj ∈ Rj+1,j whose ijth entry is the corresponding

hi,j from the above algorithm and Vj ∈ Rn,j whose columns are the first j orthogonal

vectors {v1, ..., vj} generated by the Arnoldi algorithm.

Next we will want to minimize the residual so our problem is to find z such that

min
z∈Km

‖b− A(u0 + z)‖n = min
z∈Km

‖r0 − Az‖n

We can expand z with respect to the Arnoldi basis {v1, . . . , vm} so that z = Vmy for

some y ∈ Rm. Referring to [4, p. 405–407] we see that this problem reduces to the

following minimization problem:

min
y∈Rm

‖βe1 −Hmy‖m+1 (2.2.5)

where e1 is the first vector in the standard basis of Rm+1.
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This is a Least-Squares problem and the solution is unique [4, p. 406]. To solve it

we need to find the QR factorization of the matrix Hm. More details on this process

can be found in [4, p. 406]. We now have all the elements to describe the GMRES

algorithm.

GMRES Algorithm

Choose u0 and a tolerance ε

Set m = 0, r0 = b− Au0, β = ‖r0‖n, and v1 = r0/β

while ‖rm‖n > ε do

m← m+ 1

hi,m = (Avm, vi)n for i = 1, . . . ,m

v̂m+1 = Avm −
∑m

i=1 hi,mvi

hm+1,m = ‖v̂m+1‖

vm+1 = v̂m+1/hm+1,m

Compute the matrix Hm, Qm and Rm (the QR factorization of Hm),

Compute the vector gm = Qmβe1

set ‖rm‖n = ‖gm‖n
end while

solve the system Rmy = gm where y =


y1

...

ym


set um = u0 +

∑m+1
i=1 yivi

The nice thing about the GMRES algorithm is that it converges in at most n itera-

tions. However, let us recall that the size of the systems of the discretized Navier–

Stokes equations can be in the tens or even hundreds of thousands! There are ways

to improve the convergence rate of the algorithm without sacrificing a lot of compu-

tation time and that is with the help of preconditioners.
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2.3 Preconditioning

This section deals with the concept of the condition number of a matrix A and its

effects on solving the linear system Ax = b. In essence, the condition number of a

matrix tells you how far away a matrix is from the set of singular matrices. Let us

define this so called condition number.

Definition 2.3.1 Let Z be an invertible n×n matrix. Its condition number is defined

as

κ(Z) = ‖Z‖n‖Z−1‖n.

We say that Z is ill-conditioned if κ(Z)� 1.

It can easily be proved as in [4] that the condition number of a matrix is always

greater than or equal to 1 and also that when Z is symmetric κ(Z) =

∣∣∣∣λmax(Z)

λmin(Z)

∣∣∣∣
where λmax(Z) and λmin(Z) are the largest and smallest eigenvalues of Z, respectively.

Since we are using numerical methods such as FEM and Newton’s method to get to

our linear system it is good to see what the effects of perturbation are on the system

Ax = b. If we look at the system A(x+ δx) = b+ δb it is easily shown that

‖δx‖n
‖x‖n

≤ κ(A)
‖δb‖n
‖b‖n

,

and for the system (A+ δA)(x+ δx) = b that

‖δx‖n
‖x+ δx‖n

≤ κ(A)
‖δA‖n
‖A‖n

.

These two estimates tell us that if A is ill-conditioned even slight perturbations in A or

b can lead to significant variations of the solution. The idea behind preconditioning

a system is to re-write Ax = b as a new linear system Ãx̃ = b̃ where Ã is better

conditioned. One way of doing this is to take a non-singular matrix P and split it

into the form P = PLPR so that the systems PLy = a and PRz = c are easy and

inexpensive to solve. This P is going to be used as a split-preconditioner:

(P−1
L AP−1

R )(PRx) = P−1
L b. (2.3.1)
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Setting Ã = P−1
L AP−1

R , x̃ = PRx and b̃ = P−1
L b we have the new system Ãx̃ = b̃,

where Ã ideally has a lower condition number then A. This split preconditioner is

needed for symmetric matrices involving methods like CG in order to preserve the

symmetry of Ã but due to the fact that GMRES works for non-symmetric Ã, it is

more convenient and useful to simply use a left preconditioner or right preconditioner.

Let us consider a left preconditioned GMRES. The associated Krylov space would

then be

KPm = span{r0, (P
−1)Ar0, . . . , (P

−1A)m−1r0}.

Now by replacing A by P−1A and b by P−1b we can obtain a new preconditioned

algorithm for GMRES that would have a faster convergence rate than the original.

There are many ways you can precondition a linear system. Some of the more com-

mon preconditioners include the Incomplete LU factorization (ILU), Successive Over-

Relaxation (SOR) and Jacobi. Here we shall briefly explain the ILU, Jacobi and

block Jacobi preconditioners since we found these to be the most effective among

those tested while requiring a limited amount of memory to solve the Navier–Stokes

equations.

The basic idea of ILU is to form a simplified version of the LU factorization of the

matrix A, hence the name Incomplete LU factorization. If we are working with the

preconditioned system P−1Ax = P−1b where P is the preconditioning matrix, we will

want to form upper and lower triangular matrices, L and U , from A while maintaining

the sparsity pattern of A. That is, if the ijth entry of A is 0 then the ijth entry of

the matrix P = LU is also 0. The algorithm below is the basic scheme for an ILU

factorization and can also be found in [4, p. 413]. In Saad [12, p. 275] this algorithm

is also described in more detail and the author goes a step further to explain different

levels of filling. The algorithm below is known as ILU(0) since it has no levels of extra
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filling. The ILU(1) factorization has one level of filling and results from taking P to

be the zero pattern of the product LU of the factors L and U obtained from ILU(0).

For further levels of fill see [12].

ILU(0) Factorization Algorithm

for i = 2, ..., n do

for k = 1, ..., i− 1 do

if Aik 6= 0 then

Aik ← Aik/Akk

for j = k + 1, ..., n do

if Aij 6= 0 then

Aij ← Aij − AikAkj
end if

end or

end if

end for

end for

The Jacobi preconditioner is one of the simplest ones; it is simply a diagonal ma-

trix whose elements are precisely those of the matrix of the system in question. For

the system P−1Ax = P−1b, P = D where D is the diagonal matrix just described.

The block Jacobi preconditioner is a block diagonal matrix and in the PETSC doc-

umentation [1] it uses the ILU method to fill in each individual block and the blocks

themselves can be taken to be of any size desired.
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2.4 Portable, Extensible Toolkit for Scientific Com-

putation (PETSC)

PETSC is a suite of data structures and routines adapted for calculations of solutions

of partial differential equations. It is intended for large-scale projects and features

many libraries providing linear and nonlinear equations solvers that can be used in

conjunction with C, C++, Fortran and Python [1]. PETSC provides routines for solv-

ing the linear and nonlinear components of an algebraic differential equation like the

one derived in (1.2.2). The Scalable Nonlinear Equations solver (SNES) gives the user

access to Newton-based methods for solving nonlinear algebraic differential equations

such as equation (1.2.2) derived in section 1.2. Once the equation has been linearized

via the SNES the scalable linear equations solver (KSP) will provide Krylov subspace

based iterative methods. It is within these two interfaces that the user can specify

the type of iterative solver and precondtioners to use. A useful linear solver provided

by KSP is the Generalized Minimal Residual (GMRES) method. It is appropriate

for large sparse matrices that are non-symmetric as in the case of the discretized

Navier–Stokes equations. KSP also offers many choices for a preconditioner. The

list of available preconditioners includes Jacobi, Block Jacobi, ILU, ILU(n) and Suc-

cessive Over-Relaxation (SOR). Among the many types of convergence tests PETSC

offers, there are three in particular used for the SNES and KSP solvers, stol, atol

and rtol. One can declare convergence when the norm of the change in the solution

between successive iterations is less then some tolerance, stol. The tolerance atol is

the absolute size of the norm and rtol is the relative decrease of the absolute size of

the norm. It is also possible to bypass these convergence tests and specify a given

number of Newton or linear solver iterations.



Chapter 3

Comparison of Iterative Methods

In this chapter we will compare the performance of the iterative solver GMRES used

with preconditioners presented in Chapter 2 using three test cases:

i) a 2D steady lid-driven cavity

ii) a 2D pulsating lid-driven cavity

iii) a 3D steady lid-driven cavity.

3.1 Results for a 2D Steady Lid-driven Cavity

In this section I will present several results obtained on a simple 2D square lid-driven

cavity. This is a well-documented case and the benchmark solution used for compari-

son will be that of Ghia and Ghia [5]. Let us first discuss the domain of the test case.

It is the unit square cavity (0, 1) × (0, 1) with upper horizontal boundary called the

lid which is put into motion using the boundary condition u(x, 1, t) = (U(t), 0) where

U(t) is a prescribed function. For the steady lid-driven case U(t) = 1. All other sides

of the cavity (walls) are set to have a no-slip boundary condition which means that

u = 0 on the walls. The characteristic length and velocity are L = 1 and V = 1,

19
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Figure 3.1: A close up of the mesh in 2 dimensions

respectively which yields a Reynolds number of simply Re = 1/ν. Let us discuss the

size of the mesh. The mesh size is determined in the following way: in 2D, the square

is divided into a square grid of, say, N × N and then each square formed by this is

cut into 4 triangles (by connecting the diagonals), hence denoting its mesh size by

N × N × 4. In figure 3.1 we can see a close-up of the 2-dimensional mesh. Another

parameter up for discussion is the size of the timestep to take. For the first test case

of a 100× 100× 4 mesh with Re = 100, a step size of 1, 10, 50 and 100 will be tried

in order to reach the final time of t = 100. Based on the results from this case we

shall determine what is the optimal size to use for larger and more complicated test

cases. The goal will always be to reach optimum accuracy while maintaining a CPU

time comparative, if not better, to that of the direct LU factorization method since

it is more commonly used and known to be reliable.

Before getting into the numerical results we will take a look at some published results

on similar test cases. Presented in a paper by Ghia and Ghia [5] are some visual

2D results on the same problem we are studying that can help confirm any results

obtained with an iterative method. We can use the LU factorization method as a

basis for comparison since its accuracy is reliable. In figure 3.2 (a) is Ghia and Ghia’s

[5] result on a 2D steady lid-driven cavity with Reynolds number of 100 and (b) the

same 2D lid-driven cavity is presented whose results were obtained using the LU fac-
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(a) (b)

Figure 3.2: Steady lid-driven cavity with Re = 100 from (a) Ghia and Ghia [5] and (b) using LU
factorization in PETSC.

(a) (b)

Figure 3.3: Steady lid-driven cavity with Re = 1000 from (a) Ghia and Ghia [5] and (b) using LU
factorization in PETSC.
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torization in PETSC. Similarly in figure 3.3(a) is Ghia and Ghia’s result on a 2D

steady lid-driven cavity with Reynolds number of 1000 and (b) the results obtained

with the LU factorization in PETSC.

When experimenting with solvers it is good to look at the locations of vortices and

the prominent curves in the streamlines in order to have a good idea how well the

solvers are working. At a Reynolds number of 100 we see that the two vortices in the

bottom corners are much smaller than those of the case when the Reynolds number

is 1000. Also the location of the main vortex near the center is higher and to the

right at Re = 100 and at Re = 1000 it is moving its way closer to the center. One

other thing to note is the curve in the streamlines going towards the top left corner.

The lid of the cavity is moving in the positive x-direction and so this is pushing the

streamlines and forcing them to have a slight curve that becomes more evident in the

Re = 1000 case, as in agreement with remarks from Ghia and Ghia [5].

Now let us look at the numerical results on the 2D steady lid-driven test case with

the iterative solver GMRES. The options that are going to be varied in the test

cases are the types of preconditioners (PC type) used, the number of linear iterations

(KSPits), the number of nonlinear iterations (SNESits) and the stepsize. The CPU

time, memory used and the norm of the residuals (KSPres and SNESres) at the final

timestep are recorded at the end of each trial. A summary of this data for a test

case with mesh size 100 × 100 × 4 and Reynolds number Re = 100 is given in table

3.1. The first line shows the efficiency of the LU factorization. We can see that it

yields high accuracy using only about 5 minutes of CPU time; however, it is the

method that requires the largest amount of memory at 199 Mb. The total number of

Newton iterations required for this test case was 20 as we allowed PETSC to use its

default stopping criteria so that each timestep yields a different number of iterations

depending on the norms of the linear and nonlinear residuals. The default relative
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tolerance for the SNES iterations in PETSC is 1 × 10−08. This means that when

the ratio of two consecutive Newton iterations becomes equal to or smaller than this

tolerance, we shall stop the iteration process. In this first case the average number of

Newton iterations required to perform the LU factorization was about 4 per timestep.

When applying the iterative methods we started by using the preconditioner with the

smallest memory requirement, the Jacobi preconditioner. It only requires about 49

Mb of memory; however it yields poor results and the norms of the residuals are not

small enough to obtain a solution similar to Ghia’s or that of the LU factorization.

The Block Jacobi and the ILU(0) worked at the same efficiency. This is because the

Block Jacobi preconditioner uses ILU(0) to fill its entries at the block level. In all

following test cases, Block Jacobi will be excluded as it yields identical results to that

of ILU(0). When using ILU(0) we can see that the memory required to store the

systems of equations has grown to about 65 Mb. Figure 3.4 shows the pictures for

the four tests from table 3.1 that have a †. We want to be able to see how the results

compare to (a) LU factorization so in figure (b) we have the case when ILU(0) is used

with 30 KSPits and 10 SNESits since we finally obtained a result that is comparable

in CPU time to that of LU factorization taking only 12 minutes to resolve (LU took

only 5 minutes). In (c) we have the case when ILU(1) is used with 30 KSPits and 5

SNESits are used. The memory is getting higher for this case using up 81Mb but is

still significantly lower than the 199 Mb required for LU. The residuals are getting

smaller with this preconditioner and since fewer SNESits were required to perform

the calculations, the CPU time diminished from that of the ILU(0) case to about 7.2

minutes. The last figure (d) is the result obtained with the ILU(2) preconditioner.

This one requires 110 Mb of memory but yields the smallest residuals of all the other

preconditioners tried.

Since we have found that the iterative method GMRES on the 100 × 100 × 4 cav-
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PC type KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)

LU† 30 20 total 6.08× 10−20 1.64× 10−14 199 5.0
Jacobi 30 50 2.56× 10−01 4.18× 10−03 49 54
Jacobi 30 25 2.56× 10−01 4.18× 10−03 49 27

BJacobi 30 50 1.61× 10−05 1.86× 10−08 65 59
BJacobi 30 25 1.48× 10−03 5.52× 10−05 65 30
ILU(0) 30 50 1.61× 10−05 1.86× 10−08 65 59
ILU(0) 30 25 1.48× 10−03 5.52× 10−05 65 29

ILU(0)† 30 10 2.49× 10−02 7.21× 10−04 65 12
ILU(1) 30 50 1.76× 10−05 1.70× 10−08 81 66
ILU(1) 30 25 1.68× 10−05 2.35× 10−08 81 33
ILU(1) 30 10 4.54× 10−05 8.03× 10−08 81 14

ILU(1)† 30 5 6.13× 10−05 7.15× 10−07 81 7.2
ILU(1) 100 5 5.79× 10−05 8.28× 10−08 81 9.0

ILU(2)† 100 5 1.76× 10−05 2.67× 10−08 110 13

Table 3.1: Numerical results for cavity size 100 × 100 × 4 with 10 timesteps of size 10 and Re
= 100. Each uses GMRES except LU factorization.

ity with Reynolds number of 100 were accurate enough with ILU(1) and ILU(2) to

yield satisfactory visual results, our next task is to see how they measure up when

we increase the stepsize. The solution is steady for this test case, so by varying the

stepsize we may be able to decrease the CPU time even more. Table 3.2 shows nu-

merical results of this. The LU factorization is capable of doing calculations with 2

timesteps of size 50, yielding the result in figure 3.5 (a). For this test, the number of

SNESits required before the stopping criteria is met is just 5 for the first timestep and

than 4 for the second timestep. Again increasing the stepsize to 100 and using only

one timestep we see in figure 3.5 (b) that the LU factorization is still giving accurate

results. The preconditioners ILU(1) and ILU(2) both were useful when 2 timesteps

of size 50 were used, see figure 3.6 for the test cases marked with †, but did not even

compare to the LU factorization method at just 1 timestep of size 100.

Next we applied similar types of iterative methods to the 2D lid-driven cavity with
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(a) (b)

(c) (d)

Figure 3.4: The meshsize is 100 × 100 × 4, the stepsize is 10, the number of timesteps is 10 and
Re = 100. LU factorization is used for (a). The iterative solver GMRES is used with (b) ILU(0),
30 KSPits and 10 SNESits, (c) ILU(1), 30 KSPits and 5 SNESits, (d) ILU(2), 100 KSPits and 5
SNESits.
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PC type stepsize KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)
LU 50 30 5, 4 2.73× 10−21 1.37× 10−16 199 2.0

ILU(1) 50 100 5 1.25× 10−03 1.24× 10−04 81 1.8
ILU(1)† 50 100 10 8.36× 10−05 7.25× 10−05 81 3.7
ILU(1) 50 100 25 5.80× 10−05 7.19× 10−05 81 9.3
ILU(2)† 50 100 10 7.71× 10−05 7.19× 10−05 110 4.4

LU 100 30 5 6.54× 10−21 1.37× 10−16 199 1.2
ILU(1) 100 100 10 7.22× 10−04 2.00× 10−01 81 1.9
ILU(1) 100 100 50 4.75× 10−05 2.00× 10−01 81 9.0
ILU(2) 100 100 10 1.17× 10−04 2.00× 10−01 110 2.3

Table 3.2: Numerical results for cavity size 100 × 100 × 4 with 2 timesteps of size 50, 1 timestep
of size 100 and Re = 100. Each uses GMRES except LU factorization.

(a) (b)

Figure 3.5: The meshsize is 100× 100× 4 with Re = 100 using LU factorization with a stepsize of
50 in (a) and a stepsize of 100 in (b)
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(a) (b)

Figure 3.6: The meshsize is 100 × 100 × 4 with Re = 100 using GMRES, 100 KSPits and 10
SNESits, a stepsize of 50 and with preconditioners (a) ILU(1) and (b) ILU(2).

a Reynolds number of 1000, the optimum solution being one that most resembles

that in figure 3.3(a), our known result. The direct LU factorization method was first

applied to a mesh size 100×100×4 to gain knowledge on the CPU time and memory

requirements for this test case. We see in table 3.3 that the LU factorization requires

about 199 Mb of memory, takes a total of 32 Newton iterations and needs about 8

minutes to run the simulation. Using the iterative method GMRES we once again

obtain several more numerical results. Looking at Ghia’s result in figure 3.3(a) we

see that figure 3.3(b) obtained with LU factorization is once again a reliable solution.

When using the presonditioned GRMES we obtain similar results as in the case when

Re = 100. The best result was obtained using ILU(2) as a preconditioner with 100

KSPits and 5 SNESits. This trial required about 110 Mb of memory and about 11

minutes of CPU time. We have succeeded in reducing the memory requirement to

about 55% of what was needed for the LU factorization. It is possible to obtain a

reasonable result even with ILU(0), which utilized about 65 Mb of memory. This

is about 32% of the memory required for LU factorization. The major dissimilarity

in this result is in the bottom left corner. In Figure 3.7 (a) we have the reference
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PC type KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)

LU† 30 32 total 1.61× 10−22 3.10× 10−17 199 8.1
ILU(0) 30 25 7.30× 10−05 6.40× 10−07 65 30

ILU(0)† 30 10 8.29× 10−05 7.37× 10−07 65 12
ILU(1) 30 25 1.52× 10−04 5.51× 10−07 81 34
ILU(1) 30 10 2.37× 10−04 7.74× 10−07 81 13
ILU(1) 100 5 2.24× 10−04 7.54× 10−07 81 10.9

ILU(2)† 100 5 5.00× 10−06 1.98× 10−07 110 11.1

Table 3.3: Numerical results for cavity size 100 × 100 × 4 with 10 timesteps of size 10 and Re
= 1000. Each uses GMRES except LU factorization.

solution obtained with LU factorization. In 3.7(b) one can see what was obtained

using the ILU(0) preconditioner with GMRES. The lower left corner of this picture is

the only obvious discrepancy from the reference solution. In 3.7 (c) is the case when

ILU(2) was used and one can see that this one is very close to our reference solution

and to Ghia’s results. These three results are the ones in table 3.3 that are marked

with a †.

Refining the mesh to a 200× 200× 4 gives similar results. One can see in figure 3.8

(a) a result for direct LU factorization which required a total of 32 Newton iteration,

913 Mb of memory and needed 37 minutes of CPU time. The data from table 3.4

show that iterative methods only become accurate enough once we use higher levels

of fill with the ILU preconditioner, which ultimately is just making the method closer

to the direct LU method, also adding to the CPU time. The three test cases in fig

3.8 are marked with a † in table 3.4. In 3.8(a) is our reference solution using LU

factorization with 10 timesteps and the stopping criteria prescribed in PETSC. The

number of SNESits is said to be varying* since it is not a constant number at each

timestep. The total number of Newton iterations calculated for the LU factorization

test case was 19 and the CPU time was about 37 minutes. In figure 3.8(b) we have

the test case using preconditioned GMRES with ILU(1), 30 KSPits and 5 SNESits.



3.1. Results for a 2D Steady Lid-driven Cavity 29

(a)

(b) (c)

Figure 3.7: The meshsize is 100 × 100 × 4, the stepsize is 10, the number of timesteps is 10 and
Re = 1000. LU factorization is used to obtain (a). ILU(0) with 30 KSPits and 10 SNESits is used
for (b). ILU(2) with 100 KSPits and 5 SNESits is used for (c).
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PC type KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)

LU† 30 19 total 8.69× 10−19 8.77× 10−15 913 37
ILU(0) 30 25 3.80× 10−01 3.74× 10−03 235 201
ILU(0) 30 10 3.80× 10−01 3.74× 10−03 235 81
ILU(1) 30 25 2.74× 10−03 2.34× 10−05 313 255
ILU(1) 30 10 1.75× 10−03 2.44× 10−05 313 102

ILU(1)† 30 5 8.63× 10−03 8.10× 10−05 313 43
ILU(1) 100 5 1.11× 10−03 9.67× 10−06 313 54

ILU(2)† 100 5 4.47× 10−05 1.21× 10−07 426 70

Table 3.4: Numerical results for cavity size 200 × 200 × 4 with 10 timesteps of size 10 and Re
= 100. Each uses GMRES except LU factorization.

This test case is here since the CPU time to achieve the result was about 43 minutes,

close to the 37 minutes required for the LU factorization, however a closer look at the

picture shows that the shape of the vortex is slightly flatter than the solution obtained

with LU. Next we used the GMRES precondioned with ILU(2) which by figure 3.8

shows a nearly identical result to that of LU factorization but with a CPU time of

about 70 minutes, almost double that of LU factorization. The memory requirement

for ILU(2) was about 426 Mb which is less then half of what was needed for LU. If we

wish to conserve CPU time, LU factorization is more timely but if we wish to conserve

memory than the iterative solver GMRES with ILU(2) is the more appropriate choice.

Still using the mesh size 200 × 200 × 4 we increased the Reynolds number to 1000.

In this case the LU factorization method creates a zero pivot column causing the

iterative method to stop. The memory required to fill the matrices of the systems of

equations was still obtainable and was about 913 Mb. The iterative solver GMRES

was then tested and ILU(1) with 100 KSPits and 5 SNESits gave a satisfactory result,

both in terms of accuracy of the solution and CPU time. It is marked by a † in table

3.5 and displayed in figure 3.9(a). When ILU(2) was used to precondition GMRES it

did not make a significant difference in the solution, as we can see by looking at the
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(a)

(b) (c)

Figure 3.8: The meshsize is 200 × 200 × 4, the stepsize is 10, the number of timesteps is 10 and
Re = 100. LU factorization is used for (a). The iterative solver GMRES is used with ILU(1), 30
KSPits and 5 SNESits in (b). ILU(2) with 100 KSPits and 5 SNESits is used for (c)
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PC type KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)
LU 30 − − − 913 −

ILU(0) 30 10 8.25× 10−03 4.04× 10−05 313 78
ILU(1) 30 10 1.40× 10−04 1.68× 10−07 313 97

ILU(1)† 100 5 1.52× 10−04 1.41× 10−07 313 53

ILU(2)† 100 5 2.92× 10−04 1.32× 10−07 426 61

Table 3.5: Numerical results for cavity size 200× 200× 4 with 10 timesteps of size 10 and Re =
1000. Each uses GMRES except LU factorization.

(a) (b)

Figure 3.9: The meshsize is 200× 200× 4, the stepsize is 10, the number of timesteps is 10 and Re
= 1000. The iterative solver GMRES is used with ILU(1), 100 KSPits and 5 SNESits for (a) and
GMRES with ILU(2), 100 KSPits and 5 SNESits is used for (b).

size of the residuals for these two methods and from figure 3.9 (b) where the solution

is practically identical to that of ILU(1).

At a mesh of 400× 400× 4 elements on the 2D cavity we see in table 3.6 that, with

the 8 gigabytes of memory available for calculations, the direct LU method was not

able to perform. One way to fix this problem would be to do parallel computing,

which means to have different processors doing separate parts of the job at the same

time, splitting the memory requirements on the nodes of a cluster. A few tests using

GMRES were done on this meshsize, however with a stepsize of 10 the residuals were
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PC type stepsize KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)
LU 10 − − − − − −

ILU(0) 10 30 10 8.00× 10−01 3.34× 10−03 926 671
ILU(1) 10 30 10 1.29× 10+00 2.84× 10−03 1226 599
ILU(1) 10 100 5 4.09× 10−01 1.19× 10−03 1226 366
ILU(1) 5 100 5 3.56× 10−01 1.18× 10−03 1226 780
ILU(2) 10 100 5 1.85× 10−02 5.48× 10−05 1697 427
ILU(2)† 5 100 5 3.27× 10−05 5.57× 10−08 1697 840

Table 3.6: Numerical results for cavity size 400× 400× 4 and Re = 100.

not small enough to obtain nice results, hence reducing the stepsize to 5 was neces-

sary for some of the test cases. Reducing the stepsize from 10 to 5 with the ILU(1)

preconditioner did not help our situation as the residuals of the linear and nonlinear

systems stayed at the same order of O(10−1) and O(10−5), respectively. When ILU(2)

was used the difference was more significant upon reducing the stepsize. The CPU

time for ILU(2) with 100 KSPits, 5 SNESits and stepsize of 5 was about 840 minutes

(14 hours). The simulation of this case can be found in figure 3.10 (b). Since we

could not obtain results for the LU method for this meshsize, Ghia’s result is put

next to ours in figure 3.10 (a). In table 3.6 we can see which test cases were tried

in PETSc and the one marked with a † is the one in figure 3.10 (b). This strategy

of reducing the stepsize was successful as the result was accurate enough to generate

nearly identical streamlines as that in Ghia’s result for Re = 100.

Now that we have some numerical results for three mesh sizes for the steady lid-

driven cavity, it is worth noting the scaling of the CPU time and memory between

the three. Let us first observe what the ratios between memory requirement of the

LU factorization method with Re = 100. At 100 × 100 × 4 the memory required to

perform the calculations is about 199 Mb, at 200×200×4 it needs about 913 Mb and

at 400×400×4 we were unable to do this calculation since it required more than the

8 Gb of memory we had available for doing computations. This indicates a growth of
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(a) (b)

Figure 3.10: (a)Result obtained on a steady lid-driven cavity obtained by Ghia [5]. (b) The
meshsize is 400 × 400 × 4, the stepsize is 5, the number of timesteps is 20 and Re = 100. The
iterative solver GMRES is used with ILU(1), 100 KSPits and 5 SNESits.

memory requirement that is at least superlinear for the direct method. For ILU(0),

ILU(1) and ILU(2) the ratio for memory requirement between the 100 × 100 × 4

and 200 × 200 × 4 cavities is about 3.7 . The ratio between the 200 × 200 × 4 and

400× 400× 4 cavities is about 3.9 for ILU(2) and ILU(1) (ILU(0) was not tested for

the 400 × 400 × 4 cavity). By doubling the number of grid points in each direction,

the mesh size is multiplied by four. From the result obtained, asymptotic growth rate

of memory for GMRES preconditioned with ILU(k) might very well be four, i.e. a

linear growth rate of memory requirement. Figure 3.11 shows a graph of the memory

requirements for the four methods discussed against the number of unknowns which

is calculated using 3((N+1)2 +N2) for an N×N×4 mesh. The horizontal axis is the

number of unknowns and the vertical axis is the memory required. The data from

this graph is obtained from table 3.7 which summarizes the memory requirements

from all of our relevant test cases.

The following figure 3.12 shows the CPU time per Newton iteration of the LU factor-
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Figure 3.11: The memory requirements for the preconditioned GMRES using ILU(0), ILU(1),
ILU(2) and LU factorization versus the number of unknkowns for cavity sizes 100× 100× 4, 200×
200× 4 and 400× 400× 4 and Re = 100.

N # of unknowns LU ILU(2) ILU(1) ILU(0)
100 60603 199 110 81 65
200 241203 913 426 313 235
400 962403 > 8000 1697 1226 926

Table 3.7: Memory requirements in Mb for cavity size N ×N × 4, Re = 100.
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Figure 3.12: The CPU time per Newton iteration versus the number of unknowns required for
the preconditioned GMRES using ILU(0), ILU(1), ILU(2) and LU factorization for cavity sizes
100× 100× 4, 200× 200× 4 and 400× 400× 4 and Re = 100.

N # of unkowns LU ILU(2) ILU(1) ILU(0)
100 60603 0.26 0.26 0.13 0.12
200 241203 1.95 1.40 1.08 0.81
400 962403 − 8.40 7.80 6.71

Table 3.8: CPU Time per Newton Iteration (minutes per iteration) for cavity size N ×N × 4 of
some of the best results for Re = 100.

ization and the preconditioned GMRES using ILU(0), ILU(1) and ILU(2). In order

to obtain this data, the total CPU time of a test case using was divided by the total

number of SNESits. The number of unknowns is along the horizontal axis and the

time in minutes per iteration is along the vertical axis. LU factorization is the method

requiring the most time per Newton iteration and the most economical in this sense,

was GMRES with the preconditioner ILU(0). Table 3.8 summarize the data used to

obtain the figure.

The graph 3.13 shows the total CPU time for some of the best results obtained in this

sectin. Table 3.9 summarizes these CPU times. We can see that for each precondi-
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Figure 3.13: The total CPU time versus the number of unknowns of the best results from the
preconditioned GMRES using ILU(0), ILU(1), ILU(2) and LU factorization for cavity sizes 100 ×
100× 4, 200× 200× 4 and 400× 400× 4 and Re = 100.

N # of unknowns LU ILU(2) ILU(1) ILU(0)
100 60603 5 13 7.2 12
200 241203 37 70 43 81
400 962403 − 840 780 671

Table 3.9: Total CPU Time (min) for cavity size N × N × 4 of some of the best results for Re
= 100

tioned GMRES trial we were able to obtain a result in an amount of time comparable

to that of the LU factorization.

The data obtained from the numerical solutions contains the norms of the nonlinear

residuals at each time step. A further analysis of this information allows us to compare

how each method, the direct and the iterative solver, converges at each timestep. By

taking each nonlinear residual from the Newton iterations, figure 3.14 was constructed

in a cumulative way so that each peak represents the residual of the first iteration and

each crevasse represents the residual of the final iteration. It is clear that the direct

LU factorization produces a much faster convergence resulting in the significantly
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Figure 3.14: The cumulative Newton steps residuals over 10 timesteps for the 2D solvers

lower residuals. The iterative solver also has a converging residual but we see that it

converges at a slower rate and the final residual are not getting smaller after each step.

For all of the 2D test cases, it was always beneficial to reduce the stepsizes when

using the iterative methods since this always lead to more accurate results, however

by reducing the stepsize we increase the CPU time. The CPU time was an important

factor in this research since we want to ultimately find an iterative method that would

at the very least match that of the direct LU method. This was not the case in the

2D test cases.

3.2 Results for a 3D Steady Lid-driven Cavity

We will now present several results obtained on a 3D cube lid-driven cavity. This test

case has been documented in a paper by P. Shankar and M. Deshpande [13] and their

results will be used for comparison purposes. Shankar’s paper shows results for the

3D steady lid-driven cavity with Reynolds number 100 and 400. Let us discuss the

domain of the test case. It is the unit cube cavity (0, 1)×(0, 1)×(0, 1) with the upper

horizontal surface called the lid which is put into motion using the boundary con-
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Figure 3.15: A close up of the mesh in 3 dimensions

dition u(x, y, 1, t) = (0, U(t), 0) where U(t) is a prescribed function. For the steady

lid-driven case U(t) = 1. All other sides of the cavity (walls) are set to have a no-slip

boundary condition meaning that u = 0 on the walls. The characteristic length and

velocity are L = 1 and V = 1, respectively, which yields a Reynolds number of simply

Re = 1/ν. The unit cube is divided into N × N × N smaller cubes and then each

smaller cube is divided into 6 tetrahedra. This mesh has N × N × N × 6 elements.

In figure 3.15 we can see a close up of the 3-dimensional mesh. We shall present

results for two meshsizes, 30 × 30 × 30 × 6 and 50 × 50 × 50 × 6 using some of the

best preconditioning techniques from section 3.1 for the iterative solver GMRES and

when possible, the LU factorization method.

Results from Shankar and M. Deshpande [13] are presented in figure 3.16 and 3.17

for Re = 100 and Re = 400, respectively. Figures (a) of Shankar’s results shows three

cross section of the cube that are parallel to the direction of the flow. The stream-

lines on the cross sections of the (a) pictures show some resemblance to the 2D cases.

Figures (b) show the cross sections that are perpendicular to the flow. Notice the

position of the saddle point in (b) is about three quarters of the way up the z-axis

for Re = 100, whereas when Re = 400 this saddle point appears to be in the middle
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(a) (b)

Figure 3.16: The projections of the streamlines onto the end walls, side walls, and mid planes of
the lid-driven cubic cavity with Re = 100 (from Shankar and M. Deshpande [13]). The lid moves in
the y-direction .

of the mid plane. Another aspect one may look at is the positioning of the vortices

on the back walls. These are the characteristics that we shall observe when running

test cases with LU and preconditioned GMRES.

When running test cases on the 3D lid-driven cube (the lid is moving in the positive

y-direction) we started with a meshsize of 30× 30× 30× 6 and a Reynolds number of

100. Once again, toggling the number of KSPits and SNESits we were able to deduce

some conclusions to compare the LU method with the preconditioned GMRES. Table

3.10 show the statistics for the computations done with different solvers for this test

case. LU factorization takes up about 3369 Mb of memory and requires nearly 9

hours of CPU time for this test. When using the iterative solver GMRES and the

appropriate preconditioner we can drastically reduce the amount of memory required

and even the CPU time. For example, when using ILU(2) as a preconditioner we can

obtain a result in less then one hour using only about 15% of the memory that was

needed for LU factorization.
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(a) (b)

Figure 3.17: The projections of the streamlines onto the end walls, side walls, and mid planes of
the lid-driven cubic cavity with Re = 400 (from Shankar and M. Deshpande [13]). The lid moves in
the y-direction.

PC type KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)

LU† 30 18 total 8.38× 10−20 2.69× 10−15 3369 534
Jacobi 30 5 1.40× 10−05 1.04× 10−07 162 256
ILU(0) 30 3 6.70× 10−06 1.92× 10−09 244 190
ILU(0) 100 5 4.57× 10−06 1.67× 10−09 244 312
ILU(1) 100 5 4.71× 10−09 1.41× 10−09 325 316
ILU(2) 30 2 1.23× 10−12 1.40× 10−09 479 122

ILU(2)† 30 1 7.39× 10−09 1.35× 10−09 479 54

Table 3.10: Numerical results for cavity size 30× 30× 30× 6 with 10 timesteps of size 10 and Re
= 100. Each uses GMRES except LU factorization.
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(a) (b)

Figure 3.18: The projections of the streamlines onto the end walls, side walls, and mid planes of
the lid-driven cubic cavity of mesh size 30 × 30 × 30 × 6 with Re = 100 using LU factorization in
PETSC. The lid moves in the y-direction.

The test cases marked with a † in table 3.10 are shown in figure 3.18 and 3.19. Figure

3.18 shows the simulation obtained when using LU factorization and figure 3.19 shows

that the iterative solver GMRES with the ILU(2) preconditioner yields an identical

result to that of the LU factorization. Both figures show similarity to the Shankar’s

results. The saddle point of the mid plane in (b) is nicely positioned and the vortices

match well.

Now we shall change the Reynolds number from 100 to 400 and use the 30×30×30×6

mesh size once again. Table 3.11 shows the numerical data from a selected few test

cases. We have narrowed down the amount of trials here using the best results from

the previous test case. All three ILU preconditioners perform well here but ILU(2)

is able to reach the smallest residual norm in the least amount of time. Figure 3.20

and 3.21 are the pictures obtained by the trials marked with a † from table 3.11.

Note that on the end walls of the figures in (b) the streamlines exhibit some erratic

behavior. This is due to the coarseness of the mesh and it dissipates when the mesh

is refined to 50× 50× 50× 6 which we will see next. Besides that flaw, the position
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(a) (b)

Figure 3.19: The projections of the streamlines onto the end walls, side walls, and mid planes of
the lid-driven cubic cavity of mesh size 30× 30× 30× 6 with Re = 100 using GMRES with ILU(2)
preconditioner. The lid moves in the y-direction.

PC type KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)

LU† 30 21 total 8.38× 10−20 2.69× 10−15 3369 534
ILU(0) 100 5 6.70× 10−06 1.92× 10−09 244 303
ILU(1) 100 5 4.71× 10−06 1.41× 10−09 325 316

ILU(2)† 30 1 6.97× 10−06 4.52× 10−08 479 54

Table 3.11: Numerical results for cavity size 30× 30× 30× 6 with 10 timesteps of size 10 and Re
= 400. Each uses GMRES except LU factorization.

of the saddle point of the mid plane is centered and vortices appear as they should

based on Shankar’s results.

The finest mesh tested in the 3D lid-driven cavity case was 50 × 50 × 50 × 6. The

LU factorization was unable to function due to lack of memory and so the iterative

solvers were put to work. In table 3.12 are several of the numerical results on this test

case. We see that with this finer mesh, ILU(1) and ILU(0) are doing about as good as

ILU(2) and so in figure 3.22 we have the result obtained using ILU(1) since this was

the one with the lowest CPU time. We do not have a result for the LU factorization

since there was not enough memory to do this calculation, but comparing the result
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(a) (b)

Figure 3.20: The projections of the streamlines onto the end walls, side walls, and mid planes of
the lid-driven cubic cavity of mesh size 30 × 30 × 30 × 6 with Re = 400 using LU factorization in
PETSC. The lid moves in the y-direction.

(a) (b)

Figure 3.21: The projections of the streamlines onto the end walls, side walls, and mid planes of
the lid-driven cubic cavity of mesh size 30× 30× 30× 6 with Re = 400 using GMRES with ILU(2)
preconditioner. The lid moves in the y-direction.
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PC type KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)
LU − − − − − −

ILU(0) 30 1 6.70× 10−06 1.92× 10−08 1088 630

ILU(1)† 30 1 3.21× 10−05 2.46× 10−09 1461 621
ILU(2) 30 1 6.97× 10−05 4.52× 10−09 2188 666

Table 3.12: Numerical results for cavity size 50× 50× 50× 6 with 10 timesteps of size 10 and Re
= 100. Each uses GMRES except LU factorization.

(a) (b)

Figure 3.22: The projections of the streamlines onto the end walls, side walls, and mid planes of
the lid-driven cubic cavity of mesh size 50× 50× 50× 6 with Re = 100 using GMRES and ILU(1)
preconditioner. The lid moves in the y-direction.

of GMRES preconditioned with ILU(1), we see that it is nearly identical to Shankar’s

results.

Now we shall use the same meshsize but increase the Reynolds number to 400. Table

3.13 shows the statistics from this test case. The preconditioners ILU(0) and ILU(1)

do satisfactory jobs but here we chose to show in figure 3.23 the result obtained using

ILU(2) since it had the smallest residuals. Once again comparing this to Shankar’s

results we have nearly identical pictures.

Further investigation of the memory requirements for the 3D test cases shows that

the jump from N = 30 to N = 50 requires about 4.5 times more memory when
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PC type KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)
LU − − − − − −

ILU(0) 30 1 9.33× 10−04 6.17× 10−08 1088 630
ILU(1) 30 1 2.96× 10−05 9.37× 10−08 1461 621

ILU(2)† 30 1 5.12× 10−05 5.06× 10−09 2188 683

Table 3.13: Numerical results for cavity size 50× 50× 50× 6 with 10 timesteps of size 10 and Re
= 400. Each uses GMRES except LU factorization.

(a) (b)

Figure 3.23: The projections of the streamlines onto the end walls, side walls, and mid planes of
the lid-driven cubic cavity of mesh size 50× 50× 50× 6 with Re = 400 using GMRES and ILU(2)
preconditioner. The lid moves in the y-direction.
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N # of Unknowns LU ILU(2) ILU(1) ILU(0)
30 227164 3369 479 325 244
50 1030604 > 8000 2188 1461 1088

Table 3.14: Memory requirements in Mb for cavity size N ×N ×N × 6, Re = 100.

Figure 3.24: The memory requirements for the preconditioned GMRES using ILU(0), ILU(1),
ILU(2) and LU factorization for cavity sizes 30× 30× 30× 6 and 50× 50× 50× 6 and Re = 100.

using the preconditioned GMRES. Table 3.14 summarizes the required memory of

LU factorization and GMRES preconditioned with ILU(0), ILU(1) and ILU(2). The

graph 3.24 shows the memory required versus the number of unknowns which was

calculated for an N ×N ×N × 6 mesh size with the formula 4((N + 1)3 +N3).

Table 3.15 shows the CPU time required per Newton iteration for the 3D solvers.

It was calculated by dividing the final CPU time by the total number of Newton

iteration from that trial. Graph 3.25 reflects the data from the table just mentioned

with the number of unknowns along the horizontal axis.

Table 3.16 summarizes the total CPU time required by some of the best results from

this section and graph 3.26 shows how the LU factorization begins to take more time

then GMRES as the number of unknowns gets larger.
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N # of Unknowns LU ILU(2) ILU(1) ILU(0)
30 227164 29.7 5.4 6.3 6.2
50 1030604 − 66.6 62.1 63.0

Table 3.15: CPU time (min) per Newton iteration for cavity size N ×N ×N × 6, Re = 100.

Figure 3.25: The CPU time per Newton iteration required for the preconditioned GMRES using
ILU(0), ILU(1), ILU(2) and LU factorization for cavity sizes 30× 30× 30× 6 and 50× 50× 50× 6
and Re = 100.

N # of Unknowns LU ILU(2) ILU(1) ILU(0)
30 227164 534 54 316 190
50 1030604 − 666 621 630

Table 3.16: Total CPU time for cavity size N ×N ×N × 6, Re = 100.
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Figure 3.26: The total CPU time from the best results from the preconditioned GMRES using
ILU(0), ILU(1), ILU(2) and LU factorization for cavity sizes 30× 30× 30× 6 and 50× 50× 50× 6
and Re = 100.

3.3 Results for a 2D Pulsating Lid-driven Cavity

We shall present some results obtained on a 2D square pulsating lid-driven cavity.

This test case was analyzed in detail by C. Coros in [2], whose results confirm that us-

ing LU factorization on a meshsize 100×100×4 and a stepsize of 0.01 yields accurate

results. We shall once again use the unit square cavity (0, 1)× (0, 1) as the domain.

The lid is put into motion using the boundary condition u(x, 1, t) = (U(t), 0) where

U(t) = cos (2π
T
t) and T is the period of the moving lid. The walls are set to have a no-

slip boundary condition. The characteristic length and velocity are L = 1 and V = 1,

respectively, which yields a Reynolds number of simply Re= 1/ν and a Strouhal num-

ber of Str= 1/T . The mesh size used for all test cases will be 100× 100× 4 and the

stepsize will be 0.01.

The test case we chose to analyze is when Re = 1000 and Str= 1. This corresponds

to a period of T = 1 time unit. The solvers run over an elapsed time of one period

(1 time unit) which was chosen to be from t = 10.0 to t = 11.0. The results of
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PC type KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)

LU† 30 205 total 4.72× 10−19 3.32× 10−12 199 54
ILU(0) 30 10 7.23× 10−07 2.01× 10−02 65 121

ILU(1)† 100 5 2.09× 10−07 2.01× 10−02 81 107
ILU(2) 30 1 2.46× 10−17 2.01× 10−02 110 104

Table 3.17: Numerical results for cavity size 100× 100× 4 with 100 timesteps of size 0.01 and Re
= 1000, Str = 1 and t = 11.0. Each uses GMRES except LU factorization.

this test case are in table 3.17. When using the iterative solvers on the unsteady

case we see that the linear solver is performing well, especially when the ILU(2)

preconditioner is used with GMRES. The residual norm of the linear system is of the

order O(10−17). This precision is not necessary to obtain a reasonable result as we

can see in figure 3.27,colored by the y velocity. LU factorization was used in (a) and

the preconditioner ILU(1) along with GMRES was used in (b). Since we know LU

factorization with stepsize 0.01 is reliable we shall use its result for comparison. The

iterative solver GMRES with ILU(1) produces an identical result. The advantage to

using the iterative solver here is that it conserves memory. To use the LU factorization

for this test case requires 199 Mb of memory, whereas ILU(1) requires 81 Mb which

is about 41% of what was needed for LU. The CPU time to use the iterative solver

is about double what was needed to run the test case with LU factorization.
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(a) (b)

Figure 3.27: Pulsating unsteady lid-driven cavity with Re = 1000, Str = 1, t = 11.0 and Dt
= 0.01 using (a) LU factorization and (b) the iterative solver GMRES with ILU(1) preconditioner



Chapter 4

Adaptive Time Stepping

4.1 Outline of the Method

Adaptive time stepping methods are used to control the discretization error by con-

trolling the size of the time steps. The use of smaller timestep sizes results in more

accurate results but at the cost of larger CPU times. One solution to optimize this

compromise would be to derive a method that uses a timestep size that is re-calculated

after each timestep to make the proper adjustments. This could ideally be more ef-

fective in solving our Navier–Stokes problem. There is a method proposed in [6] for

a TR-BDF2 (TR for trapezoidal rule) adaptive time stepping scheme where TR is

used for the first step, a “leapfrog” method is used to predict the velocity and then

adaptive-BDF2 is used with the predictor as its first guess. To keep consistency within

the code that was used to implement the constant stepsize test cases from Chapter 3,

I have modified Gresho’s proposed scheme to use a BE startup, the leapfrog predictor

and then adaptive-BDF2 for the remaining steps.

52
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Adaptive-BDF2 Time-Stepping Method

Startup

1. Select appropriate ∆t0 (small to ensure accuracy)

2. Take first time step with BE with n = 0 to get (U1, P1) with 1
∆tn

M +N(Un+1) +K BT

B 0

 Un+1

Pn+1

 =

 1
∆tn

MUn + Fn+1

0

 (4.1.1)

3. Invert BE to get

U̇1 =
U1 − U0

∆t0

General Step

Take ∆t1 = ∆t0 and set ωn = ∆tn
∆tn−1

, for n = 1, 2, ...

1. Predict the velocity with “generalized Leapfrog”

Up
n+1 = Un + (1 + ωn)∆tnU̇n − ω2

n(Un − Un−1) (4.1.2)

2. Use BDF2 with variable time step to solve for (Un+1, Pn+1) using Up
n+1 as the

first guess.

 (1+2ωn)
∆tn(1+ωn)

M +N(Un+1) +K BT

B 0

 Un+1

Pn+1


=

 M
(

(1+ωn)
∆tn

Un − ω2
n

∆tn(1+ωn)
Un−1

)
+ Fn+1

0

 (4.1.3)

3. Invert BDF2 to get

U̇n =
3Un+1 − 4Un + Un−1

2∆tn

4. Compute the local truncation error (LTE):

dn =
(1 + ωn)2‖Un+1 − Up

n+1‖
1 + 3ωn + 4ω2

n + 2ω3
n
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5. Compute the next time step:

tn+1 = tn + ∆tn

∆tn+1 = ∆tn ∗min

((
ε

dn

)1/3

, 1 +
√

2

)
(4.1.4)

6. n← n+ 1

Note that when ∆tn = ∆tn−1 the method simplifies to the constant step BDF2

scheme. When computing the next time step from the previous in 4.1.4 note that if

the time step needs to be increased we must give an upper bound to this increase. In

[9] the upper bound
(
1 +
√

2
)

is suggested to be appropriate. This upper bound is

needed since when the LTE gets small, the term (ε/dn)1/3 can become large depending

on what the tolerance ε is. In order to perform step 2, of the general loop one would

need an iterative method since this is an implicit, nonlinear equation. Newton’s

method works well to linearize the system and is what has been implemented. Once

linearized there are even more methods to take into consideration to solve the systems

since we will be dealing with very large, sparse matrices. We will need things like

preconditioners and iterative solvers. In order to test out the adaptive time stepping

scheme, the 2D steady lid-driven test case with mesh 100 × 100 × 4 and Re = 100

and the 3D steady lid-driven test case with mesh 30× 30× 30× 6 with Re = 100 will

be analyzed.

4.2 Results of Adaptive Time Stepping on the 2D

Lid-driven Cavity

As a first test on the adaptive-BDF2 time stepping scheme , the direct LU method

was run with a constant time stepsize of 5 on the steady lid test case with a mesh of

100× 100× 4 and with a Reynolds number Re = 100. Table 4.1 shows the results of
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PC type ε DtSize #Dt KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)

LU† − 5 20 30 26 total 2.30× 10−18 5.50× 10−11 187 6.0

LU† 1.0 Adap 5 30 13 total 2.58× 10−18 1.85× 10−15 187 2.7
ILU(0) − 5 20 100 5 4.18× 10−02 1.07× 10−03 65 5.8
ILU(0) 1.0 Adap 6 100 5 1.67× 10−02 3.75× 10−03 65 2.4
ILU(0) 0.1 Adap 19 100 5 8.65× 10−03 7.92× 10−04 65 8.2
ILU(0) 0.01 Adap 31 100 5 2.33× 10−04 1.36× 10−05 65 20

Table 4.1: Numerical results for cavity size 100 × 100 × 4 with Re = 100 using constant and
adaptive timestepping

some of these trials. If no value for ε is specified, then a constant timestep is being

used and when the adaptive timestepping scheme is being used it will read “Adap”

under the column “DtSize”. With the constant stepsize we see from table 4.1 that

by doing 20 steps of size 5 (to reach a final time of 100) the LU factorization takes

about 6 minutes to get to its final results. When the adaptive time stepping scheme

was applied, the initial time step was chosen to be 5 time units, but we see that

only 5 steps were needed to reach the final time of 100 time units using a tolerance

of 1.0. The CPU time is literally cut in half to about 3 minutes and we can see in

figure 4.1 the results in table 4.1 marked with a †. The constant timestep is in (a)

and the result of the adaptive timestep is in (b). Figure 4.2 shows how the adaptive

timestepping scheme changes the size of the timestep when solving the discretized

Navier–Stokes problem. The size of the time timestep grows after each iteration since

the LU method produces results with residuals small enough to match the specified

tolerance. The last iteration in this graph decrease but this is due to the cutoff at

t = 100 as we do not want to surpass this final time. The fact that the LU factor-

ization is able to produce accurate results on the steady case in just one timestep (as

seen in section 3.1) was already indication that this should work well so this is why

we next want to look at the improvement one can make using a combination of the

iterative solver GMRES and the adaptive time stepping scheme.

We shall now show the results obtained when using a combination of iterative solvers
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a) b)

Figure 4.1: in figure (a) LU factorization with constant timestep is used, requiring about 6 minutes
of CPU time whereas in figure (b) LU factorization with an adaptive timestep was used requiring
only about 2.7 minutes of CPU time.

Figure 4.2: The size of the timestep size changes at each timestep with adaptive timestepping.
Five timesteps were needed to arrive to the solution at t = 100 of the 2D steady lid-driven cavity
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and adaptive times stepping. We shall use GMRES with 100 KSPits and 5 SNESits

and we chose to use just one preconditioner, ILU(0), since results will follow a similar

pattern for the other preconditioners. First we looked at what happens when we

use 20 timesteps of constant size 5. As before when the stepsize was 10 (see section

3.1), the results are not good. Figure 4.3 shows all four results of the remaining

test case from table 4.1 that are not marked with a †. Figure 4.3(a) is the result

of GMRES, ILU(0) and constant timestep. Using the adaptive timestepping scheme

with tolerance ε = 1.0, shown in figure 4.3(b), we attain a result in about 2.4 minutes

but the results are not any better then when the timestep was constant. Reducing

the adaptive tolerance to 0.1 yields the result in figure 4.3(c) and we finally see some

improvement in the quality of the solution, however the CPU time is growing and

takes about 8.2 minutes. In figure 4.3(d) we see that with a tolerance of ε = 0.01 we

attain a solution identical to the good solution from the LU factorization but at the

cost of an increased CPU time to about 20 minutes.

4.3 Results of Adaptive Time Stepping on the 3D

Lid-driven Cavity

The adaptive time stepping scheme is next applied to the 3D steady lid-driven cavity

with mesh 30× 30× 30× 6 as described in chapter 3.1. Table 4.2 shows the statistics

on these test cases. The direct LU method with constant timestep from section 3.3 is

the first entry in table 4.2 and serves as a comparison point for the adaptive time step-

ping scheme. Figure 4.4 (a) is the result of the constant timestepping method with

LU facotorization and shall be used for comparison with the others. We applied the

adaptive timestepping scheme to the 3D cavity using the iterative solver GMRES with

preconditioner ILU(0) and adaptive tolerance ε = 1.0. Figure 4.4 (b) was obtained

from this test and is the second entry in table 4.2 marked with a †. We see, however,
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(a) (b)

(c) (d)

Figure 4.3: (a) GMRES with constant stepsize, (b) GMRES with adaptive timestep-
ping with ε = 1.0, (c) GMRES with adaptive timestepping with ε = 0.1 and (d)
GMRES with adaptive timestepping with ε = 0.01.
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PC type ε DtSize #Dt KSPits SNESits KSPres SNESres Mem(Mb) CPU(min)

LU† − 10 10 30 18 total 3.28× 10−17 2.69× 10−17 3369 560
LU 1.0 Adap 5 30 13 total 1.24× 10−16 2.13× 10−14 3369 588

ILU(0) − 10 10 30 3 9.28× 10−06 7.79× 10−09 244 190

ILU(0)† 1.0 Adap 5 30 3 1.69× 10−05 1.43× 10−08 244 189
ILU(1) − 10 10 100 5 4.71× 10−09 1.41× 10−09 325 316
ILU(1) 1.0 Adap 4 100 5 1.19× 10−08 3.22× 10−06 325 106
ILU(1) 0.1 Adap 5 100 5 1.11× 10−09 5.62× 10−06 325 110
ILU(1) 0.01 Adap 5 100 5 2.65× 10−10 1.08× 10−06 325 121
ILU(2) − 10 10 30 1 7.39× 10−09 1.35× 10−09 479 54
ILU(2) 1.0 Adap 4 30 1 4.14× 10−04 4.37× 10−06 479 22
ILU(2) 0.1 Adap 4 30 1 2.82× 10−04 6.31× 10−06 479 22

ILU(2)† 0.01 Adap 5 30 1 1.05× 10−04 1.08× 10−06 479 24

Table 4.2: Numerical results for cavity size 30 × 30 × 30 × 6 with Re = 100 using constant and
adaptive timestepping

that at this tolerance, the CPU time was not improved even though less timesteps

were needed. Setting the tolerance to ε = 0.1 for the ILU(0) preconditioner does

not decrease the CPU time either since it forces the solvers to do an extra timestep.

Next we applied the adaptive timestepping scheme to GMRES precondioned with

ILU(1) and we once again see no significant improvement of the CPU times. Once we

preconditioned GMRES with ILU(2) we begin to see some improvements and figure

4.4 (c) shows the result of this test with tolerance ε = 0.01. GMRES with ILU(2)

and a constant timestep takes about 54 minutes. Once the adaptive time stepping

scheme is applied we get a CPU time of about 22 minutes, however we do sacrifice a

few orders of precision on the residual norms.
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(a)

(b)

(c)

Figure 4.4: in figure (a) LU factorization is used requiring about 10 hours of CPU time to ac-
complish 10 timesteps of size 10. In figure (b) adaptive timestepping is used with GMRES and
ILU(0) with tolerance ε = 1.0. Figure (c) uses adaptive timestepping with GMRES and ILU(2) with
tolerance ε = 0.01



Chapter 5

Conclusions

Using iterative methods such as GMRES for solving the discretized Navier–Stokes

equations clearly has its advantages as well as disadvantages. Several test cases were

tried in this thesis in order to outline the characteristics of the direct solver LU fac-

torization and the iterative solver GMRES.

We started out in 2D with a steady lid-driven square cavity and discovered that the

iterative solver GMRES required many iterations in order to achieve a comparable

accuracy to that of the direct LU factorization. The need for additional iterations for

both the linear and nonlinear solvers resulted in an increased CPU time, but overall

it is possible to achieve reasonable results using only a few more minutes than LU

factorization if one is willing to sacrifice a few orders on the nonlinear residual norms.

The benefit of the iterative solver clearly comes from the lower memory requirements,

since running the preconditioned GMRES always required less megabytes than LU.

We tried the 3D steady lid-driven cavity and obtained very positive results. The

CPU times and the memory requirement were cut dramatically and we now see the

benefit of using the iterative solver GMRES on a flow problem. In 3D, direct methods
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are less competitive because larger bandwidths in the sparsity pattern causes more

nonzero elements to be created during the LU factorization. Iterative methods avoid

such problems and are more efficient relative to the direct solver. We did sacrifice a

few orders of precision on the residual norms by using the iterative solve but we see

once the simulations were analyzed graphically that GMRES is just as good (if not

better since it requires much less memory and CPU time) as the traditional direct

method when solving the problem in 3D.

The iterative method GMRES was applied to the 2D unsteady lid-driven cavity and

the best results using the preconditioners ILU(0), ILU(1) and ILU(2) were applied to

this oscillating problem. As previously discovered about GMRES on the 2D problem,

it can conserve memory but not always CPU time. Using ILU(0) as a preconditioner

for this problem, one can obtain a very comparable solution to that of LU factoriza-

tion due to the efficiency of the linear solver in this case.

In an attempt to eliminate the need to self-choose the size of the timestep required,

an adaptive BDF2 timestepping scheme was implemented. It was tested on both the

2D ad 3D steady lid-driven cavities. Applying this adaptive time stepping scheme to

the LU factorization method we were able to see the efficiency of the method. Given

the size of the initial timestep, adaptive BDF2 will start increasing the stepsize right

away (recall that LU factorization can solve the 2D steady-lid driven problem in just

1 timestep). It was more interesting to see what the effects were on the iterative

solvers. In 2D we found that with ILU(0) preconditioner we could arrive to the same

accuracy as was achieved with the constant timestepping in about half the time. We

can then decrease the tolerance of the adaptive solver to achieve more precision but

this resulted in more timesteps and hence higher CPU time. The CPU time of the

most accurate results surpassed that of the LU factorization. We then applied the

adaptive BDF2 to the 3D steady-lid driven problem. The results were positive as was
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the case with the steady lid-driven cavity in 3D. We were successfully able to reduce

the CPU time of the already fast iterative solver GMRES and maintain about the

same accuracy.
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