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Abstract

Hydrogen fuel cells are devices used to generate electricity from the electrochemical

reaction between air and hydrogen gas. An attractive advantage of these devices is

that their byproduct is water, which is very safe to the environment. However, hy-

drogen fuel cells still lack some improvements in terms of increasing their life time

and electricity production, decreasing power losses, and optimizing their operating

conditions. In this thesis, the cathode part of the hydrogen fuel cell will be consid-

ered. This part mainly consists of an air gas channel and a gas diffusion layer. To

simulate the fluid dynamics taking place in the cathode, we present two models, a

general model and a simple model both based on a set of conservation laws governing

the fluid dynamics and chemical reactions. A numerical method to solve these mod-

els is presented and verified in terms of accuracy. We also show that both models

give similar results and validate the simple model by recovering a polarization curve

obtained experimentally. Next, a shape optimization problem is introduced to find

an optimal design of the air gas channel. This problem is defined from the simple

model and a cost functional, E, that measures efficiency factors. The objective of

this functional is to maximize the electricity production, uniformize the reaction rate

in the catalytic layer and minimize the pressure drop in the gas channel. The impact

of the gas channel shape optimization is investigated with a series of test cases in

long and short fuel cell geometries. In most instances, the optimal design improves

efficiency in on- and off-design operating conditions by shifting the polarization curve

ii



Abstract iii

vertically and to the right.

The second primary goal of the thesis is to analyze mathematical issues related to the

introduced shape optimization problem. This involves existence and uniqueness of

the solution for the presented model and differentiability of the state variables with

respect to the domain of the air channel. The optimization problem is solved using

the gradient method, and hence the gradient of E must be found. The gradient of E

is obtained by introducing an adjoint system of equations, which is coupled with the

state problem, namely the simple model of the fuel cell. The existence and uniqueness

of the solution for the adjoint system is shown, and the shape differentiability of the

cost functional E is proved.
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0.1 Nomenclature

Latin symbols:

a, b, e coefficients appearing in the cost functional E

A air channel

ĉ, ĉo oxygen mass fraction

ci, cin, ĉo,in oxygen mass fraction at the air channel inlet

ĉn,in nitrogen mass fraction at the air channel inlet

ĉo,ref oxygen reference mass fraction

Deff
j effective diffusion constant of species j (m2/s)

E, E(Γ), E(ζ) cost functional

Ecell cell voltage (V )

Erev reversible cell voltage (V )

F Faraday’s constant (A · s/mol)

G, GDL gas diffusion layer

hA with of the air channel (m)

hA,max maximum width of the air channel (m)

hA,min minimum width of the air channel (m)

hG width of GDL (m)

Hm reaction rate of oxygen (kg/(m2 · s))

i current density on M (A/m2)

Iav average current density on M (A/m2)

i0 exchange current density (A/m2)

Jj diffusive flux of species j (kg/(m2 · s))

K GDL permeability (m2)

l length of the fuel cell (m)
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M cathode/anode membrane

Mj molar mass of species j (kg/mol)

Nj total flux of species j (kg/(m2 · s))

p̂ gas pressure (Pa)

pA, pG gas pressure in A and G, respectively (Pa)

pi, pin gas pressure at the air channel inlet (Pa)

po, pout gas pressure at the air channel outlet (Pa)

r ohmic resistance of the fuel cell (Ωm2)

R the universal ideal gas law constant (J/(mol ·K))

Rj reaction rate of species j (kg/(m2 · s))

T gas temperature (K)

û gas velocity (m/s)

x x-coordinate (m)

xj molar fraction of species j

y y-coordinate (m)

Greek symbols:

α, β, σ coefficients appearing in the cost functional E

αc cathode transfer coefficient

αm net water cross the membrane M from the anode to the cathode

η activation over-potential (V )

ε porosity of the GDL

φ volumetric flow rate at the air channel inlet (kg/s)

Γ air channel wall

Γi, Γin air channel inlet

Γo, Γout air channel outlet

Γw walls of G
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µ gas viscosity (kg/(m · s))

µair air viscosity (kg/(m · s))

µw water vapor viscosity (kg/(m · s))

ν, νA, νG the exterior unit normal vectors to Ω, A, G, resp.

ν∂Γi , ν∂Γo the exterior unit normal vectors to ∂Γi and ∂Γo, resp.

Ω A ∪G

ρi density of species i (kg/m3)

Σ interface separating A and G

τ the counterclockwise tangential unit vector to Ω

ξ direction to which Ω is deformed

ζ parameterizing variable to deform Ω to Ωζ



Chapter 1

Introduction

1.1 Fuel Cells and main objective of the thesis

Fuel cells are devices used to generate electricity from electrochemical reactions oc-

curring inside the cell between the fuel and the air. Fuel cells are classified by means

of the fuel used, which lead to different electrochemical reactions.

In a polymer electrolyte membrane fuel cell, there are three main parts: the

cathode, the membrane(M) and the anode, see Figure 1.1. Both the cathode and

the anode have a fluid (gas) flow channel, a gas diffusion layer (GDL or G) and a

catalyst layer (CL). The flow channel is used to deliver the fluid or the reactant. The

gas diffusion layer is a porous medium that helps to distribute the gas to the catalyst

layer, by which it speeds up the reactions taking place in the cathode or the anode.

In the thesis, hydrogen fuel cells are considered, which use hydrogen gas H2

as their fuel. The hydrogen gas is delivered into the anode flow channel, diffuses

through the anode GDL and then spreads over the anode CL. In the anode CL,

hydrogen molecules react to produce electrons and protons:

H2 −→ 2H+ + 2e−. (1.1.1)

The two electrons, 2e−, are transported to the cathode through an external circuit.

4
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Figure 1.1: 2d cross-section of a hydrogen fuel cell

However, the protons, 2H+, are drained into the membrane. On the surface of the

membrane, these protons bind with water molecules to produce two ions of hydro-

nium:

2H+ + 2H2O −→ 2H3O
+. (1.1.2)

Next, the hydronium ions travel through the membrane towards the cathode side.

In the cathode, air (or oxygen gas) is delivered into the cathode air channel. The air

diffuses in the cathode GDL and then spreads over the cathode CL, where the oxygen

molecules enter a reduction reaction by means of the two electrons coming from the

anode:

1

2
O2 + 2e− −→ O−2. (1.1.3)

Finally, the hydronium ions react with the oxygen atom to produce three molecules

of water and heat:

2H3O
+ +O−2 −→ 3H2O + Heat. (1.1.4)
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Hence, the overall reaction taking place at the cathode CL is

2H+ +
1

2
O2 + 2e− −→ H2O + Heat, (1.1.5)

where water, as the main product, is a great advantage to have a safe environment.

However, the products of the reaction (1.1.5), namely water and heat, may lead to

ineffective operation of the fuel cell. The heat, resulting from the exothermic reaction

at the cathode, can cause the membrane to dry out. In this case, the membrane

cannot transport the protons 2H+ from the anode to the cathode, therefore the elec-

tricity generation decreases or stops. On the other hand, water can accumulate in

the cathode part of the cell. This, as well, prevents the reaction (1.1.5) to take place,

as all catalytic reaction sites are eventually flooded by water.

The main goal of the thesis is to investigate avenues for solving these issues, for

instance by improving the transport of reactants and products in the cathode. It

is noted experimentally that the reaction rate (1.1.5) is not uniform on the cathode

CL(decreasing along the channel direction), see for instance [14] and [22], where this

is remarkable for long air channel fuel cells. This leads to accumulation of heat in

regions where the reaction rate is high, and accumulation of water where the reaction

rate is low, see [22] where regions of water accumulation in cathode has been stud-

ied. Improving the performance of hydrogen fuel cells becomes a concern today for

researchers. In [30], the current density is maximized by finding the optimal compo-

sition of membrane electrode assembly(MEA), that is, finding the optimal platinum

loading, platinum to carbon ratio, electrolyte content and gas diffusion layer poros-

ity. The optimal assembly for the cathode was done in [27] and [29], and for the

anode in [28]. In [19], the goal was to maximize the current density with respect

to operating conditions. In [32], the objective was find the optimal thickness of the

cathode CL that maximizes the current density. In [10] and [11], the objective was

to find the optimal cathode dimensions and optimal inlet pressure that maximize the
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current density. In [16], finding an optimal geometry of the cathode air channels was

considered to maximize the current density, by testing rectangular, triangular and

hemispherical air channels. Only maximizing the current density is widely considered

in the literature, while considering uniform current density as an objective is rarely

seen though it is crucial, as explained above and for instance in [13]. However, in [26],

results show an optimal cathode catalyst (platinum) loading that makes the current

distribution even. Yet in this work, maximizing the current density is not considered.

This thesis combines three objectives through finding an optimal design of the

cathode air channel: maximizing the current density, uniformizing the current density,

and reducing the pressure drop along the gas channel.

1.2 Plan of the thesis

Chapter 2 is dedicated to the modeling of the cathode part of hydrogen fuel cells. It

considers two models: a general model and simplified model. A shape optimization

problem is defined to minimize an objective function representing the efficiency of

hydrogen fuel cells.

Chapter 3 presents a mathematical analysis of the shape optimization problem. The

first part is about finding the shape gradient of the cost functional defined in chapter

2. The second part investigates the shape differentiability of the variables involved,

by which the cost functional is defined. Also, the shape differentiability of the cost

functional is proved. The last part studies existence and uniqueness of an adjoint

problem, which is used to calculate the shape gradient of the cost functional.

Chapter 4 presents the numerical methods used to solve the optimization problem.

In chapter 5, the simplified and general models are first compared. The simplified

model is next validated with the model studied in [15]. The optimization problem is

solved and discussed for both long and short air channels.



Chapter 2

Statement of Problems

2.1 Mathematical Modeling

The goal of this section is to present mathematical modeling background to explain

the fluid dynamics taking place in the cathode part of hydrogen fuel cells. Of the cath-

ode part, two main domains are considered: the air channel A and the gas diffusion

layer G, see Figure 2.1.

In this figure, Γi is the channel inlet, Γo the channel outlet, Γ and Γw walls, M

the catalytic interface between the GDL and the membrane, Σ the interface between

A and G. In the thesis, M will be called the “membrane”.

Air is delivered at Γi while some water vapor, nitrogen and oxygen gases exit at

Figure 2.1: 2d cross-section of the cathode part of hydrogen fuel cells.

8
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Γo.

Let ĉo, ĉw and ĉn denote the mass fractions of oxygen, water vapor and nitrogen,

respectively, and ρo, ρw, ρn and ρg the densities of oxygen, water, nitrogen and the

gas mixture, respectively. Let also p̂g denote the pressure of the gas mixture and ûg

the velocity of the gas mixture.

The system is assumed to be in steady state, isothermal and has only gas phase.

Two models will be considered in this section. The first model, a general model,

takes into account the variation of both the gas density and the dynamic viscosity

due to change in the mass fractions of species. The second model, a simplified model,

assumes the gas density, the dynamic viscosity and the nitrogen mass fraction to be

constant. The later model improves the one presented in [21], a simplification of

the model considered in [22]. In both models, a particular attention is given to the

porosity of the domain G and specifying the reaction rate at the membrane as well

as the dynamic viscosity of the gas mixture.

The assumptions of constant dynamic viscosity and constant gas density are

clearly not valid due to high change of mass fractions.

Comparing the two models will serve for two benefits. The first benefit is to verify

the assumptions taken in the simplified model. The second benefit is to consider the

simplified model in the analysis part.

2.1.1 The General Model

In the general model, ĉo, ĉn, ĉw, ûg, p̂g, ρg and µ are all variables.

The mixture density ρg is interpreted in terms of partial densities:

ρg = ρo + ρw + ρn, (2.1.1)

and the mass fraction of each species is given by
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ĉo = ρo
ρg
, ĉw = ρw

ρg
, ĉn = ρn

ρg
. (2.1.2)

Hence, (2.1.2) gives the total mass fraction

ĉo + ĉw + ĉn = 1. (2.1.3)

Since no reaction happens in both domains A and G, the gas temperature T

is assumed to be constant in A ∪ G; see also [3] and [22], where the variation of

temperature is small.

Assuming that the gases are ideal in both domains A and G, then their partial

pressures are given by

p̂o = ρoRT
Mo

, p̂w = ρwRT
Mw

, p̂n = ρnRT
Mn

, (2.1.4)

where Mo, Mw and Mn are the molar masses of oxygen, water, and nitrogen, respec-

tively, and R is the universal ideal gas constant.

The mixture pressure or the total pressure p̂g is given by

p̂g = p̂o + p̂w + p̂n. (2.1.5)

From (2.1.2), it follows that ρo = ĉoρg, ρw = ĉwρg and ρn = ĉnρg. Then using

(2.1.3),(2.1.4) and (2.1.5) results in

p̂g = p̂o + p̂w + p̂n

= ρgRT

(
ĉo
Mo

+
1− ĉo − ĉn

Mw

+
ĉn
Mn

)
=

ρgRT

Mw

(βoĉo + βnĉn + 1) , (2.1.6)

where βo = Mw

Mo
− 1 and βn = Mw

Mn
− 1.

Therefore, ρg is written as

ρg =
Mwp̂g

RT (βoĉo + βnĉn + 1)
. (2.1.7)
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It also follows from the ideal gas law that

xo =
p̂o
p̂g
, xn =

p̂n
p̂g
, xw =

p̂w
p̂g
. (2.1.8)

Using (2.1.4), partial pressures in (2.1.8) are written in terms of the main variables:

xo =
RTρg ĉo
Mop̂g

, xn =
RTρg ĉn
Mnp̂g

, xw =
RTρg ĉw
Mwp̂g

. (2.1.9)

Dynamic Viscosity

The dynamic viscosity of the mixture , µ, is not constant in general as it is a function

of the molar fractions of the species, see [33] and [35]. For this, let xo, xn and

xw denote the molar fractions of oxygen, nitrogen and water, respectively. Let also

µair and µw be the dynamic viscosities of dry air and water, respectively, at the

temperature T . Then according to [33], the dynamic viscosity of moist air or the

mixture is well-approximated by

µ = (µairxair + µwxw) (1 + xairxw/2.75) , (2.1.10)

where the molar fraction of air xair = xo + xn and xw are obtained from (2.1.9). The

dynamic viscosity of the gas mixture (2.1.10) depends on the temperature T . In our

models presented below, the gas temperature T is chosen within the validity rage of

this equation.

Relative Humidity

The system is assumed to be only in gas phase. To check the validity of this assump-

tion, the so called ”relative humidity”, denoted by RH, is calculated.

Relative humidity measures the amount of water vapor in a mixture relative to

that in the mixture saturated with water vapor. Let nw denote the number of moles

of water molecules in the mixture. Let also ns be the total number of water moles in

the saturated mixture. Then, the relative humidity is defined as

RH =
nw
ns
, (2.1.11)
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see [35]. From the ideal gas law, (2.1.11) is written as

RH =
p̂w
p̂s
, (2.1.12)

where p̂s is the pressure of water vapor at the saturation point. Also, p̂s is approxi-

mated by a polynomial in terms of temperature, see [35].

Dry air means RH = 0 while saturated air with water means RH = 1. When the

relative humidity of a system is greater than one, the system is called over-saturated,

and a liquid phase exists. In the numerical results presented in Chapter 5, the relative

humidity always remains below 1.

Fluid dynamics in the air channel

In the air channel, the system is governed by fluid dynamics laws: conservation of

momentum and conservation of mass.

Conservation of momentum gives

∇ ·
[
−µ
(
∇ûg +∇ûTg

)
+ p̂gI

]
= 0 in A, (2.1.13)

where µ is the dynamic viscosity of the flowing fluid. The first term of (2.1.13)

represents the change of momentum due to shear stress and the second term the

change of momentum due to pressure drop. Equation(2.1.13) is the Stokes equation

for creeping flow [2].

Mass conservation of the mixture results in the continuity equation:

∂ρg
∂t

+∇ · (ρgûg) = 0 in A, (2.1.14)

where t denotes the time. Since the system is assumed to be in steady state, (2.1.14)

simplifies to

∇ · (ρgûg) = 0 in A. (2.1.15)

Equation (2.1.15) is the usual mass conservation equation for compressible fluids,

see [2].
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Let Jk be the diffusive mass flux of species k, and Nk denote the combined (dif-

fusive and convective) mass flux of species k. Then from Fick’s law [2], the combined

mass flux of oxygen and nitrogen are given by

Nĉo = −Doρg∇ĉo + ρgûg ĉo,

Nĉn = −Dnρg∇ĉn + ρgûg ĉn in A (2.1.16)

where Do and Dn are the diffusivity constants for oxygen and nitrogen, respectively.

The first term of the fluxes (2.1.16) represents the diffusive flux and the second term

the convective flux. The mass conservation of oxygen and nitrogen results in

∇ ·Nĉo = Rĉo ,

∇ ·Nĉn = Rĉn in A (2.1.17)

where Rĉo and Rĉn are the reaction rates for ĉo and ĉn, respectively. Since the flow is

non-reactive in A, Rĉo = Rĉn = 0. Using equation (2.1.15), it follows that

∇ · (ρgûg ĉo) = ρgûg · ∇ĉo

∇ · (ρgûg ĉn) = ρgûg · ∇ĉn in A. (2.1.18)

Then equations (2.1.17) reduce to

−∇ · (Doρg∇ĉo) + ρgûg · ∇ĉo = 0,

−∇ · (Dnρg∇ĉn) + ρgûg · ∇ĉn = 0 in A. (2.1.19)

Therefore in the air channel, A, the following problem must be solved : Find ûg,

p̂g, ĉo, ĉn and ρg such that

∇ ·
[
−µ
(
∇ûg +∇ûTg

)
+ p̂gI

]
= 0,

∇ · (ρgûg) = 0,

−∇ · (Doρg∇ĉo) + ρgûg · ∇ĉo = 0, in A (2.1.20)



2. Statement of Problems 14

−∇ · (Dnρg∇ĉn) + ρgûg · ∇ĉn = 0,

Mwp̂g
RT (βoĉo + βnĉn + 1)

= ρg.

Fluid dynamics in the gas diffusion layer

In the gas diffusion layer, the fluid dynamics of the system is modeled by Darcy’s

equation and conservation of mass.

Darcy’s equation [2] models the gas velocity and the gas pressure in porous media:

µ

K
ûg +∇p̂g = 0 in G, (2.1.21)

where K is the permeability of the porous medium. Here ûg is the superficial velocity

or the extrinsic velocity, which is the averaged velocity over the porous domain G.

The pressure p̂ is the intrinsic gas pressure.

Mass conservation of the mixture yields the continuity equation:

∂ρg
∂t

+∇ · (ρgûg) = 0 in G, (2.1.22)

Since the system is assumed to be in steady state, equation (2.1.22) simplifies to

∇ · (ρgûg) = 0 in G. (2.1.23)

Like in the air channel, A, the mass conservation of oxygen and nitrogen gives

−∇ · (εDeff
o ρg∇ĉo) + ερgûg · ∇ĉo = 0,

−∇ · (εDeff
n ρg∇ĉn) + ερgûg · ∇ĉn = 0, in G

Mwp̂g
RT (βoĉo + βnĉn + 1)

= ρg, (2.1.24)

where ε is the porosity, the ratio of pore area (volume) to the total area (volume) of

the domain G.

The diffusivity of each of oxygen and nitrogen, Deff
o and Deff

n , is the effective

diffusivity which takes into account the effect of porosity of the domain G. In fact
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for species i, the effective diffusivity Deff
i := ε1.5Di, see [14]. Note also that ûg is the

fluid velocity obtained from (2.1.21) since the medium is porous.

In summary, the following problem has to be solved in the gas diffusion layer, G:

Find ûg, p̂g, ĉo, ĉn and ρg such that

µ

K
ûg +∇p̂g = 0,

∇ · (ρgûg) = 0,

−∇ · (εDeff
o ρg∇ĉo) + ερgûg · ∇ĉo = 0, in G (2.1.25)

−∇ · (εDeff
n ρg∇ĉn) + ερgûg · ∇ĉn = 0,

Mwp̂g
RT (βoĉo + βnĉn + 1)

= ρg.

Boundary Conditions

The above system of equations (2.1.20) and (2.1.25) are coupled with boundary con-

ditions. These boundary conditions are introduced in [3], [15], [21] and [22].

On the channel inlet, Γi, the following boundary conditions are prescribed.

û2 = 0, (2.1.26)∫
Γi

û1 = φ, (2.1.27)

−µ∂1û1 + p̂g =
1

|Γi|

∫
Γi

p̂g = pin, (2.1.28)

ĉo = co,in, (2.1.29)

ĉn = cn,in, (2.1.30)

where φ, co,in and cn,in are given constants. Condition (2.1.26) implies that the

tangential velocity component is zero, and condition (2.1.27) specifies the volumetric

flow rate at the inlet. Condition (2.1.28) implies that the total stress tensor equals

to the average pressure pin on Γi, where pin here is an unknown constant. Conditions
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(2.1.29) and (2.1.30), respectively, mean that oxygen and nitrogen mass fractions are

known at the channel inlet.

On the channel outlet, Γo, the following boundary conditions are considered.

û2 = 0, (2.1.31)

−µ∂1û1 + p̂g = pout, (2.1.32)

Jĉo · ν = 0, (2.1.33)

Jĉn · ν = 0, (2.1.34)

where pout is a given constant. Condition (2.1.31) is the same as on the channel inlet.

Condition (2.1.32) specifies the total stress tensor. In conditions (2.1.33) and (2.1.34),

the diffusive flux of oxygen and nitrogen are zero; or equivalently that oxygen and

nitrogen mass fractions are constant along the x-direction near the outlet.

On the wall Γ, the boundary conditions are

û1 = û2 = 0, (2.1.35)

Jĉo · ν = 0, (2.1.36)

Jĉn · ν = 0, (2.1.37)

where ν denotes the exterior normal vector to ∂Ω, and Ω := A∪G. The first condition

(2.1.35) specifies the usual no-slip velocity on a wall. Conditions (2.1.36) and (2.1.37)

state that diffusive fluxes for oxygen and nitrogen are zero. Hence, with condition

(2.1.35) the combined fluxes of oxygen and nitrogen are zero.

On the interface, Σ, it is assumed that

[û2] = 0, (2.1.38)

−µ∂2û2 + p̂g = p̂g(·, 0+), (2.1.39)

û1(., 0−) = 0, (2.1.40)
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[ĉo] =
[
εDeff

o ρg∂2ĉo
]

= 0, (2.1.41)

[ĉn] =
[
εDeff

n ρg∂2ĉn
]

= 0, (2.1.42)

[ρg] = 0, (2.1.43)

where [·] denotes the jump across Σ, and p̂g(x, 0
+) = limy→0+ p̂g(x, y), for every x ∈ Σ.

In domain A, ε = 1 and Deff = D. Conditions (2.1.38), (2.1.41) and (2.1.42) as well

as (2.1.43) ensure that the diffusive and the convective fluxes of oxygen and nitrogen

are continuous on Σ. Consequently, these are used to couple equations (2.1.19) and

(2.1.24). Condition (2.1.39) implies that the total stress tensor equals to p̂|ΣG . In

condition (2.1.40), it is assumed that the gas in domain A does not slip along the

interface Σ.

On the walls, Γw, the boundary conditions are

û1 = 0, (2.1.44)

Jĉo · ν = 0, (2.1.45)

Jĉn · ν = 0. (2.1.46)

Conditions (2.1.45), (2.1.46) and (2.1.44) imply that the combined fluxes of oxygen

and nitrogen are zero.

In the catalyst layer M , the following reaction takes place:

4H+ + 4e− +O2 −→ 2H2O + Heat. (2.1.47)

This means that for every mole of oxygen consumed (or 1
Mo
Nĉo · ν), there will be two

moles of water vapor produced ( 1
Mw

Nĉw · ν). Hence

1

Mo

Nĉo · ν = − 1

2Mw

Nĉw · ν. (2.1.48)

In addition, the reaction (2.1.47) implies that for every mole of oxygen consumed

(or 1
Mo
Nĉo · ν), there will be four moles of electrons (or 4F of charges) used, where F

is the Faraday constant. These electrons pass through an external circuit to generate
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electricity. Let i denote the current density on M , which is the transport rate of

electrons per unit area or the flux of electrons. Then the current density is related to

the oxygen mass flux as follow

i = (O2 molar transport rate)× 4F

=
4F

Mo

Nĉo · ν. (2.1.49)

Hence, the normal component of oxygen mass flux is then determined to be

Nĉo · ν =
Mo

4F
i. (2.1.50)

Also, due to consumption of oxygen and production of water vapor on M , the

total mass is written as

ρgû2 = Nĉo · ν + (1 + 2αm)Nĉw · ν, (2.1.51)

where the factor 2αm accounts for the water crossing the membrane from the anode

side. Now using equations (2.1.48), (2.1.49), and (2.1.50), it follows that

ρgû2 =
Mo

4F
i− Mw

2F
(1 + 2αm) i. (2.1.52)

The nitrogen mass flux is assumed to be zero, which means that the nitrogen gas

cannot cross the membrane:

Nĉn · ν = 0. (2.1.53)

To find the current density i, the Butler-Volmer equation is used

i = i0

(
ĉo

ĉo,ref

)[
exp

(
αcF

RT
η

)
− exp

(
−αcF
RT

η

)]
, (2.1.54)

where i0 is the exchange current density, ĉo,ref oxygen reference mass fraction, and

αc the cathode side transfer coefficient, which are all fixed parameters, see [15].

Finally, the variable η, which is the catalyst layer activation over-potential, sat-

isfies the cell voltage formula:

Ecell = Erev − η − rIav, (2.1.55)
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where Ecell is the cell voltage, Erev the reversible cell voltage, r the ohmic resistance

of the cell, and Iav is the averaged current density on M :

Iav =
1

|M |

∫
M

i(x)dx. (2.1.56)

Then the boundary conditions considered on M are

Nĉo · ν =
Mo

4F
i,

Nĉw · ν = − (1 + 2αm)
Mw

2F
i,

Nĉn · ν = 0,

ρgû2 =
Mo

4F
i− (1 + 2αm)

Mw

2F
i, (2.1.57)

where i is determined by the following equations

i = i0

(
ĉo

ĉo,ref

)[
exp

(
αcF

RT
η

)
− exp

(
−αcF
RT

η

)]
,

Ecell = Erev − η − rIav. (2.1.58)

Then the above boundary conditions are summarized below.

Γi : ĉo − co,in = ĉn − cn,in = φ−
∫

Γi
û1 = û2 = −µ∂1û1 + p̂g − pin = 0,

Γ : Nĉo · ν = Nĉn · ν = û1 = û2 = 0,

Γo : Jĉo · ν = Jĉn · ν = û2 = −µ∂1û1 + p̂g − pout = 0,

Σ : [ĉo] = [Nĉo · ν] = [ĉn] = [Nĉn · ν] = û1 (., 0−) = [û2] = −µ∂2û2 + p̂g − p̂(·, 0+) = 0,

Γw : Nĉo · ν = Nĉn · ν = û1 = 0,

M : Nĉo · ν − Mo

4F
i = Nĉn · ν = ρgû2 −

(
Mo

4F
− (1 + 2αm) Mw

2F

)
i = 0,

(2.1.59)

where K,φ, co,in, cn,in, pout are given constants, while pin is an unknown constant.

In the following remark, the oxygen mass flux is written in terms of the oxygen

mass fraction, ĉo. This remark will be used in Chapter 3 to calculate shape derivatives;

in particular, it clarifies notations used there.
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Remark 2.1.1 Let Hm denote the consumption rate of oxygen on the membrane,

M . Then using the first equation of (2.1.57) gives

Nĉo · ν = Hmĉo =
Mo

4F
i, (2.1.60)

where it follows from the first equation of (2.1.58) that

Hm =
Moi0

4F ĉo,ref

[
exp

(
αcF

RT
η

)
− exp

(
−αcF
RT

η

)]
. (2.1.61)

Also, from the last equation of (2.1.57), it follows that

ερgû2 = −ε
[
Mw

2F
(1 + 2αm)− Mo

4F

]
4F

Mo

Hmĉo

= −ε
(

2Mw

Mo

(1 + 2αm)− 1

)
Hmĉo. (2.1.62)

Set

βm = ε

(
2Mw

Mo

(1 + 2αm)− 1

)
, (2.1.63)

which is a positive quantity as 2Mw

Mo
> 1. Then,

ερgû2 = −βmHmĉo. (2.1.64)

Since

Nĉo · ν = −ερgDeff∂ν ĉo + ερgûĉo · ν, (2.1.65)

it follows from (2.1.60) and (2.1.64) that the normal component of the diffusive flux

on the membrane is given by

−ερgDeff∂ν ĉo = Hm (1 + βmĉo) ĉo. (2.1.66)
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2.1.2 The Simplified Model

In the simplified model, the gas density and nitrogen mass fraction are assumed to

be constant. The general model: equations (2.1.20) and (2.1.25) are simplified after

dividing by ρg. Then the following problem has to be solved: Find ûg, p̂g, ĉo such

that

−∇ · (Do∇ĉo) + ûg · ∇ĉo = 0,

−µ∆ûg +∇p̂g = 0, (2.1.67)

∇ · ûg = 0

in A, and

−∇ ·
(
εDeff

o ∇ĉo
)

+ εûg · ∇ĉo = 0,

µ

K
ûg +∇p̂g = 0, (2.1.68)

∇ · ûg = 0

in G.

The above system of equations are grouped, and the problem is to find ûg, p̂g,

ĉo such that

−∇ ·
(
εDeff

o ∇ĉo
)

+ εûg · ∇ĉo = 0 in Ω, (2.1.69)

(−µ∆ûg +∇p̂g)χ(A) +
( µ
K

ûg +∇p̂g
)
χ(G) = 0 in A ∪G, (2.1.70)

∇ · ûg = 0 in A ∪G, (2.1.71)

coupled with the same boundary conditions (2.1.59). Here χ(.) denotes the charac-

teristic function, and ε = 1 in A.
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2.2 Optimization Problem

Based on experimental observations [13],[19] and [26], hydrogen fuel cells are made

more efficient under the following conditions.

First, the current density i must be uniformly distributed on the membrane M .

This makes the reaction of oxygen and hydrogen molecules occur uniformly at the

same rate on the entire membrane. In addition, having this uniform distribution

takes advantage of the cathode platinum catalyst layer, which is the most expensive

part in the fuel cell. But the current density (2.1.50) is proportional to the normal

component of the oxygen mass flux. Therefore, minimizing the total variance of the

current density or that of the normal component of the oxygen mass flux are the

same. Hence, the integral∫
M

(
Nĉo · ν −

1

|M |

∫
M

Nĉo · ν
)2

, (2.2.1)

must be minimized.

Second, the current density should be maximized as well on the membrane in

order to increase the production of electricity. This is achieved when the normal

component of the oxygen mass flux is maximized on the membrane. Then,∫
M

Nĉo · ν, (2.2.2)

must be maximized. Note also that maximizing the oxygen mass transport towards

the membrane usually decreases the amount of oxygen reaching the channel outlet.

This makes a maximum benefit of the oxygen gas delivered at the channel inlet.

Third, the pressure drop between the inlet and the outlet,

pin − pout, (2.2.3)

must be minimized. This leads to a lower operating cost for the fuel cell. This term is

proportional to the energy that is drawn from the fuel cell to maintain a flow through

the gas channel, for instance with a compressor that is attached to the fuel cell.
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Now, taking a weighted average of the above functionals leads to the following

cost functional E(Γ),

E(Γ) :=
1

2
a

∫
M

(
Nĉo · ν −

1

|M |

∫
M

Nĉo · ν
)2

− b
∫
M

Nĉo · ν + e (pin − pout) , (2.2.4)

where Γ is the design parameter controlling the shape of the air channel, A, and a, b,

and e are some given nonnegative parameters. The coefficients (a, b, and e) should

come with proper units for E(Γ) to be non-dimensional if the variables in each term

are dimensional.

The optimal shape of the wall of the air channel, Γ∗, is defined to be the solution

of the following problem: Find Γ∗ ∈ C2(R) such that

Γ∗ = arg minΓ∈C2(R) E(Γ), (2.2.5)

subjected to the state equations (2.1.69)-(2.1.71) and (2.1.59).

Remark 2.2.1 The regularity of Γ is needed to show the shape differentiability of

the cost functional E(Γ) as well as the state variables.



Chapter 3

Mathematical Analysis

The goal of this chapter is to discuss some mathematical analysis issues related to the

optimization problem introduced in Section 2.2. To recall, our optimization problem

is to find an optimal shape Γ, see Figure 2.1, minimizing a cost functional E =

E(Γ,W (Γ)), where W (Γ) denotes steady state variables, which satisfies a system of

equations represented by F (Γ,W (Γ)) = 0. Therefore, our problem reads:

minΓ E(Γ,W (Γ)), (3.0.1)

subject to F (Γ,W (Γ)) = 0. (3.0.2)

To solve this problem, we need to differentiate E with respect to Γ:

dE

dΓ
=

∂E

∂Γ
+
∂E

∂W

dW

dΓ
, (3.0.3)

where dW
dΓ

is taken as a new variable. However, differentiating the state equation

(3.0.2) with respect to Γ gives an equation for the variable dW
dΓ

:

∂F

∂Γ
+
∂F

∂W

dW

dΓ
= 0. (3.0.4)

To derive equations (3.0.3) and (3.0.4), some background in differentiation with re-

spect to domains is presented in the first section of this chapter. This will help to

calculate derivatives with respect to Γ, which appear in the above equations (3.0.3)

24
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and (3.0.4). In the second section, the gradient of E is calculated using an adjoint

problem. Existence of the shape derivative of the state variable, dW
dΓ

, will be discussed

in the third section. Finally, existence and uniqueness of the adjoint problem will be

proved.

In the course of this chapter, the domains A, G, and Ω = A ∪ G as well as

their boundaries refer to the ones given in Figure 2.1, unless otherwise stated. These

domains are open sets of R2 with Lipchitz boundaries. Also, νA, νG and ν denote the

exterior unit normal vectors to A, G and Ω, respectively.

3.1 Some Background in Shape Calculus

This section presents some background in shape calculus, that will be needed in this

chapter. The notations and proofs of this section are found in [31]. For comprehensive

and self-contained details in this subject, we refer the reader to [5].

Let Ω be a bounded open set of Rn with a regular boundary ∂Ω. Let also ζ be

a regular vector field defined on Rn. Then a variable set Ωζ , parametrized by ζ, is

defined as follows

Ωζ := {xζ = x+ ζ(x), x ∈ Ω} . (3.1.1)

Let u(ζ) be a real-valued function depending on Ωζ , and defined on Ωζ . Then,

u(ζ)(xζ) := u(ζ, xζ), xζ ∈ Ωζ . (3.1.2)

The above equation can be considered in the fixed domain Ω using the change of

variables xζ = (I + ζ)(x), where I is the identity vector field on Rn:

u(ζ) ◦ (I + ζ)(x) := u(ζ, (I + ζ)(x)), x ∈ Ω. (3.1.3)

Note that u(0) is defined on the fixed domain Ω0 = Ω.
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The function u(ζ) either solves an equation (a PDE system, for instance), or is

involved in a cost functional that needs to be minimized or maximized. The goal of

this section is to present the main results to calculate derivatives with respect to ζ of

equations and cost functionals involving u(ζ).

First, let us introduce a diffeomorphism space, Ck, that is used to map the fixed

domain Ω to the transformed domain Ωζ , as given above.

Definition 3.1.1 Let k ≥ 1, where k is an integer. Then a diffeomorphism space Ck

on Rn is defined as follows:

Ck =
{
ζ = (ζ1, ζ2, ..., ζn) | Dαζi ∈ Cb

0(Rn), i ≤ n, |α| ≤ k
}
, (3.1.4)

where Cb
0 denotes the space of bounded, continuous functions with compact support on

Rn. This space is equipped with the norm

‖ζ‖k = sup {|Dαζ (x)| , x ∈ Rn, 0 ≤ |α| ≤ k} . (3.1.5)

The following lemma shows the differentiability of the Jacobian function, Jac(I + ζ).

This lemma will be used to change the variable xζ to x.

Lemma 3.1.2 Denote

Jac(I + ζ) =

∣∣∣∣det

(
∂ (I + ζ)i
∂xj

)∣∣∣∣ . (3.1.6)

Then the map ζ → Jac(I + ζ) is differentiable at ζ = 0 from Ck into Ck−1(Rn), and

for every ξ ∈ Ck, its derivative in the direction ξ is equal to

∂Jac(I + ζ)

∂ζ
(0) ξ = div (ξ) . (3.1.7)
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Lemma 3.1.3 Let

[∇(I + ζ)] =

[
∂(I + ζ)i
∂xj

]
(3.1.8)

denote the matrix derivative of the map I+ζ of Rn and [∇(I + ζ)]−T be the transposed

inverse matrix. Then the function ζ → [∇(I + ζ)]−T is differentiable at ζ = 0 from

Ck into (Ck−1)n, and for every ξ ∈ Ck, its derivative in the direction ξ is equal to

∂ [∇(I + ζ)]−T

∂ζ
(0) ξ = − [∇ξ]T . (3.1.9)

The following remark gives a relation between the gradient operators ∇xζ and ∇x,

which is needed to change variables.

Remark 3.1.4 For every f ∈ W 1,1 (Rn) and ζ ∈ Ck small enough, it follows that

(
∇xζf

)
◦ (I + ζ) = [∇(I + ζ)]−T ∇x (f ◦ (I + ζ)) . (3.1.10)

3.1.1 Differentiation of ζ → f ◦ (I + ζ) and ζ → f (ζ) ◦ (I + ζ)

Let f be a function on Rn, which does not depend on ζ, and I+ζ be a diffeomorphism

on Rn. Then f ◦ (I + ζ) is a function on Rn.

Lemma 3.1.5 Let f ∈ H1(Rn). Then the map ζ → f ◦ (I + ζ) is differentiable at

ζ = 0 from Ck into L2 (Rn) and , for every ξ ∈ Ck, its derivative at ζ = 0 in the

direction ξ is equal to
∂f ◦ (I + ζ)

∂ζ
(0) ξ = ξ · ∇f. (3.1.11)

Now, the above lemma is extended by considering f(ζ), a function of ζ.

Lemma 3.1.6 Let f(ζ) ∈ H1(Rn), and suppose that ζ → f (ζ)◦ (I + ζ) is differen-

tiable at ζ = 0 from Ck into H1(Rn). Then ζ → f (ζ) is differentiable at ζ = 0
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from Ck into L2(R) and , for every ξ ∈ Ck, its derivative in the direction ξ is

equal to
∂f (ζ)

∂ζ
(0) ξ =

∂f (ζ) ◦ (I + ζ)

∂ζ
(0) ξ − ξ · ∇f (0) . (3.1.12)

3.1.2 Local differentiation

For every ζ ∈ Ck small enough, let Ωζ and u(ζ) be defined as in (3.1.1) and (3.1.2),

respectively, and u(ζ) ∈ H1(Ωζ). Note first that for x ∈ Ω, the directional derivative

∂u(ζ)

∂ζ
(0)(x)ξ = limt−→0

u(tξ)(x)− u(0)(x)

t
(3.1.13)

is not defined in general as x ∈ Ω may not belong to the domain of definition of u(tξ).

Therefore, this directional derivative must be defined locally.

For x ∈ Ω, let Ω′ be an open set such that x ∈ Ω′, and Ω′ ⊂⊂ Ω, meaning

that Ω′ is strictly included in Ω and Ω′ ⊂ Ω. Then, u (ζ) |Ω′ is defined for small ζ

as Ω′ ⊂⊂ (I + ζ) (Ω) . Hence the differentiation of ζ → u (ζ) |Ω′ at ζ = 0 has a

meaning.

Definition 3.1.7 The map ζ → u (ζ) is said to be differentiable into Wm,r
loc (Ω), or

locally differentiable, if the map ζ → u (ζ) |Ω′ is differentiable from Ck into Wm,r(Ω′)

for every Ω′ ⊂⊂ Ω . Also, its local derivative ∂u(ζ)
∂ζ

(0) ξ is defined in the whole

domain Ω, for any direction ξ ∈ Ck, by

∂u (ζ)

∂ζ
(0) ξ =

∂u (ζ) |Ω′
∂ζ

(0) ξ, (3.1.14)

for every Ω′ ⊂⊂ Ω.

Lemma 3.1.8 Let u(ζ) ∈ H1(Ωζ) and ζ → u (ζ)◦ (I + ζ) be differentiable at ζ = 0

from Ck into H1(Ωζ). Then ζ → u (ζ) is differentiable at ζ = 0 from Ck into

L2
loc (Ω) and , for every ξ ∈ Ck, its derivative in the direction ξ is equal to

∂u (ζ)

∂ζ
(0) ξ =

∂u (ζ) ◦ (I + ζ)

∂ζ
(0) ξ − ξ · ∇u (0) .
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Lemma 3.1.9 Suppose that ∂Ω is a piecewise C1 curve, u (ζ) ∈ W 1,1(Ωζ) and

ζ → u (ζ) ◦ (I + ζ) is differentiable at ζ = 0 from Ck into W 1,1 (Ω). Assume also

that u (ζ) = 0 on ∂Ωζ , and that u (0) ∈ W 2,1 (Ω) . Then, ζ → u (ζ) is differentiable

at ζ = 0 from Ck into L1
loc (Ω) and , for every ξ ∈ Ck, its derivative at ζ = 0 in

the direction ξ satisfies ∂u(ζ)
∂ζ

(0) ξ ∈ W 1,1 (Ω) , and

∂u (ζ)

∂ζ
(0) ξ = − (ξ · ν) ∂νu (0) on ∂Ω, (3.1.15)

where ν denotes the outward unit normal vector to ∂Ω.

3.1.3 Differentiation of cost functionals defined through an

integral form over Ωζ or ∂Ωζ

Consider a function u(ζ) ∈ H1 (Ωζ) and the cost functionals J(ζ) and K(ζ) given by

J (ζ) =

∫
Ωζ

C (u (ζ)) , (3.1.16)

K(ζ) =

∫
∂Ωζ

G(u(ζ)) (3.1.17)

where C and G are partial differential operators given in Rn. For the problem to

make sense, we assume, for ζ small enough, that the operators C and G map H1 (Ωζ)

into L1 (Ωζ) and W 1,1(Ωζ), respectively. We also assume, for ζ small enough, that C

and G are differentiable from L2 (Ωζ) into D′ (Ωζ) . In other words, C is differentiable

if v → (C (v) , ϕ) is differentiable for every ϕ ∈ D (Ωζ) .

Let us assume that ζ → u (ζ) ◦ (I + ζ) is differentiable at ζ = 0 from Ck into

H1 (Ω). Then by lemma 3.1.8, ζ → u (ζ) is differentiable at ζ = 0 from Ck into

L2
loc (Ω) and , for every ξ ∈ Ck, its derivative at ζ = 0 in the direction ξ is equal to

u′ :=
∂u (ζ)

∂ζ
(0) in ∈ L2 (Ω) . (3.1.18)

Moreover, we have the following results.
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Theorem 3.1.10 Suppose, for ζ small enough, that u (ζ) ∈ H1 (Ωζ), ζ → u (ζ) ◦

(I + ζ) is differentiable at ζ = 0 from Ck into H1 (Ω), C is differentiable from

L2 (Ωζ) into D′ (Ωζ) , ζ → C (u (ζ)) ◦ (I + ζ) is differentiable at ζ = 0 from Ck

into L1 (Ω) , and C (u (0)) ∈ W 1,1 (Ω) . Then, ζ → J (ζ) is differentiable at ζ = 0

from Ck into R, and its derivative at ζ = 0 in the direction ξ is equal to

dJ(0)

dζ
ξ =

∫
Ω

∂C(u(0))

∂u
u′ +

∫
∂Ω

(ξ · ν) C (u (0)) . (3.1.19)

Definition 3.1.11 For every x ∈ ∂Ω, let {τj}n−1
j=1 be an orthonormal system spanning

the tangent plane to ∂Ω at x. Then the tangential divergence of v ∈ (C1(∂Ω))n is

defined to be

div∂Ω(v)(x) := Σn−1
j=1 τj · ∂τj ṽ(x) on ∂Ω, (3.1.20)

where ṽ ∈ (C1(Rn))n extends v.

Theorem 3.1.12 Let ∂Ω be a C2 curve and Ω locally on one side of ∂Ω. Suppose, for

ζ small enough, that u (ζ) ∈ H1 (Ωζ), ζ → u (ζ)◦(I + ζ) is differentiable at ζ = 0 from

Ck into H1 (Ω), G is differentiable from L2 (Ωζ) into D′ (Ωζ), ζ → G (u (ζ)) ◦ (I + ζ)

is differentiable at ζ = 0 from Ck into W 1,1 (Ω), and G (u (0)) ∈ W 2,1 (Ω). Then,

ζ → K (ζ) is differentiable at ζ = 0 from Ck into R, and its derivative at ζ = 0 in

the direction ξ is equal to

dK(0)

dζ
ξ =

∫
∂Ω

[
∂G(u(0))

∂u
u′ + (ξ · ν) ∂νG(u(0)) + div∂Ω(ξG(u(0))

]
,(3.1.21)

where div∂Ω is defined above.
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3.2 Derivative of the Cost Functional, E

To solve the optimization problem (2.2.5), the steepest gradient method is used to

find a minimizer, Γ∗. For this, the shape gradient of the cost functional E is needed,

where

E(ζ) :=
1

2
α

∫
M

(
Nĉo · ν −

1

|M |

∫
M

Nĉo · ν
)2

−β
∫
M

Nĉo ·ν+σ (pin(ζ)− pout) , (3.2.1)

where ζ is the parameter controlling the shape of the air channel A, and α, β and σ

are some given nonnegative parameters.

From the boundary conditions (2.1.57) and (2.1.58), Nĉo · ν is written as

Nĉo · ν = Hm(η)ĉo, (3.2.2)

where

Hm(η) =
Moio

4F ĉo,ref

[
exp

(
αcF

RT
η

)
− exp

(
−αcF
RT

η

)]
, (3.2.3)

and η is a function of ζ:

η(ζ) = Erev − Ecell − rIav. (3.2.4)

Hence, Nĉo · ν contains both factors, Hm(η) and ĉo, each depending on ζ.

Remark 3.2.1 From (3.2.3), Hm depends only on the overpotential η, which from

the simple model in (3.2.4) is constant over M . This implies that Hm can be moved

in and out of any integral. This will be used below.

Definition 3.2.2 Let

E1 :=
1

2

∫
M

(
Hmĉo −

1

|M |

∫
M

Hmĉo

)2

, (3.2.5)

E2 :=

∫
M

Hmĉo, (3.2.6)
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where Hm is a positive constant for every ζ, and

E(ζ) = αE1(ζ)− βE2(ζ) + σ (pin(ζ)− pout) . (3.2.7)

As defined in the previous section Γξ = (I + ξ)(Γ), where ξ ∈ C2 (R2;R2).

The vector ξ is chosen such that each point of Γ is perturbed vertically, that is

ξ = (ξ1, ξ2) = (0, ξ2). The space of perturbation, V , is defined as follows.

Definition 3.2.3 Let ξ ∈ V ,

V := C2
(
R2;R2

)
∩
{

(0, ζ2) , ζ2 = 0 on G
}
. (3.2.8)

Let also E ′ denotes the derivative of E at ζ = 0 in a direction ξ ∈ V :

E ′ := E ′(0)ξ = limt−→0
E(tξ)− E(0)

t

The notation (.)′ will only be used below for the directional derivative at ζ = 0 in a

direction ξ ∈ V .

The objective of the following lemmas is to first find the shape derivative of the

cost functional E, and then to find the shape gradient of E using an adjoint system

of differential equations.

Lemma 3.2.4 The shape derivative of Hm at ζ = 0 in the direction ξ is given by

H ′m = − rioαcF

ĉo,refRT |M |

[
exp

(
αcF

RT
η

)
+ exp

(
−αcF
RT

η

)](∫
M

Hmĉo

)′
.(3.2.9)

Proof:

Using Definition 3.2.3 and 3.2.4, it follows that

H ′m =
∂Hm

∂η

dη

dζ
(0)ξ
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=
Moio

4F ĉo,ref

αcF

RT

[
exp

(
αcF

RT
η

)
+ exp

(
−αcF
RT

η

)]
(−rI ′av) , (3.2.10)

where I ′av is given by

I ′av =
4F

Mo|M |

(∫
M

Hmĉo

)′
. (3.2.11)

Now let

B(η) :=
rioαcF

ĉo,refRT

[
exp

(
αcF

RT
η

)
+ exp

(
−αcF
RT

η

)]
, (3.2.12)

then B(η) is always positive.

Lemma 3.2.5 Using lemma 3.2.4, the shape derivative of E2 at ζ = 0 in the direction

ξ is given by

E ′2(0)ξ =
Hm

1 + B(η)
|M |

∫
M
ĉo

∫
M

ĉ′o. (3.2.13)

Proof:

Multiplying equation (3.2.9) by ĉo and integrating over M gives∫
M

H ′mĉo = −B(η)

|M |

∫
M

ĉo

∫
M

(H ′mĉo +Hmĉ
′
o) , (3.2.14)

which results in ∫
M

H ′mĉo = −
B(η)

∫
M
ĉo

|M |+B(η)
∫
M
ĉo

∫
M

Hmĉ
′
o. (3.2.15)
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Hence using (3.2.15) gives(∫
M

Hmĉo

)′
=

∫
M

H ′mĉo +

∫
M

Hmĉ
′
o

=
Hm

1 + B(η)
|M |

∫
M
ĉo

∫
M

ĉ′o. (3.2.16)

Lemma 3.2.6 The shape derivative of E1 at ζ = 0 in the direction ξ is given by

E ′1(0)ξ =

∫
M

[
−2B(η)E1

|M |+B(η)
∫
M
ĉo

+ αH2
m

(
ĉo −

1

|M |

∫
M

ĉo

)]
ĉ′o. (3.2.17)

Proof:

For this, note that

E ′1(0)ξ = HmH
′
m

∫
M

(
ĉo −

1

|M |

∫
M

ĉo

)2

+H2
m

∫
M

[(
ĉ− 1

|M |

∫
M

ĉ

)(
ĉ′ − 1

|M |

∫
M

ĉ′
)]

. (3.2.18)

The first term in (3.2.18) is simplified using lemma 3.2.4 and lemma 3.2.5 since

H ′m = −B(η)

|M |
E ′2(0)ξ

= − HmB(η)

|M |+B(η)
∫
M
ĉo

∫
M

ĉ′o. (3.2.19)

For the second term in equation (3.2.18), note that∫
M

[(
ĉo −

1

|M |

∫
M

ĉo

)(
ĉ′o −

1

|M |

∫
M

ĉ′o

)]
=

(∫
M

ĉoĉ
′
o −

2

|M |

∫
M

ĉo

∫
M

ĉ′o +
1

|M |

∫
M

ĉo

∫
M

ĉ′o

)
=

∫
M

(
ĉo −

1

|M |

∫
M

ĉo

)
ĉ′o. (3.2.20)
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Hence, equations (3.2.19) and (3.2.20) give the result.

The following lemma gives the shape derivative of E.

Lemma 3.2.7 The shape derivative of E at ζ = 0 in the direction ξ is given by

E ′(0)ξ =

∫
M

gĉ′o + σp′in, (3.2.21)

where

g =
−2B(η)E1α− |M |Hmβ

|M |+B(η)
∫
M
ĉo

+ αH2
m

(
ĉo −

1

|M |

∫
M

ĉo

)
. (3.2.22)

Proof:

The proof follows from the definition of the cost functional E from equation (3.2.1),

Lemma 3.2.5 and 3.2.6.

We now take the shape derivatives of ĉ, û and p̂ assuming that the system,

(2.1.69)-(2.1.71) and (2.1.59), has a smooth solution. The following lemmas will be

needed to find the shape gradient of the cost functional E.

Lemma 3.2.8 Let ϕ ∈ C∞(R2) such that ϕ = 0,Γo(0) be a test function independent

of ζ. Then the shape derivative ĉ′ satisfies

−
∫

Ω

∇ ·
(
εDeff∇ϕ+ εϕû

)
ĉ′ +

∫
Ω

εϕ∇ĉ · û′

=

∫
M

[
−εDeff∂2ϕ+ ϕHm(3βmĉ+ 1)

]
ĉ′ −

∫
Γo

(
Deff∂νϕ+ ϕû · ν

)
ĉ′

−
∫

Γ∪Γw

(
εDeff∂νϕ

)
ĉ′ −

∫
Γ

(ξ · ν)
(
Deff∇ĉ · ∇ϕ

)
, (3.2.23)
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where

βm = ε

(
2Mw

Mo

(1 + 2αm)− 1

)
. (3.2.24)

Proof :

Multiplying the advection-diffusion equation (2.1.69) by ϕ and integrating by parts

give ∫
Ωζ

ε
(
Deff∇ĉ · ∇ϕ+ ϕû · ∇ĉ

)
=

∫
∂Ωζ

εDeffϕ∂ν ĉ. (3.2.25)

From (2.1.59), ∂ν ĉ = 0 on Γ ∪ Γo ∪ Γw. Also, Remark 2.1.1 gives −εDeff∂ν ĉ =

Hmĉ(1 + βmĉ) on M , assuming that ρg = 1 on Ω. Then (3.2.25) simplifies to∫
Ωζ

ε
(
Deff∇ĉ · ∇ϕ+ ϕû · ∇ĉ

)
= −

∫
Γi,ζ

Deffϕ∂1ĉ−
∫
M

Hmĉ(1 + βmĉ). (3.2.26)

Taking the shape derivative of equation (3.2.26) leads to∫
Ω

ε
[(
Deff∇ϕ+ ϕû

)
· ∇ĉ′ + ϕ∇ĉ · û′

]
+

∫
∂Ω

ε (ξ · ν)
(
Deff∇ĉ · ∇ϕ+ ϕû · ∇ĉ

)
= −

∫
Γi

Deffϕ∂1ĉ
′ −
∫
∂Γi

(ν∂Γi · ξ)
(
Deffϕ∂1ĉ

)
−
∫
M

Hmϕ(1 + 2βmĉ)ĉ
′. (3.2.27)

Note that the above equation is derived using (3.1.19) in Theorem 3.1.10 by consid-

ering both Ωζ and Γi,ζ as volume domains. Since ξ · ν = 0 on ∂Ω\Γ and ϕ = 0 on Γi

and û = 0 on Γ, (3.2.27) reduces to∫
Ω

ε[
(
Deff∇ϕ+ ϕû

)
· ∇ĉ′ + ϕ∇ĉ · û′]

= −
∫
M

Hmϕ(1 + 2βmĉ)ĉ
′ −
∫

Γ

(ξ · ν)
(
Deff∇ĉ · ∇ϕ

)
. (3.2.28)

Integrating the volume term involving ĉ′ in (3.2.28) gives∫
Ω

ε
(
Deff∇ϕ+ ϕû

)
· ∇ĉ′ = −

∫
Ω

∇ ·
(
εDeff∇ϕ+ εϕû

)
ĉ′

+

∫
∂Ω

ε
(
Deff∂νϕ+ ϕû · ν

)
ĉ′. (3.2.29)
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Since ĉ is constant and ξ · ν = 0 on Γi, it follows from Lemma 3.1.9 that ĉ′ = 0 on Γi.

Since also û · ν = 0 on Γ ∪ Γw, the boundary integral in (3.2.29) simplifies to∫
∂Ω

ε
(
Deff∇ϕ+ ϕû

)
· νĉ′ =

∫
Γ∪Γw

ε
(
Deff∂νϕ

)
ĉ′

+

∫
Γo∪M

ε
(
Deff∂νϕ+ ϕû · ν

)
ĉ′. (3.2.30)

Using (3.2.29), (3.2.30) and (2.1.64), which gives εû2 = −βmHmĉ
ε

on M , (3.2.28) is

written as

−
∫

Ω

∇ ·
(
εDeff∇ϕ+ εϕû

)
ĉ′ +

∫
Ω

εϕ∇ĉ · û′

=

∫
M

[
−εDeff∂2ϕ+ ϕHm (3βmĉ+ 1)

]
ĉ′ −

∫
Γo

(
Deff∂νϕ+ ϕû · ν

)
ĉ′

−
∫

Γ∪Γw

ε
(
Deff∂νϕ

)
ĉ′ −

∫
Γ

(ξ · ν) (D∇ĉ · ∇ϕ) . (3.2.31)

Lemma 3.2.9 Let v = (v1, v2) ∈ C∞(R2) × C∞(R2) and q ∈ C∞(R2) be test func-

tions independent of ζ, such that

v2 = 0, Γi ∪ Γ ∪ Γo

v1 = 0, Γ ∪ Σ ∪ Γw

[v2] = [q] = 0, Σ

∇ · v = 0, A ∪G. (3.2.32)

Then the shape derivatives (û′, p̂′) satisfy
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∫
A

(−µ∆v +∇q) · û′ +
∫
G

( µ
K

v +∇q
)
· û′

= p′i

∫
Γi

v1 −
∫

Γi

qû′1 +

∫
Γo

qû′1

−
∫
M

(
v2p̂
′ +

βmHm

ε
qĉ′
)

+

∫
Γ

(ξ · ν) (µ∂νv · ∂νû) . (3.2.33)

Proof :

Multiplying Stokes equation by v, the divergence equation by q and integrating by

parts lead to ∫
Aζ

µ∇û · ∇v +

∫
G

µ

K
û · v −

∫
Aζ∪G

(p̂∇ · v −∇q · û)

=

∫
∂Aζ

µv · ∂νAû−
∫
∂Aζ

(p̂v − qû) · νA −
∫
∂G

(p̂v − qû) · νG

=

∫
∂Aζ

µv · ∂νAû−
∫
∂(Aζ∪G)\Σ

(p̂v − qû) · ν. (3.2.34)

Here we used [v2] = [p̂] = [û2] = [q] = 0 on Σ. From (3.2.32), v1 = û1 = 0 on Σ.

Hence, ∂1û1 = 0 on Σ. Then, using the divergence free condition on û yields

v · ∂νAû = v2∂2u2 = −v2∂1u1 = 0 on Σ. (3.2.35)

Using (3.2.32) and (3.2.35), (3.2.34) is written as∫
Aζ

µ∇û · ∇v +

∫
G

µ

K
û · v −

∫
Aζ∪G

(p̂∇ · v −∇q · û)

= −
∫

Γi,ζ

µv2∂1û2 +

∫
Γζ

µv · ∂νû +

∫
Γo,ζ

µv2∂1û2 +

∫
Γi,ζ

(piv1 − qû1)

−
∫

Γζ

(p̂v − qû) · ν −
∫

Γo,ζ

(pov1 − qû1)−
∫
M

(
p̂v2 +

βmHm

ε
qĉ

)
,(3.2.36)

as û = 0 on Γζ and û2 = −βmHm
ε

ĉ on M .
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Before taking the shape derivative of the above equation, note that(∫
Aζ∪G

(p̂∇ · v −∇q · û)

)′
=

∫
A∪G

(p̂′∇ · v −∇q · û′) +

∫
Γi∪Γ∪Γo

(ξ · ν) (p̂∇ · v −∇q · û)

= −
∫
A∪G
∇q · û′, (3.2.37)

where the last equality follows from ∇ · v = 0 on A ∪G, ξ · ν = 0 on Γi ∪ Γo ∪Σ and

û = 0 on Γ.

Also, the shape derivative of the boundary integral over Γ(∫
Γζ

(p̂v − qû) · ν

)′
= 0. (3.2.38)

To see this, note that(∫
Γζ

(p̂v − qû) · ν

)′
=

∫
Γ

{
v · (p̂ν)′ − q (û · ν)′ + divΓ[ξ (p̂v − qû) · ν]

}
+

∫
Γ

(ξ · ν) ∂ν [(p̂v − qû) · ν], (3.2.39)

where v · (p̂ν)′ = 0 and divΓ[ξ (p̂v − qû) · ν] = 0 on Γ as û = v = 0 on Γ. Since

also û = 0 on Γζ , it follows from Lemma 3.1.9 that û′ = − (ξ · ν) ∂νû on Γ. These

simplify (3.2.39) to(∫
Γζ

(p̂v − qû) · ν

)′
=

∫
Γ

(ξ · ν) ν · [q∂νû + p̂∂νv − q∂νû]

=

∫
Γ

(ξ · ν) p̂∇ · v

= 0, (3.2.40)

as ν · ∂νv = τ · ∂τv + ν · ∂νv = ∇ · v = 0 on Γ.
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Similarly,(∫
Γζ

µv · ∂νû

)′
=

∫
Γ

[µv · (∂νû)′ + divΓ (ξµv · ∂νû) + (ξ · ν)µ∂νv · ∂νû]

=

∫
Γ

(ξ · ν)µ∂νv · ∂νû. (3.2.41)

Using (3.2.37), (3.2.40), (3.2.41) and taking the shape derivative of (3.2.36) gives∫
A

µ∇v · ∇û′ +

∫
∂A

(ξ · νA) (µ∇v · ∇û) +

∫
G

µ

K
v · û′ +

∫
A∪G
∇q · û′

= −
∫

Γi

µv2∂1u
′
2 −

∫
∂Γi

(ν∂Γi · ξ) (µv2∂1u2)

+

∫
Γ

(ξ · ν)µ∂νv · ∂νû

+

∫
Γo

µv2∂1u
′
2 +

∫
∂Γo

(ν∂Γo · ξ) (µv2∂1u2)

+

∫
Γi

(p′iv1 − qû′1) +

∫
∂Γi

(ν∂Γi · ξ) (piv1 − qû1)

−
∫

Γo

(p′ov1 − qû′1)−
∫
∂Γo

(ν∂Γo · ξ) (pov1 − qû1)

−
∫
M

(
v2p̂
′ +

βmHm

ε
qĉ′
)
. (3.2.42)

Since ξ · νA = 0 on ∂A\Γ, v2 = 0 on Γi ∪ Γo, v = 0 on Γ and p′o = ξ2∂2po = 0 on Γo

(as po is constant on Γo), equation (3.2.42) reduces to∫
A

µ∇v · ∇û′ +

∫
G

µ

K
v · û′ +

∫
A∪G
∇q · û′

= p′i

∫
Γi

v1 −
∫

Γi

qû′1 +

∫
Γo

qû′1

−
∫
M

(
v2p̂
′ +

βmHm

ε
qĉ′
)
. (3.2.43)

The first term of the above equation is integrated by parts:∫
A

µ∇v · ∇û′ = −
∫
A

µ∆v · û′ +
∫
∂A

µ∂νv · û′. (3.2.44)
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Since û′ = − (ξ · ν) ∂νû on Γ, û′1 = 0 on Σ, û′2 = 0 on Γi ∪ Γo and ∇ · v = 0 in A, the

above equation is simplified to∫
A

µ∇v · ∇û′ = −
∫
A

µ∆v · û′ −
∫

Γ

(ξ · ν) (µ∂νv · ∂νû) . (3.2.45)

Substituting (3.2.45) in (3.2.43) leads to the result:∫
A

(−µ∆v +∇q) · û′ +
∫
G

( µ
K

v +∇q
)
· û′

= p′i

∫
Γi

v1 −
∫

Γi

qû′1 +

∫
Γo

qû′1

−
∫
M

(
v2p̂
′ +

βmHm

ε
qĉ′
)

+

∫
Γ

(ξ · ν) (µ∂νv · ∂νû) . (3.2.46)

The following lemmas introduces an adjoint system with appropriate boundary

conditions for the computation of the shape gradient of E.

Lemma 3.2.10 Consider the following adjoint system

−∇ ·
(
εDeff∇ϕ+ εϕû

)
= 0 Ω

(−µ∆v +∇q + ϕ∇ĉ)χ(A) +
( µ
K

v +∇q + εϕ∇ĉ
)
χ(G) = 0 A ∪G,

∇ · v = 0 A ∪G.(3.2.47)

Then the shape derivatives (ĉ′, û′, p̂′) satisfy the following identity:

0 =

∫
M

[
−εDeff∂2ϕ+Hm (3βmĉ+ 1)ϕ− βmHm

ε
q

]
ĉ′ −

∫
Γo

(
Deff∂νϕ+ ϕû · ν

)
ĉ′

−
∫

Γ∪Γw

ε
(
Deff∂νϕ

)
ĉ′ −

∫
Γ

ξ2ν2

(
Deff∇ĉ · ∇ϕ

)
+ p′i

∫
Γi

v1 −
∫

Γi

qû′1

+

∫
Γo

qû′1 −
∫
M

v2p̂
′ +

∫
Γ

(ξ · ν) (µ∂νv · ∂νû) . (3.2.48)
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Proof :

The adjoint system is motivated from Lemma 3.2.8 and Lemma 3.2.9: summing up

the equations (3.2.23) and (3.2.33), and equating the left side to zero, one obtains

(3.2.48).

The boundary conditions of the adjoint system are chosen so that the shape

gradient of E is easily computed.

Lemma 3.2.11 Consider the following boundary conditions for the adjoint system.

For the variable ϕ, the boundary conditions are

ϕ = 0 on Γi

∂νϕ = 0 on Γ ∪ Γw

Deff∂1ϕ+ u1ϕ = 0 on Γo

−εDeff∂2ϕ+Hm (3βmĉ− 1)ϕ− βmHm

ε
q = −g on M, (3.2.49)

and for (v, q)

q − 1

|Γi|

∫
Γi

q =

∫
Γi

v1 + σ = 0 on Γi

q = 0 on Γo

v1 = 0 on Γ ∪ Σ ∪ Γw

v2 = 0 on Γi ∪ Γ ∪ Γo ∪M, (3.2.50)

where g is given by (3.2.22). Then the shape gradient E ′ is given by

E ′(0)ξ =

∫
Γ

(ξ · ν) (µ∂νv · ∂νû−D∇ĉ · ∇ϕ) . (3.2.51)

Proof :

Using Lemma 3.2.7 and 3.2.10, namely combining similar terms of the identity (3.2.48)
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to those of E ′ given in Lemma 3.2.7, leads to

E ′ =

∫
M

(
g − εDeff∂2ϕ+Hm (3βmĉ+ 1)ϕ− βmHm

ε
q

)
ĉ′ +

∫
Γo

(
−Deff∂1ϕ− ϕû1

)
ĉ′

+

(
σ +

∫
Γi

v1

)
p̂′i +

∫
Γ

(ξ · ν) (µ∂νv · ∂νû−D∇ϕ · ∇ĉ)

−
∫

Γ∪Γw

ε
(
Deff∂νϕ

)
ĉ′ −

∫
Γi

qû′1 +

∫
Γo

qû′1 −
∫
M

v2p̂
′ (3.2.52)

Note that since ∫
Γi

û1 = u (3.2.53)

and û1 = 0 on ∂Γi, it follows that ∫
Γi

û′1 = 0. (3.2.54)

Hence, the integral in (3.2.52), ∫
Γi

qû′1 = 0 (3.2.55)

when q is constant. Then, the boundary condition

q =
1

|Γi|

∫
Γi

q (3.2.56)

is suitable.

The other boundary integrals involving the shape derivatives ĉ′, û′, and p̂′ are

expensive to compute since they depend on the direction ξ. To overcome this problem,

the coefficients of these derivatives are set to be zero:

M : g − εDeff∂2ϕ+Hm (3βmĉ+ 1)ϕ− βmHm
ε

q = v2 = 0,

Γo : −Deff∂1ϕ− ϕû1 = q = 0,

Γi : σ +
∫

Γi
v1 = 0,

Γ ∪ Γw : ∂νϕ = 0.
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The remaining boundary conditions were already considered in lemma (3.2.8) and

lemma (3.2.9). Then the shape gradient of E at ζ = 0 in the direction ξ is given by:

E ′(0)ξ =

∫
Γ

(ξ · ν) (µ∂νv · ∂νû−D∇ĉ · ∇ϕ) . (3.2.57)
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3.3 Existence of the shape derivative of the state

variables

The goal of this section is to analyze the existence of the shape derivative of the state

variables: c(ζ), u(ζ) and p(ζ), which are defined on Ω(ζ) := (I + ζ)(Ω). Denote by

W (ζ) := (c(ζ),u(ζ), p(ζ)) . (3.3.1)

The state variables, given by W (ζ), satisfy state equations, written as

F (ζ,W (ζ)) = 0. (3.3.2)

Assuming that W (ζ) is regular, then the shape derivative of W (ζ) at ζ = 0 in the

direction ξ is given by

∂W (ζ)

∂ζ
(0)ξ =

∂W (ζ) ◦ (I + ζ)

∂ζ
(0)ξ − ξ · ∇W (0). (3.3.3)

Hence, the above equation (3.3.3) implies that the existence of the shape derivative

∂W (ζ)
∂ζ

(0)ξ reduces to the existence of the shape derivative ∂W (ζ)◦(I+ζ)
∂ζ

(0)ξ and the

regularity of ∇W (0).

The goal of this section is to prove the existence of the shape derivative ∂W (ζ)◦(I+ζ)
∂ζ

(0)ξ.

This is going to be achieved using the Implicit Mapping Theorem and Fixed Point

Theorem. For this, the state equations represented by equation (3.3.2) is reformulated

as

G(ζ,W (ζ) ◦ (I + ζ)) = 0, (3.3.4)

where W (ζ ◦ (I + ζ) is defined on the fixed domain Ω. To prove the differentiability

of W (ζ) ◦ (I + ζ), the Implicit Mapping Theorem is implemented on G; namely the

following requirements are verified:

1. G is Fréchet differentiable near ζ = 0,
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2. G(ζ,W (ζ) ◦ (I + ζ)) = 0 near ζ = 0,

3. V 7−→ ∂
∂W

G(0,W (0))[V ] is an isomorphism.

When the above requirements are met, then the Implicit Mapping Theorem gives the

existence and uniqueness of a Fréchet differentiable map f satisfying

G(ζ, f(ζ)) = 0, (3.3.5)

where ζ is in a neighborhood of ζ = 0. The uniqueness of such f and the second

requirement imply that

f(ζ) = W (ζ) ◦ (I + ζ), (3.3.6)

and hence the shape differentiability of W (ζ) ◦ (I + ζ). The second and the third

requirements will be shown using a Fixed Point Theorem.

This section will be divided into subsections as follows. The first subsection introduces

the main results needed to write weak formulations of the steady state and adjoint

problems (see Section 3.2), and the results needed to implement the Fixed Point

Theorem. The second subsection defines a weak formulation for the steady state

problem. The third subsection investigates the differentiability of the steady state

variables and the shape differentiability of the cost functional E, given in (2.2.4).

3.3.1 Preliminaries

Lemma 3.3.1 ([34], page 32) Let A be a bounded open set of Rn with a Lipschitz

continuous boundary ∂A. Define

L2(A)/R :=

{
h ∈ L2(A) :

∫
A

h = 0

}
. (3.3.7)

Then the gradient operator,

grad : L2(A) −→ H−1(A), (3.3.8)
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is an isomorphism from L2(A)/R onto its range, Range(grad). Also, by transposition,

its adjoint grad∗ = −div,

−div : H1
0(A) −→ L2(A), (3.3.9)

is an isomorphism from the subspace orthogonal to Range(grad) onto L2(A)/R.

Remark 3.3.2 From the above lemma 3.3.1, it follows that for every h ∈ L2(A)/R,

there exits z(h) := div−1(h) ∈ H1
0(A) such that

∇ · z(h) = h,

C1‖h‖L2(A)/R ≤ ‖z(h)‖H1
0(A) ≤ C2‖h‖L2(A)/R, (3.3.10)

where C1, C2 are constants independent of h.

Definition 3.3.3 Let D be the subspace orthogonal to Range(grad), given in lemma

3.3.1. We define div0 by

div0 := −grad∗ : D ⊂ H1
0(A) −→ L2(A)/R. (3.3.11)

Hence, div0 is an isomorphism.

Theorem 3.3.4 (Trace Theorem, [24], page 10) Let A be a bounded open set of

Rn with Lipschitz continuous boundary ∂A, and let s > 1/2.

1. There exists a unique linear continuous map γ, called the trace operator,

γ : Hs(A) −→ Hs−1/2(∂A), (3.3.12)

such that

γ(v) := v|∂A, ∀ v ∈ Hs(A) ∩ C0(A). (3.3.13)
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2. There exists a linear continuous map γl, called the lifting operator,

γl : Hs−1/2(∂A) −→ Hs(A), (3.3.14)

such that

γ(γl(ϕ)) = ϕ, ∀ ϕ ∈ Hs−1/2(∂A). (3.3.15)

Remark 3.3.5 Theorem 3.3.4 implies that for every given Φ ∈ H1/2(∂A), there

exists z(Φ) := γl(Φ) ∈ H1(A), such that

γ(z(Φ)) = Φ,

C1‖Φ‖H1/2(∂A) ≤ ‖z(Φ)‖H1(A) ≤ C2‖Φ‖H1/2(∂A), (3.3.16)

for some constants C1, C2 independent from Φ.

The following definition and theorem, [34], will be used to prove Proposition

3.4.4. Let (·, ·) denote the L2 inner product.

Definition 3.3.6 ([34], page 5) Let H(div; Ω) be the following linear space

H(div; Ω) =
{
u ∈ L2(Ω) : div u ∈ L2(Ω)

}
. (3.3.17)

Then H(div; Ω) is a Hilbert space when equipped with the scalar product

(u,v)H(div;Ω) = (u,v) + (div u, div v), (3.3.18)

and the associated norm on H(div; Ω) is defined as

‖u‖H(div,Ω) = (u,u)
1/2
H(div;Ω). (3.3.19)

Theorem 3.3.7 ([34], page 9) Let Ω be an open set of class C2. Then there exists

a linear continuous operator γν ∈ L(H(div; Ω), H−1/2(∂Ω)) such that

γν(u) := u · ν|∂Ω, ∀u ∈ D(Ω). (3.3.20)



3. Mathematical Analysis 49

The following generalized Stokes formula is true for all u ∈ H(div; Ω) and w ∈ H1(Ω)

< γνu, γ0w >H−1/2(Ω)×H1/2(Ω) = (u, grad w) + (div u, w). (3.3.21)

The above theorem is still valid for domain Ω with Lipschitz boundary, see [34, page

13]. In the above theorem, γ0 denotes the usual trace operator.

Definition 3.3.8 ([8], page 5) Let Ω be a Lipschitz domain with boundary ∂Ω and

Γ ⊂ ∂Ω. Then, the restriction γνu|Γ of γνu to Γ is defined as follows:

< γν,Γu, γ0ϕ >H−1/2(Γ)×H1/2(Γ):=< γνu, γ0ϕ >H−1/2(∂Ω)×H1/2(∂Ω), (3.3.22)

for all ϕ ∈ H1(Ω) with ϕ|∂Ω/Γ := γ0ϕ|∂Ω/Γ = 0.

Remark 3.3.9 The above definition uses the generalized Stokes formula (3.3.21) to

”recover” γνu on Γ through functions ϕ ∈ H1(Ω) with ϕ = 0 on ∂Ω/Γ.

Lemma 3.3.10 Let Φ ∈ H1/2(∂A) and h ∈ L2(A) be such that∫
∂A

Φ · ν =

∫
A

h. (3.3.23)

Then there exists z(Φ, h) given by

z(Φ, h) := γl(Φ)− div−1
0 (∇ · γl(Φ)− h), (3.3.24)

where

∇ · z(Φ, h) = h, γ(z(Φ, h)) = Φ,

‖z(Φ, h)‖H1(A) ≤ C(‖Φ‖H1/2(∂A) + ‖h‖L2(A)), (3.3.25)

for some constant C.
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Proof : The result follows from Remark 3.3.2 and 3.3.5. Note that equation (3.3.23)

gives ∫
A

(∇ · γl(Φ)− h) =

∫
∂A

Φ · ν −
∫
A

h = 0. (3.3.26)

Hence ∇ · γl(Φ)− h ∈ L2(A)/R.

Lemma 3.3.11 Consider the domain G with boundaries M , Σ and Γw shown in

Figure 2.1. Let g|M ∈ H1/2(M), g|Σ ∈ H1/2(Σ) and g|Γw = 0. Then there exists

z(g) := ∇p, where p is uniquely determined by the solution of the following problem:

find p ∈ H2(G) ∩
{∫

G
p = 0

}
satisfying

−∆p = 0 in G,

∂νGp = g on ∂G. (3.3.27)

Hence, ∇ · z(g) = 0 in G. Moreover,

‖z(g)‖H1(G) ≤ C
(
‖g‖H1/2(M) + ‖g‖H1/2(Σ)

)
, (3.3.28)

for some constant C.

Proof:

Let

H :=

{
p ∈ H1(G),

∫
G

p = 0

}
. (3.3.29)

We first show that there exists a unique p ∈ H satisfying

−∆p = 0 in G, in the sense of distribution

∂νGp = g on ∂G. (3.3.30)

Note that for p ∈ H1(G) a solution of the first equation of (3.3.30), the boundary

condition ∂νGp = g is defined in H−1/2(∂G). Existence and uniqueness is derived from
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a variational formulation of (3.3.30). The variational formulation reads: find p ∈ H

such that ∫
G

∇p · ∇w = −
∫

Σ

gw +

∫
M

gw, ∀ w ∈ H. (3.3.31)

The Poincare-Friedrich’s inequality, [34],

‖p‖H ≤ C‖∇p‖L2(G), (3.3.32)

for some constant C, gives the coercivity of the continuous bilinear form a(., .) :

H ×H −→ R,

a(p, w) =

∫
G

∇p · ∇w. (3.3.33)

The continuity of the linear functional l(.) : H −→ R,

l(w) = −
∫

Σ

gw +

∫
M

gw, (3.3.34)

follows because g ∈ H−1/2(M) and g ∈ H−1/2(Σ). The existence and uniqueness of

p ∈ H follow from Lax-Milgram Lemma, [25].

Now to obtain more regularity of the solution p, we follow the approach used in [9] for

solutions of Neuman problems. Let G := [0, Lx] × [0, Ly], G̃ := G + ([−Lx, Lx], 0) =

[−Lx, 2Lx]× [0, Ly], and ∂G̃ = Σ̃ ∪ Γ̃w ∪ M̃ , where Σ̃ = [−Lx, 2Lx]× {0}, etc.

To show that p ∈ H2(G), p is first extended to a harmonic function p̃ in G̃ by even

reflection across Γw. This extension is possible due to the boundary condition ∂νp = 0

on Γw. Similarly, on M∪Σ the function g is extended to g̃ on M̃∪Σ̃ by even reflection.

Then p̃ ∈ H1(G̃) satisfies

−∆p̃ = 0 in G̃, in the sense of distribution

∂νG̃ p̃ = g̃ on ∂G̃. (3.3.35)

Now, let η ∈ D(R2) be such that η ≡ 1 in G, and supp{η} ∩ Γ̃w = ∅. Setting q = ηp̃,

it follows that

∆q = p̃∆η + 2∇p̃ · ∇η ∈ L2(G̃)
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∂νG̃q = ηg̃ + p̃∂νG̃η ∈ H
1/2(∂G̃). (3.3.36)

Hence from [9], q ∈ H2(G̃). Since also q|G = p, this shows that p ∈ H2(G). Moreover,

it follows from [17] that

‖∇p‖H1(G) ≤ C
(
‖g‖H1/2(∂G) + ‖∇p‖L2(G)

)
. (3.3.37)

On the other hand, substituting w = p in (3.3.31) gives

‖∇p‖2
L2(G) ≤ ‖g‖L2(Σ)‖p‖L2(Σ) + ‖g‖L2(M)‖p‖L2(M)

≤ C1‖g‖L2(M∪Σ)‖∇p‖L2(G), (3.3.38)

which follows from Theorem 3.3.4 and Poincare-Friedrich inequality (3.3.32). Hence,

‖∇p‖L2(G) ≤ C1‖g‖L2(M∪Σ). (3.3.39)

Now writing z(g) := ∇p and using the two estimates (3.3.37) and (3.3.39) together

with the embedding H1/2(.) ↪→ L2(.), this proves the required estimate (3.3.28):

‖z(g)‖H1(G) = ‖∇p‖H1(G)

≤ C
(
‖g‖H1/2(M) + ‖g‖H1/2(Σ)

)
, (3.3.40)

for some constant C.

Proposition 3.3.12 Let g ∈ H1/2(M), φ ∈ R, and h ∈ L2(A) be given. Then there

exists ẑ = ẑ(g, φ, h) ∈ H1(A ∪G), satisfying the following:

∇ · ẑ = h in A,

ẑ = ∇p in G,

∇ · ẑ = 0 in G,

(3.3.41)
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for some p ∈ H2(G), and

ẑ · νG = −g on M,

ẑ · νG = 0 on Γw,

ẑ · τ = 0 on Σ ∪ Γi ∪ Γo,∫
Γi

ẑ · νA = −φ on Γi,

ẑ = 0 on Γ,

(3.3.42)

where τ denotes the unit tangential vector to ∂A∪ ∂G, and νA, νG respectively denote

the exterior unit normal vector to ∂A, ∂G. Moreover,

‖ẑ‖H1(A) + ‖ẑ‖L2(G) ≤ C(|φ|+ ‖h‖L2(A) + ‖g‖L2(M)),

‖ẑ‖H1(A) + ‖ẑ‖H1(G) ≤ C(|φ|+ ‖h‖L2(A) + ‖g‖H1/2(M)), (3.3.43)

for some constant C.

Proof : Since it is required that ∇ · ẑ = 0 in G, it follows that

0 =

∫
G

∇ · ẑ =

∫
∂G

ẑ · νG = −
∫
M

g +

∫
Σ

ẑ · νG. (3.3.44)

Then, ∫
Σ

ẑ · νG =

∫
M

g. (3.3.45)

Since also ∇ · ẑ = h in A, the boundary conditions (3.3.42) give∫
A

h =

∫
A

∇ · ẑ =

∫
∂A

ẑ · νA = −φ−
∫
M

g +

∫
Γo

ẑ · νA, (3.3.46)

which results in ∫
Γo

ẑ · νA = φ+

∫
M

g +

∫
A

h. (3.3.47)

Equations (3.3.45), (3.3.47) help to prescribe suitable boundary conditions for ẑ·νA on

Γi∪Σ∪Γo. For this, choose ϕ ∈ D(R2), ϕ|Γi ∈ D(Γi), ϕ|Σ ∈ D(Σ), and ϕ|Γo ∈ D(Γo)

such that ∫
Γi

ϕ =

∫
Σ

ϕ =

∫
Γo

ϕ = 1. (3.3.48)
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Then the following boundary conditions can be written:

ẑ · νG = ϕ
∫
M
g on Σ,

ẑ · νA = −φϕ on Γi,

ẑ · νA =
(
φ+

∫
M
g +

∫
A
h
)
ϕ on Γo.

(3.3.49)

Let

ΦA := ẑ|∂A,

ΦG := ẑ · νG|∂G, (3.3.50)

where ẑ is substituted from the boundary conditions (3.3.42) and (3.3.49). Then

according to Lemma 3.3.10 and 3.3.11, there exists an extension ẑ ∈ H1(A∪G) given

by

ẑ :=

 γl(ΦA)− div−1
0 (∇ · γl(ΦA)− h) in A,

∇p(ΦG) in G,
(3.3.51)

where p = p(ΦG) ∈ H2(G) satisfies, as in Lemma 3.3.11:

−∆p = 0 in G

∂νGp = ΦG on ∂G.
(3.3.52)

Also using Lemma 3.3.10, 3.3.11 and inequality (3.3.39), it follows that

‖ẑ‖H1(A) ≤ C
(
‖ΦA‖H1/2(∂A) + ‖h‖L2(A)

)
,

‖ẑ‖L2(G) ≤ C‖ΦG‖L2(Σ∪M), and ‖ẑ‖H1(G) ≤ C‖ΦG‖H1/2(Σ∪M). (3.3.53)

The above estimates in (3.3.53), the boundary conditions (3.3.49) and basic properties

of Sobolev spaces result in the required estimates (3.3.43):

‖ẑ‖H1(A) + ‖ẑ‖L2(G) ≤ C(|φ|+ ‖h‖L2(A) + ‖g‖L2(M)),

‖ẑ‖H1(A) + ‖ẑ‖H1(G) ≤ C(|φ|+ ‖h‖L2(A) + ‖g‖H1/2(M)). (3.3.54)
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Remark 3.3.13 Let us consider the extension ẑ defined in (3.3.51), and take h = 0.

Then ẑ = ẑ(ΦA,ΦG) is bilinear, which follows from the linearity of γl, div
−1
0 , div, and

p = p(ΦG) being a linear function of ΦG.

The following remark is going to be used in the subsections 3.3.2 and 3.3.3.

Remark 3.3.14 1. Let βm, Hm, φ and ε be given positive constants. Consider

ĉ ∈ H1/2(M), and set

û2(ĉ) = −βmHmĉ

ε
on M. (3.3.55)

Using Proposition 3.3.12 with g = û2(ĉ) and h = 0, then we obtain the extension

ẑ = ẑ(ĉ) as in (3.3.51),

ẑ(ĉ) :=

 γl(ΦA(ĉ))− div−1
0 (∇ · γl(ΦA(ĉ)) in A,

∇p(ΦG(ĉ)) in G,
(3.3.56)

where

ΦA(ĉ) =



(φϕ, 0) on Γi

(0, 0) on Γ

((φ+
∫
M
û2(ĉ))ϕ, 0) on Γo

(0,−ϕ
∫
M
û2(ĉ)) on Σ

(3.3.57)

and

ΦG(ĉ) =


−ϕ

∫
M
û2(ĉ) on Σ

0 on Γw

−û2(ĉ) on M

(3.3.58)

Also, the following estimates hold

‖ẑ(ĉ)‖H1(A) + ‖ẑ(ĉ)‖L1(G) ≤ C
(
|φ|+ ‖ĉ‖L2(M)

)
,

‖ẑ(ĉ)‖H1(A) + ‖ẑ(ĉ)‖H1(G) ≤ C
(
|φ|+ ‖ĉ‖H1/2(M)

)
, (3.3.59)

where C is a constant independent of ĉ.
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2. The mapping (ĉ, φ) 7−→ ẑ(ĉ, φ) is continuous from H1/2(M)×R into H1(A∪G).

Note that from (3.3.57) and (3.3.58), ΦA(ĉ) and ΦG(ĉ) are linear functions of

ĉ and φ. This and Remark 3.3.13 implies that ẑ(ĉ, φ) is a linear function of ĉ

and φ. Hence, the second estimate of (3.3.59) results in the continuity of the

mapping

H1/2(M)× R −→ H1(A ∪G)

(ĉ, φ) 7−→ ẑ(ĉ, φ) (3.3.60)

3. The mapping ĉ 7−→ ẑ(ĉ) is C1 from H1/2(M) into H1(A ∪G).

This follows from the fact that this mapping is continuous and affine. Taking

the derivative of ẑ(ĉ) at ĉ0 ∈ H1/2(M) in the direction c ∈ H1/2(M) yields

ẑ′(ĉ0)c = =

 γl(Φ
′
A(ĉ0)[c])− div−1

0 (∇ · γl(Φ′A(ĉ0)[c]) in A,

∇p(Φ′G(ĉ0)[c]) in G,
(3.3.61)

where

Φ′A(ĉ0)[c] =



(0, 0) on Γi

(0, 0) on Γ

(ϕ
∫
M
û2(c), 0) on Γo

(0,−ϕ
∫
M
û2(c)) on Σ

(3.3.62)

and

Φ′G(ĉ0)[c] =


−ϕ

∫
M
û2(c) on Σ

0 on Γw

−û2(c) on M

(3.3.63)

This shows that ẑ′(ĉ0)c ∈ H1(A ∪G), and the following estimates hold

‖ẑ′(ĉ0)c‖H1(A) + ‖ẑ′(ĉ0)c‖L2(G) ≤ C‖c‖L2(M),

‖ẑ′(ĉ0)c‖H1(A) + ‖ẑ′(ĉ0)c‖H1(G) ≤ C‖c‖H1/2(M), (3.3.64)

where C is a constant independent from ĉ0 and c.



3. Mathematical Analysis 57

4. In subsections 3.3.2 and 3.3.3, the extension ẑ(ĉ) will be considered in Aζ ∪G,

where Aζ = (I + ζ)(A) is a varying domain as a result of varying the boundary

Γζ = (I + ζ)(Γ) with ζ near zero. To avoid the dependency on Γζ and for

differentiating ẑ(ĉ) with respect to ζ, ẑ(ĉ) is constructed independently from ζ

as follows. Let ε > 0 and Aε be an open rectangle such that for all ζ near zero

Aε := Σ× (0,−ε) ⊂ Aζ , Aε ∩ Γζ = ∅, Aζ ⊂ Aδ, (3.3.65)

for some positive δ. Next, the extension ẑ(ĉ) is obtained in Aε∪G using Propo-

sition 3.3.12. Then, ẑ(ĉ) is extended by zero in the set A
c

ε ∩ Aδ.

In order to write the variational formulation of the steady state problem, (2.1.59)-

(2.1.69), appropriate spaces are defined by considering the boundary conditions (2.1.59).

For the oxygen mass fraction ĉ, consider the following spaces

Ĉζ = {ĉ ∈ C∞(Ωζ) : ĉ = cin on Γi,ζ} , Cζ = {c ∈ C∞(Ωζ), c = 0 on Γi,ζ} ,
(3.3.66)

and their closure in H1(Ωζ):

Ĉζ = Ĉζ , Cζ = Cζ , (3.3.67)

For the velocity variable û,

Ûζ =
{
û = (û1, û2) ∈ C∞(Ωζ)

2, û1|Γζ∪Σ∪Γw = 0, û2|Γi,ζ∪Γζ∪Γo,ζ = 0,

[û2]Σ = 0,∇ · û = 0, û = ∇p̂ in G, for some p̂ ∈ C∞(Ωζ)} ,

Uζ =
{

u = (u1, u2) ∈ Ûζ : u2 = 0 on M
}
, (3.3.68)

and their closure for the norm ‖.‖H1(Aζ) + ‖.‖L2(G) in H1(Aζ)⊗ L2(G):

Ûζ = Û ζ , Uζ = U ζ . (3.3.69)



3. Mathematical Analysis 58

For the pressure variable p̂, we have

PAζ =
{
p = (p, pin) ∈ L2(Aζ)× R

}
, (3.3.70)

with the following inner product:

< p,q >PAζ×PAζ := < p, q >L2(Aζ)×L2(Aζ) +pinqin. (3.3.71)

Hence PAζ is a Hilbert space, and its norms is defined by means of the inner product:

‖p‖2
PAζ

= < p,p >PAζ×PAζ= ‖p‖
2
L2(A) + p2

in. (3.3.72)

When ζ = 0, the above spaces are written simply as U, C, PA, etc.

Lemma 3.3.15 Uζ is a closed Hilbert space. In fact, every u ∈ Uζ satisfies

1. ∇ · u = 0 in H−1(G), u = ∇p in L2(G) for some p ∈ H1(G).

2. u · ν ∈ H−1/2(∂G), u · ν = 0 on M ∪ Γw, and u2(., 0+) = limy→0+ u2(., y) ∈

H1/2(Σ).

3. u ∈ H1(G) and ‖u‖H1(G) ≤ C‖u‖H1(A), for some constant C independent from

u.

Proof :

1. Let {un} ⊂ Uζ , un → u ∈ Uζ . Then, ∇ · un = 0 in G, and ∀Φ ∈ H1
0 (G),

< ∇ · u,Φ >H−1(G)×H1
0 (G) = −

∫
G

u · ∇Φ = − lim
n→∞

∫
G

un · ∇Φ

= lim
n→∞

∫
G

(∇ · un) Φ = 0. (3.3.73)

Hence ∇ · u = 0 in H−1(G).

Also, for every un ∈ Uζ , un = ∇pn for some pn ∈ H1(G). Let w ∈ D(G)2 ∩

{∇ ·w = 0}. Then,∫
G

u ·w = lim
n→∞

∫
G

un ·w = lim
n→∞

∫
G

∇pn ·w
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= − lim
n→∞

∫
G

pn∇ ·w = 0. (3.3.74)

Hence, from [34] there exists p ∈ H1(G) such that u = ∇p in G.

2. For every u ∈ Uζ , u ∈ L2(G) ∩ {∇ · u = 0}. Then from [34], there exists

a continuous linear map (the normal component of the trace operator), γν :

Uζ → H−1/2(∂G) such that

γν(u) = u · ν, a.e on ∂G, ∀u ∈ Uζ . (3.3.75)

Since u · ν = 0 for every u ∈ Uζ , the continuity of γν gives γν (u) = u · ν = 0 on

Γw ∪M for every u ∈ Uζ .

To show that u2 ∈ H1/2(Σ), let un → u ∈ Uζ . Then from the continuity of the

trace, it follows that un2 (., 0+)→ u2(., 0+) in H−1/2(Σ), and un2 (., 0−)→ u2(., 0−)

inH1/2(Σ). Since un2 (., 0−) = un2 (., 0+) for all n, we obtain u2(., 0−) = u2(., 0+) in

H−1/2(Σ). But, since u2(., 0−) ∈ H1/2(Σ), it follows that u2(., 0+) = u2(., 0−) ∈

H1/2(Σ).

3. From items 1 and 2, every u ∈ Uζ satisfies

u = ∇p, ∇ · u = 0 in G,

∂νp = 0 on Γw ∪M,

∂νp = u2(., 0−) on Σ. (3.3.76)

Then from Lemma 3.3.11, it follows that u ∈ H1(G) and

‖u‖H1(G) ≤ C1‖u2‖H1/2(Σ) ≤ C‖u‖H1(Aζ) (3.3.77)
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Proposition 3.3.16 For every q = (q, qin) ∈ PA, there exists z(q) ∈ H1(A∪G) such

that

∇ · z(q) = −q in A,∫
Γi

z(q) · νA = −qin,

‖z(q)‖H1(A) + ‖z(q)‖H1(G) ≤ C
(
|qin|+ ‖q‖L2(A)

)
, (3.3.78)

where C is a constant independent from q.

Proof: Using Lemma 3.3.12, and taking g = 0 on M , h = −q in A, and φ = qin, it

follows from estimate (3.3.43) that

‖z(q)‖H1(A) + ‖z(q)‖H1(G) ≤ C
(
|qin|+ ‖q‖L2(A)

)
, (3.3.79)

where C is independent from q.

Definition 3.3.17 Define the bilinear mappings

α(., .) : U×U −→ R,

β(., .) : U× PA −→ R, (3.3.80)

given by

α(u,v) =

∫
A

µ∇u · ∇v +

∫
G

µ

K
u · v,

β(u,q) = −
∫
A

q∇ · u− qin
∫

Γi

u · νA. (3.3.81)

Lemma 3.3.18 The mapping β(., .), defined above, is continuous. Also, it satisfies

the compatibility condition: there exits a constant Cβ such that for every q ∈ PA,

there exists a nonzero z(q) ∈ U such that

β(z(q),q) ≥ Cβ‖z(q)‖U‖q‖PA . (3.3.82)
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Proof: The continuity of β results from

|β(u,q)| ≤ ‖∇ · u‖L2(A)‖q‖L2(A) + |qin|‖u · νA‖L1(Γi)

≤ C‖u‖H1(A)

(
‖q‖L2(A) + |qin|

)
≤
√

2C‖u‖U‖q‖PA , (3.3.83)

where the second inequality follows from the embeddings H1(A) ↪→ H1/2(Γi) ↪→

L1(Γi).

For the compatibility, Proposition 3.3.16 gives: for every q ∈ PA, there exists

z(q) ∈ U such that

∇ · z(q) = −q in A,∫
Γi

z(q) · νA = −qin,

‖z(q)‖U ≤ C‖q‖PA , (3.3.84)

where C is independent from q. Hence, there exists a constant Cβ := 1
C

for every

q ∈ PA such that

β(z(q),q) =

∫
A

q2 + q2
in = ‖q‖2

PA

≥ Cβ‖z(q)‖U‖q‖PA . (3.3.85)

The following lemma, [24], is going to be used to prove the existence and unique-

ness of the solution for Stokes problem.

Lemma 3.3.19 ([24], page 249) Let X and Y be Banach spaces, and

a(., .) : X×X −→ R,

b(., .) : X× Y −→ R. (3.3.86)
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be bilinear mappings. Consider the following problem: find (u, p) ∈ X× Y such that

a(u,v) + b(v, p) = < f,v >X∗×X ∀ v ∈ X,

b(u, q) = < g, q >Y ∗×Y ∀ q ∈ Y. (3.3.87)

Suppose also that there exist γ, δ, ω, and β∗ positive constants such that

1. |a(u,u)| ≥ ω‖u‖2
X, for all u ∈ X0 := X ∩ {u|b(u, q) = 0,∀q ∈ Y };

2. |a(u,v)| ≤ γ‖u‖X‖v‖X, for all u,v ∈ X;

3. |b(v, q)| ≤ δ‖v‖X‖q‖Y , for all v ∈ X, q ∈ Y ;

4. for every q ∈ Y there exists v 6= 0:

b(v, q) ≥ β∗‖v‖X‖q‖Y . (3.3.88)

Then for every f ∈ X∗ and g ∈ Y ∗, there exists a unique solution (u, p) ∈ X × Y

satisfying (3.3.87), and the map

(f, g) 7−→ (u, p) (3.3.89)

is an isomorphism from X∗ × Y ∗ onto X× Y . Also,

‖u‖X ≤ 1

ω

(
‖f‖X∗ +

ω + γ

β∗
‖g‖Y ∗

)
,

‖q‖Y ≤ 1

β∗

[(
1 +

γ

ω

)
‖f‖X∗ +

γ(ω + γ)

ωβ∗
‖g‖Y ∗

]
. (3.3.90)

Lemma 3.3.20 Let f ∈ U∗ and g ∈ P ∗A, and α(., .) and β(., .) be defined as in

Definition 3.3.17. Then the following problem has a unique solution: find (u,p) ∈

U× PA such that

α(u,v) + β(v,p) = < f,v >U∗×U, ∀v ∈ U,
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β(u,q) = < g,q >P ∗A×PA , ∀q ∈ PA, (3.3.91)

with

‖u‖U ≤ C1

(
‖f‖U∗ + ‖g‖P ∗A

)
,

‖p‖PA ≤ C2

(
‖f‖U∗ + ‖g‖P ∗A

)
, (3.3.92)

where C1 and C2 are constants independent from u, p, f and g. Moreover,

‖u‖H1(A) + ‖u‖H1(G) ≤ C
(
‖f‖U∗ + ‖g‖P ∗A

)
. (3.3.93)

Proof: The bilinear mapping α(., .) defines an inner-product on Uζ , and hence it is

a continuous, coercive bilinear form. Since also the mapping β(., .) is continuous and

satisfies the compatibility condition, the existence and uniqueness of the solution for

this problem as well as the first two estimates (3.3.92) follow from Lemma 3.3.19.

The third estimate (3.3.93) is a result of Lemma 3.3.15, as for every u ∈ U,

‖u‖H1(G) ≤ C‖u‖H1(A). (3.3.94)

Lemma 3.3.21 Let û ∈ Lp(Ω) for some p > 2. Then the following problem: find

c ∈ C such that∫
Ω

ε
(
Deff∇c · ∇ϕ+ ϕû · ∇c

)
+

∫
M

Hmcϕ = −
∫
M

Hmcinϕ, ∀ϕ ∈ C,(3.3.95)

has a unique solution c ∈ C ∩W 1,p(Ω), for some p > 2 satisfying 1
p

+ 1
p
≤ 1

2
. Also,

‖∇c‖L2(Ω) ≤ cinC1

(
1 + ‖û‖L2(Ω)

)
, (3.3.96)

‖∇c‖Lp(Ω) ≤ C2‖û‖Lp(Ω)‖∇c‖L2(Ω), (3.3.97)

for some constants C1 and C2.
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Proof : See [6] and [21].

3.3.2 Variational Formulation of the Steady State Problem

The goal of this subsection is to write a weak formulation of the steady state equations

(2.1.69) coupled with the boundary conditions (2.1.59). This will be used to obtain

the existence and uniqueness of the solution for the steady state problem. Let ϕ ∈ Cζ .

Then from (2.1.69) and (2.1.59), it follows that the oxygen mass fraction ĉ satisfies

0 =

∫
Ωζ

ε
(
Deff∇ĉ · ∇ϕ+ ϕû · ∇ĉ

)
−
∫
∂Ωζ

Dϕ∂ν ĉ

=

∫
Ωζ

ε
(
Deff∇ĉ · ∇ϕ+ ϕû · ∇ĉ

)
+

∫
M

hM(ĉ)ϕ, (3.3.98)

where

hM(ĉ) = Hmĉ (1 + βmĉ) ≈ Hmĉ on M, (3.3.99)

since ĉ << 1 on M and βm < 1. Writing ĉ = c+ ci, c ∈ Cζ , then (3.3.98) reduces to∫
Ωζ

ε
(
Deff∇c · ∇ϕ+ ϕû · ∇c

)
+

∫
M

Hmĉϕ = 0, ∀ϕ ∈ Cζ . (3.3.100)

The following boundary conditions:

p̂ = pout on Γo,ζ , û2 = −βmHmĉ

ε
on M,

∫
Γi,ζ

û1 = φ, (3.3.101)

will be treated as follows. The pressure variable is written as p̂ = p + pout. Then,

p = 0 on Γo,ζ . The velocity is written as û = u+ ẑ(ĉ), where ẑ(ĉ) ∈ H1(Aζ ∪G) is the

extension defined in Lemma 3.3.12 and Remark 3.3.14, with g = ẑ2 = −βmHmĉ
ε

on M,

h = 0 in A and using the same φ given in (3.3.101). With this setting, it implies

that u ∈ Uζ , and u2 = 0 on M , and
∫

Γi
u1 = 0. The extension ẑ(ĉ) is constructed

independently from ζ, see item 4 in Remark 3.3.14.



3. Mathematical Analysis 65

Now multiplying Stokes and Darcy equations in (2.1.69) by a test function v ∈

Uζ , and using the divergence theorem gives

0 =

∫
Aζ

(−µ∆û +∇p̂) · v +

∫
G

( µ
K

û +∇p̂
)
· v

=

∫
Aζ

[µ∇ (u + ẑ(ĉ)) · ∇v − p∇ · v] +

∫
G

µ

K
(u + ẑ(ĉ)) · v

+

∫
∂Aζ

−µv · ∂ν (u + ẑ(ĉ)) +

∫
∂Aζ∪∂G

pv · ν, ∀v ∈ Uζ . (3.3.102)

Using the boundary conditions (2.1.59), (3.3.102) simplifies to∫
Aζ

µ∇u · ∇v +

∫
G

µ

K
u · v −

∫
Aζ

p∇ · v − pin
∫

Γi,ζ

v1 = l(ẑ(ĉ))(v),(3.3.103)

for all v ∈ Uζ , where l : H1(Aζ)⊗ L2(G) −→ U∗ζ is given by

l(ẑ(ĉ))(v) = −
∫
Aζ

µ∇ẑ(ĉ) · ∇v −
∫
G

µ

K
ẑ(ĉ) · v. (3.3.104)

To enforce the conditions ∇·u = 0 in Aζ and
∫

Γi,ζ
u1 = 0, the velocity u must satisfy

−
∫
Aζ

q∇ · u− qin
∫

Γi,ζ

u1 = 0, ∀ q = (q, qin) ∈ PAζ . (3.3.105)

Using equations (3.3.100), (3.3.103)-(3.3.105) and the mappings α(., .) and β(., .) given

in Definition 3.3.17, then the variational formulation of the state problem reads:

Find (c,u, p) ∈ Cζ ×Uζ × PA satisfying∫
Ωζ

ε
(
Deff∇c · ∇ϕ+ ϕû · ∇c

)
+

∫
M

Hmĉϕ = 0, ∀ϕ ∈ Cζ ,

α(u,v) + β(v,p) = l(ẑ(ĉ))(v), ∀ v ∈ Uζ ,

β(u,q) = 0, ∀ q ∈ PAζ . (3.3.106)

The existence and uniqueness of the above problem is proved using a fixed point

technique. The proof follows from Proposition 3.3.20 and Lemma 3.3.21 beside the

work done by [21]. The proof is similar to the work presented in sections 3.3 and 3.4,

so it will not be repeated.
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3.3.3 Shape differentiability of the state variables

The goal of this section is to investigate the shape differentiability of the state vari-

ables. For this, the weak formulation (3.3.106) is first written in fixed domains: A,

G and Ω, which results by taking ζ = 0. Let us use the following notations:

cζ = c(ζ) ◦ (I + ζ),

uζ = (uζ,1, uζ,2) = u(ζ) ◦ (I + ζ),

pζ = p(ζ) ◦ (I + ζ),

pζ = (pζ , pin). (3.3.107)

Then cζ , uζ , and pζ are defined in fixed domains A, G and Ω independent of ζ.

To prove the shape differentiability of cζ ,uζ and pζ , the following implicit mapping

theorem is implemented.

Theorem 3.3.22 ([20], page 352) Let X, Y , Z be Banach spaces. Let the mapping

K : X × Y −→ Z (3.3.108)

be Fréchet differentiable. If (x0, y0) ∈ X × Y satisfies

1. K(x0, y0) = 0

2. y −→ ∂yK(x0, y0) is a Banach space isomorphism from Y onto Z,

then there exist neighborhoods Ux0 of x0, Vy0 of y0, and a Fréchet differentiable func-

tion

f : Ux0 −→ Vy0 (3.3.109)

such that K(x, f(x)) = 0, and

K(x, y) = 0 iff y = f(x), ∀(x, y) ∈ Ux0 × Vy0 . (3.3.110)
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Now to write the weak formulation (3.3.106) in fixed domains, independent of ζ, some

shape calculus results from section 3.1 are used.

For xζ ∈ Ωζ = (I + ζ)(Ω), then

xζ = (I + ζ)(x),

dxζ = Jac(I + ζ)dx,(
∇xζu

)
(xζ) = M(ζ)∇x (u ◦ (I + ζ)) (x), (3.3.111)

where M(ζ) = [∇x (I + ζ)]−T , and T denotes the transpose operator. Hence,(
∇xζ · u(ζ)

)
(xζ) = Σ2

i,j=1Mi,j(ζ)∂j (uζ,i) (x). (3.3.112)

Then the variational problem (3.3.106) is written as:

Find (cζ ,uζ ,pζ) ∈ C×U× PA such that

0 =

∫
Ω

ε
(
DeffM(ζ)∇cζ ·M(ζ)∇ϕ+ ϕûζ ·M(ζ)∇cζ

)
Jac(I + ζ) +

∫
M

Hmĉζϕ, ∀ϕ ∈ C,

0 =

∫
A

(µM(ζ)∇uζ ·M(ζ)∇v) Jac(I + ζ) +

∫
G

µ

K
uζ · v

−
∫
A

(
pζΣ

2
i,j=1Mi,j(ζ)∂jvi

)
Jac(I + ζ)− pin

∫
Γi

v1|1 + ∂yζ2|

+

∫
A

(µM(ζ)∇û(ĉζ) ·M(ζ)∇v) Jac(I + ζ) +

∫
G

µ

K
û(cζ) · v, ∀v ∈ U,

0 = −
∫
A

(
qΣ2

i,j=1Mi,j(ζ)∂juζ,i
)
Jac(I + ζ)

−qin
∫

Γi

u1,ζ |1 + ∂yζ2|, ∀ q = (q, qin) ∈ PA. (3.3.113)

Now the shape differentiability of cζ ,uζ ,pζ at ζ = 0 is proved by using Theorem

3.3.22, in which we take

X = C2(R2;R2),

Y = C×U× PA,

Z = Y ∗ := C∗ ×U∗ × P ∗A. (3.3.114)
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Definition 3.3.23 Using (3.3.114) and setting y = (c,u,p) ∈ Y , ỹ = (ϕ,v,q) ∈ Y ,

the mapping F ,

F = (F1, F2, F3) : C2(R2;R2)× Y → Y ∗, (3.3.115)

is defined as

F1(ζ,y)(ỹ) =

∫
Ω

ε
(
DeffM(ζ)∇c ·M(ζ)∇ϕ+ ϕû ·M(ζ)∇c

)
Jac(I + ζ)

+

∫
M

Hmĉϕ, (3.3.116)

F2(ζ,y)(ỹ) =

∫
A

(µM(ζ)∇u ·M(ζ)∇v) Jac(I + ζ) +

∫
G

µ

K
u · v

−
∫
A

(
pΣ2

i,j=1Mi,j(ζ)∂jvi
)
Jac(I + ζ)− pin

∫
Γi

v1|1 + ∂yζ2|

+

∫
A

(µM(ζ)∇û(ĉ) ·M(ζ)∇v) Jac(I + ζ)

+

∫
G

µ

K
û(ĉ) · v, (3.3.117)

F3(ζ,y)(ỹ) = −
∫
A

(
qΣ2

i,j=1Mi,j(ζ)∂jui
)
Jac(I + ζ)

−qin
∫

Γi

u1|1 + ∂yζ2|. (3.3.118)

Now we verify the requirements of the Implicit Mapping Theorem 3.3.22.

Proposition 3.3.24 There exists yζ = (cζ ,uζ ,pζ) ∈ Y that satisfies

F (ζ,yζ) ỹ = 0, ∀ỹ ∈ Y, (3.3.119)

for ζ near zero.

Proof : This follows from existence and uniqueness of the solution for the weak for-

mulation (3.3.106) which results from Proposition 3.3.20 and Lemma 3.3.21 beside

the work done by [21].
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Proposition 3.3.25 The map F : C2(R2;R2)×Y −→ Y ∗, given in Definition 3.3.23,

is Fréchet differentiable at (0,y0), where y0 = (c0,u0,p0) is a solution of (3.3.119).

Proof : Let us first note that the integrands appearing in the definition of F are con-

tinuously differentiable. This is a consequence of the continuity and differentiability

of the mappings:

C2(R2;R2) −→ C1(R2)

ζ 7−→ Jac(I + ζ), (3.3.120)

C2(R2;R2) −→ (C1(R2,R2))2

ζ 7−→ M(ζ), (3.3.121)

H1/2(M) −→ H1(A ∪G)

ĉ 7−→ ẑ(ĉ), (3.3.122)

∇ : H1 −→ L2, (3.3.123)∫
: L1 −→ R (3.3.124)

Let dF(0,y0)[y] denote the derivative of F at (0,y0) in the direction y. Then

dF(0,y0) : Y −→ Y ∗ (3.3.125)

defines a continuous, linear map, given by:

dF(0,y0)[y]ỹ

=


∫

Ω
ε
{
Deff∇c · ∇ϕ+ [(u + ẑ′(c0)c) · ∇c0 + û0 · ∇c]ϕ

}
+
∫
M
Hmcϕ,

α(u,v) + β(v, p)− l(ẑ′(c0)c)v,

β(u, q).

(3.3.126)

Hence, F is Fréchet differentiable.

Now the second requirement of Theorem 3.3.22 is to show that the mapping dF(0,y0)

is an isomorphism from Y onto Y ∗, that is a continuous bijection. The continuity fol-

lows from Proposition 3.3.25, in particular from the expression (3.3.126) for dF(0,y0) .
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The bijectivity is proved by showing that the following problem has a unique solution:

Find y ∈ Y such that

dF(0,y0)[y]ỹ = (f(ϕ), g(v), h(q))T , (3.3.127)

where (f, g, h) ∈ Y ∗, and ỹ = (ϕ,v,q) ∈ Y . This problem can be treated through a

fixed point theorem. First, consider the following mappings.

Definition 3.3.26 For every ũ ∈ Lq(Ω), q > 2, let

Tc : Lq(Ω) −→ C,

ũ 7−→ c, (3.3.128)

where c is the solution of∫
Ω

ε
[
Deff∇c · ∇ϕ+ (ũ · ∇c0 + u0 · ∇c)ϕ

]
+

∫
M

Hmcϕ = f(ϕ), (3.3.129)

for every ϕ ∈ C.

This mapping is well-defined due to existence and uniqueness of c, which follows from

Lemma 3.3.21.

Definition 3.3.27 Let

Tũ : C −→ Lq(Ω), q > 2

c 7−→ ũ := u + ẑ′(ĉ0)c, (3.3.130)

where u is the solution of the following system:

α(u,v) + β(v,p) = g(v) + l(ẑ′(ĉ0)c)v,

β(u,q) = h(q) (3.3.131)

for every v ∈ U, q ∈ PA, and (g, h) ∈ U∗ × P ∗A.
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The mapping Tũ is well-defined from Lemma 3.3.20. Note that ũ ∈ Lq(Ω) since

ũ ∈ H1(A ∪G), and Lq(Ω) is continuously embedded in H1(A ∪G).

Definition 3.3.28 Let

T := Tũ ◦ Tc : Lq(Ω) −→ Lq(Ω). (3.3.132)

Note that when T has a fixed point ũ∗ ∈ Lq(Ω), then it follows that ũ∗ = T ũ∗, and

there exists c∗ ∈ C such that

c∗ = Tcũ∗,

ũ∗ = u∗ + ẑ′(ĉ0)c∗. (3.3.133)

Hence, when T has a fixed point, then (c∗,u∗,p∗) is a solution of (3.3.127).

Now, let us show that T indeed has a fixed point by checking the requirements

of the following definition and Fixed Point Theorem, [7].

Definition 3.3.29 A continuous mapping between two Banach spaces is called com-

pact if the images of bounded sets are precompact.

Theorem 3.3.30 ([7], page 222) Let T be a compact mapping of a Banach space

B into itself, and suppose there exists a constant N such that

‖x‖B < N (3.3.134)

for all x ∈ B and ε ∈ [0, 1] satisfying x = εTx. Then T has a fixed point.

Theorem 3.3.31 The mapping T = Tũ ◦ Tc is compact (that is, continuous and

compact), and there exists a constant N such that

‖ũ‖Lq(Ω) < N, (3.3.135)
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for all

ũ ∈ Lq(Ω) ∩ {ũ : ũ = εT ũ, ε ∈ [0, 1]} . (3.3.136)

In addition, T has a fixed point ũ ∈ Lq(Ω)∩H1(A∪G), and the fixed point is unique

when the parameter cin is sufficiently small.

Proof:

1. The mapping T := Tũ ◦ Tc is continuous. This results from Tũ and Tc being

continuous mappings. To prove this, let us first show that Tc is continuous. Let

{ũn} ⊂ Lq(Ω), ũn −→ ũ ∈ Lq(Ω), and set cn = Tcũn, c = Tcũ, δũn = ũn − ũ,

and δcn = cn − c. Now define L : C −→ C∗ by

< L(c), ϕ > =

∫
Ω

ε
(
Deff∇c · ∇ϕ+ ϕû0 · ∇c

)
ϕ+

∫
M

Hmcϕ.(3.3.137)

Then the mapping L is a continuous, invertible linear map, which follows from

Lemma 3.3.21. Moreover, L−1 : C∗ −→ C is a continuous linear map. Also,

from Definition 3.3.26, it follows that δcn and δũn satisfy∫
Ω

ε∇δcn ·
(
Deff∇ϕ+ ϕû0

)
+

∫
M

Hm ϕ δcn = −
∫

Ω

εϕ δũn · ∇c0

=: G(ϕ). (3.3.138)

Note that G ∈ C∗ as

|G(ϕ)| ≤ ‖ϕ‖Lq̄(Ω)‖∇c0‖L2(Ω)‖δũn‖Lq(Ω), (3.3.139)

where 1
q̄

+ 1
q

= 1
2
. Also, from Sobolev embeddings, we obtain ‖ϕ‖Lq̄(Ω) ≤ C‖ϕ‖C

for some constant C independent from ϕ. In turn,

‖G‖C∗ ≤ C‖∇c0‖L2(Ω)‖δũn‖Lq(Ω). (3.3.140)

Hence,

‖δcn‖C = ‖L−1G‖C ≤ ‖L−1‖‖G‖C∗
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≤ C‖L−1‖‖∇c0‖L2(Ω)‖δũn‖Lq(Ω)

−→ 0 as n→∞. (3.3.141)

This shows that Tc is a continuous mapping.

Now we show that Tũ is continuous. Let cn −→ c in C, and write ūn = Tũcn

and ū = Tũc. Then from the definition of Tũ, Definition 3.3.27, it follows that

δcn and δūn satisfy

α(δūn,v) + β(v, δpn) = l(ẑ′(ĉ0)δcn)v,

β(δūn,q) = 0. (3.3.142)

Using Lemma 3.3.20,

‖δūn‖H1(A) + ‖δūn‖H1(G) ≤ C‖l(ẑ′(ĉ0)δcn)‖U∗ . (3.3.143)

From Remark 3.3.14, it follows that ẑ′(ĉ0)δcn ∈ H1(A ∪G), and from estimate

(3.3.64) we deduce

‖l(ẑ′(ĉ0)δcn)‖U∗ ≤ C1‖ẑ′(ĉ0)δcn‖H1(A∪G)

≤ C2‖δcn‖H1/2(M)

≤ C3‖δcn‖C, (3.3.144)

where the last inequality is deduced from the Trace Theorem 3.3.4. Therefore,

the above equations give

‖δūn‖H1(A) + ‖δūn‖H1(G) ≤ C‖δcn‖C, (3.3.145)

where C is a constant independent form δūn and δcn. Since also H1(A ∪G) is

continuously embedded in Lq(Ω), q > 2, there exists a constant C1 such that

‖δūn‖Lq(Ω) ≤ C1

(
‖δūn‖H1(A) + ‖δūn‖H1(G)

)
≤ C2‖δcn‖C −→ 0 as n→∞. (3.3.146)
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This proves the continuity of Tũ. The continuity of Tũ and Tc result in the

continuity of T .

2. There exists N > 0 such that

‖ũ‖Lq(Ω) < N, (3.3.147)

for all

ũ ∈ Lq(Ω) ∩ {ũ : ũ = εT ũ, ε ∈ [0, 1]} . (3.3.148)

For this, let ũ ∈ Lq(Ω) be such that ũ = εT ũ. If ε = 0, then ũ = 0 and any

N > 0 would satisfy the inequality (3.3.147). Now if ε 6= 0, then

ũ

ε
= T ũ. (3.3.149)

Let c = Tcũ, then ũ
ε

= Tũc. Hence, c and ũ satisfy∫
Ω

ε
(
Deff∇c · ∇ϕ+ ϕû0∇c

)
+

∫
M

Hmcϕ = f(ϕ)−
∫

Ω

εϕũ · ∇c0,(3.3.150)

α(ũ,v) + β(v, εp) = ε [g(v) + l(ẑ′(ĉ0)c)v] ,(3.3.151)

β(ũ,q) = εh(q).(3.3.152)

Using the Poincare inequality and the same argument made in (3.3.141), then

(3.3.150) gives

‖∇c‖L2(Ω) ≤ C1

(
‖f‖C∗ + ‖ũ‖Lq(Ω)‖∇c0‖L2(Ω)

)
. (3.3.153)

Using equations (3.3.151), (3.3.152) and Lemma 3.3.20, we obtain

‖ũ‖Lq(Ω) ≤ C‖ũ‖H1(A∪G)

≤ εC2‖g + l(ẑ′(ĉ0)c)‖U∗ . (3.3.154)

Note also from the definition of l(·) that

‖l(ẑ′(ĉ0)c)‖U∗ ≤ C3

(
‖∇ẑ′(ĉ0)c)‖L2(A) + ‖ẑ′(ĉ0)c)‖L2(G)

)
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≤ C4‖c‖L2(M), (3.3.155)

where the last inequality follows from (3.3.64). The trace theorem and Poincare

inequality result in ‖c‖L2(M) ≤ C‖∇c‖L2(Ω). Then the above three inequalities

give

‖ũ‖Lq(Ω) ≤ εC5

[
‖g‖U∗ + C1

(
‖f‖C∗ + ‖ũ‖Lq(Ω)‖∇c0‖L2(Ω)

)]
.(3.3.156)

Hence,

‖ũ‖Lq(Ω) ≤
εC5

1− εC1C5‖∇c0‖L2(Ω)

(‖g‖U∗ + C1‖f‖C∗)

< N, (3.3.157)

where

N =
2εC5 (‖g‖U∗ + C1‖f‖C∗)

1− εC1C5‖∇c0‖L2(Ω)

. (3.3.158)

Note that N can be made positive when ‖∇c0‖L2(Ω) is small enough. However,

it follows from Lemma 3.3.21 that

‖∇c0‖L2(Ω) ≤ cinC
(
1 + ‖û0‖L2(Ω)

)
. (3.3.159)

Therefore N is positive when cin is sufficiently small.

3. T is compact. For this, let {ũn} be a bounded sequence in Lq(Ω). We show

that {T ũn} has a convergent subsequence in Lq(Ω). Let cn = Tcũn and ūn =

T ũn = Tũcn. Similar to the work done in equation (3.3.156), it follows that ūn

and ũn satisfy the following estimate:

‖ūn‖Lq(Ω) ≤ C‖ūn‖H1(A∪G)

≤ C2

[
‖g‖U∗ + C1

(
‖f‖C∗ + ‖ũn‖Lq(Ω)‖∇c0‖L2(Ω)

)]
< ∞, ∀n, (3.3.160)

as ‖ũn‖Lq(Ω) is bounded. Hence, the sequence {ūn} is bounded in H1(A∪G) ↪→c

Lq(Ω). Therefore, {ūn} has a convergent subsequent in Lq(Ω). This shows that

T is compact.
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4. T has a unique fixed point when cin is sufficiently small. Existence of a fixed

point results from items 1-3 and Theorem 3.3.30.

For the uniqueness of the fixed point, let (c1, ũ1) and (c2, ũ2) be two fixed points,

and set δc = c1− c2 and δũ = ũ1− ũ2. Then similar estimates to (3.3.141) and

(3.3.146) are obtained:

‖δc‖C ≤ C1‖∇c0‖L2(Ω)‖δũ‖Lq(Ω), (3.3.161)

and

‖δũ‖Lq(Ω) ≤ C2‖δc‖C. (3.3.162)

Now the above two estimates yield

(
1− C1C2‖∇c0‖L2(Ω)

)
‖δc‖C ≤ 0, (3.3.163)

where ‖∇c0‖L2(Ω) can be made as small as possible by choosing cin small enough.

In turn, the estimate (3.3.163) gives ‖δc‖C = 0. Hence c1 = c2 and ũ1 = ũ2.

Remark 3.3.32 From Propositions 3.3.24, 3.3.25 and Theorem 3.3.31, all the hy-

potheses of Theorem 3.3.22 are met; hence the shape differentiability of the trans-

ported state variables cζ ,uζ and pζ is defined, and

∂cζ
∂ζ

(0)ξ ∈ C;
∂uζ
∂ζ

(0)ξ ∈ U;
∂pζ
∂ζ

(0) ∈ L2(A)⊗H1(G). (3.3.164)

On the other hand,

c(0) ∈ C; u(0) ∈ H1(A)⊗H1(G); p(0) ∈ L2(A)⊗H2(G). (3.3.165)
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Hence the shape derivatives of the state variables exist and satisfy the following

equations:

∂c(0)

∂ζ
ξ =

∂cζ
∂ζ

(0)ξ − ξ · ∇c(0) in L2(Ω), (3.3.166)

∂u(0)

∂ζ
ξ =

∂uζ
∂ζ

(0)ξ − ξ · ∇u(0) in L2(A)⊗ L2(G), (3.3.167)

∂p(0)

∂ζ
ξ =

∂pζ
∂ζ

(0)ξ − ξ · ∇p(0) in H−1(A)⊗H1(G), (3.3.168)

The last equation is valid in A because

−µ∆(u + ẑ(ĉ)) +∇p = 0 in H−1(A), (3.3.169)

and consequently ξ · ∇p is defined in H−1(A) as follows

< ξ · ∇p, ϕ >H−1(A)×H1
0 (A) = −

∫
A

∇ (u + ẑ(ĉ)) · ∇(ξϕ), ∀ϕ ∈ H1
0 (A).(3.3.170)

This shows the shape differentiability of the state variables.

Remark 3.3.33 Let us recall from (2.2.4) that the cost functional E is defined as

E(ζ) =
H2
m

2
α

∫
M

(
ĉ− 1

|M |

∫
M

ĉ

)2

−Hmβ

∫
M

ĉ+ σ(pin − pout), (3.3.171)

where Hm satisfies Nĉ · ν = Hmĉ on M . In fact, ζ 7−→ E(ζ) is differentiable at ζ = 0

from C2 into R. This follows from Theorem 3.1.10.

Note first that since ζ = 0 on M , one obtains

c′ :=
∂c(0)

∂ζ
ξ =

∂cζ
∂ζ

(0)ξ in H1/2(M). (3.3.172)

This implies the existence of the shape derivative H ′m, given in (3.2.10). Also, the

fact that ∂2pin = 0 on Γi,ζ gives

p′in =
∂pin(0)

∂ζ2

ξ2 =
∂pin(ζ2) ◦ (1 + ζ2)

∂ζ2

(0)ξ2 − ξ2∂2pin(0)

=
∂pin(ζ2) ◦ (1 + ζ2)

∂ζ2

(0)ξ2 in R, (3.3.173)

where ζ2 is the second component of ζ.

Since ĉ(ζ) ∈ H1/2(M), the integrands, in (3.3.171), are differentiable at ζ = 0

from C2 into L1(M). This proves the differentiability of the cost functional E.
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3.4 Existence and Uniqueness for the Adjoint Prob-

lem

The adjoint problem serves to calculate the gradient of the cost functional, E, see

section 3.2. Therefore the study of existence and uniqueness of the solution for this

problem is important. In this section, it will be shown that for small parameters cin,

φ, the adjoint problem has a unique solution.

3.4.1 The Adjoint Problem in Strong From

Let ĉ, û, p̂ be the solution of the steady state problem (3.3.106). Then from Section

3.2, the strong form of the adjoint problem reads:

Find ϕ, v = (v1, v2), q such that

−εDeff∆ϕ+ εû · ∇ϕ = 0 in Ω

(−µ∆v +∇q)χ(A) +
(
µ
K

v +∇q
)
χ(G) = −ϕ∇ĉ in A ∪G

∇ · v = 0 in A ∪G,

(3.4.1)

associated with the following boundary conditions:

Γi :
∫

Γi
v1 + σ = v2 = µ∂1v1 − (q − qin) = ϕ = 0,

Γo : v2 = −µ∂1v1 + q = εDeff∂1ϕ+ εû1ϕ = 0,

Γ : v1 = v2 = ∂νϕ = 0,

Σ : v1(., 0−) = [v2]Σ = −µ∂1v2 + [q]Σ = 0,

Γw : v1 = ∂νϕ = 0,

M : v2 = εDeff∂νϕ+ (−û2 +Hm)ϕ+ βmHmq
ε
− g = 0,

(3.4.2)

where g = α(ĉ− 1
|M |

∫
M
ĉ)−β, α, β, and σ are nonnegative given parameters considered

in the definition of the cost functional E, (2.2.4).
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3.4.2 Variational Formulation of the adjoint problem

To write a variational formulation of the adjoint system (3.4.1)-(3.4.2), consider the

linear spaces defined in Section 3.3: U,U, Û, C,C, and P := PA ⊗H1(G).

Using (3.4.1)-(3.4.2), for every Φ ∈ C∫
Ω

ε
(
Deff∇Φ + Φû

)
· ∇ϕ+

∫
M

(−û2 +Hm)ϕΦ +

∫
Γo

û1ϕΦ

=

∫
M

h(q)Φ, (3.4.3)

where

h(q) = g − βmHmq

ε
. (3.4.4)

Also, for every w ∈ U and q∗ ∈ PA, (3.4.1)-(3.4.2) gives∫
A

µ∇v · ∇w +

∫
G

µ

K
v ·w −

∫
A

q∇ ·w − qin
∫

Γi

w1 = −
∫

Ω

εϕ∇ĉ ·w,

−
∫
A

q∗∇ · v − q∗in
∫

Γi

v1 = σq∗in, (3.4.5)

where the boundary integrals simplify as follows∫
∂A

w · (µ∂νAv + qνA) +

∫
∂G

qνG ·w = −qin
∫

Γi

w1. (3.4.6)

Equations (3.4.3), (3.4.5) defines the following weak formulation of the adjoint

problem: Find (ϕ,v,q) ∈ C×U×P such that∫
Ω

ε
(
Deff∇Φ + Φû

)
· ∇ϕ+

∫
M

(−û2 +Hm)ϕΦ +

∫
Γo

û1ϕΦ =

∫
M

h(q)Φ,

α(v,w) + β(q,w) = −
∫

Ω

ϕ∇ĉ ·w,

β(q∗,v) = σq∗in, (3.4.7)

for all Φ ∈ C, w ∈ U and q∗ = (q∗, q∗in) ∈ PA; where α(., .) and β(., .) are defined in

Definition 3.3.17, and h(q) is given in (3.4.4).
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Proposition 3.4.1 : Let ĉ ∈ W 1,p(Ω) and ϕ ∈ Lp(Ω) be given, where p = 2p
p−2

,

p > 2. Then the following problem has a unique solution:

Find (v,q) ∈ U× PA such that

α(v,w) + β(q,w) = −
∫

Ω

ϕ∇ĉ ·w, ∀w ∈ U,

β(q∗,v) = σq∗in, ∀q∗ = (q∗, q∗in) ∈ PA. (3.4.8)

Also,

‖v‖U ≤ C
(
σ + ‖ϕ‖ Lp

(Ω)
‖∇ĉ‖Lp(Ω)

)
,

‖q‖PA ≤ C
(
σ + ‖ϕ‖ Lp

(Ω)
‖∇ĉ‖Lp(Ω)

)
. (3.4.9)

Proof:

Note first that ϕ∇ĉ ∈ U∗, which follows as ϕ∇ĉ ∈ L2(Ω): 1
p

+ 1
p

= 1
2
, and∫

Ω

|ϕ∇ĉ|2 ≤
(∫

Ω

|ϕ|p
)2/p(∫

Ω

|∇ĉ|p
)2/p

= ‖ϕ‖2
Lp(Ω)‖∇ĉ‖

2
Lp(Ω). (3.4.10)

Since also σ ∈ P ∗A, Lemma 3.3.20 completes the proof.

Remark 3.4.2 Let us consider equation (3.4.8) and take w ∈ D(A∪G)∩{∇ ·w = 0} ⊂

U. Then, it follows that the solution v ∈ U satisfies

< −µ∆v + ϕ∇ĉ,w >H−1(A)×H1
0(A) = 0,

<
µ

K
v + ϕ∇ĉ,w >L2(G)×L2(G) = 0. (3.4.11)

Then from [34, Remark 1.4, page 15], there exists q ∈ L2(A)⊗H1(G) such that

−µ∆v +∇q = −ϕ∇ĉ in H−1(A), (3.4.12)
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µ

K
v +∇q = −ϕ∇ĉ in L2(G). (3.4.13)

Lemma 3.4.3 The solution (v,q) ∈ U× PA of (3.4.8) satisfies

−µ∂1v1 + q = qin in H−1/2(Γi),

µ∂1v1 − q = 0 in H−1/2(Γo),

µ∂2v2 − q = −qG in H−1/2(Σ), (3.4.14)

for some qG ∈ H1(G).

Proof:

Let

S1 := −µ∇v1 + (q, 0)T , S2 := −µ∇v2 + (0, q)T , (3.4.15)

where T denotes the transpose operator. From Remark 3.4.2,

Si ∈ L2(A), and ∇ · Si = −ϕ∂iĉ ∈ L2(A), (3.4.16)

where i = 1, 2. Then from Theorem 3.3.7, the trace of Si · ν is defined in H−1/2(∂A),

and for every w ∈ U

< γνS1, γ0w1 >H−1/2(∂A)×H1/2(∂A)

=

∫
A

[−µ∇v1 · ∇w1 + q∂1w1 − (ϕ∂1ĉ)w1] . (3.4.17)

Since w1 = 0 on Σ ∪ Γ, the above equation simplifies to

< γνS1, γ0w1 >H−1/2(Γi∪Γo)×H1/2(Γi∪Γo)

=

∫
A

[−µ∇v1 · ∇w1 + q∂1w1 − (ϕ∂1ĉ)w1] . (3.4.18)
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Similarly,

< γνS2, γ0w2 >H−1/2(∂A)×H1/2(∂A)

=

∫
A

[−µ∇v2 · ∇w2 + q∂2w2 − (ϕ∂2ĉ)w2] . (3.4.19)

Since w2 = 0 on Γi ∪ Γo ∪ Γ, the above equation reduces to

< γνS2, γ0w2 >H−1/2(Σ)×H1/2(Σ)

=

∫
A

[−µ∇v2 · ∇w2 + q∂2w2 − (ϕ∂2ĉ)w2] . (3.4.20)

Adding equations (3.4.18) and (3.4.20) yields

− < γνS1, γ0w1 >H−1/2(Γi∪Γo)×H1/2(Γi∪Γo) − < γνS2, γ0w2 >H−1/2(Σ)×H1/2(Σ)

=

∫
A

[µ∇v · ∇w − q∇ ·w + (ϕ∇ĉ) ·w] . (3.4.21)

On the other hand, Remark 3.4.2 gives

−∇qG =
µ

K
v + ϕ∇ĉ in L2(G). (3.4.22)

Since w1 = 0 on Γw, w2 = 0 on M and ∇·w = 0 in G; multiplying the above equation

by w and integrating the left side by parts result in∫
Σ

qGw2 =

∫
G

( µ
K

v + ϕ∇ĉ
)
·w. (3.4.23)

Now, adding (3.4.21) and (3.4.23) gives

< −γνS1, γ0w1 >H−1/2(Γi∪Γo)×H1/2(Γi∪Γo) + < qG − γνS2, γ0w2 >H−1/2(Σ)×H1/2(Σ)

=

∫
A

[µ∇v · ∇w − q∇ ·w + (ϕ∇ĉ) ·w] +

∫
G

( µ
K

v + ϕ∇ĉ
)
·w. (3.4.24)

However, from Proposition 3.4.1, the solution v satisfies

qin

∫
Γi

w1

=

∫
A

[µ∇v · ∇w − q∇ ·w + (ϕ∇ĉ) ·w] +

∫
G

( µ
K

v + ϕ∇ĉ
)
·w. (3.4.25)
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Hence, the above two equations result in

0 = < −γνS1, γ0w1 >H−1/2(Γi∪Γo)×H1/2(Γi∪Γo) −qin
∫

Γi

w1

+ < qG − γνS2, γ0w2 >H−1/2(Σ)×H1/2(Σ), (3.4.26)

which implies that the solution (v,q) ∈ U× PA of (3.4.8) satisfies

−γνS1 = −µ∂1v1 + q = qin in H−1/2(Γi),

−γνS1 = µ∂1v1 − q = 0 in H−1/2(Γo),

−γνS2 = µ∂2v2 − q = −qG in H−1/2(Σ). (3.4.27)

Proposition 3.4.4 Let q, v be the solution of (3.4.8). Let also Φ ∈ C and ẑ =

ẑ(Φ) ∈ H1(A ∪ G) be the extension constructed in Proposition 3.3.12 by taking g =

Φ, h = 0, and φ = 0, that is

ẑ2(Φ) = Φ on M,

∇ · ẑ(Φ) = 0 in A∫
Γi

ẑ1(Φ) = 0. (3.4.28)

Then, ∫
M

qGΦ = −
∫
A

[µ∇v · ∇ẑ(Φ) + ϕ∇ĉ · ẑ(Φ)]

−
∫
G

( µ
K

v + ϕ∇ĉ
)
· ẑ(Φ), (3.4.29)

where qG ∈ H1(G) satisfies

−∇qG =
µ

K
v + ϕ∇ĉ in L2(G). (3.4.30)
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In addition,

|
∫
M

qGΦ| ≤ C
(
‖v‖U + ‖ϕ‖Lp(Ω)‖∇ĉ‖Lp(Ω)

)
‖Φ‖L2(M). (3.4.31)

Proof:

The proof of this proposition follows from Lemma 3.4.3. Let us first note that the

extension ẑ(Φ), constructed in Proposition 3.3.12, satisfies as well the following

ẑ1(Φ) = 0 on Γi ∪ Γ ∪ Σ ∪ Γw,

ẑ2(Φ) = 0 on Γ ∪ Γi ∪ Γo,

∇ · ẑ(Φ) = 0 in G. (3.4.32)

Equation (3.4.21) in Lemma 3.4.3 gives

− < γνS1, γ0ẑ1(Φ) >H−1/2(Γi∪Γo)×H1/2(Γi∪Γo) − < γνS2, γ0ẑ2(Φ) >H−1/2(Σ)×H1/2(Σ)

=

∫
A

[µ∇v · ∇ẑ(Φ)− q∇ · ẑ(Φ) + (ϕ∇ĉ) · ẑ(Φ)] . (3.4.33)

Since ẑ1(Φ) = 0 on Γi, ∇ · ẑ(Φ) = 0 in G, γνS1 = 0 on Γo and γνS2 = qG on Σ, the

above equation reduces to

< qG, γ0ẑ2(Φ) >H−1/2(Σ)×H1/2(Σ)

=

∫
Σ

qGẑ2(Φ) = −
∫
A

[µ∇v · ∇ẑ(Φ) + (ϕ∇ĉ) · ẑ(Φ)] , (3.4.34)

where qG ∈ H1(G) satisfies

−∇qG =
µ

k
v + ϕ∇ĉ in L2(G). (3.4.35)

Multiplying the above equation by ẑ(Φ) and integrating the left side by parts give∫
Σ

qGẑ2(Φ) =

∫
M

qGΦ +

∫
G

( µ
K

v + ϕ∇ĉ
)
· ẑ(Φ). (3.4.36)
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Summing equations (3.4.34) and (3.4.36) results in∫
M

qGΦ

= −
∫
A

[µ∇v · ∇ẑ(Φ) + (ϕ∇ĉ) · ẑ(Φ)]−
∫
G

( µ
K

v + ϕ∇ĉ
)
· ẑ(Φ). (3.4.37)

Consequently,

|
∫
M

qGΦ|

≤ C1

(
‖v‖U + ‖ϕ‖Lp(Ω)‖∇ĉ‖Lp(Ω)

) (
‖ẑ(Φ)‖H1(A) + ‖ẑ(Φ)‖L2(G)

)
, (3.4.38)

and from Proposition 3.3.12,

‖ẑ(Φ)‖H1(A) + ‖ẑ(Φ)‖L2(G) ≤ C‖Φ‖L2(M). (3.4.39)

Proposition 3.4.5 : For any given v ∈ U and small parameters cin and φ, the

problem: Find ϕ ∈ C such that∫
Ω

ε
(
Deff∇Φ + Φû

)
· ∇ϕ+

∫
M

(−û2 +Hm)ϕΦ +

∫
Γo

û1ϕΦ

=

∫
M

h(q)Φ, ∀Φ ∈ C, (3.4.40)

has a unique solution, where h(q) = g − βmHmq
ε

. Also,

‖ϕ‖C ≤ C
(
‖g‖L2(M) + ‖v‖U

)
. (3.4.41)

Proof : The existence and uniqueness of the solution of the above problem follows

from the Lax-Milgram Lemma, [25, page 244]. Define the bilinear form a(·, ·) : C ×

C −→ R as
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a(ϕ,Φ) =

∫
Ω

ε
(
Deff∇Φ + Φû

)
· ∇ϕ

+

∫
M

(−û2 +Hm)ϕΦ +

∫
Γo

û1ϕΦ, (3.4.42)

and the functional l : C −→ R as

l(Φ) =

∫
M

h(q)Φ. (3.4.43)

The functional l is continuous since h(q) = g − βmHmq
ε

, where both g, q ∈ H1/2(M).

Hence, h(q) ∈ L2(M). Also, the bilinear form a(·, ·) is continuous. This results from

|a(ϕ,Φ)| ≤ C1

(
‖∇ϕ‖L2(Ω)‖∇Φ‖L2(Ω) + ‖Φ‖Lp(Ω)‖û‖Lp(Ω)‖∇ϕ‖L2(Ω)

+‖û1‖L2(Γo)‖ϕ‖Lp(Γo)‖Φ‖Lp(Γo)

+‖ − û2 +Hm‖L2(M)‖ϕ‖Lp(M)‖Φ‖Lp(M)

)
. (3.4.44)

Let us recall that û := u + ẑ(ĉ) ∈ H1(A ∪G) as u ∈ H1(A ∪G) from Lemma 3.3.20,

and ẑ(ĉ) ∈ H1(A ∪G) from Remark 3.3.14. Since also

H1/2(Γo) ↪→ Lp(Γo), H1/2(M) ↪→ Lp(M), p > 2, (3.4.45)

estimate (3.4.44) reduces to

|a(ϕ,Φ)| ≤ C
(
1 + ‖û‖H1(A∪G)

)
‖ϕ‖C‖Φ‖C, (3.4.46)

for some constant C. This proves the continuity of a(·, ·). For the coercivity of a(·, ·),

note that

a(ϕ, ϕ) =

(
εDeff‖∇ϕ‖2

L2(Ω) +

∫
Ω

ϕû · ∇ϕ+

∫
Γo

û1ϕ
2 +

∫
M

(−û2 +Hm)ϕ2

)
≥

(
εDeff‖∇ϕ‖2

L2(Ω) −
∫

Ω

|ϕû · ∇ϕ| −
∫

Γo

|û1ϕ
2|
)
, (3.4.47)

noting that −û2 = βmHmĉ ≥ 0 on M . Also,

−
∫

Ω

|ϕû · ∇ϕ| ≥ −‖û‖Lp(Ω)‖ϕ‖Lp(Ω)‖∇ϕ‖L2(Ω)
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≥ −C‖û‖H1(A∪G)‖ϕ‖2
C. (3.4.48)

where the second inequality follows using the same argument as in (3.4.46). Also,

−
∫

Γo

|û1ϕ
2| ≥ −C1‖û1‖L2(Γo)‖ϕ‖Lp(Γo)‖ϕ‖Lp(Γo)

≥ −C2‖û‖H1(A)‖ϕ‖2
C, (3.4.49)

where the second inequality follows from the continuity of the trace operator γ0 and

the Sobolev embedding γ0(H1(Ω)) = H1/2(∂Ω) ↪→ Lr(∂Ω), r ≥ 2. However, from

(3.3.59) and Lemma 3.3.20 (by taking f = l(ẑ(ĉ)) in this lemma), one obtains

‖û‖H1(A) ≤ ‖u‖H1(A) + ‖ẑ(ĉ)‖H1(A)

≤ C
(
‖ẑ(ĉ)‖H1(A) + ‖ẑ(ĉ)‖L2(G)

)
≤ C1

(
φ+ ‖ĉ‖L2(M)

)
≤ C2

(
φ+ ‖∇ĉ‖L2(Ω)

)
. (3.4.50)

This and estimate (3.3.96) imply that ‖û‖H1(A) can be made small by choosing small

parameters cin and φ. Hence (3.4.47), (3.4.48), (3.4.49) and (3.4.50) as well as the

Poincare inequality yield

a(ϕ, ϕ) ≥ λ‖ϕ‖2
C, (3.4.51)

for some positive constant λ. Hence, the requirements of Lax-Milgram Lemma are

met, and therefore there exists a unique solution ϕ ∈ C.

For the estimate (3.4.41), note that a(ϕ, ϕ) =
∫
M
h(q)ϕ gives

‖∇ϕ‖2
L2(Ω) ≤ C1

(
|
∫
M

h(q)ϕ|+ ‖û‖H1(A∪G)‖∇ϕ‖2
L2(Ω)

)
≤ C2

[
‖g‖L2(M)‖ϕ‖L2(M) +

(
‖v‖U + ‖ϕ‖Lp(Ω)‖∇ĉ‖Lp(Ω)

)
‖ϕ‖L2(M)

]
+C1‖û‖H1(A∪G)‖∇ϕ‖2

L2(Ω)

≤ C3

(
‖g‖L2(M) + ‖v‖U

)
‖∇ϕ‖L2(Ω)

+C4

(
‖∇ĉ‖Lp(Ω) + ‖û‖H1(A∪G)

)
‖∇ϕ‖2

L2(Ω), (3.4.52)
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where the first inequality follows using the same argument as in (3.4.46), and the

second from the estimate (3.4.31) and ‖ϕ‖Lr(M) ≤ G‖∇ϕ‖2
L2(Ω) for r ≥ 2 (which

follows from the Sobolev embeddings and Poincare inequality). Again, ‖û‖H1(A∪G)

and ‖∇ĉ‖Lp(Ω) can be made small by taking small parameters cin and φ, the last two

terms of inequality (3.4.52) can be combined with the left side to give

‖∇ϕ‖L2(Ω) ≤ C
(
‖g‖L2(M) + ‖v‖U

)
. (3.4.53)

3.4.3 Fixed Point Formulation of the Adjoint Problem

In this section, the existence and uniqueness of the adjoint problem is proved using

the Fixed Point Theorem 3.3.30, assuming small parameters cin and φ. For this, the

following mappings are defined.

Definition 3.4.6 Let

Tv : Lp(Ω) −→ U

ϕ 7−→ v, (3.4.54)

where v is given by the solution of the problem in Proposition 3.4.1. Also, let

Tϕ : U −→ Lp(Ω)

v 7−→ ϕ, (3.4.55)

where ϕ is given by the solution of the problem in (3.4.40). Finally, define

T := Tϕ ◦ Tv : Lp(Ω) −→ Lp(Ω). (3.4.56)

Then the mapping T is well-defined.
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The Fixed Point Theorem 3.3.30 is implemented to show that the mapping T has a

fixed point, which proves the existence of a solution to the adjoint problem (3.4.7).

The uniqueness of the solution is proved under the assumption of small parameters

cin and φ.

Theorem 3.4.7 The mapping T = Tϕ ◦ Tv has the following properties:

1. T is continuous

2. T is compact

3. there exists a constant N such that

‖ϕ‖Lp(Ω) < N, (3.4.57)

for all

ϕ ∈ Lp(Ω) ∩ {ϕ : ϕ = εTϕ, for some ε ∈ [0, 1]} . (3.4.58)

Then from Theorem 3.3.30, T has a fixed point ϕ ∈ Lp(Ω) ∩C. Moreover,

4. the fixed point is unique when the parameters cin and φ are sufficiently small.

Proof:

1. T is continuous: let {ϕn} ⊂ Lp(Ω), ϕn −→ ϕ in Lp(Ω), and set δϕn = ϕn −

ϕ, vn = Tvϕn, v = Tvϕ, δvn = vn − v and δqn = qn − q, where qn and q are

associated with vn and v, respectively. Then δvn satisfies

α(δvn,w) + β(δqn,w) = −
∫

Ω

δϕn∇ĉ ·w,

β(q∗, δvn) = 0, (3.4.59)

for all (w,q∗) ∈ U× PA. Hence from Proposition 3.4.1,

‖δvn‖U ≤ C1‖δϕn‖Lp‖∇ĉ‖Lp(Ω). (3.4.60)
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Now let ϕn = Tϕvn and ϕ = Tϕv, then δϕn satisfies∫
Ω

ε
(
Deff∇Φ + Φû

)
· ∇δϕn +

∫
M

(−û2 +Hm) δϕnΦ +

+

∫
Γo

û1δϕnΦ =

∫
M

(h(qn)− h(q)) Φ. (3.4.61)

Then it follows from H1(Ω) ↪→ Lp(Ω) and Proposition 3.4.5 that

‖δϕn‖Lp(Ω) ≤ C2‖δϕn‖C ≤ C3‖δvn‖U

≤ C4‖δϕn‖Lp(Ω)‖∇ĉ‖Lp(Ω), (3.4.62)

where the last inequality follows from the estimate (3.4.60). Hence, the last

estimate (3.4.62) gives δϕn = Tδϕn → 0 in Lp(Ω) as δϕn → 0 in Lp(Ω), which

proves the continuity of T .

2. T is compact: let {ϕn} be a bounded sequence in Lp(Ω). Then it is required

to show that {Tϕn} has a convergent subsequence in Lp(Ω). Note that for

vn = Tvϕn, Proposition 3.4.1 gives

‖vn‖U ≤ C1

(
σ + ‖ϕn‖Lp(Ω)‖∇ĉ‖Lp(Ω)

)
. (3.4.63)

Also for ϕn = Tϕvn = Tϕn, Proposition 3.4.5 gives

‖ϕn‖C ≤ C2

(
‖g‖L2(M) + σ + ‖ϕn‖Lp(Ω)‖∇ĉ‖Lp(Ω)

)
, (3.4.64)

which implies that {ϕn} is bounded in H1(Ω). Since H1(Ω) ↪→c Lp(Ω), the

sequence {ϕn} has a convergent subsequence in Lp(Ω) ∩C.

3. Repeating the work done in item 2, it follows that for every ϕ ∈ Lp(Ω) satisfying

ϕ = εTϕ for some ε 6= 0 that

‖ϕ‖Lp(Ω) ≤ εC1

(
‖g‖L2(M) + σ + ‖ϕ‖Lp(Ω)‖∇ĉ‖Lp(Ω)

)
. (3.4.65)

Taking cin sufficiently small, the factor ‖∇ĉ‖Lp(Ω) can be made small. Conse-

quently, the last term of the above inequality can be grouped with the left side
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to give

‖ϕ‖Lp(Ω) ≤ C
(
‖g‖L2(M) + σ

)
, (3.4.66)

which implies the existence of N <∞.

4. Let ϕ1 and ϕ2 be two fixed points for the mapping T , and set δϕ = ϕ1 − ϕ2.

Then following the same work done in estimate (3.4.62), it follows that

‖δϕ‖Lp(Ω) ≤ C‖δϕ‖Lp(Ω)‖∇ĉ‖Lp(Ω). (3.4.67)

Since also the factor ‖∇ĉ‖Lp(Ω) can be made small by taking cin small enough,

the right side is combined with the left side to give δϕ = 0.

The existence and uniqueness of the solution for the adjoint problem is proved under

the assumption cin and φ being sufficiently small. Let us remark that φ was assumed

to be small only in Proposition 3.4.5 to prove the coercivity of the bilinear form a(·, ·)

defined in (3.4.42). Elsewhere, only cin is assumed to be small enough.



Chapter 4

Numerical Methods

The goal of this chapter is to present the numerical methods used to solve the two

FC models and the shape optimization problem. These involve the finite element

formulation of the steady state problem and the adjoint problem (presented below),

and calculating the shape gradient of the objective functional E as well as perturbing

the air channel. In this chapter, the simplified model will be considered, but the

derivation for the general model is similar.

4.1 The steady state problem

Let us first consider the steady state problem and show how to obtain its finite element

formulation. The strong form of this problem reads: Find ĉ, û, pA, and pG such that

−εDeff∆ĉ+ εû · ∇ĉ = 0 on Ω, (4.1.1)

−µ∆û +∇pA = 0 on A, (4.1.2)

∇ · û = 0 on A ∪G, (4.1.3)

û +
K

µ
∇pG = 0 on G. (4.1.4)

92
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Equations (4.1.4) can be simplified by taking the divergence on both sides and using

equation (4.1.3), which results in

−∇ ·
(
K

µ
∇pG

)
= 0 on G. (4.1.5)

Hence the variable û is eliminated on G, yet can be recovered using equation (4.1.4)

while required in equation (4.1.1).

The boundary conditions are as follows (see Fig. 2.1 for the definition of boundaries):

Γi : ĉ = cin, µ∂1û1 − pA = − 1
|Γi|

∫
Γi
pA,∫

Γi
û1 = φ, û2 = 0

Γo : −εDeff∂ν ĉ = 0, −µ∂1û1 + pA = 0,

û2 = 0

Γ : εDeff∂ν ĉ = 0,

û1 = 0, û2 = 0

Σ : û1 = −µ∂1û1 + pA − pG = 0, −K
µ
∂2pG = û2

Γw : −εDeff∂ν ĉ = 0 −K
µ
∂1pG = 0

M : −εDeff∂ν ĉ = (Hm + βmHmĉ) ĉ, −K
µ
∂2pG = −βmHmĉ

ε
,

(4.1.6)

Let

ĉ = c+ cin, (4.1.7)

then c = 0 on Γi. Therefore, the variables for the steady state problem are c in Ω, û

and pA in A, and pG in G.
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4.2 The adjoint problem

The adjoint problem serves to compute the shape gradient of the cost functional E.

The strong form of the adjoint problem reads: Given the solution û, c of the steady

state problem, find c∗, u∗, p∗A, p∗G such that

−εDeff∆c∗ − εû · ∇c∗ = 0 on Ω, (4.2.1)

−µ∆u∗ +∇p∗A = −c∗∇c on A, (4.2.2)

∇ · u∗ = 0 on A ∪G, (4.2.3)

u∗ = −K
µ

(∇P ∗G + εc∗∇c) on G. (4.2.4)

The variable u∗ in G can be eliminated by using equations (4.2.3) and (4.2.4), which

gives

−∇ ·
[
K

µ
(∇p∗G + εc∗∇c)

]
= 0 on G. (4.2.5)

The variable u∗ in G can be recovered with equation (4.2.4) for using equation (4.2.1)

in domain G. Then the main variables of the adjoint problem are c∗ in Ω, u∗ and p∗A

in A, and p∗G in G.

The associated boundary conditions are:

Γi : c∗ = 0, µ∂1v1 − p∗A = − 1
|Γi|

∫
Γi
p∗A,∫

Γi
u∗1 = −σ, u∗2 = 0

Γo : −εDeff∂νc
∗ = εû1c

∗, −µ∂1v1 + p∗A = 0,

u∗2 = 0

Γ : εDeff∂νc
∗ = 0,

u∗1 = 0, u∗2 = 0

Σ : u∗1 = −µ∂1v1 + p∗A − p∗G = 0, −K
µ

(∂2p
∗
G + εc∗∂2c) = u∗2

Γw : −εDeff∂νc
∗ = 0 −K

µ
∂1p
∗
G = 0

M : −εDeff∂νc
∗ = (Hm − 3βmHmĉ) c

∗ +
βmHmp∗G

ε
− g, −K

µ
(∂2p

∗
G + εc∗∂2c) = 0,

(4.2.6)
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where

g = α

(
ĉ− 1

|M |

∫
M

ĉ

)
− β, (4.2.7)

α, β and σ are nonnegative parameters appearing in the definition of the cost func-

tional E,

E = α

∫
M

(
ĉ− 1

|M |

∫
M

ĉ

)2

− β
∫
M

ĉ+ σpin, (4.2.8)

and pin = pA|Γi is the pressure at the inlet.

4.3 Finite element formulations of the steady state

and the adjoint problems

Let Th(A), Th(G), and Th(Ω) = Th(A) ∪ Th(G) be triangulations of A, G and Ω,

respectively, where h represents the size of the largest element of the triangulation

Th(Ω).

To define the finite element spaces, let

V l
h(Ω) :=

{
v ∈ C0(Ω) : v|K ∈ Pl(K),∀K ∈ Th(Ω)

}
, (4.3.1)

where V l
h(A) and V l

h(G) are defined similarly, and Pl(K) is the space of polynomials

of degree l on the triangle K. Then using the boundary conditions (4.1.6) and (4.2.6),

the following finite element spaces are considered:

Ch =
{
c ∈ V 2

h (Ω) : c|Γi = 0
}
, (4.3.2)

PG,h = V 2
h (G), (4.3.3)

ÛA,h =
{
û = (û1, û2) ∈ V 2

h (A)× V 2
h (A) : û1|Γ∪Σ = 0, û2|Γi∪Γ∪Γo = 0

}
,(4.3.4)

PA,h = V 1
h (A). (4.3.5)

These discrete spaces are used to write the finite element formulation of the steady

state and the adjoint problems.
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To derive a finite element formulation, we multiply equation (4.1.1) by ϕ, equa-

tion (4.1.2) by v, equation (4.1.3) by qA, equation (4.1.4) by qG; integrate by parts

and use boundary conditions (4.1.6). This results in the following finite element for-

mulation of the steady state problem:

For any given Hm, find c ∈ Ch, û ∈ Ûh, pA ∈ PA,h, and pG ∈ PG,h such that for all

ϕ ∈ Ch, v ∈ ÛA,h, qA ∈ PA,h and qG ∈ PG,h,∫
Ω

(
εDeff∇c · ∇ϕ+ ε(û · ∇c)ϕ

)
+

∫
M

(Hm + εβmHmĉ) ĉϕ = 0, (4.3.6)∫
A

(µ∇û · ∇v − pA∇ · v)−
∫

Γi

pAv1 +

∫
Σ

pGv2 = 0, (4.3.7)

−
∫
A

(∇ · û) qA −
∫

Γi

(
φ−

∫
Γi

û1

)
qA = 0, (4.3.8)∫

G

K

µ
∇pG · ∇qG −

∫
Σ

û2,AqG −
∫
M

(βmHmĉ)qG = 0, (4.3.9)

where pA is the average pressure on Γi.

Note that the Dirichlet boundary conditions are included in the finite element spaces.

The other boundary conditions are recovered, in the weak sense, from the above

formulation when the solution is regular either at the continuous level or as h→ 0:

1. Integrating equation (4.3.6) by parts gives∫
Γ∪Γo∪Γw

(
εDeff∂νc

)
ϕds

+

∫
M

[
εDeff∂ν ĉ+ (Hm + βmHmĉ) ĉ

]
ϕds = 0. (4.3.10)

Hence, −εDeff∂ν ĉ = 0 on Γ ∪ Γo ∪ Γw and −εDeff∂ν ĉ = (Hm + εβmHmĉ) ĉ on

M , almost everywhere.

2. Integrating equation (4.3.7) by parts gives∫
∂A

(µ∂νû · v − pAv · ν) ds−
∫

Γi

pAv1ds+

∫
Σ

pGv2ds = 0. (4.3.11)

Substituting v = (v1, 0)T in the above equation gives∫
Γi

(−µ∂1û1 + pA − pA) v1ds+

∫
Γo

(µ∂1û1 − pA) v1ds = 0, (4.3.12)
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which implies that µ∂1û1−pA = −pA on Γi and −µ∂1û1 +pA = 0 on Γo, almost

everywhere. Similarly, substituting v = (0, v2)T results in∫
Σ

(µ∂2û2 − pA + pG) v2ds = 0, (4.3.13)

which brings −µ∂1û1 + pA = pG almost everywhere on Σ.

3. Equation (4.3.8) implies that ∫
A

(∇ · û) qA = 0, (4.3.14)∫
Γi

(
φ−

∫
Γi

û1

)
qA = 0. (4.3.15)

This leads to ∇ · û = 0 in A and
∫

Γi
û1 = φ on Γi almost everywhere.

4. Integrating equation (4.3.9) by parts gives∫
Σ

(
K

µ
∂2pG + û2

)
qGds+

∫
Γw

(
K

µ
∂νpG

)
qGds

+

∫
M

(
K

µ
∂2pG −

βmHmĉ

ε

)
qGds = 0, (4.3.16)

which results in −K
µ
∂2pG = û2 on Σ, −K

µ
∂νpG = 0 on Γw and K

µ
∂2pG = βmHmĉ

ε

on M , almost everywhere.

Similarly, the finite element formulation of the adjoint problem reads:

For given Hm, ĉ and û, find c∗ ∈ Ch, u∗ ∈ Ûh, p
∗
A ∈ PA,h, and p∗G ∈ PG,h such that

for every ϕ∗ ∈ Ch, v∗ ∈ ÛA,h, q
∗
A ∈ PA,h and q∗G ∈ PG,h,

∫
Ω

(
εDeff∇c∗ · ∇ϕ∗ − ε(û · ∇c∗)ϕ∗

)
+

∫
Γo

(εû1c
∗)ϕ∗ (4.3.17)

+

∫
M

[
(Hm − 3βmHmĉ) c

∗ +
βmHmp

∗
G

ε
− g
]
ϕ∗ = 0, (4.3.18)∫

A

(µ∇u∗ · ∇v∗ − p∗A∇ · v∗ + c∗∇c · v∗)−
∫

Γi

p∗Av
∗
1 +

∫
Σ

p∗Gv
∗
2 = 0, (4.3.19)
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−
∫
A

(∇ · u∗) q∗A −
∫

Γi

(
σ +

∫
Γi

û∗1

)
q∗A = 0, (4.3.20)∫

G

K

µ
(∇p∗G + εc∗∇c) · ∇q∗G −

∫
Σ

û∗2,Aq
∗
G = 0, (4.3.21)

where p∗A denotes the average of p∗A on Γi.

The above finite element formulations, for the steady state and the adjoint problems,

are solved by means of a commercial software, FemLab, which uses Newton’s method

to solve nonlinear systems. In our case, the linear system is solved using the direct

solver, UMFPACK.

The parameter Hm, however, needs to be determined. In fact, Hm is a function of

η (the catalyst layer activation over-potential, see chapter 2), where Hm(η) and η

satisfy the following equations:

0 = Erev − Ecell − η − rIav(η), (4.3.22)

Iav(η) =
1

|M |

∫
M

4F

Mo

Hm(η)ĉ, (4.3.23)

Hm(η) =
Moi0

4F ĉref

(
e
αcF
RT

η − e−
αcF
RT

η
)
. (4.3.24)

Hence Hm is determined once η is known. For this, set

δ(η) = Erev − Ecell − η − rIav(η). (4.3.25)

Then according to equation (4.3.22), the solution η must satisfy δ(η) = 0. Note also

that

δ(0) = Erev − Ecell > 0, (4.3.26)

δ(Erev) = −Ecell − rIav(Erev) < 0, (4.3.27)

which implies that the solution η satisfies

0 < η < Erev. (4.3.28)

The fact that the function δ(η) changes sings in the interval [0, Erev] makes it possible

to implement the Bisection method to determine the zero of δ(η).
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Another approach to find η is by using a fixed point technique. Note that η must

satisfy

η = Erev − Ecell − rIav(η). (4.3.29)

Setting f(η) = Erev−Ecell−rIav(η), then η is a fixed point of the following formulation:

η = f(η). (4.3.30)

Finding η using this approach requires iterations between η and f(η), which is ob-

tained after solving the state problem to find Iav(η). However, this technique was

attempted, but did not converge when Iav(η) is large. In turn, the whole polarization

curve could not be obtained using this technique. This situation is expected as the

fixed point approach does not guarantee convergence when the derivative of f at some

η is greater than one in absolute value. In fact, this occurs when η is large enough to

make the derivative of Iav(η) be greater than one in absolute value.



4. Numerical Methods 100

4.4 Algorithm

The goal of this section is to present the main steps involved to get the numerical

results. The algorithm is divided into three main parts for solving the optimal shape

problem:

1. solving the steady state problem,

2. solving the adjoint problem for computing the shape gradient ∇E,

3. perturbing the geometry to get the optimal shape design.

For this, let us set the following parameters: ηa = 0, ηb = Erev, Nsteps = 200,

TOL(Hm)=1e-4, TOL(Γ)=hA/100, where hA denotes the thickness of the air channel.

• For n = 1 : Nsteps

• Solve the steady state problem

– while |H
n
m−H

n+1
m |

|Hn
m|

≥ TOL(Hm), ηc = ηa+ηb
2

.

– compute Hm(ηc)

– solve the steady state problem

– update ηa as follows:

if δ(ηa) ∗ δ(ηc) < 0, then ηb = ηc;

else ηa = ηc.

end (4.4.1)

– end of the while statement

• Use the Hm obtained to solve the adjoint problem

• Compute the cost functional En := E(Γn) and the derivative of the cost func-

tional ∇E(Γn) from equation (3.2.57), and get DEn
max := ‖∇E(Γn)‖∞
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• Stop if n = Nsteps, DE
n
max = 0, or ‖Γn+1 − Γn‖∞ < TOL(Γ).

• Else perturb Γn as follows:

Γn+1 = Γn − λn∇E(Γn), (4.4.2)

where

λn :=
0.5 ∗ hA
DEn

max

(4.4.3)

• Repeat the main loop.

Note that with this choice of λn, the maximum perturbation ‖Γn+1−Γn‖∞ ≤ 0.5∗hA.

This choice is suitable to ensure that Γn+1 stays, for some steps, within the lower and

upper limits set for Γ.



Chapter 5

Numerical Results

The goal of this chapter is to present and discuss the numerical results of the steady

state problem for the simplified and general models of the cathode presented in Chap-

ter 2, and the solution of the shape optimization problem (2.2.5).

In the first section, computational requirements are assessed in terms of mesh

resolution for the numerical solution using the simplified model. In the second section,

the numerical solutions of the simplified and general models will be compared and

shown to be close enough. This will be useful since it is much easier to deal with the

simplified model to solve the optimization problem. In the third section, the simplified

model is validated by comparing the polarization curve obtained with experimental

data from [15]. In the last section, the solution of the optimization problem (2.2.5) will

be presented for a long channel geometry and the short channel geometry considered

in [15].

102
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5.1 Description of the test cases

Two types of geometries will be considered to solve our optimization problem: long

and short air channel geometries. The short geometry was studied experimentally in

[15] while a longer channel and larger MEA (membrane electrode assembly) tends to

produce a larger current.

Table 5.1 lists the values of the parameters used to set the optimization problem

for both geometries. The values used for the short geometry are taken from [15]. For

the long geometry, the values for ε, K, ĉo,in, ĉn,in are used in [14] and [22]. Figure 5.1

shows the domains with the main geometrical parameters.

The two constants, hA,min and hA,max, set lower and upper limits for the widths

of the optimized air channel geometries. Any optimized air channel geometry will be

required to have a minimum width not less that hA,min and a maximum width not

greater than hA,max.

Table 5.2 lists standard parameters used for both geometries. These parameters

are documented in [35].

5.2 Verifying the numerical solution of the simpli-

fied model

The numerical solution is obtained using the finite element method presented in Chap-

ter 4. In this section, the long geometry is considered. To show that the numerical

solution is reliable, it must be verified that the solution is relatively independent from

the mesh used. Two meshes are considered: a coarser mesh (Mesh 1) and a mesh

obtained by refining Mesh 1 (Mesh 2), see Figure 5.2 and Table 5.3.

The numerical solutions corresponding to the two meshes are compared on the

cross-section x = 0.2m, see Figure 5.1. It is enough to compare the main variables:

the oxygen mass fraction ĉo, the gas pressure drop p̂ − pin, and the two velocity
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Table 5.1: Primary parameters used to solve the simplified and general mod-
els

Parameter Long Geometry Short Geometry Description

l 0.4m 0.02m length of the air channel and GDL

hA 6× 10−3m 10−3m width of the air channel

hG 3× 10−3m 3.8× 10−4m width of GDL

ε 0.74 0.4 porosity of GDL

K 10−12m2 1.76× 10−11m2 permeability of GDL

ĉo,in 0.24 0.96 oxygen mass fraction at the inlet Γi

ĉn,in 0.69 0 nitrogen mass fraction at the inlet Γi

pout 105Pa 105Pa gas pressure at the outlet Γo

φ 3.8× 10−3m2/s 6.4× 10−4m2/s volumetric flow rate at the inlet Γi

hA,min hA/5 hA/5 minimum width of the air channel

hA,max 3hA 3hA maximum width of the air channel

Erev 1.115V 1.115V reversible cell voltage

r 3.65× 10−5Ωm2 3.65× 10−5Ωm2 ohmic resistance of the fuel cell

ĉo,ref ĉin ĉin oxygen reference mass fraction

αm 0.3 0.3 net transported water across M

components (û1, û2). Figure 5.3 shows that the graphs of the two solutions coincide.

In conclusion, the numerical solution obtained using Mesh 1 is acceptable. All the

subsequent results will be computed with Mesh 1.
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Table 5.2: Standard parameters used to solve the simplified and general
models

Parameter Value Description

µair 2.0721× 10−5 kg/(m · s) dynamic viscosity of air at T = 348K

µw 1.0585× 10−4 kg/(m.s) dynamic viscosity of water at T = 348K

µsv 1.688× 10−5 kg/(m.s) dynamic viscosity of the gas at the saturation point

T 348 K gas temperature

Mo 32× 10−3 kg/mol molar mass of oxygen

Mn 28× 10−3 kg/mol molar mass of nitrogen

Mw 18× 10−3 kg/mol molar mass of water

R 8.314 J/(mol.K) universal ideal gas constant

F 96, 485 A · s/mol Faraday’s constant

5.3 Comparing the numerical solutions of the sim-

plified and general models

The goal of this section is to compare the numerical solutions of the simplified and

general models. The two solutions are compared on the cross-section x = 0.2m.

Provided the two solutions are close enough, the simplified model can be used to

solve the optimal shape problem (2.2.5).

The simplified model makes the following assumptions: the gas density and the

nitrogen mass fraction are constant in both domains A and G. Figures 5.4 and 5.5

show these assumptions are reasonable since the oxygen mass fraction, ĉo, the gas

pressure drop, p̂ − pin, and the gas velocity components,(û1, û2), are close for both

models. These are the main variables that must match for the optimization problem

to be set with the simplified model.

Figure 5.5 also shows that both the gas density,ρg, and the nitrogen mass fraction,
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Figure 5.1: Domains with the air channel and GDL, and the cross-section
x = 0.2m at which two numerical solutions are compared.

ĉn, gradually deviate along the cross-section toward the membrane. Note that the

simplified model is derived assuming ρg is constant, while the density in Figure 5.5

is recovered from the solution of the simplified model using the ideal gas law. The

general model gives slightly smaller nitrogen mass fraction and gas density in domain

G than the ones assumed in the simplified model. Domain G is to a large extent

occupied by the water vapor, which reduces the relative mass fraction of nitrogen

and oxygen. Since also the molar mass of water is less than those of oxygen and

nitrogen, the gas density in domain G must decrease. This difference, however, has a

minor effect on the main variables ĉo, p̂, and (û1, û2) when compared to the simplified

model. Therefore, the simplified model well approximates the general model.

5.4 Validating the simplified model

The main objective of this section is to proceed with some validation of the numerical

solution of the simplified model by comparing it with experimental results. The

comparison is made on the short air channel. First, the simplified model is solved

as binary system involving oxygen and water vapor. The numerical solution of this

problem is shown in Figure 5.6.

A similar model has been considered in [15] to describe the fluid dynamics in
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Mesh 1 Mesh 2

Zoom of mesh 1 near the interface Σ Zoom of mesh 2 near the interface Σ

Figure 5.2: The two meshes used to verify relative mesh independence of the
solution.

the cathode part of the fuel cell, where the “polarization curve” has been found ex-

perimentally. The polarization curve presets the fuel cell’s voltage (Ecell) versus its

averaged current density (I). The polarization curve is used to evaluate the perfor-

mance of the fuel cell.

Using the same parameters as in [15], the simplified model is solved at different

cell voltages, Ecell, and the polarization curve is then obtained. The polarization curve

obtained with the simplified model was compared with the experimental curve found

in [15]. As shown in Figure 5.7, the two curves are found to be close to each other

except for small mismatch at high current density. Hence, our model can produce a

valid polarization curve for a wide range of fuel cell voltage.
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Table 5.3: Properties of Mesh 1 and Mesh 2

Number of elements of Mesh 1 Mesh 2

domain A (air channel) 3811 12967

domain G (GDL) 2686 6594

domains A and G 6497 19561

each of channel inlet and outlet 11 16

channel wall (Γ) 104 200

the channel and GDL interface 193 207

GDL walls 10 10

membrane 193 207

5.5 Optimal Shape Design of the Air Channel

The goal of this section is to present and discuss the solution of the shape optimization

problem (2.2.5). To recall, this problem consists in finding the optimal shape design

of the air channel’s wall, Γ, such that the following cost functional E(Γ) is minimized:

E(Γ) =
1

2
a

∫
M

(
Nĉo · ν −

1

|M |

∫
M

Nĉo · ν
)2

− b
∫
M

Nĉo · ν + e (pin − pout) , (5.5.1)

where a, b, and e are some given nonnegative parameters. The cost functional E(Γ)

has three objectives or terms: the first represents the total variance of the oxygen mass

flux on the membrane, the second term the total oxygen mass flux on the membrane,

and the last term the pressure drop between the inlet and the outlet ( see chapter 2

for more details). The optimization problem is going to be solved first by considering

one objective by setting one parameter, say a = 1, and the others to be zero. Next,

mixed objectives will be considered. In this case, the parameters a, b, and e are

chosen such that the considered terms of E(Γ) have the same order.

This optimization problem is going to be solved first for the long air channel with
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ĉo gas pressure drop [Pa]

û1 [m/s] û2 [m/s]

Figure 5.3: Comparison of the numerical solutions, obtained along a vertical
cross-section at x = 0.2m, obtained using Mesh 1 (solid line) and Mesh 2
(dashed line). The curves are superposed. The abscissa of the graphs is the
y-coordinate [m] along the cross section.

length l = 0.4m and then for the short air channel (l = 0.02m) introduced in [15].

For both geometries, several cases are considered by choosing different values of the

parameters a, b, and e.

Recall that the optimal shape is computed with the gradient method and that

steps refer to the iterations of this method. For every iteration of the Gradient

method, it is required to find the numerical solutions of the state and adjoint problems

as well as computing the shape gradient of the cost functional E. Solving the state and

adjoint problems, for every given η, takes about one minute for the simplified model

and two minutes for the general model. However, solving for η using the Bisection

method requires 14 iterations to meet the tolerance. Therefore, every iteration of the

gradient method requires about 14 minutes for the simplified model and 28 minutes

for the general model. Hence, finding an optimal shape Γ in 25 Gradient method
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iterations requires about 6 hours.

5.5.1 Long air channel: l = 0.4m

Case 1: a = 1, b = e = 0

In this case, it is required to find the optimal shape of the air channel so that the

oxygen mass flux or the current density is as uniform as possible on the membrane.

With the initial geometry, the oxygen mass flux on M is not uniform and decreases

along the air channel as shown in Figure 5.8. Unlike the initial geometry, the opti-

mized geometry leads to a more uniform oxygen mass flux on M (see Figure 5.8) and

therefore a more uniform current density on M . In turn, the cathode catalyst layer

is used efficiently. Also, having a uniform oxygen mass flux on M makes the water

mass flux uniform, which is very useful to avoid accumulation of water in the cell and

also to avoid the dry out of the membrane.

In comparison with the initial geometry, note that the optimized geometry of the

air channel is wider near the inlet and narrower near the outlet in order to have the

oxygen mass flux uniform.

Table 5.4 shows that the optimized geometry not only decreases the total variance

of the oxygen mass flux, but also increases the total oxygen mass flux on the mem-

brane. One drawback, however, is that the optimized geometry leads to an increase

in the pressure drop, which is due to the narrow channel shape near the outlet.

The last two figures in Figure 5.8 present the convergence of the air channel wall,

Γ, while approaching the optimal shape design of the air channel and the associated

oxygen mass flux on the membrane Nĉo . These figures show that the convergence is

fast enough as the geometry obtained at step 10 is very close the final one.
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Case 2: b = 1, a = e = 0

In this case, it is required to find the optimal shape of the air channel so that

the total oxygen mass flux is maximized on the membrane, which is equivalent to

maximizing the total current generated. Figure 5.9 shows that the optimal channel

shape turns to be the one with smallest width. Yet having the air channel as such

would increase the pressure drop as noted in Table 5.4. Note also that with the

optimized geometry, the oxygen mass flux or the current density is maximized but not

uniform on the membrane, resulting in a non-optimal use of the membrane catalyst.

Case 3: e = 1, a = b = 0

In this case, it is required to find the optimal shape of the air channel minimizing

the pressure drop between the inlet and the outlet. Figure 5.10 shows that the optimal

channel shape turns to be the one with largest width. As shown in Figure 5.10

and Table 5.4, the optimal geometry leads to minimal pressure drop, but smaller,

nonuniform oxygen mass flux on the membrane.

Case 4: a = 1, b = 3.3e− 6, e = 0

In this case, the problem is to find the optimal shape of the air channel so that

oxygen mass flux is made uniform but also maximum on the membrane. As shown in

Figure 5.11 and Table 5.4, the optimal shape design maximizes the oxygen mass flux

(or the current density) while keeping the flux relatively uniform on the membrane.

Note also that the pressure drop has increased due the narrow channel shape near

the outlet.

Case 5: a = 1, e = 3.5e− 10, b = 0

In this case, it is required to find the optimal shape of the air channel minimizing

the total variance of the oxygen mass flux on the membrane and minimizing the
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pressure drop between the inlet and the outlet. Figure 5.12 and Table 5.4 show an

improvement in the design meeting these two objectives.

In this case it is hard to satisfy the two objectives as the pressure drop increases

when the variance of the oxygen mass flux decreases, see case 1 for example.

To compare these cases at different Ecell voltages, it is essential to find the polar-

ization curve corresponding to each optimized geometry. This helps us compare the

the averaged current densities of the above cases at different cell voltages. Figure 5.13

presents the polarization curves corresponding to the optimal shape designs obtained

in the above cases.

The polarization curve for the initial geometry is denoted by case 0 with black

color. All cases have almost same current density at low voltages. The polarization

curve for case 1 shows that the current density is increased while it is uniform on the

membrane. The polarization curve for case 2 shows the maximum current density as

required, yet the pressure drop is very high. An intermediate case between case 1 and

case 2 is case 4, where it is required to have maximal, and uniform current density.

The polarization curve corresponding to this case shows a remarkable improvement in

the current density in comparison with that in case 0. In addition, the pressure drop

is reasonable in comparison with the one obtained from case 2. The least pressure

drop is achieved by case 3, where in this case the polarization curve shows the least

current density in comparison with the other cases. An intermediate case between

case 1 and case 3 is case 5, where the polarization curve shows a little increase in the

current density.

5.5.2 Short air channel with l = 0.02m and ε = 0.4

Small fuel cells are important since they are needed for small devices. In this subsec-

tion, the fuel cell considered has the same dimensions as in [15], and the system is

binary involving oxygen and water vapor. The objective of this subsection is to solve
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the optimization problem for the short air channel (l = 0.02m).

First, let us comment on the steady state solution with the initial geometry.

Note that in Figure 5.14, the depletion of the oxygen along the channel and across

the GDL is very small due to the small size of the fuel cell. Also, the variance of

the oxygen mass flux on the membrane is already small enough. However, some

design improvements can still be made by having a uniform current density on the

membrane, and a lower pressure drop between the inlet and the outlet.

Case 1: a = 1, b = e = 0

In this case, it is required to minimize the variance of the oxygen mass flux on the

membrane, which is equivalent to have a uniform current density on the membrane.

Figure 5.14 and Table 5.5 show that the optimized geometry of the air channel leads

to a smaller variance of the oxygen mass flux on the membrane. However, the total

oxygen mass flux on the membrane negligibly decreased, unlike the increase observed

for the same case with the long air channel (compare with Figure 5.8 and Table 5.4).

As for the long channel geometry, this case results in an increase in the pressure drop.

Case 2: b = 1, a = e = 0

In this case, it is required to find the optimal air channel shape maximizing the

oxygen mass flux on the membrane. Figure 5.15 shows that the optimal channel shape

found is the one with the smallest width possible. This causes the pressure drop to

increase dramatically while the increase in the total oxygen mass flux is negligible, as

noted in Table 5.5.

Case 3: e = 1, a = b = 0

In this case, it is required to find the optimal air channel shape minimizing the

pressure drop. Figure 5.16 shows that the optimal shape is the one with maximum
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width. More interestingly, as shown in Table 5.5, the total oxygen mass flux negligibly

decreased though the width of the air channel is set to the maximum allowed, while

the pressure drop is a lot smaller. Hence, the optimized geometry leads to a minimal

pressure drop while still having the total oxygen mass flux very close to the one in

the initial case, or even the geometry with maximal total oxygen flux on M .

Case 4: a = 1, e = 6.3e− 14, b = 0

From the above cases, it follows that it is better to consider wider air channels

which contribute to decrease the pressure drop with almost the same total oxygen

mass flux on the membrane. Since the variance of the oxygen mass flux is important

as well, it is interesting to consider the present case.

This case requires to find the optimal channel shape that minimizes the total

variance of the oxygen mass flux and minimizes the pressure drop. Figure 5.17 and

Table 5.5 show that the optimized geometry leads to the required objectives.

5.6 Long versus short channel design

Let us make some remarks on the differences of impact when designing long and short

air channels. For long air channels, the impact of the optimal design on values of the

cost functional is evident in all cases: the total oxygen mass flux on the membrane

notably increased while its variance decreased, and the pressure drop between the

inlet and outlet decreased.

However, for short air channels the depletion of the oxygen mass fraction is very

small in both the air channel and GDL. This is due to the small size of the fuel

cell. Consequently, the variance of the oxygen mass flux is small on the membrane.

Hence, redesigning the air channel cannot improve a lot the oxygen mass flux or

its variance on the membrane. Yet, optimal design can decrease the pressure drop

between the inlet and outlet, while maintaining almost the same oxygen mass flux on
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Table 5.4: Values of the cost functional corresponding to different cases, for
the long channel geometry

Case Number Step Total Variance of NO Total NO [kg/s] pin − pout[Pa] E

0 0 7.7e-010 2.3e-004 2.1 –

1 66 4.9e-011 2.4e-004 68.8 4.9e-011

2 1 6.4e-010 2.4e-004 255.4 -2.4e-004

3 1 1.7e-009 2.1e-004 0.080 0.080

4 61 5.6e-011 2.4e-004 88.4 -7.3e-010

5 51 4.5e-010 2.337e-004 2.8 1.49e-009

Table 5.5: Values of the cost functional corresponding to different cases, for
the short channel geometry

Case Number Step Total Variance of NO Total NO [kg/s] pin − pout [Pa] E

0 0 2.8e-013 1.34608e-005 4.4 –

1 96 5.2e-014 1.34607e-005 99.2 5.2e-014

2 23 2.849e-013 1.34609e-005 545.6 -1.34609e-005

3 1 5.3e-013 1.344e-005 0.17 0.17

4 27 1.6e-013 1.345e-005 1.2 2.4e-013

the membrane.

In conclusion, redesigning the cathode air channel is effective for both long and

short channels.
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General Model Simplified Model

ĉo ĉo

gas pressure drop [Pa] gas pressure drop [Pa]

û1 [m/s] û1 [m/s]

û2 [m/s] û2 [m/s]

Figure 5.4: Surface plot of the numerical solutions for the simplified (at right)
and general (at left) models for the long geometry. The coordinates of the
geometry are in meters.
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ĉo ĉn

gas pressure drop [Pa] gas density [kg/m3]

û1 [m/s] û2 [m/s]

Figure 5.5: Solution of the simplified model (solid line) and general (dashed
line) models on a vertical cross-section at x = 0.2m. The abscissa of the
graphs is the y-coordinate [m] along the cross section.
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ĉo gas pressure drop [pa]

û1 [m/s] û2 [m/s]

Figure 5.6: The numerical solution of the simplified model for the short air
channel geometry. The coordinates of the geometry are in meters.

Figure 5.7: Comparison of the polarization curve obtained from the simplified
model (solid line) with the one found experimentally in [15] (dashed line).
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ĉo Nĉo,y [10−4kg/(m2 · s)] on M (initial geometry)

ĉo Nĉo,y [10−4kg/(m2 · s)] on M (optimized geometry)

shape of the boundary Γ after n steps convergence of the oxygen mass flux on M

Figure 5.8: The numerical solution while minimizing only the total variance
of the oxygen mass flux on M , for the long channel geometry (a = 1, b =
e = 0)

ĉo Nĉo,y [10−4kg/(m2 · s)] on M (optimized geometry)

Figure 5.9: The numerical solution while maximizing only the oxygen mass
flux on M , for the long channel geometry (b = 1, a = e = 0)
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ĉo Nĉo,y [10−4kg/(m2 · s)] on M (optimized geometry)

Figure 5.10: The numerical solution while minimizing only the pressure drop
between the inlet and the outlet, for the long channel geometry (e = 1,
a = b = 0)

ĉo Nĉo,y [10−4kg/(m2 · s)] on M (optimized geometry)

Figure 5.11: The numerical solution while minimizing the variance of the
oxygen mass flux and maximizing the flux on the membrane, for the long
channel geometry (a = 1, b = 3.3e− 6, e = 0)

ĉo Nĉo,y [10−4kg/(m2 · s)] on M (optimized geometry)

Figure 5.12: The numerical solution while minimizing both the variance of
the oxygen mass flux on the membrane and the pressure drop between the
inlet and the outlet, for the long channel geometry (a = 1, e = 3.5e − 10,
b = 0)
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Figure 5.13: The polarization curves corresponding to the optimization cases
considered.

ĉo Nĉo,y [10−5kg/(m2 · s)] on M (initial geometry)

ĉo Nĉo,y [10−5kg/(m2 · s)] on M (optimized geometry)

Figure 5.14: The numerical solution while minimizing only the total variance
of the oxygen mass flux on the membrane, for the short channel geometry
(a = 1, b = e = 0)
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ĉo Nĉo,y [10−5kg/(m2 · s)] on M (optimized geometry)

Figure 5.15: The numerical solution while maximizing only the total oxygen
mass flux on the membrane, for the short channel geometry (b = 1, a = e = 0)

ĉo Nĉo,y [10−5kg/(m2 · s)] on M (optimized geometry)

Figure 5.16: The numerical solution while minimizing only the pressure drop
between the inlet and the outlet, for the short channel geometry (e = 1,
a = b = 0)

ĉo Nĉo,y [10−5kg/(m2 · s)] on M (optimized geometry)

Figure 5.17: The numerical solution of minimizing both the total variance of
the oxygen mass flux the membrane and the pressure drop between the inlet
and the outlet, for the short channel geometry (a = 1, e = 6.3e− 14, b = 0)



Chapter 6

Conclusion

This chapter summarizes the contributions of the thesis. It also lists interesting future

work that could result from our investigations.

6.1 The contribution of the thesis

In chapter 2, the thesis pays a particular attention in modeling the cathode part of the

fuel cells by considering the following model parameters as variables: the gas mixture

density, the mixture viscosity, and the reaction taking place at the cathode/anode

interface. These parameters are taken constants by many authors to simplify the

model, yet without investigation. Investigating the sensitivity of these parameters is

done by considering two models: a general model and a simplified model assuming

constant gas mixture density and constant nitrogen mass fraction. This led to sim-

plify the general model to reduce the cost of numerical computations after careful

comparison with the general model to evaluate the sensitivity of these parameters.

Chapter 2 also contributes in that it couples the model used by [22] with a model for

the reaction kinetics to obtain polarization curves. A new optimization problem was

stated that includes a cost functional E representing the fuel cell performance and

123
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the shape of the gas channel as design variable.

Chapter 3 consists of three mathematical analysis parts. In the first part, the

shape gradient of the cost functional E is calculated by using the theory of shape

calculus and an adjoint system. This is a primary step for solving the shape opti-

mization problem in chapter 2 with the least computational expenses. The second

part of this chapter proves the existence of the shape derivatives of the state variables

ĉ, û, p̂ and pin, using the implicit mapping theorem, Sobolev embeddings, and fixed

point formulation. The shape differentiability of the cost functional E is also proved.

Existence of the shape derivative of such complex problems coupling several PDEs

over several domains is rarely discussed in the literature. The third part proves the

existence and uniqueness of the solution of the adjoint system, which is needed to

compute the shape gradient. In the second and the third part, both the volumetric

flow rate φ at the channel inlet and the oxygen mass fraction cin at the channel inlet

are assumed to be small enough. To our knowledge, the shape optimization and the

analysis of the related problems have never been done for fuel cell applications.

Chapter 4 presents the numerical methods used to solve the shape optimization

problem. This involves the finite element formulation for the steady state and adjoint

problems. We proposed a method to compute the reaction rate Hm for arbitrary cell

voltage Ecell. This problem is resolved by using the Bisection method. Resolving this

problem makes it possible to compute the entire polarization curve, which is a tool to

evaluate the efficiency of the fuel cell and validate the model. A fixed point method

was attempted, as is often done to solve nonlinearities in fuel cell problems, but could

not provide the whole polarization curve. We think that the Bisection method as

implemented here is a simple and powerful alternative.

In chapter 5, the numerical solution of the simplified and general models are

computed and compared. The conclusion of the comparison is that the assumptions

made in the simplified model are reasonable. Also, the simplified model is shown

to be able to produce a valid polarization when compared to the experimental one
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in [15]. Both short and long air channels are considered to solve different shape

optimization cases while treating single and mixed objectives. A main contribution

in this chapter is that these cases are compared by considering their polarization

curves along with the cost functional E. To our knowledge, this consideration is not

found in the literature, where only polarization curves are used.

We found that designing long and short air channels has a different impact on

increasing the current density of the fuel cell. Designing long air channels leads to a

relatively large increase in the current density. However, for short air channels this

objective is already met before redesigning the air channel, which refers to the high

oxygen mass fraction on the membrane. On the other hand, designing both short and

long air channels has a notable improvement on making the reaction rate uniform on

the membrane and decreasing the pressure drop between the inlet and outlet of the

air channel.

6.2 Future work

There is still some interesting future work:

1. Considering the three dimensional shape optimization problem since it reflects

the real situation. One challenge will be treating the computational expense.

2. Finding the optimal design of the cathode/anode interface M instead of Γ. This

could lead to a greater impact on the performance of the fuel cell. Another

controlling parameter to consider is the porosity ε.

3. Investigating if the existence and uniqueness of the steady state and adjoint

problems can be proved with φ or cin not necessarily small.
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[6] T. Gallouët and A. Monier. On the regularity of solutions to elliptic equations.

Rendiconti di Mathematica, 19(VII):471–488, 1999.

[7] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second

Order. Springer-Verlag, Berlin, second edition, 1983.

[8] J. Gopalakrishnan and W. Qiu. Partial expansion of a Lipschitz domain and

some applications. Frontiers of Mathematics in China, 2012.

126



BIBLIOGRAPHY 127

[9] P. Grisvard. Singularities in Boundary Value Problems. Springer-Verlag,Masson,

1992.

[10] M. Grujicic and K. Chittajallu. Design and optimization of polymer electrolyte

membrane (PEM) fuel cells. Applied Surface Science, 227:56–72, 2004.

[11] M. Grujicic and K. Chittajallu. Optimization of the cathode geometry in the

polymer electrolyte membrane (PEM) fuel cells. Chemical Engineering Science,

59:5883–5895, 2004.

[12] J. Haslinger and R. A. E. Makiner. Introduction to Shape Optimization: Theory,

Approximation and Computation. SIAM, 2003.

[13] A. Jamekhorshid, G. Karimi, and I. Noshadi. Current distribution and cath-

ode flooding prediction in a PEM fuel cell. Journal of the Taiwan Institute of

Chemical Engineers, 42:622–631, 2011.

[14] M. J. Kermani and J. M. Stockie. Heat and mass transfer modeling of dry gases

in the cathode of PEM fuel cells. International Journal of Computational Fluid

Dynamics, 18(2):153–164, February 2004.

[15] N. Khajeh-Hosseini-Dalasm, K. Fushinobu, and K. Okazaki. Three-dimensional

transient two-phase study of the cathode side of a PEM fuel cell. International

Journal of Hydrogen Energy, 35:4234–4246, 2010.

[16] A. Kumar and R. G. Reddy. Effect of channel dimensions and shape in the flow-

field distributor on the performance of polymer electrolyte membrane fuel cells.

Journal of Power Sources, 113:11–18, 2003.

[17] J. L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and

Applications, volume I. Springer-Verlag, 1972.



BIBLIOGRAPHY 128

[18] J. L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and

Applications, volume II. Springer-Verlag, 1972.

[19] A. Mawardi, F. Yang, and R. Pitchumani. Optimization of the operating param-

eters of a proton exchange membrane fuel cell for maximum power density. The

Journal of Fuel Cell Science and Technology, 2(2):121–135, 2005.
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