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Abstract

The development of numerical methods for the incompressible Navier-Stokes equa-
tions received much attention in the past 50 years. Finite element methods emerged
given their robustness and reliability. In our work, we choose the P2-P1 finite element
for space approximation which gives 2nd-order accuracy for velocity and 1st-order ac-
curacy for pressure. Our research focuses on the development of several high-order
semi-implicit time-stepping methods to compute unsteady flows. The methods inves-
tigated include backward difference formulae (SBDF) and defect correction strategy
(DC). Using the defect correction strategy, we investigate two variants, the first one
being based on high-order artificial compressibility and bootstrapping strategy pro-
posed by Guermond and Minev (GM) and the other being a combination of GM
methods with sequential regularization method (GM-SRM). Both GM and GM-SRM
methods avoid solving saddle point problems as for SBDF and DC methods. This ap-
proach reduces the complexity of the linear systems at the expense that many smaller
linear systems need to be solved. Next, we proposed several numerical improvements
in terms of better approximations of the nonlinear advection term and high-order ini-
tialization for all methods. To further minimize the complexity of the resulting linear
systems, we developed several new variants of grad-div splitting algorithms besides
the one studied by Guermond and Minev. Splitting algorithm allows us to handle
larger flow problems. We showed that our new methods are capable of reproducing
flow characteristics (e.g., lift and drag parameters and Strouhal numbers) published
in the literature for 2D lid-driven cavity and 2D flow around the cylinder. SBDF
methods with grad-div stabilization terms are found to be very stable, accurate and
efficient when computing flows with high Reynolds numbers. Lastly, we showcased
the robustness of our methods to carry 3D computations.
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Chapter 1

Introduction: Modeling of
Incompressible Flows

Numerical approximations for incompressible flows are one of the most studied topic
in the realm of applied mathematics. The dynamic motion of fluids is usually gov-
erned by a set of partial differential equations (PDEs). In simplified problems, these
PDEs can possibly be solved using analytical methods. In most flow problems, an-
alytical solutions cannot be obtained because of the complexity of geometries and
boundary conditions, as well as the presence of nonlinearity in the PDE. These flows
can only be approximated using numerical methods, aiming for the best achievable
accuracy. This chapter has demonstrated several preliminary computations to solve
incompressible Navier–Stokes equations for both steady and non-steady flows. This
is done using mixed finite element methods for space and various methods of lines
for time approximations. From there, we will highlight issues pertaining to numerical
accuracy, stability, convergence and efficiency. Finally, we suggest the best methods
to compute solutions of steady and unsteady problems. This preliminary study sub-
sequently provides motivation for the development of time-stepping methods which is
the main contribution of this thesis. Before reaching the core discussion of this chap-
ter, we provide a short discussion on the Stokes equations and steady Navier–Stokes
equations which we feel are both important and useful to study such flows.

1.1 Stokes Equations

Stokes equations have been used to model creeping flows; i.e., laminar flows where
inertial effects are negligible. These equations are named after George Gabriel Stokes,

1



1. INTRODUCTION: MODELING OF INCOMPRESSIBLE FLOWS 2

the same mathematician who derived Stokes’ law in 1851. The equations are

−ν∆u +∇p = f , in Ω,

∇ · u = 0, in Ω,

u = 0, on Γ.

(1.1.1)

The first equation is called the momentum equation and the second is the equation
for mass conservation, which are solved simultaneously in a connected domain Ω. For
simplicity, we define homogeneous Dirichlet boundary condition along the boundary
Γ of Ω. For three-dimensional flows, the velocity u = (u, v, w) and external volumic
force f = (f1, f2, f3) are vector fields while the pressure p is a scalar function. The
parameter ν > 0 is known as the viscosity coefficient which is assumed to be a
fixed real number. When modeling flow of fluid having high viscosity ν = O(1) is
typically chosen. For mass conservation in the domain Ω, we assumed that the flow
is incompressible hence the divergence of the velocity is equal to zero.

To solve (1.1.1), we used a well-known numerical technique known as the finite element
methods. Finite element methods have been introduced in the early 1950s and are
known to be indispensable for many problems arising in engineering, physics and
mathematics. Because of their robustness to handle physical problems with complex
geometries, finite element methods are capable of solving complex PDEs. Finite
element methods are based on weak formulation of the PDE. After multiplying by
a test function in a proper functional space and using Green’s formula, the weak
formulation for the Stokes equations is expressed as follows: Find the solution u ∈ V
and p ∈ Q such that

∫

Ω

ν∇u · ∇v dx−
∫

Ω

p∇ · vdx =

∫

Ω

f · v dx, ∀v ∈ V,

−
∫

Ω

q∇ · u dx = 0, ∀q ∈ Q.
(1.1.2)

where V is the usual Sobolev functional space [H1
0 (Ω)]d (i.e., d = 2, 3 is the dimension),

the space consisting of all functions in L2(Ω) whose first derivative (in the sense of
distribution) is in L2(Ω) and which vanishes a.e. on the boundary Γ. We also define
Q = L2

0(Ω), the space of L2-functions with zero mean in Ω.

Introducing finite dimensional subspaces Vh ⊂ V and Qh ⊂ Q, the discrete weak
formulation for Stokes equations is: Find the solution uh ∈ Vh and ph ∈ Qh such that

∫

Ω

ν∇uh · ∇vh dx−
∫

Ω

ph∇ · vh dx, =

∫

Ω

f · vh dx, ∀vh ∈ Vh,

−
∫

Ω

qh∇ · uh dx = 0, ∀qh ∈ Qh.

(1.1.3)
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To solve (1.1.3), mixed finite element methods are used. For instance, a “compatible”
pair of finite element spaces for uh and ph is chosen to avoid spurious pressure modes.
Spurious pressure modes show up in the form of “checkerboard” solutions on the
pressure ph, in particular when an “unhealthy” pair of finite elements is chosen (see [6,
22]). For example, this occurs when the same degree of piecewise polynomials are used
for velocity and pressure on the triangular elements; i.e., Pk-Pk for velocity-pressure on
the rectangular elements, Qk-Qk, where k ≥ 0. The pair of finite element spaces has
to fulfill Ladyzhenskaya–Babǔska–Brezzi (LBB) or discrete inf-sup condition: There
exists β > 0 independent of the grid size h such that

inf
qh∈Qh

sup
vh∈Vh

∫
Ω
qh∇ · vh dx

‖qh‖Qh‖vh‖Vh
≥ β.

Besides the discrete inf-sup condition, the discrete space Vh for velocity must be richer
than the discrete space Qh for pressure to avoid a “locking phenomena” where the
only incompressible velocity field uh is the null field. Here, we choose the Taylor–
Hood or P2-P1 elements which form a compatible pair to solve (1.1.3). Taylor–Hood
elements are continuous piecewise Lagrange polynomials of degree 2 and 1 for the
velocity and pressure, respectively. This finite element is popular since it satisfies the
inf-sup condition and the implementation is straighforward. It is also fairly accurate,
especially the velocity which has 2nd-order accuracy. The pressure is only 1st-order
accurate but this is expected (pressure is less regular) and often sufficient. A detailed
discussion on the compatibility of P2-P1 elements and the formal proof of the inf-sup
condition can be found in [6, 7, 22, 48]. Along this direction, we solve (1.1.3) by
considering the following discrete finite element spaces

Vh = {vh ∈ [C0(Ω)]
d | vh|K ∈ [P2]d,∀K ∈ Th},

Qh = {qh ∈ C0(Ω) | qh|K ∈ P1,∀K ∈ Th}.
(1.1.4)

Th is a regular triangulation of the domain (see Appendix B.1) using conforming mesh
and we have

Ω =
⋃

K∈Th
K.

Each element K has the degrees of freedom (d.o.f.) shown on Figure 1.1 for velocity
(left) and pressure (right). The mesh size h is defined as

h = max
K∈Th
{diam(K)} (1.1.5)
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Figure 1.1: P2-P1 Finite Element

Solving (1.1.2) can be understood as minimizing the energy of the system over all
v ∈ V subject to divergence free constraints. The pressure p ∈ Q is then regarded
as a Lagrange multiplier. In other words, any mixed finite element discretization of
Stokes equations (1.1.3) produces a linear system of the form

[
Ah BT

h

Bh 0

] [
uh
ph

]
=

[
f
0

]
, (1.1.6)

where the block matrix, Ah ∈ Rn×n, Bh ∈ Rm×n,uh ∈ Rn, ph ∈ Rm and f ∈ Rn. Here,
m and n are the number of unknowns for ph and uh, respectively. The matrix in
(1.1.6) is symmetric but indefinite (has both positive and negative eigenvalues) with
a null block on the lower diagonal. This type of linear system is called a “saddle point
problem”.

Computational challenges occur while solving saddle point problems. Direct linear
solvers can be easily overwhelmed whenever finer meshes or 3D flows are involved
since uh and ph are both coupled, and Gaussian elimination leads to a lot of fill-in of
the space matrix. Moreover, the computational cost in terms of number of floating
point operations could be as high as O((n+m)3) and memory requirements become
prohibitive. On the other hand, the convergence behaviour of iterative solvers is
usually not good since the global matrix is indefinite [4]. To mitigate this problem,
iterative solvers with specially constructed preconditioner are required to accelerate
the convergence [5]. Nonetheless for most of smaller incompressible flow problems,
the linear system can be best solved using direct method (e.g., using unsymmetric
multi-frontal methods, UMFPACK [11]).

We recall that for Stokes equations the discrete operator BT
h corresponds to the

gradient operator for ph and furthermore ph ∈ Qh ⊂ L2
0(Ω). This implies that

Ker(BT
h ) 6= {0} if only a Dirichlet boundary condition on the velocity uh is involved

and if Qh is taken as a subspace of L2(Ω) rather than of L2
0(Ω) (i.e., zero-average pres-

sure is not enforced). The global linear system (1.1.6) does not yield a unique solution
since the solution ph is unique up to an additive constant. Hence, the global matrix is
singular which causes technical difficulties to solve the linear system. When solving
Stokes equations involving Neumann boundary conditions however, the uniqueness
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of p or ph is guaranteed. To address this issue, several numerical techniques are
proposed, as explained in the following section.

1.2 Coupled Methods

In problem (1.1.3), the variables uh and ph are coupled, and uncoupling is hardly
achievable for most pair of compatible FE. The resulting linear system is either solved
in a coupled fashion or by iterating between momentum (to obtain uh) and continuity
equations (to obtain ph). In both cases, non-uniqueness of the pressure ph (resulting
from Dirichlet boundary condition on the velocity uh) requires special care. We first
present two coupled methods to address the lack of uniqueness of the pressure, known
as the penalization and zero mean methods.

1.2.1 Penalization Method

As mentioned earlier, solving linear system (1.1.6) is not always possible since the
global matrix is singular. Temam [65] proposed to add a penalization term εp to the
continuity equation such that ∇ ·u + εp = 0. The penalization parameter ε > 0 is an
arbitrary small real number. With this pertubation term, the global matrix has full
rank and Ker(BT

h ) = {0}. The linear system can then be solved for any right hand
side and reads as follows:

[
Ah BT

h

Bh −εM

] [
uh
ph

]
=

[
f
0

]
, (1.2.1)

where M is a mass matrix (eventually lumped). By using penalization method,
we expect that the solutions are slightly perturbed from the actual solution with a
discrepancy that depends on the parameter ε. In practice, the penalization parameter
ε is set to the lowest limit to obtain a good solution. On the other hand, ε should not be
too small to prevent over-penalization which eventually “destroys” the solution. The
optimal penalization parameter may depend on the smallest element size hmin such
that ε = O(h−1

min). To control the mesh dependence in our numerical computations,
we chose ε = ε

hmin
where ε = 1× 10−8 is typically fixed.

1.2.2 Zero Mean Method

We recall that the space for the pressure L2
0(Ω) is isomorphic to the quotient space

L2(Ω)/R, since the pressure is set up to an arbitrary constant. This is equivalent to
finding the pressure p within the functional space L2(Ω) such that p satisfies a zero
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mean condition over the domain; i.e.,
∫

Ω
p dx = 0. This can be done by introducing

a Lagrange multiplier, µ ∈ R, to enforce the zero average and modifying problem
(1.1.2) as follows: Seek (u, p, λ) ∈ [H1

0 (Ω)]d × L2(Ω)× R such that
∫

Ω

ν∇u · ∇v dx−
∫

Ω

p∇ · v dx =

∫

Ω

f · v dx, for all v ∈ [H1
0 (Ω)]d,

−
∫

Ω

q∇ · u dx−
∫

Ω

µq dx = 0, for all q ∈ L2(Ω),

−
∫

Ω

λp dx = 0, for all λ ∈ R.

(1.2.2)

Here, one can see that the second constraint appears as the third equations in (1.2.2).
Albeit being able to produce satisfactory results, this method has a clear drawback.
Besides producing yet another saddle point problem, the linear system is larger by only
one unknown and one equation than the linear system for the penalization method,
however the extra row in the global matrix has non-zero coefficients for all velocity
degrees of freedom. The resulting matrix has much larger bandwidth. However, an
advantage of using this method is that there is no additional parameter required when
solving (1.2.2).

1.3 Uncoupled methods

Uncoupled methods are sometimes confused with splitting methods. There are two
different types of principles behind these methods. Uncoupled methods aim at break-
ing down the linear system such that two or more variables are solved independently,
while splitting methods consist in the reduction of the main PDE problem into a
series of smaller PDE problems based upon the operators in the main PDE (e.g.,
Stokes, Laplacian, nonlinear advection, etc). We shall introduce splitting methods
which are meant to solve nonstationary Navier–Stokes equations in later sections. We
now consider one uncoupled method to reduce the saddle point linear system (1.1.6)
to two smaller linear systems with symmetric positive definite (SPD) matrices. This
can be done by the addition of a penalization term or by breaking the linear system
into subsystems, for instance one linear system for u and one for p.

1.3.1 Augmented Lagrangian Method (ALM)

This uncoupled method is similar to the penalization method where the term ‘εp’
is added to the mass conservation in (1.1.1). For ALM, the term ε∂p

∂s
known as the

artificial-compressibility term is added to the continuity equation in Stokes equations,
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where ∂p
∂s

is the derivative of the pressure with respect to the pseudo-time s. This
gives the following system of PDEs

−ν∆u +∇p = f , in Ω,

ε
∂p

∂s
+∇ · u = 0, in Ω,

u = 0, on Γ.

(1.3.1)

As for the penalization method, the so-called artificial-compressibility term ε∂p
∂s

en-
forces the uniqueness of pressure at every time s (see [56, 65]). Letting the pseudo-
time s→ +∞ and assuming that ∂p

∂s
→ 0, we recover a solution of Stokes equations.

In order to solve (1.3.1) the discretization of the artificial-compressibility term by a
1st-order backward-Euler scheme gives

−ν∆ur+1 +∇pr+1 = f , in Ω,

pr+1 = pr − λ∇ · ur+1 = 0, in Ω,

ur+1 = 0, on Γ.

(1.3.2)

where r ∈ N, λ = ∆s
ε

is fixed and known as the iteration parameter. By eliminating
the pressure term pr+1 in momentum equation using the one from the continuity
equation in (1.3.2), the saddle point problem results in two uncoupled problems,
each with a SPD matrix. This technique gives rise to the augmented Lagrangian
method (ALM), in which we solve (1.3.2) iteratively using proper functional spaces
for velocity and pressure, respectively [15, 48]. Given f ∈ L2(Ω) and the initial
pressure p0 = p(0) ∈ Q, ∀s ∈ N+, we seek the solution us+1 ∈ V and ps+1 ∈ Q such
that
∫

Ω

ν∇us+1 · ∇v dx+

∫

Ω

λ(∇ · us+1)(∇ · v) dx−
∫

Ω

ps∇ · v dx =

∫

Ω

fv dx, ∀v ∈ V,
∫

Ω

ps+1q dx =

∫

Ω

psq dx−
∫

Ω

λ(∇ · us+1)q dx, ∀q ∈ Q.
(1.3.3)

The first equation (momentum) in (1.3.3) is used to compute us+1 for a given ps, while
the second equation (continuity) updates the pressure, ps → ps+1. Here, the iteration
parameter, λ need not be chosen very large, (i.e., λ = O(1)) since we enforce the
condition ∂p

∂s
→ 0 iteratively through ALM. It is worth mentioning that in practice, a

stopping criteria has to be imposed, for instance ‖ps+1−ps‖L2(Ω) < tol, where tol > 0
is chosen to be arbitrary small. A detailed discussion on the optimal choice of the
parameter λ can be found in [15].
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1.3.2 Numerical Experiment using manufactured solution:
Colliding Flow

Using a manufactured solution, we make numerical comparisons in terms of accuracy,
rate of convergence and efficiency of the three methods presented above, namely the
penalization, zero mean and augmented Lagrangian methods. For this purpose, we
use the colliding flow [12]. The domain is Ω = (−1, 1)×(−1, 1) and the exact solution
of the colliding flow is given as follows:

(u, p) = (u1, u2, p) = (20xy3, 5x4 − 5y4, 60x2y − 20y3 + constant). (1.3.4)

The Dirichlet boundary conditions used for the colliding flow are nothing but the
value of u1 and u2 on the boundary which can be calculated using (1.3.4). For Stokes
equations, one can verify that this is a solution for the viscosity ν = 1 and the external
force f = 0. As mentioned earlier, we fix the penalization parameter ε = 10−8h−1

min.
For ALM, we fix the iteration parameter λ = 1.4, to produce a solution with least
error on both velocity and pressure while having good convergence on the iterations.
Further, the chosen tolerance in the stopping criteria is tol = 10−12. Numerical results
are shown in Figure 1.2.

The order of convergence p of the finite element approximation in L2-norm using
P2-P1 is computed numerically, using for instance,

log

( ‖u− uh‖L2(Ω)

‖u− u h
m
‖L2(Ω)

)
≈ p log m, (1.3.5)

where u and uh are the exact and approximate solution for the velocity, respectively;
u h
m

is the approximate velocity when the mesh size is refined by a factor of m. The

order of convergence for the pressure in L2-norm, and similarly for any variable in
H1-norm can be obtained analogously.

In terms of numerical accuracy on velocity and enforcing of divergence free condi-
tion, ALM performs slightly better than penalization and zero mean methods for all
mesh size (Figure 1.2: top and bottom left). It is observed that the convergence of
ALM enhances the incompressibility condition comparing to the two other methods.
In a discrete setting, the grad-div term in the ALM momentum equation of (1.3.3)
acts as a penalization term that naturally enforces the local incompressibility con-
dition in P2-P1 elements. When using P2-P1 elements, satisfying the weak form of
continuity equation

∫
Ω
qh∇ · uh = 0, ∀qh ∈ Qh, does not imply ∇ · uh = 0 point-

wise. Eleanor et al. [31], Olshanskii et al. [43] and Olshanskii & Reusken [44] had
observed a significant error reduction on velocity in certain flow problems by adding
the grad-div term to Stokes equations with Taylor–Hood elements. For pressure,
the three methods are indistinguishable (Figure 1.2: bottom left), suggesting that
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the perturbation introduced on pressure using the penalization method is negligible.
The CPU cost for ALM is overwhelming as this method requires almost 30 minutes
on finest mesh (n = 200) while penalization and zero mean methods require about
18 and 21 seconds, respectively (Figure 1.2: bottom right). Although ALM avoids
solving a saddle point problem directly, the number of iterations required to ensure
the convergence of velocity and pressure renders the method inefficient. For instance,
ALM requires about 124 iterations for n = 20 and 106 iterations for n = 200 to fulfill
the stopping criterion with tol = 10−12. A small tolerance is usually required in ALM
since the lack of incompressibility resulting from larger tolerances could easily spoil
the solution. Consequently, with a direct solver and a small to moderate number of
unknowns, Stokes equations could be more easily solved either by penalization or zero
mean methods.
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Figure 1.2: Numerical accuracy and efficiency using penalization, zero mean
and ALM methods.

We observe that all the order of convergence presented in Figure 1.2 reproduces the
theoretical values with P2-P1 elements (see Appendix A.0.1). For instance, we obtain
2nd- and 3rd-order convergence for velocity in H1- and L2-norm, respectively, and
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2nd-order for pressure in L2-norm. The divergence term has 2nd-order of convergence
as h is refined to half of its size. From (1.3.4), we have the velocity u ∈ [C∞(Ω)]2,
which leads to a 3rd-order convergence in L2-norm.

1.4 Steady Navier–Stokes Equations

The steady Navier–Stokes equations can be regarded as an extension of Stokes equa-
tion by the addition of nonlinear advection terms to account for inertia effects at
greater flow velocities. The Navier–Stokes equations for steady incompressible flows
are given as follows:

−ν∆u + u · ∇u +∇p = f , in Ω,

∇ · u = 0, in Ω,

u = 0, on Γ.

(1.4.1)

By applying the same principle as for constructing a discrete weak formulation of
Stokes equations, the discrete weak formulation for steady Navier–Stokes reads as:
Find uh ∈ Vh and ph ∈ Qh such that

∫

Ω

ν∇uh : ∇vh dx+

∫

Ω

(uh · ∇uh)vh dx−
∫

Ω

ph∇ · vh dx, =

∫

Ω

fvh dx, ∀vh ∈ Vh,

−
∫

Ω

qh∇ · uh dx = 0, ∀qh ∈ Qh.

(1.4.2)
The common issue when solving (1.4.2) is the presence of a nonlinear advection term
that makes the resulting algebraic system nonlinear. A fixed point iterative method
is then required to solve the nonlinear system. Two of the most popular fixed point
methods are Newton’s and Picard iterative methods [12]. In the following, we present
the discrete weak formulations for steady Navier–Stokes equations where the nonlinear
advection terms are linearized using both Newton’s and Picard iterative methods, all
using P2-P1 elements for space discretizations.

1.4.1 Newton’s Method

The derivation of Newton’s method for Navier–Stokes equations is based on Newton-
Raphson’s method (see Appendix B.2). This method reads as follows: Given an
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initial data u0
h ∈ Vh, we solve for (um+1

h , pm+1
h ) ∈ Vh ×Qh, ∀m > 0 the system

∫

Ω

ν∇um+1
h : ∇vh dx+

∫

Ω

(umh · ∇um+1
h )vh dx+

∫

Ω

(um+1
h · ∇umh )vh dx

−
∫

Ω

pm+1
h ∇ · vh dx =

∫

Ω

fvh dx+

∫

Ω

(umh · ∇umh )vh dx, for all vh ∈ Vh,

−
∫

Ω

qh∇ · um+1
h dx = 0, for all qh ∈ Qh.

(1.4.3)

A good initial guess consists in taking u0
h the discrete solution of Stokes equations.

A stopping criteria for Newton’s method is given by ‖um+1
h − umh ‖L2(Ω) < tol, where

tol > 0 is an arbitrary small real number. The expected rate of convergence of um

to u∗, the solution of steady Navier–Stokes equation, is quadratic. Few iterations are
usually required.

1.4.2 Picard Iterative Method

One iteration of Picard iterative method is like solving the Oseen equations [58, 68],
which is sometimes used to model flows associating with low Reynolds numbers. The
solution of (1.4.2) using the Picard iterative method is formulated as follows: Given
an initial data u0

h ∈ Vh, we solve for (um+1
h , pm+1

h ) ∈ Vh ×Qh, ∀m > 0 the system

∫

Ω

ν∇um+1
h : ∇vh dx+

∫

Ω

(umh · ∇um+1
h )vh dx−

∫

Ω

pm+1
h ∇ · vh dx

=

∫

Ω

f · vh dx, for all vh ∈ Vh,

−
∫

Ω

qh∇ · um+1
h dx = 0, for all qh ∈ Qh.

(1.4.4)

The stopping criteria for the Newton’s method is used for the Picard iterative method.
Picard iterative method converges only linearly, hence many iterations are usually
required. However this method is usually less sensitive to initial guesses than Newton’s
method. The implementation of the Picard iterative method is simpler than the
implementation of the Newton’s method. In practice, a few Picard iterations are
used for initialization, followed by the Newton’s method for speeding convergence,
this is called the Picard–Newton’s method.
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1.5 Unsteady Navier–Stokes Equations

In this section section, we introduce another system of PDEs known as the unsteady
Navier–Stokes equations which are written as follows:

ut − ν∆u + u · ∇u +∇p = f , in Ω× (0, T ),

∇ · u = 0, in Ω× (0, T ),

u = 0, on Γ× (0, T ),

u|t=0 = u0, on Ω.

(1.5.1)

To model nonstationary flows, the only additional term required in (1.4.1) is a time
derivative for velocity which gives (1.5.1). The pressure remains a Lagrange multiplier
to enforce incompressibility, hence no time derivative is present for pressure. This is
one reason why solving time-dependent incompressible flows could be challenging.
Before giving more details on this subject, we first review several numerical concepts
related to time-discretization or time-stepping methods, and apply them to Navier–
Stokes equations. Since we will be interested in high-order time-stepping methods,
we will assume in this thesis that the solution of Navier–Stokes equations has all the
required regularity in space and time.

1.5.1 Method of Lines

We consider a system of 1st-order ordinary differential equations (ODE) which governs
the evolution of a vector-field y with respect to time t, as follows:

yt = f(y, t), y(0) = y0. (1.5.2)

A common numerical method to solve the above time-dependent system is based upon
finite difference methods which reads as

yn+k = F(yn+k,yn+k−1, . . . ,yn, tn+k−1), y0 = y0, (1.5.3)

where n = 0, 1, . . . ,M − k is the time-stepping index with integer M = [T
n

] and total
time T > 0. Here, the index k ∈ N is fixed and controls the numbers of time steps
required to approximate (1.5.2) by (1.5.3); e.g., k = 1 produces one-step method,
k = 2 produces two-step method and so on. With a proper initialization for {yj}k−1

j=0 ,

discretization with (1.5.3) gives rise to a method with kth-order of accuracy in time.
The equation (1.5.3) gives rise to an implicit method if an algebraic system is to be
solved in yn+k, otherwise it is an explicit method.

A detailed discussion on how to obtain a proper initialization will be provided in
a later section. A problem similar to (1.5.2) is obtained by first discretizing the
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nonstationary Navier–Stokes equations in space. This idea allows us to choose in-
dependently the space and time-discretization, such that at every time step, (1.5.3)
yields a numerical solution of a steady problem of the form (1.4.1). This approach is
called the method of lines. This method is appealing since a wide class of numerical
methods for space and time can be easily produced with certain restriction on the
mesh size and time step. For instance, one needs to fulfill Courant–Friedrich–Lewy
(CFL) condition to ensure numerical stability.

1.5.2 Backward differentiation formula (BDF)

In the realm of linear multistep methods, one of the most efficient schemes (i.e., ac-
curate and stable with relatively large time steps) to solve (1.5.1) is the backward
differentiation formula (BDF) [60, 61, 64]. BDF, sometimes known as the Gear’s back-
ward difference methods, are fully-implicit time-stepping schemes since the diffusion
term, nonlinear advection and pressure are evaluated at current step (n+ k) where a
fixed k ∈ N is the order of the method. The BDF-k methods applied to Navier–Stokes
equations are expressed as follows: For a given u0 = u(0), a fixed k ∈ N, and proper
initializations {uj}k−1

j=1 , we solve for (un+k, pn+k) the following algebraic system

1

τ
(αun+k +

k∑

j=1

βju
n+k−j)− ν∆un+k + un+k · ∇un+k +∇pn+k = fn+k, in Ω,

∇ · un+k = 0, in Ω,

un+k = 0, on Γ.
(1.5.4)

for n = 0, 1, . . . , N − k.

Here, we assume that the integer N = [T
τ

] is the total number of time steps for a given
time T > 0 and a constant time step τ . The coefficients α and βj for all j = 1, .., k

must satisfy α =
∑k

j=1 βj and are found in Table 1.1.

Table 1.1: List of coefficients in the approximation of the time derivative for
the BDF schemes up to order 6, taken from [64].

k α {βj}k−1
j=0

1 1 {−1}
2 3

2
{−2, 1

2
}

3 11
6

{−3, 3
2
,−1

3
}

4 25
12

{−4, 3,−4
3
, 1

4
}

5 137
60

{−5, 5,−10
3
, 5

4
,−1

5
}

6 147
60

{−6, 15
2
,−20

3
, 15

4
,−6

5
, 1

6
}



1. INTRODUCTION: MODELING OF INCOMPRESSIBLE FLOWS 14

The BDF-k methods require a special starting procedure for k ≥ 2. The common
strategy for proper initialization of any BDF-k method for all k ≥ 2, is to generate uj

in incremental fashion using BDF-j methods, where 1 ≤ j ≤ k−1. As an alternative,
one can also use any one-step method (e.g., Runge-Kutta methods) with at least
(k − 1)th-order of accuracy to generate all the required initialization data. With the
suggested starting procedures, BDF-k methods produce at least kth-order of accuracy
for both velocity and pressure; i.e., a global error in time of order O(τ k).

Here, we limit our study to at most 3rd-order BDF methods since the time step re-
quired for stability can be prohibitively small for k > 3. Furthermore, linear multistep
methods with k ≥ 3 are not unconditionally stable [64].

1.5.3 Oseen type method

This method can be derived by applying Picard iterative method but limiting it to
one iteration at each time step. We fix the advection term un · ∇un+1 in the Navier–
Stokes equations, the same principle is used to handle the linear advection term in
the Oseen equations; i.e., U ·∇u where U is a given steady velocity field. The Oseen
type method of 1st-order of accuracy can be summarized as follows: Given the initial
data u0 = u(0), we solve for (un+1, pn+1) the system

un+1 − un

τ
− ν∆un+1 + (un · ∇)un+1 +∇pn+1 = fn+1

∇ · un+1 = 0
(1.5.5)

for n = 0, 1, . . . , N − k.

We noticed that by doing only one Picard iteration for each time step, a good saving
on CPU time is achieved compared to the fully implicit BDF method of the same
order of accuracy. The Oseen type method of 1st-order is simple and quite stable to
solve nonstationary Navier–Stokes equations, especially when a low Reynolds number
is involved. However, the factorization of the global matrix still has to be done at
each time step to solve the linear system.

1.5.4 Operator-Splitting schemes

Projection schemes, fractional-step approach and θ-methods can all be labelled as
operator-splitting schemes. The origin of these methods can be traced back to the
work of Chorin [9], Yanenko [71], Glowinski [20, 46] and Strang [62], for solving
the time-dependent advection-diffusion or Navier–Stokes equations. An analysis of
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splitting schemes for Navier–Stokes equations using Peaceman–Rachford approach
can be found in [60] and references therein.

In parallel, a rich literature has documented projection methods [25, 35], which are
based on similar principles as operator-splitting schemes. Operator-splitting schemes
consist for instance in breaking the Navier–Stokes equations into simpler subproblems
(e.g., Stokes, advection-diffusion). Usually two or at most three of these subproblems
are solved at each time step. For Navier–Stokes equations, the configuration of these
subproblems can be done in many ways. Typically, one of these subproblems updates
the velocity with an advection-diffusion problem while treating pressure in explicit
manner. For the other subproblem, the velocity is projected onto a divergence-free
subspace (while obtaining the pressure) by solving Stokes equations and in turns,
treating the nonlinear terms in explicit manner.

Although these schemes have more computational steps to deal with, they have some
advantages. Besides being unconditionally stable, these schemes are one-step meth-
ods, hence self-starting and can be at most 2nd-order accurate. Secondly, we observed
that operator splitting schemes are more appealing in terms of the reduction of the
unknowns required for the fixed point iterations. Fixed point iteration in operator
splitting methods handles only the velocity compared to the BDF methods which
involves both velocity and pressure. Of the many operator-splitting schemes, a few
appealing ones are the Glowinski-splitting [48] and Dai-splitting [10]. They proceed
as follows:

Glowinski Splitting: Let θ ∈ (0, 1
2
), η ∈ (0, 1) be fixed. Given the initial solution

u0 = u(0), we solve the following subproblems for all n = 0, 1, . . . , N − 1

(a) Linear Stokes equations: Using un from the previous time step, we solve for
(un+θ, pn+θ) such that

un+θ − un

τθ
− ην∆un+θ +∇pn+θ = (1− η)ν∆un − un · ∇un + fn

∇ · un+θ = 0

(1.5.6)

(b) Nonlinear elliptic advection-diffusion equations: Using (un+θ, pn+θ) from (a) we
solve for un+1−θ such that

un+1−θ − un+θ

τ(1− 2θ)
+ (1− η)ν∆un+1−θ + (un+1−θ · ∇)un+1−θ = fn+θ − ην∆un+θ

−∇pn+θ

(1.5.7)
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(c) Linear Stokes equations: Using un+1−θ from (b), we solve for (un+1, pn+1) such
that

un+1 − un+1−θ

τθ
− ην∆un+1 +∇pn+1 = (1− η)ν∆un+1−θ − un+1−θ · ∇un+1−θ

+ fn+1−θ

∇ · un+1 = 0
(1.5.8)

This splitting scheme is known to have 2nd-order accuracy for both velocity and pres-
sure if θ = 1−

√
2

2
and only 1st-order accuracy otherwise.

Dai-splitting: Given the initial solution u0 = u(0), we set p−1 = p0 = p(0) by
convention and we solve the following subproblems for n = 0, 1, . . . , N − 1

(a) Nonlinear elliptic advection-diffusion equations: Using (pn, pn−1) from previous
time steps, we solve for ũn+1 such that

ũn+1 − un

τ
− ν

2
∆(ũn+1 + un)

+

(
ũn+1 + un

2

)
∇ ·
(

ũn+1 + un

2

)
= fn+ 1

2 − 1

2
∇(pn + pn−1)

(1.5.9)

(b) Linear Stokes equations: Using ũn+1 from (a) and pn from previous steps, we
solve for un+1 such that

un+1 − ũn+1

τ
− ν

2
∆(un+1 − ũn+1) +

1

2
∇(pn+1 + pn) = 0

∇ · un+1 = 0
(1.5.10)

As an alternative, the initialization for (u−1, p−1) and (u0, p0) can be done by shifting
the initial step as follows: For any given (u−1, p−1), the value of (u0, p0) at t = τ can
be obtained using for instance a 1st-order method (e.g., BDF-1, Oseen, etc). Dai-
splitting method is unconditionally stable with 2nd-order accuracy for both velocity
and pressure [10].

1.5.5 Crank–Nicolson Adam–Bashford (CNAB)

Another time-discretization scheme which received equally much attention to solve
Navier–Stokes equations is the Crank–Nicolson Adam–Bashford (CNAB) method.
This method uses trapezoidal rule (Crank–Nicolson) for time-discretizations of linear
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terms such as Stokes operator (−ν∆u +∇p) and linear external force. For the non-
linear operators such as the advection, 2nd-order accurate explicit Adam–Bashford is
used to get rid of the nonlinearity. The CNAB method is known to be condition-
ally stable with 2nd-order accuracy for both velocity and pressure in time. Another
advantage of CNAB method is that this scheme does not require fixed point strat-
egy for nonlinear term. It falls under the category of semi-implicit schemes which
will be discussed in more details in the following chapter. The stability and conver-
gence analysis of CNAB for time-dependent Navier–Stokes equations can be found
in [26, 27]. CNAB schemes for solving (1.5.1) is given as follow: Given the initial point
(u0, p0) = (u(0), p(0)), the solution (un+1, pn+1) for n = 0, 1, . . . , N − 1 is computed
by solving the system

un+1 − un

τ
+ ν

(
∆un+1 + ∆un

2

)
+

(∇pn+1 +∇pn
2

)
=− 3(un · ∇)un

2

+
(un−1 · ∇)un−1

2
+

fn + fn+1

2
∇ · un+1 = 0

(1.5.11)
Note that an artificial initial condition on pressure is introduced for this scheme. If p0

is not chosen properly, spurious pressure modes may appear for all even time steps.

1.5.6 Characteristic Galerkin method

The idea of solving unsteady Navier–Stokes equations using the so-called Character-
istic Galerkin method was first introduced by Pironneau [47]. This method exploits
the fact that both the time-derivative and advection term result from the material
derivative

Du

Dt
=
∂u

∂t
+

dx

dt
· ∂u

∂x

=
∂u

∂t
+ u · ∇u,

(1.5.12)

where u = u(t,X) is the velocity field written in Lagrangian coordinates X =
X(t; s,x). The characteristic curve or Lagrangian coordinates X at time t of a point
with Eulerian coordinates x at time s satisfies the following initial value problem:

dX(t; s,x)

dt
= u(t,X(t; s,x)), t ∈ (0, T ),

X(s; s,x) = x.
(1.5.13)

By applying the 1st-order backward Euler scheme to discretize the material derivative
in (1.5.12), the unsteady Navier–Stokes equations (1.5.1) can be solved using the
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following scheme [48]: Given the initial data u0 = u(0), the solution (un+1, pn+1) for
n = 0, 1, . . . , N − 1 is computed by solving the system

un+1 − un ◦Xn

τ
+ ν∆un+1 +∇pn+1 = fn+1

∇ · un+1 = 0
(1.5.14)

where Xn denotes a suitable approximation of X(tn; tn+1,x). The above Character-
istic Galerkin method produces 1st-order accuracy for both velocity and pressure in
O(h+ τ + h2

τ
) as τ and h→ 0. This method is unconditionally stable, however both

time step τ and mesh size h have to be chosen appropriately in order to exhibit an
optimal 1st-order convergence in time and space.

1.5.7 Numerical experiment using manufactured solution

The time-stepping schemes presented above are assessed using a manufactured solu-
tion. For this purpose, a square domain Ω = (0, 1)2 is used with a fixed viscosity
parameter ν = 1. The exact solution for this manufactured solution is given in [23]

(
u, p
)

=
(
u1, u2, p

)
=
(
sin(x)sin(y + t), cos(x)cos(y + t), cos(x)sin(y + t)

)
. (1.5.15)

For the top, bottom and right boundary, Dirichlet boundary conditions are imposed
which can be computed using (1.5.15). Homogeneous Neumann boundary condition
is used along the left boundary which gives ν∂xu−p = 0 and ν∂xv = 0. The Neumann
boundary condition provides a unique solution for pressure p hence the penalization
method can be avoided. In this setting, both the external force f and the divergence
term ∇·u are zero. Computations are done for various time steps τ = 0.04, 0.02, 0.01.
A fixed mesh is used for all computation, which is generated by subdividing each edge
of the square into 80 equal-length subintervals. The triangulation produces a uniform
mesh size h = 0.017 677 7 with 51 842 and 6 561 unknowns for velocity and pressure,
respectively.

Figure 1.3 shows the time evolution of L2-errors on velocity and pressure for t ∈ [0, 2]
and various time steps. These curves show the global error between the numerical
solution and exact solution given in (1.5.15); i.e., the error resulting from both space
and time discretizations. The error on velocity is smaller than that on pressure for
all methods since the P2-P1 elements are used. For any given time step, the 1st-order
methods produce the largest error, followed by 2nd- and 3rd-order methods. Among
the 1st-order methods, the largest error on velocity and pressure is produced by the
Characteristic Galerkin, followed closely by the Oseen and BDF-1 methods. Of all
2nd-order methods, the error produced by Dai and Glowinski splitting methods is
the largest, then followed by the CNAB and BDF-2 methods which are as good for
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velocity and pressure. However, both CNAB and Dai Splitting methods produce
pressure oscillations at larger time step τ = 0.04. If the time step is not sufficiently
small, the trapezoidal rule behind these methods generates spurious pressure modes
while iterating in time. In this manufactured solution, we observe that the order of
convergence for both operator splitting schemes suffers from suboptimality; i.e., at
most an order of 1.5 can be only achieved for both velocity and pressure. The error
produced by BDF-3 method, which has the highest order of accuracy of all methods
tested here, is the smallest among all methods. The solution converges drastically to
the solution of the semi-discrete problem even with a larger time step. For τ = 0.01,
the remaining error with BDF-3 method results only from the space approximation.
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Figure 1.3: Manufactured Solution: Numerical error as a function of time for
various time-stepping methods and time steps τ = 0.04, 0.02, 0.01.
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1.5.8 Numerical experiment using 2D flow around the cylin-
der

In this section, we provide another type of numerical assessment of the above time-
stepping methods. We propose a test case known as the 2D flow around the cylinder,
in which the lift and drag coefficients, noted respectively cl and cd are computed along
the boundary of the cylinder. The methods are compared in terms of the quality of
the solution and CPU-efficiency to compute these parameters. The computational
setting of the test case, and the method to compute the lift and drag coefficients are
detailed below.

Figure 1.4 (top) shows the computational domain Ω = (−10, 25)× (−10, 10) which is
relatively large compared to the circular cylinder located at the origin with diameter
D = 1. This setting minimizes numerical error on cl and cd which could be possibly
induced by the use of a bounded domain to compute this external flow.
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Figure 1.4: Domain for the 2D flow around a cylinder (top). The mesh con-
sists in non-uniform triangular elements (generated automatically by subdi-
viding the edge along x- and y-axis into 100 and 50 equal-length subintervals,
respectively, while 60 equal-length subintervals is set along the cylinder (bot-
tom).

In dimensionless setting, the flow is characterized by a constant known as the Reynolds
number which is defined by

Re =
U∞D

ν
, (1.5.16)

where the far-field velocity U∞ = 1 and the diameter of the cylinder D = 1 (also
considered as the characteristic length). This simplifies (1.5.16) to Re = 1

ν
. In

this test case, the Reynolds number is set to 100 by fixing ν = 0.01. Dirichlet
boundary condition u = (1, 0) is imposed along the left, upper and bottom boundaries
mimicking the constant flow towards the circular cylinder in x-direction. Non-slip
condition u = (0, 0) is imposed along the boundary of the circular cylinder. To
model the outflow which is occuring along the right boundary, homogeneous Neumann
boundary condition works well for laminar flow. We shall see later in Chapter 3 that
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similar boundary condition does not work with flows at higher Reynold numbers,
(e.g., Re > 300) and the development of appropriate outflow boundary condition is
not trivial. The implementation of another outflow boundary condition called the
implicit damping schemes will be discussed later. Here, we assume the external force
f = 0. To compute cl and cd, the volume integration formulation is used [32]. The
lift coefficient is given by

cl(t) = −20

∫

Ω

[
ut · vl + ν∇u(t) : ∇vl + (u(t) · ∇u(t)) · vl − p(t)∇ · vl

]
dx, (1.5.17)

where vl ∈ [H1(Ω)]2 is the solution of an auxillary Stokes problem with boundary
conditions v|S = (0, 1) and v|Γ = (0, 0) on all other boundaries. Similarly, one can
compute the drag coefficient using

cd(t) = −20

∫

Ω

[
ut ·vd + ν∇u(t) : ∇vd + (u(t) · ∇u(t)) ·vd− p(t)∇ ·vd

]
dx, (1.5.18)

where vd ∈ [H1(Ω)]2 is the solution of an auxillary Stokes problem with boundary
conditions v|S = (1, 0) and v|Γ = (0, 0) on all other boundaries. The test case is run for
t ∈ [0, 30] after restarting from a periodic solution (on both velocity and pressure).
This periodic solution can be easily obtained, for instance with the Characteristic
Galerkin method using a large time step τ = 0.05.

At Re = 100, the time evolution of the lift and drag coefficients along the cylinder
produce a periodic solution with a single frequency of about 0.44. The periodicity
of the lift and drag results from the development of a von Kármán vortex street in
the wake behind the cylinder. The time step used in the computation, the order of
accuracy and the respective CPU time to execute 10 iterations for these methods, are
summarized in Table 1.2. We fix two different time steps for all 1st-order methods,
with one five times smaller than the other. This is done to assess if this refinement is
sufficient to ensure a comparable accuracy for the 1st-order and the 2nd-order methods.
Time step for CNAB method has to be chosen slightly smaller than 0.01 to avoid
pressure oscillation in time. The time step τ = 0.005 is used in BDF-3 method to
obtain very accurate reference solution since it is a 3rd-order method. The lift and
drag computed with BDF-3 method in this experiment are used as the reference
solutions.
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Table 1.2: Time steps chosen for the time-stepping methods with their order
of accuracy and CPU time for 10 iterations.

Method Order of accuracy Time-step, τ CPU(per 10 iter)
BDF-1 1st-order 0.01, 0.002 162.5

Characteristic Galerkin 1st-order 0.01, 0.002 10.6
Oseen 1st-order 0.01, 0.002 54.8
BDF-2 2nd-order 0.01 160.0
CNAB 2nd-order 0.008 13.6

Glowinski Splitting close to 2nd-order 0.01 122.8
Dai Splitting 2nd-order 0.01 120.7

BDF-3 3rd-order 0.005 163.7
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Figure 1.5: Time evolution of the lift and drag coefficients using various
time-stepping methods for t ∈ [20, 30] (Flow past a circular cylinder).

Figure 1.5 shows that the lift and drag coefficients are very close to one except for
some which are computed with 1st-order methods (BDF-1, Characteristic Galerkin
and Oseen) using τ = 0.01. Figure 1.6 shows a close up view of the lift and drag
coefficients for t ∈ [27, 28]. The drag coefficient computed with 1st-order methods with
smaller time step τ = 0.002, is still less accurate than the one computed with 2nd-
order methods with τ = 0.01. We observed that all lift and drag coefficients obtained
with 2nd-order methods converged to the one computed with BDF-3 method, which
is taken as the reference solution.
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Figure 1.6: Flow past a circular cylinder: Time evolution of the lift and drag
coefficients using various time-stepping methods (close-up) for t ∈ [27, 28]
(Flow past a circular cylinder).

This suggests that much finer time step has to be chosen (e.g., τ < 0.001) with
1st-order methods to produce results as accurate as those from 2nd-order methods.
Characteristic Galerkin is CPU-efficient since it solves an unsteady Stokes problem
in semi-implicit fashion. The only additional step required for the Characteristic
Galerkin method is an efficient search-interpolation algorithm to track the solution
along the characteristics curves [19]. There is little difference in CPU time comparing
1st-, 2nd- and 3rd-order BDF methods for a given number of time steps. This suggests
that the numerical complexity of the resulting nonlinear system is independent of the
order of the BDF method, except for the evaluation of the right hand side. It results
that among the BDF methods, BDF-3 is the most efficient to reach a given accuracy
in time when computing unsteady flows.

The BDF methods are not CPU-efficient since Newton’s method is required for solving
the resulting nonlinear system. Moreover, a factorization of the global matrix is
needed at every fixed point iteration. For Dai- and Glowinski-splitting methods, the
CPU time is almost identical (about 120 s). These operator-splitting methods solve
the unsteady Navier–Stokes problem through simpler advection-diffusion and Stokes
problems. Newton’s method is still required for Dai- and Glowinski-splitting. The
fixed point method now tackles smaller advection-diffusion problem while the linear
Stokes problem results in a constant matrix. Globally this results in a lower CPU
cost compared with that of the BDF methods.
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For the Oseen method, the CPU time depends only on the factorization of the global
matrix and a linear solve at each time step. Our numerical results show that BDF
methods required about three Newton’s iteration at each time step. The CPU time
required for BDF methods (about 165 s) is about three times that with Oseen method
(about 54 s), which demonstrate a perfect scalability with the number of Newton’s
iteration. CNAB is a semi-implicit method since the nonlinear terms are extrapolated
using Adam–Bashford and the factorization of the global matrix is only done once.
CNAB method is known for the oscillation produced on the pressure (in time) due
to the artificial initial condition on this variable. If the oscillation in CNAB method
is treated properly [45], the low CPU cost makes the method appealing.

1.6 Problem Statements and Outline of the Thesis

The method of lines allows us to construct time-stepping methods independently from
the space discretization. Higher-order methods, (e.g., BDF-3 methods) produce very
accurate results when solving nonstationary Navier–Stokes equations (1.5.1) without
relying on a small time step. On the other hand, BDF methods may not be very
efficient since the convergence of the Newton’s method is essential at each time step
and this further requires the re-assembly of the global matrix for the linear system.
BDF methods becomes expensive to compute flows involving high Reynolds number
when smaller mesh size and time step are involved.

From preliminary test cases (not shown here), we make the following observations. Of
all methods, CNAB method is the most efficient to reach a given level of error. First
of all, CNAB method has 2nd-order accuracy and secondly, it has outstandingly low
CPU cost at each time step. CNAB is still very efficient even though the time step
is restricted by a CFL-like condition. This is due to the fact that CNAB falls under
the group of “semi-implicit method” which will be described in details later on. A
main drawback of the CNAB method is the pressure oscillations, a nontrivial issue to
deal with. Dai- and Glowinski-splitting methods requires about 75% of the CPU cost
of a BDF-2 method. However, the numerical error produced is larger than that for
BDF-2 method for a given time step, which make them less appealing. Moreover, Dai-
splitting method suffers from pressure oscillations just like CNAB since it is based on
trapezoidal rule when solving the advection-diffusion equation. With the test case,
we observed that the accuracy of these operator-splittings is limited by the order
barrier [23] and recovering the theoretical order of convergence is difficult.

Of all 1st-order methods, Characteristic Galerkin method is the cheapest but the
quality of the solution requires very small time step. Constructing Characterictic
Galerkin methods with a high-order accuracy can be done but these methods are
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usually difficult to implement. Characteristic Galerkin methods with 2nd-order accu-
racy were investigated in [70]. Nonetheless, all 1st-order methods are very efficient
to compute the solution of steady flows since very large time step can be chosen. In
BDF-1 method, one can even fast-forward the transient solution to the steady regime
by fixing a small number of Newton’s iteration at each time step. Usually two to
three iterations per time step are sufficient and this can be done since capturing the
steady solution is our main interest.

Fully-explicit methods (e.g., forward differentiation formula) for time discretization
can be very appealing since only a linear system with a mass matrix requires to be
solved. Due to the stiffness of the Laplace operator, fully-explicit methods are very
restrictive in terms of the time step required to fulfill the Θ-stability condition, where
Θ := τ

h2Re
< const. See [48] for a discussion on this topic. The restriction on the time

step with τ = O(h2Re) simply renders these methods impractical.

Semi-implicit methods use the implicit and explicit treatment of some of the terms to
compute numerical solution of ODE and PDE. For instance, when discretizing (1.5.1)
using semi-implicit methods, all terms are evaluated implicitly except the nonlinear
advection. Therefore, the need for fixed point method as presented in Section 1.4.1
and 1.4.2 can be totally avoided. Semi-implicit methods are conditionally stable since
they are required to fulfill certain CFL stability condition. Moreover, the time steps
required for the stability of semi-implicit methods are far less restrictive than that of
fully-explicit methods (see [1, 37]). Our goal is to investigate semi-implicit approaches
that are both accurate and efficient to compute nonstationary flows.

Along this direction, we propose several variants of semi-implicit schemes for solving
nonstationary Navier–Stokes equations in Chapter 2. We first introduce a class of
methods which is based upon the multistep approach, the semi-implicit backward
differentiation formulae (SBDF). The second type of semi-implicit methods is based
upon defect correction strategy starting from 1st-order SBDF up to DC methods which
can be constructed easily to reach arbitrary high-order approximation in time [23].
Using both high-order artificial compressibility and bootstrapping strategies, it can
be shown that velocity and pressure in DC methods can be decoupled to give rise to
Guermond-Minev methods (GM) [23]. We propose a modification of GM methods—
a combination of GM with the sequential regularization methods [40] that we call
GM-SRM methods. All semi-implicit methods are benchmarked numerically using
manufactured solution and test cases for 2D unsteady flows. This work is documented
in term of a scientific paper entitled, “On efficient high-order semi-implicit time-
stepping schemes for unsteady incompressible Navier–Stokes equations” which was
published in Computer and Fluids [41].

In Chapter 3, we propose two major improvements to SBDF methods: First, we add
the grad-div stabilization term in the variational form of Navier–Stokes equations to
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improve the mass conservation in P2-P1 elements. Second, numerical improvement of
SBDF methods are associated with nonlinear discretization to produce solutions with
smaller error at a given order of accuracy. Using some test problems, we show that the
numerical improvements presented above have a significant impact on the numerical
stability and accuracy of the methods while still being very efficient to study flows
with high Reynolds number. We present these result in the next chapter as a sci-
entific paper entitled, “Robust high-order semi-implicit backward difference formulae
(SBDF) for Navier–Stokes equations”, which will be submitted to the International
Journal for Numerical Methods and Fluids.

We observe that the correction algorithm implemented in [23] to approximate non-
linear advection may result in certain numerical inaccuracy if the computation is ex-
tended for long period of time (t is large), which is necessary to capture full periodic
solutions. In Chapter 4, we propose several variants of “nonlinear ansatz” to improve
this numerical error. We conduct numerical comparisons for these new “nonlinear
ansatz” in terms of numerical stability and convergence before the best “nonlinear
ansatz” is chosen for all DC, GM and GM-SRM methods. The second part of Chapter
4 introduces the idea of grad-div splitting algorithm which can be implemented in
GM and GM-SRM methods [24]. These splitting algorithms reduce the complexity of
the linear system from the momentum equation to a few scalar parabolic problems,
which can be solved separately for each of the velocity component u and v. The
resulting grad-div splitting requires an auxillary numerical method to ensure the
convergence of this splitting which is based on similar “nonlinear ansatz” and Gauss-
Seidel iteration. All these auxillary methods will be assessed numerically in terms
of the resulting numerical error on velocity and pressure, all using 2D manufactured
solutions.

In Chapter 5, we showcase several interesting 3D computations of both steady and
unsteady flows using some of the time-stepping methods discussed in the previous
chapters. We also include several short discussions on the preparation of 3D mesh, and
the required iterative linear solver and preconditioner to handle tremendous degrees
of freedom arising from the 3D space discretizations. All numerical results of these 3D
computations are compared both qualitatively and quantitively with the numerical
results available in the literature.

Concluding remarks are given in Chapter 6, summarizing all the key findings, open
problems and suggested future works to improve our current research.



Chapter 2

On Efficient High-order
Semi-implicit Time-stepping
Schemes for Unsteady
Incompressible Navier–Stokes
Equations

This chapter is presented in terms of a publication in Computers and Fluids, carrying
the same title as mentioned above. Please see the attached paper for the content.

This paper is co-authored with my supervisor. We discussed the selection of meth-
ods together. I implemented the methods, carried the computations and analyzed
the results. Finally, I drafted the paper and my supervisor provided the editorial
components.
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a b s t r a c t 

We focus on the development of higher-order semi-implicit time-stepping methods to solve the incom- 

pressible Navier–Stokes equations. The Taylor–Hood mixed finite elements method ( P 2 − P 1 ) is used for 

space approximation of velocity and pressure. Semi-implicit time discretizations can provide very accu- 

rate approximations for nonstationary flow while treating the nonlinear terms explicitly and avoiding 

the need for a fancy nonlinear iterative solver. We first introduced three variants of higher-order semi- 

implicit time-stepping schemes: a multistep Semi-Implicit Backward Difference Formulae (SBDF) which 

is the easiest to implement; a one-step defect correction (DC) which produce better approximations than 

SBDF methods in terms of numerical errors on velocity and pressure (in time) for a given order; the one 

proposed by Guermond and Minev (GM), an uncoupled method which is based upon defect correction 

and artificial compressibility methods. SBDF and DC methods produce saddle point linear system while 

GM generates two linear systems with symmetric and positive definite matrix. We propose a modifica- 

tion on GM denoted as GM-SRM methods–which implement sequential regularization method of Navier–

Stokes equations. GM-SRM methods produce more rapid convergence on pressure during the start-up 

while requiring smaller stabilization parameter than that for GM methods. We showcase the numerical 

accuracy, stability and efficiency of these methods through numerical test cases: two manufactured so- 

lutions; the flow past a circular cylinder; and the lid-driven cavity flow, all in 2D settings. All methods 

show an agreement with the theoretical convergence rate. SBDF methods are the most CPU-efficient, fol- 

lowed by DC, GM and GM-SRM methods. We observe that the presence of grad − div term in both GM 

and GM-SRM improves the numerical stability in terms of producing a higher CFL bound. Furthermore, 

relevant parameters, such as the Strouhal number, lift and drag coefficients are found to be very close to 

published values. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction: incompressible Navier–Stokes equations 

The time evolution of incompressible flows can be generally 

modeled by Navier–Stokes equations, which are expressed as fol- 

lows 

u t − ν�u + u · ∇u + ∇p = f on � × (0 , T ) , 

∇ · u = 0 on � × (0 , T ) , 

u (x , 0) = u 0 in �, 

u (x , t) = g on � × (0 , T ) , 

(1) 

� This work is supported by a NSERC Discovery Grant. 
∗ Corresponding author. 

E-mail address: ybourg@uottawa.ca (Y. Bourgault). 
1 Author is a PhD scholarship recipient given by Ministry of Education Malaysia 

and Universiti Malaysia Terengganu. 

where u is the velocity field, p the pressure, ν the kinematic vis- 

cosity, f any external force, u 0 the initial velocity and g the ve- 

locity field imposed on the boundary � of the domain, �. The 

space approximations of Eq. (1) can be done using various numer- 

ical techniques, e.g., finite difference, finite element, finite volume 

and pseudospectral methods. Independently from the space ap- 

proximations, time-stepping schemes are used to solve the semi- 

discrete problem (e.g. backward-Euler, trapezoidal- or midpoint 

rules, Runge–Kutta, etc). 

Fully-implicit schemes, such as backward-difference formulae 

(BDF), are popular time-stepping strategies to solve the semi- 

discrete Navier–Stokes equation. These fully implicit methods re- 

quire a fixed point method (e.g. Newton’s method, Picard itera- 

tion) for solving the nonlinear algebraic system resulting from the 

discretization. Splitting approaches, which include the θ-methods 

(operator-splitting) and projection schemes etc, has an equal suc- 

cess to solve nonstationary Navier–Stokes equations [10,21,25] . 

http://dx.doi.org/10.1016/j.compfluid.2017.02.017 

0045-7930/© 2017 Elsevier Ltd. All rights reserved. 
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These splitting schemes advocate predictor-corrector steps, i.e., 

advection-diffusion and Stokes subproblems for fractional time 

steps; and pressure correction algorithm. However, several of these 

methods are known to generate non-physical boundary layers that 

may further induce sub-optimality of the convergence rate known 

as the order barrier [21] . Moreover, a fixed point method is re- 

quired to solve the nonlinear advection-diffusion sub-step impact- 

ing the efficiency of the method. Eq. (1) can also be resolved us- 

ing semi-Lagrangian approach such as the Characteristic Galerkin 

method [17] . This can be done by discretizing the material deriva- 

tive along the ‘characteristic curves’. However, the numerical ef- 

ficiency and accuracy of this method is limited by the efficiency 

of nodal search algorithm for the tip of characteristic curves and 

by the accuracy of numerical quadrature on mismatched elements. 

All of the above methods are unconditionally stable, making them 

attractive methods for solving stationary Navier–Stokes problems. 

At the expense of losing the unconditional stability, the nonlin- 

ear advection terms can be taken explicitly with so-called semi- 

implicit methods, hence nonlinear fixed point iterations can be to- 

tally avoided [12] . 

Semi-implicit approaches make it possible to factorize the ‘con- 

stant’ matrix only once which gives a significant reduction in CPU 

time. Although time steps may be restricted by stability, this is 

justifiable when smaller temporal change is crucial to study non- 

stationary flows with higher accuracy. On the other hand, semi- 

implicit methods are less suitable for computing steady flows 

where implicit schemes with large time steps can lead to signif- 

icant reduction in computing cost. An earliest convergence analy- 

sis of higher-order semi-implicit schemes for Navier-Stokes equa- 

tion was done by Baker et al. [7] but no numerical test cases were 

presented. Kress and Lötstedt [27] provided linear stability analysis 

for similar semi-implicit schemes solving Navier–Stokes equations 

using finite difference approach for space approximation. A simi- 

lar idea was introduced with so-called, ‘IMplicit-EXplicit’ schemes, 

shortened as IMEX, which were used to solved advection-diffusion 

or reaction-diffusion problems [1,3,11,41] . The 2nd-order Crank–

Nicolson Adam–Bashforth schemes (CNAB) is a relatively popular 

semi-implicit method. This method requires a special treatment 

to filter parasitic oscillations due to its sensitivity to the initial 

condition, which is a non-trivial procedure. Numerical experiment 

shows that if these oscillations are not properly handled, the the- 

oretical rate of convergence cannot be reproduced. There is work 

dedicated to make CNAB a more robust scheme but it works only 

for 2nd-order accuracy in time [31] . In this paper, we propose 

semi-implicit methods which are based on backward-forward Eu- 

ler. These methods can be easily extended to arbitrary orders and 

have a great potential in terms of numerical accuracy and effi- 

ciency, particularly for unsteady flows. 

The main objective of this paper is to conduct a thorough nu- 

merical assessment of time-stepping methods for the nonstation- 

ary, incompressible Navier–Stokes equations. Here we focus on 

higher-order semi-implicit methods for time-stepping (i.e. 2nd- 

and 3rd-order). We found that the numerical assessment on these 

methods in the framework of incompressible Navier–Stokes equa- 

tions are still lacking. This paper is organized as follows: In 

Section 2 , we first present the Semi-Implicit Backward Differenti- 

ation Formulae (SBDF), semi-implicit methods using deferred cor- 

rection (DC), and a variant of this method proposed by Guermond 

and Minev (GM). All these schemes are 2nd- or 3rd-order in time. 

We also proposed a further modification of GM using sequen- 

tial regularization methods (SRM) of Navier–Stokes equations. The 

combination of GM and SRM will be called the GM-SRM scheme. 

A short discussion on grad − div terms which arise naturally in 

GM and GM-SRM and the choice of the stabilization parameter 

will be presented in Section 3 . Section 4 presents numerical test 

cases to highlight issues regarding the performance of these time- 

stepping schemes. These test cases involve nonstationary 2D flows, 

two of which are manufactured solutions with analytical solutions. 

Further, more challenging test cases are presented featuring a 2D 

pulsating flow around the cylinder (von Kármán alley) and a pe- 

riodic lid-driven cavity flow to investigate the numerical stabil- 

ity and efficiency of semi-implicit methods. For these two flows, 

the unsteadiness results from a bifurcation, not from the periodic 

forcing term or periodic boundary conditions. Our numerical re- 

sults are compared to the results from the literature. In Section 5 , 

we present a short discussion on the strengths and weaknesses of 

these higher-order methods. 

2. Time-stepping schemes 

As mentioned earlier, the time-discretization of any PDE can be 

treated independently from its space approximation. Using the fi- 

nite element method, we first write down the semi-discrete prob- 

lem for the 2D incompressible Navier–Stokes equations. This gives: 

Find u h ( t ) ∈ V h and p ( t ) ∈ M h such that ∀ t ∈ (0, T ), ∫ 
�

d 

dt 
u h (t) · v h d x + 

∫ 
�

ν∇u h (t) : ∇v h d x 

+ 

∫ 
�
(u h (t) · ∇u h (t)) · v h d x −

∫ 
�

p h (t) ∇ · v h d x 

= 

∫ 
�

f h (t) · v h d x , ∀ v h ∈ V h , 

−
∫ 
�

q h ∇ · u h (t) d x = 0 , ∀ q h ∈ M h , 

u h (0) = u 

0 
h , (2) 

where u 

0 
h 

is an approximation of u 0 . We use the Taylor–Hood finite 

element discretization in space (continuous piecewise quadratic 

polynomial for velocity and linear polynomial for pressure): 

V h = X h ∩ [ H 

1 
0 (�)] 2 , X h = { v h ∈ [ C 

0 ( �)] 2 | v h | K ∈ P 2 , ∀ K ∈ T h } , 

M h = Y h ∩ L 2 0 (�) , Y h = { q h ∈ C 

0 ( �) | q h | K ∈ P 1 , ∀ K ∈ T h } . 
Here T h denotes a regular triangulation of the domain � and P k 

the space of Lagrange polynomials of degree k on the triangles 

K . The Taylor–Hood element satisfies the well-known inf-sup con- 

dition [5,16] . For finite element discretization of the Stokes and 

Navier–Stokes equations, the pressure p is taken in L 2 
0 
(�) , the 

space of L 2 ( �) function with zero-average on �, as pressure is 

unique only up to a constant when the velocity has Dirichlet 

boundary conditions on all ∂�. In practice, the pressure is penal- 

ized to control the value of this constant and obtain a nonsingu- 

lar algebraic system. The solution ( u ε , p ε ) of the penalized system 

converge to the solution ( u , p ) of the nonpenalized system in O(ε) , 

ε > 0 being the penalization parameter [46] . 

2.1. High-order semi–implicit backward difference formulae (SBDF) 

Semi-implicit time-stepping methods of k th-order accuracy (in 

time) for solving Navier–Stokes equations can be written as fol- 

lows: Given values { u 

j } k −1 
j=0 

at the first k -time steps, for all n ≥ 0 

find (u 

n + k , p n + k ) solution of 

discretization of the time-derivative ︷ ︸︸ ︷ 
1 

τ

( 

αu 

n + k + 

k ∑ 

j=1 

β j u 

n + k − j 

) 

−ν�u 

n + k + 

(3) 
nonlinear advection extrapolated at t = t n + k ︷ ︸︸ ︷ 

k ∑ 

j=1 

γ j u 

n + k − j · ∇u 

n + k − j + ∇p n + k = f n + k , 
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∇ · u 

n + k = 0 

, (4) 

where a constant time step τ is considered. The set of coeffi- 

cients α, { β j } k j=1 
∈ R arises from the backward differentiation for- 

mula for the time-derivative with α + 

∑ k 
j=1 β j = 0 . The coefficients 

{ γ j } k j=1 
∈ R produce the extrapolation formula for the nonlinear 

term satisfying 
∑ k 

j=1 γ j = 1 . The diffusion term −�u 

n + k is taken 

implicitly to avoid stringent stability condition in O(ν−1 h 2 ) on the 

time step. The terms ∇p n + k and ∇ · u 

n + k for the velocity-pressure 

coupling are taken implicitly to strictly enforce the discrete incom- 

pressibility condition. SBDF schemes are multistep methods which 

are not self-starting, therefore requiring proper initialization for 

{ u 

j } k −1 
j=0 

. Taking the 3rd-order methods as an illustration, the ini- 

tialization can be conveniently done as follows: 1st-order method 

(SBDF-1) is used to get u 

1 from u 

0 ; then 2nd-order method (SBDF- 

2) is used to get u 

2 from u 

0 and u 

1 . Then, the intended 3rd-order 

method (SBDF-3) can be used i.e. at t n = nτ for all n ≥ 3 until 

the final simulation time T is reached. We noticed that initial data 

generated by one-step method of an equal order of accuracy has 

potential to reduce the numerical error (in time) by one to two or- 

ders of magnitude. For instance, we propose initialization using a 

one-step 3rd-order method (e.g. DC-3) to generate u 

1 and u 

2 for 

SBDF-3; while a one-step 2nd-order method (e.g., Crank-Nicolson, 

DC-2, etc) is used to generate u 

1 for SBDF-2. DC methods is based 

on defect correction strategy which we will introduce shortly. Al- 

though SBDF methods are well known for their simplicity, the crit- 

ical time step for numerical stability is reduced as the order of the 

method increases. We will illustrate this fact through numerical 

test cases. In this work, we focus only on the 1st-, 2nd- and 3rd- 

order semi-implicit backward difference schemes for Navier–Stokes 

equations, refered to as SBDF-1, SBDF-2 and SBDF-3, respectively. 

The time discretization of the momentum equations using these 

methods can be expressed as follows: 

(a) SBDF-1 . Given the initial solution u 

0 
h 
, for all n ∈ N , find 

(u 

n +1 
h 

, p n +1 
h 

) solution of 

u 

n +1 
h 

− u 

n 
h 

τ
− ν�u 

n +1 
h 

+ ∇p n +1 
h 

= f n +1 
h 

− B (u 

n 
h ) , (5) 

(b) SBDF-2 . Given the initial solution u 

0 
h 

and a proper initializa- 

tion for u 

1 
h 
, for all n ∈ N , find (u 

n +2 
h 

, p n +2 
h 

) solution of 

3 u 

n +2 
h 

− 4 u 

n +1 
h 

+ u 

n 
h 

2 τ
− ν�u 

n +2 
h 

+ ∇p n +2 
h 

= f n +2 
h 

− 2 B (u 

n +1 
h 

) + B (u 

n 
h ) , (6) 

(c) SBDF-3 . Given the initial solution u 

0 
h 

and a proper initializa- 

tion for { u 

1 
h 
, u 

2 
h 
} , for all n ∈ N , find (u 

n +3 
h 

, p n +3 
h 

) solution of 

11 u 

n +3 
h 

− 18 u 

n +2 
h 

+ 9 u 

n +1 
h 

− 2 u 

n 
h 

6 τ
− ν�u 

n +3 
h 

+ ∇p n +3 
h 

= f n +3 
h 

−3 B (u 

n +2 
h 

) + 3 B (u 

n +1 
h 

) − B (u 

n 
h ) , (7) 

with these three methods sharing the same discretization of the 

continuity equation ∇ · u 

n + k 
h 

= 0 , k = 1 , 2 and 3, respectively. For 

simplicity, we denote the nonlinear advection term by B (u h ) = u h ·
∇u h . 

2.2. Defect correction method (DC) 

Defect or ‘deferred’ correction methods were first proposed to 

solve ordinary differential equations (ODEs) [45] . More recent work 

can be found in [26,40] . The defect correction method was ap- 

plied to the time-dependent Navier–Stokes equations to produce 

more accurate solutions [29] while a more practical construction 

of the defect correction method which motivates our work is given 

in [20] . To begin with, time-stepping schemes with arbitrary high- 

order of accuracy can be constructed using only SBDF-1 with the 

defect correction approach. Assuming that the discrete solution 

(in time) for velocity and pressure can be expressed in terms of 

asymptotic expansions in τ as 

u 

n +1 : = u 

n +1 
0 + τu 

n +1 
1 + τ 2 u 

n +1 
2 + · · · + τ k u 

n +1 
k 

+ O(τ k +1 ) , 

p n +1 : = p n +1 
0 + τ p n +1 

1 + τ 2 p n +1 
2 + · · · + τ k p n +1 

k 
+ O(τ k +1 ) , (8) 

where k also denotes the degree of the expansion. Similar expan- 

sions can be defined for u 

n and p n . We illustrate the construction 

of a DC- k method where k = 3 is fixed. Using Taylor’s expansion, 

we first expand u ( t ) around t = t n +1 to produce the following 

u (t n ) = u (t n +1 ) − τ
d 

d t 
u (t n +1 ) + 

τ 2 

2! 

d 

2 

d t 2 
u (t n +1 ) − τ 3 

3! 

d 

3 

d t 3 
u (t n +1 ) 

+ 

τ 4 

4! 

d 

4 

d t 4 
u (ξ ) (9) 

for some ξ = ξ (x ) ∈ [ t n , t n +1 ] , assuming that the velocity is suf- 

ficiently smooth in time. Let us define further u 

n +1 := u (t n +1 ) , 

u 

n := u ( t n ), d 

j u 

n +1 := 

d j 

d t j 
u (t n +1 ) . Combining Eq. (8) and (9) and 

keeping terms up to τ 3 give the following: 

u 

n 
0 + τu 

n 
1 + τ 2 u 

n 
2 + τ 3 u 

n 
3 = u 

n +1 
0 + τu 

n +1 
1 + τ 2 u 

n +1 
2 + τ 3 u 

n +1 
3 

−τ
d 

d t 
u 

n +1 + 

τ 2 

2 

( d 

2 u 

n +1 

0 + τd 

2 u 

n +1 

1 ) 

−τ 3 

6 

d 

3 u 

n +1 

0 + O(τ 4 ) . (10) 

Here, we observe that the first derivative of velocity, d 
dt 

u 

n +1 , can 

be replaced by the momentum equation from Navier-Stokes equa- 

tions ( Eq. (1) ) to give: 

Asymptotic expansion for the momentum equation 

u 

n +1 
0 − u 

n 
0 + τu 

n +1 
1 − τu 

n 
1 + τ 2 u 

n +1 
2 − τ 2 u 

n 
2 + τ 3 u 

n +1 
3 − τ 3 u 

n 
3 

= τν�u 

n +1 
0 + τ 2 ν�u 

n +1 
1 + τ 3 ν�u 

n +1 
2 

−τ∇p n +1 
0 − τ 2 ∇p n +1 

1 − τ 3 ∇p n +1 
2 

−τB (u 

n +1 ) − τ 2 

2 

( d 

2 u 

n +1 

0 + τd 

2 u 

n +1 

1 ) + 

τ 3 

6 

d 

3 u 

n +1 

0 + O(τ 4 ) . 

(11) 

Further, we define approximations of high-order derivatives using 

finite difference schemes as follows: 

d 

2 u 

n +1 

0 = 

u 

n +1 
0 

− 2 u 

n 
0 + u 

n −1 
0 

τ 2 
+ O(τ 2 ) , for n ≥ 0 , (12) 

d 

2 u 

n +1 

1 = 

u 

n +1 
1 

− 2 u 

n 
1 + u 

n −1 
1 

τ 2 
+ O(τ 2 ) , for n ≥ 1 , (13) 

d 

3 u 

n +1 

0 = 

u 

n +1 
0 

− 3 u 

n 
0 + 3 u 

n −1 
0 

− u 

n −2 
0 

τ 3 
+ O(τ ) , for n ≥ 2 . (14) 

By the linearity of both diffusion and pressure gradient terms and 

by using a simple ansatz for the nonlinear terms, these terms are 
expanded in increasing power of τ to produce the following: 

[ u n +1 
0 

− u n 0 

τ
− ν�u n +1 

0 
+ B (u n 0 ) + ∇p n +1 

0 
− f n +1 

] 
τ
[ u n +1 

1 
− u n 1 

τ
− ν�u n +1 

1 
+ 

B (u n +1 
0 

+ τu n 1 ) − B (u n 0 ) 

τ
+ ∇p n +1 

1 
+ 

1 

2 
d 2 u 

n +1 

0 

] 
τ 2 

[ u n +1 
2 

− u n 2 

τ
− ν�u n +1 

2 
+ 

B (u n +1 
0 

+ τu n +1 
1 

+ τ 2 u n 2 ) − B (u n +1 
0 

+ τu n 1 ) 

τ 2 

+ ∇p n +1 
2 

+ 

1 

2 
d 2 u 

n +1 

1 − 1 

6 
d 3 u 

n +1 

0 

] 
+ O(τ 3 ) = 0 , (15) 
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with the approximation B (u 

n +1 ) ≈ B (u 

n +1 
0 

+ τu 

n +1 
1 

+ τ 2 u 

n 
2 
) since 

taking u 

n 
2 

instead of u 

n +1 
2 

in the nonlinear term gives rise to a 

semi-implicit method. It can be shown that the global approxima- 

tion of the nonlinear term has a 3rd-order truncation error if and 

only if the condition 

‖ u 

n +1 
2 − u 

n 
2 ‖ L 2 (�) ≤ cτ (16) 

is satisfied (the approximation u 

n 
2 

converges at 1 st -order in time) 

for some real constant c > 0 and for all n ≥ 0. We omit the proof 

here. This results in Eq. (15) being an approximation to the mo- 

mentum equation with 3 rd -order accuracy in time. A similar ap- 

proach can be applied to the continuity equation to ensure 3 rd - 

order accuracy. 

Asymptotic expansion for the continuity equation 

∇ · u 

n +1 
0 

+ τ∇ · u 

n +1 
1 

+ τ 2 ∇ · u 

n +1 
2 

+ O(τ 3 ) = 0 . (17) 

Matching the coefficients of τ and using ‘divide and conquer’ strat- 

egy, Eqs. (15) and (17) are recasted into subproblems (18) –(20) , 

which are solved in a multistage manner. For brevity, we provide 

only the 3rd-order DC schemes (DC-3). By initializing u 

0 
0 

= u (0) , 

u 

0 
1 

= 0 , u 

0 
2 

= 0 , the velocity and pressure are obtained using the 

following algorithm: Find ( u 

n +1 
0 

, p n +1 
0 

) solution of Eq. (18) , (u 

n 
1 
, p n 

1 
) 

solution of Eq. (19) , (u 

n −1 
2 

, p n −1 
2 

) solution of Eq. (20) with the final 

global update (u 

n −1 , p n −1 ) : 

For n ≥ 0 , 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

nl 
n +1 
0 = 

{ 

B (u 

n 
0 ) , for n = 0 , 1 , 

B (u 

n 
0 + τu 

n −1 
1 

) , for n ≥ 2 , 

u 

n +1 
0 

− u 

n 
0 

τ
− ν�u 

n +1 
0 

+ ∇p n +1 
0 

= f n +1 − nl 
n +1 
0 , 

∇ · u 

n +1 
0 

= 0 , 

du 

n +1 
0 = (u 

n +1 
0 

− u 

n 
0 ) /τ. 

(18) 

For n ≥ 1 , 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d 

2 u 

n +1 

0 = ( du 

n +1 
0 − du 

n 
0 ) /τ, 

nl 
n 
1 = 

{
B (u 

n 
0 + τu 

n −1 
1 

) , for n = 1 , 

B (u 

n 
0 + τu 

n −1 
1 

+ τ 2 u 

n −1 
2 

) , for n ≥ 2 , 

u 

n 
1 − u 

n −1 
1 

τ
− ν�u 

n 
1 + ∇p n 1 = −1 

2 

d 

2 u 

n +1 

0 

−nl 
n 
1 − nl 

n 
0 

τ
, 

∇ · u 

n 
1 = 0 , 

du 

n 
1 = (u 

n 
1 − u 

n −1 
1 

) /τ. 

(19) 

For n ≥ 2 , 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d 

2 u 

n 

1 = ( du 

n 
1 − du 

n −1 
1 ) /τ, d 

3 u 

n +1 

0 

= ( d 

2 u 

n +1 

0 − d 

2 u 

n 

0 ) /τ, 

nl 
n −1 
2 = B (u 

n −1 
0 

+ τu 

n −1 
1 

+ τ 2 u 

n −2 
2 

) , 

u 

n −1 
2 

− u 

n −2 
2 

τ
− ν�u 

n −1 
2 

+ ∇p n −1 
2 

= −1 

2 

d 

2 u 

n 

1 + 

1 

6 

d 

3 u 

n +1 

0 

−nl 
n −1 
2 − nl 

n −1 
1 

τ 2 
, 

∇ · u 

n −1 
2 

= 0 , 

u 

n −1 = u 

n −1 
0 

+ τu 

n −1 
1 

+ τ 2 u 

n −1 
2 

, 

p n −1 = p n −1 
0 

+ τ p n −1 
1 

+ τ 2 p n −1 
2 

. (20) 

We propose new approximations to handle the nonlinear terms, 

i.e., nl 
n +1 
0 and nl 

n 
1 for DC-3 method which are different from 

the ones proposed in [20] . We found that these new approxima- 

tions result in a significant reduction of the numerical error while 

still being 3rd-order accurate on both velocity and pressure. Un- 

like higher-order SBDF methods which are multistep schemes, DC 

schemes are self-starting methods. In a hierarchical manner, the 

high-order derivatives, d 

2 u 

n +1 
0 , d 

2 u 

n 
1 and d 

3 u 

n −1 
0 , for n ≥ 0, n ≥ 1 

and n ≥ 2, respectively, are evaluated explicitly using Eqs. (12) –

(14) , to produce a method with k th-order accuracy in time for both 

velocity and pressure. For any k th-order methods, the structure of 

the resulting linear system for all subproblems is similar to that of 

SBDF-1 with a different right hand side. The downside of DC meth- 

ods arises from the need to solve k saddle point problems at each 

time step compared to only one for SBDF methods. For a small 

scale problem, DC may still be efficient since the same matrix is 

used for all subproblems and can thus be factorized once during 

the first time step. 

2.3. Guermond–Minev method (GM) 

The artificial compressibility technique was first introduced by 

Chorin [9] to eliminate both the undetermined constant in the 

pressure and complications that arise when solving saddle point 

systems. This can be done by modifying the continuity equation in 

Eq. (1) such that we have εp t + ∇ · u = 0 where ε > 0 is known 

as the penalization parameter. For illustration, we discretized the 

time-derivatives for velocity u t and pressure p t using 1st-order 

backward Euler formula and by fixing r = 

τ
ε , the iteration param- 

eter. Meanwhile, the nonlinear term is treated explicitly. Using the 

discretized continuity equation, we eliminate the pressure gradi- 

ent ∇p n +1 
s +1 

, in the momentum equation. It results an augmented 

Lagrangian method (ALM) for solving the unsteady Navier–Stokes 

equations, which reads: Given the initial pressure p 0 
0 

= p(0) and 

suitable r > 0, we iterate the problem for s = 0 , 1 , 2 , · · ·

u 

n +1 
s +1 

− u 

n 
s +1 

τ
− ν�u 

n +1 
s +1 − r∇∇ · u 

n +1 
s +1 + u 

n 
s +1 · ∇u 

n 
s +1 

+ ∇p n s = f , in � × (0 , T ) , 

p n +1 
s +1 = p n +1 

s − r∇ · u 

n +1 
s +1 , in � × (0 , T ) . (21) 

while the stopping criterion ‖ p n +1 
s +1 

− p n +1 
s ‖ L 2 (�) < tol is met at 

each time step t n +1 , where tol > 0 is chosen small. The conver- 

gence of this method is only proven for Stokes equations in [14] . 

For semi-implicit schemes, this idea is remarkable since only two 

linear systems with symmetric and positive definite matrices are 

required to be solved and iterative methods (e.g. conjugate gradi- 

ent method) work well for such linear systems. For unsteady prob- 

lem, however, one may predict that the large number of iteration 

required for the convergence of the pressure at every time step 

makes the method impractical. Recently, Guermond and Minev 

[20] proposed a high-order time-stepping schemes based upon ar- 

tificial compressibility for Navier–Stokes equations. Using defect 

correction methods and the bootstrapping technique, the resulting 

uncoupled scheme requires only one update of the pressure at ev- 

ery time step, which produces a significant reduction in CPU time 

compared to the native implementation of ALM. Without providing 

technical details on the derivation of this method, the Guermond–

Minev scheme with 3rd-order accuracy (GM-3) is given as fol- 

lows [20] : For a given initial data (u 

0 
0 
, p 0 

0 
) = ( u (0 ) , p(0)) and set- 

ting (u 

0 
1 
, p 0 

1 
) = (0 , 0) , (u 

0 
2 
, p 0 

2 
) = (0 , 0) , we solve for (u 

n +1 , p n +1 ) 

through the computation of (u 

n +1 
0 

, p n +1 
0 

) , (u 

n 
1 
, p n 

1 
) and (u 

n −1 
2 

, p n −1 
2 

) 
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using Eqs. (22) , (23) and (24) , respectively: 

For n ≥ 0 , 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

nl 
n +1 
0 = 

{
B (u 

n 
0 ) , for 0 ≤ n ≤ 1 , 

B (u 

n 
0 + τu 

n −1 
1 

) , for n ≥ 2 , 

u 

n +1 
0 

− u 

n 
0 

τ
− ν�u 

n +1 
0 

− λ∇∇ · u 

n +1 
0 

+ ∇p n 0 

= f n +1 − nl 
n +1 
0 , 

p n +1 
0 

= p n 0 − λ∇ · u 

n +1 
0 

, 

du 

n +1 
0 = (u 

n +1 
0 

− u 

n 
0 ) /τ, dp n +1 

0 
= (p n +1 

0 
− p n 0 ) /τ. 

(22) 

For n ≥ 1 , 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d 

2 u 

n +1 

0 = ( du 

n +1 
0 − du 

n 
0 ) /τ, 

nl 
n 
1 = 

{
B (u 

n 
0 + τu 

n −1 
1 

) , for n = 1 , 

B (u 

n 
0 + τu 

n −1 
1 

+ τ 2 u 

n −1 
2 

) , for n ≥ 2 , 

u 

n 
1 − u 

n −1 
1 

τ
− ν�u 

n 
1 − λ∇∇ · u 

n 
1 + ∇(p n −1 

1 
+ dp n 0 ) 

= −1 

2 

d 

2 u 

n +1 

0 − nl 
n 
1 − nl 

n 
0 

τ
, 

p n 1 = p n −1 
1 

+ dp n 0 − λ∇ · u 

n 
1 , 

du 

n 
1 = (u 

n 
1 − u 

n −1 
1 

) /τ, dp n 1 = (p n 1 − p n −1 
1 

) /τ. 

(23) 

for n ≥ 2 , 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d 

2 u 

n 

1 = ( du 

n 
1 − du 

n −1 
1 ) /τ, 

d 

3 u 

n +1 

0 = ( d 

2 u 

n +1 

0 − d 

2 u 

n 

0 ) /τ, 

nl 
n −1 
2 = B (u 

n −1 
0 

+ τu 

n −1 
1 

+ τ 2 u 

n −2 
2 

) , 

u 

n −1 
2 

− u 

n −2 
2 

τ
− ν�u 

n −1 
2 

− λ∇∇ · u 

n −1 
2 

+ ∇(p n −2 
2 

+ dp n −1 
1 

) 

= −1 

2 

d 

2 u 

n 

1 + 

1 

6 

d 

3 u 

n +1 

0 − nl 
n −1 
2 − nl 

n −1 
1 

τ 2 
, 

p n −1 
2 

= p n −2 
2 

+ dp n −1 
1 

− λ∇ · u 

n −1 
2 

, 

u 

n −1 = u 

n −1 
0 

+ τu 

n −1 
1 

+ τ 2 u 

n −1 
2 

, 

p n −1 = p n −1 
0 

+ τ p n −1 
1 

+ τ 2 p n −1 
2 

. 

(24) 

The stability and convergence analysis of the method is done 

only for the linear problem (i.e B (u ) = 0 ) in [20] . In later section, 

we will illustrate through our numerical results that the method 

reaches the expected rate of convergence and is stable with a suit- 

able choice of time step on a given mesh. 

2.4. Guermond-Minev with sequential regularization method 

(GM-SRM) 

We propose a modification of the GM method using the so- 

called sequential regularization method (SRM) which was first in- 

vestigated by [30,32] considering that Navier–Stokes equations is 

a system of differential-algebraic equations (DAE) of index 2. This 

gives rise to the new formulation of Navier-Stokes equations which 

reads 

u 

s +1 
t − ν�u 

s +1 − α1 ∇∇ · u 

s +1 
t − α2 ∇ ∇ · u 

s +1 + u 

s +1 · ∇ u 

s +1 

+ ∇p s = f , in � × (0 , T ) , 

p s +1 = p s − α1 ∇ · u 

s +1 
t − α2 ∇ · u 

s +1 , in � × (0 , T ) . (25) 

This problem can be solved using any suitable time-stepping 

scheme and stopping criteria as for ALM. Both α1 , α2 ≥ 0 are user- 

defined stabilization parameters for SRM. By choosing α1 = 0 and 

α2 = λ, we fall back on the GM methods. The time-derivative of di- 

vergence of u , i.e., ∇ · u t , is discretized using similar Taylor series 

expansion as in Eq. (9) . We retain the high-order derivative terms 

for defect correction purposes, as was done for the other terms 

in the PDE. The method GM-SRM with 3 rd -order accuracy is given 

as follows: For a given initial data (u 

0 
0 
, p 0 

0 
) = ( u (0 ) , p(0)) and set- 

ting (u 

0 
1 
, p 0 

1 
) = (0 , 0) , (u 

0 
2 
, p 0 

2 
) = (0 , 0) , we solve for (u 

n +1 , p n +1 ) 

through the computation of (u 

n +1 
0 

, p n +1 
0 

) , (u 

n 
1 
, p n 

1 
) and (u 

n −1 
2 

, p n −1 
2 

) 

using Eqs. (26) , (27) and (28) , respectively: 

For n ≥ 0 , 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

nl 
n +1 
0 = 

{
B (u 

n 
0 ) , for 0 ≤ n ≤ 1 , 

B (u 

n 
0 + τu 

n −1 
1 

) , for n ≥ 2 , 

u 

n +1 
0 

− u 

n 
0 

τ
− ν�u 

n +1 
0 

− μ1 ∇∇ · u 

n +1 
0 

+ μ2 ∇∇ · u 

n 
0 + ∇p n 0 

= f n +1 − nl 
n +1 
0 , 

p n +1 
0 

= p n 0 − μ1 ∇ · u 

n +1 
0 

+ μ2 ∇ · u 

n 
0 , 

du 

n +1 
0 = (u 

n +1 
0 

− u 

n 
0 ) /τ, dp n +1 

0 
= (p n +1 

0 
− p n 0 ) /τ. 

(26) 

For n ≥ 1 , 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d 

2 u 

n +1 

0 = ( du 

n +1 
0 − du 

n 
0 ) /τ, 

nl 
n 
1 = 

⎧ ⎨ 

⎩ 

B (u 

n 
0 + τu 

n −1 
1 

) , for n = 1 , 

B (u 

n 
0 + τu 

n −1 
1 

+ τ 2 u 

n −1 
2 

) , for n ≥ 2 , 

u 

n 
1 − u 

n −1 
1 

τ
− ν�u 

n 
1 − μ1 ∇∇ · u 

n 
1 + μ2 ∇∇ · u 

n −1 
1 

+ ∇(p n −1 
1 

+ dp n 0 ) = − 1 

2 
( d 

2 u 

n +1 

0 − μ2 τ∇∇ · d 

2 u 

n +1 

0 ) 

− nl 
n 
1 − nl 

n 
0 

τ
, 

p n 1 = p n −1 
1 

+ dp n 0 − μ1 ∇ · u 

n 
1 + μ2 ∇ · u 

n −1 
1 

−μ2 τ

2 
∇ · d 

2 u 

n +1 

0 , 

du 

n 
1 = (u 

n 
1 − u 

n −1 
1 

) /τ, dp n 1 = (p n 1 − p n −1 
1 

) /τ. (27) 

for n ≥ 2 , 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d 

2 u 

n 

1 = ( du 

n 
1 − du 

n −1 
1 ) /τ, 

d 

3 u 

n +1 

0 = ( d 

2 u 

n +1 

0 − d 

2 u 

n 

0 ) /τ, 

nl 
n −1 
2 = B (u 

n −1 
0 

+ τu 

n −1 
1 

+ τ 2 u 

n −2 
2 

) , 

u 

n −1 
2 

− u 

n −2 
2 

τ
− ν�u 

n −1 
2 

− μ1 ∇∇ · u 

n −1 
2 

+ μ2 ∇∇ · u 

n −2 
2 

+ ∇(p n −2 
2 

+ dp n −1 
1 

) = − 1 

2 
( d 

2 u 

n 

1 

−μ2 τ∇∇ · d 

2 u 

n 

1 ) 

+ 

1 

6 
( d 

3 u 

n +1 

0 − μ2 τ∇∇ · d 

3 u 

n +1 

0 ) 

− nl 
n −1 
2 − nl 

n −1 
1 

τ 2 
, 

p n −1 
2 

= p n −2 
2 

+ dp n −1 
1 

− μ1 ∇ · u 

n −1 
2 

+ μ2 ∇ · u 

n −2 
2 

−μ2 τ

2 
∇ · d 

2 u 

n 

1 + 

μ2 τ

6 
∇ · d 

3 u 

n +1 

0 , 

u 

n −1 = u 

n −1 
0 

+ τu 

n −1 
1 

+ τ 2 u 

n −1 
2 

, 

p n −1 = p n −1 
0 

+ τ p n −1 
1 

+ τ 2 p n −1 
2 

. (28) 

where μ1 = 

α1 

τ
+ α2 and μ2 = 

α1 

τ
. The existence and uniqueness 

of the solution of SRM formulation for time-dependent Navier–

Stokes equations was studied in [32] for 1st-order approximations 

in time. There are very few numerical test cases available in the 

literature for SRM applied to unsteady flows, not to mention when 

this involves high-order methods in time. In this paper, we intend 

to fill this gap. 

3. Stabilization parameter for GM and GM-SRM 

The grad − div stabilization term arises naturally in GM and 

GM-SRM methods since the Navier–Stokes equations are solved by 

uncoupling the velocity and pressure. In the continuous setting 

of the Navier–Stokes equations, the presence of grad − div term 

in the momentum equation does not change the solution. In the 

discrete setting, however, the grad − div term does not change 

the solution only under certain conditions, for instance when fi- 

nite elements lie within the divergence free subspace or when ∇·

33
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V h ⊂ M h . In particular, when P 2 − P 1 finite elements are used, we 

have ∇ · V h ⊆ Z h ⊂ M h , where 

Z h = { v h ∈ L 2 (�) | v h | K ∈ P 1 , ∀ K ∈ T h } . (29) 

For the discrete weak formulation of GM and GM-SRM, the grad −
div term in the momentum equation cannot be eliminated as is 

done from the continuity equation at the continuous level. This 

explains that for both GM and GM-SRM methods, the computed 

solution may differ from that with SBDF and DC methods even 

when we let τ → 0, with h fixed. When solving flow problem 

with P 2 − P 1 elements on a coarser grid, it is known that the 

grad − div term helps to penalize the incompressibility condition 

at the element level hence improving the overall quality of the 

solutions. Several other advantages of adding the grad − div sta- 

bilization term for solving Stokes equations have been addressed 

by Olshanskii et al. [35,36] and references therein. Our work will 

only provide a comparison in terms of the solution and numer- 

ical behaviour between our methods with grad − div and with- 

out grad − div on a given mesh. The numerical improvement of 

P 2 − P 1 elements by the addition of grad − div term will be ad- 

dressed in a separate work. 

A challenging issue when using GM and GM-SRM is the choice 

of stabilization parameter, i.e., λ for GM, α1 and α2 for GM-SRM, 

which remains a controversial issue. For instance, by picking a 

large λ, it helps to enforce the incompressibility condition rapidly 

(in very few time steps). However, the choice of such large stabi- 

lization parameter may result in the poor conditioning of the lin- 

ear system due to the “locking” or very stiff behaviour imposed 

by the grad − div term in the momentum equation [20] . A simi- 

lar problem was studied by Glowinski and Fortin [14] but involv- 

ing only Stokes equation with ALM. Our linear system for the mo- 

mentum equation (in GM and GM-SRM) is almost identical with 

theirs except for the presence of an additional diagonal block with 

the mass matrix from the time discretization in our case. They had 

proven that a large “iterative parameter” akin to our stabilization 

parameter results in poor convergence behaviour (ill-conditioned 

matrix) when iterative solvers are used to solve this linear sys- 

tem. Since we use a direct solver for the linear system, this is 

not a major issue. Large stabilization parameter is also related to 

over-stabilization effects which induces numerical dissipation and 

lost of accuracy [35] . Small λ on the other hand, may compli- 

cate the convergence of pressure between momentum and conti- 

nuity equation. This results in parasitic oscillations on both pres- 

sure and velocity due to poor mass conservation. GM and GM- 

SRM methods do not have additional iterations between subprob- 

lems to ensure such convergence is satisfied, as is done with ALM. 

The incompressibility condition is enforced only with bootstrap- 

ping technique which critically depends on a well-chosen stabiliza- 

tion parameter. As similar problems arise for GM-SRM methods, 

the choice of α1 and α2 remains an open problem. 

At this moment, we are not able to establish a mathematical 

theory to determine an optimal value of these parameters in terms 

of producing the least numerical error at a given time step. In our 

work, best values of the parameters, λ, α1 and α2 can be estimated 

numerically (trial and error). For instance in GM, we start by pick- 

ing very large λ and observing the velocity and pressure during 

first few time steps. If no oscillations are found, computations are 

rerun with smaller λ. The ‘optimal’ λ is chosen by picking the one 

that starts to induce oscillations but that progressively dampens 

the oscillations from one time step to the next. For the GM-SRM 

method, a good combination of α1 and α2 is harder to identify. 

For simplicity, we propose α1 = τα2 for test cases which require 

larger α2 (e.g., α2 � 1) while α1 = 1 is typically chosen when only 

smaller α2 is required (e.g., α2 = 1 ). We only need to determine 

the value of α2 using an approach that is similar to what is done 

to obtain λ in the GM method. Nonetheless, this approach delivers 

good results in our computations. The nearly optimal values of λ
in GM and α1 and α2 in GM-SRM are provided for each of the test 

cases. 

4. Numerical results 

Numerical validation and benchmarking are done for the time- 

stepping schemes SBDF, DC, GM and GM-SRM, all with 2 nd - and 

3 rd -order accuracy. All our tests are done with 2D flows. We 

start with two manufactured solutions, one involving Dirichlet–

Neumann boundary conditions adapted from [20] and the Taylor’s 

Vortex flow with Dirichlet boundary conditions [38] . For test cases 

which are deemed to be more challenging, the flow around a cylin- 

der (von Kármán alley) (see for instance [19,38,48] ) and the lid- 

driven cavity flow (see [18,37,43] ) are chosen. Since exact solutions 

do not exist for these last two test cases, we made comparisons 

with reference solutions and the results found in the literature. 

Let us define t n = nτ ∗ and T = Mτ ∗ where T is total simulation 

time, τ ∗ the time step for output purposes and M ∈ N given by the 

user. For convenience, we choose τ ∗ as a multiple of τ . The error 

in time can be computed using the reference solutions ( u ref , p ref ) 

where u ref = u h,τref 
and p ref = p h,τref 

are the best approximants to 

the solution of the semi-discrete problem (in space). Very small 

time step, given as τ ref is used to compute the reference solutions. 

The error from the time discretization, by fixing the discretization 

in space, can be computed as follows: 

‖ u ref − u h,τ‖ 

∗
L 2 (0 ,T ;L 2 (�)) = 

(
τ ∗

M ∑ 

n =1 

‖ u 

n 
ref − u 

n 
h,τ‖ [ L 2 (�)] 2 

) 1 
2 

, 

‖ p ref − p h,τ‖ 

∗
L 2 (0 ,T ;L 2 (�)) = 

(
τ ∗

M ∑ 

n =1 

‖ p n h,τ − p n ref ‖ L 2 (�) 

) 1 
2 

. 

(30) 

This type of error is useful when exact solutions are not available 

and to study the order of convergence in time only. Due to the 

numerical discrepancies found between methods with grad − div 

and without grad − div term, we compare the errors produced by 

DC and SBDF methods with the reference solution that is generated 

by DC-3. On the other hand, we consider a reference solution that 

is generated by GM-3 in the assessment of the GM and GM-SRM 

methods. The formula to obtain the order of convergence in time, 

k , for velocity and pressure (respectively w = u and w = p) reads: 

k = ln 

( ‖ w ref − w h,τ‖ 

∗
L 2 (0 ,T ;L 2 (�)) 

‖ w ref − w h,τ /r ‖ 

∗
L 2 (0 ,T ;L 2 (�)) 

)/ 

ln r, (31) 

where r ∈ R 

+ is the refinement factor between consecutive time 

steps. The value r = 2 was chosen. For the finite element approxi- 

mation, the mesh is assumed to be quasi-uniform, i.e., h min ≤ h ≤
h max . Suppose that the space approximation is done using P 2 –P 1 

mixed finite elements with sufficient regularity on ( u , p ), we ex- 

pect that the L 2 -error between numerical and exact solutions using 

k th-order time-stepping schemes to behave as 

‖ (u − u h,τ )(t i ) ‖ L 2 (�) = O(τ k + h 

3 ) , 1 ≤ i ≤ N, 

‖ (p − p h,τ )(t i ) ‖ L 2 (�) = O(τ k + h 

2 ) , 1 ≤ i ≤ N, 
, (32) 

where N = T /τ ∈ N is the total number of time step. Similarly, the 

L 2 -error between numerical and reference semi-discrete solutions 

obtained on the same mesh is expected to have the following order 

of accuracy 

‖ (u ref − u h,τ )(t i ) ‖ L 2 (�) = O(τ k ) , 1 ≤ i ≤ N, 

‖ (p ref − p h,τ )(t i ) ‖ L 2 (�) = O(τ k ) , 1 ≤ i ≤ N. 
(33) 

The critical time step, τ crit for numerical stability of each time- 

stepping scheme is computed using a bisection method. For in- 

stance, the initial time step, τ 0 is chosen large enough to result 
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in a numerical blow-up after a few time steps. Next, same com- 

putation is carried out using the time step, τ1 = 0 . 5 τ0 . If the nu- 

merical stability is observed for a chosen total time T , computa- 

tion is restarted again with the larger time-step τ2 = 1 . 5 τ1 , oth- 

erwise we set τ2 = 0 . 5 τ1 and the process is repeated. Typically, 

T = 10 is chosen to account for nonlinear instability effects that 

may show-up in the computation. A fully developed periodic flow 

is used as initial condition. To obtain a converged critical time step 

τ crit , the stopping criteria, i.e., | τn +1 − τn | < tol τ , is used for some 

small tol τ > 0. All computations are done using FreeFEM ++ [22] . 

We intend to focus only on the performance of the time-stepping 

schemes, hence the impact of linear solvers and preconditioners 

are not taken into consideration. We used MUMPS (Multifrontal 

Massively Parallel Sparse Direct Solver) which is one of the best 

direct solver available in FreeFEM ++ . MUMPS is chosen as it turns 

out to be twice as fast as the Unsymmetric MultiFrontal method 

(UMFPACK). All simulations are run under a Linux-platform PC 

with a Intel®Core TM i7-3770 CPU 3.40 GHz and 32Gb of RAM. We 

compare the numerical efficiency of the time-stepping methods by 

looking at the CPU time (total runtime) required to reach a desired 

level of error in time. Some of the methods may be very efficient 

when the error is large but surpassed by others when smaller error 

is required. Relative efficiency depends on several factors, namely 

the numerical complexity (i.e., number of subproblems and linear 

systems to be solved per time step), accuracy, stability condition 

(which determines the size of the maximal time step) and con- 

vergence behaviour of the methods. For 2D problems, the memory 

requirement of all these methods can be easily fulfilled by modern 

desktop computers. However, this may not be true for 3D prob- 

lems. 

4.1. Manufactured solution I 

This manufactured solution is an example where the discretiza- 

tion error in time is larger than that in space which was pre- 

sented in [20] . For this test case, we use the square domain � = 

(0 , 1) × (0 , 1) . The exact solutions for velocity and pressure are 

given by 

u = ( sin ( x ) sin ( y + t ) , cos ( x ) cos ( y + t ) ) , 

p = cos ( x ) sin ( y + t ) , (34) 

for ( x, y ) ∈ �, t ≥ 0. Homogeneous Neumann boundary conditions 

are prescribed at the left boundary while homogeneous Dirichlet 

boundary conditions (no-slip) are prescribed at bottom, right and 

upper boundaries. By fixing the viscosity constant, ν = 1 , initial 

and boundary conditions, and f can be computed using Eq. (34) . 

The domain is discretized using an unstructured mesh with uni- 

form mesh size h = 0 . 01768 (subdivision 80 × 80 along the bound- 

ary). This gives a total of 6561 vertices, 12800 triangles and 58403 

degrees of freedom for velocity and pressure. This test case is run 

for a total time T = 2 with varying time steps, τ = 0 . 02 , 0 . 01 , 0 . 005 

and 6 . 25 × 10 −5 . The smallest time step is used to generate the ref- 

erence solution ( u ref , p ref ) for computing the error (in time only) in 

the convergence analysis. For the stabilization parameters, we fix 

λ = 83 . 5 in GM methods while α1 = 40 τ and α2 = 40 . 0 are used 

in GM-SRM methods. 

Fig. 1 shows the time evolution of log-scaled L 2 -error computed 

with Eq. (30) for all 2nd- and 3rd-order methods, both for veloc- 

ity and pressure with τ = 0 . 02 , 0 . 01 and 0.005. These plots con- 

firm as expected, the following facts: the accuracy of the veloc- 

ity obtained with all methods is better than that of pressure since 

P 2 − P 1 finite element is used; the 3rd-order methods are more 

accurate than their 2nd-order counterparts at any fixed time t ∈ 

[0, 2] and the numerical errors for velocity and pressure decrease 

as the time step is refined. For τ = 0 . 02 , all graphs for 3rd-order 

methods (except SBDF-3 for velocity) are superposed with the low- 

est curve, where only the error from the space approximation re- 

mains. The error of velocity for SBDF-3 is still large with the time 

step τ = 0 . 02 . We suspect that this error is induced from a time 

step chosen too close to the critical value for SBDF-3 method. The 

critical time step for SBDF-3 is known to be smaller than that for 

other 3rd-order methods to fulfill the CFL stability condition. With 

the smallest time step, τ = 0 . 005 , both DC-3 and SBDF-3 produce 

the least error for both velocity and pressure, followed by GM-3 

and GM-SRM-3. Here, GM-SRM produces very similar errors to that 

computed with GM for both 2nd- and 3rd-order accuracy as com- 

putations proceed further from the start-up. However, it can be ob- 

served that numerical oscillations on the solutions of GM-3 (and 

consequently on the error) at start-up require more time steps 

to attenuate completely compared to GM-SRM-3, which suggests 

that GM-SRM-3 may have better stability property than GM-3 in 

terms of enforcing divergence free condition at element level. For 

τ = 0 . 005 , we observed that the graph produced with all meth- 

ods except GM-2, GM-SRM-2 and SBDF-2 methods collapse to the 

bottom graph with space error only except for minor discrepancies 

due to the presence of the grad − div term in GM and GM-SRM. 

We note that the error produced by GM and GM-SRM can be re- 

duced further and brought closer to minimal level by choosing a 

slightly smaller stabilization parameter, e.g., λ < 83.5 and α2 < 

40.0. A disadvantage for this, however, is by having more severe 

oscillations generated at the beginning of the computations which 

require more time steps to be damped. 

We analyze the numerical efficiency and convergence in time 

of the scheme, i.e., by comparing the numerical and reference so- 

lutions for all methods (see Fig. 2 ). The numerical efficiency can 

be studied by considering first, the L 2 -error versus CPU time and 

second, the L 2 -error versus the time step, τ for both velocity and 

pressure. These errors are computed using Eq. (30) . To disregard 

possible pressure oscillations generated by GM and GM-SRM meth- 

ods at start-up, we evaluate the L 2 -error using τ ∗ = 0 . 2 only for t 

∈ [1, 2]. Fig. 2 shows that all 3rd-order methods are more efficient 

than 2nd-order methods for both velocity and pressure as the ac- 

curacy reached for a given CPU time is always better with 3rd- 

order methods. Among all methods, the accuracy of SBDF is found 

to be the lowest among all methods of the same order. However, 

we noted that the accuracy of SBDF methods can be improved by 

implementing different discretizations of the nonlinear term. Fur- 

ther discussion on this will be provided in a separate paper. At 

any given level of error, DC-3 method is found to be the most ef- 

ficient, for instance it can reach an error of about 10 −8 for velocity 

and about 10 −6 for pressure with shortest CPU time, closely fol- 

lowed by GM-3, GM-SRM-3 and SBDF-3 methods. It is noteworthy 

that DC-3 method requires to solve three saddle point problems at 

every time step, and still is the most efficient for this test case. 

With a small number of unknowns, the use of a direct solver (e.g., 

MUMPS) makes these computations efficient. For a fixed time step 

and order of the method, DC, GM and GM-SRM methods produce 

smaller error in time than that with SBDF methods since they are 

all based upon defect correction strategy. Fig. 2 (at the bottom) 

shows that all time-stepping schemes converge in time with the 

theoretical rate for both velocity and pressure. 

4.2. Manufactured solution II (Taylor Vortex) 

The Taylor vortex is a manufactured solution modeling flow 

problems with Dirichlet boundary conditions [28] which it is often 

used for numerical validation. It models a decaying flow in time 

and exhibits a dominating error in space over the error in time. 

This test case mimics industrial fluid stirring mechanism using ro- 

tating and counter-rotating cylinder rods in a mixing tank. In our 

test case, the square domain � = (0 . 25 , 1 . 25) × (0 . 5 , 1 . 5) is used 
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Fig. 1. Manufactured solution I: Time history of L 2 -error for velocity and pressure between numerical and exact solutions using 2nd- and 3rd-order SBDF, DC, GM, GM-SRM 

schemes (From left to right, the time steps τ = 0.02, 0.01 and 0.005 are used). 

with the exact solutions for velocity and pressure given by 

u = (−cos (2 πx ) sin (2 πy ) e −8 π2 νt , sin (2 πx ) cos (2 πy ) e −8 π2 νt ) , 

p = − 1 

4 
( cos (4 πx ) + cos (4 πy )) e −16 π2 νt , (35) 

in which the external force, f ≡ 0. We set the kinematic viscosity, 

ν to 0.01. Dirichlet boundary conditions which are prescribed on 

the four edges of the square and initial conditions can be obtained 

through the exact solution ( Eq. (35) ). The domain is discretized 

with an unstructured triangular mesh by subdividing each side of 

the square in 120 equal length edges. With P 2 − P 1 finite elements, 

a total of 34210 elements, 17346 vertices and 155148 degrees of 

freedom for both velocity and pressure are produced. The element 

size, h K lies in the range 0.00645 ≤ h K ≤ 0.01518. Since this is an 

exponentially decaying solutions, we limit the simulation only to t 

∈ [0, 1]. We fix λ = 3 . 3 in GM methods and α1 = α2 = 1 in GM-SRM 

methods. The numerical comparisons are done in a similar fashion 

as in Section 4.1 . For the error (in time) and convergence analysis, 

we only consider the solution generated at every step τ ∗ = 0 . 2 for 

t ∈ [0.6, 1.0] (using Eq. (30) ). 

Fig. 3 shows the time evolution of the L 2 -error on velocity and 

pressure comparing with the exact solutions, computed by various 

methods with time steps τ = 0 . 02 , 0 . 01 , 0 . 005 . Remarks are simi- 

lar as for the previous test case, except for the observation that 

GM-SRM methods slightly outperform other methods of the same 

order since they have the smallest error on velocity. This suggests 

that the presence of a grad − div term with nearly optimal choice 

of the stabilization parameters helps to enforce the incompressibil- 

ity condition while improving the accuracy on velocity (in space) 

by about one order of magnitude compared to other methods. We 

observe again that the accuracy of SBDF-3 is compromised when 

the time step is chosen too close to the critical time step for sta- 

bility (see top left graph in Fig. 3 ). Fig. 4 illustrates the numerical 

efficiency of the methods by showing graphs of the L 2 -error (in 

time only) versus the required CPU time and chosen time step, re- 

spectively, for all methods. Here, we set T = 1 and a very small 

time step τ = 6 . 25 × 10 −5 to compute the reference solution. The 

numerical rate of convergence of all time-stepping schemes shows 

a satisfactory agreement with the theoretical rate of convergence 

in time for both velocity and pressure. At larger time step (e.g., 

τ > 0.01), SBDF-3 does not exhibit the expected order of conver- 

gence when the chosen time step is too close to the critical time 

step. However, the SBDF-3 method is found to quickly surpass DC- 

3, GM-3 and GM-SRM-3 methods for errors below 1 × 10 −6 and 

3 × 10 −7 on velocity and pressure, respectively. At any given or- 

der of accuracy, SBDF methods are found to be the most efficient 

for both velocity and pressure at least when sufficiently small time 

steps are used. Interestingly, SBDF methods produce the smallest 

error on velocity in time at smaller time step, e.g., τ < 0.01 for 

this test case. This is observed since the initialization procedure 

is done using high-order method, i.e., DC methods. For pressure, 

GM, GM-SRM and DC methods produced smaller error than SBDF 

methods for a given time step and order of accuracy. 
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Fig. 2. Manufactured Solution I: Plot of the error on velocity (left) and pressure (right) as a function of CPU time (top) and time-step (bottom) for SBDF, DC, GM, GM-SRM 

methods. 

4.3. Flow past a circular object: von Kármán Alley 

The flow past a circular cylinder is one of the most famous flow 

experiments in fluid dynamics (see e.g. [23,38,42,48] ). In many 

numerical studies for Navier–Stokes equations, this test case has 

been used for benchmaking purposes, since only accurate numer- 

ical methods are able to reproduce the right flow properties. The 

categorization of vortex shedding behind the circular cylinder such 

as steady or unsteady laminar, subcritical and turbulent flows are 

strictly determined by the Reynolds numbers 

Re = 

U ∞ 

D 

ν
, (36) 

where D is the diameter of the cylinder, U ∞ 

the far-field speed and 

ν the kinematic viscosity. The wake behind the cylinder gives rise 

to a periodic flow with symmetry breaking whenever 40 < Re < 

150. The so-called laminar von Kármán vortex sheet is then fully 

developed. To quantify the periodicity of the flow, the Strouhal 

number is used, i.e., Str = 

f D 
U ∞ 

where f is the frequency of the vor- 

tex shedding. 

There are several ways to set the computational domain for 

this flow. In this paper, we use a conventional rectangular do- 

main, � = (−10 , 25) × (−10 , 10) which is discretized by a total of 

26936 non-uniform triangles (unstructured mesh) and 13648 ver- 

tices. The circular cylinder is located at the origin with D = 1 . As 

P 2 − P 1 finite elements are used for space discretization, there are 

108474 unknowns for the velocity u = (u, v ) and 13648 unknowns 

for the pressure p . The varying element size, h K , lies in the in- 

terval [0.05129, 0.61148], with a sufficiently fine mesh generated 

near the cylinder to capture the boundary layer and coarsest el- 

ement along the outer boundary (see Fig. 5 ). Setting U ∞ 

= 1 and 

ν = 0 . 01 , a Reynolds number, Re = 100 is obtained. For GM meth- 

ods, the stabilization parameter λ = 10 4 is considered. For GM- 

SRM methods, typically smaller stabilization parameters α1 = 200 τ
and α2 = 200 are chosen. The boundary conditions are prescribed 

as follows: along the left, upper and lower boundaries, Dirichlet 

boundary conditions u = (u, v ) = (1 , 0) are set. Upper and lower 

boundaries in this paper are dealt differently from what is done 

in [23,33,38,48] . In these papers, non-slip boundary u = (0 , 0) or 

∂ x u = 0 with v = 0 were used along the upper and lower bound- 

aries on much smaller computational domain. Neumann boundary 

conditions (free exit) are employed along the right outflow bound- 

ary, i.e., p − ν∂ x u | �N 
= 0 and −ν∂ x v | �N 

= 0 where �N = { (x, y ) ∈ 

� | x = 25 } . Non-slip boundary condition u = (u, v ) = (0 , 0) is pre- 

scribed on the circular cylinder. Starting from an initial state at 

rest, a periodic motion is reached for about T = 80 . This periodic 

flow then shows vortex shedding behind the cylinder propagating 

all the way to the outflow boundary. To reduce the computational 

time, we use the periodic solution that is computed with SBDF-2 

as the initial state for all subsequent numerical tests. Since there is 

no analytical solution for this test case, we use a reference solution 

( u ref , p ref ) to assess all our methods. 

In Fig. 6 , the numerical efficiency is assessed by plotting the 

L 2 -error (in time) on velocity and pressure versus the CPU time for 

completing the computation for t ∈ [0, 8] starting from the peri- 
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Fig. 3. Manufactured solution II: Time history of L 2 -error for velocity and pressure between numerical and exact solutions using 2nd- and 3rd-order SBDF, DC, GM, GM-SRM 

schemes (From left to right, the time steps τ = 0.02, 0.01 and 0.005 are used). 

Table 1 

Computed critical time step and maximum CFL bound for 

stability. 

Methods Critical time step, τ crit CFL max 

SBDF-1 1 . 7744 × 10 −2 4 . 6319 × 10 −1 

SBDF-2 1 . 1951 × 10 −2 4 . 1453 × 10 −1 

SBDF-3 7 . 0278 × 10 −3 1 . 8320 × 10 −1 

DC-2 1 . 1551 × 10 −2 3 . 0124 × 10 −1 

DC-3 8 . 1168 × 10 −3 2 . 1156 × 10 −1 

GM-2 1 . 4529 × 10 −2 3 . 7814 × 10 −1 

GM-3 1 . 0537 × 10 −2 2 . 7438 × 10 −1 

GM-SRM-2 1 . 4522 × 10 −2 3 . 7697 × 10 −1 

GM-SRM-3 1 . 0525 × 10 −2 2 . 7407 × 10 −1 

odic solution mentioned above. We also illustrate the rate of con- 

vergence for each of the time-stepping schemes in the same figure. 

For a given time step, DC, GM and GM-SRM methods produce the 

least numerical errors for both velocity and pressure in time, then 

followed by SBDF methods. However, SBDF methods are the most 

CPU-efficient schemes, followed by DC, GM and GM-SRM methods 

at a given order of accuracy. All methods reproduce the theoreti- 

cal rate of convergence. Table 1 summarizes the critical time steps 

τ crit for each of the time-stepping schemes that are obtained us- 

ing the bisection method. In addition, we provide the maximal CFL 

number or the CFL max attained in a local element which can be 

computed using the following: 

CFL max = max 
K∈T h 

{
τcri 

h K 

‖ u h ‖ L 2 (K) 

}
, (37) 

where each K is an element of the mesh T h . The critical time 

step (or equivalently the CFL max ) of GM-2/GM-SRM-2 is about 20% 

larger than that of both DC-2 and SBDF-2 methods, while the crit- 

ical time step of GM-3/GM-SRM-3 is about 30% and 50% larger 

than DC-3 and SBDF-3 methods, respectively. These percentage are 

computed using the critical time step of GM/GM-SRM as the ref- 

erence. We conjecture that the difference gained in terms of τ crit 

in GM/GM-SRM methods compared to others will be larger as the 

order of the methods increases but this requires further valida- 

tion. The stability of GM and GM-SRM methods is exceptional for 

such high-order semi-implicit schemes thanks to the presence of 

grad − div terms. The so-called grad − div stabilization term im- 

proves certain stability property akin to the streamline-upwinding 

Petrov Galerkin or the SUPG methods to solve highly nonlinear 

flow which had been addressed in [35,36] . Interestingly, the critical 

time step for SBDF and DC methods are comparable. For instance, 

the critical time step of SBDF-2 method is slightly larger than that 

for DC-2 method while the critical time step of SBDF-3 method is 

slightly smaller than that for DC-3 method. 

Our next task is to compare the lift and drag coefficients which 

are computed by all our methods to the values in the literature. To 

achieve this goal, we repeat similar computations of the flow past 
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Fig. 4. Manufactured Solution II: Plot of the error on velocity (left) and pressure (right) as a function of CPU time (top) and time-step (bottom) for SBDF, DC, GM, GM-SRM 

time-stepping schemes. 

the circular cylinder at Re = 100 but using a larger time interval, 

i.e., t ∈ [0, 20 0 0], to be sure to reach a fully periodic state. The 

time step, τ = 0 . 005 is chosen for all methods. The lift and drag 

coefficients, c l and c d , respectively, are defined as follows: 

c d (t) = 

2 

ρU ∞ 

D 

∫ 
S 

(
ρν

∂ u t s (t) 

∂n 

n y − p(t) n x 

)
d S, 

c l (t) = − 2 

ρU ∞ 

D 

∫ 
S 

(
ρν

∂ u t s (t) 

∂n 

n x − p(t) n y 

)
d S. (38) 

The parameter ρ = 1 is the density of the fluid, S the boundary 

of the cylinder, n = (n x , n y ) T is the unit normal vector on S point- 

ing inward �, t s = (n y , −n x ) 
T is the tangential vector and u t s is the 

tangential velocity. According to John [23] , the computation of lift 

and drag using a volume integral formulation is more accurate and 

less sensitive to the mesh size around the cylinder than using the 

conventional line integral ( Eq. 38 ). This method gives 

c l ( t ) = −20 

∫ 
�

[ u t · v l + ν∇ u ( t ) : ∇ v l + ( u ( t ) · ∇ ) u ( t ) 

·v l − p ( t ) ( ∇v l ) ] dx , (39) 

for v l ∈ [ H 

1 ( �)] 2 solution of an auxillary Stokes equations with 

boundary conditions v 1 | S = (0 , 1) and v 1 | � = (0 , 0) on all other 

boundaries. Similarly, 

c d ( t ) = −20 

∫ 
�

[ u t · v d + ν∇ u ( t ) : ∇ v d + ( u ( t ) · ∇ ) u ( t ) 

· v d − p ( t ) ( ∇v d ) ] dx , (40) 

for v d ∈ [ H 

1 ( �)] 2 solution of an auxillary Stokes equations with 

boundary conditions v d| S = (1 , 0) and v d| � = (0 , 0) on all other 

boundaries. Knowing a priori that the solution produces a single 

periodic mode, the mean, amplitude and frequency for both lift 

and drag coefficients are computed with a simple approximation 

using the time history of these parameters in the last 50 time 

units. For instance, the period of the lift and drag can be approxi- 

mated using the successive difference of the times taken when the 

maximal slope occurs. These slopes are computed using linear in- 

terpolation of two consecutive points generated at each time step. 

For flow with a single periodic mode, we found that this method 

delivers more accurate results than the one with the conventional 

Fast Fourier Transform (FFT). 

Table 2 shows the mean, amplitude and frequency of the lift 

and drag coefficients produced by our time-stepping methods. All 

methods produce a frequency for drag which is about twice the 

frequency for lift. This is in agreement with the literature on 2D 

laminar flows around the cylinder at Re = 100 . The Strouhal num- 

ber which is also the frequency of the lift coefficient in our present 

work is close to 0.17. Since the flow is still in laminar regime, the 

Strouhal number is less than 0.20—which is a value known for sub- 

critical flows [4] . All methods produce a mean for lift coefficient 

close to zero, again as expected for such laminar flows (see, e.g., 

[23,44] ). 

We observe that the mean, amplitude and frequency for the 

drag and lift coefficients computed using our methods are very 

close to each other. These values differ only in the second deci- 
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Table 2 

The mean, amplitude and frequency of the lift and drag coefficients. 

Method c l mean c l amplitude c l frequency c d mean c d amplitude c d frequency 

SBDF-2 −1 . 78129 × 10 −5 3 . 40513 × 10 −1 1 . 70068 × 10 −1 1 .38565 9 . 79036 × 10 −3 3 . 40136 × 10 −1 

SBDF-3 −1 . 76713 × 10 −5 3 . 40500 × 10 −1 1 . 70047 × 10 −1 1 .38565 9 . 78998 × 10 −3 3 . 40099 × 10 −1 

DC-2 −1 . 77619 × 10 −5 3 . 40506 × 10 −1 1 . 70049 × 10 −1 1 .38564 9 . 79031 × 10 −3 3 . 40092 × 10 −1 

DC-3 −9 . 92424 × 10 −6 3 . 45476 × 10 −1 1 . 69937 × 10 −1 1 .39060 1 . 00610 × 10 −2 3 . 39936 × 10 −1 

GM-2 −8 . 87375 × 10 −5 3 . 29150 × 10 −1 1 . 70182 × 10 −1 1 .37285 9 . 06383 × 10 −3 3 . 39443 × 10 −1 

GM-3 −7 . 41786 × 10 −5 3 . 29204 × 10 −1 1 . 70180 × 10 −1 1 .37299 9 . 20195 × 10 −3 3 . 40362 × 10 −1 

GM-SRM-2 −6 . 50141 × 10 −5 3 . 29261 × 10 −1 1 . 70182 × 10 −1 1 .37304 9 . 20363 × 10 −3 3 . 40367 × 10 −1 

GM-SRM-3 −6 . 50348 × 10 −5 3 . 29256 × 10 −1 1 . 70180 × 10 −1 1 .37295 9 . 11191 × 10 −3 3 . 40362 × 10 −1 

Table 3 

Comparison between the present work with other numerical results and measurement from various references at Re = 100 (Laminar 

flow). 

Source of results Time-stepping method Str c d mean c l amplitude 

Present SBDF, DC, GM, GM-SRM 0 . 1699 − 0 . 1701 1 . 3729 − 1 . 3906 0 . 3292 − 0 . 3455 

Ranjani et al. (2009) [39] 2nd-order implicit 0 .1569 1 .3353 

Mittal & Raghuvanshi (2001) [33] 1st-order stabilized space-time 0 .1680 1 .4020 0 .3550 

Mittal & Tezduyar (1992) [34] 1st-order stabilized space-time 0 .1670 ≈ 1 .3825 ≈ 0 .3500 

Quarteroni et al. (1998) [38] 1st-order projection 0 .1667 1 .4486 0 .3714 

Simo & Armero (1994) [44] 1st-order implicit/semi-implicit 0 .1670/0.1690 1 .450 0/1.490 0 0 .350 0/0.390 0 

Simo & Armero (1994) [44] 2nd-order implicit/semi-implicit 0 .1780 ≈ 1 .5375 ≈ 0 .3900 

Baek & Karniadakis (2011) [6] 1st-/2nd-order implicit 1 .4 914/1.4 929 0 .2568/0.2588 

Goldstein (1938) [15] Experimentation 0 .1680 

Fig. 5. The computational domain and mesh for flow past a circular cylinder (top). 

A blow-up of the mesh with boundary layer near the cylinder (yellow represents 

higher flow speed and blue represents lower flow speed) (bottom). 

mal digit, e.g., the lift amplitude shows a maximal difference of 

4.7% (DC-3 versus GM-3 methods) and the mean drag, a max- 

imal difference of 1.2% (DC-3 versus GM-SRM-3 methods). We 

observe that the most significant discrepancies occur for meth- 

ods with grad − div term (GM/GM-SRM) versus methods without 

grad − div term (SBDF/DC). Still, we cannot assert which solver 

produces the most accurate result. 

Table 4 

The critical time step, CFL bound, CPU time for computing one time step for each 

method when computing the lid-driven cavity flow at Re = 8500 . 

Method Critical time step, τ crit CFL max CPU time/time step 

SBDF-2 1 . 45508 × 10 −3 2 . 28314 × 10 −1 0 .9802 

SBDF-3 1 . 57227 × 10 −3 2 . 23712 × 10 −1 1 .3086 

DC-2 1 . 75781 × 10 −3 2 . 23343 × 10 −1 1 .9948 

DC-3 1 . 59180 × 10 −3 1 . 95099 × 10 −1 3 .6222 

GM-2 2 . 58789 × 10 −3 3 . 17185 × 10 −1 2 .4570 

GM-3 2 . 37305 × 10 −3 2 . 90853 × 10 −1 4 .1908 

GM-SRM-2 2 . 59766 × 10 −3 3 . 18382 × 10 −1 2 .8796 

GM-SRM-3 2 . 37305 × 10 −3 2 . 90853 × 10 −1 4 .8534 

We also make comparison with lift and drag coefficients ob- 

tained from the literature, both for numerical and experimental 

values. From Table 3 , one can see that our computed Strouhal 

numbers = 0.17 is in a good agreement with published values ex- 

cept the one from Ranjani et. al [39] ( St = 0 . 1569 ). For mean drag, 

our result differs by 0 . 8% − 10 . 7% compared to values in the lit- 

erature. Meanwhile, the differences on lift amplitude with pub- 

lished values are within 1.3%–15.6%. We cannot find sufficient data 

on the drag amplitude to provide comparison. Notice that none of 

the published values are computed by time-stepping schemes with 

3rd- or higher-order accuracy. There are also differences in space 

approximations (e.g., finite volume, difference etc). These discrep- 

ancies may result also from the different methods used to com- 

pute the lift and drag (e.g., integration along the circular boundary 

[49] versus integration on volume [23] ). The FFT analysis which is 

used by many may not be able to provide very accurate spectrum 

for the lift and drag coefficients. 

4.4. Lid-driven cavity flow 

The lid-driven cavity is one of the most documented test cases 

in computational fluid dynamics. Cavity flows occur in many ap- 

plications in modern industry. To name a few, lid-driven cavity can 

be used to study the efficiency of fluid mixing, stirring processes 

and fluid cooling mechanisms, where all of these take place ei- 

ther in an enclosed or semi-enclosed region. Although the experi- 

ment setting of lid-driven cavity is simple, the study of the result- 

ing flow patterns and generated vortices, especially near corners, 
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Fig. 6. Flow around the circular cylinder: Plot of the error on velocity (left) and pressure (right) as a function of CPU time (top) and time-step (bottom) for SBDF, DC, GM, 

GM-SRM time-stepping schemes. 

is very challenging. In dimensionless settings, the characterisation 

of flow patterns, the number of vortices and the stability of the 

flow in a square cavity is determined only by the Reynolds num- 

ber. For Reynolds numbers, Re < 80 0 0, the lid-driven cavity flow 

is known to be steady. However, for Re ≥ 80 0 0, the flow becomes 

unsteady, following a Hopf bifurcation leading to a periodic solu- 

tion in both velocity and pressure. The critical Reynolds number, 

Re 1, cri , where the first Hopf bifurcation takes place is given under 

7500 by [18] and is reported very close to 80 0 0 in more recent 

publications [2,8,13,47] . 

In this paper, we investigate the performance of our methods 

using the lid-driven cavity flow at Re = 8500 [2,37] . This Reynolds 

number is chosen for two reasons: to make sure that the flow is 

unsteady since Re > Re 1, cri with a sufficiently large gap, and simu- 

lations with Re = 8500 are known to be challenging. For instance, 

excessively long computational time is required beginning from a 

‘cold’ start to go over a long transient and finally reach a fully pe- 

riodic flow with a frequency around 0.44. Meanwhile, Re = 8500 is 

in the vicinity of a second Hopf bifurcation, which occurs around 

8700 < Re 2, cri < 10 0 0 0. This second Hopf bifurcation introduces a 

second periodic mode with a frequency around 0.61 [8,47] . 

The numerical comparison is done both qualitatively and quan- 

titatively. For qualitative analysis, we compare the formation of 

vortices using stream function plots with published results. While 

for quantitative analysis, we first establish a set of numerical re- 

sults in terms of the frequency, amplitude and mean value of the 

x -velocity, u , at several monitoring points. Then the results com- 

puted by our methods are compared among themselves. Finally, 

we compare the frequency of the pulsating flow or the Strouhal 

number with similar values found in the literature. 

We consider a unit square domain � = (0 , 1) × (0 , 1) dis- 

cretized using a non-uniform triangular mesh with 120 triangles 

along each boundary edge. This produces a mesh with element size 

h K within the range [0.00 628, 0.016 60], with 34164 vertices, 17323 

triangles and 154941 degrees of freedom with P 2 − P 1 mixed fi- 

nite elements. A constant velocity u = (1 , 0) is imposed on the 

top boundary (the lid), while for the remaining boundaries, we set 

u = (0 , 0) . We prescribe the state of rest for velocity and pressure 

at t = 0 . For this test case, we do not pursue an efficiency analysis 

similar to those carried out in above sections. Equally useful, the 

CPU time per time step (found as an average over 100 time steps) 

for each of the methods is given in Table 4 . We choose a smaller 

time step, τ = 0 . 001 for all 3rd-order methods to produce very ac- 

curate solution in time, which will serve as ‘reference’ solutions for 

each method. In order to assess the quality of the 2nd-order meth- 

ods, the following time step is set for each method: τ = 0 . 001 in 

both SBDF-2 and DC-2 method and τ = 0 . 025 in both GM-2 and 

GM-SRM-2 methods. We also include SBDF-2 method with a larger 

time step τ = 0 . 014 which we call as SBDF-2 ∗. For stabilization pa- 

rameter, we fix λ = 1 in both GM-2 and GM-3 while prescribing 

α1 , α2 = 1 in both GM-SRM-2 and GM-SRM-3. 

Table 4 summarizes the critical time step of each method ob- 

tained using the bisection method and maximum CFL bound com- 

puted using Eq. (37) . In terms of numerical stability, the maxi- 
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Fig. 7. The x -velocity, u near bottom left corner (0.2, 0.3) for SBDF, SBDF-2 ∗ and DC methods (top left graph), GM methods (top right graph), and GM-SRM methods (bottom 

left graph). A close-up view of x -velocity for all time-stepping methods for t ∈ [1700, 1750] (bottom right graph). 

mum CFL number of each method decreases slightly from the 2nd- 

to the 3rd-order accuracy. Interestingly, the critical time-step for 

SBDF-3 is larger than that of SBDF-2 while the opposite is observed 

when comparing their CFL bounds. We expect that the critical time 

step has a similar trend to the CFL bound. This anomaly is ex- 

plained in the following manner. The CFL bound of SBDF-2 meth- 

ods must be larger than that of SBDF-3 methods as the stability 

region of a higher order methods becomes smaller. The maximum 

CFL should be attained within a same local element regardless of 

the methods used, provided the flow computed is sufficiently accu- 

rate. By fixing the time steps near their critical values, the SBDF- 

2 method produces a larger error than SBDF-3 methods, causing 

the SBDF-2 method to attain its CFL bound in a different element 

than with the SBDF-3 method. We observe that both GM and GM- 

SRM methods have the largest maximum CFL bound (about 0.30) 

which are followed by SBDF and DC methods (about 0.22). Hence, 

GM/GM-SRM methods are the most stable for this lid-driven cavity 

flow. 

The x -velocity u is sampled at three different points near the 

corners within the domain, i.e., bottom left at (0.2, 0.3), bottom 

right at (0.8, 0.3) and top right at (0.8, 0.7). 

Fig. 7 shows the x -velocity u sampled over time at (0.2, 0.3) 

near the bottom left corner for all proposed time-stepping meth- 

ods. To narrate the behaviour of the flow, we use the time-history 

of x -velocity u computed by DC-3 (in green, top left in Fig. 7 ). The 

x -velocity u shows three distinct transient phases. The first phase 

is the fast transient solution starting immediately from the state 

of rest that occurs for t ∈ [0, 250]. During this phase, the constant 

flow along the lid induces a large circulation which quickly trans- 

forms into a major vortex at the center of the cavity. Since the 

advective term is more predominant than diffusion for Re = 8500 , 

the interaction of the center vortex and the walls generates several 

counter-rotating vortices at the four corners of the domain. The 

flow is gradually stabilized with well-developed secondary vortices 

appearing at three corners, i.e., two at bottom right, one at bot- 

tom left and another one at top left. Near the end of the first 

phase, there are several smaller blinking vortices that can be ob- 

served, two are formed just below the top left corner and one at 

the bottom left corner. The total number of vortices generated at 

this stage varies between 5 and 8. The second phase of the flow 

takes place for t ∈ [250, 500] where the x -velocity further de- 

creases. During this phase, the blinking vortices at the bottom left 

corner can still be observed while the two at the top left corner di- 

minish. The number of vortices generated varies between 5 and 6. 

During the third phase of flow, the solution experiences a gradual 

growth of a periodic mode that can be easily observed beginning 

at t = 600 . This is because the flow has lost its stability and the 

mode corresponding to the first Hopf bifurcation is taking over. For 

t around 1100, the x -velocity becomes fully periodic (single mode). 

From Fig. 7 , we also observe that the total time of the tran- 

sient solution depends on the time-stepping methods, the order 

of accuracy and time step used. SBDF-2, SBDF-3, DC-2 and DC-3 
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Fig. 8. Snapshot of streamlines for 2D lid-driven cavity flow ( Re = 8500 ) by increment of 0.23 time units over 2.30 time unit, a time interval slightly larger than one period 

of the flow, T f ≈ 2.22. 
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Fig. 9. Lid-Driven Cavity: Close-up view of vortices near the top left corner at t = 1 . 38 (left) and bottom left corner at t = 1 . 84 (right). The arrows labelled as (a), (b) and 

(c) indicate the vortices that were not captured by previous published results. 

methods reach a full periodic solution beginning at t = 1100 ; GM 

methods around t = 1150 ; and GM-SRM methods around t = 10 0 0 

which have the shortest transient duration. SBDF-2 ∗ attains its full 

periodic solution beginning at t = 2200 . In addition to the accuracy 

gained from the defect correction strategy, the sequential regular- 

ization method improves stability in connection with the incom- 

pressibility condition, hence reduces the time for transient solution 

of GM-SRM compared to other methods. In general, methods that 

produce shorter transient solutions help to reduce the total CPU 

time to reach time-periodic flows. We also plotted the x -velocity u , 

computed with all methods at point (0.2, 0.3) for t ∈ [1700, 1750]. 

The phase for each u is shifted for better illustration. The graph in- 

dicates that SBDF-2 methods may not produce a desirable results 

if the time step is chosen close to its critical value. 

Fig. 8 illustrates the evolution of the time-periodic flow over 

one cycle with snapshots of the streamlines every 0.23 time unit 

(for a period T f = 2 . 22 ). During a full cycle, we observe one to 

two smaller pulsating vortices appearing below the secondary vor- 

tex near top left corner. Near the bottom left corner a more com- 

plex vortex formation—with as many as 4 pulsating vortices are 

observed, e.g., at t = 1 . 84 . Compared to previous published re- 

sults, our numerical solution captures two extra smaller vortices as 

shown in Fig. 9 (at right). The maximal number vortices for a com- 

plete cycle is 10. Using our current computational settings, simi- 

lar streamlines can be reproduced with all methods except SBDF-2 

with τ = 0 . 0014 (SBDF-2 ∗). To some extend, our results contradict 

with few existing results. For instance, Pan and Glowinski [37] pro- 

duced only 2 vortices near the bottom left corner, while other ap- 

pearances of vortex are identical to our results at Re = 8500 . They 

used P 1 -iso- P 2 finite elements and Chorin’s projection method for 

space and time discretizations, respectively on a mesh of size 256 

× 256 mesh. Kufferman [24] produced results similar to Pan and 

Glowinski but using 2nd-order center-difference schemes for space 

and Crank-Nicolson for time stepping on 128 × 128 mesh. Our re- 

sults were produced with higher-order methods, both in space and 

time, which explain the extra flow features observed. The quanti- 

tative results on x -velocity u at various locations in terms of mean, 

amplitude, period and frequency are summarized in Table 5 . It is 

observed that the accuracy of SBDF-2 is compromised when us- 

ing a time step near its critical value. On the other hand, SBDF- 

2 method produces satisfactory result with τ = 0 . 001 , which can 

be accurate up to 4th decimal point compared to the results com- 

puted with 3rd-order SBDF and DC methods. The numerical results 

computed by DC-2 method are in agreement with the one com- 

puted with DC-3 and SBDF-3 using the same time step, τ = 0 . 001 . 

Both 2nd-order GM and GM-SRM methods with time steps near 

the critical value produce very close result to that produced by 

their 3rd-order counterparts with time step, τ = 0 . 001 (e.g., maxi- 

mum difference starts at the 3rd decimal point). This suggests that 

the defect correction algorithm produces an unmatched accuracy 

even with 2nd-order method at larger time step. 

Fig. 10 shows the phase portraits of x - and y -velocity at bottom 

left (0.2, 0.3), which is a plot of u ( t ) versus u (t + 

T f 
8 ) for t ∈ [1700, 

1750], where T f is the respective period of the x -velocity produced 

by each of the time-stepping methods. There are three distinct 

phase plots that can be observed in these diagrams. The first one 

is obtained with SBDF-2 ∗ (Phase Portrait I, PPI) shown as the red 

ellipse, second one with DC and SBDF methods (PPII) shown as the 

overlapping pink ellipse and the third one with GM and GM-SRM 

methods (PPIII) shown as the black ellipse. In this numerical ex- 

periment, the phase plot with 2nd-order methods are found to be 

indistinguishable from their respective 3rd-order methods. Again, 

SBDF-2 ∗ produce undesirable results since the time step is taken 

too large. Methods with defect correction strategy allows one to 

choose larger time step while still obtaining satisfactory results. 

The ‘offset’ between PPII and PPIII at three monitoring points 

can only be explained by the presence of grad − div term in both 

GM and GM-SRM methods. GM-SRM methods can provide very 

accurate solutions for flow problems involving Dirichlet boundary 

condition as for the Taylor’s vortex flow presented above. Boundary 

conditions alone may not suffice to explain the difference between 

PPII and PPIII. Therefore, the question concerning which of PPII and 

PPIII is more accurate requires further investigations. 

Table 6 compares the frequency of the periodic solution that we 

obtain with results found in the literature. The frequency of all our 

methods stand between 0.4472 and 0.4501, which is in the range 

published by Pan and Glowinski [37] , i.e., 0 . 4405 − 0 . 4505 . Mean- 

while, the frequency computed by GM and GM-SRM (i.e., 0.4472 

and 0.4473, respectively) are very close to 0.4470, the value found 

by Auteri et al. [2] . The frequency value by Kufferman [24] , might 

be a little underestimated. 

5. Conclusions 

We have conducted a thorough numerical assessment and 

benchmark of several 2nd- and 3rd-order semi-implicit methods, 

e.g., SBDF, DC, GM and GM-SRM methods using two manufactured 

solutions and two well-known test cases. So far, these methods 

are proven to be very robust to compute unsteady laminar flows. 

With a direct solver, SBDF methods are the most efficient method 

to compute 2D unsteady flows. However, SBDF methods may de- 

pend on proper initialization to produce such remarkable results. 
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Table 5 

The computed average, amplitude, frequency of the x -velocity u of the periodic flow at points near the 

three corners: bottom left (0.2, 0.3), bottom right (0.8, 0.3) and top right (0.8, 0.7). 

Bottom left (0.2, 0.3) 

Method Time step, τ Mean value Amplitude Period (s) Frequency(Hz) 

SBDF-2 ∗ 1 . 4 × 10 −3 −1 . 80169 × 10 −1 3 . 63427 × 10 −3 2 .35392 4 . 24823 × 10 −1 

SBDF-2 1 . 0 × 10 −3 −1 . 89676 × 10 −1 6 . 36170 × 10 −3 2 .22166 4 . 50113 × 10 −1 

SBDF-3 1 . 0 × 10 −3 −1 . 89676 × 10 −1 6 . 36155 × 10 −3 2 .22167 4 . 50111 × 10 −1 

DC-2 1 . 0 × 10 −3 −1 . 89677 × 10 −1 6 . 36165 × 10 −3 2 .22167 4 . 50113 × 10 −1 

DC-3 1 . 0 × 10 −3 −1 . 89676 × 10 −1 6 . 36157 × 10 −3 2 .22168 4 . 50111 × 10 −1 

GM-2 2 . 5 × 10 −3 −1 . 88397 × 10 −1 6 . 44025 × 10 −3 2 .23585 4 . 47258 × 10 −1 

GM-3 1 . 0 × 10 −3 −1 . 88397 × 10 −1 6 . 43753 × 10 −3 2 .23607 4 . 47212 × 10 −1 

GM-SRM-2 2 . 5 × 10 −3 −1 . 88406 × 10 −1 6 . 41414 × 10 −3 2 .23569 4 . 47289 × 10 −1 

GM-SRM-3 1 . 0 × 10 −3 −1 . 88404 × 10 −1 6 . 41487 × 10 −3 2 .23615 4 . 47198 × 10 −1 

Bottom right (0 .8, 0.3) 

Method Time step, τ Mean value Amplitude Period (s) Frequency(Hz) 

SBDF-2 ∗ 1 . 4 × 10 −3 −2 . 20319 × 10 −1 3 . 70781 × 10 −4 2 .35390 4 . 24826 × 10 −1 

SBDF-2 1 . 0 × 10 −3 −2 . 32445 × 10 −1 5 . 45568 × 10 −4 2 .22166 4 . 50113 × 10 −1 

SBDF-3 1 . 0 × 10 −3 −2 . 32445 × 10 −1 5 . 45596 × 10 −4 2 .22167 4 . 50111 × 10 −1 

DC-2 1 . 0 × 10 −3 −2 . 32445 × 10 −1 5 . 45599 × 10 −4 2 .22165 4 . 50114 × 10 −1 

DC-3 1 . 0 × 10 −3 −2 . 32445 × 10 −1 5 . 45590 × 10 −4 2 .22168 4 . 50111 × 10 −1 

GM-2 2 . 5 × 10 −3 −2 . 30863 × 10 −1 4 . 97679 × 10 −4 2 .23585 4 . 47258 × 10 −1 

GM-3 1 . 0 × 10 −3 −2 . 30866 × 10 −1 4 . 98207 × 10 −4 2 .23607 4 . 47214 × 10 −1 

GM-SRM-2 2 . 5 × 10 −3 −2 . 30875 × 10 −1 4 . 97103 × 10 −4 2 .23568 4 . 47292 × 10 −1 

GM-SRM-3 1 . 0 × 10 −3 −2 . 30878 × 10 −1 4 . 99226 × 10 −4 2 .23612 4 . 47204 × 10 −1 

Top right (0.8, 0.7) 

Method Time step, τ Mean value Amplitude Period (s) Frequency(Hz) 

SBDF-2 ∗ 1 . 4 × 10 −3 8 . 23003 × 10 −2 1 . 09002 × 10 −3 2 .35394 4 . 24820 × 10 −1 

SBDF-2 1 . 0 × 10 −3 8 . 72107 × 10 −2 2 . 02720 × 10 −3 2 .22166 4 . 50113 × 10 −1 

SBDF-3 1 . 0 × 10 −3 8 . 72107 × 10 −2 2 . 02726 × 10 −3 2 .22168 4 . 50111 × 10 −1 

DC-2 1 . 0 × 10 −3 8 . 72110 × 10 −2 2 . 02722 × 10 −3 2 .22167 4 . 50112 × 10 −1 

DC-3 1 . 0 × 10 −3 8 . 72105 × 10 −2 2 . 02727 × 10 −3 2 .22168 4 . 50111 × 10 −1 

GM-2 2 . 5 × 10 −3 8 . 64370 × 10 −2 2 . 03537 × 10 −3 2 .23585 4 . 47258 × 10 −1 

GM-3 1 . 0 × 10 −3 8 . 64340 × 10 −2 2 . 03690 × 10 −3 2 .23607 4 . 47213 × 10 −1 

GM-SRM-2 2 . 5 × 10 −3 8 . 64412 × 10 −2 2 . 03213 × 10 −3 2 .23569 4 . 47289 × 10 −1 

GM-SRM-3 1 . 0 × 10 −3 8 . 64336 × 10 −2 2 . 03730 × 10 −3 2 .23614 4 . 47200 × 10 −1 

Table 6 

Comparison between our work and numerical values from the literature for frequencies of the 

lid-driven cavity flow at Re = 8500 . 

Source of results Time-stepping schemes Frequency 

Present SBDF, DC, GM, GM-SRM 0 .4501, 0.4501, 0.4472, 0.4473 

Auteri et. al (2002) [2] 2nd-order projection 0 .4470 

Kupferman (2001) [24] 2nd-order CN-midpoint rule 0 .40 0 0 

Pan & Glowinski (20 0 0) [38] 2nd-order projection 0 . 4405 − 0 . 4505 

On the other hand, DC, GM and GM-SRM methods are self-starting 

and produce the least error in time for a fixed time step since they 

are based on the same defect correction method. DC methods re- 

quire the solution of k similar saddle point problem to obtain k th- 

order of accuracy, which turns out to be less efficient at each time 

step. GM and GM-SRM methods require smaller memory and CPU 

time for each linear solve. However, more of these linear systems 

have to be solved at each time step, i.e., one from the momentum 

and one from the continuity equation, and this k times to reach 

k th-order of accuracy. GM and GM-SRM methods have good po- 

tential to compute unsteady flows involving millions of unknowns 

(e.g., 3D flows) since the linear systems with symmetric positive 

definite matrices can be easily handled by any efficient iterative 

solvers such as the conjugate gradient method. 

In terms of stability, GM and GM-SRM methods are more stable 

than SBDF and DC methods due to the presence of a grad − div 

stabilization term. The combination of grad − div term and de- 

fect correction strategy allows us to choose larger time step with 

GM and GM-SRM methods while still producing good results. The 

grad − div stabilization term in GM and GM-SRM helps to enforce 

incompressibility condition with P 2 − P 1 elements, thus reducing 

even more the error in space. This property has been demonstrated 

by GM-SRM methods with a nearly ‘optimal’ choice of the stabi- 

lization parameters when computing the manufactured solution II. 

This was attempted with GM methods with much smaller λ (e.g. 

λ < 3.3) but it resulted in more oscillations at start-up before they 

finally damp at larger t to produce similar accuracy to that with 

GM-SRM methods (result not shown here). We mention that the 

optimal choice of the stabilization parameters, λ in GM methods 

and α1 , α2 in GM-SRM methods is difficult to obtain to produce 

the least error in space on a fixed mesh. The analysis of these 

stabilization terms in terms of the errors induced on velocity and 

pressure has not been done yet for unsteady flows. The optimal 

choice of these stabilization parameters λ and α for Navier–Stokes 

equations is still an open problem. 

In the last two test cases, we observed that the use of higher- 

order semi-implicit methods with reasonably small time step is 

crucial for highly nonlinear flows (large Reynolds number). Besides 

reproducing results from the literature, e.g., the lift and drag coef- 

ficients along the cylinder and pulsating frequency, Strouhal num- 

ber in both flows, we managed to capture additional vortices in the 

lid-driven cavity at Re = 8500 with all our methods. To the best of 
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Fig. 10. Phase plots for x - and y -velocity, u and v respectively, monitored at three different locations with SBDF, DC, GM and GM-SRM methods (2nd- and 3rd-order). 

our knowledge, this finding has not been reported in the recent 

literature. This indicates that higher-order time-stepping methods 

with smaller time step are indispendable to obtain very accurate 

solutions for inertia-dominant flows. 
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SUMMARY

Taylor–Hood elements provide a robust numerical discretization of Navier–Stokes equations (NSE) in space.
To handle unsteady flows, we propose a very efficient time-stepping method which is based on high-order
semi-implicit backward difference formulae (SBDF). We construct SBDF methods by the inclusion of grad-
div term in the NSE. As a result, we observed a remarkable accuracy, stability and efficiency of the methods
in terms of CPU time when computing unsteady flows. The presence of grad-div term is also known to
improve local mass conservation in Taylor–Hood elements. To reduce the numerical errors (in time), several
variants of nonlinear extrapolation formulae for SBDF methods are investigated. The first approach is based
on an extrapolation of the nonlinear advection term itself. The second formula uses the extrapolation of the
velocity prior to the evaluation of the nonlinear advection term as a whole. The third variant is constructed
such that it produces similar error on both velocity and pressure to that with fully implicit BDF methods
at a given order of accuracy. This can be done by fixing one order higher in the extrapolation formula for
the nonlinear advection term than is usually done, while keeping the same extrapolation formula for the
time derivative. The resulting truncation errors (in time) between these formulae are identified using Taylor
expansions. These truncation error formula are shown to properly represent the error seen in numerical tests
using a 2D manufactured solution. Lastly, we show the robustness of the proposed semi-implicit methods
by computing several test problems with high Reynold numbers using one of the nonlinear extrapolation
formulae, namely the 2D flow past circular cylinder at Re = 300 and Re = 1000; and the 2D lid-driven
cavity at Re = 50 000 and Re = 100 000. Our numerical solutions are found to be in a good agreement with
those obtained in the literature, both qualitatively and quantitatively.
Copyright c© 2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: P2-P1 element, Navier–Stokes equations, semi-implicit backward difference formula,
time-stepping, grad-div stabilization, high Reynolds flows

1. INTRODUCTION

Method of lines (MOL) are versatile to solve time-dependent partial differential equations
(PDEs) due to their capability to deal with the time-discretization independently from the
space-discretization. Time-discretizations with MOL mimic the approach used to solve ordinary
differential equations (ODEs), which offers many advantages in terms simplicity and computability.
Backward difference formulae (BDF) are robust to solve many PDEs in particular Navier-Stokes
equations (NSE) since they are unconditionally stable and accurate. However, BDF are fully implicit
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2 K. C. LOY AND Y. BOURGAULT

methods, consequently fixed point iterations are needed to handle the nonlinear advection term.
For unsteady flows with medium to high Reynolds numbers, very small time steps are required to
resolve finer flow features, which renders these methods less competitive with explicit or uncoupled
methods.

Among several possible schemes, semi-implicit methods based upon backward differentiation
formulae (SBDF) are very competitive when computing unsteady flows [20]. With SBDF methods,
the linear terms such as the diffusion and pressure terms are solved implicitly while the nonlinear
advection term is evaluated explicitly using extrapolation formula. We emphasize two main benefits
resulting from such semi-implicit schemes. First of all, no fixed point iteration for solving a
nonlinear system is required. Only one linear system needs to be solved at every time step. Even
better, SBDF methods produce a matrix that remains constant over time, which has proven to be
CPU-efficient when computing unsteady flows. Though the time step can be much smaller than
for BDF methods, the required CPU time is still significantly smaller than that with BDF methods.
Similar advantage is observed when one needs to construct preconditioner when iterative solvers
are involved.

Semi-implicit methods based on 2nd-order Crank–Nicolson and Adam–Bashford (CNAB) for
NSE have been studied by many authors in terms of numerical stability and convergence [13].
Being based on the trapezoidal rule, two constant matrices are constructed in CNAB method. When
used to solve NSE, it is known that the trapezoidal rule produces oscillations from one time step
to the next if the initial conditions are not properly imposed. Several tricks have been proposed
to mitigate this problem which is non-trivial [25]. Methods of characteristics [26, 27], various
projection steps [10, 36] and operator-splitting methods [28, 34] are popular alternatives but are
limited to 2nd-order of accuracy. Some of these methods still require fixed point methods to resolve
nonlinear approximations (e.g., substeps for operator-splitting methods). High-order methods based
on implicit Runge–Kutta formulae are very accurate and stable but come with with a greater price
in terms their complexity [2]. However, the efficiency of RK methods remains unclear. For these
reasons, we choose SBDF methods since they can be easily constructed for higher-order accuracy
while maintaining simplicity.

SBDF methods are successful to solve nonlinear parabolic PDEs in various modeling applications
(see e.g., [1, 3, 9, 18, 33]). For NSE, the earliest work found pertaining to the convergence analysis
of high-order SBDF methods was done by Baker [7]. Few more extrapolation formulae for the
nonlinear advection term in SBDF methods have been proposed, e.g. using high-order Adam–
Bashford schemes [37] and ensemble method [14]). Unfortunately, these methods have not carefully
studied in terms of the resulting truncation errors on the solution and their practical application for
unsteady flows. The numerical effort in comparing both BDF and SBDF methods is found to be
lacking as well.

In this paper, we focus on two major types of extrapolation formula. We compare these
extrapolation formulae in terms of truncation error (in time) both using a simple mathematical
analysis and numerical tests for 2nd- and 3rd-order methods. We realized that these two variants
have not been properly compared in particular, when solving NSE numerically. BDF methods are
typically more accurate compared to the regular SBDF methods for a given order of accuracy. In our
work, we found a “new” formulation of SBDF which produced an error on velocity and pressure as
small as with BDF methods. In the following section, we first introduce NSE and related functional
spaces. We also provide the weak formulation of NSE, since the solution is sought using mixed
finite element methods.

1.1. Nonstationary Incompressible Navier–Stokes equations

Consider an incompressible flow that occurs in a domain Ω ⊂ Rd (d = 2 or 3) with a regular
boundary Γ over a finite time interval (0, T ). The Navier–Stokes equations governing this flow
is

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
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∂u

∂t
− ν∆u + u · ∇u +∇p = f , in Ω, t ∈ (0, T ), (1)

∇ · u = 0, in Ω, t ∈ (0, T ), (2)
u = u0, in Ω, t = 0, (3)
u = 0, on Γ, (4)

where u is the velocity field, p is the pressure, f is the external force (such as gravity), ν is the
viscosity and T is the total time. The initial value u0 is provided, for instance we can choose a
divergence free velocity field or the state of rest. Other boundary conditions can also be considered
here, e.g., Neumann type ∇u · n = 0, which implies uniqueness of the solution for the pressure as
opposed to non-uniqueness for the Dirichlet boundary conditions (4).

1.2. Functional spaces and weak formulation

We introduce the mathematical notations and relevant functional spaces that are required in our
analysis. Given an integer s ≥ 0 and real p ∈ [1,∞], W s

p = W s
p (Ω) is the Sobolev spaces defined in

the usual way for scalar real valued functions on the simply connected domain Ω and ‖ . ‖s,p is the
associated norms. We letHs = W s

2 and ‖ . ‖s, | . |s and (., .)s be the associated norm, seminorm and
inner product, respectively. For s = 0, we denote the norm on W p

0 = Lp by ‖ . ‖Lp ; in particular,
on L2 by ‖ . ‖0 and the associated L2-inner product by (., .). We let H1

0 (Ω) be the space of those
functions in H1 which vanish on the boundary Γ and H−1(Ω) be the dual space of H1

0 (Ω).
Further, Hs = (Hs)d is the space of Rd-valued functions u = (u1, . . . , ud) defined on Ω such

that ui ∈ Hs, where 1 ≤ i ≤ d. Similarly, we have H1
0 = (H1

0 )d and equip Hs with the inner
product (u,v)s =

∑d
i=1(ui, vi)s, resulting in the norm ‖ . ‖s = (., .)

1/2
s . On L2 = (L2)d, the inner

product and norm are defined as (., .) and ‖ . ‖0, respectively. The quotient space L2/R or simply
L2

0 (also known as L2 function with zero average over the domain Ω) is equipped with the norm
‖v‖L2/R = infc∈R ‖v + c‖0.

We reformulate the Navier–Stokes equations (1)–(4) as a mixed variational problem which can
be conveniently solved by mixed finite element methods. In simple terms, this problem is expressed
as follows: For a given f ∈ H−1, find the solution (u(t), p(t)) ∈ H1

0 × L2
0, for a.e t ∈ (0, T ), such

that
d

dt
(u,v) + ν(∇u,∇v) + (u · ∇u,v)

−(p,∇ · v) = 〈f, v〉, ∀v ∈ H1
0, (5)

−(q,∇ · u) = 0, ∀q ∈ L2
0, (6)

u(0) = u0. (7)

1.3. Space Discretization–P2-P1 finite elements with grad-div stabilization term

Mixed finite element methods provide a well-documented robust numerical approach to compute
solutions of (1)–(4). These methods are combined with time-stepping schemes to handle the time-
derivative in the momentum equations, with the order of the time-stepping schemes being critical for
dealing with unsteady flows. The Taylor–Hood element is one of many popular stable mixed finite
elements (abbreviated as Pk-Pk−1, k = 2, 3, . . .) used to solve the Navier–Stokes equations (1)–
(4) [4]. Here, we choose k = 2, giving rise to P2-P1 elements with 2nd- and 1st-order approximation
in space for velocity and pressure, respectively. The P2-P1 finite element space approximates the
velocity and pressure using continuous piecewise polynomials, respectively defined as

Vh = {vh ∈ [C0(Ω)]d | vh|K ∈ [P2]d,∀K ∈ Th}, (8)

Mh = {qh ∈ C0(Ω) | qh|K ∈ P1,∀K ∈ Th}. (9)

The discrete spaces for velocity and pressure are conformal in the sense that Vh ⊂ H1
0 andMh ⊂ L2

0,
respectively. The P2-P1 element is often chosen to compute 2D flows for its simplicity. It is

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
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4 K. C. LOY AND Y. BOURGAULT

reasonably cheap in terms of CPU time and memory to allow the use of a direct solver. We
implement this finite element discretization for Navier–Stokes equations by including a grad-div
term to impose stronger mass conservation with P2-P1 elements. In general, Taylor–Hood elements
are not pointwise mass conservative (see e.g. [17, 21, 23, 24]). This term acts as a penalization term
bringing ∇ · uh closer to be pointwise null on each element K of the mesh.

The presence of the grad-div term also enhances the numerical stability when computing flows
with high Reynolds numbers—the reason is often called a “grad-div stabilization term”. As ν
becomes small (large Reynolds number), the Navier–Stokes equations is still solvable as long as
λ > 0, which is the key to stabilizing the discrete solution. However, if λ is taken too large, this
results in so-called over-stabilization (numerical diffusion) and the possibility of ill-conditioning of
the linear system, leading to issues when an iterative solver is used.

The resulting semi-discrete (in space) weak formulation of problem (1)–(4) is given as follows:
For a given f ∈ L2 ⊂ H−1 and a suitable λ > 0, find the solution of (uh(t), ph(t)) ∈ Vh ×Mh, for
all t ∈ [0, T ], such that

(
∂uh
∂t

,vh

)
+ ν(∇uh,∇vh) + (uh · ∇uh,vh) (10)

+λ(∇ · uh,∇ · vh)− (ph,∇ · vh) = 〈f, vh〉, ∀vh ∈ Vh,
−(qh,∇ · uh) = 0, ∀qh ∈Mh, (11)

uh(0) = Πhu(0), (12)

where Πh : V → Vh is an interpolation or projection operator.

1.4. The choice of the stabilization parameter λ

The optimal choice of the stabilization parameter λ with the Taylor–Hood elements still remains
an open problem. We observe that the optimal choice of λ is problem dependent, combining the
following properties: characteristics of the flow, boundary conditions, external forcing, Reynolds
number, 2D and 3D problem, computational mesh and the type of finite element pairs. It also
depends on the norm used to assess the error from poor mass conservation and one’s personal
choice of either to minimizing the error on velocity or the error on pressure.

Several mathematical analyses have been done on the impact of grad-div stabilization with
certain finite elements, mainly for Stokes equations (see [8, 17, 21, 23, 24] and reference therein).
Several methodologies are available for choosing λ. Based on error estimates established for Stokes
equations with grad-div term, Jenkins at al. [17] proposed an optimal λ, noted λopt, which is
independent from ν.

λopt =
CMh

CXh

|p|k
|u|k+1

, (13)

where CMh
and CXh

are constants from the interpolation estimates, with some dependence of CXh

on β−1
h , where βh > 0 is the constant in the discrete inf-sup condition for a LLB-stable pair of

elements. We remind the reader that k denotes the degree of the Taylor–Hood element, Pk-Pk−1.
A dynamic and element-based stabilization parameter λK has been proposed for Stokes equations
using similar error estimates [24]:

λK = max
K∈Th

{
|p|k,K
|u|k+1,K

− ν, 0

}
, (14)

where K is any element of the mesh Th.
Keeping the advantage of a semi-implicit approach, we avoid computing λ based on the solution

since this involves matrix rebuild at every time step, which reduces the efficiency in our methods.
Similar inefficiency may occur if a preconditioner is involved in conjunction with an iterative
method. In our case, we are more interested in finding the “best fixed” λ for the entire computation.
The estimate λ ∼ β2

h = O(1) is given in [24]. Combining (13) and (14), the choice of λ = O(1),
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(e.g., 0 < λ < 10) makes sense if |u|k+1 ≈ |p|k; which can be observed when ν is small in many
unsteady flows. This explains why the choice of λ ∈ (0, 10) is often done. At this moment, the
approach available to investigate the best fixed λ (and only for the sake of such investigation) is
through a series of direct computations with many trials and errors based on minimizing the L2-
error between the solution and the exact solution (from the manufactured solution).

However, for test problems without manufactured solution, the best fixed λ can be approximated
using similar trial and error by minimizing the L2-error between the computed solution (e.g.,
velocity, pressure and divergence of velocity) and a reference solution. The reference solution can
be generated using a reasonably fine time τ and mesh size h, and by fixing λ = 0.

Either way, the choice λ = 1 is often proposed as an initial guess and is gradually increased
while the error on velocity, pressure and mass conservation are monitored within a time interval
t ∈ (0, T ). We wish to have λ sufficiently large to produce the minimum time-averaged error for the
above quantity within a time interval, but small enough to avoid over-stabilization that pollutes
the solution. We observed that λ ∈ (1, 5) works perfectly well for test problems involving lid-
driven cavity at Re = 8 500 [20], and Taylor–Green vortex at Re = 100 [20]. On the other hand,
λ ∈ (103, 104) is required to compute the flow around cylinder at Re = 100 [20]. This shows that
the choice of λ is problem dependent. The choice of the stabilization parameter λ will be provided
for each test case in later sections.

2. HIGHER-ORDER SEMI-IMPLICIT BACKWARD DIFFERENCE METHODS

SBDF methods are categorized as multistep schemes and conditionally stable. To maintain the
numerical stability, the choice of time step and diameter of the mesh should not violate certain
condition known as the CFL criterion which we will discuss next.

2.1. CFL stability criterion

We denote by τ the time step, N = T
τ the total number of time steps to reach time T and tn = nτ

for n = 0, 1, . . . , N . The operator B(uh) is the nonlinear advection term in the Navier–Stokes
equations; i.e., B(u) = u · ∇u. To ensure numerical stability, the choice of the time step τ is
restricted by a condition on the CFL number

CFL := max
K∈Th

{
τ

hK
‖uh‖L∞(K)

}
≤ CFLmax, (15)

where hK is the diameter of the element K and CFLmax > 0 is a positive constant known as the
critical or maximal CFL bound to maintain numerical stability. We define the critical time step τcrit

as the largest time step τ such that the condition (15) is satisfied with equality. A numerical solution
is stable if for any sufficiently large time T > 0, the condition max

tn∈(0,T )
‖unh‖L∞(Ω) = M <∞ is

satisfied for some M > 0.

2.2. 2nd-order SBDF method

Given a suitable approximation of the initial solution u0
h = Πhu(0) ∈ Vh and proper initializations

for u1
h ∈ Vh, (un+1

h , pn+1
h ) ∈ Vh ×Mh is given by

1

2τ

(
3un+1

h − 4unh + 2un−1
h ,vh

)
+ ν(∇un+1

h ,∇vh) + λ(∇ · un+1
h ,∇ · vh)

−(pn+1
h ,∇ · vh) = (fn+1,vh)−

(
2B(unh)−B(un−1

h ),vh

)
, ∀vh ∈ Vh, (16)

−(qh,∇ · un+1
h ) = 0, ∀qh ∈Mh, (17)

for all 1 ≤ n ≤ N − 1.
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2.3. 3rd-order SBDF method

Given a suitable approximation u0
h = Πhu(0) ∈ Vh and proper initializations for u1

h,u
2
h ∈ Vh,

(un+2
h , pn+2

h ) ∈ Vh ×Mh is given by

1

6τ

(
11un+2

h − 18un+1
h + 9unh − 2un−1

h ,vh

)
+ ν(∇un+2

h ,∇vh) +

λ(∇ · un+2
h ,∇ · vh)− (pn+2

h ,∇ · vh) = (fn+2
h ,vh)

−
(

3B(un+1
h )− 3B(unh) +B(un−1

h ),vh

)
, ∀vh ∈ Vh, (18)

−(qh,∇ · un+2
h ) = 0, ∀qh ∈Mh, (19)

for all 1 ≤ n ≤ N − 2.
According to Baker et al. [7], under a suitable space approximations and whenever the methods

satisfy the CFL condition, the kth-order SBDF method converges as follows:

‖u(tn)− unh‖1 = O(τk + hr), ‖p(tn)− pnh‖0 = O(τk + τ−1hr + hr−1), (20)

where (u(tn), p(tn)) and (unh, p
n
h) are the exact and fully discrete solutions, respectively. The

initialization is done in a consecutive manner. First, we use the 1st-order SBDF method to produce
the required initial value u1

h for the 2nd-order SBDF method, which in turn will produce u2
h such

that the intended 3rd-order SBDF method can be employed using u1
h and u2

h. The parameter k ∈ N
stands for the order of accuracy in time and r ∈ N the order of accuracy in space. By fixing the
error in space (i.e., computing on the same mesh), the estimate (20) will be verified numerically for
SBDF methods of 2nd- and 3rd-order of accuracy using a manufactured solution.

Since we are mainly interested in the impact of the time discretization on the accuracy in time of
the numerical solution, we proceed with a consistency analysis in time. In the two SBDF methods
given above, all linear terms are evaluated implicitly at the current time tn+1 for k = 2 (or tn+2 for
k = 3), therefore the resulting rate of convergence (in time) depends only on the order of the finite
difference scheme for the time-derivative ∂

∂tuh(t) and the extrapolation formula for the nonlinear
advection term B(uh(t)). For instance, if a 2nd-order scheme is used for the time-derivative while
a 3rd-order extrapolation formula is used for the nonlinear term, the resulting method is still limited
to 2nd-order of accuracy in time. If a kth-order approximation is used for both terms, the resulting
method has kth-order of accuracy.

As an illustration, we show that the method (16)–(17) converges to (10)–(11) with 2nd-order
truncation error (in time). We replace unh,u

n+1
h ,un+2

h , . . . with their semi-discrete counterparts
uh(tn),uh(tn+1),uh(tn+2), . . . , for all n ≥ 0, and we proceed similarly for pressure. Assuming
the regularity of the semi-discrete solution uh = uh(t) ∈ C3(0, T ;Vh), we obtain

∂

∂t
uh(tn+1) =

3uh(tn+1)− 4uh(tn) + uh(tn−1)

2τ
+
τ2

3

∂3

∂t3
uh(ξ̂), (21)

where ξ̂ = ξ̂(x) ∈ [tn−1, tn+1] for all x ∈ Ω. We expand the nonlinear terms B(u(tn+1)) and
B(u(tn−1)) about the point tn using a truncated Taylor series to get

B(uh(tn±1)) = B(uh(tn))± τ ∂
∂t
B(uh(tn))) +

τ2

2

∂2

∂t2
(B(uh(ξ±))),

where ξ+ = ξ+(x) ∈ [tn, tn+1] and ξ− = ξ−(x) ∈ [tn−1, tn] for all x ∈ Ω. Summing these two

expressions, we eliminate the derivative
∂

∂t
B(uh(tn)) and obtain

B(uh(tn+1)) = 2B(uh(tn))−B(uh(tn−1)) + τ2 ∂
2

∂t2
(B(uh(ξ̂))), (22)

where ξ̂ ∈ [ξ−, ξ+]. Substituting (21) and (22) back into (16), we recover the variational formulation
as in (10)–(11) at time t = tn+1 with a truncation error in O(τ2). A similar approach can be used to
obtain the truncation error for the 3nd-order SBDF method.
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3. ON SEVERAL NONLINEAR EXTRAPOLATIONS FORMULAE

There are several ways to extrapolate the nonlinear advection term at any specified order of accuracy.
Suppose that we have the coefficients {cj}k−1

j=1 in an extrapolation formula, for B(ukh) of the form∑k−1
j=1 cjB(ujh). This extrapolation strategy in SBDF methods was used by many authors; e.g.,

to numerically solve convection-diffusion and reaction-diffusion equations [3, 9, 33], and Navier–
Stokes equations [6] numerically. Another approach was proposed by Baker et al. [7] and uses the
extrapolation formula B

(∑k−1
j=1 cju

j
h

)
, the resulting methods are called SBDFB methods. Albeit

the small difference between the two implementations, it remains unclear why SBDF methods are
often preferred over SBDFB methods in many applications. We suspect that the two methods exhibit
distinct numerical behaviour in terms of accuracy and stability. To our knowledge, no comparisons
of these extrapolation schemes have been attempted in the literature. We also propose a new
method an extrapolation type of the form B

(∑k−1
j=0 cju

j
h

)
. This scheme results in a (k + 1)th-

order approximation of the nonlinear term while only a kth-order approximation is used for the
time-derivative term. These methods will be called SBDFBEx (the suffix “Ex” is added to indicate
an increase by one of the order of extrapolation of the nonlinear term). Although this combination
of approximation may look suboptimal, we will see that these are the sole SBDF methods that can
match the accuracy of BDF methods in practice.

We now state several variants of the SBDF and the BDF methods before making a numerical
comparison between them.

3.1. 2nd-order SBDFB method

Given u0
h = Πhu(0) ∈ Vh and proper initializations for u1

h ∈ Vh, (un+1
h , pn+1

h ) ∈ Vh ×Mh is given
by

1

2τ

(
3un+1

h − 4unh + 2un−1
h ,vh

)
+ ν(∇un+1

h ,∇vh) + λ(∇ · un+1
h ,∇ · vh)

−(pn+1
h ,∇ · vh) = (fn+1,vh)−

(
B(2unh − un−1

h ),vh

)
, ∀vh ∈ Vh, (23)

−(qh,∇ · un+1
h ) = 0, ∀qh ∈Mh, (24)

for all 1 ≤ n ≤ N − 1.

3.2. 3rd-order SBDFB method

Given a suitable approximation u0
h = Πhu(0) ∈ Vh and proper initializations for u1

h,u
2
h ∈ Vh,

(un+2
h , pn+2

h ) ∈ Vh ×Mh is given by

1

6τ

(
11un+2

h − 18un+1
h + 9unh − 2un−1

h ,vh

)
+ ν(∇un+2

h ,∇vh) +

λ(∇ · un+2
h ,∇ · vh)− (pn+2

h ,∇ · vh) = (fn+2,vh)

−
(
B(3un+1

h − 3unh + un−1
h ),vh

)
, ∀vh ∈ Vh, (25)

−(qh,∇ · un+2
h ) = 0, ∀qh ∈Mh, (26)

for all 1 ≤ n ≤ N − 2.
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3.3. 2nd-order SBDFBEx method

Given a suitable approximation u0
h = Πhu(0) ∈ Vh and proper initializations for u1

h,u
2
h ∈ Vh,

(un+2
h , pn+2

h ) ∈ Vh ×Mh is given by

1

2τ

(
3un+2

h − 4un+1
h + 2unh,vh

)
+ ν(∇un+2

h ,∇vh) + λ(∇ · un+2
h ,∇ · vh)

−(pn+2
h ,∇ · vh) = (fn+2,vh)−

(
B(3un+1

h − 3unh + un−1
h ),vh

)
, ∀vh ∈ Vh, (27)

−(qh,∇ · un+2
h ) = 0, ∀qh ∈Mh, (28)

for all 1 ≤ n ≤ N − 1.

3.4. 3rd-order SBDFBEx method

Given a suitable approximation u0
h = Πhu(0) ∈ Vh and proper initializations for u1

h,u
2
h,u

3
h ∈ Vh,

(un+3
h , pn+3

h ) ∈ Vh ×Mh is given by

1

6τ

(
11un+3

h − 18un+2
h + 9un+1

h − 2unh,vh

)
+ ν(∇un+3

h ,∇vh) +

λ(∇ · un+3
h ,∇ · vh)− (pn+3

h ,∇ · vh) = (fn+3,vh)

−
(
B(4un+2

h − 6un+1
h + 4unh − un−1

h ),vh

)
, ∀vh ∈ Vh, (29)

−(qh,∇ · un+3
h ) = 0, ∀qh ∈Mh, (30)

for all 1 ≤ n ≤ N − 2,

3.5. 2nd-order BDF method

Given a suitable approximation u0
h = Πhu(0) ∈ Vh and proper initializations for u1

h ∈ Vh,
(un+1
h , pn+1

h ) ∈ Vh ×Mh is given by

1

2τ

(
3un+1

h − 4unh + 2un−1
h ,vh

)
+ ν(∇un+1

h ,∇vh) + λ(∇ · un+1
h ,∇ · vh) +

(B(un+1
h ),vh)− (pn+1

h ,div vh) = (fn+1,vh), ∀vh ∈ Vh, (31)
−(qh,∇ · un+1

h ) = 0, ∀qh ∈Mh, (32)

for all 1 ≤ n ≤ N − 1.

3.6. 3rd-order BDF method

Given a suitable approximation u0
h = Πhu(0) ∈ Vh and proper initializations for u1

h,u
2
h ∈ Vh,

(un+2
h , pn+2

h ) ∈ Vh ×Mh is given by

1

6τ

(
11un+2

h − 18un+1
h + 9unh − 2un−1

h ,vh

)
+ ν(∇un+2

h ,∇vh) +

λ(∇ · un+2
h ,∇ · vh) + (B(un+2

h ),vh)

−(pn+2
h ,∇ · vh) = (fn+2,vh), ∀vh ∈ Vh, (33)

−(qh,∇ · un+2
h ) = 0, ∀qh ∈Mh, (34)

for all 1 ≤ n ≤ N − 2.
We refer the reader for several initialization techniques of these methods to Baker et al. [7] and

Loy and Bourgault [20]. Fixed point iterations, (e.g., Newton method) are required to solve the
nonlinear systems resulting from BDF methods. BDF methods are unconditionally stable since the
time step is not restricted by a CFL condition. Larger time steps are allowed in BDF methods, hence
rendering these methods very efficient to compute steady flows. On the other hand, a smaller time
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step has to be chosen to produce good accuracy for unsteady flows, often resulting in very poor
efficiency.

For a chosen time step τ and a fixed mesh which satisfy the CFL condition (15), the resulting
truncation errors (due to the nonlinear extrapolation formula) for SBDF and SBDFB methods can be
studied using a simple mathematical analysis. For this purpose, we will evaluate only the truncation
error resulting from the various extrapolation formula for the nonlinear term. We first assume that
the regularity of the solution in time uh ∈ C4(0, T ;Vh) holds. The Taylor expansions of uh(tn) and
uh(tn+1) about the point t = tn+2 are given by

uh(tn) = uh(tn+2)− 2τ
∂

∂t
uh(tn+2) + 2τ2 ∂

2

∂t2
uh(tn+2)− 4τ3

3

∂3

∂t3
uh(tn+2) (35)

+
2τ4

3

∂4

∂t4
uh(ξ1), ξ1 = ξ1(x) ∈ (tn, tn+1),

uh(tn+1) = uh(tn+2)− τ ∂
∂t

uh(tn+2) +
τ2

2

∂2

∂t2
uh(tn+2)− τ3

6

∂3

∂t3
uh(tn+2) (36)

+
τ4

24

∂4

∂t4
uh(ξ2), ξ2 = ξ2(x) ∈ (tn+1, tn+2).

Combining (35) and (36), we obtain the following result.

2uh(tn+1)− uh(tn) = uh(tn+2)− τ2 ∂
2

∂t2
uh(tn+2) + τ3 ∂

3

∂t3
uh(tn+2) (37)

−7τ4

12

∂4

∂t4
uh(ξ3), ξ3 = ξ3(x) ∈ (tn, tn+2).

For brevity, we introduce the notation B(u,v) := u · ∇v. By applying (37) to the nonlinear
operator defined in the momentum equation as in (16) and (23) for SBDF-2 and SBDFB-2 methods,
respectively, we obtain the following results.

Extrapolation of the nonlinear terms in SBDF-2 method

2B(uh(tn+1))−B(uh(tn)) = 2B
(
uh(tn+2)− τ ∂

∂t
uh(tn+2) +

τ2

2

∂2

∂t2
uh(tn+2)

−τ
3

6

∂3

∂t3
uh(tn+2) +

τ4

24

∂4

∂t4
uh(η2)

)

−B
(
uh(tn+2)− 2τ

∂

∂t
uh(tn+2) + 2τ2 ∂

2

∂t2
uh(tn+2)

−4τ3

3

∂3

∂t3
uh(tn+2) +

2τ4

3

∂4

∂t4
uh(η1)

)

= B(uh(tn+2))

−2τ2B
( ∂
∂t

uh(tn+2)
)
− τ2B

(
uh(tn+2),

∂2

∂t2
uh(tn+2)

)

−τ2B
( ∂2

∂t2
uh(tn+2),uh(tn+2)

)
+O(τ3),

which implies that the truncation error on B(uh(tn+2)) is

∣∣∣ΘSBDF2(tn+2)
∣∣∣ :=

∣∣∣B(uh(tn+2))−
(
2B(uh(tn+1))−B(uh(tn))

)∣∣∣

≤ 4τ2 max
{∣∣∣B

( ∂
∂t

uh(tn+2)
)∣∣∣,
∣∣∣B
( ∂2

∂t2
uh(tn+2),uh(tn+2)

)∣∣∣,
∣∣∣B
(
uh(tn+2),

∂2

∂t2
uh(tn+2)

)∣∣∣
}

+O(τ3).
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Extrapolation of the nonlinear terms in SBDFB-2 method

B(2uh(tn+1)− uh(tn)) = B
(
uh(tn+2)− τ2 ∂

2

∂t2
uh(tn+2) + τ3 ∂

3

∂t3
uh(tn+2)

−7τ4

12

∂4

∂t4
uh(η1)

)

= B(uh(tn+2))− τ2B
(
uh(tn+2),

∂2

∂t2
uh(tn+2)

)

−τ2B
( ∂2

∂t2
uh(tn+2),uh(tn+2)

)
+O(τ3).

which implies that the truncation error on B(uh(tn+2)) is
∣∣∣ΘSBDFB2(tn+2)

∣∣∣ :=
∣∣∣B(uh(tn+2))−

(
B(2uh(tn+1)− uh(tn))

)∣∣∣

≤ 2τ2 max
{∣∣∣B

(
uh(tn+2),

∂2

∂t2
uh(tn+2)

)∣∣∣,
∣∣∣B
( ∂2

∂t2
uh(tn+2),uh(tn+2)

)∣∣∣
}

+O(τ3).

It is worth-mentioning that the truncation error on ∂
∂tuh(tn+2) in all of SBDF-2, SBDFB-2 and

SBDFBEx-2 methods is asymptotically the same; i.e., O(τ2) by virtue of (21). Therefore, any
numerical difference between these methods results from the different extrapolation strategy used
to approximate the nonlinear term. For instance, we observe that the truncation error for SBDFB-2
method is smaller than for SBDF-2 method at least by a factor 2.

For the 3rd-order extrapolation schemes, we use a similar approach. We first write using Taylor
expansion for uh(tn), uh(tn+1) and uh(tn+2) at t = tn+3 to obtain

3uh(tn+2)− 3uh(tn+1) + uh(tn) = uh(tn+3)− τ3 ∂
3

∂t3
uh(tn+3) +

3τ4

2

∂4

∂t4
uh(ξ),

ξ = ξ(x) ∈ (tn, tn+3). (38)

By applying (38) to the nonlinear operator in the momentum equation of (18) and (25) for
SBDF-3 and SBDFB-3 methods, respectively, we obtain the following results.

Extrapolation of nonlinear term in SBDF-3 method

3B(uh(tn+2))− 3B(uh(tn+1)) +B(uh(tn))) = B(uh(tn+3))

−τ3B
(
uh(tn+3),

∂3

∂t3
uh(tn+3)

)

−τ3B
( ∂3

∂t3
uh(tn+3),uh(tn+3)

)

−3τ3B
( ∂
∂t

uh(tn+3),
∂2

∂t2
uh(tn+3)

)

−3τ3B
( ∂2

∂t2
uh(tn+3),

∂

∂t
uh(tn+3)

)

+O(τ4),

which implies that the truncation error on B(uh(tn+3)) is
∣∣∣ΘSBDF3(tn+3)

∣∣∣ :=
∣∣∣B(uh(tn+3))−

(
3B(uh(tn+2))− 3B(uh(tn+1)) +B(uh(tn))

)∣∣∣

≤ 8τ3 max
{∣∣∣B

(
uh(tn+3),

∂3

∂t3
uh(tn+3)

)∣∣∣,
∣∣∣B
( ∂3

∂t3
uh(tn+3),uh(tn+3)

)∣∣∣,
∣∣∣B
( ∂2

∂t2
uh(tn+3),

∂

∂t
uh(tn+3)

)∣∣∣,
∣∣∣B
( ∂
∂t

uh(tn+3),
∂2

∂t2
uh(tn+3)

)∣∣∣
}

+O(τ4).
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Extrapolation of nonlinear term in SBDFB-3 method

B(3uh(tn+2)− 3uh(tn+1) + uh(tn)) = B
(
uh(tn+3)− τ3 ∂

3

∂t3
uh(tn+3)

+
3τ4

2

∂4

∂t4
uh(ξ4)

)

= B(uh(tn+3))− τ3B
(
uh(tn+3),

∂3

∂t3
uh(tn+3)

)

−τ3B
( ∂3

∂t3
uh(tn+3),u(tn+3)

)
,

which implies that the truncation error on B(uh(tn+3)) is
∣∣∣ΘSBDFB3(tn+3)

∣∣∣ :=
∣∣∣B(uh(tn+3))−B(3uh(tn+2)− 3uh(tn+1) + uh(tn))

∣∣∣

≤ 2τ3 max
{∣∣∣B

(
uh(tn+3),

∂3

∂t3
uh(tn+3)

)∣∣∣,
∣∣∣B
( ∂3

∂t3
uh(tn+3),uh(tn+3)

)∣∣∣
}

+O(τ4).

By comparing the truncation error in time, we see that SBDFB-3 method produces an error
smaller than SBDF-3 method at least by a factor of 4. The nonlinear extrapolation formula for
B(u) in SBDFBEx-2 (see (27)) has 3rd-order of accuracy in time. As we mentioned earlier,
the resulting method is still limited to 2nd-order accuracy from the discretizations of the time-
derivative. However, it occurs that the resulting error with SBDFBEx-2 method will be less than
that with SBDFB-2 method. It is noteworthy that the overall error produced by SBDFBEx-2 method
(whenever it is stable) is similar to that of BDF-2 method, for which there is no truncation error in
time resulting from the discretization ofB(un+2

h ). However, the numerical convergence and error in
BDF methods are only influenced by the discretization of the time-derivative as long as the stopping
criteria for Newton’s method is set close to machine accuracy (see (41) below). At a given order,
BDF and SBDFBEx methods are the most accurate methods among all the discussed variants. This
observation can be generalized to any kth-order BDF and SBDFBEx methods.

3.7. Numerical results

A manufactured solution is used to verify that the error estimates based on truncation error that
we derived above correspond to the practical behaviour in numerical test cases. This is done
by comparing the numerical error (in time) computed with SBDF, SBDFB, SBDFBEx and BDF
methods, all with 2nd- and 3rd-order of accuracy. Further, we attempt to recover the error factors
among these methods since they are influenced by the extrapolation strategy implemented to
approximate the nonlinear terms. For this purpose, we consider the domain Ω = (0, 1)2 and the
solution of (1)–(2) given by

(u1, u2) = (sin(x) sin(y + t), cos(x) cos(y + t)),

p = cos(x) sin(y + t). (39)

The domain is discretized using a uniform mesh which results in a fixed mesh size h =
0.01768 (subdivision 80× 80 along both edges). This produces 6561 vertices, 12800 triangles and
58403 unknowns for velocity and pressure. The external force f , the initial condition (u0, p0),
the non-homogeneous Dirichlet boundary conditions at bottom, left and upper boundaries, and
homogeneous Neumann boundary condition for left boundary are computed from the analytical
solution in (39). The final time for computation is defined as T = 2. The computation will be done
with different time steps τ = 0.04, 0.02, 0.01 and 0.005. For the error and convergence analysis in
time only (as opposed to space and time), the reference solution (uh,ref , ph,ref ) is computed using
SBDFBEx-3 method with a very small time step τ = 6.25× 10−5. SBDFBEx-3 method is chosen
since it is CPU-efficient and it has the potential to produce the least numerical error at a given order.

We define T = Mτ∗ where T is the total computation time τ∗ the time step for the output
purposes and M ∈ N a user defined parameter. For convenience, we pick τ∗ as a multiple of τ .
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We analyze numerical convergence in time by comparing the numerical and reference solutions for
all methods. The error on velocity (in time) is computed as follows:

‖uh,ref − uh,τ‖L2(0,T ;L2(Ω)) =

(
τ∗

M∑

j=1

‖ujh,ref − ujh,τ‖2
) 1

2

. (40)

To disregard possible numerical artifact generated at start-up, we evaluate the L2-error using
τ∗ = 0.2 only for t ∈ [1, 2]. For BDF methods, we set the stopping criteria for the Newton’s method
as follows:

‖un+1,k+1
h,τ − un+1,k

h,τ ‖L2(Ω) ≤ tol, where tol = 10−12, (41)

where un+1,k+1
h,τ is the solution at time tn+1 for the kth-Newton iteration.

From Table I and II, we observe that all methods converge to the reference solution computed
by the SBDFBEx-3 method. For each time step, the velocity error produced with SBDFB-2 method
is about twice as small as the error produced with SBDF-2 method while there is little difference
between the error on pressure for both methods. On the other hand, the error on both velocity and
pressure with SBDFB-3 method is about four times smaller than that for SBDF-3 method. Again,
we note that the resulting error with SBDFBEx-2 is smaller than that with SBDFB-2 method, by a
factor of 2 and 4 comparing the error on velocity and pressure, respectively. A similar comparison
of the error on velocity between SBDFBEx-3 and SBDFB-3 methods produce a factor of about 5.5–
7.4 smaller while the error on pressure is about 3.0–3.4 smaller. The error ratio that we obtained
numerically for the velocity agrees well with the theoretical ratio of truncation error estimates
obtained earlier.

At a given order, the error on velocity and pressure produced by SBDFBEx methods is very
closed to the error produced by BDF methods. By using a (k + 1)th-order extrapolation scheme for
B(uh) in SBDFBEx methods, it can be seen in Table I and II that the accuracy of this semi-implicit
scheme is similar to fully-implicit BDF methods. This suggests that the error from the nonlinear
extrapolation is minimized and any time discretization error comes mostly from the approximation
of the time-derivative.

For all methods that we have studied, the theoretical order of convergence are reproduced
satisfactorily. Whenever smaller error is required, semi-implicit methods demonstrate a significant
saving on CPU time compared to the implicit counterpart (by a factor of 50) when solving unsteady
NSE. The CPU times for 2nd and 3rd-order semi-implicit methods are small and almost similar.
Larger differences are observed between the implicit methods of 2nd- and 3rd-order of accuracy.
This suggests that more Newton’s iterations are required for solving the nonlinear system in BDF-3
method than that in BDF-2 method, even with the same tolerance in the stopping criteria.

4. 2D FLOW AROUND THE CYLINDER AT Re = 300 AND 1 000

In this section, we showcase that our methods are robust, accurate and stable when computing
flows with high Reynolds numbers. For this purpose, we first attempt the computation of 2D flows
around the cylinder at Re = 300 and 1 000. For the domain, we use Ω = (−5, 15)× (−5, 5) with
a 2D cylinder of diameter D = 1 centered at the origin (0, 0). The domain is discretized using a
triangulation (unstructured) by dividing the long and short edges of the domain into 320 and 160
elements, respectively, and by using 160 nodes on the boundary of the circular cylinder. The mesh
has elements of varying mesh size hK where 0.016 774 ≤ hK ≤ 0.127 691 for a total of 181 000
triangles. This gives 721 760 and 90 500 d.o.f. for velocity and pressure, respectively. This space
discretization is chosen to be reasonably fine to ensure that there are sufficiently many points to
resolve the boundary layer.
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Table I. L2-error and order of convergence for velocity and pressure (in time), and CPU time of all 2nd-order
methods.

Error (SBDF-2) Order (SBDF-2) CPU(s)
Time step, τ Velocity Pressure Velocity Pressure

0.04 2.4309× 10−5 5.4118× 10−4 1.9779 1.9810 26

0.02 6.1711× 10−6 1.3709× 10−4 1.9894 1.9909 42

0.01 1.5542× 10−6 3.4490× 10−5 1.9948 1.9956 75

0.005 3.8993× 10−7 8.6491× 10−6 − − 134

Error (SBDFB-2) Order (SBDFB-2) CPU(s)
Time step, τ Velocity Pressure Velocity Pressure

0.04 1.0473× 10−5 5.7804× 10−4 1.9893 2.0027 26

0.02 2.6377× 10−6 1.4424× 10−4 1.9944 2.0013 44

0.01 6.6199× 10−7 3.6028× 10−5 1.9971 2.0007 72

0.005 1.6583× 10−7 9.0028× 10−6 − − 132

Error (SBDFBEx-2) Order (SBDFBEx-2) CPU(s)
Time step, τ Velocity Pressure Velocity Pressure

0.04 5.0956× 10−6 1.1369× 10−4 1.9534 1.9526 26

0.02 1.3157× 10−6 2.9372× 10−5 1.9783 1.9789 59

0.01 3.3392× 10−7 7.4513× 10−6 1.9895 1.9901 94

0.005 8.4090× 10−8 1.8757× 10−6 − − 164

Error (BDF-2) Order (BDF-2) CPU(s)
Time step, τ Velocity Pressure Velocity Pressure

0.04 5.4965× 10−6 1.2127× 10−4 2.0099 2.0025 1 421

0.02 1.3647× 10−6 3.0264× 10−5 2.0051 2.0013 2 361

0.01 3.3998× 10−7 7.5594× 10−6 2.0025 2.0006 4 298

0.005 8.4846× 10−8 1.8890× 10−6 − − 7 683

4.1. Nonreflecting Boundary–Directional Implicit Damping

At a lower Reynolds number; e.g., Re = 100, we observe that Neumann boundary condition works
perfectly well to allow the generated vortices to slip through the free exit. As the Reynolds number
increases, the flow becomes more sensitive to perturbation including those induced by boundary
condition. Neumann boundary conditions on the outflow boundary do not properly damp the wave
generated by the vortices exiting the domain. The instability shows up as highly oscillating velocity
patterns along this boundary, leading to an unbounded solution in few time steps. The flow around
the cylinder at high Reynolds number thus requires a special treatment along the outflow boundary.
We apply a simple approach called the directional implicit damping [29], which shares similar
principles with the perfectly-matched-layer (PML). The idea of directional implicit damping is to
absorb fast moving waves but only in a layer near the boundary (see Figure 1). The absorbing layer
lies in the zone between the dashed-line and the actual boundary Γ of the domain Ω (i.e., top, bottom
and right boundaries). The thickness of this layer is defined by ξ > 0. In this absorbing layer, NSE
with damping term σu are solved, while the regular NSE are solved in the middle (as indicated).

A modified NSE with grad-div stabilization term incorporating the damping term σu are given
as follows:

ut + σu− ν∆u + λ∇∇ · u + u · ∇u +∇p = f , in Ω× (0, T ), (42)
∇ · u = 0, in Ω× (0, T ), (43)
∇u · n = 0, on Γout × (0, T ), (44)

u = 0, on Γ\Γout, (45)
u|t=0 = u0, on Ω, (46)

Copyright c© 2017 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2017)
Prepared using fldauth.cls DOI: 10.1002/fld

61



14 K. C. LOY AND Y. BOURGAULT

where the damping function, σx,y = σ(x, y) is called a “half-step” function. In a rectangular
domain Ω = (xmin, xmax)× (ymin, ymax), the function σ = σ(x, y) is defined as follows [29]:

σ(x, y) =





0, if x = [0, xmax − ξ] and y ∈ [ξ, ymax − ξ],
x−xmax+ξ

ξ − 1
π sin

(
(x−xmax+ξ)π

ξ

)
, if x ∈ [xmax − ξ, xmax] and y ∈ [ymin + ξ, ymax − ξ],

y−ymax+ξ
ξ − 1

π sin
(

(y−ymax+ξ)π
ξ

)
, if y ∈ [ymax − ξ, ymax],

ymin+ξ−y
ξ − 1

π sin
(

(ymin+ξ−y)π
ξ

)
, if y ∈ [ymin, ymin + ξ],

(47)

where we denote the left bound by xmin, the right bound by xmax, the lower bound by ymin and the
upper bound by ymax. The method works well with a small time step, which is perfectly suited for
the semi-implicit methods. The parameter ξ is a user-defined parameter denoting the “thickness” of
the absorbing layer. A larger parameter ξ (typically ξ ∈ (3, 5)) is prescribed to allow wave damping
on fast moving vortices while a smaller ξ (typically ξ ∈ (1, 3)) is adequate to damp the slow moving
vortices. In this particular test case, we fix ξ = 3 which produces a reasonable damping on the
outgoing vortices.

Table II. L2-error and order of convergence for velocity and pressure (in time), and CPU time of all 3rd-order
methods.

Error (SBDF-3) Order (SBDF-3) CPU(s)
Time step, τ Velocity Pressure Velocity Pressure

0.04 2.0906× 10−6 4.5220× 10−5 3.0419 3.0368 33

0.02 2.5385× 10−7 5.5102× 10−6 3.0217 3.0189 56

0.01 3.1257× 10−8 6.7983× 10−7 3.0113 3.0099 92

0.005 3.8768× 10−9 8.4399× 10−8 − − 169

Error (SBDFB-3) Order (SBDFB-3) CPU(s)
Time step, τ Velocity Pressure Velocity Pressure

0.04 5.3496× 10−7 1.1609× 10−5 3.0169 2.9954 25

0.02 6.6092× 10−8 1.4557× 10−6 3.0086 2.9960 54

0.01 8.2121× 10−9 1.8247× 10−7 3.0056 2.9994 93

0.005 1.0225× 10−9 2.2817× 10−8 − − 156

Error (SBDFBEx-3) Order (SBDFBEx-3) CPU(s)
Time step, τ Velocity Pressure Velocity Pressure

0.04 7.2254× 10−8 3.9216× 10−6 2.7512 3.1185 28

0.02 1.0732× 10−8 4.5155× 10−7 2.8861 3.0515 50

0.01 1.4516× 10−9 5.4464× 10−8 2.9606 3.0350 89

0.005 1.8648× 10−10 6.6450× 10−9 − − 164

Error (BDF-3) Order (BDF-3) CPU(s)
Time step, τ Velocity Pressure Velocity Pressure

0.04 9.3772× 10−8 3.3535× 10−6 2.9537 2.9955 1 636

0.02 1.2104× 10−8 4.2049× 10−7 2.9814 3.0012 3 014

0.01 1.5326× 10−9 5.2518× 10−8 3.0230 3.0283 5 101

0.005 1.8855× 10−10 6.4375× 10−9 − − 8 568

Boundary conditions are still required and set as follows: u = (u, v) = (1, 0) along left, upper
and lower boundaries. Setting zero tangential flow (non-flux condition) along the upper and lower
boundaries can be done, i.e., ∂xu = 0 and v = 0, but we note that the difference between this
and the earlier prescribed velocity is negligible. Along the cylinder, no-slip condition is used, i.e.,
u = (u, v)|Γ = (0, 0).

From the manufactured solution, we note that SBDFBEx methods produce the least error on
velocity and pressure. However, SBDFBEx methods are very restrictive in terms of critical time
step to maintain CFL stability condition (about twice as smaller as that for SBDF/SBDFB methods
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at a given order of accuracy). Through numerical experiment, we observed that SBDFB methods are
more accurate than SBDF methods and having similar critical time step to that of SBDF to maintain
CFL stability condition. Hence SBDFB-3 method is chosen to solve the two test cases, the first with
a time step τ = 0.002 at Re = 300, and the second with a time step τ = 0.001 at Re = 1 000. These
time steps are chosen small enough to maintain numerical stability and to yield an accurate solution.
The parameter λ = 102 is chosen for the grad-div stabilization term. The resulting linear system
can still be handled with a direct solver, MUMPS, which makes the SBDFB-3 method very efficient
on these test problems. Both computations are run without prescribing the value T . The time history
of lift and drag is examined from time to time to check if a fully periodic solution (if any) is reached
before computations are terminated. The computation for Re = 300 requires approximately 25 000
time steps to obtain a fully periodic solution from the state of rest. This takes about 2 days and
13 hours of CPU time to run on a personal workstation. To achieve a similar periodic flow for
Re = 1 000, a total of about 80 000 time steps are required which takes about 8 days of CPU time
from the state of rest. This is expected since the flow at Re = 1 000 is less stable and larger CPU
time is required to capture the fully periodic flow.

Figure 2 illustrates the streamlines for 2D flow around the cylinder at Re = 300 and 1 000 over
one period of the lift coefficient (or 1/Str, where Str is the Strouhal number of the flow separation
behind the cylinder). By comparing the plots of streamlines between the first (first top) and the fifth
(last bottom) figures—for the respective Reynolds number, it can be verified that both flows achieve
fully periodic solution in time.

Regular Navier-Stokes Equation

σy

σy

σx,y

σx,y

σx

ξ

ξ

Figure 1. Computational domain with the layer for the directional implicit damping.

The dynamics of the shear layer at the back of the 2D cylinder is more complex at Re = 1 000
than at Re = 300. As expected, increasing the Reynolds number induces more and finer vortices,
requiring finer meshes to maintain up 6–8 nodes with P2-P1 elements across the boundary layer
(see Figure 3).

The information on the lift and drag coefficients is summarized in Table III. The Strouhal number
for the flows atRe = 300 and 1 000 are 0.2226 and 0.2491, respectively. For both Reynolds numbers,
the resulting flows around the circular cylinder produce a space-time symmetric vortex shedding
behind the cylinder (not shown). Therefore, the mean lift coefficient is expected to be zero for
both Re = 300 and 1 000, which was reproduced at order 10−4 in our computations. For both
cases, the fully time-periodic vortex shedding behind the cylinder; i.e., u(5, y, t) = u

(
5, y, t+ ϕ

2

)

is demonstrated where ϕ is the period of the flow. Further, the oscillations on lift have a frequency
that is twice as small as that for drag. This is also observed for the flow past a circular cylinder at
Re = 100 (see [20]) which suggests that the unsteady periodic flows at Re = 300 and 1 000 stay
within the laminar regime.

As a matter of fact, computed 2D flows around the cylinder at larger Reynolds number (typically
Re > 200) falls short to produce reasonable drag and lift coefficients since flows around cylinder
exhibit significant 3D features for such Reynolds number [30]. The computed lift and drag
coefficients for Re = 1 000 cannot be compared due to this shortcoming. However, we showcase
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16 K. C. LOY AND Y. BOURGAULT

that our method is very stable when computing highly nonlinear flows using time step τ = 0.001,
where very small time steps are typically required; e.g., τ < 0.001 for direct numerical simulation
(DNS) computations to capture all possible turbulent scales present in the flow. We tested that the
same time step τ = 0.001 allows stable computations for a 2D flow around the circular cylinder
at Re = 3 900 (not shown here). In addition, we demonstrate that the directional implicit damping
method works reasonably well to allow vortices to travel away from the domain without causing
any numerical reflection. Directional implicit damping schemes can be implemented for various
flow problems involving high Reynolds numbers; e.g., external flows, open channel and pipe flows,
etc.

Re = 300   Time: 0.0

1 2

flow speed

0 2.2

Re = 1 000   Time: 0.0

1 2

flow speed

0 2.2

Re = 300   Time: 1.1

1 2

flow speed

0 2.2

Re = 1 000   Time: 1.0

1 2

flow speed

0 2.2

Re = 300   Time: 2.2

1 2

flow speed

0 2.2

Re = 1 000   Time: 2.0

1 2

flow speed

0 2.2

Re = 300   Time: 3.4

1 2

flow speed

0 2.2

Re = 1 000   Time: 3.0

1 2

flow speed

0 2.2

Re = 300   Time: 4.5

1 2

flow speed

0 2.2

Re = 1 000   Time: 4.0

1 2

flow speed

0 2.2

Figure 2. 2D flow around the cylinder at Re = 300 (left column) and Re = 1000 (right column): Snapshots
of streamlines with flow speed (color-coded) plotted at every quarter period over one period of the flow; i.e.,

4.4917 time units for Re = 300 and 4.0135 time units for Re = 1000.
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Table III. The mean, amplitude and frequency of the lift and drag coefficients for 2D flow around the cylinder
at Re = 300 and 1 000.

Re = 300
Source of results cl mean cl amp. cl freq. cd mean cd amp. cd freq.

Present −5.1086× 10−4 0.9987 0.2226 1.4099 8.7317× 10−2 0.4453
Mittal & Balachandar [22] − − 0.2150 1.3667 − −

Ranjani et al. [31] − − 0.2130 1.3800 − −
Re = 1 000

Source of results cl mean cl amp. cl freq. cd mean cd amp. cd freq.
Present 6.6455× 10−4 1.5709 0.2492 1.5548 0.2501 0.4983

1 2

flow speed

0 2.2

Figure 3. Zoom of the mesh for the flow past a circular cylinder at Re = 1000.

5. 2D LID-DRIVEN CAVITY FLOW AT Re = 50 000 AND 100 000

At Re > 10 000, 2D lid-driven cavity exhibits a transition from laminar to turbulent flow. We
demonstrate that P2-P1 elements combining high-order time-stepping semi-implicit methods with
grad-div stabilization term are both accurate and stable when computing flows at such high
Reynolds numbers. We use a 2D setting which is ideal for carrying tests in terms of efficiency and
simplicity. It is undeniable that 2D lid-driven cavity flow at such high Reynolds number is fictitious.
From an application point of view, however, 2D settings may still be relevant when studying driven
cavity flows possibly occurring in a very fine lateral gap.

The numerical computation of the lid-driven cavity withRe = 100 000 was attempted by Bruneau
and Saad [6] using 3rd-order finite difference scheme (with staggered grid) for space approximation
while both 1st- and 2nd-order semi-implicit BDF methods were used for time-stepping. The finest
grid resolution used in their computation is 2048× 2048 cells. The time step that they have
used for the numerical experiment are not reported. We conjectured that the time step fixed in
their computation was very small since the mesh used was finer than ours. With similar semi-
implicit approach, maintaining CFL stability condition is more difficult without any stabilization
mechanism.

In this section, we present numerical results pertaining to lid-driven flow using two different
Reynolds number, Re = 50 000 and 100 000. We use the standard square domain Ω = (0, 1)2. A
uniform triangular-shaped elements is generated by first dividing each edge of Ω into 200× 200
equal-length elements for Re = 50 000 and 300× 300 equal-length mesh for Re = 100 000. For the
200× 200 mesh and with P2-P1 elements, the triangulation produces a varying mesh size hK where
0.003 792 ≤ hK ≤ 0.009 868 and a total of 94 910 nodes, which gives 381 242 and 47 856 d.o.f. for
velocity and pressure, respectively. For the 300× 300 mesh, the unstructured triangulation contains
147 650 elements with varying mesh size hK where 0.003 002 ≤ hK ≤ 0.008 083, and 592 602 and
74 326 d.o.f. for velocity and pressure, respectively. With the two different meshes, we ensure that
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any boundary layer can be discretized in the crosswise direction by at least 5–10 nodes, especially
for the velocity at such high Reynolds number.

Dirichlet boundary conditions only are defined with a constant velocity prescribed as follows:
u|Γlid

= (1, 0) along the lid {(x, 1) | 0 ≤ x ≤ 1} and u|Γwall
= (0, 0) along the remaining walls.

In some articles, these boundary conditions are known as the “leaky cavity”, which produce less
oscillations at the top left corner and are suitable to handle driven flow with very high Reynolds
number. However, for smaller Reynold numbers, (e.g., Re < 50000) we use u|Γlid

= (1, 0) along
the lid {(x, 1) | 0 < x < 1} and u|Γwall

= (0, 0) along the remaining walls, called as the “watertight
cavity”. We observed that the latter setting can reproduce very accurately the Strouhal number of
the flow for lid-driven flow at Re = 8500 [20]. For initial condition, we prescribed the state of rest,
i.e., u = (0, 0) in the domain Ω. SBDFB-3 method is used to ensure a high-order accuracy in time
without the need for a very small time step.

Due to the (nearly) turbulent state of the flows at such high Reynolds number, the numerical
stability related to the CFL condition is harder to achieve. We observed that instability could occur
unpredictably at some large t if the time step τ is not chosen fine enough. By picking a very fine
time step, stability is always guaranteed but at the expense of making the computation inefficient. To
avoid restrictions on the time step (e.g., τ < 0.0008) due to CFL criteria, the numerical stability can
be improved by choosing a larger stabilization parameter (e.g., λ > 103). However, the larger λ, the
more numerical diffusion occurs. This is what we would like to avoid altogether. At this moment,
we are not able to quantify the mathematical relationship between λ and the resulting numerical
diffusion in SBDF methods (with grad-div stabilization term).

The mesh used in the current computation is nearly three times finer than the mesh used for
Re = 8 500 in [20] while the Reynolds number 100 000 is about 12 times larger. The approximated
critical time step for stability of the SBDFB-3 method with λ = 1 for the lid-driven cavity flow at
Re = 8 500 on a 120× 120 mesh is about 0.002 343. For this flow experiment, the 300× 300 mesh
used is 2.5 times finer than the 120× 120 mesh. Both Reynolds numbers Re = 50 000 and 100 000
are about 6 and 12 times larger than Re = 8500, respectively. The combined effect of finer mesh
and higher Re would definitely impose more serious restriction on the time step needed to achieve
stability. However, by fixing the stabilization parameter at λ = 103, we observe that the SBDFB-3
method remains stable with time step τ = 0.001 at Re = 50 000. For Re = 100 000, the time step
τ = 0.000 8 produces a stable solution as well. If both time steps are slightly increased, numerical
instabilities occurs due to the CFL condition.

Figure 4 shows snapshots of vorticity magnitude, plotted at t = 1, 2, 4, 8, 16, 32, 64, 128 and 256
time units. The flow is composed of several rotating and counter-rotating vortices. The largest vortex
that formed at the center of the cavity for Re = 50 000 does not exhibit a fixed circular structure at
the center of the cavity as it is observed for the lid-driven cavity with a Reynolds number up to
30 000 [11].

Shear layer instabilities are found to be more predominant along the wall induced by the
sharp boundary layers. For instance, along the lower right wall, the boundary layer produces
many interesting flow instabilities in terms of vortex sheddings. This further generates several
intermingling smaller vortices travelling in a spiraling motion before “collapsing” into the main
vortex at the center. The main circulation also induces the generation of several other secondary
vortices near the bottom and upper left corner of the domain.

Figure 5 shows the time history of the x- and y-velocity and pressure monitored at four designated
points located near the corners. The time-evolution of all variables is chaotic with time intervals
showing mild variation separated by smaller intervals with sharper gradients at about t = 407, 425,
435 and 440. For these values of t, sharper gradient or larger amplitude variation are syncronized
among variables. These correspond to the passage of vortices through the sampling point. A similar
chaotic behaviour is observed for the velocity and pressure at Re = 100 000 (not shown).

Figure 6 illustrates the evolution of the vorticity contours for the 2D lid-driven cavity flow
at Re = 100 000 plotted for t = 4, 6, 10, 14, 16 and 20. We compare our results with the one
computed by Bruneau and Saad [6] in a qualitative manner. Our vorticity contours show the
formation of complex vortical patterns. We also notice that boundary and shear layers can be
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resolved satisfactorily using our a 300× 300 mesh (with P2-P1 elements). During start up, the
boundary layer and vortices growing along the right wall is somewhat similar to those seen on
Figure 3 of [6]. The evolution of vorticity demonstrates that the flow in our computations progresses
faster by about 4–5 time units than the results from [6]. From the state of rest, our computed flow
fills up the space of cavity (spanning the x-direction) at about 16 < t < 20. However, in [6], similar
flow only fills up about 70%–80% of the cavity (spanning the x-direction) at t = 20. This may result
from the slightly coarser mesh that we used. Our space approximation using a 300× 300 mesh with
P2-P1 elements corresponds to having a 600× 600 mesh using finite difference schemes, compared
to their 2 048× 2 048 mesh.

A sharp boundary layer is generated consistently along the lid and right cavity wall, while
intermittently along the bottom and left walls. These features can only be resolved with a reasonably
fine mesh (see Figure 7).
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Figure 4. Vorticity for 2D lid-driven cavity flow with Re = 50 000 at t = 1, 2, 4, 8, 16, 32, 64, 128 and 256
showcasing the time evolution of the flow from start-up to partially developed flow.

On Figure 8, we present the evolution of streamlines, vorticity and pressure contours for 2D
lid driven cavity flow with Re = 100 000 plotted at t = 10, 100, 200 and 300. As seen from
the streamlines, once the flow is established, there is a main vortex with multiple neighboring
smaller vortices intermingling with each other. The eye of the primary vortex is rarely fixed at one
location but rather in a rotating motion within the domain with several other vortices intermittently
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“absorbed” into a major driven circulation. Meanwhile, secondary vortices are formed near the
upper left, bottom left and bottom right corners with irregular shapes, giving rise to flow separations
and creating smaller vortices. Once the flow is well-developed; e.g., for t > 50, no vortex can be
found near the upper right corner. This observation agrees with the qualitative results in [6]. The
vorticity contours show that vortex shedding is occurring at the end tip of the boundary layer formed
along the right wall. The isolines of pressure indicate mostly the troughs in syncronisation with the
center of the generated vortices. We also observed two points of near singularity (one positive and
one negative pressure) occuring at both upper corners, as expected for 2D lid-driven cavity flows.
Again, these observations agree qualitatively well with the numerical results in [6].
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Figure 5. 2D lid-driven cavity at Re = 50 000: Time evolution of x-,y-velocity and pressure monitored near
the four corners, bottom left (0.2, 0.3), bottom right (0.8, 0.3), top right (0.8, 0.7) and top left (0.2, 0.7), for

t ∈ [400, 450].

6. CONCLUSIONS AND DISCUSSIONS

In this paper, the ratio of the truncation errors on velocity between SBDF and SBDFB methods
for 2nd- and 3rd-order of accuracy were studied using a simple mathematical analysis (Taylor-series
expansion). Similar analysis of truncation error could not be established for pressure at this moment.
We found that the error on velocity and pressure produced by SBDFBEx methods and BDF methods
are almost identical for a given order of accuracy.

We observed that the grad-div term produces better numerical stability for high-order semi-
implicit methods (i.e., SBDF methods). The grad-div stabilization term is the simplest to
implement as compared to other stabilization strategies used in finite element methods, e.g.
streamline upwind Petrov-Galerkin (SUPG), pressure stabilized Petrov-Galerkin (PSPG) and
Galerkin least square (GALS) methods.

When computing high Reynolds flows, the time step for our methods can be larger than that
for the same method without grad-div stabilization term. However, the choice of the stabilization
parameter λ > 0 is still an open problem. We approximate this value only by resorting to direct
computations involving many trials and errors.
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Figure 6. Vorticity contours for the 2D lid-driven cavity flow at Re = 100 000 and times t = 4, 6, 10, 14, 16
and 20 from state of rest to partially developed flow.
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Figure 7. A blow-up of the mesh used to compute the 2D lid-driven cavity flow at Re = 100 000 with the
magnitude of vorticity at t = 78.5 time units: Full view (top), The top lid (bottom left), the left boundary

(bottom center) and the right boundary (bottom right).

Our numerical results for the flow past the cylinder at Re = 300 is very close to the value in the
literature. The numerical results for Re = 1 000 cannot be compared due to the lack of similar work
in 2D around the cylinder. For the lid-driven flow, our results reproduce those from [6] qualitatively
with a time lag since the mesh used in our computations is not as fine as theirs. Nonetheless,
our numerical results show that the SBDFB-3 method used is stable and very accurate without
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depending on very small time step. This indicates a great potential for SBDFB methods to resolve
turbulent flows by direct numerical simulations (without closure models).
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Figure 8. Snapshots of streamlines (left column), vorticity (middle column) and pressure (right column) for
2D lid-driven cavity flow at Re = 100 000 at t = 10, 100, 200, 300 (from top to bottom).
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Chapter 4

Several Numerical Improvements
to High-Order Artificial
Compressibility Methods

To avoid solving a saddle point problem, ALM (see Section 1.3.1) can be implemented
with any semi-implicit time-stepping methods (e.g., SBDF, CNAB, DC methods, etc).
An ad-hoc implementation of ALM in the SBDF-2 method produces the following
scheme: Given an initial value (u0, p0) = (u(0), 0) and a proper initialization for u1,
we compute (un+2, pn+2) for n = 0, 1, . . . , N − 2 by solving for (un+2,s+1, pn+2,s+1) the
following system

3un+2,s+1 − 4un+1 + un

2τ
− ν∆un+2,s+1 (4.0.1)

−λ∇∇ · un+2,s+1 +∇pn+2,s = fn+2 − 2B(un+1) +B(un), on Ω,

pn+2,s+1 = pn+2,s − λ∇ · un+2,s+1, on Ω. (4.0.2)

At each time step, we set pn+2,0 to a properly chosen value and iterate on (un+2,s+1,
pn+2,s+1) for s ∈ N. Reduced linear systems taking the form of a parabolic prob-
lem (4.0.2) and a pressure update (4.0.2) have to be solved until ‖pn+2,s+1−pn+2,s‖L2(Ω)

≤ tol, where tol is the chosen small tolerance. Once the stopping criterion is met for
some s, we set un+2 := un+2,s+1 and pn+2 := pn+2,s+1.

Remark 4.0.1. A proper initialization pn+1,0 := pn for all 1 ≤ n ≤ N − 1 can be
implemented to reduce the number of ALM iterations required to reach the stopping
criterion.

Any higher-order SBDF methods with ALM can be constructed in an analogous
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manner. The solution of the above scheme is equivalent to SBDF-2 method with an
additional grad-div term in the momentum equation, as shown in Chapter 3. Due to
the need to do many ALM iterations, the efficiency of this method is not appealing
to compute unsteady flows.

In Chapter 2, we proposed and implemented two methods, namely GM and GM-SRM,
which are constructed based on higher-order artificial compressibility techniques and
bootstrapping strategy. In fact, these two methods have undergone numerical im-
provements in terms of nonlinear interpolation formulae without providing a detailed
justification. In this chapter, we shall look into these numerical improvements more
closely. We analyze the convergence and stability of GM and GM-SRM methods, and
propose ways to improve the accuracy and efficiency of these methods at any given
order.

4.0.1 The Guermond–Minev methods

Before analyzing the numerical improvement in details, we recall the 3rd-order GM
method proposed by Guermond and Minev [23]: Given the initial condition (u0

0, p
0
0) =

(u(0), p(0)) and setting (u0
1, p

0
1) = (0, 0), (u0

2, p
0
2) = (0, 0), we solve for (un+1

0 , pn+1
0 ),

(un1 , p
n
1 ) and (un−1

2 , pn−1
2 ) the subproblems (4.0.3), (4.0.4) and (4.0.5), respectively.

For n ≥ 0,





nln+1
0 = B(un0 ),

un+1
0 − un0
τ

− ν∆un+1
0 − λ∇∇ · un+1

0 +∇pn0 = fn+1 − nln+1
0 ,

pn+1
0 = pn0 − λ∇ · un+1

0 ,

dun+1
0 = (un+1

0 − un0 )/τ, dpn+1
0 = (pn+1

0 − pn0 )/τ.

(4.0.3)

For n ≥ 1,





d2u
n+1
0 = (dun+1

0 − dun0 )/τ,

nln1 = B(un0 + τun−1
1 ),

un1 − un−1
1

τ
− ν∆un1 − λ∇∇ · un1 +∇(pn−1

1 + dpn0 )

= −1

2
d2u

n+1
0 − nln1 − nln0

τ
,

pn1 = pn−1
1 + dpn0 − λ∇ · un1 ,

dun1 = (un1 − un−1
1 )/τ, dpn1 = (pn1 − pn−1

1 )/τ.

(4.0.4)
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for n ≥ 2,





d2u
n
1 = (dun1 − dun−1

1 )/τ, d3u
n+1
0 = (d2u

n+1
0 − d2u

n
0 )/τ,

nln−1
2 = B(un−1

0 + τun−1
1 + τ 2un−2

2 ),

un−1
2 − un−2

2

τ
− ν∆un−1

2 − λ∇∇ · un−1
2 +∇(pn−2

2 + dpn−1
1 )

= −1

2
d2u

n
1 +

1

6
d3u

n+1
0 − nln−1

2 − nln−1
1

τ 2
,

pn−1
2 = pn−2

2 + dpn−1
1 − λ∇ · un−1

2 ,

un−1 = un−1
0 + τun−1

1 + τ 2un−1
2 , pn−1 = pn−1

0 + τpn−1
1 + τ 2pn−1

2 .

(4.0.5)

For the 2nd-order GM method, we refer only to (4.0.3)–(4.0.4) with the asymptotic
expansion un−1 = un−1

0 + τun−1
1 and pn−1 = pn−1

0 + τpn−1
1 to respectively update

the velocity and pressure, globally at each time step. Higher-order GM methods
(k > 3) can be constructed by adding subproblems and going further in the asymptotic
expansions. As one can see, the only difference found in the GM-3 method above and
the GM-3 algorithm mentioned in Chapter 2 is the nonlinear extrapolation formulae
nln+1

0 , nln1 and nln−1
2 used in all subproblems.

GM methods are self-starting. The initialization in GM methods rely on a dependence
tree (see Figure 4.1). The dependence tree illustrates the order of evaluation for each
of the required velocity and pressure of the subproblems. This also explains how
numerical errors can be corrected in a cascade manner, starting from the upper to
the lower subproblems using divided differences of high-order derivative terms.

The dependence tree for GM-3 method is shown in Figure 4.1. This tree is identical
for DC-3 and GM-SRM-3 method. GM-3 method has a built-in initialization which
works in the following manner: At n = 0, (u1

0, p
1
0) is evaluated using (4.0.3) (red

arrow). Then for n = 1, (u2
0, p

2
0) and (u1

1, p
1
1) are evaluated using (4.0.3) and (4.0.4),

respectively (green arrow). Finally for n = 2, (u3
0, p

3
0), (u2

1, p
2
1) and (u1

2, p
1
2) are com-

puted using (4.0.3), (4.0.4) and (4.0.5), respectively (blue arow). This gives (u1, p1)
using the asymptotic expansions found in the last two equations of (4.0.5). The black
dashed arrow in Figure 4.1 indicates that the evaluation of a particular variable de-
pends on the variables from upper subproblem as well. For instance, the solution u1

1

of the 2nd-subproblem depends on the solution u2
0 of the 1st-subproblem, the solution

u1
2 of the 3rd-subproblem depends on the solution u2

1 of the 2nd-subproblem, etc.
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Figure 4.1: Dependence tree for the GM-3 method to compute u1 = u1
0 +

τu1
1 + τ 2u1

2.

With the defect correction strategy, GM-3 method produces smaller error and is more
stable compared to SBDF methods for a given order of accuracy. In GM methods, the
same constant matrices (one from the momentum equation and one from the pressure
update) are used over and over again to solve all subproblems. This simplifies the
algorithm in GM methods, though these are still not as efficient as SBDF methods
when computing 2D flows, even when using a direct solver such as MUMPS.

In principle, any method of lines presented in Section 1.5.1 can be combined with
defect correction strategy to obtain a scheme with an order of accuracy (in time) that
is a multiple of the order of the initial scheme. For instance, we can use any method
of lines of mth-order of accuracy (SBDF-m with m > 0, CNAB with m = 2, etc), and
formulate the velocity and pressure using asymptotic expansions of fixed index k (see
(8) in Chapter 2). Then, the resulting method has (mk)th-order of accuracy in time.
The implementation of such high-order methods could be technically challenging.

4.1 Theoretical Results on GM methods

In this section, we proof the consistency of GM methods, which leads to semi-discrete
variational formulation of Navier–Stokes equations with an inclusion of grad-div sta-
bilization term. This analysis is achieved assuming the stability of the methods. For
simplicity, we give the proof for the 2nd-order GM method, but the consistency of an
arbitrary order GM methods can be demonstrated in a similar fashion.
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Proposition 4.1.1. The solution of the 2nd-order GM method (4.0.3)-(4.0.4) con-
verges to the solution of

(a) the semi-discrete (in space) problem for Navier–Stokes equations if the mixed
finite element spaces satisfy ∇ · Vh ⊆Mh;

(b) a semi-discrete (in space) problem of Navier–Stokes equations with grad-div sta-
bilization term if the mixed element spaces satisfy ∇ · Vh 6⊆Mh;

with a rate of convergence of O(τ 2) whenever τ goes to zero, assuming the mesh is
fixed (hence Vh and Qh are held fixed).

Proof: We first denote by (Uj, P j) the fully-discrete solution obtained by GM-2
method and (uj, pj) = (uh(tj), ph(tj)) the semi-discrete solution (in space) at time
tj. Following the convention from the dependence tree in GM-2, we fix n = j and
n = j + 1 in (4.0.3) and (4.0.4), respectively. Taking the sum of (4.0.3) and τ×(4.0.4)
for any 0 ≤ j ≤ N gives the following

1

τ

(
Uj+1

0 + τUj+1
1 ,v

)
+ ν
(
∇(Uj+1

0 + τUj+1
1 ),∇v

)

+λ
(
∇ · (Uj+1

0 + τUj+1
1 ),∇ · v

)
− (P j

0 + τP j
1 ,∇ · v)− (τdP j+1

0 ,∇ · v)

= (f j+1,v) +
1

τ

(
Uj

0 + τUj
1,v
)
−
(
B(Uj+1

0 + τUj
1),v

)
− τ

2
(d2U

j+2
0 ,v)

Here the term d2U
j+2
0 =

Uj+2
0 −2Uj+1

0 +Uj
0

τ2 is in fact the difference scheme for the second
order derivative u′′0(tj+1). Note, that this one is taken at time tj+2 instead of times
tj+1 or tj as for the other terms in the equation. We group the terms as follows:

(
Uj+1 −Uj

τ
+
τ

2
d2Uj+2

0 ,v

)

︸ ︷︷ ︸
*

+ν(∇Uj+1,∇v) +
(
B(Uj+1

0 + τUj
1),v

)

︸ ︷︷ ︸
**

+λ(∇ ·Uj+1,∇ · v)− (P j + τdP j+1
0 ,∇ · v)︸ ︷︷ ︸

***

= (f j+1,v). (4.1.1)

The simplification is made using the asymptotic expansions, Uj+1 = Uj+1
0 + τUj+1

1

and P j+1 = P j+1
0 + τP j+1

1 . To determine the truncation error of the term (*), we
apply the asymptotic expansion:
(

Uj+1 −Uj

τ
+
τ

2
d2Uj+2

0 ,v

)
=

(
Uj+1 −Uj

τ
+
τ

2
d2
(
Uj+2 − τUj+2

1

)
,v

)

=

(
Uj+1 −Uj

τ
+
τ

2
d2Uj+2 − τ 2

2
d2Uj+2

1 ,v

)
.
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Define the smallest upper integer N = [T/τ ] where T > 0 is fixed. Assume that
we have sufficient regularity of the solution, i.e., u ∈ C4([0, T ], Vh), and that there

exists a constant c = c(T,Ω) such that sup0<j<N ‖d2u
j+2
1 ‖ ≤ c‖u‖C4([0,T ],Vh). Since,

d2U
j+2
1 =

Uj+2
1 −2Uj+1

1 +Uj
1

τ2 and by the Taylor series expansions, we have for the 2nd-
order centered finite difference scheme

u(tj+2)− 2u(tj+1) + u(tj)

τ 2
=

∂2

∂t2
u(tj+1) +

τ 2

12

∂4

∂t4
u(tj+1) +O(τ 4) (4.1.2)

and the 1st-order backward-difference scheme

u(tj+1)− u(tj)

τ
=

∂

∂t
u(tj+1)− τ

2

∂2

∂t2
u(tj+1) +

τ 2

6

∂3

∂t3
u(tj+1) +O(τ 3), (4.1.3)

whenever these are applied to the semi-discrete solution u (in space). To get the
truncation error on (*), we substitute uk for Uk and uk1 for Uk

1 in (*) to get

(∗) =

(
uj+1 − uj

τ
+
τ

2

(
uj+2 − 2uj+1 + uj

τ 2

)
− τ 2

2

(
uj+2

1 − 2uj+1
1 + uj1

τ 2

)
,v

)

=

(
∂

∂t
uj+1 +

τ 2

6

∂3

∂t3
uj+1 +

τ 2

2

∂2

∂t2
uj+1

1 ,v

)
+O(τ 3)

Therefore, (*) admits a 2nd-order truncation error in time.

We next get the truncation error of the nonlinear term (**). Recalling that B(u) =
u · ∇u, we substitute uk0 for Uk

0 and uk1 for Uk
1 to get

(∗∗) = (B(uj+1
0 + τuj1),v)

= (B(uj+1 − τ(uj+1
1 − uj1)),v)

= (B(uj+1),v)− τ((uj+1
1 − uj1) · ∇uj+1,v)−

τ(uj+1 · ∇(uj+1
1 − uj1),v) + τ 2(B(uj+1

1 − uj1),v)

= (B(uj+1),v)− τ 2
(( ∂

∂t
uj+1

1 − τ

2

∂2

∂t2
uj+1

1

)
· ∇uj+1,v

)

−τ 2
(
uj+1 · ∇

( ∂
∂t

uj+1
1 − τ

2

∂2

∂t2
uj+1

1

)
,v
)

+O(τ 4),

where the last line is deduced from (4.1.3). We deduced that (**) admits a 2nd-order
truncation error in time.

Before studying the truncation error of the term (***), we first obtain the truncation
error resulting from the pressure term p in the continuity equation. Similar to what
was done for the momentum equation, the sum of the continuity equations (4.0.3)|n=j

+ τ(4.0.4)|n=j+1 produces the following:
(
P j+1

0 + τP j+1
1 , q

)
=

(
P j

0 + τP j
1 + τdP j+1

0 + λ∇ ·
(
Uj+1

0 + τUj+1
1 ), q

)
(4.1.4)
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⇐⇒
(
P j+1, q

)
=

(
P j + τdP j+1

0 , q
)

+ λ
(
∇ ·Uj+1, q

)

⇐⇒
(
τ 2dP j+1

1 , q
)

= λ
(
∇ ·Uj+1, q

)
(4.1.5)

We have for the semi-discrete pressure p (in space)

p(tj+1)− p(tj)
τ

=
∂

∂t
p(tj+1)− τ

2

∂2

∂t2
p(tj+1) +

τ 2

6

∂3

∂t3
p(tj+1) +O(τ 3). (4.1.6)

By assuming p ∈ C3([0, T ];Mh), it follows that sup0<j<N ‖dpj+1
1 ‖ < c(T,Ω)‖p‖C3([0,T ];Mh)

where c(T,Ω) is a constant which depends on T and Ω but is independent from τ .
To get the truncation error on pressure, we substitute pk for P k, pk1 for P k

1 and uk for
Uk in the pressure update relation. This gives

(
τ 2dpj+1

1 , q
)
− λ
(
∇ · uj+1, q

)
= τ 2

(
pj+1

1 − pj1
τ

, q

)
− λ
(
∇ · uj+1, q

)

=⇒
(
τ 2 ∂

∂t
pj+1

1 − τ 3

2

∂2

∂t2
pj+1

1 , q

)
+O(τ 4) = −λ

(
∇ · uj+1, q

)

Therefore, (∇ · uj+1, q) = O(τ 2); i.e., the truncation error on mass conservation is
order 2.

Now, we are ready to check the consistency behaviour for (***). To do so, we apply
the asymptotic expansion formula for pressure P j+1 = P j+1

0 + τP j+1
1 and substitute

uj+1 for Uj+1, pj for P j, etc. We get

(∗ ∗ ∗) =
(
λ∇ · uj+1,∇ · v

)
−
(
pj + τdpj+1 − τ 2dpj+1

1 ,∇ · v
)

=
(
λ∇ · uj+1 − pj+1,∇ · v

)
+ τ
(
pj+1

1 − pj1,∇ · v
)

=
(
λ∇ · uj+1 − pj+1,∇ · v

)
+
(
τ 2 ∂

∂t
pj+1

1 ,∇ · v
)

+O(τ 3) (4.1.7)

From here on, we consider two cases:

Case I
For any v ∈ Vh, we deduced from ∇ · Vh ⊆Mh that ∃q ∈Mh such that ∇ · v = q,

=⇒
(
∇ · uj+1,∇ · v

)
=

(
∇ · uj+1, q

)

= O(τ 2)

and from (4.1.7), we conclude that (∗ ∗ ∗) = (−pj+1,∇ · v) + O(τ 2). Combining all
results on truncation error that we obtained earlier, part (a) of the proposition is
proven.
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Case II
The mixed finite element spaces are such that ∇ · Vh 6⊆Mh. Then (4.1.7) produces

(∗ ∗ ∗) = (λ∇ · uj+1 − pj+1,∇ · v) +O(τ 2),

and we cannot get rid of the term λ(∇ · uj+1,∇ · v). Combining all results on trun-
cation error that we obtained earlier, part (b) of the proposition is proven.

Remark 4.1.2. The term “τdP j+1
0 ” is present in (4.1.5) due to the bootstrapping

strategy used for pressure update. This is to ensure that the order of accuracy for
pressure is similar to that obtained for velocity since only one ALM iteration is done
at each time step. We refer the reader to Guermond and Minev [23] for further details
about bootstrapping strategy.

Remark 4.1.3. Truncation error on the momentum equation from the Proposi-
tion 4.1.1 can be expressed as

τ 2

∣∣∣∣
1

6

∂3

∂t3
uj+1 +

1

2

∂2

∂t2
uj+1

1 −
( ∂
∂t

uj+1
1

)
· ∇uj+1 − uj+1 · ∇

( ∂
∂t

uj+1
1

)
+
∂

∂t
pj+1

1

∣∣∣∣

We observed numerically in Chapter 2 that the error in time is of order 2 for GM-2,
which is consistent with the truncation error O(τ 2).

We now present a result that addresses the impact of the grad-div term on local mass
conservation. This property can be investigated using the following proposition.

Proposition 4.1.4. By adding the −λ∇∇·u term (λ > 0 is the stabilization parame-
ter) in the momentum equation of Stokes problem with a fixed viscosity constant ν > 0
and a fixed mesh, the divergence of u converges to zero a.e. as λ→∞, according to
the following estimate.

‖∇ · uh‖0,Ω ≤ CΩ

√
1

ν2 + 2λν
‖f‖−1,Ω,

Proof: Consider the Stokes problem with the stabilization term −λ∇∇ ·u in the
momentum equation. This leads to the discrete weak formulation: Find (uh, ph) ∈
(Vh ×Qh) such that

ν(∇uh,∇vh) + λ(∇ · uh,∇ · vh)− (ph,∇ · vh) = 〈f ,vh〉, ∀vh ∈ Vh,
−(qh,∇ · uh) = 0, ∀qh ∈ Qh.

By choosing vh = uh, qh = ph, we obtain

ν‖uh‖2
0,Ω + λ‖∇ · uh‖2

0,Ω ≤ ‖f‖−1,Ω‖uh‖1,Ω
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Using Poincaré inequality, with a constant CΩ > 0 that depends on the domain Ω,
and Young’s inequality, we get

ν

CΩ

‖uh‖2
1,Ω + λ‖∇ · uh‖2

0,Ω ≤ CΩ

2ν
‖f‖2

−1,Ω +
ν

2CΩ

‖uh‖2
1,Ω

ν

CΩ

‖uh‖2
1,Ω + 2λ‖∇ · uh‖2

0,Ω ≤ CΩ

ν
‖f‖2

−1,Ω

Since ‖∇ · uh‖0,Ω ≤ ‖∇uh‖0,Ω ≤ ‖uh‖1,Ω, we get
(
ν

CΩ

+ 2λ

)
‖∇ · uh‖2

0,Ω ≤ CΩ

ν
‖f‖2

−1,Ω

=⇒ ‖∇ · uh‖0,Ω ≤ CΩ

√
1

ν2 + 2CΩλν
‖f‖−1,Ω

Remark 4.1.5. For f 6= 0 and very small viscosity constant ν (or high Reynolds
number), if λ = 0, the incompressibility condition may not be locally enforced since
the inequality reduces to ‖∇ · uh‖0,Ω ≤ CΩ

ν
‖f‖−1,Ω in this case. On the other hand,

the choice λ� ν−1 guarantees local incompressibility even for ν small.

Remark 4.1.6. In GM methods for λ ∼ 1, the condition number of the linear system
associated to the momentum equation (for each subproblem) behaves as O(τh−2) [23].

4.2 The choice of the stabilization parameter λ in

GM methods

The stabilization parameter λ in the momentum equation (denoted as λm) and con-
tinuity equation (denoted as λc) can be chosen differently under certain constraints.
Our computations show that different λ can be used without compromising the con-
vergence and stability in GM methods (for each subproblem) as long as 0 < λc ≤ 2λm.
Interestingly, our results are in agreement with those for the ALM formulation of
Stokes equations. For instance, Fortin and Glowinski [15] (Theorem 2.1) proved that
0 < α0 ≤ λc ≤ λm is sufficient for convergence, where α0 is the smallest eigenvalue
for the Laplacian operator over H1

0 (Ω).

We observed a good convergence with GM methods for λm = λc = λ when λ is taken
large. This also holds for the ALM formulation of Stokes equations. Our compu-
tatations support Remark 2.4 in [15] to the effect that the stabilization parameter
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should not be taken too large to avoid excessive computational requirements result-
ing from the linear system becoming progressively ill-conditioned as λ increases. Of
course, this is less of a problem if direct solvers are used. To ease the set-up of our
computations, we consider only λ = λm = λc.

In our case, a suitable value of λ is obtained by trial and error. In essence, the choice
of λ impacts GM methods in two ways. The first is how fast the initial oscillations
are damped (which results from the velocity and pressure uncoupling). For larger λ,
the oscillations are damped within few time steps while smaller λ requires far more
time steps. The second impact of the choice of λ is on the quality of the solution.
This issue arises with the choice of λ in SBDF methods with grad-div stabilization
term. The value of λ is linked to the local (or pointwise) mass conservation, which
has an impact on the accuracy of the pressure and velocity. Unlike SBDF methods,
GM and GM-SRM methods enforce mass conservation in many time steps depending
on the choice of λ, as mentioned above. Hence, the choice of λ in GM methods is
more delicate.

4.3 New extrapolation formulae of nonlinear terms

in DC, GM and GM-SRM methods

In Chapter 2, new nonlinear extrapolation formulae are proposed for the 2nd- and
3rd-order DC, GM and GM-SRM methods without providing an in-depth explanation
behind these formula. Nonetheless, the new extrapolation formulae produce numerical
improvements in terms of reduction of error (in time) on velocity and pressure.

When combining the formulae proposed in [23] with P2-P1 finite elements, we observed
a partial loss of numerical accuracy. The loss of numerical accuracy is somewhat
negligible for test cases involving only

(a) manufactured solutions,
(b) flow with low Reynolds number (high viscosity), and
(c) short time interval; i.e., T small.

To be more specific, we observed a lost of numerical accuracy (in time) for unsteady
flows over a large time interval involving high Reynolds numbers. For instance, this
occurs when a long transient is required to capture periodic solutions. We realized
that the resulting error on velocity and pressure with DC, GM and GM-SRM methods
can be reduced by using improved extrapolation formulae for the nonlinear advection
term. This improvement will be illustrated numerically.

To begin with, we recall that the nonlinear term for the 3rd-order methods is ap-
proximated by B(uj+1

0 + τuj+1
1 + τ 2uj2) to give rise to a semi-implicit method. This
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expression can be recovered by summing up the nonlinear terms in each subprob-
lem using the asymptotic expansion (4.0.3)|n=m + τ(4.0.4)|n=m+1 + τ 2(4.0.5)|n=m+2.
Moreover, for any kth-order methods, the sum of the nonlinear terms can be general-
ized as follows

B(uj+1) ≈ B(uj+1
0 + τuj+1

1 + τ 2uj+1
2 + · · ·+ τ k−1ujk−1) (4.3.1)

The approximation uj+1
k−1 ≈ ujk−1 is made to maintain the semi-implicit nature of the

time-stepping scheme.

Proposition 4.3.1. The consistency of the nonlinear term in (4.3.1) can be estab-
lished; i.e.,

∥∥B(un+1)−B(un+1
0 + τun+1

1 + τ 2un+1
2 + · · ·+ τ k−1unk−1)

∥∥ = O(τ k), (4.3.2)

for k = 1, 2, . . ., and any τ such that the resulting method is stable, provided ‖un+1
k−1 −

unk−1‖ ≤ cτ is satisfied for some constant c > 0.

Proof: Suppose that we have a =
k−2∑
j=0

τ jun+1
j , b = τ k−1un+1

k−1 and c = τ k−1unk−1.

Using the bound established in Appendix B.3, we have the following

∥∥B(un+1)−B(un+1
0 + τun+1

1 + τ 2un+1
2 + · · ·+ τ k−1unk−1)

∥∥

=
∥∥∥B
( k−2∑

j=0

τ jun+1
j + τ k−1un+1

k−1

)
−B

( k−2∑

j=0

τ jun+1
j + τ k−1unk−1

)∥∥∥

≤ τ k−1
∥∥∥
( k−1∑

j=0

τ jun+1
j

)
· ∇(un+1

k−1 − unk−1)
∥∥∥

+τ k−1
∥∥∥(un+1

k−1 − unk−1) · ∇
( k−2∑

j=0

τ jun+1
j + τ k−1unj

)∥∥∥ (4.3.3)

However, the consistency of the nonlinear term does not tell the whole story about
the potential error on the velocity and pressure. One should note that the defect cor-
rection steps can be constructed in arbitrary manner for each subproblem, especially
regarding the nonlinear terms, as long as the sum of these terms gives (4.3.1). We
propose new extrapolation formulae for the nonlinear term when n ≥ 2. The original
extrapolation formulae from [23] are maintained for n = 0 and n = 1. This is to
ensure that the initialization of these methods (DC, GM and GM-SRM) is properly
done. The new formulae are given in Table 4.1. We denote the approach taken in [23]
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as the NL123-formula. We also propose several new formulae; e.g., NL223-, NL233-,
NL333, etc. The triple index is used to indicate the number of the past variables
used to evaluate the approximations of the nonlinear terms in the 1st-, 2nd- and 3rd-
subproblem. As an illustration, the NL123-formula means that a one-step value is
used in the 1st-subproblem, while two- and three-step values are used in the 2nd- and
3rd subproblem, respectively.

We set the formula for MS-EX2 and MS-EX3 in a similar way to high-order extrapo-
lation scheme used for multistep methods (see Table 4.1). For instance for MS-EX2,
we replace “un0 ” by “un0 − un−1

0 ” and “un−1
1 ” by “un−1

1 − un−2
1 ”, while for MS-EX3,

we replace “un0 ” by “3un0 − 3un−1
0 + un−2

0 ” and “un−1
1 ” by “un−1

1 − un−2
1 ”.

We encounter a very restrictive stability condition on the time step with MS-EX2 and
MS-EX3 formulae similar to the SBDF methods. The resulting error on velocity and
pressure with MS-EX2 and MS-EX3 is larger than that with NL123 formula. NL023

and NL003 formulae produce less accurate approximations than those with the NL123

formula. The only advantage is that they allow slightly larger critical time step than
NL123 formula and still be stable. For these reasons, we do not include MS-EX2,
MS-EX3, NL023 and NL003 formula in our numerical results below.

Table 4.1: Several extrapolation formulae of the nonlinear term for DC-3,
GM-3 and GM-SRM-3 methods implemented for n ≥ 2 (e.g., see (4.0.3)–
(4.0.5)).

aaaaaaaaaa
Formula

Subproblem

1 (nl
n+1
0 ) 2 (nln1 ) 3 (nl

n−1
2 )

NL123 [23] B(un0 ) B(un0 + τun−1
1 ) B(un−1

0 + τun−1
1 + τ2un−2

2 )

NL223 B(un0 + τun1 ) B(un0 + τun−1
1 ) B(un−1

0 + τun−1
1 + τ2un−2

2 )

NL233 B(un0 + τun1 ) B(un0 + τun−1
1 + τ2un−1

2 ) B(un−1
0 + τun−1

1 + τ2un−2
2 )

NL333 B(un0 + τun1 + τ2un−1
2 ) B(un0 + τun−1

1 + τ2un−1
2 ) B(un−1

0 + τun−1
1 + τ2un−2

2 )

MS-EX2 B(2un0 − un−1
0 ) B(un0 + τ(2un−1

1 − un−2
1 )) B(un−1

0 + τun−1
1 + τ2un−2

2 )

MS-EX3 B(3un0 − 3un−1
0 + un−2

0 ) B(un0 + τ(2un−1
1 − un−2

1 ) B(un−1
0 + τun−1

1 + τ2un−2
2 )

NL023 0 B(un0 + τun−1
1 ) B(un−1

0 + τun−1
1 + τ2un−2

2 )

NL003 0 0 B(un−1
0 + τun−1

1 + τ2un−2
2 )

For the sake of completeness, we also include two types of extrapolation formulae
for DC-2, GM-2 and GM-SRM-2 methods; i.e., NL12 and NL22 formulae as shown
in Table 4.2. The interpolation formula NL12 is backtracked from the 3rd-order GM
methods [23] since the 2nd-order method was not provided explicitly therein.
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Table 4.2: Two types of extrapolation formula for DC-2, GM-2 and GM-
SRM-2 methods to be implemented only for n ≥ 1.

aaaaaaaaaa
Formula

Subproblem

1 (nl
n+1
0 ) 2 (nln1 )

NL12 B(un0 ) B(un0 + τun−1
1 )

NL22 B(un0 + τun1 ) B(un0 + τun−1
1 )

In the following section, we present numerical comparisons implementing several of
the proposed nonlinear extrapolation formulae. The numerical comparisons are done
in terms of the numerical error (in time), both on velocity and pressure, the resulting
numerical stability and the ability to deliver the robustness when computing unsteady
flows for large T .

4.3.1 Testing the nonlinear extrapolation formulae :
Numerical error in time

In this section, we compare the extrapolation formulae for the nonlinear term in terms
of the numerical error (in time) on velocity only. We will compare the NL12 and NL22

formulae for the 2nd-order methods; and the NL123, NL223 and NL333 formulae for the
3rd-order methods.

For this purpose, we consider a test case which was used in Chapter 1 and 2; i.e., the
2D flow around the cylinder. The geometry, mesh and computational settings, in-
cluding boundary and initial conditions, used are taken from Section 4.3 of Chapter 2.
Hence, all these informations will not be repeated here. The L2-error on the velocity
between the reference and numerical solutions (with varying time steps) is computed
at t = 8 using (30) while the order of the convergence (in time) is computed using
(31), both given in Chapter 2. We don’t compute an exhaustive set of test cases, but
instead consider only the 2nd- and 3rd-order DC and GM methods. We conjecture
that similar results can be observed with GM-SRM methods using identical nonlinear
approximations. Lastly, the stabilization parameter λ is set to 104 in both GM-2 and
GM-3 methods.

Figure 4.2 shows the log-log plot of the L2-error on velocity versus the time step τ
using DC and GM methods for both 2nd- and 3rd-order accuracy.
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Figure 4.2: L2 error on velocity as a function of time step τ for DC and GM
methods using different extrapolation formulae.

DC-2, DC-3, GM-2 and GM-3 methods reproduced the theoretical order of conver-
gence with all the nonlinear extrapolation formulae. This is not surprising by virtue
of Proposition 4.3.1. For DC-3 with the NL333 formula, the velocity error is larger at
τ = 0.008 but gradually overlaps with the error for the NL233 formula for τ ≤ 0.004.
We suspect that the compromised accuracy with NL333 formula at τ = 0.008 could
be induced by the onset of the numerical instability.

For GM-2 and DC-2 methods, the L2-error on velocity at any fixed time step for
the NL22 formula is about 6 times smaller than the one for the NL12 formula. The
smallest L2-error is produced by NL233 and NL333 formulae. The error reduction with
NL233 and NL333 formulae reaches an order of magnitude (10 times) smaller than the
error with the NL223 formula. Interestingly, an error reduction of about two orders
of magnitude (30-50 times) is observed when NL233/NL333 formulae are compared
to the NL123 formula [23]. Being the most accurate (in time) alone is not sufficient
to make a method efficient. In the following section, the stability of these nonlinear
extrapolation formulae will be investigated. We suspect that the numerical error does
not originate from the grad-div term since GM and DC methods produce error of



4. SEVERAL NUMERICAL IMPROVEMENTS TO HIGH-ORDER
ARTIFICIAL COMPRESSIBILITY METHODS 87

the same magnitude while the GM methods have a grad-div term but DC methods
do not.

4.3.2 Testing the nonlinear interpolation formulae: Numeri-
cal stability

We observed that the extrapolation formulae for the nonlinear term impact the nu-
merical stability of the time-stepping methods. The stability analysis for methods
with defect correction (e.g., DC, GM, GM-SRM methods) is particularly challeng-
ing as it involves several subproblems and asymptotic expansions. We proceed as in
Chapter 2 to obtain the critical time step τcrit and CFL bound using the bisection
method.

In addition, we also compute a parameter Θ which controls the Θ-stability condi-
tion [37] for the stiffness term using the following formula

Θ := max
K∈Th

{
τcrit

Re h2
K

‖uh‖L∞(K)

}
. (4.3.4)

While τcrit gives us information for picking an ideal time step for the computation of
unsteady flows, both parameters CFL and Θ are more relevant to study the stability
of our methods. In this section, we also check if the CFL and Θ numbers are mutually
related to control the linear stability of our methods, as was proposed by Kress and
Lötstedt for semi-implicit schemes [37]. These authors noticed a mild dependence
of the CFL bound on Θ in their linear stability analysis. The stability comparisons
are done for all methods, i.e., 2nd- and 3rd-order DC, GM and GM-SRM methods
(all with the various nonlinear extrapolation formulae that we proposed earlier). In
addition, we check whether or not the stability in our methods exhibit a predictable
behaviour based on the linear stability analysis established in [37].

For the 2D flow around the cylinder at Re = 100, all computations were done as in
Section 4.3.1 of Chapter 2. In this particular test however, T = 12 is used, ensuring
that about two periods of the solution are computed since a period lasts about 5.88
time units. Table 4.3 shows τcrit, CFL and Θ for our methods with different nonlinear
extrapolation formulae. We make the following observation

(a) Generally, the CFL bound of SBDF, DC, GM and GM-SRM methods decreases
from 2nd-order to 3rd-order accuracy. All 2nd-order methods are found to be more
stable than 3rd-order methods in this test case.

(b) For anyone of DC, GM and GM-SRM methods, the CFL bound decreases accord-
ing to the following ordering of the extrapolation formulae used: NL123, NL223,
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NL233, NL333 (3rd-order accuracy); and NL12, NL22 (2nd-order accuracy). The non-
linear extrapolation formulae proposed by [23] produces the most stable methods.

(c) For all methods at a given order of accuracy, the CFL value decreases according
to the following order: GM, GM-SRM, DC, SBDF. DC methods are more sta-
ble than multistep SBDF methods at a given order of accuracy since the linear
systems of the momentum equation retain the structure of 1st-order backward-
forward Euler. Actually, GM methods are as stable as GM-SRM methods (their
CFL values do not differ significantly). Methods with a grad-div term produce
better stability behaviour (This has been explained in Remark 4.1.5).

(d) Trends similar to those observed for the CFL bound are observed for τcrit for all
methods. The τcrit and CFL of the 3rd-order methods with NL123 formula is about
twice as large as those for the 3rd-order methods with NL333 formula.

Table 4.3: Critical time step τcrit, CFL bound and Θ-stability bound of
various methods for the 2D flow around the cylinder at Re = 100. The range
of Θ-stability bound denoted by “Range Θ” taken from [37] is also included.

Method (formula) τcrit CFL Θ Range Θ [37]
SBDF-2 1.19511× 10−2 4.14535× 10−1 6.74920× 10−2 0.05− 0.10
SBDF-3 7.02782× 10−3 1.83198× 10−1 3.57147× 10−2 < 0.001

DC-2 (NL12) 1.63044× 10−2 4.26562× 10−1 8.31591× 10−2 0.05− 0.10
DC-2 (NL22) 1.15514× 10−2 3.01250× 10−1 5.87291× 10−2 0.02− 0.05
DC-3 (NL123) 1.50245× 10−2 3.96548× 10−1 7.73077× 10−2 0.05− 0.10
DC-3 (NL223) 1.15514× 10−2 3.01178× 10−1 5.87152× 10−2 0.02− 0.05
DC-3 (NL233) 8.11682× 10−3 2.11563× 10−1 4.12445× 10−2 0.02− 0.05
DC-3 (NL333) 7.19604× 10−3 1.87557× 10−1 3.65645× 10−2 0.01− 0.02
GM-2 (NL12) 2.21248× 10−2 5.76103× 10−1 1.12312× 10−1 0.10− 0.15
GM-2 (NL22) 1.45294× 10−2 3.78189× 10−1 7.37280× 10−2 0.05− 0.10
GM-3 (NL123) 2.07989× 10−2 5.41585× 10−1 1.05583× 10−1 0.10− 0.15
GM-3 (NL223) 1.45193× 10−2 3.78065× 10−1 7.37044× 10−2 0.05− 0.10
GM-3 (NL233) 1.05377× 10−2 2.74389× 10−1 5.34925× 10−2 0.02− 0.05
GM-3 (NL333) 9.57642× 10−3 2.49359× 10−1 4.86129× 10−2 0.02− 0.05

GM-SRM-2 (NL12) 2.20814× 10−2 5.74972× 10−1 1.12092× 10−1 0.10− 0.15
GM-SRM-2 (NL22) 1.45223× 10−2 3.76852× 10−1 7.34680× 10−2 0.05− 0.10
GM-SRM-3 (NL123) 2.09778× 10−2 5.46247× 10−1 1.06492× 10−1 0.10− 0.15
GM-SRM-3 (NL223) 1.44806× 10−2 3.77057× 10−1 7.35079× 10−2 0.05− 0.10
GM-SRM-3 (NL233) 1.05255× 10−2 2.74120× 10−1 5.34401× 10−2 0.02− 0.05
GM-SRM-3 (NL333) 9.56957× 10−3 2.49180× 10−1 4.85780× 10−2 0.02− 0.05

For the 2D lid-driven cavity flow at Re = 8 500, all computations are set as in Section
4.2.2 of Chapter 2. However, T = 10 is used to compute several periods of the solution
(the period is 2.23 time units). Table 4.4 shows τcrit, CFL and Θ for our methods with
different nonlinear extrapolation formulae. We summarize our conclusion as follows:

(a) The CFL bound for SBDF and DC methods decreases from 2nd-order to 3rd-order
methods, while the CFL bound for GM and GM-SRM methods increases from
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2nd-order to 3rd-order formulae when comparing NL12 with all 3rd-order nonlinear
extrapolation formulae.

(b) For DC and GM-SRM methods, the CFL bound decreases according to the fol-
lowing order of the extrapolation formulae used: NL333, NL233, NL223, NL123

(3rd-order accuracy); and NL22, NL12 (2nd-order accuracy). The nonlinear ex-
trapolation formula proposed by [23] produces the least stable method.

(c) We observed the same behaviour for τcrit than what was observed for the CFL
bound for all methods except that τcrit of SBDF-3 method is larger than that of
SBDF-2 method (while the opposite was observed for the CFL bound). The τcrit

and CFL bound of the 2nd-order method with NL22 formula are nearly twice as
large as those for the 2nd-order methods with NL12 formula. The τcrit and CFL
of the 3rd-order method with NL333 formula is nearly twice as large as those for
the 3rd methods with the NL123 formula.

(d) The CFL bound (for all nonlinear extrapolation formulae) is greater for SBDF
methods than for DC methods at any given order of accuracy. SBDF methods
are more stable than DC methods in 2D lid-driven cavity at Re = 8 500.

Table 4.4: Critical time step τcrit, CFL bound and Θ-stability bound of
various methods for the 2D lid-driven cavity flow at Re = 8500. The range
of Θ-stability bound denoted by “Range Θ” taken from [37] is also included.

Method (formula) τcrit CFL Θ Range Θ [37]
SBDF-2 1.45508× 10−3 2.28314× 10−1 3.22230× 10−3 0.001− 0.005
SBDF-3 1.57227× 10−3 2.23712× 10−1 3.14192× 10−3 < 0.001

DC-2 (NL12) 7.12891× 10−4 8.73756× 10−2 1.25991× 10−3 0.001− 0.005
DC-2 (NL22) 1.75781× 10−3 2.23343× 10−1 3.25735× 10−3 0.02− 0.05
DC-3 (NL123) 6.64062× 10−4 8.13909× 10−2 1.17361× 10−3 0.001− 0.005
DC-3 (NL223) 7.81250× 10−4 9.57540× 10−2 1.38072× 10−3 0.001− 0.005
DC-3 (NL233) 1.59180× 10−3 1.95099× 10−1 2.81322× 10−3 0.01− 0.02
DC-3 (NL333) 1.59180× 10−3 1.95099× 10−1 2.81322× 10−3 0.01− 0.02
GM-2 (NL12) 1.16211× 10−3 1.42434× 10−1 2.05382× 10−3 0.005− 0.010
GM-2 (NL22) 2.58789× 10−3 3.17185× 10−1 4.57363× 10−3 0.02− 0.05
GM-3 (NL123) 1.34766× 10−3 1.65176× 10−1 2.38174× 10−3 0.01− 0.02
GM-3 (NL223) 1.38672× 10−3 1.69963× 10−1 2.45078× 10−3 0.01− 0.02
GM-3 (NL233) 2.37305× 10−3 2.90853× 10−1 4.19393× 10−3 0.02− 0.05
GM-3 (NL333) 2.39258× 10−3 2.93247× 10−1 4.22845× 10−3 0.02− 0.05

GM-SRM-2 (NL12) 1.16211× 10−3 1.42434× 10−1 2.05382× 10−3 0.005− 0.010
GM-SRM-2 (NL22) 2.59766× 10−3 3.18382× 10−1 4.59089× 10−3 0.02− 0.05
GM-SRM-3 (NL123) 1.30859× 10−3 1.60388× 10−1 2.31270× 10−3 0.01− 0.02
GM-SRM-3 (NL223) 1.35742× 10−3 1.66373× 10−1 2.39900× 10−3 0.01− 0.02
GM-SRM-3 (NL233) 2.37305× 10−3 2.90853× 10−1 4.19393× 10−3 0.02− 0.05
GM-SRM-3 (NL333) 2.39258× 10−3 2.93247× 10−1 4.22845× 10−3 0.02− 0.05

By comparing the two test cases we observe that the stability of the methods differs
on several aspects. First, we observe an opposite stability behaviour in DC, GM
and GM-SRM methods in terms of the nonlinear extrapolation formulae in the two
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test cases. NL12 and NL123 formulae produce the largest CFL bounds in the 2D flow
around the cylinder for 2nd- and 3rd-order methods, respectively. However, the same
formulae produce the smallest CFL bounds in the 2D lid-driven cavity. Second, the
CFL bound and τcrit have opposite behaviour in 2nd- and 3rd-order SBDF methods
that had not been explained in Section 4.4 of Chapter 2. Third, the stability is weaker
for DC methods than for SBDF methods though DC methods have the structure of
1st-order backward-forward Euler usually associated with a better stability. We don’t
have a clear explanation for these contradictions except the fact that the stability
behaviour is sometimes case dependent.

Next, we compare our stability results in terms of CFL and Θ with the one obtained
using a linear stability analysis in [37]. Figure 4.3 shows the stability region for 1st-,
2nd- and 3rd-order SBDF methods; i.e., the bounding curve for the CFL number for
various Θ values.

Figure 4.3: Stability domain for 1st-(left), 2nd- (center) and 3rd-order (right)
SBDF methods for various values of the parameter Θ. These plots are taken
from Kress and Lötstedt [37].

The space discretization employed in [37] is a 4th-order compact finite difference
scheme with equidistant staggered Cartesian grid. The CFL number is thus dependent
on the direction of propagation of the wave. Our CFL number is computed using the
diameter hK of an element K, hence it is not directly linked with their directional CFL
number; e.g., u τ

hx
and v τ

hy
where hx and hy are the mesh size in x- and y-direction,

as shown on Figure 4.3. We compare our CFL number with either u τ
hx

or v τ
hy

to

have a rough estimate of the CFL bound as a function of Θ. The “Range Θ” that
are given in Tables 4.3 and 4.4 correspond to the (approximate) value of Θ such that
u τ
hx

(or v τ
hy

) equals our CFL bound. For DC, GM and GM-SRM methods, we use

the graph for the semi-implicit BDF-1 method [37] (similar to the SBDF methods in
our work) since the defect correction method has the structure of backward-forward
Euler method.
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In Tables 4.3 and 4.4, the blue font is used to indicate that the Θ values obtained
with our methods fall within the “Range Θ” found in the [37] for a given CFL bound.
The red font denotes that the Θ values lie outside the published “Range Θ”.

For 2D flow around the cylinder (see Table 4.3), the Θ values of all methods agree
well with “Range Θ” except for DC-2 (NL22-formula), DC-3 (NL223 formula), DC-2
(NL333 formula), GM-3 (NL233 formula) and GM-3 (NL223 formula) methods which
are about 2% to 8% off their bounding curve (see Figure 4.3).

For the 2D lid-driven cavity flow at Re = 8 500, we do not have a favourable com-
parison. Only the Θ values of SBDF-2, SBDF-3, DC-2 (NL12 formula), DC-3 (NL123

formula) and DC-3 (NL233 formula) methods agree with the “Range Θ” from [37].
Linear stability analysis conducted in [37] may not be applicable to study flows with
high Reynolds numbers and time-stepping methods where a grad-div stabilization
term is present (such as GM and GM-SRM methods).

4.3.3 Testing the nonlinear interpolation formulae: The prop-
agation of numerical error in time

We found that some error can potentially grow when simulation are carried over
long period of time. This error is otherwise almost undetectable when test case is
computed over a very short period of time or when time step τ is chosen very small.
This numerical issue however, does not affect the 2nd-order DC, GM, GM-SRM and
all SBDF methods.

To illustrate this, we computed the 2D flow around the cylinder at Re = 100 which
was used in Section 4.3.1 except that we set T = 2 000 and take a reasonably large
time step for the semi-implicit methods; i.e., τ = 0.005. We solve the test problem
with DC-3 and GM-3 methods using the formulae NL123, NL223, NL233 and NL333.
Figures 4.4 and 4.5 show the time-evolution of the x-velocity u monitored at two
locations; i.e., near the upper boundary (13, 3) and near the free exit (22, 0).
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Figure 4.4: Time evolution of the x-velocity u monitored at the point (13, 3)
near the upper boundary and at the point (22, 0) near the free exit with DC-3
method and the extrapolation formulae NL123, NL223, NL233 and NL333.
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Figure 4.5: Time evolution of the x-velocity u monitored at the point (13, 3)
near the upper boundary and at the point (22, 0) near the free exit with GM-3
method and the extrapolation formulae NL123, NL223, NL233 and NL333.

The velocity of the 2D flow around the cylinder at Re = 100 is periodic with one
frequency mode having a period of about 5.9 time units. The velocity u obtained with
NL123 and NL223 formulae is very far from achieving the above expectations. Error
propagates in time and becomes more severe at the point near the free exit than
near the upper boundary. On the other hand, the full periodic solution is maintained
with both NL233 and NL333 formulae with a period of about 5.9 time units. We plot
the same curve for both NL233 and NL333 formulae since they overlap. Using NL233

formula, the DC, GM and GM-SRM methods produce nearly identical periods for
this flow (see Chapter 2).

We observe that DC-3 and GM-3 methods with the NL123 and NL223 formulae pro-
duce solutions with similar numerical artifact. Hence, we rule out that the grad-div
stabilization term or the decoupling of velocity and pressure produce this type of
error. Clearly, the error propagating in time can be improved by implementing NL233

and NL333 formulae in DC-3 and GM-3 methods.



4. SEVERAL NUMERICAL IMPROVEMENTS TO HIGH-ORDER
ARTIFICIAL COMPRESSIBILITY METHODS 94

4.3.4 Testing the nonlinear schemes: Short conclusions

In Section 4.3.1, we have illustrated numerically that the NL22 formula (2nd-order
methods) as well as NL233 and NL333 formulae (3rd-order methods) produce the least
numerical error (in time) while still maintaining the theoretical order of convergence.
A stability comparison was made with test cases for all methods in terms of the critical
time step τcrit, the maximum CFL number and Θ-stability condition. We noted that
the stability behaviour induced by the nonlinear interpolation formulae depends on
the test case and is difficult to predict, at least in term of which method is the most
stable.

For the 2nd-order methods, NL12 formula produces a better numerical stability than
NL22 formula when computing 2D flow around the cylinder. However, for 2D lid-
driven cavity flow, NL22 formula produces a better numerical stability than NL12

formula. For the 3rd-order variants, NL123 formula is the most appealing in terms of
stability when computing 2D flow around the cylinder, while NL333 formula is the
best for 2D lid-driven cavity flow. A good balance in term of stability for both test
cases is provided by the NL223 and NL233 formulae. Moreover, NL233 formula is the
best candidate for 3rd-order methods since it does not produce numerical error in
computations over a reasonably long time interval.

To conclude, NL22 and NL233 formulae seem to be the ideal choices for all 2nd- and
3rd-order methods, respectively, justifying why these interpolation formulae had been
implemented in Chapter 2.

4.4 The grad-div splitting for GM and GM-SRM

We have seen in Chapter 2 that both GM and GM-SRM methods are very promising
in terms of accuracy since they can reach arbitrary order from the defect correction
strategy. Moreover, computations with GM and GM-SRM do not require the solution
of a large saddle point problem. By using velocity and pressure splitting akin to
a formulation that mimics ALM, the saddle point problems in GM and GM-SRM
methods are broken into smaller linear system with symmetric and positive definite
matrices. With P2-P1 elements, the ratio of the degrees of freedom between velocity
and pressure is about 9:1 in 2D while being 19:1 in 3D. The linear system for the
momentum equation in GM and GM-SRM is still significantly larger than the linear
system for the pressure update (continuity equation). Below we will present the GM
method only but the proposed strategies apply to GM-SRM as well.

In this section, we further reduce the complexity of the linear system for the momen-
tum equation in GM methods using a grad-div splitting. Grad-div splitting uncou-
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ples the velocity components u, v and w (in 3D problem). As a result, much simpler
linear systems are solved which involve only scalar parabolic problems for each veloc-
ity component. We got our inspiration from [24]. This results in a smaller symmetric
and positive definite matrice, for each velocity component separately. However, the
trade-of is that more linear systems (e.g., two linear systems for 2D flows and three
linear systems for 3D flows) are solved in each subproblem. Also, we recall that the
number of subproblem follows the order k of the method. Nonetheless, if a finer grid
is required in 3D computations, this approach is viable, especially if combined with
an iterative linear solver.

To give a general idea how this can be realized, we first recall from Proposition 4.1.1
that the resulting grad-div term in GM methods does not vanish with P2-P1 elements.
Since GM methods treat the pressure in an explicit way in the momentum equation,
the only coupling mechanism between the velocity components in the linear solve
comes from the mixed partial differential operators from the grad-div term; i.e., ∂xy
and ∂yx for 2D problem, and ∂xy, ∂yx, ∂xz, ∂zx, ∂yz and ∂zy for 3D problem. To
uncouple the velocity components, these mixed differential terms can be computed
explicitly.

In the two-dimensional case, we consider the mass matrix M , the stiffness matrix A
is built from −ν∆u, and the matrices obtained from discretizing 2nd-order differen-
tial terms; i.e., C11 = −λ∂xx, C12 = −λ∂xy, C21 = −λ∂yx and C22 = −λ∂yy. For
brevity, the right hand side of the linear system for the x- and y-components (which
contains the past steps, nonlinear advection term, pressure gradient, higher-order de-
fect correction term and external forces) are noted with F1 = F (uni , v

n
i , p

n
i , f

n+1
x ) and

F2 = F (uni , v
n
i , p

n
i , f

n+1
y ), respectively. Then, the momentum equation of all subprob-

lems in GM-3 method (4.0.3)–(4.0.5) can be expressed algebraically as follows:



M

τ
+ A+ C11 C12

C21
M

τ
+ A+ C22



[
un+1
i

vn+1
i

]
=

[
F1

F2

]
, (4.4.1)

where i = 0, 1, 2 is the index representing the variable for subproblem 1, 2 and
3, respectively. The superscript n is the time index. The data u0

i , v
0
i and p0

i for
i = 0, 1, 2 are required to initiate the computations. The above linear system (4.4.1)
can be solved independently for the x-velocity u and y-velocity v, using the block
Gauss-Seidel iterative method (see [48]): For any given (u0,0, v0,0, p0,0) := (u0, v0, p0)
and n fixed, we compute

(
M

τ
+ A+ C11

)
un+1,m+1
i = F1 − C12u

n+1,m
i ,
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(
M

τ
+ A+ C22

)
vn+1,m+1
i = F2 − C21u

n+1,m+1
i , i = 0, 1, 2,

for m = 0, 1, 2, . . . until ‖un+1,m+1 − un+1,m‖ < ε for a given tolerance ε > 0. Then,
we set un+1

i := un+1,m+1
i , vn+1

i := vn+1,m+1
i and pn+1

i := pn+1,m+1
i and the iteration

goes on with the next value of n. The convergence of this algorithm is important to
ensure numerical accuracy. We require that these solutions be as close as possible to
the solution produced by GM methods without the grad-div splitting.

The convergence of grad-div uncoupling can be enforced in several ways. In the
following section, we present three different approaches: first, a variant that em-
ploys Jacobi/Gauss–Seidel iterations with stopping criterion; second, the approach
proposed by Guermond and Minev [24] which is known as the “bootstrapping” tech-
nique; and third, a correction method similar to the one used for the nonlinear term.
For the second and third methods, no iteration is needed and no stopping criterion is
required for the convergence of the grad-div uncoupling. This is very appealing for
numerical efficiency. For the sake of illustration, all grad-div splitting schemes are
constructed based upon GM-3 method. Similar techniques are also applicable to the
GM-SRM method.

4.4.1 Grad-div splitting: Iterating using the Jacobi/Gauss–
Seidel method

Let us define the following matrices

C∆ =

[
0 C12

0 0

]
or C∆ =




0 C12 C13

0 0 C23

0 0 0


 ,

for 2D and 3D Navier–Stokes equations, respectively. Here, Cij = −λ∂ij where
i, j = 1, 2 or 3 denotes the x-, y- and z-component of the velocity, respectively.
The Jacobi method applied to the 3rd-order GM method with NL233 formula and
grad-div splitting reads: Given the initial condition (u0

0, p
0
0) = (u(0), p(0)) and set-

ting (u0
1, p

0
1) = (u0

2, p
0
2) = (0, 0), we compute (un+1, pn+1), n ≥ 0, by solving the

equations (4.4.2), (4.4.3) and (4.4.4) for (un+1
0 , pn+1

0 ), (un1 , p
n
1 ) and (un−1

2 , pn−1
2 ), re-
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spectively.

For n ≥ 0,





nln+1
0 =

{
B(un0 ), for 0 ≤ n ≤ 1,

B(un0 + τun−1
1 ), for n ≥ 2,

Initialize un+1
0 := un0 . Set u = un+1

0 and solve for un+1
0 the equation

un+1
0 − un0
τ

− ν∆un+1
0 − λ∇∇ · un+1

0 − C∆(un+1
0 − u) +∇pn0

= fn+1 − nln+1
0 ,

until ‖un+1
0 − u‖ < e for a small e > 0.

pn+1
0 = pn0 − λ∇ · un+1

0 ,

dun+1
0 = (un+1

0 − un0 )/τ, dpn+1
0 = (pn+1

0 − pn0 )/τ.

(4.4.2)

For n ≥ 1,





d2u
n+1
0 = (dun+1

0 − dun0 )/τ,

nln1 =

{
B(un0 + τun−1

1 ), for n = 1,

B(un0 + τun−1
1 + τ 2un−1

2 ), for n ≥ 2,

Initialize un1 := un−1
1 . Set u = un1 and solve for un1 the equation

un1 − un−1
1

τ
− ν∆un1 − λ∇∇ · un1 − C∆(un1 − u) +∇(pn−1

1 + dpn0 )

= −1

2
d2u

n+1
0 − nln1 − nln0

τ
,

until ‖un1 − u‖ < e for a small e > 0.

pn1 = pn−1
1 + dpn0 − λ∇ · un1 ,

dun1 = (un1 − un−1
1 )/τ, dpn1 = (pn1 − pn−1

1 )/τ.

(4.4.3)
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for n ≥ 2,





d2u
n
1 = (dun1 − dun−1

1 )/τ, d3u
n+1
0 = (d2u

n+1
0 − d2u

n
0 )/τ,

nln−1
2 = B(un−1

0 + τun−1
1 + τ 2un−2

2 ),

Initialize un−1
2 := un−2

2 . Set u = un−1
2 and solve for un−1

2 the equation

un−1
2 − un−2

2

τ
− ν∆un−1

2 − λ∇∇ · un−1
2 − C∆(un−1

2 − u)

+∇(pn−2
2 + dpn−1

1 ) = −1

2
d2u

n
1 +

1

6
d3u

n+1
0 − nln−1

2 − nln−1
1

τ 2
,

until ‖un−1
2 − u‖ < e for a small e > 0.

pn−1
2 = pn−2

2 + dpn−1
1 − λ∇ · un−1

2 ,

un−1 = un−1
0 + τun−1

1 + τ 2un−1
2 , pn−1 = pn−1

0 + τpn−1
1 + τ 2pn−1

2 .

(4.4.4)

Remark 4.4.1. For the Gauss–Seidel method, the assignment of u is modified. When
solving the x-component of the momentum equation in each subproblem, we set

u =

[
uni
vni

]
and u =



uni
vni
wni




for 2D and 3D problems, respectively. When solving the y-component of the momen-
tum equation in each subproblem, we set

u =

[
un+1
i

vni

]
and u =



un+1
i

vni
wni


 ,

for 2D and 3D problems, respectively. When solving the z-component of the momen-
tum equation in each subproblem, we set

u =



un+1
i

vn+1
i

wni




for 3D problem, where i = 1, 2, 3 is the index of the subproblems involved. We ob-
serve that the Gauss–Seidel algorithm converges faster than Jacobi algorithm. Hence,
Gauss–Seidel method is chosen in our work.

The only drawback of the method above is the need to solve several scalar parabolic
problems to satisfy the stopping criterion. The CPU time becomes prohibitive for
3D problems with high-order methods; e.g., GM-3 method. However, in certain test
problems when steady flows are involved, the Gauss–Seidel iterations can be limited
to two or three iterations since time-stepping eventually resolves the fully coupled
system.
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4.4.2 Grad-div splitting: Guermond and Minev

The computation of grad-div splitting in GM methods can be accelerated using a
scheme proposed by Guermond and Minev [24]. However, the setback is a small
lost of accuracy in both time and space. This method for 3rd-order GM method
proceeds as follows: Set (u0

0, p
0
0) = (u(0), p(0)) and (u0

1, p
0
1) = (u0

2, p
0
2) = (0, 0). We

compute (un+1, pn+1), n ≥ 0, by solving the equations (4.4.5), (4.4.6) and (4.4.7) for
(un+1

0 , pn+1
0 ), (un1 , p

n
1 ) and (un−1

2 , pn−1
2 ), respectively.

For n ≥ 0,





nln+1
0 = B(un0 ),

un+1
0 − un0
τ

− ν∆un+1
0 − λ∇∇ · un+1

0 − C∆(un+1
0 − un0 ) +∇pn0

= fn+1 − nln+1
0 ,

pn+1
0 = pn0 − λ∇ · un+1

0 ,

dun+1
0 = (un+1

0 − un0 )/τ, dpn+1
0 = (pn+1

0 − pn0 )/τ.

(4.4.5)

For n ≥ 1,





d2u
n+1
0 = (dun+1

0 − dun0 )/τ,

nln1 = B(un0 + τun−1
1 ),

un1 − un−1
1

τ
− ν∆un1 − λ∇∇ · un1 − C∆(un1 − un−1

1 ) +
C∆(un0 − un−1

0 )

τ

+∇(pn−1
1 + dpn0 ) = −1

2
d2u

n+1
0 − nln1 − nln0

τ
+ λ∇∇ · dun0 ,

pn1 = pn−1
1 + dpn0 − λ∇ · un1 ,

dun1 = (un1 − un−1
1 )/τ, dpn1 = (pn1 − pn−1

1 )/τ.

(4.4.6)

for n ≥ 2,





d2u
n
1 = (dun1 − dun−1

1 )/τ, d3u
n+1
0 = (d2u

n+1
0 − d2u

n
0 )/τ,

nln−1
2 = B(un−1

0 + τun−1
1 + τ 2un−2

2 ),

un−1
2 − un−2

2

τ
− ν∆un−1

2 − λ∇∇ · un−1
2 − C∆(un−1

2 − un−2
2 )

+
C∆(un−1

1 − un−2
1 )

τ
+∇(pn−2

2 + dpn−1
1 ) = −1

2
d2u

n
1 +

1

6
d3u

n+1
0

−nln−1
2 − nln−1

1

τ 2
+ λ∇∇ · dun−1

1 ,

pn−1
2 = pn−2

2 + dpn−1
1 − λ∇ · un−1

2 ,

un−1 = un−1
0 + τun−1

1 + τ 2un−1
2 , pn−1 = pn−1

0 + τpn−1
1 + τ 2pn−1

2 .

(4.4.7)
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One advantage of such scheme is that there is no subiterations done to address the
grad-div splitting. A careful investigation of the algorithm shows that this can be
achieved for two reasons. The first is the defect correction strategy to improve the
error from uncoupling from one subproblem to the next in a cascade manner. Second,
a bootstrapping technique is used to improve the divergence free condition; i.e., the
extra terms λ∇∇ · dun0 and λ∇∇ · dun−1

1 that can be seen in the right hand side
of the momentum equation (4.4.6) and (4.4.7), respectively. This is similar to the
bootstrapping technique that is used for the pressure; i.e., the two extra terms dpn0
and dpn−1

1 in the momentum equation (4.4.6) and (4.4.7), respectively. The stability
and convergence of this approach are investigated in [24].

4.4.3 Grad-div splitting: An analogue to the nonlinear ansatz
formulation

In this section, we propose a third approach to handle the grad-div splitting in GM
and GM-SRM methods. Let us define the following matrices

C∆ =

[
0 0
C21 0

]
and A =

[
−(ν + λ)∂xx − ν∂yy 0

0 −ν∂xx − (ν + λ)∂yy

]
;

C∆ =




0 0 0
C21 0 0
C31 C32 0




and

A =



−(ν + λ)∂xx − ν(∂yy + ∂zz) 0 0

0 −ν(∂xx + ∂zz)− (ν + λ)∂yy 0
0 0 −ν(∂xx + ∂yy)− (ν + λ)∂zz


 ;

for 2D and 3D Navier–Stokes equations, respectively. Using GM-3 method as an illus-
tration, we provide the algorithm of the method as follows: Set (u0

0, p
0
0) = (u(0), p(0))

and (u0
1, p

0
1) = (u0

2, p
0
2) = (0, 0). We compute (un+1, pn+1), n ≥ 0, by solving the

equations (4.4.8), (4.4.9) and (4.4.10) for (un+1
0 , pn+1

0 ), (un1 , p
n
1 ) and (un−1

2 , pn−1
2 ), re-

spectively.
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For n ≥ 0,





sn+1
0 =

{
un0 , for n = 0 or n = 1,

un0 + τun−1
1 , for n ≥ 2,

nln+1
0 = B(sn+1

0 ), gdn+1
0 = C∆sn+1

0 ,

un+1
0 − un0
τ

+ Aun+1
0 +∇pn0 = fn+1 − nln+1

0 − gdn+1
0 − C∆un+1

0 ,

pn+1
0 = pn0 − λ∇ · un+1

0 ,

dun+1
0 = (un+1

0 − un0 )/τ, dpn+1
0 = (pn+1

0 − pn0 )/τ.

(4.4.8)

For n ≥ 1,





d2u
n+1
0 = (dun+1

0 − dun0 )/τ,

sn1 =

{
un0 + τun−1

1 , for n = 1,

un0 + τun−1
1 + τ 2un−1

2 , for n ≥ 2,

nln1 = B(sn1 ), gdn1 = C∆sn1 ,

un1 − un−1
1

τ
+ Aun1 +∇(pn−1

1 + dpn0 ) = −1

2
d2u

n+1
0 − nln1 − nln0

τ

−gdn1 − gdn0
τ

− C∆un1 ,

pn1 = pn−1
1 + dpn0 − λ∇ · un1 ,

dun1 = (un1 − un−1
1 )/τ, dpn1 = (pn1 − pn−1

1 )/τ.

(4.4.9)

for n ≥ 2,





d2u
n
1 = (dun1 − dun−1

1 )/τ, d3u
n+1
0 = (d2u

n+1
0 − d2u

n
0 )/τ,

sn−1
2 = un−1

0 + τun−1
1 + τ 2un−2

2 ,

nln−1
2 = B(sn−1

2 ), gdn−1
2 = C∆sn−1

2 ,

un−1
2 − un−2

2

τ
+ Aun−1

2 +∇(pn−2
2 + dpn−1

1 ) = −1

2
d2u

n
1 +

1

6
d3u

n+1
0

−nln−1
2 − nln−1

1

τ 2
− gdn−1

2 − gdn−1
1

τ 2
− C∆sn−1

2 ,

pn−1
2 = pn−2

2 + dpn−1
1 − λ∇ · un−1

2 ,

un−1 = un−1
0 + τun−1

1 + τ 2un−1
2 , pn−1 = pn−1

0 + τpn−1
1 + τ 2pn−1

2 .

(4.4.10)

The convergence of the grad-div splitting is done using a correction algorithm similar
to the one implemented to approximate the nonlinear advection term, the “nonlinear
ansatz”. For instance, we recover the global grad-div term (right hand side of the
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momentum equation) by summing all the momentum equations from each subprob-
lem: (4.4.8)|n=j+τ(4.4.9)|n=j+1 +τ 2(4.4.10)|n=j+2 for any fixed positive integer j > 0.
Ignoring all terms except the grad-div term, we have the following:

−C∆sj+1
0 − τ

(
C∆sj+1

1 − C∆sj+1
0

τ

)
− τ 2

(
C∆sj+1

2 − C∆sj+1
1

τ 2

)

= −C∆sj+1
2

=

[
C11 C12

C21 C22

] [
uj+1

0 + τuj+1
1 + τ 2uj2

vj+1
0 + τvj+1

1 + τ 2vj2

]

= −λ∇∇ · (uj+1
0 + τuj+1

1 + τ 2uj2)

= −λ∇∇ · uj+1 − τ 2∇∇ · (uj+1
2 − uj2)

If the condition ‖uj+1
2 − uj2‖ ≤ cτ is met, then the grad-div splitting produces a

truncation error of order 3 (in time). This can be achieved with a suitable choice of
the time step τ and stabilization parameter λ. The simplicity of this algorithm is
similar to the one proposed by Guermond and Minev since no Jacobi or Gauss–Seidel
methods is involved.

4.4.4 Numerical results

In this section, we conduct simple numerical test cases to compare various grad-div
splitting approaches in terms of L2-error (in time only) on velocity and pressure. This
L2-error is computed by taking the difference between the reference and numerical
solutions on the same mesh at each time step for a span of time T . The reference
solution is generated with GM-2 method with a very fine time step τ = 6.25 ×
10−5. All these are done using the two manufactured solutions used in Section 4.1
(Manufactured Solution I) and Section 4.2 (Manufactured Solution II) of Chapter 2.

For both manufactured solutions, we use the same domain, mesh, boundary and
initial conditions as in Chapter 2. In this numerical test, we use only the 2nd-order
GM method. The extension to the 3rd-order GM can be done in a straightforward
manner but is not attempted here. We denote by GMS2-GSe the first variant of the
grad-div splitting technique presented in Section 4.4.1 which combines GM-2 with a
stopping criterion based on a fixed tolerance e and by GMS2-GSn the variant with
a fixed number n of Gauss-Seidel iteration. We denote by GMS2-GM the variant of
the grad-div splitting proposed in [24] (Section 4.4.2) and by GMS2-NLGD the one
proposed in Section 4.4.3. Various stabilization parameters used for each of these
grad-div splitting for Manufactured Solution I and II are summarized in Tables 4.5
and 4.6, respectively.
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Table 4.5: Parameters used with different grad-div splitting techniques for
the Manufactured Solution I.

Manufactured Solution I
Method τ n e λ
GM-2 0.02 − − 25.0

GMS2-NLGD 0.02 − − 25.0
GMS2-GM 0.02 − − 7.0
GMS2-GSe 0.02 − 10−15 25.0
GMS2-GSn 0.02 3 − 25.0

GM-2 0.002 − − 6.5
GMS2-NLGD 0.002 − − 6.5
GMS2-GM 0.002 − − 6.5
GMS2-GSe 0.002 − 10−15 6.5
GMS2-GSn 0.002 3 − 6.5

Table 4.6: Parameter used with different grad-div splitting techniques for
the Manufactured Solution II.

Manufactured Solution II
Method τ n e λ
GM-2 0.02 − − 3.13

GMS2-NLGD 0.02 − − 1.0
GMS2-GM 0.02 − − 1.0
GMS2-GSe 0.02 − 10−15 1.0
GMS2-GSn 0.02 2 − 3.13

GM-2 0.002 − − 0.75
GMS2-NLGD 0.002 − − 0.75
GMS2-GM 0.002 − − 1.0
GMS2-GSe 0.002 − 10−15 0.75
GMS2-GSn 0.002 2 − 0.75

For Manufactured Solution I, the time evolution of the numerical error (in time only)
on velocity and pressure is shown in Figure 4.6. Here, we also include GM-2 method
for benchmarking purpose. For τ = 0.02, we observe that the GMS2-GSn method
produces the largest error on velocity and pressure followed by GMS2-GM, GMS2-
NLGD and GMS2-GSe methods. The GMS2-GSe method converges to the solution
of GM-2 method by setting the tolerance e = 10−15 at the expense of a very large
CPU time.

For τ = 0.002, error curves on velocity computed with all grad-div splitting are
in good agreement with the one computed by GM-2 method except for GMS2-GM
and GMS2-GSn methods. This suggests that the GMS2-GSn method requires more
Gauss–Seidel iterations, (e.g., n > 3) to produce better results on velocity. In fact, the
number of Gauss–Seidel iterations required with e = 10−15 are 29 and 22 iterations
for subproblems 1 and 2, respectively, if τ = 0.02 while 8 and 7 iterations are required
in subproblems 1 and 2, respectively, if τ = 0.002.
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The error on pressure computed by all grad-div splitting techniques are in good
agreement with the one computed by GM-2 method. We notice that the GMS2-
NLGD method is the most efficient since it is both accurate and requires the least
CPU time among all grad-div splitting techniques.

Numerical oscillations (in time) were produced at startup but were quickly damped
in 20–30 time steps. This shows that the choice of λ for each of the grad-div formula
is almost optimal in the sense that the numerical error from over-stabilization is
minimized and the solution is very accurate for t > 0.5. Larger λ can be used to
damp these oscillations more quickly but the risk of having numerical errors due to
over-stabilization increases.
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Figure 4.6: Time evolution of the L2-error on velocity and pressure for the
Manufactured Solution I (see Chapter 2) with various grad-div splitting
strategies.

Different numerical results are observed for Manufactured Solution II. For instance,
GMS2-GM produces the largest numerical error followed by GMS2-NLGD, GMS2-
GSn and GMS2-GSe (see Figure 4.7). In particular, we observed that GMS2-NLGD
method is not as accurate as GMS2-GSn. The GMS2-GSn method produces very small
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error for both time steps τ = 0.02 and 0.002 with only two Gauss–Seidel iterations.
However, the efficiency and the resulting error in GMS2-NLGD method could be as
competitive as GMS2-GSn method if a smaller time step, (e.g., τ = 0.001) is chosen.

In Manufactured Solution II, the number of Gauss–Seidel iterations required with
e = 10−15 are 25 and 42 iterations in subproblems 1 and 2, respectively, if τ = 0.02,
while 3 iterations are required in subproblems 1 and 2 if τ = 0.002. We did not carry
out any efficiency analysis for these methods applied to our manufactured solutions
as we did in Chapter 2, where the CPU time to reach a certain error is investigated.
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Figure 4.7: Time evolution of the L2-error on velocity and pressure for the
Manufactured Solution II (see Chapter 2) with various grad-div splitting
strategies.

4.5 Concluding Remarks

The first part of this chapter has been devoted to complete the justification of the GM
and GM-SRM methods introduced in Chapter 2. For a fixed λ in GM method and
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fixed α1, α2 in GM-SRM method, we showed that these methods converge to SBDF
and DC methods with an additional grad-div stabilization term under P2-P1 finite
element approximation. However, the optimal choice of stabilization parameters in
GM and GM-SRM methods is still an open problem. We only resort to a method of
trial and error to obtain a nearly optimal value for the stabilization parameter (by
comparing to the exact solution or a reference solution obtained with reasonably fine
mesh and time step using the most efficient SBDF-3 method). This provides insight
on the choice of the stabilization parameters in many applications of 2D flows, but
cannot be used in practice since no exact or reference solution is available.

The second part of this chapter proposed several numerical improvements to reduce
the numerical error in DC, GM and GM-SRM methods, for instance new extrapolation
formulae for the nonlinear term. The NL22 and NL233 formulae are a good trade-off
in terms of stability and accuracy for 2nd- and 3rd-order methods, respectively. The
final part of this chapter introduced grad-div splitting techniques which reduce the
complexity and size of the resulting linear systems in GM and GM-SRM methods.
We proposed a new grad-div splitting which is based on a nonlinear ansatz and
works satisfactorily well with no Gauss–Seidel iteration. It is preferable over the
one proposed in [24] (which was less accurate but CPU efficient) and Gauss–Seidel
iterations with small tolerance (which was very accurate but CPU intensive).



Chapter 5

3D Computations with
Semi-Implicit Methods

In this chapter, we illustrate how semi-implicit methods perform to compute 3D flows.
Three-dimensional flows arise naturally in many practical and industrial applications.
As 3D computations typically involve many unknowns, the application of our semi-
implicit methods becomes more relevant. First of all, we require the global matrix
to be assembled only once. This also allows the preconditioner to be built only
once when an iterative method is used at each time step. Fully implicit methods,
such as BDF and operator splitting, may fall short in terms of efficiency, especially
when computing 3D unsteady flows, since reassembling the matrix and recomputing
a preconditioner becomes expensive.

Undeniably, the required CPU time and computer memory can be exhaustive when
3D computations are carried with fine meshes and small time steps are required for
the numerical solution of Navier–Stokes equations with high Reynolds numbers. In
the realm of computational fluid dynamics (CFD), this is known as direct numerical
simulations (DNS). For certain fluid simulations, DNS is deemed to be less practical
even with the best available supercomputers. This limitation can be mitigated by
resorting to Large Eddy Simulation (LES), where only the mean flow is computed
on coarser meshes while turbulent scales that occur on a finer grid are resolved using
subgrid or turbulence closure models (see for instance [36, 38, 52]). On the other
hand, DNS does not require such subgrid modeling. Using higher-order methods
both in time and space, DNS may not have to rely on overly fine meshes and small
time steps to produce accurate results. This potentially makes DNS more appealing
and promising for certain applications.

In our work, the computations are done with FreeFEM++ in sequential mode. Par-
allel implementations based on domain decomposition method (DDM) and similar

107
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techniques can be applied with our time-stepping methods, but none were attempted
here. Computations in a full parallel mode with high performance computer (HPC)
can handle up to hundreds of millions of unknowns depending on the computing
resources. Moreover, the computer memory offered in HPC goes up to a thousand
of Gigabytes (Gb) which is nowhere to be compared with the memory available on
personal computers. Our 3D computations in sequential mode done on personal com-
puters can handle up to 5 millions of unknowns. This will be enough to showcase the
performance of our time-stepping methods.

The 3D computations done in this chapter split into two parts. For the first part, we
showcase 3D computations with GM method and a grad-div splitting algorithm to
handle the larger number of unknowns required in 3D lid-driven cavity flows. Two
experiments for lid-driven cavity are proposed. The first one involves steady solutions
with the Reynolds number at 100, 400 and 1 000, and the other involves an unsteady
3D flow by setting Re = 1 970. For the second part, we compute two closely related
unsteady flows with GM-SRM method, one being the 3D flow around the circular
cylinder at Re = 100 and the other, the 3D flow around the sphere at Re = 300. We
noted that GM and GM-SRM methods are preferable over SBDF and DC methods
since the resulting linear systems with the first two methods are smaller. We make
qualitative and quantitative comparisons of our results with the values reported in
the literature. From a qualitative standpoint, we compare the overall flow patterns
such as vortex shedding patterns and streamlines. From a quantitative standpoint, we
compare lift and drag coefficients, and the Strouhal numbers of the periodic flows. We
devote the last section of this chapter to an efficiency comparison of all the methods
studied, gathered from all 2D and 3D test cases presented in this thesis, in terms of
CPU time per degree of freedom per time step.

5.1 Special considerations for large scale compu-

tations

Unique characteristics in the methods presented can be exploited to tackle different
types of test problems in the most efficient manner with available computing resources.
For instance, if a saddle point system is not too large (typically less than 700 000
unknowns), computation can be very efficient with SBDF and DC methods using
a direct linear solver. For a slightly larger problem (between 700 000 to 900 000
unknowns), GM and GM-SRM can be used since these methods requires only the
solution of linear systems with relatively smaller symmetric and positive definite
matrices than the former saddle point problems. Nonetheless, the factorization step
in the direct linear solvers may require large RAM, beyond the memory available.
Therefore, iterative solvers are recommended to solve larger problems with more
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than 1 million of unknowns since they require far less memory. For an exhaustive
discussion on iterative solvers, we refer the reader to several main references [3, 51].
Iterative solvers like the Conjugate Gradient method can be implemented and work
efficiently with GM and GM-SRM methods since the resulting linear systems involve
symmetric and positive definite matrices. Though it is possible, we did not attempt
computations using SBDF and DC methods with any iterative linear solver since
the global matrix associated with saddle point problem is poorly conditioned and
the preconditioner used, (e.g., HIPS [16]) required very long time to setup at the
beginning of the execution.

In this chapter, we consider only GM and GM-SRM methods with 2nd-order of accu-
racy to carry out all 3D computations since these methods produce a good accuracy
on velocity and pressure in time with the built-in defect correction strategy. The
accuracy and efficiency of several methods based on defect correction strategy, (e.g.,
DC, GM and GM-SRM methods) have been demonstrated in Chapter 2. The 3rd-
order GM and GM-SRM methods can be used to achieve sufficiently small error in
time on a fixed mesh at the expense of larger CPU time. However, the global er-
ror in our 3D computations is predominantly induced by the spatial resolution since
the mesh employed may not be sufficiently fine. As a result, the advantage of using
higher-order in time cannot be showcased to its full potential.

5.1.1 Mesh generation

All the tetrahedral meshes for the purpose of computing 3D flows can be generated
using two methods. First, it can be done using a program called TetGen. This pro-
gram was developed by Hang Si at Weierstrass Institute for Applied Analysis and
Stochastics (WIAS) [57]. TetGen is based on Delaunay tetrahedralizations and in-
cludes advanced features, such as mesh refinement and various adaptive strategies.
This software can be used either as an executable standalone program or as a library
linked to various numerical softwares for solving PDEs, (e.g., FreeFEM++, Open-
Foam, etc). Another 3D mesh tool available with FreeFEM++ (only) is called msh3.
This mesh tool has its own unique approach to generate a 3D mesh based on a func-
tion called buildlayers. This function allows users to extend and manipulate a 2D
mesh to generate a 3D mesh by extrusion of the 2D mesh in the simplest way.

With limited computing resources, computations of 3D flows require a delicate plan-
ning since the number of unknowns can easily be overwhelming. To produce an
“optimal” number of unknowns while achieving a reasonable accuracy in space, finer
mesh is only required in a few specific areas. We do not consider dynamic mesh adap-
tation to avoid any matrix rebuild and recalculation of the required preconditioner,
which may hinder the efficiency of semi-implicit methods. In our case, a finer mesh
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is generated based on an educated guess, which is prescribed within a sub-region of
a domain. For instance, for the 3D flow around the circular cylinder, a finer mesh is
generated around and behind the cylinder to capture the formation of the boundary
layer, the recirculation and vortex shedding behind the cylinder.

5.1.2 High Performance Sparse Linear Solvers

With any finite difference, finite volume and finite element methods, the number
of unknowns increases dramatically as the mesh is refined, especially in 3D setting.
Moreover, with finite element approximations, the unknowns increase proportionally
to the degree of the polynomials (e.g., Pk, k = 0, 1, 2, . . .) used for the Lagrange
basis functions. For the same physical mesh, the number of unknowns is larger
if the continuous piecewise elements are replaced with the discontinuous elements.
Therefore, the number of unknowns has to be controlled wisely to have a good balance
between the computational efficiency and numerical accuracy of the results.

The P2-P1 element produces the smallest number of unknowns in the class of Taylor–
Hood elements. On the other hand, the P2-P1 element is more expensive than the
P1-P1 element used in conjuction with stabilization methods when computing 3D
flows on the same mesh [34, 59]. Still, the P2-P1 element is preferable over the P1-P1

element since the highest order of accuracy of the P2-P1 method eventually makes
this one competitive over P1-P1 stabilized method.

The effort to improve the convergence of iterative solvers using preconditioner is
immense and well documented in the literature (see e.g., [3, 4, 5, 12, 51, 69]). The
underlying concept of preconditioner is simple. Suppose that we have a linear system
Ax = b with a global matrix A. Whenever the condition number of a matrix A is
large [48], (i.e., κ(A) � 1) a preconditioner P−1 ≈ A−1 is usually required in the
hope of getting a new matrix P−1A with a small condition number κ(P−1A) ≈ 1,
so that the linear system P−1Ax = P−1b could be solved more easily with iterative
solvers. Fewer iterations are then required to satisfy ‖r‖ := ‖P−1(Ax − b)‖ < tolres

for a small tolres > 0. Often, the preconditioner P−1 does not have to be evaluated
explicitly. More details about the construction of preconditioners can be found in the
literature mentioned above.

In this chapter, we use the library for a numerical linear solver called HIPS (Hierarchi-
cal Iterative Parallel Solver) which has a built-in preconditioner based upon multilevel
Incomplete Factorization (ILU) [16, 17]. HIPS is already linked to FreeFEM++. Only
two types of Krylov-based iterative solvers are available in HIPS; namely, the Gen-
eralized Minimal Residual (GMRes) and Preconditioned Conjugate Gradient (PCG).
Since the matrix involved in GM and GM-SRM methods is symmetric and positive
definite, the PCG method is sufficient and more efficient to solve the linear system.
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There are few key parameters that have to be tuned properly to control the con-
vergence of HIPS, among them: the number of iterations before Krylov restart, a
threshold to control the fill-in in ILUT and a relative residual norm. For instance,
requiring the ILUT preconditioner to be closer to the actual LU factorization of the
global matrix A often requires larger memory and longer time for the start-up since
this involves a lot of fill-in within ILU [51]. On the other hand, less fill-in in ILU
results in a significant faster HIPS startup process but in a larger number of iterations
to achieve the same relative residual norm.

The parameter settings that we used in our numerical experiments are obtained
through trial and error. We did not attempt any intensive study on the optimal
parameter values to produce the most CPU efficient and accurate solutions for HIPS.
We only implement the set of parameters which, in our opinion, give an ideal gain
in terms of the convergence of PCG and CPU time required for start-up. These
parameter values will be provided whenever HIPS is applicable.

5.2 3D lid-driven cavity flow

This test case is sometimes known as the lid-driven flow in a cube. Several numerical
experiments for the 3D lid-driven cavity can be found in [29, 30, 46, 55] and references
therein. The domain is given by Ω = (0, 1)3. To build the mesh, we first set a 2D lid-
driven cavity in the xz-plane. We extend the geometry to 3D in the y-direction using
msh3 with a thickness of 1 unit length to obtain a uniform tetrahedral mesh of size
50× 50× 50. The domain is discretized in about 750 000 nearly identical tetrahedra.
This gives an element diameter 0.020 000 ≤ hK ≤ 0.028 284. Using the P2-P1 finite
element gives a total of 3 090 903 unknowns for velocity and 132 651 unknowns for
pressure. The number of unknowns for the 3D lid-driven cavity easily reaches millions
even with a seemingly ‘coarse’ mesh resolution of 50× 50× 50. Computing this flow
on fine meshes is therefore particularly challenging.



5. 3D COMPUTATIONS WITH SEMI-IMPLICIT METHODS 112

Figure 5.1: The mesh used to compute the 3D lid-driven flow: 3D mesh of
the domain Ω ∈ (0, 1)3 (left) and 2D 50 × 50 mesh used to generate the 3D
mesh as viewed in the xz-plane (right).

For the boundary condition, we set the following:

u = u(x, y, z) =

{
(1, 0, 0)ᵀ, 0 < x, y < 1 and z = 1,

(0, 0, 0)ᵀ, on other boundaries.
(5.2.1)

We mention that the velocity is prescribed to be null along the top edges, in the spirit
of the boundary condition used for the 2D lid-driven cavity in Chapter 2. This type
of boundary setting is called the watertight lid-driven cavity. We did not attempt a
numerical comparison between watertight and leaky 3D lid-driven cavity flows where
leaky means that u = (1, 0, 0)ᵀ is prescribed along the top edges. For 2D lid-driven
cavity, the comparison of these two sets of boundary conditions has been done in
Appendix C.1. Our preference for the watertight cavity setting here is solely based
on the fact that more realistic numerical results were produced in the watertight 2D
lid-driven cavity for a moderate Reynolds number, e.g., Re = 8 500.

To handle the resulting millions of unknown, we use GM-2 method in conjunction with
the grad-div splitting strategy presented in Chapter 4. To ensure the convergence of
the grad-div splitting, we use two different approaches, i.e., the “nonlinear ansatz”
or Gauss–Seidel method depending on the test cases to be presented below. In either
case, the stabilization parameter λ = 0.3 is set, which is sufficient to enforce the mass
conservation in this test case. Since κ(A) = O(λ) for a fixed mesh and time step,
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the resulting matrix is not so poorly conditioned. Hence, the ILUT preconditioner in
HIPS requires little fill-in and less memory. The HIPS preconditioner is set as follows
for this test case (refer to the FreeFEM++ manual [28] for definitions):

• Strategy use for solving – Iterative,

• Krylov methods – PCG,

• Maximum of iterations in outer iteration – 300,

• Krylov subspace dimension in outer iteration – 50,

• Matrix – Symmetric,

• Pattern of matrix – Symmetric,

• Relative residual norm – 10−13,

• Numerical threshold in ILUT for interior domain – 10−6,

• Numerical threshold in ILUT for Schur preconditioner – 10−6.

All other parameters are set to default values. The given parameters produce an
“optimal” balance between the CPU time for the startup and the convergence of
PCG. On average, it takes about 550 seconds of CPU time to produce the HIPS
preconditioner and the PCG needs at most 4 iterations to reach a relative residual
norm of 10−13 when solving the linear systems associated with the scalar parabolic
problem for the velocity and at most 3 iterations for the pressure update. To reduce
the number of iterations in PCG to 2 for the velocity, we have experimented with
smaller numerical threshold in ILUT, for instance 10−10, but this requires more CPU
time for the startup (typically > 3 hours). With this larger threshold, the startup
process may exhaust the computer memory; e.g., it consumes more than 40Gb of
RAM, similar to what is required with the direct solver MUMPS for the same number
of unknowns.

Increasing the time step and the stabilization parameter λ may also induce larger
CPU time and memory requirements during the startup, since larger time step and λ
produce a stiffer matrix for the scalar parabolic problem. Whenever a larger time step
or a large λ is required, the numerical thresholds in ILUT have to be increased accord-
ingly. We use the same domain, mesh, HIPS parameters and boundary conditions for
the steady and unsteady flows in the 3D lid-driven cavity.

5.2.1 Steady 3D lid-driven cavity

In this section, we verify our methods by computing several steady flows in the cubic
3D lid-driven cavity, by choosing Reynolds numbers at 100, 400 and 1 000. These test
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cases have been studied intensively in [30, 46, 55]. We conduct numerical verification
in several ways. We make comparison with results from those articles in terms of
streamlines and velocity fields projected on xy-, xz- and yz-planes.

For numerical efficiency, we apply GM-2 method with the grad-div splitting based
on the “nonlinear ansatz” (4.4.8)-(4.4.10) presented in Section 4.4.3. With this tech-
nique, the linear systems from the momentum equation (with all velocity terms) are
reduced to few scalar parabolic problems, one for each velocity component, and con-
sists in 1 030 301 unknowns to be solved one at a time. While reaching about one
million of unknowns, iterative linear solvers are preferable over direct linear solvers.
Since our goal is to capture steady solutions, (i.e., let du

dt
→ 0) the lack of accuracy

in time due to the grad-div splitting at each time step does not have a significant
impact as when computing unsteady flows.

We note that the constructed linear systems from the momentum equations become
very stiff (or equivalently the resulting matrices are poorly-conditioned) for the it-
erative solver when both the time step and Reynolds number increase. It is also
known that higher Reynolds numbers impose weaker dampening on the solution to
reach steady state. Here, we adopt a heuristic numerical setting in order to maintain
“similar stiffness” of these linear systems. For instance, for every increase by a factor
of m of the Reynolds number, we decrease the time step by the same factor of m.
We compute the flows at Re = 100, 400 and 1000 with the time steps τ = 0.02,
0.005 and 0.002, respectively. We assume that we have reached a steady flow when-
ever 1

τ
‖un+1

h − unh‖L2(Ω) < 5 × 10−5. We then consider un+1
h to be the steady state

velocity field. To reduce the total CPU time, these computations are initiated using
a steady solution of the same experiment with the same Reynolds number but on a
coarser 30 × 30 × 30 mesh. These steady solutions are then interpolated linearly on
the 50× 50× 50 mesh.

Table 5.1 shows the statistics regarding the time and number of time steps required to
reach a steady state. It is observed that the number of time steps required to reach
steady state increases dramatically with the Reynolds number. This is expected.
We note that there are a few additional advantages when a smaller time is used to
handle steady flows with high Reynolds numbers. First, smaller time step produces
better stability in terms of CFL condition since GM-2 is a semi-implicit method
(conditionally stable). Second, our strategy does not involve Jacobi/Gauss–Seidel
iteration to ensure the convergence of grad-div splitting. Our numerical computation
shows that a smaller time step may also help to ensure the convergence of grad-div
splitting at each time step as well.
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Table 5.1: The steady state in the lid-driven cavity.

Re Time step τ No. of steps Time unit T 1
τ
‖u− uh‖L2(Ω)

100 0.020 338 6.760 4.93599× 10−5

400 0.005 1652 8.260 4.99233× 10−5

1000 0.002 14051 28.102 4.99983× 10−5

Table 5.2 provides the statistics regarding the performance of the HIPS solver for all
test cases, the second column gives the total startup time which includes the CPU
time (in second) required to compute the two HIPS preconditioners; i.e., one for the
matrix associated with the momentum equation and another for the mass matrix
associated with continuity equation. The third column in the table provides the
average CPU time required to compute one time step while the last column gives us
the fill-in ratio of the computed preconditioner matrices. The fill-in ratio corresponds
to the number of non-zero entries in the preconditioner over the number of non-zero
entries in the original matrix before factorization.

Higher fill-in ratio corresponds to more efficient ILU preconditioner and lead to better
convergence of the iterative solver. The observed CPU time per time step is more or
less the same among the three test cases. However, the total CPU time to achieve a
steady solution increases dramatically with the highest value recorded was for Re =
1 000, followed by the computations at Re = 400 and Re = 100. We also note that
the fill-in ratio is the highest for the computation with smallest Reynold number.
We conjecture that the largest time step τ = 0.02 used in this particular test case
produces a stiffer linear system despite having the smallest Reynolds number among
the three cases.

Furthermore, the stiffness induced by increasing the Reynolds number is less pro-
nounced than the stiffness induced by larger time steps. From our computational
result for a fixed mesh, we suspect that the condition number of the global matrix
may behave like k(A) ∼ O

(
τα

Reβ

)
, where 0 < β < α < 1, but getting the exact value

of α and β is still an open problem.

Table 5.2: Statistics about HIPS linear solver and preconditioner when com-
puting the steady state solution for the lid-driven cavity.

Re Startup (s) CPU/time step Fill-in Ratio Total CPU (hrs)
100 683.34 230.64 12.1397 21.84
400 431.01 228.04 9.4989 104.76
1000 546.09 227.14 10.8785 886.69

For comparison purposes, Figure 5.2, 5.3 and 5.4 show the projected 3D stream-
lines for the lid-driven flows plotted on various cross-sections of the cube. Projected
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streamlines on a xz-plane are defined as the streamlines for the velocity field (u,w),
where u = (u, v, w) is the velocity field for the 3D flow. A similar definition applies to
the projected streamlines on yz-planes. We observed that these streamlines are per-
fectly in agreement with Shankar and Deshpande [55] (shown in Figure 14), both in
terms of detailed features of the projected streamlines and the location of the center
for each vortex.

Figure 5.2: 3D lid-driven cavity at Re = 100: At the left, the streamlines
are projected on xz-planes at y = 0.02 (red), y = 0.5 (blue) and y = 0.98
(brown). At the right, the streamlines are projected on yz-planes at x = 0.02
(red), x = 0.5 (blue) and x = 0.98 (brown).
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Figure 5.3: 3D lid-driven cavity at Re = 400: At the left, the streamlines
are projected on xz-planes at y = 0.02 (red), y = 0.5 (blue) and y = 0.98
(brown). At the right, the streamlines are projected on yz-planes at x = 0.02
(red), x = 0.5 (blue) and x = 0.98 (brown).

Figure 5.4: 3D lid-driven cavity at Re = 1000: At the left, the streamlines
are projected on xz-planes at y = 0.02 (red), y = 0.5 (blue) and y = 0.98
(brown). At the right, the streamlines are projected on yz-planes at x = 0.02
(red), x = 0.5 (blue) and x = 0.98 (brown).

Figure 5.5, 5.6 and 5.7 show the velocity fields captured on the xz-plane (y = 0.5),
yz-plane (x = 0.5) and xy-plane (z = 0.5) of the cube at Re = 100, 400 and 1 000,
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respectively. Our solutions are in good qualitative agreement with the results docu-
mented in Pan and Glowinski [46] at Re = 100 (Figure 15), 400 (Figure 16) and 1 000
(Figure 17) and in Zunic et al. [72] for Re = 100 and 1 000. These results are also
supported by other references cited therein.

Figure 5.5: 3D lid-driven cavity at Re = 100: Velocity field at steady state
on the midplanes at y = 0.5 (top left), x = 0.5 (top right) and z = 0.5
(bottom).
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Figure 5.6: 3D lid-driven cavity at Re = 400: Velocity field at steady state
on the midplanes at y = 0.5 (top left), x = 0.5 (top right) and z = 0.5
(bottom).
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Figure 5.7: 3D lid-driven cavity at Re = 1000: Velocity field at steady state
on the midplanes at y = 0.5 (top left), x = 0.5 (top right) and z = 0.5
(bottom).

The GM-2 method with grad-div splitting performs satisfactorily to reproduce quali-
tatively these steady flows. In term of performance, the global time t ≈ 28 time units
required to reach a steady state solution at Re = 1000 starting from the solution of
Stokes equations is considerably shorter than that in [46]. For instance, their compu-
tations required T ≈ 51 time units to reach a steady solution at Re = 1 000 with a
time step τ = 0.001. The difference of final time T to reach a steady solution is due
in part to the initial condition used since Pan and Glowinski [46]; namely, a periodic
solution that requires a regularization mechanism at the upper left and right corner
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of the cavity. On the other hand, the stopping criterion used in their experiment,
1
τ
‖un+1

h − unh‖L2(Ω) < 10−4, is slightly larger than the value tol = 5 × 10−5 that was
used.

5.2.2 Unsteady 3D lid-driven cavity

Now, we turn to the unsteady case. To induce an unsteady flow, we fix Re = 1 970
to produce an oscillatory flow since this Reynolds number is over the critical value
for a Hopf bifurcation (Recri ≈ 1 914 for the cubic 3D lid-driven cavity) [39]. We use
GM-2 method with a similar grad-div splitting to solve this problem. However, we
employ the Gauss–Seidel method for a faster convergence of the grad-div splitting
to ensure the accuracy of the solution at each time step. The algorithm is given
in (4.4.2)–(4.4.4) of Section 4.4.1. To maintain a reasonable CPU time, we do at
most two Gauss–Seidel iterations for each subproblem of the GM-2 method, with a
time step τ of 0.005.

In this test case, the computation is initialized from a state of rest; i.e., (u, p) = (0, 0)
at time t = 0 in the domain Ω = (0, 1)3 with boundary forcing given in (5.2.1). It takes
about 14 days of CPU time to obtain a developed flow (but not yet periodic) on a
i7-3 770 3.40 GHz desktop computer with about 15.7GB of RAM. The memory usage
is considered small for such 3D computation which consists in a total of 3 090 903
unknowns for velocity and 132 651 unknowns for pressure. Here, we only present
partial results in terms of the fully developed periodic flow since reproducing a fully
periodic flow as in 2D requires a large time t and consequently a great deal of CPU
time in sequential mode.

Figure 5.8 shows the time-evolution of the streamlines, colored by magnitude of the
velocity. The streamlines illustrate the growth of the 3D primary (center) and sec-
ondary (bottom right and left) vortices starting from the state of rest. GM-2 method
with grad-div splitting captures well the formation of the major vortex and other
secondary vortices that represent the physically sound transient solutions from state
of rest. At least, these flow patterns mimic closely the ones observed in the 2D cavity.
Our computations have not yet reached a periodic state. A successful computation
is shown to have a periodic solution with a single mode whose frequency is about
0.61 [39]. This test case requires enormous amount of CPU time to reach periodic
flow. Moreover, a good accuracy in the space discretization is paramount when it
comes to reproducing the right frequency for this flow, likely beyond what we used in
our grid resolution. To improve this, more efficient iterative solver and preconditioner
are needed to handle the exorbitant number of degrees of freedom required.
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Figure 5.8: Snapshot of streamlines for 3D lid-driven cavity flow (Re = 1 970)
shown from t = 0.1 (initial flow development from the state of rest) to t = 30
(driven cavity flow is developed but it has not reached the periodic state) by
increments of about 3 time units (the time t is increasing from the left to
right, then top to bottom).
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Figure 5.9 shows the velocity field projected on three midplanes; namely, xy-, xz- and
yz-planes. While the solution may still be in a transient stage, the flow field is not far
from the one shown in Figure 6 in [39] for Re = 1 970 and in [30] for Re = 2 000. The
location of the primary and secondary vortices projected on the midplane and the
detailed features of the upstream and downstream eddies at the corners (projected in
the xz-midplane) present in our flow match qualitatively the results in these papers.

Figure 5.9: 3D lid-driven cavity at Re = 1970: Velocity vector during tran-
sient flow on the midplanes at y = 0.5 (top left), x = 0.5 (top right) and
z = 0.5 (bottom).

Figure 5.10 shows the time evolution of all velocity components and pressure for



5. 3D COMPUTATIONS WITH SEMI-IMPLICIT METHODS 124

all test cases involving the 3D lid-driven cavity; all probed at point (0.2, 0.3, 0.25).
For Re = 100, 400 and 1 000, the velocity components all reach a steady state. At
Re = 1 970, the flow is not yet periodic but the main portion of the transient phase
is over. This can be seen from the progressive decay of the oscillations (be aware of
the difference in scale from one graph to the next).
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Figure 5.10: The time evolution of x-velocity u, y-velocity v, z-velocity w
and pressure p at probing point (0.2, 0.3, 0.25) for Re = 100, 400, 1 000
(steady lid-driven flow) and Re = 1 970 (unsteady lid-driven flow).

5.3 3D flow around the cylinder at Re = 100

To setup the geometry of this 3D test problem, we first generate a 2D rectangular-
shaped domain minus a circular disk centred at the origin; Ω1 = (−3, 9) × (−3, 3)
\{(x, y) ∈ R2 | x2 + y2 < 0.25}. A non-uniform triangular mesh is generated with 40
elements along the edge of the rectangle in the x-direction, 20 along the y-direction
and 60 along the boundary of the circular disk. This domain is then extruded in the z-
direction with z ∈ (−2, 2). This extrusion creates a 3D domain with a hollow cylinder
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of diameter D = 1 with Ω = (−3, 9) × (−3, 3) × (−2, 2)\{(x, y, z) ∈ R3 | x2 + y2 <
(0.5)2, z ∈ (−2, 2)}. To generate the required tetrahedral mesh, the edge along the z-
axis is divided equally in 10 sub-intervals and the prismatic element is split into three
tetrahedra. The 3D mesh generated has 118 500 tetrahedra with the smaller elements
located near the cylinder and the element size increasing progressively away from the
cylinder. This produces tetrahedra of varying diameter 0.040 964 ≤ hK ≤ 0.486 931.
The discretization with P2-P1 finite elements produces a total of 509 040 unknowns
for velocity and 22 715 for pressure. This is considered a small mesh for such 3D
problems. The resulting mesh is shown on Figure 5.11.

Figure 5.11: The mesh for the flow around the cylinder: 3D view from side
angle (top) and 3D view from top (bottom).

Along the inflow boundary (plane at x = −3), u = (1, 0, 0) is prescribed. Along
the outflow boundary (plane at x = 9), homogeneous Neumann boundary conditions
are prescribed. No-slip velocity u = (0, 0, 0) is used on the surface of the cylinder.
For other boundaries, vanishing normal velocity (zero flux) is imposed while allowing
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natural flow tangential to the plane. GM-SRM-2 method is used with a direct solver,
MUMPS, to handle the linear systems since the number of unknowns is relatively
small. The stabilization parameters are set to α1 = 200τ and α2 = 200. With
a constant time step τ = 0.008, the computation of this 3D test problem requires
about 7 500 time steps (total time t = 60 and CPU time is approximately 96 hours
50 minutes) to reach full periodic solution. The computation was initialized using
the periodic solution at Re = 100 obtained on a coarser mesh and reinterpolated
on the mesh presented above for the actual computation. The size of the computer
memory needed to compute this 3D flow problem was about 16.3GB which is deemed
large for about 500 000 unknowns. However, the computation is still efficient with a
direct solver at the expense of computer memory. The computation of this test case
was terminated at t = 100 (a total of 12 500 time steps) to ensure that the acquired
periodic solution is reliable enough for data analysis (i.e., the lift and drag coefficients,
Strouhal number, frequency, etc).

Figure 5.12 illustrates the time evolution of velocity (left), and streamlines and vor-
ticity (right) for tj = jϕ

4
, where j = 0, 1, 2, . . . , 8. One period cycle ϕ is equivalent

to 5.080 8 time units in this test case. Within this time window, the vortex shedding
behind the 3D cylinder is fully periodic for all of the variables; e.g., velocity, pressure,
lift and drag coefficients. At any given time, the velocity fields, vorticity and stream-
lines are nearly identical on arbitrary xy-planes taken at −2 ≤ z ≤ 2. This confirms
the 2D nature of the flow, as expected for the flow around the cylinder at Re = 100.
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Figure 5.12: For each plot, velocity magnitude (color-coded) is shown in the
left column, while both streamlines and vorticity (color-coded) are displayed
in the right column. The plots are shown at every quarter period for tj =
jϕ
4
, j = 0, 1, 2, . . . , 7, 8 where ϕ = 5.080 8. The sequence goes from left to

right, and from top to bottom.
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The lift and drag along the cylinder denoted as cl and cd, respectively, are evaluated
using the volume integration method which has been used in the previous chapter for
2D flow around the cylinder at Re = 100 (see [41, 54]). The only difference is that
the resulting drag and lift will have to be divided by a factor of 4, the length in the
z-direction of the 3D cylinder used in this test case.

Figure 5.13 shows the evolution of the lift and drag coefficients for t ∈ [50, 100] while
the computed mean, amplitude and frequency for these coefficients are summarized
in Table 5.3. At first glance, we observe that the drag coefficient oscillates with a
frequency twice as large as the lift coefficient. In fact, we notice a slight variation of the
peak-to-peak value of the drag coefficient with the same frequency as the pulsation of
the lift coefficient. This is a numerical artifact which can be reduced by taking larger
stabilization parameters in GM-SRM-2; i.e., α1 > 200τ and α2 > 200. The choice
of larger stabilization parameters, α1 and α2, is undesirable since over-stabilization
may produce numerical inaccuracy of the overall results (in space). To compute the
amplitude of the drag coefficient, we took the average of the two different peaks of
the drag coefficient once a fully periodic flow is achieved (see Figure 5.13: right).
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Figure 5.13: 3D flow around the cylinder at Re = 100: Time evolution of the
lift cl and drag cd for t ∈ [50, 100].

Figure 5.14 shows the time history of the three velocity components u, v and w at
several probing points for t ∈ [50, 100]. The time history of the x-velocity u, y-velocity
v and pressure p are monitored at (5, 0,−2), (5, 0, 0) and (5, 0, 2). These monitoring
points are chosen such that they align together and stand on a line parallel to the
cylinder. The time history of the z-velocity is monitored at (5,−2, 0), (5, 0, 0) and
(5, 2, 0). These monitoring points are chosen such that they align together and form a
line orthogonal to the cylinder. All x-velocity u, y-velocity v and pressure p produce
similar results at all these probing points. Further, the amplitude of the variation on
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the z-velocity is less than 10−3 at these points, i.e., at least two orders of magnitude
smaller than that for the other two components. It is known that the flow around
the 3D cylinder at Re = 100 is still two-dimensional from the literature. Our results
follow these trends. For Reynolds number Re > 180 [49] or Re > 200 [59], it has been
documented that 2D model may fail to represent the 3D flow realistically. Moreover,
large difference is observed between 2D results and experimental data.

7.0e-01

7.5e-01

8.0e-01

8.5e-01

9.0e-01

9.5e-01

50 60 70 80 90 100

x
-v

el
o
ci

ty
 u

Time

The x-velocity u at three locations (5,0,-2), (5,0,0) and (5,0,2)

Point (5,0,-2)
Point (5,0,0)
Point (5,0,2)

-6.0e-01

-4.0e-01

-2.0e-01

0.0e+00

2.0e-01

4.0e-01

6.0e-01

8.0e-01

50 60 70 80 90 100

y-
ve

lo
ci

ty
 v

Time

The y-velocity v at three locations (5,0,-2), (5,0,0) and (5,0,2)

Point (5,0,-2)
Point (5,0,0)
Point (5,0,2)

-1.0e-03

-5.0e-04

0.0e+00

5.0e-04

1.0e-03

50 60 70 80 90 100

z-
ve

lo
ci

ty
 w

Time

The z-velocity w at three locations (5,-2,0), (5,0,0) and (5,2,0)

Point (5,-2,0)
Point (5,0,0)
Point (5,2,0)

-2.0e-01

-1.5e-01

-1.0e-01

-5.0e-02

50 60 70 80 90 100

p
re

ss
u

re
 p

Time

The pressure p at three locations (5,0,-2), (5,0,0) and (5,0,2)

Point (5,0,-2)
Point (5,0,0)
Point (5,0,2)

Figure 5.14: 3D flow around the cylinder at Re = 100: Time evolution of the
x-, y-, z-velocity and pressure monitored at various locations for t ∈ [50, 100].

The drag coefficient from our results is bigger than the values found in the literature
(see Table 5.3). For instance, the computed mean drag is about 20% and 26% greater
than the mean drag reported in [49] and [42], respectively. The computed mean lift is
very close to zero, which suggests that our computation reproduces quite accurately
the space-time symmetric (across the xz-plane or y = 0) vortex shedding with a single
frequency of oscillation. Our frequency is about 17% bigger than the commonly agreed
value of 0.168 for the flow around the cylinder at Re = 100 (see [21, 49]). Our lift
amplitude is 28% bigger than the reported value in [42].
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The coarse mesh and smaller domain used in our computation may result in these
over-predicted values. In conclusion, the mesh used for the spatial discretization in
our computation should be made finer to produce more accurate results on lift and
drag coefficients and the Strouhal numbers. This can be done with more CPU and
memory resources but we did not attempt this here.

Table 5.3: 3D flow around the cylinder at Re = 100: The comparison of the
computed average, amplitude and frequency of the drag and lift coefficients
with values from the literature.

Drag cd Mean Amplitude Frequency
Current results 1.6851 1.3177× 10−2 0.3936

Ranjani et al. [49] 1.3349 – –
Mittal & Raghuvanshi [42] 1.4020 – –

Lift cl Mean Amplitude Frequency
Current results −5.6667× 10−3 0.4527 0.1968

Mittal & Raghuvanshi [42] – 0.3550 0.1680

5.4 3D flow around the sphere at Re = 300

There are many ways to setup the computational domain for this test problem. Due to
several technical reasons, a cylindrical domain is preferable than a rectangular domain
as the external boundary for this test case. First of all, the number of unknowns can
be optimized since the volume of a cylinder is smaller than that of an elongated
cuboid when the width of the elongated cuboid and the diameter of a cylinder are
close to each other. Second, the flow between the sphere and the outer cylindrical
boundary is not subject to an artificial break-up of (axi)symmetry since the nearest
distance from the surface of the sphere to the side wall of the cylinder is identical in
all directions. On the other hand, a domain with a square cross-section would induce
preferred directions in the shedding vortices behind the sphere. Apparently, this does
not reflect the right physics of the flow. Thirdly, we noticed that the 3D flow around
the sphere with a cylindrical domain has a shorter transient time to reach a fully
periodic flow (not shown).

To setup the 3D geometry, we first define a 2D domain ΩI composed of the rectangle
[0, 12]× [0, 3] in the xz-plane minus the semi-circular hole centered at (x, z) = (3, 0)
with a radius of 0.5, as shown at the top of Figure 5.15. We fix ΩI on the xz-plane
to facilitate the boundary labelling for the top and bottom part of the 3D cylindrical
domain. Small elements are prescribed along the lower boundary and around the
semicircle to account for the larger variation on the solutions in these regions. To do
this, we equally divide both edges on the left and right into 6 elements, top edge into
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30 elements, bottom edge into 120 elements and the boundary of the semicircle into
30 elements. Next, using msh3 the 3D cylindrical domain is generated by rotating
the plane along the z-axis. The resulting mesh is shown at the bottom of Figure 5.15.
The cylindrical domain generated is defined as Ω =

{
(x, y, z) ∈ R3 | x2 + y2 < 9, z ∈

(0, 12)
}
\
{

(x, y, z) ∈ R3 | x2 + y2 + (z − 3)2 < 0.25
}

.

Figure 5.15: The 2D mesh for ΩI (top) and the 3D mesh for Ω (a sphere
inside the cylinder). The 2D mesh is shown lying inside the 3D cylinder
(bottom).

With the above setting, a tetrahedralization is generated in FreeFEM++, which gives
a total of 171 356 tetrahedra, 24 474 nodes and a varying element size 0.038 269 ≤
hK ≤ 1.000 650. Figure 5.16 shows the trace of the mesh on the yz-plane, xz-plane
and a cross-section in the xy-direction at z = 3. It can be seen that the resulting
mesh is fine near the sphere and in the wake behind the sphere to properly catch the
boundary layer and shedding vortices. The size of the mesh increases near the inflow
boundary Γz=0, outflow boundary Γz=12 and the cylindrical boundary Γc = {x, y, z ∈
R | x2 + y2 = 9, z ∈ (0, 12)}, since the fluid velocity tends to constant values in these
areas. We tried to mesh this geometry with TetGen but msh3 turned out to be easier
to use and sufficient to obtain a relatively nice mesh for this test case.
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Figure 5.16: The mesh around the sphere: Views of the mesh in the yz-plane
(top left), xz-plane (top right) and xy-plane at z = 3 (bottom).

Similar to the 3D flow around the cylinder, a fixed velocity u = (0, 0, 1) is prescribed
along the inflow boundary Γz=0. Homogeneous Neumann boundary conditions are
prescribed along the outflow boundary Γz=12. No-slip velocity u = (0, 0, 0) is set
along the boundary of the sphere. Lastly, along the cylinder boundary Γc, the velocity
normal to the surface is set to zero, which allows for free tangential flow along the side
wall of the cylinder. We considered a Reynolds number of 300 which is slightly above
the critical value for a Hopf bifurcation Recrit ∈ [270, 280] [33]. This value is higher
than the one required for the 3D flow around the cylinder which is about Recrit = 70.

The discretization with P2-P1 elements produces a total of 573 915 unknowns for the
velocity and 24 474 for the pressure. The resulting number of unknowns is considered
moderate for a 3D problem, hence the direct linear solver MUMPS can be still used
and is CPU-efficient. We solve this problem with the GM-SRM-2 method by fixing
the stabilization parameters α1 = 50τ and α2 = 50. This choice of the stabilization
parameters produces minor oscillations (in time) of the velocity and pressure at start-
up, but these oscillations are quickly damped in a few time steps. The choice of our
stabilization parameters is close to optimal since by picking α1 < 50τ and α2 < 50, the
minor oscillations generated at startup are not as quickly damped as for the optimal
values. We also checked that computations with α1 = 100τ and α2 = 100 produce
smaller Strouhal number for drag, lateral and side lift coefficients, i.e., Str = 0.1329,
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which could be a sign of over-stabilization in GM-SRM-2 with these larger values of
α1 and α2.

Here, we suggest an adjustment on stabilization parameters α1 and α2 by comparing
the closeness of our Strouhal number to the one obtained in the literature. The
Strouhal number is chosen because it is the least sensitive parameter and relatively
easy to reproduce. This approach may not be supported by any theoretical analysis
but we found that this method although non-rigorous to be very useful to guess
optimal α1 and α2, at least for this test case.

In this test case, we do not apply the computation of lift, drag and side coefficients
using volume integration technique which was proposed in [32, 54] and implemented in
our earlier test cases. We remind the reader that the volume integration technique has
been used in Chapter 2 to compute cd and cl involving 2D flows around the cylinder.
The computation of cd and cl does not involve the volume integration technique in
most of the literature. To ensure a similar comparison with the published results, we
resort to the direct boundary integral technique from [33]:
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where n = (nx, ny, nz) is the vector normal to the boundary S of the sphere. We
set the far-field flow speed to U∞ = 1, the diameter to D = 1 and the viscosity to
ν = 1

300
, to get Re = 300 for this test case. Further, the external force is set to f = 0.

The computations were stable with the time step τ = 0.005 and were run until a fully
periodic flow was observed. A periodic solution is reached for about t = 120 (i.e.,
24 000 time steps), starting from a periodic solution at Re = 1 000 computed on a
coarser mesh to initiate the von Kármán alley behind the sphere. The required total
CPU time was about 21 days on a i7-3 770 3.40GHz personal desktop, using 23GB of
memory. The computation was terminated once it reaches t = 140.



5. 3D COMPUTATIONS WITH SEMI-IMPLICIT METHODS 134

Figure 5.17 shows the time evolution of the streamlines of the flow which are plotted
for 2 periods of the flow.

Figure 5.17: Snapshots of the streamlines for the 3D flow around the sphere
(Re = 300), colored by the flow speed, shown at t = jϕ

4
, j = 1, 2, . . . , 6, 7

(from left to right, then top to bottom), ϕ = 7.4074.
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The flow exhibits many 3D characteristics which cannot be represented by an axisym-
metric 2D flow. The streamlines are color-coded by the magnitude of the velocity.
Higher fluid velocity is observed along the streamwise direction. The velocity increases
moving away from the sphere in the crosswise direction and the smallest flow speed
occurs behind the sphere which results in the generation of two separating vortices, as
can be seen as two major closed loop and interconnected streamlines (recirculations)
in this area. In the wake behind the sphere, the periodic occurence of swirling flow
is observed, for instance by comparing the streamlines at t = ϕ

4
and 5ϕ

4
which are

identical to each other. The period ϕ of the flow is approximately 7.4074 time units.

We adopt the technique that we have discussed earlier (see Section 5.2.1) for the
projection of streamlines on 2D planes. Figure 5.18 illustrates the planes used to plot
the projected streamlines.

Figure 5.18: The three planes used for the projection of stream-
lines/streamtubes: xy-plane behind the cylinder at z = 3.5 (in red); both
yz-plane (in blue) and xz-plane (in green) are rotated counter-clockwise of
35◦ around the z-axis.

The bifurcation occuring at Recrit ∈ [270, 280] results from the transformation of
the axisymmetric flow for Re < Recrit into a non-axisymmetric flow for Re > Recrit

but with reflexion symmetries (in space and space-time) with two symmetry planes
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parallel to the z-axis. The cylindrical domain used in our experiment prevents any
locking of the symmetry planes at a specified angle. By plotting the so-called rear
surface-limiting streamlines on the xy-plane (see Figure 5.19), our result shows the
existence of a symmetry plane with a pair of symmetric vortices on both sides of the
plane. The symmetry plane is tilted with a counter-clockwise angle of about 35◦±2◦.
Minor oscillations of the angle about the z-axis occurs over time with a maximal
amplitude of ±2◦. As a result, the stagnation point (for streamlines projected on
the xy-plane at z = 3.5) at the back of the sphere shifts slightly over time in a
periodic fashion. The period of these oscillations follows the period of the lift and
drag coefficients, i.e., ϕ = 7.4074 time units. The rear stagnation point is captured
at (-0.13, 0.18, 3.5) at t = 0, (-0.12, 0.16, 3.5) at t = ϕ

4
, (-0.14, 0.17, 3.5) at t = ϕ

2
and

(-0.16, 0.22, 3.5) at t = 3ϕ
4

and (-0.13, 0.18, 3.5) at t = ϕ (not shown), and similar
pattern repeats in a periodic fashion.

Figure 5.20 and 5.21 show the streamlines projected on the rotated yz- and xz-plane
(counter-clockwise by 35◦), respectively, over a single period of the flow. In addition
to this rotation of 35◦ (see Figure 5.18), these planes are slightly adjusted within ±2◦

to match as closely as possible the symmetry axis in the projection plane at different
times within each period. The plots in Figure 5.20 show the existence of a reflexion
symmetry with axis x = 0 for the projected streamlines in the tilted xz-plane. Our
results for the projected streamlines on the tilted yz- and xz-plane match very closely
with the ones shown in Figure 25 of [33].

Table 5.4 summarizes the drag, lateral lift and side lift coefficients computed with
GM-SRM-2 and the values found in the literature. The computed mean drag is
underestimated within a range 16%−21% compared to values in the literature (see [33,
50, 53, 67] and the experiment [50]), while the computed drag amplitude is about 30%
smaller than the value in [67]. Our computations produce very close values for the
frequencies of the drag, lateral lift, and side lift coefficients. For the lateral and
side lift coefficients, we compare well to the few published values, at least within the
bounds set by the numerical accuracy of our spatial discretization. The mean and
amplitude for the side coefficient computed with our method are larger than zero,
while these should be zero from theory. The side lift being null corresponds to the
ability to reach a planar-symmetric flow in a tilted midplane, in our case with an angle
of 35◦ counter-clockwise off the yz-plane. We have a time-variation of ±2◦ on the
tilting angle, resulting in a side lift coefficient potentially off from zero. Nonetheless,
our GM-SRM-2 method is capable to reproduce the fully periodic unsteady flows
with a frequency close to values found in the literature, which shows that the time
approximation with GM-SRM method is reasonably accurate to solve this 3D test
case. The accuracy of the side and lateral lift coefficient can be further improved by
using a finer mesh and a larger domain. Again however, finer meshes require a more
efficient solver to handle larger linear systems.
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(XY-Plane) (XY-Plane)

(XY-Plane) (XY-Plane)

Figure 5.19: Snapshots of rear-surface limiting streamlines for the 3D periodic
flow around the sphere (Re = 300) projected on the xy-plane at z = 3.5 for
t = 0 (top left), t = ϕ

4
(top right), t = ϕ

2
(bottom left) and t = 3ϕ

4
(bottom

right) time units, where ϕ = 7.4074.
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Figure 5.20: Snapshots of the streamlines for the 3D periodic flow around
the sphere (Re = 300) projected on the xz-plane (tilted counter-clockwise
by 35◦ ± 2◦) for t = 0 (top left), t = ϕ

4
(top right), t = ϕ

2
(bottom left) and

t = 3ϕ
4

(bottom right) where ϕ = 7.4074.

Figure 5.21: Snapshots of the streamlines for the 3D periodic flow around
the sphere (Re = 300) projected on the yz-plane (tilted counter-clockwise
by 35◦ ± 2◦) for t = 0 (top left), t = ϕ

4
(top right), t = ϕ

2
(bottom left) and

t = 3ϕ
4

(bottom right) where ϕ = 7.4074.
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Table 5.4: The average, amplitude and frequency of the drag, lateral and
side lift coefficients for 3D flow around the sphere at Re = 300.

Drag cd Mean Amplitude Frequency
Current 0.5302 1.9651× 10−3 0.1350

Johnson & Patel [33] 0.6560 3.5000× 10−3 0.1370
Tomboulides [67] 0.6710 2.8000× 10−3 0.1360

Roos & Willmarth [50] 0.6290 – –
Sakamoto & Haniu [53] – – 0.1500− 0.1650

Lateral lift cl Mean Amplitude Frequency
Current −1.1170× 10−1 1.8018× 10−3 0.1350

Johnson & Patel [33] −6.9000× 10−2 1.6000× 10−2 0.1370
Tomboulides [67] – – 0.1360

Sakamoto & Haniu [53] – – 0.1500− 0.1650

Side lift cs Mean Amplitude Frequency
Current 6.4800× 10−2 1.1721× 10−2 0.1350

Johnson & Patel [33] 0 0 –

5.5 A Comparison on the Computational Efficiency

In this section, we compare the CPU and memory requirements of all 2D and 3D test
cases attemped in this thesis. We did not do efficiency comparisons as were presented
in [41] since we do not have sufficient information about the convergence (in time)
for our 3D test cases. Our goal in this chapter was not so much in comparing our
results with reference solutions than to illustrate the potential of the methods. Since
we did not carry the computation to search truly periodic flows but just far enough
to obtain the general features of the flows, CPU times might not be comparable to
some of the published result.

Table 5.5 summarizes all test cases done in the thesis with the respective Reynolds
numbers, time-stepping methods, the presence of grad-div stabilization term (GD),
number of unknowns, computer memory (in Mb) and CPU time (in second) involved
to compute one time step. Here, the computer memory is the maximum memory
required to solve the linear systems and to store all variables. Also presented in this
table is the ratio of the CPU time per degree of freedom per time step, here noted as
ratio�. All computation were carried out on the same personal desktop with an Intel
Core i7-3 770 CPU 3.4GHz×8 cores processor.

All the test cases employ MUMPS as the linear solver except two test cases in the 3D
lid-driven cavity where a GM method with grad-div stabilization and the iterative
linear solver HIPS were used. The parameter ratio� provides a reasonable clue on
required CPU resources with different linear solvers, e.g., MUMPS and HIPS, both
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for the 2D and 3D computations independently from the order of the method. For
instance, we deduce that higher-order SBDF methods are the most CPU-efficient with
MUMPS since their ratio� is the smallest. Furthermore, the value of ratio� between
the 2nd- and 3rd-order SBDF methods are close to each other.

Table 5.5: Statistics for all test cases carried in this thesis.

Test case Re Method GD #dof (u, p) Mem. CPUτ
1ratio�

2D cavity 8 500 SBDF-2 No (137 618, 17 323) 392 0.98 6.32 × 10−6

2D cavity 8 500 SBDF-3 No (137 618, 17 323) 392 1.31 8.45 × 10−6

2D cavity 8 500 DC-2 No (137 618, 17 323) 392 1.99 1.28 × 10−5

2D cavity 8 500 DC-3 No (137 618, 17 323) 392 3.62 2.34 × 10−5

2D cavity 8 500 GM-2 Yes (137 618, 17 323) 273 2.46 1.58 × 10−5

2D cavity 8 500 GM-3 Yes (137 618, 17 323) 273 4.19 2.70 × 10−5

2D cavity 8 500 GM-SRM-2 Yes (137 618, 17 323) 272 2.88 1.86 × 10−5

2D cavity 8 500 GM-SRM-3 Yes (137 618, 17 323) 271 4.85 3.13 × 10−5

2D cavity 50 000 SBDFB-3 Yes (381 242, 47 856) 1 308 2.73 6.36 × 10−6

2D cavity 100 000 SBDFB-3 Yes (592 602, 74 326) 2 107 4.75 7.12 × 10−6

2D cylinder 100 SBDF-2 No (108 474, 13 648) 307 1.00 8.19 × 10−6

2D cylinder 100 SBDF-3 No (108 474, 13 648) 289 1.05 8.60 × 10−6

2D cylinder 100 DC-2 No (108 474, 13 648) 302 2.24 1.83 × 10−5

2D cylinder 100 DC-3 No (108 474, 13 648) 289 3.06 2.51 × 10−5

2D cylinder 100 GM-2 Yes (108 474, 13 648) 214 2.71 2.22 × 10−5

2D cylinder 100 GM-3 Yes (108 474, 13 648) 223 3.32 2.72 × 10−5

2D cylinder 100 GM-SRM-2 Yes (108 474, 13 648) 223 2.61 2.14 × 10−5

2D cylinder 100 GM-SRM-3 Yes (108 474, 13 648) 222 3.23 2.64 × 10−5

2D cylinder 1000 SBDFB-3 Yes (721 760, 90 500) 2 574 5.91 7.28 × 10−6

3D cavity (HIPS) 100, 400, 1 000 2 GMS2-GS2 Yes (3 090 903, 132 651) 15 680 228.61 7.09 × 10−5

3D cavity (HIPS) 1970 3GMS2-NLGD Yes (3 090 903, 132 651) 15 680 381.80 1.18 × 10−4

3D cylinder 100 GM-SRM-2 Yes (509 040, 22 715) 13 766 33.89 6.37 × 10−5

3D sphere 300 GM-SRM-2 Yes (573 915, 24 474) 23 058 51.75 8.65 × 10−5

We observe that parameter ratio� for all DC, GM and GM-SRM methods can be
approximately scaled by the number of subproblems involved in the methods by
comparing it with the ratio� of the SBDF methods. For instance, we found a factor
of k larger in the ratio� of the knd-order DC, GM and GM-SRM than the ratio�

of SBDF-k method since the former methods have k subproblems per time step to
deal with. Between the methods with the defect correction strategy in general, DC
methods have the smallest value of ratio� which are followed closely by GM and
GM-SRM methods. Even though the resulting linear systems in GM and GM-SRM
methods (with symmetric and positive definite global matrix) are easier to solve than
the saddle point global matrix in DC methods, the ratio� is still controlled by the
total number of the linear system to be solved.

The 3D test problems produce a ratio� about 3 to 4 times larger than for 2D prob-
lems using GM-SRM methods. This occurs due to the different sparsity pattern in the
global matrix between 2D and 3D problems. 3D problems have a larger bandwidth
than 2D test problems, which requires more fill-in in the matrix during the factoriza-
tion step in MUMPS. The combination of GM methods with grad-div splitting and

1ratio� = CPUτ/dof
2GMS2-GS2 is GM-2 method with grad-div splitting with only two Gauss–Seidel iterations
3GMS2-NLGD is GM-2 method with grad-div splitting with “nonlinear ansatz”



5. 3D COMPUTATIONS WITH SEMI-IMPLICIT METHODS 141

HIPS is very promising to compute 3D flows with a large number of unknowns which
is otherwise not feasible using MUMPS.

Most of our 2D problems require reasonably small memory and can be easily handled
by modern personal desktop. This memory rarely exceeds 4Gb. However, for 3D flow
around cylinder and sphere, the memory required with MUMPS reaches about 14Gb
and 23Gb, respectively. We should mention that for these flows the meshes were fine
enough to reproduce qualitatively solutions from the literature but not quantitatively,
hence more memory could be needed. For 3D lid-driven flows, computations with a
direct solver fail to work as the method requires more than 64Gb, exceeding what
is available on our desktop. By switching to the iterative solver HIPS, the memory
requirement drops to 16Gb, for 3 millions of unknown.



Chapter 6

Conclusions and Future Works

6.1 Concluding remarks

In Chapter 1, we reviewed several time-stepping methods and found out that semi-
implicit methods (e.g., CNAB method) are very competitive in terms of accuracy and
efficiency when solving unsteady incompressible Navier–Stokes equations. This sets
our fundamental motivation to develop more robust time-stepping methods based on
their order of accuracy (in time), stability, and CPU and memory efficiency. This is
possible with semi-implicit approach.

In Chapter 2, we first studied several high-order semi-implicit time-stepping methods;
namely, the known method SBDF and the newly-developed/modified methods DC,
GM and GM-SRM. Rigorous numerical assessment had been conducted to verify their
theoretical rate of convergence. Our analysis also includes comparisons in terms of
numerical error, required CPU time and numerical stability. Several parameters of
interest were benchmarked with the values found in the literature. For 2D unsteady
flows, SBDF and DC methods are the most efficient methods based on ratio error
size over CPU time, followed by GM and GM-SRM methods.

In Chapter 3, we showed that SBDF methods with grad-div stabilization are more
stable and accurate based on the strength of the local mass conservation while main-
taining the advantage of being very efficient when computing 2D unsteady flows. Also,
several nonlinear extrapolation schemes were studied which have great potential to
reduce the numerical errors on velocity and pressure while bringing the accuracy of
this method closer to that of BDF (fully-implicit) methods. The enhanced SBDF
methods showed their robustness when computing (2D) nearly turbulent flows.

In the first part of Chapter 4 we improve the DC, GM and GM-SRM methods with
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the introduction of new extrapolation formulae for the nonlinear advection term. The
new extrapolation formulae further reduce the error on velocity and pressure while
maintaining the theoretical order of convergence in time, and give better numerical
stability depending on the test cases. We observed that a triggered numerical error
propagating in time is not generated with these improved formulae. The second part
of this chapter includes results that improve the accuracy and efficiency of grad-div
splitting proposed in [24], and allow us to reduce the size of the resulting linear system
in GM methods when solving larger flow problems.

In Chapter 5, we showcased the computation of 3D flows using GM and GM-SRM
methods but only for 2nd-order schemes. To handle the millions of degrees of freedom
arising in the computation of 3D lid-driven cavity flows, a GM-2 method in conjunc-
tion with grad-div splitting is employed to break the resulting linear system into
smaller systems. Also, an efficient iterative solver known as HIPS is used to handle
these moderate size linear systems. The numerical results for the 3D lid-driven cav-
ity at Re = 100, 400 and 1 000 (steady flows) produce very satisfactory qualitative
results. For the 3D lid-driven cavity at Re = 1 970 (unsteady flows), our results have
not yet reached a fully periodic state but the partial results showed that the flow is
unsteady, with the general features well reproduced. Our results for 3D flows around
the cylinder at Re = 100 and 3D flows around the sphere produce fully periodic solu-
tion with the Strouhal number very close to the one in the literature. The qualitative
estimates of lift and drag coefficients for both cases are however falling short of the
values in the literature because the space discretization in our experiments is not fine
enough. Nonetheless, the GM-SRM-2 method produces with good accuracy the right
periodic flows; at least a good accuracy is achieved in time. The ratio CPU time over
degree of freedom per time step showed that high-order SBDF methods are the most
CPU-efficient (with MUMPS). The usage of computer memory can be significantly re-
duced by using an iterative solver, such as HIPS, to compute 3D flows. For about the
same number of unknowns, the resulting global matrices in 3D problems are sparser
(more null elements), with a larger bandwidth than those in 2D problems, making
iterative linear solvers more competitive compared to direct solvers (e.g., MUMPS)
in 3D.

6.2 Future works

It would be interesting to investigate the potential of GM and GM-SRM methods
with order of accuracy larger than 3 since these methods have better stability prop-
erties than SBDF methods. The major issue however would be the efficiency since
these higher-order methods (k > 3) require more evaluations of auxiliary variables
and involve more subproblems. One way to improve efficiency is to parallelize the
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computations based on the subproblems since they can be made “independent” of
each other; e.g., by performing the computations of the upper subproblems one or
two steps ahead of the lower subproblems (according to the dependence tree in Fig-
ure 4.1).

We could investigate the use of other mixed finite elements, in particular the conser-
vative pair of elements for space discretization. This may result in different numerical
behaviour; for instance, regarding the need for the stabilization term in the Navier–
Stokes equations which is closely linked to mass conservation. Such numerical study
has not been attempted.

For Taylor–Hood elements, the optimal choice for the stabilization parameter λ for
GM methods, and α1 and α2 for GM-SRM methods, is still an open problem. This
particular topic connects many aspects of the computations; e.g., minimizing the ve-
locity and pressure error, and fulfilling mass conservation, numerical dissipations and
stability when dealing with flows with high Reynolds numbers. A rigorous mathe-
matical analysis is needed to improve the selection of λ for Navier–Stokes equations,
and should be supported by numerical test cases.

For finite element methods, fancy iterative solvers play a vital role. Unfortunately,
our work has paid little attention to this critical area. Such work is required to
handle more degrees of freedom and larger problems. This should include domain de-
composition techniques in conjunction with parallel implementations. Incorporating
more efficient techniques to solve larger linear systems (e.g., multigrid methods) and
the development of more specific preconditioners are other avenues. In the current
computational setting, the selection of optimal parameters in MUMPS and HIPS for
better numerical efficiency has been left out due to the time constraint in completing
this thesis. Such work would allow our high-order time stepping methods to solve
large scale industrial flow problems.



Appendix A

Fundamental Theorems on Finite
Element Methods

Theorem A.0.1 (Error estimates for Stokes equations using P2-P1 finite
elements (see Ern and Guermond, [13])). Assume that the solution (u, p) to
the Stokes problem (1.1.1) is sufficiently smooth, i.e., u ∈ [H3(Ω) ∩ H1

0 (Ω)]d and
p ∈ H2(Ω) ∩ L2

0(Ω). Then, the solution (uh, ph) of (1.1.3) with Xh and Mh, as
defined in (1.1.4) satisfies

∀h, ‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ ch2(‖u‖3,Ω + ‖p‖2,Ω).

for some constant c > 0. Moreover, if the Stokes problem has smoothing properties,

∀h, ‖u− uh‖0,Ω ≤ ch3(‖u‖3,Ω + ‖p‖2,Ω).
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Appendix B

Useful Concepts, Definitions and
Numerical Tools

B.1 Regular Triangulation

For a given set S, the diameter of S is defined by [28]

diam(S) = sup{|x− y| : x,y ∈ S}

The family of meshes {Th}h>0 discretizing a domain Ω, is called regular if it fulfills
the following conditions.

(1) lim
h↓0

max{diam | TK ∈ Th} = 0

(2) There exist a constant σ > 0 independent of h such that

ρ(TK)

diam(TK)
≥ σ, ∀TK ∈ Th, (B.1.1)

where ρ(TK) are the diameter of the inscribed circle of TK .

B.2 Newton–Raphson’s method

We are interested in computing solutions X ∈ Rn of the system F(X) = 0, where
F : Rn → Rn is a general nonlinear function. Newton’s method consists in iterating

Xn+1 = Xn − [F′(Xn)]−1F(Xn) (B.2.1)

146



B. USEFUL CONCEPTS, DEFINITIONS AND NUMERICAL TOOLS 147

starting from some X0 ∈ Rn. When applying Newton’s method to the stationary
Navier–Stokes equations, we define the variable

X =

[
u
p

]

and the function

F(X) = F

([
u
p

])
=

[
−ν∆u + u · ∇u +∇p− f

∇ · u + εp

]
(B.2.2)

Applying (B.2.1) to the (B.2.2), we get

F′
([

uk

pk

])[
uk+1 − uk
pk+1 − pk

]
= −F

([
uk

pk

])

or written in a component-wise form

−ν∆uk+1 + uk+1 · ∇uk + uk · ∇uk+1 +∇pk+1 = f + uk · ∇uk, (B.2.3)

∇ · uk+1 − εpk+1 = 0. (B.2.4)

From a practical point of view, few other issues have to be considered: first is that
(B.2.3) and (B.2.4) are written in variational form and second, a stopping criterion
is required to assess the convergence of Xn. One way to achieve this is by fixing
‖uk+1 − uk‖L2(Ω) < tol where tol > 0 is any user-define small real number.

To write down the general formulation of Newton’s method for nonstationary Navier–
Stokes equations with time-stepping methods requires care. For instance, when in-
volving multistep methods (e.g., BDF), one may simply add the time-discretization
term and freeze the past step value(s) whenever the Newton’s method is iterated at
each time step. When using BDF-2 for time-stepping, the algorithm is written as
follows: Given a proper initialization of u0 and u1, and we fix un+2

0 := un+1 by con-
vention, for n = 0, 1, 2, . . . we seek the solution (un+2, pn+2) through the convergence
of Newton’s iteration for some value k ∈ N (with a proper stopping criteria) using

3un+2
k+1 − 4un+1 + un

2τ
− ν∆un+2

k+1 + un+2
k+1 · ∇un+2

k + un+2
k · ∇un+2

k+1

+∇pn+2
k+1 − fn+2 = un+2

k · ∇un+2
k ,

∇ · un+2
k+1 − εpn+2

k+1 = 0.

At convergence of Newton’s method, we fix un+2 := un+2
k+1 and pn+2 := pn+2

k+1 for some
value k ∈ N and for all n = 0, 1, 2, . . .
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B.3 Bound associated with the nonlinear term

We define the nonlinear term B(u) = u · ∇u where u ∈ Rd, d = 2, 3 is a vector field.
Let a,b, c ∈ Rd are non-zero vector fields. Then following bound holds

∣∣B(a + b)−B(a + c)
∣∣ ≤

∣∣(a + b) · ∇(b− c)
∣∣+
∣∣(b− c) · ∇(a + c)

∣∣ (B.3.1)

Proof:

B(a + b)−B(a + c) = (a + b) · ∇(a + b)− (a + c) · ∇(a + c)

= a · ∇a + a · ∇b + b · ∇a + b · ∇b− a · ∇a− a · ∇c−
c · ∇a− c · ∇c

= a · ∇(b− c) + (b− c) · ∇a + b · ∇b− b · ∇c + b · ∇c−
c · ∇c

= a · ∇(b− c) + (b− c) · ∇a + b · ∇(b− c) + (b− c) · ∇c

= (a + b) · ∇(b− c) + (b− c) · ∇(a + c)∣∣B(a + b)−B(a + c)
∣∣ ≤

∣∣(a + b) · ∇(b− c)
∣∣+
∣∣(b− c) · ∇(a + c)

∣∣



Appendix C

Several modeling considerations

C.1 Boundary conditions for the 2D lid-driven cav-

ity flow at Re = 8 500

The domain Ω = (0, 1)2 is typically used to compute 2D lid-driven cavity flows.
Homogeneous Dirichlet boundary conditions with velocity u|Γ = (0, 0) is prescribed
along left, right and lower boundaries. Along the upper lid, the velocity u|Γ = (1, 0)
is set to provide a constant flow. The boundary settings at the corner produce dis-
continuous solutions for the lid-driven cavity. We consider two types of boundary
conditions at the two upper corners. Figure C.1 shows the “watertight cavity” (de-
noted as CAVITY-1) which fixes u|Γ = (0, 0) (in blue) at the top corners while the
“leaky cavity” (denoted as CAVITY-2) fixes u|Γ = (1, 0) (in red) at the top corners.

Figure C.1: Two types of domain setting for 2D lid-driven cavity: “Water-
tight cavity” (CAVITY-1) and “leaky cavity” (CAVITY-2).
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We compute the 2D lid-driven cavity using both CAVITY-1 and CAVITY-2 and
we compare the numerical results. The discretization of the domain is done using
non-uniform triangular mesh with 120 triangles along each edge of the square. This
results in a varying mesh size 0.006 28 ≤ hK ≤ 0.016 60 with 34 164 vertices and
17 323 elements. With P2-P1 elements, a total of 154 941 unknowns are generated
for both velocity and pressure. We compute the 2D lid-driven cavity using different
combinations of methods, boundary conditions, Reynolds numbers and time steps.
All these are given as follows:

(a) CAVITY-1, BDF-2 method, Re = 8 000, τ = 0.05
(b) CAVITY-1, DC-2 method, Re = 8 000, τ = 0.002 7
(c) CAVITY-2, BDF-2 method, Re = 8 000, τ = 0.05
(d) CAVITY-2, BDF-2 method, Re = 8 500, τ = 0.01

Here we consider two values of Reynolds number; namely 8000 and 8500. Many
authors have reported that the first Hopf bifurcation can be triggered at about Re =
8000 (see [2, 8, 14, 66]) while [18] reported that bifurcation is possible with a smaller
critical value Recri < 7500. This can only be achieved for a sufficient long simulation
time T . Computations are initialized from the state of rest. The time evolution of
x-velocity u are monitored from time to time at three points; i.e., near bottom left
(0.2, 0.3), bottom right (0.8, 0.3) and top right (0.8, 0.7).

Figure C.2 shows the x-velocity u monitored at three points for t ∈ [1 000, 1 200]
using the above test cases. We observed that the x-velocity u at all monitoring points
becomes fully periodic when CAVITY-1 is implemented with Re = 8 000. However,
both computations with CAVITY-2 produces steady solution. Even with the higher
Reynolds number, Re = 8 500, and smaller time step τ = 0.01, we were not able to
trigger flow instabilities in CAVITY-2.

In [41], we produced unsteady periodic flows with all methods for CAVITY-1 at
Re = 8 500 with various time steps τ = 0.001, 0.001 4 and 0.002 5. We tested that
the periodicity is observed with CAVITY-2 at Re = 10 000 and time step τ = 0.01
using BDF-2 method (result not shown). The “leaky cavity” (CAVITY-2) is a type
of regularized cavity which results in lower sensitivity to flow instabilities induced by
high Reynolds number. On the basis of these results, we were convinced that the
“watertight cavity” (CAVITY-1) is the best option to compute 2D lid-driven cavity
at Re = 8 500.



C. SEVERAL MODELING CONSIDERATIONS 151

-0.21

-0.20

-0.19

-0.18

-0.17

-0.16

-0.15

-0.14

-0.13
x
-v

el
o
ci

ty
 (

m
s-1

) 
Time evolution of x-velocity at bottom left (0.2, 0.3)

CAVITY-1 (BDF-2, Re=8000, τ = 0.05)
CAVITY-1 (DC-2, Re=8000, τ = 0.0027)
CAVITY-2 (BDF-2, Re=8000, τ = 0.05)
CAVITY-2 (BDF-2, Re=8500, τ = 0.01)

-0.25

-0.24

-0.23

-0.22

-0.21

-0.20

-0.19

-0.18

-0.17

-0.16

x
-v

el
o
ci

ty
 (

m
s-1

) 

Time evolution of x-velocity at bottom right (0.8, 0.3)

CAVITY-1 (BDF-2, Re=8000, τ = 0.05)
CAVITY-1 (DC-2, Re=8000, τ = 0.0027)
CAVITY-2 (BDF-2, Re=8000, τ = 0.05)
CAVITY-2 (BDF-2, Re=8500, τ = 0.01)

0.05

0.06

0.07

0.08

0.09

0.10

1000 1050 1100 1150 1200

x
-v

el
o
ci

ty
 (

m
s-1

) 

Time (s)

Time evolution of x-velocity at top right (0.8, 0.7)

CAVITY-1 (BDF-2, Re=8000, τ = 0.05)
CAVITY-1 (DC-2, Re=8000, τ = 0.0027)
CAVITY-2 (BDF-2, Re=8000, τ = 0.05)
CAVITY-2 (BDF-2, Re=8500, τ = 0.01)

Figure C.2: Time evolution of the x-velocity u at three locations with differ-
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