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Abstract

The heart is a complex organ and much is still unknown about its mechanical function. In

order to use simulations to study heart mechanics, fluid and solid components and their

interaction should be incorporated into any numerical model. Many previous studies have

focused on myocardium motion or blood flow separately, while neglecting their interac-

tion. Previous fluid-structure interaction (FSI) simulations of heart mechanics have made

simplifying assumptions about their solid models, which prevented them from accurately

predicting the stress-stain behaviour of the myocardium. In this work, a numerical model

of the canine left ventricle (LV) is presented, which serves to address the limitations of

previous studies. A canine LV myocardium material model was developed for use in con-

junction with a commercial finite element code. The material model was modified from

its original form to make it suitable for use in simulations. Further, numerical constraints

were imposed when calculating the material parameter values, to ensure that the model

would be strictly convex. An initial geometry and non-zero stress state are required to

start cardiac cycle simulations. These were generated by the static inflation of a passive

LV model to an end-diastolic pressure. Comparisons with previous measurements verified

that the calculated geometry was representative of end diastole. Stresses calculated at the

specified end diastolic pressure showed complex spatial variations, illustrating the superi-

ority of the present approach over a specification of an arbitrary stress distribution to an

end-diastolic geometry. In the third part of this study, FSI simulations of the mechanics

of the LV were performed over the cardiac cycle. Calculated LV cavity pressures agreed

well with previous measurements during most of the cardiac cycle, but deviated from them
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during rapid filling, which resulted in non-physiological backflow. This study is the first

one to present a detailed analysis of the temporal and spatial variations of the properties

of both the solid and the fluid components of the canine LV. The observed development of

non-uniform pressure distributions in the LV cavity confirms the advantage of performing

FSI simulations rather than imposing a uniform fluid pressure on the inner surface of the

myocardium during solid-only simulations.
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Chapter 1

Introduction

1.1 Motivation

Heart disease is one of the leading causes of death in the industrialized world. To

better understand heart disease and treatment options, more complete knowledge of the

healthy heart is required. Numerical modelling can be used as a powerful tool to advance

our understanding of the behaviour of a healthy heart. A complete numerical model of

the heart would be required to contain anatomically and physiologically accurate models

of four moving valves and four deformable chambers, blood flow, myocardium mechanics,

electrophysiology, and cellular mechanics, as well as to simulate all coupled interactions

among these components and mechanisms. Such a model has not yet been developed, but

recent advances in high performance computing have enabled researchers to improve upon

existing heart models by including two or more components and their coupling in their

studies.

Studies of heart mechanics have generally focused on the left ventricle (LV), which
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is the main pumping chamber of mammalian hearts and is responsible for pumping blood

through the body, because it is the chamber that most commonly develops malfunction

or failure. Many researchers have studied either the solid mechanics of the myocardium

(Nash and Hunter (2000), Kroon et al. (2009)), the fluid mechanics of blood flow (Long

et al. (2008), Schenkel et al. (2009)), or other aspects, such as electromechanical coupling

(Chapelle et al. (2009)), but without considering the interaction between the flowing blood

and the deforming myocardium.

Any research which fails to account for fluid-structure interaction (FSI), which is

the coupling of the dynamics of fluid and solid components, misses an important aspect of

heart mechanics. Oertel’s research group at the Karlsruhe Institute of Technology, Karl-

sruhe, Germany has developed sophisticated computational fluid dynamics (CFD) models

of the blood flow in the LV, in which the motion of the LV wall was specified from magnetic

resonance imaging (MRI) models (e.g., Schenkel et al. (2009)). More recently (Krittian

et al. (2010)), the same group has begun to include FSI effects, because their CFD-MRI

models were unable to “capture the effects of out of plane movement or torsion”. Other

researchers (Peskin and McQueen (1996), Watanabe et al. (2004)) have also included FSI

effects in their simulations of heart mechanics. Although these studies have been successful

in predicting the blood flow, simplifications in their solid mechanics models have limited

their abilities to predict accurately the stress-strain behaviour of the myocardium.

Blood flow and myocardium motion play an equally important role in the overall

mechanical behaviour of the LV, as each has a significant influence on the other. Numerical

models of the mechanics of the LV should therefore include both of these components as
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well as the coupling between them. Further, researchers should strive to achieve the same

level of uncertainty in their results for both the fluid and solid mechanics rather than overly

simplifying one or the other.

1.2 Objectives

The overall objective of this work was to perform fully coupled FSI simulations

of the mechanics of the canine LV during the cardiac cycle. Parameters used to define

both the fluid and solid models for these simulations were chosen to be representative of an

“average” canine LV so that results obtained for both the fluid and solid phases could be

compared to previous measurements for validation. This study has been divided into three

parts: development of a solid material model, simulations of filling of the passive LV, and

simulations of the cardiac cycle. Specific objectives for each of these parts are described in

the following.

Development of a material model for the myocardium of a canine LV : Because

the material properties of the myocardium cannot be modelled using a readily available

material model, it is necessary to define a specific material model, which is suitable for

incorporation into an existing FSI code. The objectives of this first phase were to modify

an existing myocardium material model from the literature so that it could be used for

finite element analysis, to determine material parameter values that are representative of

an average canine LV, and to implement this model in a computer subroutine that could

be linked to a commercial finite element package.

Static inflation of the passive LV myocardium to an end-diastolic pressure: The
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primary objective of this phase was to calculate an end-diastolic state that could be used

as an initial condition for cardiac cycle simulations. A secondary objective was to compare

results from simulations employing different values of several model parameters to results

from previous experimental and computational studies in order to determine a suitable

choice of each parameter.

FSI simulations of the mechanics of LV over the cardiac cycle: The primary

objective of this phase was to compute results for the fluid and solid models over the

cardiac cycle that would be consistent, to the greatest possible extent, with physiological

expectations.

1.3 Organization

The thesis consists of six chapters. Chapter 2 provides background information

on the anatomy and physiology of the heart and a description of the cardiac cycle. Each

of the following three chapters reproduces a stand-alone published article or a manuscript

submitted for publication or intended to be submitted. Chapter 3 is an article (Doyle et al.

(2010a)) discussing the development of a material model for the canine LV myocardium.

Chapter 4 is a manuscript describing simulations of the inflation of the passive LV. Chapter

5 is a manuscript on FSI simulations during the cardiac cycle. Lastly, Chapter 6 contains

general conclusions for this study as well as recommendations for future work in material

model development, mechanics of myocardium deformation and blood flow, and FSI sim-

ulations of the heart. Four appendices have also been included in this thesis. These

appendices contain work that is complementary to the work presented in the body of the
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thesis, but which has been placed in appendices to avoid distracting the reader from the

main issues in this study. Appendix A is an excerpt of an article (Doyle et al. (2010b))

that contains details on parallelization of the FSI simulations. Appendix B contains ad-

ditional mathematical details pertaining to the simulations of the inflation of the passive

LV. Appendix C briefly addresses the extension of this work to an anatomical geometry of

the left and right ventricles and the challenges with performing such an extension. Lastly,

Appendix D provides additional details on the fluid geometry definition and the numerical

methods used in the FSI simulations.
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Chapter 2

Background

2.1 Cardiovascular system

The cardiovascular system is an organ system in the bodies of animals, comprising

the heart, blood vessels, and blood, whose primary function is to transport blood. In this

section, background on the anatomy and physiology of mammalian hearts is provided along

with a descriptions of the cardiac cycle and the contraction and relaxation of heart muscle

fibres.

2.2 Heart anatomy and physiology

The heart is a muscular organ responsible for pumping blood through the body. It

consists of four chambers, the left and right atria (LA, RA), and the left and right ventricles

(LV, RV), as shown in Fig. 2.1. Note that left and right are defined by the way a person

views his or her own heart. The left and right sides of the heart are separated from each
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Figure 2.1: Anatomy of the heart. Arrows indicate the direction of blood flow.

other by two walls, the interatrial septum and the interventricular septum. The left side

of the heart is responsible for pumping blood through the body, while the right side of

the heart is responsible for pumping blood to the lungs. As shown in Fig. 2.1, the heart

has four valves to control the flow direction; the pulmonary valve connects the RV to the

pulmonary trunk, the tricuspid valve connects the RA and the RV, the aortic valve (AV)

connects the LV and the aorta, and the mitral valve (MV) connects the LA and the LV.

The mitral and tricuspid valves are called atrioventricular valves because they separate the

atria from the ventricles. The other two valves, the pulmonary and aortic valves are called

semilunar valves because of the shape of their leaflets.
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The heart wall consists of three layers, which from the outside to the inside are the

epicardium, the myocardium, and the endocardium. Both the epicardium and the endo-

cardium are thin layers, containing epithelial cells and connective tissues. The myocardium

is a thick layer that contains muscle fibres, extracellular matrix, interstitial fluid, blood ves-

sels, and blood (Huyghe et al. (1991)). The extracellular matrix of the myocardium

contains collagen fibres and other components such as elastin fibres and fibronectin (Opie

(2004)). Myocardial thickness varies from chamber to chamber, according to the distance

over which each chamber has to pump blood and the afterload it has to pump against.

Accordingly, the atria have thinner myocardial layers than the ventricles. Further, the LV

has a thicker myocardial layer than the RV, corresponding to the higher afterload of the

body than that of the lungs. The relatively high afterload is also the reason for which the

LV is the most commonly failing heart chamber.

The muscle fibres in the myocardium are arranged in layers of roughly constant

fibre orientation, where the fibre angle, measured with respect to the local circumferential

direction, changes from the epicardial surface to the endocardial surface. Pioneering work

on quantifying the fibre angles in the myocardium was performed by Streeter et al. (1969),

who found an almost linear change in fibre orientation through the myocardium of canine

LVs. An example of the muscle fibre layers and angles can be found in Fig. 2.21, which is

a representation of the LV and RV of a porcine heart.

Heart muscle fibres are arranged in bundles. As shown in Fig. 2.3, each muscle

fibre can be divided into filaments, known as myofibrils, which are made up of repeating

1Reprinted from Journal of Biomechanics, v. 36, Stevens, C., Remme, E., LeGrice, I., and Hunter,
P., Ventricular mechanics in diastole: Material parameter sensitivity, p. 741, 2003, with permission from
Elsevier.
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Figure 2.2: Heart muscle fibre orientations for the left and right ventricles of a porcine
heart. For the left ventricle, the fibres are oriented at angles of -60◦ on the outer surface
(a), 0◦ in the middle (b), and +80◦ on the inner surface (c) (from Stevens et al. (2003)).

units, referred to as sarcomeres. Sarcomeres are made up of two types of myofilaments,

actin, which are thin, and myosin, which are thick, as shown in Fig. 2.4.

2.3 Cardiac cycle

During each heartbeat the heart undergoes several steps, in a process termed the

cardiac cycle. At different parts of the cardiac cycle, each chamber of the heart contracts

and relaxes; a chamber that is contracting is said to be in systole, whereas a chamber that

is relaxing is said to be in diastole.

In this section, the cardiac cycle is described for the LV starting from end diastole,

at which time the muscle fibres in the LV are fully relaxed, the AV and the MV are closed,

and the volume Vf of the LV cavity reaches its maximum value. The cardiac cycle is divided

into four phases, isovolumetric contraction (IVC), ejection, isovolumetric relaxation (IVR),

and filling. These phases can be grouped together into two parts, ventricular systole, which
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Figure 2.3: Composition of a single muscle fibre.

consists of the IVC and ejection phases, and ventricular diastole, which consists of the IVR

and filling phases.

IVC begins at end diastole, when the MV closes. This phase is referred to as

isovolumetric because Vf remains roughly constant during this phase when both valves are

closed. During IVC, the muscle fibres contract and the pressure pLV inside the LV cavity

increases. Once pLV exceeds the aortic pressure pAo, the AV opens and the ejection phase

begins. Ejection is divided into two sub-phases, rapid ejection and reduced ejection (Opie

(2004)). During rapid ejection, the muscle fibres continue to contract, pLV continues to

increase, and Vf decreases, as blood rapidly exits the LV during this phase because pLV >

pAo. When pLV reaches a maximum, reduced ejection begins. During reduced ejection,

the muscle fibres begin to relax, pLV decreases, and Vf decreases, as blood continues to exit

the LV, although at a slower rate because pLV < pAo. When pLV decreases sufficiently, the

AV closes and IVR begins. During IVR, the muscle fibres continue to relax, pLV decreases,

and Vf remains roughly constant. IVR continues until pLV is lower than the left atrial
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Figure 2.4: Structure of a sarcomere.

pressure pLA at which time the MV opens and filling begins. Filling is divided into three

sub-phases, rapid filling, diastasis, and atrial contraction (Opie (2004)). During rapid

filling, muscle fibres complete their relaxation, pLV continues to decrease and Vf increases

as blood rapidly enters the LV. Once the muscle fibres have completed their relaxation, pLV

begins to increase and the rate of change of Vf decreases. As pLV approaches pLA, diastasis

occurs. Diastasis is characterized by a small difference between pLV and pLA and a small

increase in Vf . Lastly, the LA contracts, which marks the start of the atrial contraction

sub-phase, during which pLV and Vf increase as blood is driven into the LV from the LA.

Once pLV becomes equal to pLA, the MV closes and the cardiac cycle begins again.

The overall mechanics of the LV during the cardiac cycle may be characterized

by the changes in pLV and Vf . Such changes may be plotted as functions of time or as

functions of each other. The change in Vf during the cardiac cycle may be characterized by

two parameters, the stroke volume SV and the ejection fraction EF . The stroke volume is

the change in Vf from end diastole to end systole, that is SV = Vf,ED−Vf,ES . The ejection
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fraction is the ratio of the stroke volume to the end-diastolic volume, i.e., EF = SV/Vf,ED.

For comparison of results from different studies, it seems preferable to consider EF rather

than SV , because SV depends on the initial value of Vf .

Available experimental information on the changes of physiological pressure and

cavity volume of canine LV will be used for a partial validation of the present predictions.

Figure 2.5a is plot of pLV measured by Sabbah and Stein (1981) as a function of the

normalized time τ , equal to the ratio of the actual time and the cardiac cycle period, for

a period of 600ms/heartbeat, which is equivalent to 100 beats/min. Considering that

Sabbah and Stein (1981) did not measure the corresponding cavity volume changes for the

measured pressures, the change in Vf will be estimated from EF taken from the literature.

Previous studies of canine LVs have found ejection fractions of EF = 0.43 (SV = 34ml)

(Bovendeerd et al. (1996)) and 0.45 (SV = 21ml) (Kerckhoffs et al. (2007)). One

additional study, performed by Guccione et al. (1995) calculated EF = 0.20 (SV = 10ml),

which the authors suggest is representative of an “open-chest pentabarbital-anesthetized

animal”. Disregarding the latter value as not corresponding to a natural in vivo state, one

may consider the average value of EF for a canine LV to be EF = 0.44. Using this value

and scaling changes in Vf during ejection and filling taken from volume-time plots from

humans, such as the one presented by Parmley and Talbot (1979), a freehand sketch of Vf

normalized by Vf,ED as a function of τ was produced and is presented as Fig. 2.5b. The

corresponding values of pressure and volume variations from Figs. 2.5a and b were used to

construct a representative pressure-volume curve for the canine LV, which is plotted as Fig.

2.5c. In Figs. 2.5a-c, each of the four phases of the cardiac cycle is identified and the start
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of each phase is denoted by an open circle, which signifies the opening or closing of a valve.

2.4 Muscle fibre contraction and relaxation

Heart muscle fibres contract and relax due to the propagation of an electrical

potential through the heart. All muscle cells in the heart have an electric potential difference

across their cell membranes. In diastole, during which the muscle fibres are relaxed, the

extracellular space has a positive charge and the intracellular space has a negative charge.

This is referred to as the polarized state. To contract the muscle fibres, the potential across

the cell membrane must be reversed such that a sufficiently large positive charge exists inside

the cell. A potential that exceeds the threshold value needed to cause the muscle fibres

to contract is referred to as action potential. The change in the polarity across the cell

membrane that leads to muscle fibre contraction is referred to as depolarization and is caused

by the controlled transfer of calcium, sodium, and potassium ions across the cell membrane.

The presence of calcium ions inside the cell causes a series of chemical reactions which drives

the contraction of the muscle fibres. During muscle fibre contraction, the actin and myosin

filaments slide past each other to decrease the length of each sarcomere, and consequently,

of each muscle fibre, while the length of each filament remains constant. After the muscle

fibres contract, the total ionic current is reversed, which restores a negative charge inside

the cells and causes the muscle fibres to relax (Opie (2004)). This reversal phases is referred

to as repolarization.

The propagation of the action potential through the heart is referred to as conduc-

tion and the study of the electric activity in the heart is referred to as cardiac electrophys-
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Figure 2.5: (a) Canine LV pressure-time plot, based on previous measurements (Sabbah and
Stein (1981)), (b) freehand sketch of the approximate change in canine LV cavity volume
versus time, based on an ejection fraction of 0.44, and (c) approximated canine LV pressure-
volume plot, based on values in (a) and (b). Circles denote the start of a phase of the
cardiac cycle and the opening or closing of a valve.
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iology. Conduction begins in the sinoatrial (SA) node located in the right atrium. The

SA node is the first natural pacemaker of the heart. Next, the action potential propagates

along the muscle fibres of the two atria, causing them to contract. The action potential

then travels to the atrioventricular (AV) node, which is the second natural pacemaker in

the heart, and is located in the interatrial septum. From the AV node, the action potential

moves down the interatrial septum and into the interventricular septum via the bundle of

His. The action potential then travels down the interventricular septum to the apex, where

it enters the Purkinje fibres and travels up the ventricular walls, causing them to contract

(Tortora (2002)).
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Chapter 3

Myocardium material model

3.1 Introduction

The myocardium, which is the thick muscular middle layer of the heart wall,

comprises muscle fibres, extracellular matrix, blood vessels, blood, and interstitial fluid

(Huyghe et al. (1991)). The extracellular matrix of the myocardium is mostly composed of

collagen fibres, and also contains fibronectin and elastin (Opie (2004)). The muscle fibres

in the myocardium are arranged in layers whose orientation changes gradually across the

thickness of the wall. In developing material models for the wall of the left ventricle (LV)

or other chambers of the heart, the general approach has been to neglect the epicardium

and the endocardium, which are the outer and inner layers of the heart wall, respectively,

and are much thinner than the myocardium.

It has previously been shown that the myocardium is a highly anisotropic material

with three characteristic directions (LeGrice et al. (1995)), which are referred to as fibre,

sheet, and sheet-normal (Nash and Hunter (2000)). The sheet direction is defined as being
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perpendicular to the muscle fibres but tangential to the surface defined by the fibre axes,

whereas the sheet-normal direction is defined as perpendicular to this surface. Therefore,

any material model that is meant to describe the mechanical behaviour of the myocardium

should ideally be orthotropic.

Additional complications in modeling the myocardium material arise by the fact

that muscle fibres undergo successive contractions and relaxations during different parts

of the cardiac cycle, as a result of the propagation of an electrical wave, known as action

potential, through the myocardium. The action potential induces ion transfer across the

cell membrane of the muscle cells, causing actin and myosin filaments to slide past each

other, which shortens the length of the sarcomere units within the muscle fibre cells, and

consequently reduces the overall length of the muscle fibres, resulting in muscle contraction.

The contraction and relaxation of the muscle fibres can only be modeled with the use of

a material model that is capable of changing during the cardiac cycle. When developing

material models of the myocardium, two states of the muscle fibres are considered. The

first is the “passive” state, in which the muscle fibres are fully relaxed, and the second is the

“total” state, in which the muscle fibres are fully contracted. The total-state stresses are

the sum of the passive-state stresses and additional “active” stresses, which are attributed

to the fully-contracted muscle fibres. During the cardiac cycle, passive stresses are always

present and fractions of the active stresses can be added to them to account for partially

contracted muscle fibres.

The passive stress-strain relationship of the myocardium is highly non-linear. This

relationship is dictated by the combined behaviours of collagen fibres and additional com-
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ponents of the extracellular matrix, such as elastin (Opie (2004)). At low strains, the

collagen fibers are crinkled like springs and the stress-strain behaviour of the myocardium

is driven by the rest of the extracellular matrix, whose stiffness is much lower than that

of collagen (Lanir (1979)). As the strain increases, the collagen fibres straighten out and

the myocardium stiffness increases, eventually becoming dominated by the collagen fibre

properties.

The LV myocardium has generally been modeled as a hyperelastic material, in

which the stress-strain behaviour is defined in terms of a strain energy density function.

Material models proposed in the literature for the passive LV myocardium can be classified

into fully orthotropic ones with different material properties in the fibre, sheet, and sheet-

normal directions (Nash and Hunter (2000); Usyk et al. (2000); Costa et al. (2001)) and

transversely isotropic ones, with material properties differing only in two directions, fibre

and cross-fibre (Humphrey et al. (1990b); Guccione et al. (1991); Lin and Yin (1998)).

For the active myocardium, two types of models have been proposed: transversely isotropic

models (Usyk et al. (2000); Lin and Yin (1998)), and models that are uniaxial in the fibre

direction (Nash and Hunter (2000); Usyk et al. (2000); Guccione et al. (1993)). All

material models necessarily contain adjustable parameters, whose determination should be

based on appropriate experimental results, which are generally specific to a species and even

to individuals within a species. All of these published models have been defined for the

canine myocardium, with the exception of the one proposed by Lin and Yin (1998), which

is for the rabbit myocardium.

Ideally, the measurement of material properties should be done with the undis-
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turbed and functioning heart in its natural condition and should cover the entire cardiac

cycle. This is currently impossible, and one may only resort to the measurement of stress-

strain behaviour of excised myocardium specimens in the laboratory. Moreover, complete

testing of the stress-strain behaviour of excised myocardium specimens, consisting of biax-

ial tests in the fibre and sheet direction, fibre and sheet-normal directions, and sheet and

sheet-normal directions, along with shear tests, has not yet been carried out for a single set

of specimens. In fact, in our literature survey we found no published biaxial tensile tests

in the sheet and sheet-normal directions. Shear tests have been performed by Dokos et al.

(2002) for pieces of porcine myocardium in the passive state, but have not yet been used

for material model development.

Material model development generally makes use of equibiaxial tensile tests results,

performed on pieces of the LV myocardium with the fibre axis for each piece aligned with

one of the directions being stretched. The results of these tests are generally presented

as plots of stress versus stretch, where stretch is the ratio of deformed and undeformed

lengths. Equibiaxial tensile tests provide sufficient information for the determination of

parameters in transversely isotropic models. Several sets of stress-stretch measurements

for the passive canine LV myocardium, obtained from equibiaxial tensile tests, can be found

in the literature (Humphrey et al. (1990b); Novak et al. (1994); Bovendeerd et al. (1996)).

To our knowledge, the only published stress-stretch plots corresponding to both active and

total material behaviour are those by Lin and Yin (1998), which have presented passive and

total stress-stretch plots in the fibre and cross-fibre directions for the rabbit LV myocardium.

To obtain the total stress-stretch results, Lin and Yin (1998) used a barium contracture
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method to force the muscle fibres to contract. Both passive and total stress-stretch values

have been proposed by McCulloch and Mazhari (2001) for a canine LV, with the latter

representing an ischemic myocardium. However, these values were not based on direct

measurements.

In the present study, our general objective was to perform finite element simula-

tions of the mechanics of the heart, including both the blood flow and the wall motion.

These simulations will focus on a canine LV, for which geometric information, stress-stretch

measurements, and many previous experimental and computational results for various fluid

and solid quantities over the cardiac cycle are available. The specific objective of this

chapter is to implement a modified version of a previously defined material model for the

passive and active behaviour of the LV myocardium that can be used in our finite element

simulations, and to calculate appropriate material parameter values for this model. To

achieve this goal, we faced a number of challenges and this chapter describes how we over-

came some of them. First, we did not endeavour to devise a new material model, but rather

to choose one from the literature. Our choice was based on the requirement that the model

should cover the entire cycle, or be possible to modify in a way that it would so; more-

over, any parameters present in the model should be possible to determine from available

measurements, if not precisely, at least in a way that they would result in physiologically

plausible predictions. The use of a fully orthotropic model was precluded by the lack of

stress-strain results suitable for calculating material parameter values for such a model, so

we chose a transversely isotropic model. Along the way, we also discovered that the math-

ematical form of the chosen model needed to be modified for purely numerical reasons and
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we introduced modifications that allowed numerical convergence but without appreciably

distorting its physical performance. Second, we calculated material parameter values for

the passive LV myocardium based on available measurements on canines. Finally, in view

of the lack of active stress-stretch measurements for the canine LV myocardium, we devised

a method to adapt available measurements on rabbits so that they can serve as substitutes.

In summary, work described in this article is the first step towards modeling the mechanics

of the canine LV. It will be followed by detailed numerical simulations of the operation of an

idealized canine heart with fluid-structure interaction between the deforming myocardium

and the flowing blood.

3.2 Material model development

3.2.1 Material model selection

The choice of an appropriate material model of the LV myocardium was based

on three selection criteria. First, the chosen material model should allow for the explicit

definition of muscle fibre direction within the material model, rather than within the finite

element model. This can be done by defining the strain energy density function in terms

of strain invariants rather than strains, and introducing a strain invariant containing the

fibre direction. Among the material models mentioned previously, only those of Humphrey

et al. (1990b) and Lin and Yin (1998) are defined in terms of strain invariants. Meeting

this criterion would facilitate the specification of fibre direction in our chosen finite element

software, ADINA v. 8.5.2 (ADINA R & D, Inc., Watertown, MA, USA), because it was

determined that defining the fibre direction within the material model would require no
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modifications to the finite element code. Second, the chosen material model should have a

number of independent material axes that would be equal to that of the available LV my-

ocardium stress-stretch measurements to allow for validation and, if necessary, calculation

of appropriate material parameters. As mentioned in the Introduction, stress-stretch mea-

surements available in the literature are from equibiaxial tests, which specify properties for

only the fibre and cross-fibre directions. This necessitates the use of a transversely isotropic

material model, such as the models proposed by Humphrey et al. (1990b), Guccione et al.

(1991), and Lin and Yin (1998). Third, the chosen material model should contain both

passive and active components, preferably with the same number of independent material

directions. Whereas the material models of Guccione et al. (1993), Nash and Hunter

(2000), and Usyk et al. (2000) all have active parts with various numbers of independent

material axes, only the material model of Lin and Yin (1998) satisfies this criterion as well

as the other two. Therefore, the transversely isotropic material model proposed by Lin and

Yin (1998) has been chosen as a starting point for the present work. A disadvantage of

this approach is that the form of the material model and the associated parameter values

are for rabbit rather than canine LVs.

In adapting the material model of Lin and Yin (1998) for simulations of the canine

LV myocardium, two issues had to be addressed. First, whether the form of the material

model, which was derived for a rabbit LV, is suitable for a canine LV; and second, whether

there are suitable canine stress-stretch values in the literature from which one may calculate

appropriate material parameter values for the canine LV. The first issue has been resolved

by Kang and Yin (1996), who have compared their plots of Wp,i versus Ii for rabbit LVs

22



with those for a canine LV by Humphrey et al. (1990a) (Wp,i = ∂Wp/∂Ii, Wp is the

passive strain energy density function and Ii is the i
th invariant of Green’s strain tensor,

to be defined in the next section). Kang and Yin (1996) concluded that these plots show

comparable trends, which implies that the same functional form may be used to model both

rabbit and canine LVs. In the absence of a suitable material model derived specifically

for a dog, this evidence is deemed to justify the use of the Lin and Yin (1998) material

model for canine LV myocardium simulations, provided that the material parameter values

for rabbits are replaced by values appropriate for dogs. Although adapting properties

measured for one species for use with another would obviously introduce some uncertainty,

it has also been known that, when such properties are normalized by appropriate scales, they

result in dimensionless values that are comparable for different mammals. For example,

Li (1996) states that the LV ejection fractions (defined as the ratio of stroke volume to

end diastolic volume) of four different mammals, including rabbits and dogs, are roughly

the same. To address the second issue, one needs to examine separately the availabilities

of passive and total stress-stretch measurements. For the passive canine LV, Novak et al.

(1994) provide a range of stress-stretch measurements, which can be used to calculate

appropriate material parameter values, as will be described in a following section. The issue

becomes more difficult, however, when attempting to simulate the total material behaviour.

As mentioned previously, the only known published total stress-stretch measurements for the

LV myocardium are for the rabbit Lin and Yin (1998). In the absence of such measurements

for a dog, rabbit measurements will be used to approximate canine LV myocardium total

material behaviour. If total stress-stretch measurements for the canine LV myocardium
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become available in the future, the material parameter values in the present model can be

easily adapted to correspond to the new measurements instead of the ones used presently.

3.2.2 Material model definition

The material model is given in terms of the total strain energy density function

W , from which one may calculate stresses from strains. More specifically, the components

Sij of the second Piola-Kirchhoff stress tensor S can be calculated from the strain energy

density function and the components Eij of Green’s strain tensor E as

Sij =
∂W

∂Eij
− pC−1ij , i, j = 1, 2, 3 (3.1)

where p is a Lagrange multiplier, which is introduced to enforce material incompressibility

and can be specified by considering the boundary conditions of each specific problem, and

C−1ij are the components of the inverse of the matrix representing the right Cauchy-Green

deformation tensor C. C can be defined in terms of the deformation gradient tensor F

as C = F
T
F (Holzapfel (2000)). Because the experiments that will be used to evaluate

the parameters in the material model were conducted along principal stretch axes, it is

convenient to write the tensors F and C and C−1 in terms of the principal stretches λi,

i = 1, 2, 3 as

F =






λ1 0 0

0 λ2 0

0 0 λ3






, C =






λ21 0 0

0 λ22 0

0 0 λ23






, and C−1=






λ22λ
2
3 0 0

0 λ21λ
2
3 0

0 0 λ21λ
2
2






(3.2)

24



Alternatively, C can be rewritten in terms of Eij or principal strains Eii as

C =






2E11 + 1 E12 E13

E21 2E22 + 1 E23

E31 E32 2E33 + 1






=






2E11 + 1 0 0

0 2E22 + 1 0

0 0 2E33 + 1






(3.3)

The principal strains are related to the principal stretches as λ2i = 2Eii + 1,

i = 1, 2, 3; in this and all subsequent equations containing repeating indices, Einstein’s

summation convention does not apply.

In order to compute the normal components of S, the Lagrange multiplier p must

be calculated using boundary conditions. In this study, calculations are performed for the

case of equibiaxial tension, for which the material is stretched equally in the fibre (x1) and

cross-fibre (x2) directions. For an incompressible material in equibiaxial tension, S33 = 0,

from which p can be calculated as

S33 =
∂W

∂E33
− pC−133 = 0 ⇒ p =

1

λ21λ
2
2

(
∂W

∂E33

)
(3.4)

Substituting this value of p into Eq. (3.1) gives

S11 =
∂W

∂E11
− λ23
λ21

∂W

∂E33
and S22 =

∂W

∂E22
− λ23
λ22

∂W

∂E33
(3.5)

The stresses presented in most of the literature are Cauchy stresses T, rather than

second Piola-Kirchhoff stresses. The Cauchy stress tensor can be calculated from the second

Piola-Kirchhoff stress tensor using a push-forward operator, denoted as χ
∗
, as follows
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T = χ
∗
(S) =

1

J
FSF

T (3.6)

where J = detF is the volume ratio (Holzapfel (2000)).

Using Eq. (3.6), the definition of F from Eq. (3.2), and the fact that for equibiaxial

tensile tests λ1 = λ2, the normal components of T can be calculated as

Tii = Sii
λ2i

λ1λ2λ3
=
Sii

λ3
, i = 1, 2 (3.7)

T33 = 0 (3.8)

The material model of Lin and Yin (1998), which serves as the basis for the model

to be used in this study, decomposes the strain energy density function for the rabbit LV

myocardium into a passive part Wp and an active part Wa, as

W =Wp +Wa (3.9)

where

Wp = C1
(
eQ − 1

)
(3.10)

Q = C2 (I1 − 3)2 +C3 (I1 − 3) (I4 − 1) +C4 (I4 − 1)2 (3.11)

Wa = D0 +D1 (I1 − 3) (I4 − 1) +D2 (I1 − 3)2 (3.12)

+D3 (I4 − 1)2 +D4 (I1 − 3) +D5 (I4 − 1)

In these expressions, Ci andDi are material parameters and I1 and I4 are invariants

of Green’s strain tensor, defined as
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I1 = trC = λ21 + λ
2
2 + λ

2
3 (3.13)

I4 = N
T
CN = n21λ

2
1 + n

2
2λ
2
2 + n

2
3λ
2
3 (3.14)

whereN is a unit vector along the muscle fibre direction (N = [n1 n2 n3]
T , n21+ n

2
2+n

2
3 = 1).

It should be noted that, in stress calculations, one does not need the value of W , but rather

only its derivatives. For this reason, the value of the parameter D0 is not required, and so

D0 is set to zero.

For a more complete definition of a transversely isotropic material, additional

strain invariants, I2 and I5, defined below, could have been included in Eqs. (3.11) and

(3.12).

I2 =
1

2

[
(trC)2 − trC2

]
(3.15)

I5 = N
T
C
2
N (3.16)

However, these invariants were neglected by the original authors of this model

“because the determination of a specific form of a strain-energy function which depends on

four invariants is extremely difficult” (Humphrey et al. (1990a). In fact, Criscione et al.

(2001) state that, because I1, I2, I4, and I5 measure deformations that are not independent

of each other, it is impossible to determine the appropriate form of W when considering all

of these invariants, if only biaxial tests are performed. In their work, Criscione et al. (2001)

define alternative invariants, which unlike I1, I2, I4, and I5, are nearly independent of each

other, which in turn, could be used to determine a functional form of a transversely-isotropic

constitutive equation for the LV myocardium. However, determining an appropriate form of
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a constitutive equation would require performing experiments on pieces of LV myocardium

that involve fixing one or more of these alternative invariants, while varying another to

determine the influence of each one on the form of W . As the present study makes use

of stress-stretch measurements from the literature, the determination of a new analytical

form for the function W is beyond the current scope. Although we acknowledge that the

analytical form of W defined by Eqs. (3.11) and (3.12) may not represent all aspects of

the behaviour of the LV myocardium, due to the absence of these two strain invariants, we

ensure that the model describes well the available data by choosing parameter values which

fit well to existing stress-stretch measurements.

3.2.3 Material model modifications

Material compressibility

The previously defined model is fully incompressible. In many finite element

codes, including ADINA, such models cannot be used because of the difficulty in enforcing

conservation of volume in a geometry undergoing large deformations. It is therefore nec-

essary to modify the expression for W to a slightly compressible form as described in the

ADINA documentation (ADINA R & D, Inc. (2008a)). This is done by adding a volumet-

ric term to represent the material compressibility, and converting the strain invariants to

reduced strain invariants, as shown in the following.
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Wp = C1
(
eQ − 1

)
+
1

2
κs (J3 − 1)2 (3.17)

Q = C2 (J1 − 3)2 +C3 (J1 − 3) (J4 − 1) +C4 (J4 − 1)2 (3.18)

Wa = D0 +D1 (J1 − 3) (J4 − 1) +D2 (J1 − 3)2 (3.19)

+D3 (J4 − 1)2 +D4 (J1 − 3) +D5 (J4 − 1)

In the previous equations, κs is the material bulk modulus and Ji are reduced

strain invariants, defined as J1 = I1I
−
1

3

3 , J3 = I
1

2

3 , and J4 = I4I
−
1

3

3 where

I3 = detC = λ21λ
2
2λ
2
3 (3.20)

For an incompressible material, I3 = 1. As will be demonstrated further in this

chapter, the volumetric term in Eq. (3.17) would vanish as κs →∞ and so compressibility

effects would indeed become negligible when κs is sufficiently large. It is appropriate at this

stage to provide a word of caution about this limit. Although the volumetric term vanishes

as κs → ∞ because J3 → 1, setting J3 = 1 in Eq. (3.17) would lead to erroneous stress

calculations due to differences in the derivatives of the invariants Ii and Ji with respect

to Eij ; to prevent this from happening, additional analysis would be required, but this is

outside the scope of the present work.

For this slightly-compressible material, volumetric changes are accounted for by the

second term on the right-hand side of Eq. (3.17), which eliminates the need for the Lagrange

multiplier term in Eq. (3.1). Setting p = 0 in Eq. (3.1), leads to

Sij =
∂W

∂Eij
, i, j = 1, 2, 3 (3.21)
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Solution convergence at zero strain

Further modification of the passive material model is necessary to achieve conver-

gence of the simulations at zero strain. As described below, the adopted finite element

procedure for stress calculations requires inversion of a matrix, which would cause the sim-

ulations to diverge when the strain is zero. This would happen at the first time step in

dynamic simulations or the first load step in static simulations, if the undeformed state

were taken as the initial condition. One approach for resolving this problem is to apply an

initial condition for strain (which, in ADINA, would be introduced as an initial displace-

ment), which would prevent the model from calculating a zero stress. For a simplified

geometry, such as a cube, the appropriate initial displacements can be easily defined in all

three directions. However, when performing simulations using a more complex geometry,

such as the LV, an appropriate choice of initial conditions in all three directions is not so

easy to make. For this reason, an alternative approach, in which additional terms are

added to the passive material model, was used in the present work and is described below.

The tangent constitutive tensor D is defined as

Dijkl =

(
∂2Wp

∂J1∂J1

∂J1
∂Eij

+
∂2Wp

∂J1∂J4

∂J4
∂Eij

)
∂J1
∂Ekl

(3.22)

+

(
∂2Wp

∂J1∂J4

∂J1
∂Eij

+
∂2Wp

∂J4∂J4

∂J4
∂Eij

)
∂J4
∂Ekl

+
∂2Wp

∂J3∂J3

∂J3
∂Eij

∂J3
∂Ekl

+
∂Wp

∂J1

∂2J1
∂Eij∂Ekl

+
∂Wp

∂J3

∂2J3
∂Eij∂Ekl

+
∂Wp

∂J4

∂2J4
∂Eij∂Ekl

Because of symmetry (indices 12 and 21, 13 and 31, and 23 and 32 are equal), D

can be represented as a 6×6 matrix. As will be shown in the following, at zero strain, some
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of the diagonal terms of D, namely, D1212, D1313, D2323, are equal to zero, which causes

the simulations to diverge during matrix inversion.

For the passive material model at zero strain, it can be shown that ∂J1/∂Ekl =

∂J3/∂Ekl = ∂J4/∂Ekl = 0 for kl = 12, 13, 23, which makes the first three terms in Eq.

(3.22) equal to zero for kl = 12, 13, 23. The second derivatives of Ji, i = 1, 3, 4 with respect

to Eij at zero strain are

∂2J1
∂Eij∂Ekl

= −2, ∂2J3
∂Eij∂Ekl

= −1, ∂2J4
∂Eij∂Ekl

= −2, ij = kl = 12, 13, 23 (3.23)

In view of these non-zero values, it is evident that, for D1212, D1313, and D2323 to

be non-zero at zero strain, at least one of the last three terms in Eq. (3.22) must be non-

zero, which means that at least one of the derivatives of Wp with respect to Ji, i = 1, 3, 4

must be non-zero. However, this is not the case as shown in the following. At zero strain,

λ1 = λ2 = λ3 = 1, I1 = 3, I3 = 1, I4 = 1, J1 = 3, J3 = 1, and J4 = 1. Consequently,

∂Wp

∂J1
= C1e

Q [2C2 (J1 − 3) +C3 (J4 − 1)] = 0

∂Wp

∂J3
= κs (J3 − 1) = 0 (3.24)

∂Wp

∂J4
= C1e

Q [C3 (J1 − 3) + 2C4 (J4 − 1)] = 0

By adding the terms C5 (J1 − 3)+ C6 (J4 − 1) to Q, the derivatives of Wp with

respect to Ji, i = 1, 3, 4 at zero strain become
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∂Wp

∂J1
= C1e

Q [2C2 (J1 − 3) +C3 (J4 − 1) +C5] = C1C5

∂Wp

∂J3
= κs (J3 − 1) = 0 (3.25)

∂Wp

∂J4
= C1e

Q [C3 (J1 − 3) + 2C4 (J4 − 1) +C6] = C1C6

It is clear from Eq. (3.25) that model convergence should be achievable if either

C5 or C6 have non-zero values in the model.

As explained above, the addition of two terms in the expression for the exponent

Q, which are first order in J1 and J4, would guarantee model convergence at zero strain,

provided that at least one of the additional parameter values C5 and C6 is different from

zero. The modified exponent can be written as

Q = C2 (J1 − 3)2 +C3 (J1 − 3) (J4 − 1) +C4 (J4 − 1)2 +C5 (J1 − 3) +C6 (J4 − 1) (3.26)

Passive material model constraints

When determining values for the various parameters for the passive and active

material models, it becomes necessary to impose constraints on the signs and/or magnitudes

of these parameters for physical or numerical reasons. The constraints defined in this section

and the next one will be applied to the calculation of these material parameter values.

A natural way to ensure that the internal strain energy grows with increasing

stretches is to require that W is a strictly convex function of the invariants J1 and J4.

Enforcement of the strict convexity of W also has a numerical benefit because it facilitates

the convergence of the finite element computations. Although forcing W to be a strictly
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convex function does not guarantee convergence, if W were not strictly convex, the simula-

tions would diverge. For Wp to be strictly convex, sufficient but not necessary criteria are

that C1 > 0 and that e
Q be strictly convex. It is sufficient to enforce that Q be convex,

because eQ will also be convex if Q is convex. For Q to be convex, the second derivative

of Q with respect to Ji must be positive definite (Bertsekas (1999)). This derivative can

be written in matrix form as

[
∂2Q

∂Ji∂Jj

]

i=j=1,4

=





2C2 C3

C3 2C4




 (3.27)

For the matrix in Eq. (3.27) to be positive definite, the principal minors must be

strictly positive, which leads to the constraints C2 > 0 and 4C2C4 − C23 > 0. Because

optimization methods are used to estimate the model parameters and these methods only

deal with inequality constraints instead of strict inequality constraints (Bertsekas (1999);

Nocedal and Wright (1999)), these two strict positivity conditions must be restated as

inequalities. In particular, the second constraint will be specified as −4C2C4+C23 +ε1 ≤ 0,

where ε1 is a small positive number.

Because of the addition of the two terms containing the parameters C5 and C6 in

the expression for Q, stresses may no longer be equal to zero at zero strain (λ1 = λ2 =

λ3 = 1). To determine whether constraints on C5 and/or C6 would be required to ensure

zero stress at zero strain, we will calculate the passive second Piola-Kirchhoff stresses in the

x1 and x2 directions. Expanding the derivatives in Eq. (3.21), the passive parts of these

stresses are defined as
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S11 =
∂Wp

∂J1

∂J1
∂E11

+
∂Wp

∂J3

∂J3
∂E11

+
∂Wp

∂J4

∂J4
∂E11

(3.28a)

S22 =
∂Wp

∂J1

∂J1
∂E22

+
∂Wp

∂J3

∂J3
∂E22

+
∂Wp

∂J4

∂J4
∂E22

(3.28b)

The derivatives of Wp with respect to J1, J3, and J4 are given in Eq. (3.25). As-

suming that the muscle fibres are aligned with the x1 axis, one may calculate the derivatives

of J1 and J4 with respect to E11 and E22 as

∂Ji
∂Ejj

=
∂Ji
∂I1

∂I1
∂Ejj

+
∂Ji
∂I3

∂I3
∂Ejj

= I
−
1

3

3

(
∂Ii
∂Ejj

− 1
3

Ii
I3

∂I3
∂Ejj

)
, i = 1, 4, j = 1, 2 (3.29)

It can be shown that the derivatives of I1, I3, and I4 with respect to E11 and E22

are

∂I1
∂E11

= 2,
∂I1
∂E22

= 2

∂I3
∂E11

= 2λ22λ
2
3,

∂I3
∂E22

= 2λ23λ
2
1 (3.30)

∂I4
∂E11

= 2,
∂I4
∂E22

= 0

Substituting Eqs. (3.30) into Eq. (3.29) leads to

∂J1
∂E11

= I
−
1

3

3

(
2− 2

3

I1
I3
λ22λ

2
3

)
,
∂J1
∂E22

= I
−
1

3

3

(
2− 2

3

I1
I3
λ23λ

2
1

)
(3.31)

∂J4
∂E11

=
4

3
I
−
1

3

3 ,
∂J4
∂E22

= −2
3
I
−
1

3

3

Lastly, the derivatives of J3 with respect to E11 and E22 can be shown to be
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∂J3
∂E11

= λ22λ
2
3I
−
1

2

3 ,
∂J3
∂E22

= λ23λ
2
1I
−
1

2

3 (3.32)

Substituting Eqs. (3.25), (3.31), and (3.32) into Eqs. (3.28a,b) leads to

S11 = C1e
Q [2C2 (J1 − 3) +C3 (J4 − 1) +C5]

[
I
−
1

3

3

(
2− 2

3

I1
I3
λ22λ

2
3

)]

+κs (J3 − 1)
(
λ22λ

2
3I
−
1

2

3

)
(3.33a)

+C1e
Q [C3 (J1 − 3) + 2C4 (J4 − 1) +C6]

(
4

3
I
−
1

3

3

)

S22 = C1e
Q [2C2 (J1 − 3) +C3 (J4 − 1) +C5]

[
I
−
1

3

3

(
2− 2

3

I1
I3
λ23λ

2
1

)]

+κs (J3 − 1)
(
λ23λ

2
1I
−
1

2

3

)
(3.33b)

+C1e
Q [C3 (J1 − 3) + 2C4 (J4 − 1) +C6]

(
−2
3
I
−
1

3

3

)

At zero strain, λ1 = λ2 = λ3 = 1, I3 = 1, I1 = J1 = 3, I1 = J4 = 1, and eQ = 1,

reducing Eqs. (3.5a,b) to

S11 =
4

3
C1C6 (3.34a)

S22 = −2
3
C1C6 (3.34b)

It is clear from Eqs. (3.34a,b) and the previously defined constraint C1 > 0 that,

for S11 and S22 to be zero at zero strain, C6 = 0. Because only one of C5 and C6 needs

to be different from zero in order to guarantee convergence and C5 does not appear in

Eqs. (3.34a,b), setting C6 = 0 and specifying that C5 �= 0 means that the simulations will

converge at zero strain while still allowing the passive stresses to be zero.
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Table 3.1: Passive material parameter constraints.

Variable(s) Constraint

C1 C1 > 0
C2 C2 > 0
C2, C3, C4 −4C2C4 +C23 + ε1 < 0
C5 C5 = ε2
C6 C6 = 0

Because C5 was introduced to the material model to allow convergence at zero

strain, its magnitude must be constrained in a way that its influence on the stress calcula-

tions is small for relatively large stretches. To achieve this objective, we will set C5 = ε2,

where ε2 is a small positive number. The value of ε2 will be chosen during the parame-

ter value calculations as to reduce the difference between the stresses calculated with and

without C5 to less than one percent for λ1 = λ2 = 1.06; with this choice, it is guaranteed

that the effect of C5 on the stresses will be even lower for higher stretches. A summary of

all passive material parameter constraints is provided in Table 3.1.

Active material model constraints

Constraints on the active material parameter values are based on the incompress-

ible form of the active material model, defined in Eq. (3.12), and were taken directly from

the article of Lin and Yin (1998), in which they were based on plots of Wa,i = ∂Wa/∂Ii

versus Ii for each of the seven rabbit specimens for which they took measurements. Be-

cause, for all specimens, Wa,1 increases with I1 and Wa,4 increases with I4, both D2 and D3

must be positive. Furthermore, when examining plots ofWa,1 versus I4 andWa,4 versus I1,

Lin and Yin (1998) found that in most cases Wa,i decreases with increasing Ii. Although

this trend may not necessarily be general, Lin and Yin (1998) proposed that D1 should be
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Table 3.2: Active material parameter constraints.

Variable(s) Constraint

D1 D1 < 0
D2 D2 > 0
D3 D3 > 0
D1, D2, D3 4D2D3 −D21 > 0
D4, D5 D4 +D5 > 0

negative. Additionally, as the muscle fibres begin to contract during the active phase, a

positive stress would be required at zero strain. For this reason, the sum of D4 and D5 must

be positive. These constraints are summarized in Table 3.2. Constraints to ensure that

the active material strain energy density function is strictly convex could be applied in a

way similar to the one for the passive material function by calculating the second derivative

of Wa with respect to the reduced strain invariants and enforcing that the matrix form of

this derivative be positive definite, namely that 4D2D3 −D2
1 > 0 and D2 > 0. The first

constraint does not need to be enforced because it happens to be satisfied for all calculated

sets of material parameter values; the second constraint is also of no consequence because

it is a duplicate of one suggested by Lin and Yin (1998).

3.3 Available measurements

3.3.1 Passive stress-strain behaviour

Figure 3.1 is a stress-stretch plot showing the results of equibiaxial tensile tests

performed in the fibre and cross-fibre directions on pieces of the passive LV myocardia from

three rabbit (Lin and Yin (1998)) and three dog (Novak et al. (1994)) specimens. For the

rabbit, measurements were extracted from Fig. 4 in the article by Lin and Yin (1998), and
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Figure 3.1: Passive LV myocardium stresses for three rabbits and three dogs in the (a) fibre
and (b) cross-fibre directions. Symbols indicate experimental values from Lin and Yin
(1998) for the rabbit and Novak et al. (1994) for the dog, dashed lines represent results of
calculations made using material parameter values from Lin and Yin (1998), and solid lines
indicate results obtained through numerical simulation, to be discussed in Sections 3.5.1 for
the rabbit and 3.5.3 for the dog.

represent the only one of their seven specimens for which they published their measurements.

By calculating stresses using the material model and parameter values provided by Lin

and Yin (1998), it was determined that these measurements correspond to the material

parameter values for specimen 4. The stress-stretch curves for rabbit specimens 1 and 2,

shown in Fig. 3.1, were generated by calculating the stresses using material parameters

given by Lin and Yin (1998) and represent the upper and lower bounds, respectively, of

their seven rabbit specimens. The three sets of dog measurements were extracted from

Figs. 1 and 2 in the article by Novak et al. (1994) for the fibre and cross-fibre directions,

respectively, and represent the upper limit, the lower limit, and the middle of the range of

stress-stretch curves from the middle part of the LV free wall.

As shown in Fig. 3.1, the stress-stretch curves of either species have two distinct

parts, a slowly rising part at low stretches, and a steeper part at higher stretches. This
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behaviour is attributed to the composite structure of the myocardium, which was discussed

in the Introduction.

Whereas points in Fig. 3.1 presumably indicate actual experimental values and

clearly demarcate the experimental range of stretches, the curves are approximate fits to

the data and include parts computed by extrapolating the experimental ranges, although

it is impossible to determine the stretch beyond which extrapolation has taken place. It

is evident that extrapolated parts of all curves would be subject to additional uncertainty,

which cannot be estimated but may be significantly larger than the measurement uncer-

tainty. Moreover, all these plots represent a very small number of samples for each species,

and, therefore, any observations based on these results should be treated as specific to in-

dividual specimens; thus these results have a qualitative significance rather than applying

quantitatively to an entire species.

The reported range of each set of available experimental results extends between

a minimum and a maximum stretch. It would have been helpful to know whether the

bounds of these ranges are related to experimental limitations or reflect changes in material

properties (e.g., elastic limits), but unfortunately the authors do not provide any relevant

information. In contrast, any analytical model fitted to these data can be extrapolated

to stretches both lower and higher than the experimental lower and upper bounds, respec-

tively. It is obvious that, while extrapolating to lower stretches, the model must predict

positive values for tensile tests. When extrapolating to higher stretches, the predictions

will inevitably become devoid of physiological meaning as the model is extended to higher

and higher stretches. However, when simulating heart operation, it is only necessary to
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model stress-stretch behaviour within the expected stretch range. As typical of the range

of strains experienced by the canine heart, measurements of stretches in an isolated LV

undergoing passive filling performed by Omens et al. (1991) showed a maximum stretch

of about 1.3, which is not much higher than the maximum stretches in the experiments

by Novak et al. (1994); based on this observation, one may infer that, for cardiac cycle

simulations, only minimal extrapolation, if any at all, may be required when the LV is at

its maximum deformation. Although all specimens of a given species have qualitatively

similar stress-stretch curves, the variability from one specimen to another is relatively large,

particularly for the rabbit. Considering all plots in Fig. 3.1, one may note that, for a given

stretch, the available stresses for all dog specimens fall well within the range of stresses for

all rabbit specimens. Nevertheless, the high-stretch parts of all rabbit curves appear to have

higher slopes than those of all dog curves. Although one may not exclude the possibility

that steeper parts may have also been present in dog stress-stretch curves, if experiments at

wider stretch ranges had been performed, the data indicate that, if one were to extrapolate

the available measurements to higher stretches, the dog would likely have lower stresses in

both the fibre and cross-fibre directions than the rabbit. The difference in slope between

the rabbit and the dog curves, as well as the speculation that, at higher stretches, the dog

stresses would be lower than the rabbit stresses are both consistent with Fig. 9 of Vetter

and McCulloch (2000), which is a plot of values of passive fibre and cross-fibre stresses for

various species, based on several published material models. Finally, comparison of the

corresponding passive stress-stretch curves in the fibre and cross-fibre directions shows that

both the rabbit and the dog myocardia exhibit stretch-dependent anisotropy. For example,
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at a stretch of λ = 1.15, the ratio of fibre to cross-fibre stresses varies from 1.26 to 3.33

for the rabbit and from 1.03 to 1.18 for the dog, whereas at λ = 1.25, it varies from 1.15

to 1.65 for the rabbit and from 1.01 to 1.32 for the dog. The available information is not

sufficient for one to determine conclusively whether the myocardium of one species is more

anisotropic than that of the other.

3.3.2 Total stress-strain behaviour

Figure 3.2 contains plots of total stress-stretch behaviour for the rabbit LV my-

ocardium for the same specimens presented in Fig. 3.1. These plots of total stresses

show higher stresses for a given stretch than in the passive case, due to the additional ac-

tive stresses caused by fibre contraction. The total stresses also show a greater degree of

anisotropy than their corresponding passive values. For example, at λ = 1.25, the ratios of

fibre to cross-fibre stresses for the total cases range from 1.18 to 2.70, which is wider than

the range from 1.15 to 1.65 for the passive cases.

3.4 Methods

3.4.1 Numerical simulations

To validate our material model and computational procedures, we performed nu-

merical simulations of equibiaxial tensile tests using material parameter values for rabbit

specimen 4 proposed by Lin and Yin (1998), and then compared our passive and total

stress-stretch results with values extracted from their Fig. 4. The equibiaxial tensile test

simulations were performed using a cubic geometry, shown in Fig. 3.3, meshed using a sin-
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Figure 3.2: Total LV myocardium stresses for three rabbits in the (a) fibre and (b) cross-
fibre directions. Symbols indicate experimental values from Lin and Yin (1998), dashed
lines represent results of calculations made using material parameter values from Lin and
Yin (1998), and solid lines indicate results obtained through numerical simulation, to be
discussed in Section 3.5.1.

gle eight-node hexahedral element. The fibres were aligned with the x1 direction, whereas

x2 and x3 were cross-fibre directions. The geometry was constrained such that the surface

normal to the negative x3 axis was fixed in x3, the surface normal to the negative x2 axis

was fixed in x2, and the surface normal to the negative x1 axis was fixed in x1. Equal

displacements were applied to the surfaces normal to the positive x1 and x2 axes, corre-

sponding to values of stretch from λ1 = λ2 = 1 to λ1 = λ2 = 1.5. The surface normal to the

positive x3 axis was free to deform according to the compressibility of the material. At each

incremental displacement, the stresses were calculated using ADINA and our user-supplied

material model.

The passive and active material parameter values used for these equibiaxial tensile

test simulations were taken from Table 1 of Lin and Yin (1998) and are listed in Table 3.3.

The passive parameter value C1 and all of the active parameter values proposed by Lin and

Yin (1998) were multiplied by a conversion factor of 98.1 kg· cm2/ gf ·m· s2 to convert the
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Figure 3.3: Geometry used for equibiaxial tensile test simulations.

Table 3.3: Passive and active material parameter values for rabbit specimen 4 of Lin and
Yin (1998).

i 1 2 3 4 5 6

Ci (passive) 0.286 kPa 3.21 −2.60 2.01 0 0
Di (active) −3.80kPa 4.01kPa 2.45 kPa 0.933kPa 0.301 kPa n/a

units from gf/ cm
2 to Pa (1 gf = 9.81× 10−3N).

3.4.2 Material parameter calculations

Material parameter values for the passive and active material models were calcu-

lated using MatLab 7.4.0 (The MathWorks, Inc., Natick, MA, USA), and more specifically

the “fmincon” function, which utilizes a sequential quadratic programming (SQP) method

(Nocedal and Wright (1999)) to minimize a function of multiple variables. The func-

tion “fmincon” was chosen instead of the more widely used Levenberg-Marquardt method

(Nocedal and Wright (1999)), because, unlike the latter, the former method allows one to
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impose non-linear constraints that depend on several variables.

The passive and active material parameter values were calculated separately using

the procedure described in the following. First, the measured Cauchy stresses T11,m and

T22,m, from equibiaxial stretching in the x1 and x2 directions, and their corresponding

stretches were imported into MatLab. Next, initial estimates of the material parameter

values were defined to calculate Cauchy stresses T11,c and T22,c. In order to calculate these

stresses, values of all three principal stretches are required. The stretches λ1 and λ2 in the

fibre and cross-fibre directions are known from the imported measurements. Moreover, λ3

can be determined as a function of κs by considering that, for biaxial tension with a free

boundary normal to the x3-axis, the stress S33 must vanish. Although such calculation is

possible, it would be cumbersome as well as unnecessary because the resulting stresses

should be independent of κs in the weak compressibility limit. Therefore, instead of

pursuing an exact procedure, we shall perform an order-of-magnitude analysis.

For a slightly compressible material, the procedure presented in Section 3.2.3 leads

to the expression

S22 = C1e
Q [2C2 (J1 − 3) +C3 (J4 − 1) +C5]

[
I
−
1

3

3

(
2− 2

3

I1
I3
λ21λ

2
2

)]

+κs (J3 − 1)
(
λ21λ

2
2I
−
1

2

3

)
(3.35)

+C1e
Q [C3 (J1 − 3) + 2C4 (J4 − 1) +C6]

(
−2
3
I
−
1

3

3

)

which may be further simplified considering that C6 = 0 and that for equibiaxial tension

λ1 = λ2.

Under the assumption of weak compressibility, one may assume that volumetric
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changes are small, so that

I3 = λ21λ
2
2λ
2
3 = 1 + δ (3.36)

where |δ| << 1. Then, from Eq. (3.36) and the relation λ1 = λ2, one gets

λ3 =

(
1 + δ

λ41

) 1

2

(3.37)

Substituting Eq. (3.37) into the expressions for the derivatives of Ji with respect

to Eij, which are contained in the rightmost set of parentheses in each term in Eq. (3.35),

leads to

I
−
1

3

3

(
2− 2

3

I1
I3
λ21λ

2
2

)
= (1 + δ)−

1

3

[
4

3

(
1− λ61

1 + δ

)]
= O(1) (3.38a)

(
λ21λ

2
2I
−
1

2

3

)
= λ41 (1 + δ)

−
1

2 = O(1) (3.38b)

−2
3
I
−
1

3

3 = −2
3
(1 + δ)−

1

3 = O(1) (3.38c)

where the notation O() denotes the upper bound on the order of magnitude.

The orders of magnitude of the terms containing the invariants J1 and J4 are

J1 − 3 =

(
2λ21 +

1 + δ

λ41

)
(1 + δ)−

1

3 − 3 = O(1) (3.39a)

J4 − 1 = λ21 (1 + δ)
−
1

3 − 1 = O(1) (3.39b)

Substituting these orders of magnitude into Eq. (3.35) and considering that C1 is

a constant and that eQ is bounded for stretches within the physiological limits, it is easy to
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see that the three terms on the right-hand side of Eq. (3.35) are, respectively O(1), O(κsδ),

and O(1). For the three terms in this equation to balance in orders of magnitude, it is

necessary that the second term be at most of O(1) which leads to

δ = O

(
1

κs

)
(3.40)

This relationship proves that, although at first glance it appears that the volumet-

ric term 1
2κs (J3 − 1)

2 in Eq. (3.17) grows with increasing κs, it is actually of O (1/κs) and

therefore becomes negligible at sufficiently large κs, because (J3 − 1) = O(δ) = O(1/κs).

Furthermore, it is easy to show that

J1 = I1

[
1 +O

(
1

κs

)]
(3.41a)

J4 = I4

[
1 +O

(
1

κs

)]
(3.41b)

from which it follows that, in the limit as κs → ∞, Eqs. (3.18) and (3.19) for the slightly

compressible material model converge to Eqs. (3.11) and (3.12) for the incompressible

material model. In conclusion, it is appropriate to compute the model parameters using

incompressible relationships and then use the same parameters in the slightly compressible

expressions, provided that κs is sufficiently large. The validity of this assumption for the

stress calculations will be verified in Section 3.5.2, in which stresses are calculated in ADINA

for various values of κs and compared to their corresponding incompressible stresses.

The stresses T11,c and T22,c will be calculated under the assumption of incompress-

ibility in MatLab using Eqs. (3.5) and (3.7), as follows
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T11,c =
2

λ3






(
1− λ2

3

λ2
1

)
C1e

Q [2C2 (I1 − 3) +C3 (I4 − 1) +C5]

+C1e
Q [C3 (I1 − 3) + 2C4 (I4 − 1)]




 (3.42a)

T22,c =
2

λ3

(
1− λ23

λ22

)
C1e

Q [2C2 (I1 − 3) +C3 (I4 − 1) +C5] (3.42b)

where Q = C2 (I1 − 3)2+C3 (I1 − 3) (I4 − 1)+C4 (I4 − 1)2+C5 (I1 − 3) and λ3 =
√
1/λ21λ

2
2.

The next step in determining the material parameter values is to calculate the

least-square difference between the calculated and measured stresses as

∆ =
1

2

[
(T11,c − T11,m)

2 + (T22,c − T22,m)
2
]

(3.43)

Lastly, optimal values for the material parameters, subject to both linear and non-

linear constraints defined in Table 3.1 for the passive material parameters or Table 3.2 for

the active material parameters, were computed such as to minimize ∆. For the constraints

defined in Table 3.1, we have chosen ε1 = 0.01 and have determined from stress calculations

that ε2 = 0.0001 is sufficiently small to satisfy the criteria defined in Section 3.2.3, as will

be shown in Section 3.5.3.

For the passive material parameter value calculations, the three sets of stress-

stretch measurements of Novak et al. (1994), which were presented in Fig. 3.1, were used

for the calculations. For the active part, in the absence of measurements of canine active

stresses, rabbit active stresses calculated using the material parameter values of Lin and Yin

(1998) were used to approximate active canine material behaviour. A first, unsuccessful,

attempt to estimate canine active material properties was made by assuming that the ratios

of passive to total stresses for a given stretch were comparable for rabbits and dogs. This
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ratio was calculated for each of the three rabbit specimens presented in Fig. 3.1 and

used to calculate total stresses for each of the three dog cases in Fig. 3.1. The active

stresses were then calculated as the difference between the total and passive stresses. The

resulting active stress-stretch curves were clearly unacceptable because, in a range of large

but physiologically plausible stretches, they predicted active stresses that decreased with

increasing stretch. This non-physical behaviour is also found when examining the rabbit

material models, but is not observed in the corresponding experimental results. For each

rabbit case, there exists a critical stretch λcr above which the active stress begins to decrease

with increasing stretch. This behaviour is due to the form of the material model and does

not correspond to any physical phenomenon. For the three rabbit specimens in Fig. 3.2,

λcr is approximately 1.5 for specimens 1 and 4 and 1.3 for specimen 2. In all three cases,

λcr is greater than the maximum acceptable stretch for the passive part, which implies that

this non-physical behaviour is not present in the material model within a physiologically

relevant range. However, because the canine stress-stretch curves are less steep than those

for the rabbits, when this approach is applied to the dog cases, it causes λcr to shift towards

lower values of stretch, which are within the physiological range for the dog. Consequently,

this method of scaling factors was deemed to be unsuitable for predicting active canine LV

myocardium stresses.

To avoid the limitation of the scaling ratios, we propose an alternative approach,

which uses a fraction of the rabbit active stress-stretch values directly, along with the

passive canine stress-stretch values, to approximate the total canine stress-stretch behaviour.

Considering that no total canine stress-stretch measurements are currently available, this
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approximation may be an acceptable rough choice, particularly in view of the fact that there

is a large variation of total stress-stretch behaviour from dog to dog. These active stresses

are calculated as the difference between the total stresses and the passive stresses found in

ADINA using the appropriate material parameter values. The active Cauchy stresses for

the dog were then calculated using the following relation

Tij,a(dog) = χTij,a(rabbit) (3.44)

where χ is the fraction of the active rabbit stress that is added to the passive dog stress.

Using values of χ = 0.5, 1.0, and 1.5, active stresses were calculated for the dog. These

stresses were then imported into MatLab to calculate the active material parameter values.

3.5 Results

3.5.1 Material model validation

Equibiaxial tensile test simulations for the passive and total material models for

rabbit specimen 4 were performed in ADINA. The resulting stresses for the passive and

total material models are plotted in Figs. 3.1 and 3.2, respectively, as functions of stretches,

and show very good agreement with the measurements, thus validating our material model

implementation and computational procedure. The differences between the computed and

measured values that have been plotted in these two figures mostly reproduce existing

differences between measured values reported by Lin and Yin (1998) in their Fig. 4 and

predictions of their model as reported in their Table 1, and may only to a much lesser degree

be caused by approximations introduced by the present procedure.
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Although the stresses plotted in Figs. 3.1 and 3.2 could have been calculated

directly, it is important for our future work to obtain them through numerical simulations

in ADINA. Without using ADINA or a similar finite element code, the issues that led

to the implementation of the modifications and constraints to our material model and

parameter values would not have been evident, potentially leading to the calculation of

material parameter values that would cause numerical simulations of heart operation using

this material model to diverge.

3.5.2 Adjustment of material compressibility

An appropriate value of the bulk modulus κs was determined by comparing the

total stresses for specimen 4 of Lin and Yin calculated in ADINA for various values of κs

to incompressible ones calculated using MatLab. Simulations were performed for values

of κs from 1 × 105 to 1 × 109 kPa in multiples of 10. For each κs, the value of λ3 when

λ1 = λ2 = 1.33 was used to determine I3 − 1, which should approach zero as κs → ∞.

Additionally, the slightly compressible Cauchy stresses T11,sc and T22,sc taken from the

simulation results for the same stretches, were compared to their incompressible values of

T11,inc = 40.679 kPa and T22,inc = 32.355 kPa. Based on the results of these comparisons,

presented in Table 3.4, a value of κs = 1× 107 kPa was chosen, as this is the smallest value

of κs for which the stresses calculated using the slightly compressible model in ADINA

are approximately equal to those calculated using the incompressible model. Any further

increase in κs increases the stiffness of the solid, which could lead to convergence problems in

the simulations, without having any significant impact on the stress calculations. This value

of κs is the one that has been used to generate all plots presented in this chapter. The fact
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Table 3.4: Calculation results to determine appropriate value of material bulk modulus.

κs [kPa] λ3 I3−1 T 11 [kPa] T 22 [kPa] ∆T 11 [kPa] ∆T 22 [kPa]

1× 105 0.56546 4.9× 10−4 40.597 32.284 0.082 0.071
1× 106 0.56534 4.9× 10−5 40.672 32.348 0.008 0.007
1× 107 0.56532 4.9× 10−6 40.679 32.354 0.000 0.001
1× 108 0.56532 4.9× 10−7 40.680 32.355 −0.001 0.000
1× 109 0.56532 4.9× 10−8 40.680 32.355 −0.001 0.000

Table 3.5: Material parameter values for passive canine LV myocardium material model.

Parameter Lower Middle Upper

C1 ( kPa) 2.206 5.399 5.275
C2 0.490 0.571 0.826
C3 0.231 0.0373 −0.0554
C4 0.0323 0.00498 0.0391
C5 0.0001 0.0001 0.0001
C6 0 0 0

that stresses using the slightly compressible material model were found to be approximately

equal to stresses calculated using the incompressible material model validates our procedure

to use incompressible expressions for calculating the model parameters.

3.5.3 Passive material parameter calculations

Passive canine LV myocardium material parameter values (Ci in Eqs. (3.17) and

(3.26) have been calculated using MatLab for the three sets of canine stress-stretch values

presented in Fig. 3.1, which will be referred to as “lower”, “middle”, and “upper” to denote

their relative stress magnitudes. The results of these calculations are presented in Table

3.5. Using these parameter values, equibiaxial tensile test simulations were performed in

ADINA. The resulting stress-stretch values have been plotted in Fig. 3.1.

The current computational results are in excellent agreement with the measure-

ments, which demonstrates that the calculations of material parameter values were per-
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formed successfully. The three sets of material parameter values in Table 3.5 will be used

in our passive LV filling simulations described in Chapter 4 to determine which set leads to

results that most closely match previous experimental values.

For the lower set of material parameter values, the difference between the mag-

nitudes of the Cauchy stresses calculated using the incompressible material model with

C5 = 0 or C5 = 0.0001 are 0.3%, 0.08%, and 0.02% for T11, and 1.7%, 0.04%, and 0.02%

for T22 at λ1 = λ2 = 1.01, 1.06, and 1.3, respectively. For these same three values of

λ1 and λ2, the differences in the magnitudes of the Cauchy stresses for the medium set of

material parameter values are 1.5%, 0.2%, and 0.02% for T11, and 4.8%, 0.2%, and 0.02%

for T22. Lastly, for the upper set of material parameter values at the same three stretches,

the differences in the magnitudes of the Cauchy stresses are 0.4%, 0.1%, and 0.02% for T11,

and 12%, 0.2%, and 0.02% for T22. For all three sets of material parameter values, the

difference for the two values of C5 is much less than 1% at λ1 = λ2 = 1.06 and decreases for

increasing values of λ1 and λ2. The large difference of 12% for T22 for the upper material

parameter values at λ1 = λ2 = 1.01 should not be interpreted as a significant difference in

the actual magnitude of the stresses, because, for this case, T22 is relatively small and this

difference corresponds to a difference in magnitude of 6× 10−5 kPa.

3.5.4 Active material parameter calculations

Active canine LVmyocardium stresses for use with the lower passive canine stresses

were approximated from rabbit values from specimen 1 of Lin and Yin (1998) using Eq.

(3.44). Specimen 1 was chosen because comparisons of computed passive canine and rabbit

stresses show that rabbit specimen 1 is closest to the lower canine case for large values
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Table 3.6: Material parameter values for active canine LV myocardium material model.

Parameter χ = 0.5 χ = 1.0 χ = 1.5

D1 ( kPa) −0.172 −0.352 −0.518
D2 ( kPa) 1.237 2.476 3.711
D3 ( kPa) 1.327 2.660 3.983
D4 ( kPa) 0.0115 0.0251 0.0356
D5 ( kPa) 0.317 0.632 0.951

of stress. The lower passive canine stresses were chosen to illustrate this method, but

the method is equally valid for other cases. Using these approximated active canine LV

myocardium stresses, active material parameter values (Di in Eq. (3.19)) were calculated

in MatLab for χ = 0.5, 1.0, and 1.5. The results of these calculations are presented in

Table 3.6. Using these active canine material parameter values, equibiaxial tensile test

simulations were performed in ADINA. The results of these simulations show excellent

agreement with the active rabbit stress values, as can be seen in Fig. 3.4. Each set of

active stresses can be added to the canine LV myocardium passive stresses representing the

lower case in Fig. 3.1 to give total canine LV myocardium stresses. These total stresses

are plotted in Fig. 3.5, along with the passive and total stresses for rabbit specimen 1 from

Lin and Yin (1998), which were used to calculate the active part of the canine stresses.

Although the active and total stresses for the canine LV myocardium presented in

Figs 3.4 and 3.5 are approximations, they are based on realistic assumptions and measure-

ments available in the literature. The optimal value of χ to achieve physiologically sound

results will be determined as part of the cardiac cycle simulations, presented in Chapter 5.
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Figure 3.4: Calculated and simulated canine active stresses in the fibre (a) and cross-fibre
(b) directions.

Figure 3.5: Passive and total stresses for the canine and rabbit LV myocardia in the fibre
(a) and cross-fibre (b) directions. Canine passive stresses correspond to the lower case
in Fig. 3.1, and rabbit passive and total stresses correspond to specimen 1 in Figs. 3.1
and 3.2, respectively. The solid symbols indicate experimental values from Novak et al.
(1994), while the hollow symbols were added to distinguish between the passive and total
rabbit curves. All lines represent computational results obtained from equibiaxial tensile
test simulations performed in ADINA.
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3.6 Discussion

The present approach for modeling the passive material behaviour of canine my-

ocardium has been proved valid to the extent that it can be tested versus available experi-

mental results. Reconstructed stresses, using our calculated material parameter values for

the passive canine LV myocardium, show excellent agreement with previous measurements.

Although some parameter values were constrained to prevent numerical problems, no sig-

nificant discrepancies were found between the computed and experimental results, which

implies that these constraints did not have any adverse effect on the model fit. Because

some of these constraints were not enforced when the parameter values were fit to their

data by the original authors, some previously published material parameter values are not

suitable for numerical simulations, even though they may fit the data well (Sun and Sacks

(2005)). In fact, we have confirmed that this is the case for several of the sets of Lin and

Yin (1998) passive parameter values.

The present transversely isotropic model only partially represents the LV my-

ocardium material, which is fully orthotropic (LeGrice et al. (1995)). Unfortunately,

orthotropy cannot be accounted for in our procedure due to the lack of published measure-

ments of material properties in both non-fibre directions. In the event that fully-orthotropic

stress-stretch measurements became available, the present passive transversely isotropic

material model could be extended to a fully orthotropic one through the introduction of

additional terms in the strain energy density function containing new strain invariants I6

and I7, defined as
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I6 = M
T
CM (3.45)

I7 = M
T
C
2
M (3.46)

whereM is a unit vector containing the sheet direction (Criscione et al. (2002)). Moreover,

a more complete model could also include the invariants I2 and I5 which were disregarded

in the present model. Additionally, results of shear tests should be utilized along with

the results of tensile tests to give a more complete representation of the deformations that

would be experienced by the LV. However, a constitutive model that incorporates all of

these features would still only represent the stress-stretch behaviour of pieces of an excised

LV myocardium and would not necessarily be indicative of the stress-stretch behaviour of

an intact in vivo LV myocardium.

For the active part of the canine material model, because no measurements of

active canine LV myocardium stress-stretch behaviour have been published, we have made

use of the only available information, namely stress-stretch measurements for the rabbit

LV myocardium. Although this approximation introduces additional uncertainty, it allows

us to proceed with our main objective, which is to simulate numerically the operation of

the canine LV. The passive material stress-stretch curve for the chosen rabbit specimen

matches roughly the corresponding curve for the chosen dog specimen in range of values, but

has a steeper slope at large stretches. An attempt to use the rabbit passive-to-total stress

ratio for estimating the total canine stress proved unsuccessful, because it resulted in total

canine stresses that contradicted the expected stress-stretch behaviour. Instead, we used

a different approach, which qualitatively conforms to the expectation that, as the stretch
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increases within the physiological range, the active stress would increase. In the rabbit,

it was found that, as stretch increases, so too does the contribution of the passive part to

the total. Therefore, although there is no experimental basis by which we can validate the

estimated active canine material behaviour, the deviation of the estimated total material

stress-stretch behaviour from the actual one is expected to decrease with increasing stretch.

As an additional attempt to bring our ongoing simulations of the canine LV cardiac cycle

closer to the physiological range, we plan to adjust the active material parameter values such

as to approximately reproduce measurements of stroke volume for a range of physiological

pressures. This could, for example, be achieved by adjusting the value of the parameter

χ. As already mentioned in previous sections, in the event that active canine stress-stretch

measurements become available in the future, it should be a straightforward exercise to

recalculate active material parameters using these more appropriate data.

3.7 Conclusions

A transversely isotropic material model, which was originally proposed for the

rabbit LV myocardium, has been adapted for use with a canine LV myocardium. This ma-

terial model has been modified from a form fitted to measurements to one that is suitable

for use in finite element simulations. Additional terms have been added to the model to

guarantee convergence at zero stretch and positive tensile stresses for small stretches. Be-

fore calculating material parameter values for the passive and active parts of the material

model, several constraints on the signs and magnitudes of the parameters were applied. In

particular, constraints have been added to ensure that the passive and active parts of the
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strain energy density function were strictly convex, which aids in the convergence of our nu-

merical simulations. Material parameter values for the passive canine LV myocardium have

been calculated from existing canine stress-stretch measurements. Because no measure-

ments relevant to an active canine LV myocardium are available, parameter values for this

case have been estimated from active rabbit myocardium stress-stretch measurements. In

both cases, excellent agreement was found between the stresses calculated with the material

model and those used to calculate the parameter values.
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Chapter 4

Inflation of the passive left

ventricle

4.1 Introduction

Numerical simulations of the mechanics of the heart may be classified in three

general categories, solid-only, fluid-only, and fluid-structure interaction (FSI). Solid-only

simulations compute the deformations of the walls of one of more chambers of the heart

by specifying boundary conditions for the pressure fields on their inner surfaces. Fluid-

only simulations compute the flow of blood through one or more chambers of the heart

by specifying wall motion, which is usually based on magnetic resonance imaging (MRI)

data. In contrast, FSI simulations compute both the solid wall motion and the blood flow

using coupled models of all related components. All methods used so far rely heavily on

drastic simplifications and ad hoc assumptions, because much of the required information is
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unavailable or of uncertain applicability to each particular approach. Whereas solid-only

or fluid-only studies are capable of reproducing realistic details of either the heart wall

motion or the blood flow, they fail to simulate the interaction between the two and so are

missing an essential aspect of heart mechanics. The ultimate goal of the present study

is to develop a complete model of heart mechanics, including physiological models of the

heart wall tissue and the blood as well as their interaction. As it is clear that this is an

extremely challenging and multi-faceted goal and cannot be accomplished all at once, we

address particular elements one at a time. The present chapter is an intermediate step of

this process.

A complete model of the heart requires suitable fluid and solid geometries, in-

cluding muscle fibre orientations, material models for blood and the heart wall, boundary

conditions to couple the heart with the rest of the cardiovascular system, and initial condi-

tions. To avoid the complexity of simulating the mechanics of the entire heart, the present

study is focused on the left ventricle (LV), which is the chamber that has received the most

attention in past literature. Sufficiently accurate patient-specific LV geometries can be

extracted from MRI or computed tomography (CT) images, or direct measurements. To

be usable in simulations, they would need to be complemented by muscle fibre orientations,

myocardium material properties, and inflow and outflow conditions specific to that partic-

ular LV, which are difficult or impossible to obtain. In the absence of some or all of this

specific information, estimates of the missing properties would have to be devised based on

a variety of sources in the literature. Due to the large variability of many parameters from

one individual to the next, it is possible that, for a single specimen, values of parameters
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obtained from the literature are incompatible with other values specific to the same speci-

men. For this reason, it seems preferable to use average or typical values of all parameters,

rather than mixing values from different individual specimens. In the present study, we

have defined our reference geometry such that it is representative of an average excised

canine LV. A canine LV was chosen rather than a human LV or one of another mammal,

because of the wealth of experimental and computational studies on canine LVs found in

the literature.

The LV wall comprises three layers, from its inner to its outer surface: the endo-

cardium, the myocardium, and the epicardium. The inner- and outer-most layers are thin

and are generally neglected in defining a material model for the LV wall. The myocardium

is relatively thick and contains muscle fibres, which are surrounded by an extracellular

matrix. In Chapter 3, we defined a constitutive equation for the myocardium, which mod-

els the material as being transversely isotropic with properties that differ in the fibre and

cross-fibre directions. The material model consists of a passive part, which represents the

behaviour of the tissue when the muscle fibres are fully relaxed, and an active part, which

represents the additional stresses added to the passive stresses when the muscle fibres are

fully contracted. To model the contraction and relaxation of the muscle fibres in our simu-

lations of the cardiac cycle, we introduce a suitable temporal variation of the active material

properties.

Obviously, the LV does not operate in isolation, but is coupled to upstream and

downstream components of the cardiovascular system. Simulating the entire cardiovascular

system physiologically is beyond our scope. Instead, our objective is to simulate the
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effects of this system on LV mechanics by imposing time-dependent pressure waveforms as

boundary conditions at the inlet and the outlet of our LV geometry during times when

the corresponding valves are open; the prescribed pressure waveforms are derived from in

vivo measurements. Other authors have used a different type of boundary conditions, by

coupling their LV model at the inflow and outflow boundaries to lumped-parameter models

representing other components of the cardiovascular system (Watanabe et al. (2004)).

Lastly, because the heart is in continuous operation, in order to start the numerical

simulation of the cardiac cycle, one must specify initial conditions, including an appropriate

initial geometry and an initial stress distribution. Although MRI or CT images can be

used to define the geometry, stresses are extremely difficult to measure, especially in vivo,

and a complete description of the stress distribution in the entire LV is far beyond current

capabilities. It may be argued that, if the numerical approach were well set, the effect of

initial conditions would probably disappear following a number of cycles that is sufficient

for a periodic state to be attained. This argument is not supported by any evidence for

the case of interest; besides, numerical simulations with FSI take an extremely long time,

as shown in Appendix A, which makes it impractical to compute a large number of cycles

or conduct comparative simulations with different initial conditions. To increase the rate

of convergence towards a steady state, one should define initial conditions which are as

physiological as possible, and at the least do not contradict known facts about the stress

state of the myocardium. If a zero-stress state of the myocardium existed during the cycle,

that would have been the best choice; however, the LV is always under stress and even an

excised and otherwise unloaded LV contains some residual stresses (Costa et al. (1997)).
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The next best choice would be a state at which the muscle fibres are fully relaxed and

only passive stresses are present, so that active stresses do not need to be accounted for.

The muscle fibres complete their relaxation during the early filling phase of diastole and

remain fully relaxed until systole begins. Therefore, any state during the latter part of

diastole could be used as an initial state for cardiac cycle simulations. We have chosen end

diastole as our starting state because it occurs at a clearly defined instant during the cardiac

cycle, which makes it easier to extract useful information from previous publications. The

problem now reduces to determining a geometry and a stress distribution at end diastole

that are physiologically plausible.

To calculate an end-diastolic geometry and stress distribution, we statically in-

flated a reference geometry to an end-diastolic pressure following an approach that corre-

sponds to an experimental procedure in which an excised LV is inflated by a static pressure

load, applied either directly to the inner walls of the ventricle cavity or to an incoming

fluid. Although this process is non-physiological, it is deemed to be representative of the

latter part of diastole (McCulloch and Omens (1991)). A number of experimental studies

(McCulloch et al. (1987); McCulloch et al. (1989); McCulloch et al. (1992); Omens et al.

(1991)) of filling of the passive LV have been conducted on canine LVs. All of these studies

used procedures similar to the one described in detail by McCulloch et al. (1987). Briefly,

each dog’s heart was stopped with drugs at an unspecified time during the cardiac cycle,

and excised from the body. The ventricles were then isolated from the great vessels and

atria. Cannulae attached to the aortic and mitral valve openings were used to mount the

LV as well as provide perfusion for the coronary circulation on the aortic side and incoming
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fluid (saline) on the mitral side for pressurization (McCulloch et al. (1987)). The LV was

then statically loaded from an unloaded reference state by a gradually increasing pressure

from the incoming fluid. These studies (McCulloch et al. (1989); McCulloch et al. (1992);

Omens et al. (1991)) contained plots of changes in LV cavity volumes vs. pressure, along

with plots of strains vs. volume and transmural distances for selected points (Omens et al.

(1991)). Although these results are suitable for comparisons, they do not include the

changes in geometry during filling or global stress and strain fields throughout the LV at

end diastole, and so they are insufficient to describe fully an end-diastolic state.

In addition to experimental work, two numerical simulations of passive canine LV

filling have been published: the studies by Costa et al. (1996) and by Nash and Hunter

(2000). Costa et al. (1996) performed solid-only simulations of passive filling of an isolated

LV. Their main LV geometry was defined as a truncated prolate ellipsoid, which is an ellipse

that is rotated about its major axis, but they also considered a second, non-axisymmetric,

LV geometry. These authors assumed that the myocardium was a transversely isotropic

material with material properties along the muscle fibre direction that differed from those in

transverse directions. The goal of the study of Costa et al. (1996) was to implement a new

finite element method capable of calculating the stress-strain behavior in the LV. Nash

and Hunter (2000) have simulated solid-only passive filling of both ventricles, but have

only presented results for the LV. Their geometry, consisting of both ventricles truncated

below their inflow and outflow tracts that contain the valves, was based on measurements

of excised canine hearts (Nielsen et al. (1991)), which were arrested during some part of

diastole. Nash and Hunter (2000) assumed the myocardium to be fully orthotropic with
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material properties that varied in the fibre, sheet, and sheet-normal directions, where the

sheet direction is contained in the same surface as the muscle fibres, and the sheet-normal

direction is perpendicular to this surface. This work was a review of previous publications

and illustrated the importance of anisotropy in a myocardium material model. Costa et al.

(1996) plotted transmural and longitudinal variations of strains and stresses at p = 1kPa

at a single elevation and wall depth, respectively, whereas Nash and Hunter (2000) reported

a pressure-volume plot and a plot of strains vs. volume change. Although the results

presented in these studies are suitable for comparisons to the present ones, they are not

sufficient for defining an end-diastolic state.

None of these previous studies (McCulloch et al. (1987); McCulloch et al. (1989);

McCulloch et al. (1992); Omens et al. (1991); Costa et al. (1996); Nash and Hunter

(2000)) provided details on the dimensions of their reference LV geometries. Moreover, the

experimental studies did not specify the state during the cardiac cycle at which the LVs were

arrested and the numerical studies did not specify the state at which the dimensions used

to define the geometries were measured. The only usable information provided by these

articles is the reference LV cavity volumes, which ranged from approximately 20 (Omens

et al. (1991)) to 40ml (McCulloch et al. (1989)).

Another difficulty arises when attempting to identify the conditions correspond-

ing to an end-diastolic state in the previous studies. The range of possible canine LV

end-diastolic pressures, approximated from measurements made by Ross et al. (1967), is

0.5kPa ≤ p ≤ 2kPa. In the present study, we have chosen the value p = 2kPa, because it

matches approximately the end-diastolic measurement by Sabbah and Stein (1981), and so
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it is consistent with the pressure waveform that we will use in our cardiac cycle simulations.

All of the previous studies, with the exception of the one by Costa et al. (1996), inflated

their LVs to pressures that exceeded 2 kPa, but none of them fully defined the dimensions

and stress distributions at their final states. The only published stresses are those by Costa

et al. (1996), evaluated at p = 1kPa; consequently these are the only previous values that

our present stress predictions can be compared with.

Following many considerations and preliminary simulations, we concluded that the

most suitable reference state from which to start our simulations of the inflation of a passive

LV would be one during which the muscle fibres would be fully relaxed and the residual

stresses present in the myocardium would be negligible, provided of course that such a state

exists approximately, as it is well known that the myocardium is never stress-free (Costa

et al. (1997)). It has been suggested (McCulloch and Omens (1991)) that simulations of

the inflation of a passive LV are suitable for modeling the behaviour of the myocardium

during the latter part of diastole, namely from diastasis to end diastole. Diastasis is the

middle phase of diastole, during which the muscle fibres are fully relaxed and both the

pressure in the LV and its difference from the pressure in the left atrium are small (Sabbah

and Stein (1981)). Based on small changes in wall thickness and diameter measured during

diastasis (Sabbah and Stein (1981)), one may also infer that the blood flow velocity within

the LV during this phase would be low. Considering these conditions, one may infer that

the stresses in the myocardium during diastasis would likely be lower than those at other

times during diastole. Therefore, a reference geometry defined at diastasis seems to be

the most appropriate choice for a starting condition for simulations of the inflation of the
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passive LV.

The primary objective of the present study was to simulate the filling of a represen-

tative, idealized, isolated, passive LV as a means of determining a physiologically plausible

end-diastolic state under a specified end-diastolic pressure, which could be used as an initial

condition for cardiac cycle simulations. Towards meeting this objective, we performed com-

parative simulations for different values of several parameters of our myocardium model,

determined suitable choices of these parameters, and compared the results to those in pre-

vious studies. Our predicted end-diastolic dimensions and volume were compared to in

vivo measurements at end diastole to verify that this state is representative of end dias-

tole. Following this, the LV stretch and stress distributions at our end-diastolic state were

determined and discussed.

4.2 Methods

4.2.1 Geometry and mesh

We generated a geometry which was approximately representative of a canine

LV during diastasis by rescaling a representative end-systolic geometry (hereafter to be

referred to as ESG), which was based on measurements made by Ross et al. (1967) and

published by Streeter and Hanna (1973). Ross et al. used a rapid fixation technique to

fix canine LVs at end systole and used simultaneous pressure measurements as a means of

verifying that the state at which each LV was fixed was indeed end systole. If the state

could not be determined or deviated greatly from end systole, the case was excluded from

that study. Following excision of the LVs, their volumes were measured by filling the LV

67



cavities with water. Outer dimensions were measured directly, whereas inner dimensions

were measured from a cast made by filling the LV cavities with liquid silicone rubber. Using

these measurements, Streeter and Hanna approximated the inner and outer surfaces of the

myocardium as truncated prolate ellipsoids whose average dimensions they provided. In

the present study, we will also approximate the inner and outer surfaces of ESG as truncated

prolate ellipsoids.

Figure 4.1 illustrates the geometric parameters used to define ESG as well as three

geometrical landmarks that will be referred to throughout this chapter: the apex, which

is the lowest point of the LV; the equatorial plane, which is the horizontal plane passing

through the centre of the full ellipsoid; and the basal plane, which is the top plane that

truncates the ellipsoid. Note that this truncation deviates from the one used by Streeter

and Hanna (1973), who truncated their LV geometry to a curved basal surface. In our

case, we truncated the ellipsoid at a height h, defined as the distance between the basal

plane and the inner surface of the ellipsoid at the apex, and calculated as

h = (1 + f) (a− ta) (4.1)

where the fractional height above the equatorial plane was taken as f = 0.5, following the

suggestion by Streeter and Hanna.

To define our reference geometry at diastasis (hereafter to be referred to as DG),

we modified ESG using a two-step approach. In the first step, we increased the LV cavity

volume Vf,0 at end systole by 25%, such that the new Vf,0 would be representative of

diastasis. This increase was based on a previous two-dimensional simulation of LV filling
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Figure 4.1: Diagram showing an isolated LV geometry; h is the total height; a is the outer
semi-major axis; b is the outer semi-minor axis; ta is the myocardium thickness at the apex;
and tb is the thickness at the equator. Dashed lines separate six layers of the myocardium,
each with a distinct fibre orientation.

(Vierendeels et al. (2000)), which showed changes in cavity volume during filling. The

resulting cavity volume of DG was 33.7ml, comparable to 34.5ml, which is the average of

values reported by previous authors (Table 4.1), excluding the one by Omens et al. (1991);

the latter value, calculated using information provided in the corresponding article and the

one by Nash and Hunter (2000), was much lower than the others and has been treated as

an outlier. In the second step, we increased by 16% the myocardium volume Vs calculated

from the characteristic dimensions of ESG provided by Streeter and Hanna (1973); this was

found to be necessary because there is an apparent discrepancy between the value calculated

from these characteristic dimensions and the one calculated from the LV myocardial mass

ms reported by the same authors (ms = 99 ± 4 g) and the density of myocardial tissue

ρs = 1060 kg/m3 (Holmes (2004)). The former was Vs = 75.9ml, whereas the latter

was Vs = 93 ± 4ml, which is 22.5% larger. The myocardial volume used in the present
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Table 4.1: Average volumes of the LV cavity and masses of the LV myocardium.

study V f ,0 (ml) ms (g)

McCulloch et al. (1989) 40 145
McCulloch et al. (1992) 36 152
Omens et al. (1991) 19.3 97.8
Costa et al. (1996) 30 n/a
Nash and Hunter (2000) 32 n/a
current simulations 33.7 93.6

simulations for DG had the intermediate value 88.3ml, which corresponds to a myocardium

mass ms = 93.6 g. The masses of the myocardia used in the previous experimental studies

and the present study are listed in Table 4.1. We note that the ms values reported by

McCulloch et al. (1989) and McCulloch et al. (1992) included sections of the LV inflow and

outflow tracts, which are not included in our geometry.

To define DG, we made four assumptions. Firstly, we assumed that DG can be

defined as a truncated prolate ellipsoid as shown in Fig. 4.1. Secondly, we assumed that

f = 0.5, equal approximately to average measurements reported by Streeter and Hanna

(1973) for both end diastole and end systole. Thirdly, we assumed that the outer and inner

ellipsoids were approximately confocal, in conformity with previous observations reported

by Streeter and Hanna. Lastly, to close the system of equations necessary for calculating

all dimensions of DG, we assumed a value for the mid-wall eccentricity e, which is a measure

of the deviation of an ellipsoidal geometry from a sphere. A mid-wall eccentricity, based

on the one proposed by Rankin (1980), may be defined as

e =

√
(2a− ta)

2 − (2b− tb)
2

(2a− ta)
2 (4.2)

The range of this eccentricity is between 0 (which corresponds to a sphere) and
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1. Rankin (1980) measured the dimensions of several in vivo canine LVs and plotted the

eccentricity as a function of LV cavity volume. He found a linear decrease in eccentricity

during filling and a linear increase in eccentricity during ejection, with abrupt changes

during the two isovolumetric phases. This implies that the LV tends toward a spherical

shape during filling and towards an elongated one during ejection. For DG, we assumed

e = 0.88 based on calculations made using results obtained from our previous simulations

(Doyle et al. (2010b)) and assuming a linear variation in eccentricity between end systole

and end diastole.

Using these four assumptions, we calculated the characteristic dimensions for DG

to be a = 46.92mm, ta = 6.83mm, b = 27.84mm, tb = 12.42mm, and h = 60.14mm.

Although the fibre orientation varies continuously across the myocardium wall,

for the finite element analysis it is necessary to divide the wall into layers within each of

which the fibre orientation is initially constant. As discussed in Section 4.3.6, a three-layer

model was found to be insufficient to properly resolve the stresses through the myocardium.

Therefore, we adopted a six-layer model, shown in Fig. 4.1. Each layer had a distinct fibre

orientation, spanning the fibre angle range from −60◦ in the outer layer to +60◦ in the inner

layer, with these angles defined with respect to the local circumferential direction. This

range was chosen as representative of the average range found in canine LVs, as determined

from plots in articles by both Streeter et al. (1969) and Nielsen et al. (1991), but different

from the one measured by Omens et al. (1991) (−37◦ to +98◦) and used by Costa et al.

(1996); as will be shown in Section 4.3.7, differences between results obtained using the two

different fibre angle ranges are not significant.
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Figure 4.2: Coarse (a) and fine (b) finite element meshes.

DG was meshed on an unstructured grid using 10-node tetrahedral elements, hav-

ing nodes on each vertex and at the midpoint of each edge. We have considered two meshes

for DG, consisting of 130, 515 elements (186, 292 nodes; to be referred to as the coarse mesh)

and 182, 150 elements (258, 880 nodes; to be referred to as the fine mesh), respectively; the

two meshes are shown in Fig. 4.2.

4.2.2 Governing equations

Simulations in this study were performed using the commercial finite element soft-

ware ADINA v. 8.5.2 (ADINA R & D, Inc., Watertown, MA, USA) coupled with a user-

defined material model for the myocardium described in Chapter 3. These simulations were

carried out on computer clusters of the High Performance Computing Virtual Laboratory
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(HPCVL), which are located at Queen’s University, Kingston, ON, Canada, and are shared

resources for several universities and colleges in Eastern Ontario, Canada. More details

about the specific clusters used for our simulations can be found in Appendix A, along with

details on RAM and CPU requirements as well as the results of a parallelization study.

The LV myocardium undergoes large displacements and large strains and has

highly non-linear material behaviour, which are best simulated with the use of the To-

tal Lagrangian form of the governing equations. Simulations were performed statically

with the external load being applied over several load steps, denoted as ∆s, with the so-

lution being calculated at each load step in a manner similar to the one used in dynamic

simulations with time stepping. Nodal displacements U at the current load step s + ∆s

were calculated using the following equation

K (s) [U (s+∆s)−U (s)] = R (s+∆s)−F (s) (4.3)

whereK is the stiffness matrix, R is the external load vector, F is the force vector equivalent

to the element stresses, and s = n∆s , where n is the number of load steps (ADINA R &

D, Inc. (2008a)). Note that in Eq. (4.3) R is independent of deformation, but F(s) is a

function of U(s). Further details on the derivation of Eq. (4.3) are given in Appendix B.1.

Once a suitable stiffness matrix is defined, this system of equations can be solved for using

full Newton iterations and the ADINA direct sparse solver (ADINA R & D, Inc. (2008a)).

To calculate K(s) and F(s), a constitutive equation for the myocardium material

is required. For this study, the myocardium is modeled as a slightly compressible trans-

versely isotropic hyperelastic material, with properties that differ in the fibre and cross-fibre
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directions. It is defined by the following strain energy density function

Wp = C1
(
eQ − 1

)
+
1

2
κs (J3 − 1)2 (4.4)

where

Q = C2 (J1 − 3)2 +C3 (J1 − 3) (J4 − 1) +C4 (J4 − 1)2 +C5 (J1 − 3) +C6 (J4 − 1) (4.5)

In Eqs. (4.4) and (4.5), Ci are material parameter values, κs is the bulk modulus,

which governs the material compressibility, and Ji are reduced invariants of Green’s strain

tensor E. Details of this material model have been presented in Chapter 3.

From this constitutive equation, the components of the second Piola-Kirchhoff

stress tensor S can be calculated as follows

Sij =
∂W

∂Eij
, i, j = 1, 2, 3 (4.6)

For the Total Lagrangian formulation, K is the sum of linear (KL) and non-linear

(KNL) parts, which are defined as

KL =

∫

V

B
T
LCBLdV (4.7a)

KNL =

∫

V

B
T
NLSBNLdV (4.7b)

where BL and BNL are strain-displacement matrices and C is the stress-strain material

property matrix (Bathe (1996)).
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For the passive material model defined by Eqs. (4.4) and (4.5), three sets of ma-

terial parameter values have been calculated using the procedure described in Chapter 3.

These three sets of material parameter values are given in Table 4.2, where they are referred

to as lower, middle, and upper, depending on the relative positions of the corresponding

stress-strain curves. Simulations were performed using each of these sets of material pa-

rameters to determine which set leads to results that most closely match those in previous

studies. The values of the three sets of passive material parameters are slightly different

from those presented in Chapter 3, as a result of small differences in the constraints im-

posed on C5 and C6, which were required to ensure convergence of the simulations using the

defined model conditions and a LV geometry. Specifically, C5 was increased from 0.0001 in

the previous calculations to 0.01, and C6, which was set to zero in the previous calculations,

was bounded in the interval 0 < C6 ≤ 0.0005. Although simulations performed with the

material parameters from Chapter 3 converged for a cubic geometry, they diverged when a

LV geometry was considered. By adjusting the constraints imposed on C5 and C6 and re-

calculating the material parameters using the procedure described in Chapter 3, numerical

convergence was achieved for simulations with a LV geometry, while maintaining excellent

agreement (not shown presently) with previous measurements for simulations performed on

a cubic geometry.

The material model has been chosen to be slightly compressible to allow for nu-

merical convergence. Assuming that the myocardium can be modeled as an incompressible

material, the bulk modulus can be chosen sufficiently large for stresses calculated using our

slightly compressible material model to be essentially the same as stresses calculated using
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Table 4.2: Material parameter values for passive canine LV myocardium material model.

parameter lower middle upper

C1 ( kPa) 2.117 5.062 5.021
C2 0.498 0.593 0.851
C3 0.237 0.0383 −0.0613
C4 0.0332 0.00483 0.0413
C5 0.01 0.01 0.01
C6 0.0005 0.0005 0.000278

an incompressible version of the same material model for the same stretches. In Chapter

3, we have demonstrated that the value κs = 1× 107 kPa is an appropriate choice and this

value was used in the present study.

4.2.3 Boundary and initial conditions

Considering that the heart is nearly neutrally buoyant in the body, we have ne-

glected gravitational forces in this work. The deformation of the LV was driven by a linearly

increasing pressure function applied uniformly to the inner wall of the LV cavity. Based

on our objective to inflate the LV to an end-diastolic state, we have chosen the maximum

pressure applied to the wall to be 2 kPa, which is approximately equal to the end-diastolic

pressure measured by Sabbah and Stein (1981). During the experiments described by Mc-

Culloch et al. (1987), the right ventricle (RV) remained attached to the LV, but it is unclear

whether the RV was pressurized. In the absence of definitive information, we assumed that

the RV was not pressurized in these experiments. Stress-free boundary conditions were

applied to the outer walls of the myocardium. Lastly, for the finite element simulations to

converge, the geometry must be fixed at some location. In the experimental set-up from

McCulloch et al. (1987), the inflow and outflow tracts of their excised LV were attached to
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rigid cannulae. Because the present geometry was truncated below the inflow and outflow

tracts, we have instead chosen to fix the basal plane in the z-direction. In anticipation

of future FSI simulations for which we will couple the present solid geometry to a fluid

geometry that will be rigid above the basal plane, the inner edge of the basal plane was

fixed in all three directions.

As the initial condition for the simulations, we assumed zero stresses in the entire

myocardium. This condition is only approximately valid, because it is known that the

myocardium has residual stresses even in an excised condition (Costa et al. (1997)). This

issue will be further discussed in Section 4.4.2.

4.2.4 Procedure for principal stretch and stress calculations

The principal stretches are defined as the ratios of corresponding deformed and

undeformed lengths and are denoted as λi, i = 1, 2, 3. The principal stresses presented in

this work are Cauchy stresses Ti, i = 1, 2, 3, which can be computed from the second Piola-

Kirchhoff stresses calculated from Eq. (4.6) using a push-forward operator as described

in Chapter 3. The only available measurements of principal stretches have been reported

by Omens et al. (1991) at a location halfway through the LV free wall, which is the part

of the LV that does not share a common boundary with the RV. In consideration of the

orientations of the LV inflow and outflow tracts in our fluid geometries (not presented in

this chapter), which will be coupled with the present solid geometries for FSI simulations,

we have inferred that the section of the geometry that would likely be the LV free wall

would be the quadrant that is bounded by the positive x- and y-axes. As the best choice

for comparisons with the measurements, we will present values of the principal stretches
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Figure 4.3: Location of elements used for principal stretch and stress calculations. These
elements are located at a relative elevation from the apex of z/h = 0.5.

which were the averages of values in six elements in the mesh, shown in black in Fig. 4.3

for the finer of our two meshes; these elements were located approximately halfway through

the wall (on either side of the centreline), at three circumferential positions, one near the

positive x-axis, another near the positive y-axis, and a third one near the bisector of the

angle between these axes, and at a relative elevation of z/h = 0.5 in DG. This elevation

was chosen as a representative height; unfortunately, Omens et al. (1991) did not specify

the elevation of their measurements.

Transmural variations of principal stretches and stresses were calculated along the

positive x- and y-axes in the equatorial plane, which was at a relative elevation of z/h = 0.67

in DG. The relative depth at which a stretch or stress is reported is the distance t from the

exterior wall normalized by the local deformed wall thickness tmax. For each relative depth
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t/tmax, average stretches and average stresses were calculated by averaging values obtained

on the x- and y-axes. The equatorial plane was chosen because it is only at this elevation

that the horizontal plane contains the third material axis x3, which is perpendicular to

the local circumferential direction. At any other elevation, the x3 directions in each layer

would differ on the horizontal plane, requiring that each plane be oriented perpendicular

to the local circumferential direction. Costa et al. (1996) presented principal stretches

and stresses at p = 1kPa at a relative elevation of z/h = 0.56; although this elevation is

somewhat different from the present one, this issue is not of serious concern, because, as will

be shown in the following, the values of principal stretches and stresses are fairly insensitive

to elevation except close to the apex or the base. Omens et al. (1991) presented principal

stretches at p = 1.07kPa, but did not specify the elevation of the plane in which they took

their measurements.

Longitudinal variations of principal stretches and stresses were calculated from the

apex to the base halfway through the wall at circumferential locations corresponding to the

positive x- and y-axes. The relative distances from the apex c/cmax were calculated using

the deformed length of each edge and for each c/cmax average stretches and average stresses

were calculated by averaging values obtained at the two circumferential locations.

4.3 Results

4.3.1 Material parameter selection

The first step in our simulations of filling of the passive LV was to determine which

of the three sets of passive material parameters that were described in Section 4.2 resulted
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in cavity volume changes that were closest to values reported by authors of previous exper-

imental and computational studies. To compare our results with those in the literature,

we need to normalize the volume changes. Two types of normalized volume changes have

been introduced by previous authors: Nash and Hunter (2000) introduced the parameter

∆Vf/Vf,0 and Omens et al. (1991) introduced the parameter ∆Vf/ms. Figure 4.4 plots

these two types of normalized volume changes vs. pressure for the three presently consid-

ered cases, along with results from the literature. It should be noted that for the present

simulations, because the LV cavity itself is not meshed, Vf cannot be calculated directly.

Details on how Vf was calculated are given in Appendix B.2. The present results were

obtained using the fine mesh. The previous experimental results are presented as mean

values of 6 (McCulloch et al. (1989)), 5 (McCulloch et al. (1992)), and 7 (Omens et al.

(1991)) samples; each uncertainty bar is equal to two standard deviations of corresponding

measurements. The computational results from Nash and Hunter (2000) are only presented

in Fig. 4.4a, because the authors did not provide the mass (or volume) of the myocardium

in their study, which prevented us from calculating ∆Vf/ms for their results.

Normalizing the LV volume changes as ∆Vf/Vf,0 takes into account differences in

cavity volume for different LVs but not differences in wall thickness. Even when considering

the significant experimental uncertainty, Fig. 4.4a shows that this parameter does not lead

to a collapse of the three available sets of measurements. However, when volume changes are

normalized by the myocardium mass, the three sets of experimental results nearly collapse,

as seen in Fig. 4.4b. This shows the importance of accounting for the mass (or volume)

of the myocardium when choosing a suitable LV geometry. In conclusion, the parameter
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Figure 4.4: Normalized volume changes vs. pressure for three sets of material parameter
values, along with three previous experimental studies (points), and one previous compu-
tational study (solid line) for (a) only.

∆Vf/ms seems to be more appropriate than ∆Vf/Vf,0 for comparing results of studies using

different LVs.

The calculated values of ∆Vf/ms for the three sets of material parameter values

have comparable trends but significantly different magnitudes, with the lower set of results

being generally the one closest to the experimental values. Although the calculated values

are higher than the measurements for pressures lower than about 0.7 kPa, the agreement

between predictions and measurements is very good for the range of higher pressures, which

is of interest in this study. Based on these observations, the lower set of material parameters

were chosen for use in the remainder of the present simulations.

4.3.2 Mesh dependence

To determine the dependence of the results on the mesh, simulations were per-

formed using the two meshes defined in Section 4.2.1. For each mesh, we calculated

∆Vf/ms and the transmural and longitudinal variations of the principal stretches and
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stresses at p = 2kPa. These principal stretches and stresses were calculated at the lo-

cations described in Section 4.2.4, and, through interpolation, values were obtained for

the same transmural and longitudinal positions for each mesh to allow for a quantitative

comparison. The values of ∆Vf/ms for the two meshes were nearly identical, with differ-

ences being lower than 0.1%. The transmural and longitudinal variations of the principal

stretches and stresses also showed excellent agreement for the two meshes with average

differences in both directions being less than 1% for the stretches and less than 7% for

the stresses. These small percentage differences suggest that the results are nearly mesh

independent. It is also clear that the stresses are more sensitive to mesh density than the

stretches and volume changes. This conclusion is reinforced by the fact that, at certain

isolated locations, the percentage differences for the stresses were significantly larger than

the corresponding averages. For the remainder of the simulations presented in this study,

we will use the fine mesh to keep mesh dependence as low as possible.

4.3.3 Verification of end-diastolic state

As mentioned in the introduction, we assumed that the end-diastolic state of the

LV was reached at a pressure of p = 2kPa. Although DG was ellipsoidal, our calculated

end-diastolic geometry was not, because the LV deformed in a three-dimensional manner.

Even so, it was possible to roughly fit an ellipsoid to the end-diastolic LV and to determine

its characteristic dimensions so that they can be compared to previous measurements. As

the LV deformed during the simulations, the original equatorial plane shifted away from

the basal plane, which was fixed in the vertical direction. For our end-diastolic geometry,

we calculated an average outer radius b, an average equatorial thickness tb, and a rough
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location of the equatorial plane, by calculating the maximum outer and inner radii along the

+x, +y, −x, and −y axes along with their vertical positions. These radii were calculated

at nodes within the deformed mesh, which were not necessarily located at the same vertical

positions. In fact, we observed that the average vertical position of the outer radii was

higher than the average vertical position of the inner radii. We then calculated each outer

radius at the node below the one at which the maximum value was obtained, and each inner

radius at the node above the one at which the maximum value was obtained. We then

chose the height of the equatorial plane to be the average vertical position of these sixteen

nodes (eight on the outer surface and eight on the inner surface). Through interpolation,

we found the outer and inner radii in this equatorial plane. Then b was determined by

averaging the four outer radii in the equatorial plane and tb was determined by averaging the

thicknesses in the equatorial plane. The semi-major axis a was calculated as the vertical

distance of the outer edge of the apex from the equatorial plane, and the wall thickness

at the apex ta was calculated as the distance between the inner and outer edges at the

apex. Lastly, the end-diastolic h was calculated as the distance from the basal plane to the

inner edge of the myocardium at the apex. The calculated end-diastolic dimensions were

a = 47.4mm, ta = 5.1mm, b = 31.8mm, tb = 8.5mm, and h = 67.6mm, and the calculated

end-diastolic volume was Vf = 56.3ml. The corresponding measurements by Streeter and

Hanna (1973), were a = 47 ± 2mm, ta = 6 ± 1mm, b = 28 ± 1mm, tb = 9 ± 1mm, and

Vf = 52± 5ml. These measurements are presented as an average of five samples plus or

minus their standard deviation and the reported values were rounded-off from the original

measurements for consistency with their estimated uncertainty (Tavoularis (2005)). For
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Figure 4.5: End-diastolic displacement magnitudes at the centre of the left ventricle geom-
etry in the y-z plane, calculated at p = 2kPa.

the most part, the calculated dimensions and cavity volume were either within or fairly

close to the measurement ranges. This verifies that at p = 2kPa the present LV geometry

is representative of a LV at end diastole.

Using the previously presented dimensions and Eq. (4.2), we calculated an end-

diastolic eccentricity of e = 0.79, which is 10% lower than the value of e = 0.88 calculated at

diastasis. This decrease in eccentricity is in agreement with the trend observed by Rankin

(1980).

4.3.4 Deformations

Figure 4.5 shows contours of displacement magnitudes on the centre-plane of the

end-diastolic geometry (p = 2kPa). Changes in the dimensions of DG during inflation are

visible in this figure. Near the basal plane, the displacement was small, which is to be

expected if one considers that this boundary was kept fixed.
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Figure 4.6: Representative principal stretches versus normalized volume change (a) and
pressure (b), calculated as described in Section 4.2.4.

Average principal stretches halfway through the myocardium, calculated as de-

scribed in Section 4.2.4, have been plotted in Figs. 4.6a and b, versus the normalized

volume change and pressure, respectively. The principal stretches in the study of Omens

et al. (1991), also shown in Fig. 4.6a, were computed from the principal strains presented

in their Fig. 4. Each uncertainty bar is equal to two standard deviations of 7 samples, as

reported by these authors. As we could not determine an exact correspondence between

volume and pressure in the Omens et al. results, we have not plotted these in Fig. 4.6b.

The trends of the presently found principal stretches in Fig. 4.6a are consistent

with the trends in the results of Omens et al. (1991), in the sense that they indicate tension

for λ1 and λ2 and compression for λ3 and also that deformations in all directions increase

with increasing volume change. The present λ1 and λ2 are comparable to λ1 and λ2 found

by Omens et al. (1991), whereas the present λ3 indicates larger deformations than the

deformations in the previous study. To investigate a possible cause for the large differences

in λ3, values of the third invariant of Green’s strain tensor I3 = λ21λ
2
2λ
2
3 were calculated for
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the present study and the experiments of Omens et al. (1991) for ∆Vf/ms = 0.05ml/ g

and 0.20ml/ g. This parameter is an indicator of the compressibility of a material, being

equal to 1 for an incompressible material. For DG, I3 changed very slightly (I3 = 1.0001

for ∆Vf/ms = 0.05ml/ g and I3 = 1.0006 for ∆Vf/ms = 0.20ml/ g), whereas for the

measurements of Omens et al. (1991), I3 increased significantly with increasing volume

change (I3 = 1.06 for ∆Vf/ms = 0.05ml/ g and I3 = 1.21 for ∆Vf/ms = 0.20ml/ g).

The increase in I3 found for the measurements of Omens et al. (1991) is consistent with

their observation that the volume of the myocardium increased as the LV was pressurized.

They suggest that this increase in myocardium volume could be caused by fluid entering

the myocardium from the LV cavity or possibly due to errors associated with their strain

calculations. They mention that, because during their measurements the wall was not

being perfused, this volume change was not caused by a transfer of fluid in the vasculature

of the LV wall. In contrast to this finding of Omens et al. (1991), Yin et al. (1996), who

measured the change in volume of a perfused section of the septum of a passive canine LV

myocardium, found that the volume of the myocardium decreased with increasing pressure.

In view of this contradiction, we made no effort to match the wall volume changes found

by Omens et al. (1991).

A comparison of Figs. 4.6a and b shows that in the pressure range of present

interest (1 kPa ≤ p ≤ 2kPa) the rates of variation of stretches with respect to pressure were

much lower than their corresponding rates with respect to volume change.

Transmural and longitudinal variations of principal stretches (and stresses, which

will be discussed in the following section) will be presented for two values of pressure: at
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p = 1kPa, which allows comparisons with previous results, and at p = 2kPa, which is

deemed to be the end-diastolic pressure.

Figures 4.7a and b are plots of the transmural (from the exterior to the interior of

the myocardium) and longitudinal (from the apex to the base) variations of the principal

stretches, respectively, for p = 1kPa; Figures 4.7c and d are plots of the same stretch

variations at p = 2kPa. The curves are polynomial fits through average values at locations

described in Section 4.2.4. These figures also show transmural variations of the principal

stretches in the experiments of Omens et al. (1991), which were calculated from the normal

and shear strains presented in their Fig. 6 as the eigenvalues of the right Cauchy-Green

deformation tensorC, and corresponding variations in the simulations of Costa et al. (1996),

which were curve fits through their point data in their Fig. 5.

The present transmural stretches at p = 1kPa are in fair qualitative agreement

with the previous work. The values of λ2 in the present and previous studies are compa-

rable. For λ1 and λ3, the deformations in all three cases increase with increasing distance

from the exterior wall, however, the deformations in the present study are larger than the

deformations found in the previous ones. Because the longitudinal variations of stretches

at p = 1kPa indicate only small changes in all stretches except near the apex and near the

base, differences in transmural stretches between the present and the previous cases cannot

be attributed to differences in elevations. The differences in the trends of the stretches

near the apex for the present and the previous simulations are caused by differences in the

boundary conditions that were used in the two studies. Costa et al. (1996) resolved the

singularity that would occur if the mesh were reduced to a single point at the apex by
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Figure 4.7: Representative transmural (a,c) and longitudinal (b,d) variations of the principal
stretches at p = 1kPa (a,b) and p = 2kPa (c,d), calculated as described in Section 4.2.4.
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adding a small hole. In the present study, this singularity was resolved by subdividing the

geometry into quarters. At the basal plane, the present and previous models were both

constrained in the z-direction, resulting in comparable principal stretches at this location

(λ1 = 1.16, λ2 = 0.95, λ3 = 0.91 compared to λ1 = 1.15, λ2 = 1.07, λ3 = 0.81 in the work

of Costa et al. (1996)). All three principal stretches in the present and previous studies

were fairly uniform away from the apex and the basal plane; however, for λ1 and λ3, de-

formations were larger in the present study than in the previous one. These differences in

deformations away from the basal plane resulted in differences between trends in the present

and previous stretches as they approached nearly identical values at the basal plane.

The transmural and longitudinal variations of principal stretches at p = 2kPa

are very similar to those at p = 1kPa, although they correspond to deformations which in-

creased by an average factor of 1.06. This shows that the overall sensitivity of deformations

to pressures within the range bounded by these two values is relatively low.

4.3.5 Principal stresses

Figures 4.8a and b are plots of average principal Cauchy stresses halfway through

the myocardium versus the normalized volume change and pressure, respectively, at the

same locations as the principal stretches presented in Figs. 4.6a and b. Consistent with

the principal stretches, T1 and T2 are tensile and T3 is compressive. All stresses grow in a

non-linear manner with increasing volume change, which is consistent with the non-linear

form of the myocardium material model. In the middle of the myocardium, where the

stresses are shown, they were nearly proportional to the pressure. As the pressure doubled

from 1 to 2kPa, the stresses increased by an average factor of 2.1; this demonstrates that the
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Figure 4.8: Representative principal Cauchy stresses versus normalized volume change (a)
and pressure (b), calculated as described in Section 4.2.4.

stresses in the myocardium at end diastole are very sensitive to the choice of end-diastolic

pressure. One may recall that the deformations were not very sensitive to pressure in the

range between 1 and 2kPa; even so, because of the exponential form of the myocardium

material model and the relatively large deformations for p ≥ 1 kPa, small increases in

deformation correspond to large increases in stress.

Figures 4.9a and b are plots of the transmural (from the exterior to the interior of

the myocardium) and longitudinal (from the apex to the base) variations of the principal

Cauchy stresses, respectively, for p = 1kPa, whereas Figs. 4.9c and d are plots of the same

stress variations at p = 2kPa. These stresses are presented at the same locations as the

stretches presented in Fig. 4.7. It should be noted that, in Fig. 4.9, different scales are

used for the transmural and longitudinal variations of the stresses, and that due to the large

increase in the magnitudes of the transmural stresses from p = 1kPa to 2 kPa, the scale

used in Fig. 4.9c is twice as large as the scale used in Fig. 4.9a.
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Figure 4.9: Representative transmural (a,c) and longitudinal (b,d) variations of the principal
Cauchy stresses at p = 1kPa (a,b) and p = 2kPa (c,d), calculated as described in Section
4.2.4.
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Principal stresses through the wall at p = 1kPa show good agreement for T3 in

both slopes and magnitudes between the current and previous computational results. The

T2 results in the outer half of the wall are comparable to the previous computational results.

In the inner half, the two sets diverge gradually, such that the present prediction at the

inner surface is much larger than the one by Costa et al. (1996). Lastly, the results for

T1 differ substantially in both slopes and magnitudes. The current results exhibit high

stress concentrations in both T1 and T2 at the inner surface of the wall, where the pressure

boundary condition was applied.

The longitudinal principal stress variations at p = 1kPa exhibit end effects at

the apex, similar to those observed for the principal stretches. In the middle section, the

values of T3 for the current and previous studies were comparable in slopes and magnitudes.

With the exception of the region near the basal plane, the values of T2 for the current and

previous studies show comparable slopes with the magnitudes in the present study being

larger than the magnitudes in the previous one. For T1, both the trends and the magnitudes

differ in the two cases; however, with the exception of the spike at the apex for the stresses

by Costa et al., both stresses increase to a maximum part-way between the apex and the

base, before decreasing towards the basal plane. Further, the averages of each T1 from

the apex to the base are nearly equal (T 1 = 1.34 for the current study and T 1 = 1.46 for

the Costa et al. study). One may partially attribute these differences to differences in

geometry: the geometry of Costa et al. contains a hole at the apex, which produces large

local values of T1 and significantly influences the longitudinal variation of this variable. End

effects seem to have a much larger influence on the stresses than on the stretches, making
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it difficult to identify other effects. Overall, in view of the differences in the forms of and

the parameter values used in the transversely isotropic material models employed by the

present and previous computational studies, it is not surprising that the stress distributions

in these studies are different.

At p = 2kPa, the trends of the transmural and longitudinal variations of the prin-

cipal stresses were comparable to the trends found at p = 1kPa but the magnitudes of these

stresses were larger. We investigated whether the stresses increased proportionately to the

increasing pressure in the range from p = 1 to 2 kPa, and found that the stress magnitudes,

for the most part, increased by a factor greater than 2 in this pressure range. Moreover, the

stress to pressure ratio was found to vary non-uniformly in space: transmurally, the stresses

increased by an average factor of 2.09 at the exterior wall and 2.86 at the interior wall,

whereas, longitudinally, the stresses increased by an average factor of 2.69 at the apex, 2.04

at the base, and 2.22 halfway in-between. These observations make it clear that stresses

in the myocardium must be calculated at the desired end-diastolic pressure and cannot be

obtained by proportional scaling of stresses calculated at a lower pressure.

The local principal stress axes y1, y2, and y3 are distinct from the local material

axes x1 (fibre), x2 (sheet), and x3 (sheet-normal). To illustrate the differences between

these two sets of axes, we determined the principal directions along the x- and y-axes in the

equatorial plane, in which x3 is radial. The local material axes x1 and x2 depend on the

orientation of the muscle fibres, which changes from layer to layer through the wall. Let ϕ1

be the angle between y1 and the local circumferential direction, ϕ2 be the angle between y2

and the local circumferential direction, and ϕ3 be the angle between y3 and the local radial
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direction. All three angles were calculated as the average of values obtained along the x-

and y-axes in the equatorial plane.

As shown in Fig. 4.10, the angles ϕ1 and ϕ2 varied non-linearly through the wall

and the difference between them was approximately 90◦ throughout. The variations of these

angles through the wall were non-linear, with general shapes comparable to those found by

Omens et al. (1991) for the principal stretch directions at p = 1.07 kPa. Nevertheless, the

magnitudes of these angles were different from those in the previous study, as anticipated

in view of differences in muscle fibre angles between the two cases and differences between

principal stretch and principal stress directions. The average values of ϕ1 and ϕ2 through

the wall were 19.7◦ and −70.3◦, respectively, which represent a difference of approximately

20◦ between the local principal stress directions and the local material axes within the plane

containing the muscle fibres. The angle ϕ3 was nearly constant through the wall with an

average value of ϕ3 = 4.9
◦, which implies that, in the equatorial plane, the principal axis

y3 is nearly radial.

4.3.6 Effect of the number of myocardial layers

The sensitivity of the results to the number of wall layers used in our model was

investigated by comparing our main results obtained using the six-layer model and results

obtained using a three-layer model. All comparisons were made for the assumed end-

diastolic pressure of p = 2kPa. This is the first study of its kind, although a previous

FSI study (Watanabe et al. (2003)), performed over the cardiac cycle, has examined the

effects of the number of wall layers on global parameters, such as volume change. Average

percentage differences in the transmural variations of the principal stretches and principal
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Figure 4.10: Representative transmural variations of the in-plane angles at p = 2kPa,
corresponding to the average stresses shown in Fig. 4.9c.

stresses were found to be 1% and 8%, respectively. However, larger differences in principal

stresses were found locally, as illustrated in Fig. 4.11a. Specifically, in the region between

t/tmax = 0.67 and t/tmax = 0.83, which corresponds to the outer half of the inner layer in

the three-layer model and layer 5 in the six-layer model, the average percentage difference

between the principal stresses in the two cases increased to 17%. In this region, there was a

noticeable shift in T1 for the three-layer case, whereas there was no apparent discontinuity

in the six-layer case. The most compelling evidence that a three-layer wall was insufficient

to resolve the transmural variations of the stresses can be seen in Fig. 4.11b, which is a plot

of the variations of ϕ1 and ϕ2 for the two cases. In Fig. 4.11b, large sudden jumps in ϕ1

and ϕ2 are visible for the three-layer model at the boundaries between the layers, whereas

no such jumps are visible for the six-layer model. In summary, our study has shown for

the first time that a model containing three wall layers would be insufficient to resolve

the transmural variations of the stresses in the myocardium, whereas a model containing
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Figure 4.11: Representative transmural variations of the principal stresses (a) and the in-
plane angles (b) at p = 2kPa for two models with different numbers of wall layers.

six layers provided stress variations that were nearly free of apparent discontinuities across

layers. In conclusion, the use of six layers is deemed to be sufficient for the present

simulations.

4.3.7 Effect of muscle fibre orientation

The sensitivity of the analysis to muscle fibre orientation was investigated at p =

1kPa, by comparing results obtained for our reference case to those calculated with a fibre

angle range from −37◦ to+98◦, as measured by Omens et al. (1991) and used by Costa et al.

(1996). Differences in the transmural variations of the principal stretches, calculated for

each case as described in Section 4.2.4, were found to be small, with the average percentage

difference being approximately 1%. These differences were found to be much smaller than

the differences between the current results and those from previous studies presented in

Fig. 4.7a. The average difference between the principal stretches from our reference case

and the measurements of Omens et al. (1991) was 8%. From this we can conclude that

differences in fibre orientation between the current and previous studies cannot account for
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the observed differences in the principal stretches. Larger percentage differences were found

between the transmural variations of the principal stresses calculated in the two cases, with

the average difference being approximately equal to 10%. Differences in the angles ϕ1 and

ϕ2 were much larger near the exterior surface (23
◦) than near the interior surface (4◦). The

difference in these angles at the exterior surface between the two cases was equal to the

difference in fibre angles in the outermost layer. In contrast, the difference in these angles

near the interior surface was much smaller than the corresponding difference in fibre angles

in the innermost layer; this can be attributed to the pressure boundary condition that was

applied on this surface.

4.4 Discussion

This section re-evaluates the rationale for the several simplifications that have been

made in defining the numerical model in this study and the potential impact that these

simplifications may have on the observed or conjectured differences between the present

results and their physiological counterparts.

4.4.1 Assessment of the geometry, material model, and boundary condi-

tions

The LV geometry used in the present study is idealized, and is considered to

represent an average isolated canine LV. The wall is axisymmetric, whereas the actual LV

wall consists of two distinct sections: the septum, which separates it from the RV, and the

free wall. Thus, the wall thickness and muscle fibre orientation in actual LV would be non-
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axisymmetric. LV non-axisymmetry and the coupling of the LV and RV mechanics would

undoubtedly play some role in the deformation of the myocardium during filling. Even so,

the fair agreement of the calculated volume changes and other bulk properties with previous

experimental values suggests that the present model is adequate for the intended purposes.

Appendix C briefly describe the extension of this work to an anatomical LV-RV geometry

and the limitations of such an extension.

In the present work, we have modeled the LV myocardium as a transversely

isotropic material, in full knowledge of the fact that a fully orthotropic material model

(Nash and Hunter (2000); LeGrice et al. (1995)) would be more appropriate. The reason

for our choice was that the available stress-stretch measurements (Novak et al. (1994))

were adequate for the calculation of transversely isotropic material parameter values but

not orthotropic ones. Comparative simulations of the mechanics of the myocardium over

the cardiac cycle using a transversely isotropic material model and an orthotropic one have

been performed by Usyk et al. (2000). These authors calculated the orthotropic material

parameter values by adjusting transversely isotropic values to improve the fit to experimen-

tal strains at end diastole; predictably, they found that the use of this orthotropic model

resulted in a better agreement between the computed transmural strains and previous mea-

surements at end diastole. The orthotropic material parameter values used by Usyk et

al. cannot be of general use, because they were not determined from independent material

tests, but fitted to specific data at end diastole, which are subject to many other influences.

Moreover, Usyk et al. found that, at end systole, the transmural strains computed using the

transversely isotropic and orthotropic material models were not very different. In conclu-
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sion, although it may be plausibly expected that the use of an orthotropic material model

would change the results of the present simulations, it is unclear in what direction such

changes would be. In the absence of suitable experimental results of biaxial stress-stretch

tests in the two cross-fibre directions, we are unable to validate an orthotropic model; if

such results become available, it would be a straightforward exercise to repeat the present

simulations using an orthotropic model instead of a transversely isotropic one.

In the present study, a slightly compressible model was used for the myocardium,

but the material bulk modulus was sufficiently high for compressibility effects to be negligi-

ble. This assumption appears to contradict the finding of Yin et al. (1996) that the volume

of the myocardium changes during filling, which is equivalent to a compressible material.

Further insight on possible effects of compressibility on the presently computed stretches can

be gained by a re-examination of the results shown in Fig. 4.6a. The computed stretches

λ1 and λ2 are compatible with the experimental results of Omens et al. (1991), whereas

the computed stretch λ3 is significantly lower (i.e., the deformation is larger). Assuming

that compressibility only affects λ3 and using the I3 values calculated from the stretches

of Omens et al. (1991), one may recalculate λ3; the resulting values are much closer to

the experimental ones than the values shown in Fig. 4.6a. This observation shows that

compressibility may play a significant role in the deformation of the LV myocardium during

passive filling. To examine the validity of this hypothesis, we would need to employ a more

complex material model, such as the poroelastic and viscoelastic material models proposed

by Huyghe et al. (1991) and Yang and Taber (1991). This is delegated to future research.

Another issue that deserves attention is the difference between the fixed boundary
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conditions that were imposed on the present simulations and the physical conditions in the

experiments that we used for validation of our results. In the experiments, the LV inflow

and outflow tracts were attached to rigid cannulae, which constrained their motion and

anchored the LV. In the simulations, we truncated the geometry below the LV inflow and

outflow tracts, and fixed the basal plane in the vertical direction and its inner edge in all

three directions. It would have been preferable to allow the inner edge of the base to deform

in the horizontal plane, but this would result in global translational motion. Alternatively,

extending the LV geometry to include the inflow and outflow tracts would have allowed

us to represent more accurately the experimental boundary conditions. This can be done

in the future, provided that the dimensions of the LV inflow and outflow tracts become

available to us, which was not the case at present.

It is clear from this discussion that both the LV geometry and the material prop-

erties used in the present simulations differ to some extent from those of actual canine LV.

We opted to use representative properties, rather than “actual” ones. This is deemed to be

justified in view of the large variability in the anatomy and the physiology of individual ca-

nine LV, which also introduces a large variability in material behaviour. Moreover, because

the longitudinal and transmural variations of in vivo stresses in the myocardium have not

been measured, it is presently impossible to validate the calculated stresses in a convincing

manner. We believe, however, that the longitudinal stress variations in the present study

are an improvement over those calculated by Costa et al. (1996), because we resolved the

singularity at the LV apex by alternative means, rather than introducing a hole, as Costa

et al. did.
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4.4.2 Residual stresses

We started the present simulations from a reference state which was subjected

to uniform pressure and free from any stresses. It is known, however, that even the

unloaded (i.e., subjected to uniform pressure) excised LV has residual stresses. Although

direct measurements of any stresses in the myocardium, including residual ones, are not yet

available, previous authors have measured residual strains by cutting pieces of rat (Omens

and Fung (1990)) and canine (Costa et al. (1997)) LV myocardia. In these experiments, the

authors started from an unloaded, isolated heart (which presumably had residual stresses).

Omens and Fung (1990) removed a thin equatorial slice of the LV and then made a radial

cut to it, which caused the two sides to separate, thus relieving the circumferential residual

stresses and bringing the slice to a state that was defined as stress-free. Then, they

calculated the residual circumferential and radial strains by comparing the undeformed and

deformed geometries of the slice. They found that the circumferential residual strains

were negative near the inner surface of the myocardium and positive near the outer surface.

Omens and Fung suggested that circumferential stresses predicted by numerical simulations

may be too large near the inner edge of the myocardium and that the inclusion of residual

stresses with corresponding signs to the measured residual strains, would serve to correct

this overprediction. Costa et al. (1997) embedded markers in the LV myocardium wall and

then excised a square piece of it, which allowed them to determine residual strains from

the deformation of this piece following its removal. Their findings were consistent with the

ones presented by Omens and Fung. Moreover, Guccione et al. (1991), using an approach

to be discussed in the next paragraph, found that an increase in the circumferential residual
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stress in their numerical simulations acted as to decrease the transmural variation of the

overall circumferential stress. Portions of the first and second principal stresses are in the

circumferential direction in the present model, so the presence of a residual circumferential

stress could potentially reduce the slope of the transmural variation of T1 and T2 shown in

Figs. 4.9a and c.

Residual stresses may be introduced in the present analysis by following one of two

possible approaches. The first approach is based on the work of Guccione et al. (1991),

who used a cylindrical LV with an isotropic myocardium material model and defined as a

stress-free state the condition at which the cylinder was split open lengthwise to form a

gap between two opposing free edges; the gap was then characterized by an opening angle.

Then, they applied flexion to this object until the free edges met to form a closed cylinder,

and defined this as the unloaded geometry, which, however, was subject to known non-zero

residual stresses. This approach is fairly straightforward to implement for a cylindrical

geometry, but quite cumbersome for a prolate ellipsoidal geometry for which an appropriate

stress-free state would be difficult to conceive. We found no simple way to implement such

an approach and delegated it to future research.

The second approach would be to define a suitable non-zero residual stress field

that could be imposed as an initial condition on the existing geometry. Although ADINA

permits the definition of initial stresses, we could not pursue this option because it is

incompatible with our user-supplied material model. ADINA also permits the definition

of initial strains, which are used to calculate initial stresses with the use of the chosen

material model. Our attempts to implement such initial strains were unsuccessful. Another
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option would be to modify our material model so that it would incorporate residual stresses.

However, such a material model would require the inclusion of additional invariants, which

would be functions of the residual stresses, as described by Hoger (1993). The introduction

of these invariants would require the formulation of a completely new material model, which

would require additional stress-stretch data for the calculation of its parameters. Because

residual stresses have not yet been measured, such data are not available, and so it is not

possible to put together such a material model.

The residual strains measured by Costa et al. (1997) were smaller than the strains

calculated in the present simulations. This likely implies that the residual stresses corre-

sponding to the measurements would also be smaller than the calculated ones. The effect of

omission of residual stresses in the simulations cannot be estimated with any certainty be-

cause of the lack of relevant measurements. Nevertheless, because the overall stresses in the

myocardium increase with increasing pressure, the relative contribution of residual stresses

would most likely diminish with increasing deformation. This speculation is consistent

with the improvement of the fit between our results and the measurements (Fig. 4.4b) as

pressure increases. In summary, we cannot be entirely confident that by neglecting residual

stresses we have not missed a significant effect on the prediction of LV deformation. Taking

residual stresses into account would require a very significant additional effort and, even

if it were accomplished numerically, it would not lead to conclusive statements, unless the

stresses were validated against measurements which are not presently available.
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4.5 Conclusions

Simulations of filling of the passive LV were performed successfully by inflating an

unloaded, stress-free geometry to end diastole. For this geometry, the optimal choice among

three sets of material parameters was determined as the one resulting in best agreement

between normalized volume changes in the simulations and values obtained from previous

experimental studies. By comparing transmural and longitudinal stresses calculated us-

ing two different mesh densities, we were able to show that our results are nearly mesh

independent.

Through comparison to measurements made at end diastole, we verified that our

chosen end-diastolic pressure leads to a state that is representative of end diastole. We have

described the stresses at this state, found them to have complex non-zero spatial variations,

which justifies the present approach of generating end-diastolic LVs by the application of a

static pressure load, rather than adopting a stress-free, end-diastolic geometry in an ad hoc

manner. Further, by comparison of our calculated stresses at our end-diastolic pressure

to those at an intermediate pressure, we have illustrated that it is inappropriate to scale

stresses obtained at an intermediate pressure by a constant factor to obtain stresses at end

diastole.

Trends in the volumetric changes of principal stretches were found to be consistent

with previous measurements. However, significant differences between the corresponding

values in one direction were observed and attributed to the insufficient capacity of our model

to account for wall compressibility. Trends in the volumetric changes of principal stresses

were consistent with the form of our material model, but could not be validated due to a
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lack of measurements of stresses in the myocardium.

Transmural variations of principal stretches showed fair qualitative agreement with

previous measurements at an intermediate pressure. Differences between the longitudinal

variations of principal stretches and principal stresses in this work and those in a previous

computational study are attributed to the difference in the boundary conditions at the apex.

The sensitivity of the results of our simulations to the range of muscle fibre orien-

tations and the number of wall layers was examined. Differences between principal stretch

variations for two ranges of fibre orientations in the present study were very small and could

not account for differences between principal stretches found in the current and previous

studies. Moreover, it was found that the transmural variations of the principal stresses

could not be resolved accurately with the use of a three-layer myocardium model, but the

use of a six-layer model had sufficient resolution for the present purposes.

Lastly, we evaluated the various assumptions made in defining our numerical model

and the potential impact that possible deviation from these assumptions may have had on

our results. We speculated on the potential effects of residual stresses, and concluded that,

although such effects might play some role, taking them into consideration properly would

require validation against measurements which are not available at present.

In summary, the present simulation of static inflation of the LV to a pressure

and volume that are typical of end diastole has provided us with a geometry and a stress

distribution that are suitable as starting conditions for our ongoing cardiac cycle simulations

with fluid-structure interaction. We found this to be necessary after considering that there

are no available measurements of stresses in the myocardium and that the only previously
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published calculations of stresses (Costa et al. (1996)) were not suitable for our use, because

they were reported for a pressure that was much lower than our specified end-diastolic

pressure and also because of distortion caused by the inclusion of a hole at the LV apex. The

present article further enriches the related literature with some new results. Transmural

and longitudinal variations of stresses through the myocardium at an internal pressure of

2 kPa have been presented for the first time. Moreover, we have shown that these stresses

are extremely sensitive to pressure and that estimates of end-diastolic stress variations

by scaling stresses obtained at a lower pressure would be inaccurate. Finally, we have

demonstrated that the use of a three-layer myocardium model has inadequate resolution for

stress calculations.
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Chapter 5

Cardiac cycle simulations

5.1 Introduction

A complete numerical model of the mechanics of the heart requires both fluid

and solid components, including geometries, material models, and boundary and initial

conditions for each, which must be coupled together through fluid-structure interaction

(FSI) effects. The numerical simulation of the mechanics of the entire heart including

four deformable chambers and four moving valves is beyond current capabilities. Instead,

researchers have generally focused their simulations on the left ventricle (LV), which is the

main pumping chamber of the heart and is responsible for pumping blood through the body.

The LV contains a single inlet and a single outlet; flow through the inlet is controlled by the

mitral valve (MV), which separates the LV from the left atrium (LA), and flow through the

outlet is controlled by the aortic valve (AV), which separates the LV from the aorta (Ao).

The work presented in this chapter focuses on the mechanics of the LV over the cardiac

cycle and builds upon the work presented in the previous two chapters, which described
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the development of the myocardium material model and the calculation of an end-diastolic

state to be used as an initial state for the present cardiac cycle simulations.

Following consideration that more information is available in the literature for

canine hearts than any other mammal heart, including the human heart, it was decided to

conduct this study for a canine heart model. An average LV was considered rather than

a specific one because not all required model inputs from a single specimen were available

and also because there is a large variability in many of these inputs from one specimen to

the next. The choice of an average LV allowed the determination of values for all necessary

model inputs by averaging data from the literature.

In Chapter 3, a material model for the canine LV myocardium was defined. The

myocardium is the thick middle layer of the heart wall and contains the muscle fibres

surrounded by an extracellular matrix; the other two layers, the epicardium and the en-

docardium, are relatively thin and will be neglected in the wall model for the present

simulations. A material model for the myocardium is generally defined in terms of a strain

energy density function with material properties that vary in two or three directions. Ma-

terial models of the former are referred to as transversely-isotropic, and of the latter are

referred to as fully orthotropic. Material directions in transversely-isotropic models are

defined as fibre and cross-fibre, while material directions in orthotropic models are defined

as fibre, sheet, and sheet-normal, for which the sheet direction is defined perpendicular

to the muscle fibre direction in the surface that contains the fibres, and the sheet-normal

direction is defined perpendicular to this surface. The definition of the material model

for the myocardium is further complicated by the need to account for not only the stresses
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caused by the deformation of the myocardium, which are referred to as passive stresses, but

also the additional stresses caused by the contraction and relaxation of the muscle fibres,

which are referred to as active stresses. The total stresses are calculated as the sum of the

passive and active stresses. By varying the application of the active stresses as a function

of time, the contraction and relaxation of the muscle fibres can be modeled.

In Chapter 4, solid-only simulations of the inflation of the passive LV to an end-

diastolic state were described; the objective of these simulations was to produce results

that are usable as an initial state for cardiac cycle simulations. These simulations began

from diastasis, which is the middle phase of filling, and is characterized by both a small

magnitude of pressure inside the LV cavity and a small pressure difference between the LA

and the LV (Sabbah and Stein (1981)). Further, one can infer that the blood flow velocities

and myocardium stresses during diastasis are at their lowest values during the cardiac cycle.

Under the assumptions of zero wall stress, zero pressure, and fully relaxed muscle fibres,

the reference geometry at diastasis was inflated to an end-diastolic pressure. In the present

study, the procedure described in Chapter 4 was replicated and quasi-static FSI simulations

of the inflation of the passive LV were performed to generate initial conditions for the cardiac

cycle simulations.

The primary objective of the present study is to perform FSI simulations of the

mechanics of a canine LV over the cardiac cycle. These simulations make use of the my-

ocardium material model from Chapter 3, which was adapted and validated for the canine

LV and featured both passive and active components, and the methodology for generating

initial conditions at end diastole, as described in Chapter 4. While the simulations are
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not specimen-specific due to the use of an idealized average canine LV geometry, wher-

ever possible, each phase has been rigorously validated with the goal of obtaining results

that are representative of an average canine LV and are both physiologically plausible and

comparable to previous studies. In this chapter, the details of the numerical model have

been explicitly specified to illuminate issues relating to the performance of such simulations.

The simulations have also been designed in a modular way such that pieces of the model,

such as the geometry, could be modified at a later time, if more appropriate choices become

available in the literature.

5.2 Literature review

Previous numerical studies of the mechanics of the heart are divided into three

groups, solid-only, which specify the pressure from the flowing blood as boundary conditions;

fluid-only, which specify the motion of the heart wall through boundary conditions; and FSI,

which solve the motions of the fluid and solid phases and couple them together on the fluid-

solid boundaries.

5.2.1 Solid-only simulations

Solid-only simulations of myocardium mechanics are generally performed to vali-

date or modify previously-defined material models to increase understanding of the mechan-

ical behaviour of the myocardium. Guccione et al. (1995) performed solid-only simula-

tions over the cardiac cycle using an axisymmetric canine LV geometry, and a transversely-

isotropic material model with time-varying active stresses in the fibre-direction only. From
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their results at end diastole, the authors suggested that it may be necessary to vary the

passive material properties through the myocardium to capture better the variation of end-

diastolic strains found experimentally. They also found that at end systole, some of their

strain components were in good agreement with previous experiments, but others deviated

substantially, suggesting the need for further work to model more accurately the active

behaviour of the myocardium.

Nash and Hunter (2000) performed quasi-static simulations of the systolic phase of

the cardiac cycle. These simulations started from an end-diastolic canine LV/RV geometry,

which was calculated from anatomical measurements (Nielsen et al. (1991)) of excised

canine ventricles arrested during diastole. Their material model consisted of two parts, an

orthotropic passive model, referred to as the “pole-zero” equation, and a uniaxial (in the

fibre direction only) active model. Limited comparisons were made between the results of

this study and previous experiments. Stevens and Hunter (2003) extended this work to

the simulation of the mechanics of porcine ventricles over the cardiac cycle through the use

of a more complex active material model.

Usyk et al. (2000) performed their simulations to determine the influence of passive

material orthotropy during filling and transverse active stresses during ejection. The passive

myocardium was modeled as a slightly compressible orthotropic material, while either a

uniaxial or transversely isotropic active model. The orthotropic passive material parameters

were adapted from a transversely isotropic material model to improve their agreement with

average strain measurements made in intact canine LVs. The compressibility was also

modified to match myocardium volume changes. While the incorporation of orthotropy
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improved end-diastolic results, end-systolic strains calculated using transversely isotropic

and orthotropic passive material models showed only minor differences. At end systole,

strains calculated for the biaxial case showed better agreement with the experiments than

the uniaxial case, but the biaxial active model was still not sufficient to correctly predict

the trends for all strain components suggesting that an orthotropic active material model

may be required.

Kerckhoffs et al. (2007) performed simulations of the mechanics of a canine LV/RV

geometry, coupled with lumped parameter models of the systemic and pulmonary circula-

tions. They used optimized passive material parameter values (Usyk et al. (2000)), with

additional active stresses in the fibre direction. They performed multiple periods of their

simulations to achieve a “steady-state” solution for healthy and diseased ventricles.

Kroon et al. (2009) performed simulations of the deformation of a canine LV

myocardium, for which they allowed the local muscle fibre orientations to adapt to minimize

shear strain, under the hypothesis that this adaptation would account for discrepancies in

the material behaviour found with previous models. Their geometry was defined as a

truncated prolate ellipsoid (which is an ellipse that has been rotated about its major axis)

and was coupled to a lumped parameter model of the circulatory system to form a closed

loop. They assumed the myocardium to be a transversely isotropic material with separate

passive and active material properties. During systole, Kroon et al. allowed the muscle

fibre orientations to adapt such that over multiple cycles the shear strain was minimized.

The muscle fibre orientations were defined by two angles, a helical angle and a transverse

angle. Through their adaptation, they found that although their initial helical angles, taken
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from a previous study, were nearly equal to their final values, their initial transverse angles,

which were chosen to be 0◦ throughout the wall were adapted substantially, resulting in

non-zero transverse angles, which varied through the wall and from the apex to the base.

The resulting angles showed very good agreement with previous measurements.

These solid-only simulations show the need for additional research into the com-

plex material behaviour of the canine LV myocardium. Observations made by Guccione

et al. (1995) as well as adaptations of material parameter values (Usyk et al. (2000)) and

material direction orientations (Kroon et al. (2009)) suggest that it is insufficient to study

the material behaviour of pieces of the myocardium, and that the material behaviour of

the entire LV wall should be considered. Additionally, although adaptations of material

parameters (Usyk et al. (2000); Kroon et al. (2009)) improved the agreement between

simulated and measured strains, stresses in the LV myocardium have not yet been mea-

sured in vivo and additional insight into the material behaviour may be gained through the

measurement of these stresses. Further insight into the behaviour of the myocardium could

also be gained through the coupling of these solid models with fluid models of the incoming

and outgoing blood flow. In most solid-only simulations, uniform time-varying LV cavity

pressures were specified. As will be shown in the present study, the inclusion of flowing

blood introduces non-uniform LV cavity pressures, which causes changes in the deformation

of the myocardium that would differ from the changes calculated with a uniform pressure

field.
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5.2.2 Fluid-only simulations

Computational fluid dynamic (CFD) simulations of the LV examine the flow of

blood into and out this chamber. These simulations rely on the specification of myocardium

motion, either through simplifying assumptions or through the definitions of multiple fluid

meshes throughout the cardiac cycle based on magnetic resonance imaging (MRI) tech-

niques. Several CFD-MRI studies (Saber et al. (2001); Saber et al. (2003); Long et al.

(2003); Long et al. (2008)) have been performed for the LV. Saber et al. (2001) approxi-

mated the valves as instantly opening and closing as their MRI data could not sufficiently

resolve the valve leaflets or their motion. They initially (Saber et al. (2001)) considered

uniform pressure boundary conditions to drive the flow during diastole, but improved MRI

techniques improve their inflow and outflow conditions by including the ascending aorta

and part of the LA (Saber et al. (2003)). The goal of the study of Long et al. (2003) was

to determine the effects of inflow boundary conditions on the flow during diastole. They

found a large variability in results with changes in inflow boundary conditions, indicating

the importance of proper inflow boundary conditions. However, additional work is still

required, because the authors believe that the motion of the MV annulus also influences

the flow and this motion was neglected in their study. Long et al. (2008) recently used

improved MRI techniques to extend their work.

Nakamura et al. performed two-dimensional (Nakamura et al. (2001)) and three-

dimensional (Nakamura et al. (2002); Nakamura et al. (2003); Nakamura et al. (2006b))

CFD simulations of blood flow in the LV during diastole. They assumed that intraventric-

ular pressure was insufficient to drive wall motion during diastole, so they neglected FSI
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effects and calculated the wall motion independently from the flow. These studies focused

on the opening of the MV and its effect on the flow in the LV. Nakamura et al. (2002)

and Nakamura et al. (2006b) found noticeable differences in the blood flow depending on

how the valve was opened, suggesting the importance of including MV motion in a study

of LV filling. Lastly, Nakamura et al. (2006a) added a model of the aorta to their previous

LV geometry (Nakamura et al. (2003)) to investigate flow in the LV and the aorta during

systole with prescribed wall motions.

Baccani et al. (2002), Baccani et al. (2002), and Baccani et al. (2003) modeled the

LV as a two-dimensional axisymmetric ellipse truncated at its maximum diameter. They

used the change in LV cavity volume due to the incoming fluid to explicitly calculate the

change in diameter and height of their ellipse. In their first two studies (Baccani et al.

(2002); Baccani et al. (2002)), the authors assumed the MV to be stationary, while in the

third study (Baccani et al. (2003)), they modified their model to account for MV motion.

This work was extended to three-dimensions (Domenichini et al. (2005)) by rotating their

axisymmetric geometry; however, the 3-D simulations did not account for MV motion.

Lastly, Domenichini et al. (2007) performed numerical simulations, based on their previous

works, and experiments, using an idealized rubber LV model. Although small differences

existed between their numerical and experimental models, they found very good agreement

between the velocities in the two cases.

Doenst et al. (2009) and Schenkel et al. (2009) performed patient-specific com-

bined CFD/MRI simulations of the human heart, which they refer to as the Karlsruhe Heart

Model. Their heart model consisted of the whole heart and the greater vessels (aorta, pul-
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monary artery, and vena cava). The motions of the ventricles and atria were driven by

MRI data, whereas the greater vessels were rigid (Doenst et al. (2009)). The valves were

modeled as planes and the opening and closing of the valves was controlled by baffle bound-

ary conditions in which the pressure drop across each valve varied from infinity for a closed

valve to zero for an open valve. Pressure boundary conditions at the distal ends of the

greater vessels were calculated from electric circuit models of the cardiovascular system.

Simulation results were presented for the LV only. Velocity vectors and streamlines during

diastole showed qualitative agreements with in vivo data (Schenkel et al. (2009)). Doenst

et al. examined LV blood flow of a healthy volunteer as well as a patient before and after

surgery to determine the effect of the surgery on the flow.

Fluid-only simulations can be divided into two general categories, namely those

in which the wall motion is assumed and those in which the wall motion is defined based

on medical images. Studies in which the wall motion is assumed are unable to resolve the

complex non-uniform deformations of the myocardium over the cardiac cycle. Assuming

sufficient spatial and temporal resolutions, studies in which the wall motions are specified

capture the deformation of the myocardium for a specific period for a specific LV geometry.

In either case, the influence of the blood flow on the wall deformation is not included

in the numerical models. Further, in the case of CFD-MRI studies, what-if scenarios

cannot be considered because there is no feedback mechanism to adjust the deformation of

the myocardium for different flow conditions. To truly capture the complex interactions

between the blood flow and the motion of the myocardium, fully coupled FSI models are

required.
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5.2.3 Fluid-structure interaction simulations

FSI simulations of the heart can be divided into two general groups, those that use

finite element or finite volume techniques, which generally consider a single heart chamber,

and those that use the immersed boundary method (IBM), which can be used for the entire

heart. IBM models are capable of including multiple heart chambers and moving valves,

but not of calculating stress-strain results for the myocardium.

Watanabe et al. (2002), Watanabe et al. (2003), Watanabe et al. (2004), and

Watanabe et al. (2004) performed FSI simulations of LV mechanics over the cardiac cycle

using an idealized human LV geometry based on MRI data. Their myocardium material

model consisted of passive and active components and was adapted from the one proposed

by Lin and Yin (1998) based on measurements of pieces of rabbit LV myocardia. Passive

material parameters were calculated as fractions of the values given by Lin and Yin and

active parameters were determined to satisfy model criteria. To account for the variation

in active material properties during the contraction and relaxation of the muscle fibres, the

authors defined the active material parameters as the products of their maximum values and

a forcing function, calculated by an electrophysiological model, which varied from 0 when

the muscle fibres were fully relaxed to 1 when they were fully contracted. They defined

electric circuit models to account for the preload and afterload of the LV and coupled these

models to their finite element simulations as boundary conditions at the LV inflow and

outflow tracts. Both fully coupled FSI and solid-only simulations were performed. In the

“solid-only” cases, which were performed statically, the fluid inertia was neglected, and the

pressure on the FSI boundary was calculated through coupling between the solid model and
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the electric circuit models. The results from these studies demonstrate the feasibility of

performing FSI simulations of the mechanics of the LV over the cardiac cycle. However,

these simulation results have not been validated against experiments.

Three previous research groups (Deserranno et al. (2003); Cheng et al. (2005);

Yang et al. (2007)) have used ADINA (ADINA R & D, Inc., Watertown, MA, USA), which

is the chosen software for the present study, to perform FSI simulations of the mechanics of

the LV or RV. Deserranno et al. (2003) simulated axisymmetric filling of an ellipsoidal LV

geometry with a flexible valve leaflet. To model the temporal variation of the wall stiffness,

the authors wrote a user-defined FORTRAN function for a time-varying Young’s modulus.

Cheng et al. (2005) simulated the filling of a thin-walled ellipsoidal LV with time-

varying solid wall properties. Their geometry was three-dimensional, with separate LV

outflow and inflow tracts and a symmetry plane allowing for the simulation of only the

posterior half. To model a time-varying Young’s modulus for the LV wall, the authors

assumed multiple constant Young’s moduli and for each one, applied several time-varying

intraventricular pressures. They interpolated between the resulting pressure-volume curves

to define a curve that would lead to the correct form of the input pressure wave. They

adjusted this curve until their desired input pressure wave was reproduced. Their results,

which consist of plots of pressure contours and velocity vectors at several times during filling,

were qualitatively comparable to other works, both experimental and computational.

Yang et al. (2007), Tang et al. (2008), and Tang et al. (2010) performed FSI

simulations of a human RV/LV geometry based on MRI data. The objective of these

studies was to model the mechanics of the RV. The LV was included to account for the
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interaction between the LV and RV; to reduce computational time, flow in the LV was not

considered but rather the shape of the LV was controlled by a uniform pressure boundary

condition applied to the wall. They assumed the RV wall to be a nearly-incompressible

material, which they modeled using either an isotropic or an anisotropic version of the

Mooney-Rivlin material model (Tang et al. (2010)). To account for the active contraction

of the muscle fibres, time-varying material stiffnesses were specified, but no further details

were provided in their articles on how this was implemented. In their most recent model

(Tang et al. (2010)), to account for the variation of muscle fibre angles in the myocardium,

they defined wall layers with different fibre angles. Flow in the RV was driven by pressure

boundary conditions applied at the ends of the inflow and outflow tracts. Valves were

modeled as instantly opening and closing, with a closed valve modeled by a zero velocity

boundary condition. These authors neglected the isovolumetric phases of the cardiac cycle,

such that one valve was open throughout the simulations.

Krittian et al. (2010) and Oertel et al. (2009) performed FSI simulations of blood

flow in the LV of their Karlsruhe Heart Model. These studies were motivated by their

inability to “capture the effects of out of plane movement or torsion” with a CFD/MRI

study (Krittian et al. (2010)). Their simulations were performed using the commercial

software packages Abaqus (SIMULIA, Providence, RI, USA) for the solid and FLUENT

(ANSYS, Inc., Canonsburg, PA, USA) for the fluid, which were coupled together using

MpCCI (Fraunhofer SCAI, Germany). The authors assumed that the myocardium was

incompressible and comprised an isotropic matrix containing muscle fibres. Their solid

material model consisted of passive and active components. The passive component was
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defined as a transversely-isotropic material with parameter values calculated for pig LVs

(Schmid et al. (2009)). The active component appears to apply stresses in the fibre

direction only but details of this model are not clear. Their simulations began from atrial

contraction, for which the initial state of the myocardium was assumed to be stress-free.

Four different valve opening percentages were specified, but details on how the valve opening

was implemented were not provided. The authors also did not provide details on any fixed

boundary conditions or on how they dealt with issues relating to the isovolumetric phases

of the cycle, during which they presumably had both valve closed creating an enclosed

fluid region with deformable boundaries. The results of the fluid phase for this study

resembled the blood flow results obtained for their previous CFD/MRI studies and represent

a substantial step in FSI simulations of blood flow in the LV. The results presented by these

authors were limited to the fluid domain only, and did not address the myocardium.

To date, the only complete FSI models of the heart containing all four chambers

and moving valves were simulated using the IBM, which was developed by Peskin in the

1970s (Peskin (1977)). The IBM is a technique for FSI in which a viscous incompressible

fluid is solved on a regular grid and the solid is defined as a group of infinitesimal fibres,

containing no mass or volume, which surround the fluid (Peskin and McQueen (1996)). The

solid fibres are “immersed” in the fluid domain and can move freely without deforming the

fluid mesh. Peskin’s IBM heart model was three-dimensional and included all four heart

chambers, all four moving valves, the ascending aorta, the pulmonary artery, the inferior

and superior vena cavae, and four pulmonary veins (McQueen and Peskin (1997); McQueen

and Peskin (2000); McQueen et al. (2001)). The great vessels that surround the heart act
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as sources or sinks for the blood flow. Although based on anatomical observations, the

heart geometry and muscle fibres were defined mathematically. Time-varying stiffness and

resting lengths were defined for the fibres to account for their changing properties during

the cardiac cycle. Using this model, the complete cardiac cycle was simulated. Although

the IBM is able to provide detailed results for the blood flow in the heart, it cannot perform

quantitative solid mechanics due to the lack of volume and mass present in the solid fibres.

Vigmond et al. (2008) recently performed simulations which coupled Peskin’s IBM

heart model with their interconnected cable method for modeling the electrical activity in

the heart. This coupled model therefore contains blood flow and the mechanical and

electrical behaviour of the heart wall; however, the coupling between the electrical and

mechanical models is currently unidirectional from the electrical to the mechanical.

FSI models that make use of the IBM fail to capture the complex mechanics of the

LV myocardium during the cardiac cycle. Previous finite element or finite volume mod-

els have made simplifying assumptions about the geometry, boundary conditions, and/or

myocardium material models that prevent them from accurately capturing the complete

mechanical behaviour of the LV. In particular, FSI studies that show detailed blood flow

results have in general not included detailed results of myocardium mechanics.

5.3 Methods

5.3.1 Cardiac cycle definitions

This section presents a brief description of the cardiac cycle. Further details can

be found in Chapter 2. The period for the cardiac cycle simulations has been chosen to

121



Table 5.1: Durations of the phases of the cardiac cycle for a heart rate of 100 beats/min.

phase τ

IVC 0.055
ejection 0.257
IVR 0.073
filling 0.615

be 600ms/heartbeat, which corresponds to a heart rate of 100 beats/min. Simulations in

the present study start at end diastole and proceed through the four phases of the cardiac

cycle, isovolumetric contraction (IVC), ejection, isovolumetric relaxation (IVR), and filling,

with the duration of each phase given in Table 5.1 in non-dimensional form, where τ is the

time normalized by the period.

5.3.2 Geometry

The reference geometry used in this study, hereafter referred to as DG, was defined

at diastasis. It is from this reference geometry that the LV was inflated to an end-diastolic

state prior to the start of the cardiac cycle simulations. The reference solid geometry was

defined as a truncated prolate ellipsoid with an outer semi-major axis of a = 46.92mm, an

outer semi-minor axis of b = 27.84mm, an apical thickness of ta = 6.83mm, an equatorial

thickness of tb = 12.42mm, and a total height of h = 60.14mm, as shown in Fig. 5.1a. This

geometry consisted of six wall layers, each with their own unique muscle fibre orientation,

ranging from −60◦ in the outer layer to +60◦ in the inner layer, with the angles defined

with respect to the local circumferential direction. This range of fibre angles was chosen

as it is representative of the average ranges found in canine LVs, based on measurements

obtained from two independent studies (Streeter et al. (1969); Nielsen et al. (1991)).
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The parts of the LV geometry that contain fluid are shown in Fig. 5.1b. This

figure also illustrates three geometrical landmarks that will be referred to throughout this

article: the basal plane, which is the top plane that truncates the ellipsoid, the equatorial

plane, which is the horizontal plane passing through the centre of the full ellipsoid; and the

apex, which is the lowest point of the LV. The fluid geometry was divided into two sections

by the basal plane; the section above this plane was taken to be rigid and the section below

the plane was taken to be deformable. The boundary of the lower section matched the

inner boundary of the corresponding solid geometry allowing for matching FSI boundary

conditions to be applied to the fluid and solid models. The upper section included two

cylindrical tubes of equal lengths L1, which represented the inflow and outflow tracts of

the LV and contained idealized zero-thickness mitral and aortic valves, respectively, at a

distance L2 from the distal end of the cylinders. The reason for not defining the valve

planes at the proximal ends of the LV inflow and outflow tracts was that, in that case, the

two valves would have a common point, at which flow erroneously passes through a valve

when it is closed. To complete the fluid geometry, a section of a sphere was added to the

top of the lower section of the geometry, whose radius R and centre were chosen such that

the sphere passes through all three points of the triangle that makes up the lower edges of

the LV inflow and outflow tracts, as shown in Fig. 5.1b. Figure 5.2 depicts this sphere

as a semi-circle and also includes the triangle from Fig. 5.1b and the dimensions needed

to determine suitable values of R, and the height of the centre of the sphere zc, where zc

is measured from the apex of the fluid geometry. The dimensions for the fluid geometry

were DAV = 9.78mm, DMV = 18.88mm, L1 = 9.78mm, L2 = 7.78mm, w1 = 26.71mm,
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Figure 5.1: Diagram showing the solid (a) and fluid (b) geometries along with key dimen-
sions and geometric landmarks.

α = 60◦, β = 75◦, and θ = 135◦. Using the Pythagorean theorem with w1 = 26.71mm,

w2 = 9.78mm, and h3 = 4.89mm, the radius of the sphere and the height of its centre were

calculated to be R = 18.88mm and zc = 46.78mm. Once the sphere was defined, it was

truncated at the height h, to leave only the section above the basal plane. The cylinders

were then subtracted from the remaining piece of the sphere, leaving circular surfaces at

each interface. Additional details on the definition of the upper section of the fluid geometry

are provided in Appendix D.1.

5.3.3 Mesh

The solid geometry was meshed using ten-node tetrahedral elements on an un-

structured grid, which consisted of 53, 920 elements (78, 252 nodes). While this mesh is

undoubtedly fine enough to describe accurately the LV cavity volume changes and stretches,
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Figure 5.2: Diagram showing the dimensions used to define the section of a sphere used to
cap the fluid geometry

it was shown in Chapter 4 for solid-only simulations, that a finer mesh would be required

to fully resolve the stresses. Attempts to use a refined solid mesh were unsuccessful, as this

caused the FSI simulations to diverge. Further investigation into this issue is required and

is delegated to future work.

The fluid geometry was meshed using 4-node tetrahedral elements on an unstruc-

tured grid. These elements have nodes at each corner to calculate velocity and pressure.

For stability, they use an additional node in the centre to calculate velocity. These elements

are generally referred to as MINI elements and the additional velocity degree of freedom at

the element centre is called the bubble velocity (Gresho and Sani (1998)). Two mesh den-

sities were considered for the fluid, 132, 667 elements (24, 023 nodes) and 233, 811 elements

(41, 733 nodes), which will be referred to as mesh 1 and mesh 2, respectively. Figure 5.3a

shows the mesh for the solid and Fig. 5.3b shows mesh 1 for the fluid.
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Figure 5.3: Mesh for the solid geometry (a) and mesh 1 for the fluid geometry (b).

5.3.4 Numerical methods

Simulations in this study were performed using the commercial finite element soft-

ware ADINA v. 8.5.2 (ADINA R & D, Inc., Watertown, MA, USA), for which separate

solid and fluid models are defined and linked through coincident FSI boundary conditions.

Further details on the ADINA software can be found in ADINA R & D, Inc. (2008a), AD-

INA R & D, Inc. (2008b), and Bathe (1996). Simulations were performed on the clusters

of the High Performance Computing Virtual Laboratory (HPCVL), which are available to

researchers at several universities and colleges in Eastern Ontario, Canada. Details on the

specific clusters used for these simulations, as well as the results of parallelization studies

performed on one of these clusters are provided in Appendix A.
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Governing equations for the myocardium

The LV myocardium undergoes large displacements for large strains and has highly

non-linear material behaviour, which are best simulated with the use of the Total Lagrangian

form of the governing equations. Simulations in this work were performed dynamically,

that is, with respect to time. The appropriate form of the governing equation for the solid

model is therefore

MÜ (t+∆t) +CU̇ (t+∆t) +K (t) [U (t+∆t)−U (t)] = R (t+∆t)−F (t) (5.1)

where U, U̇, and Ü are the nodal displacement, velocity and acceleration vectors, respec-

tively, M is the mass matrix, C is the damping matrix, K is the stiffness matrix, R is the

external load vector, F is the force vector equivalent to the element stresses, and t is time

(ADINA R & D, Inc. (2008a)). It should be noted that in Eq. (5.1), R is independent of

deformation, but F(t) is a function of U(t). Following the definition of a suitable stiffness

matrix, the solid equations are solved using the implicit Newmark method, described in

detail by Bathe (1996).

To calculate K(t) and F(t), a constitutive equation for the myocardium mater-

ial is required. For this study, the myocardium was modeled as a slightly compressible

transversely isotropic hyperelastic material, with properties that differed in the fibre and

cross-fibre directions. It was defined by a strain energy density functionW , which consisted

of passive (p) and active (a) parts. By varying the application of the active stresses in time,

the contraction and relaxation of the muscle fibres was modeled. The strain energy density

function used in this study has been described in detail in Chapter 3 and is defined as
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W =Wp +Wa (5.2)

where

Wp = C1
(
eQ − 1

)
+
1

2
κs (J3 − 1)2 (5.3)

Q = C2 (J1 − 3)2 +C3 (J1 − 3) (J4 − 1) +C4 (J4 − 1)2 (5.4)

Wa = D0 +D1 (J1 − 3) (J4 − 1) +D2 (J1 − 3)2 (5.5)

+D3 (J4 − 1)2 +D4 (J1 − 3) +D5 (J4 − 1)

In Eqs. (5.3-5.5), Ci and Di are passive and active material parameter values,

respectively, κs is the bulk modulus, which governs the material compressibility, and Ji are

reduced invariants of Green’s strain tensor E.

From this constitutive equation, the components of the second Piola-Kirchhoff

stress tensor S can be calculated as follows

Sij =
∂W

∂Eij
, i, j = 1, 2, 3 (5.6)

Based on the analysis presented in Chapter 4, C1 = 2.117kPa, C2 = 0.498, C3 =

0.237, C4 = 0.0332, C5 = 0.01, C6 = 0.0005, and κs = 1× 107 kPa. For the active material

model, to account for the contraction and relaxation of the muscle fibres, the material

parameters Di are defined as

Di = FDi,max (5.7)
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where F is a forcing function, which varies between 0 when the muscle fibres are fully relaxed

and 1 when the muscle fibres are fully contracted, and Di,max are the values of the active

material parameters when the muscle fibres are fully contracted (Watanabe et al. (2004)).

By varying the value of F over the interval 0 ≤ F ≤ 1, the contraction and relaxation of the

muscle fibres were modeled. Using the relationship between the forcing function proposed

by Watanabe et al. (2004) and their simulated LV pressure function as a guide, along with

a chosen cardiac cycle period of 600ms/heartbeat and the durations of the phases of the

cardiac cycle given in Table 5.1, a forcing function was defined, such that the muscle fibres

contract during IVC and rapid ejection, and relax during reduced ejection, IVR, and early

filling. This forcing function was defined by four sigmoid functions (two increasing and two

decreasing) as

F =






1/
(
1 + e−a1(τ−b1)

)
, 0 ≤ τ < 0.052

1/
(
1 + e−a2(τ−b2)

)
, 0.052 ≤ τ < 0.170

1/
(
1 + e−a3(τ−b3)

)
, 0.170 ≤ τ < 0.330

1/
(
1 + e−a4(τ−b4)

)
, 0.330 ≤ τ ≤ 1.000






(5.8)

where ai control the slopes of the sigmoid functions and bi control the locations of their cen-

tres. Through multiple simulations, the parameters for the sigmoid functions were adjusted

such that the resulting LV pressure waveform resembles previous measurements (Sabbah

and Stein (1981)) over the majority of the cardiac cycle; the values of these parameters are

summarized in Table 5.2 and the resulting sigmoid functions are plotted in Fig. 5.4.

The values of the active material parameters Di,max are defined in terms of a

multiplier χ, which multiplies the active stresses from measurements of rabbit active stresses
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Table 5.2: Parameter values for sigmoid forcing functions.

function ai bi
1 100.00 3.06
2 100.00 3.06
3 60.61 10.61
4 60.61 10.61

Figure 5.4: Forcing function.

from Lin and Yin (1998) to approximate the active stresses in a canine LV, as described in

Chapter 3. The values of Di,max as functions of χ are given in Table 5.3. Note that because

only the derivative of W is required to calculate stresses, the value of D0 in Eq. (5.5) is not

needed and has been set to be zero. In parallel with modifications of the sigmoid function

parameters, χ was also modified to match, as much as possible, the LV pressure waveform

measured by Sabbah and Stein (1981). Simulations were performed for several values of χ,

as discussed in Section 5.4.3, following which the value χ = 4.5 was selected.
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Table 5.3: Active material parameter values.

parameter value ( kPa)

D1,max −0.352χ
D2,max 2.476χ
D3,max 2.660χ
D4,max 0.0251χ
D5,max 0.632χ

Governing equations for the fluid

Blood consists of 55% (by volume) plasma, which is a liquid, and three types of

solid formed elements, which are red blood cells, white blood cells, and platelets. Plasma,

which is 90-92% water and 8-10% solutes, behaves like a Newtonian fluid. However, with

the addition of the formed elements, whole blood behaves like a non-Newtonian fluid. The

non-Newtonian effects of blood become more significant with decreasing blood vessel size

(Pedley (1980)), but it is generally accepted that blood can be assumed to be a Newtonian

fluid when modeling flow in the heart, the aorta and other large vessels. In the present

study, blood is assumed to be a Newtonian fluid with a density ρf = 1050 kg/m
3 (defined

at zero pressure) and a viscosity µ = 0.00316kg/m · s (Cheng et al. (2005)).

To ensure solution convergence during the isovolumetric phases of the cardiac

cycle, during which both valves are closed and the LV cavity is deforming, blood was set

to be a slightly compressible fluid with a bulk modulus κf = 1 × 107 kPa, which matches

the value for the myocardium. It was necessary to set equal values for the bulk moduli of

the fluid and the solid in order to prevent compression of the material that would have the

smaller bulk modulus.

During FSI computations, the fluid domain changes with time, causing the fluid

131



mesh to deform. Typically, fluid simulations are performed using an Eulerian approach, in

which the mesh remains stationary and the fluid moves through it. A contrasting approach,

referred to as Lagrangian, is typically used in solid simulations, where the mesh moves with

the deforming material. For FSI simulations, a hybrid approach, referred to as arbitrary-

Lagrangian-Eulerian (ALE), is used. The ALE method allows fluid flow to be tracked

through a moving mesh. Moving boundaries are tracked using the Lagrangian approach,

while stationary boundaries make use of the Eulerian approach, with the ALE method used

at all points in between (Bathe (1996)). The ALE form of the continuity and momentum

equations for slightly compressible fluids are defined as

ρf
κf

(
∂p

∂t
+ (v −w) · ∇p

)
+ ρm∇ · v = 0 (5.9)

ρf
∂v

∂t
+ ρf (v −w) · ∇v −∇ · σf = f B (5.10)

where p is pressure, v is the velocity vector, w is the mesh velocity vector, ρm is the density

of the compressible fluid, σf is the stress tensor, and f
B is the body force per unit volume

(ADINA R & D, Inc. (2008b)).

The density ρm is defined as

ρm = ρf

(
1 +

p

κf

)
(5.11)

Note that in the limit as κf → ∞, ρm → ρf and Eq. (5.9) reduces to its incom-

pressible form.

Based on the Newtonian fluid assumption, σf can be defined as
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σf = −pI+ µ
(
∇v +∇vT

)
(5.12)

where I is the identity matrix.

Because the governing equations for the fluid are non-linear, the solution of the

fluid system of equations requires two steps, outer iterations, which are used to generate a

system of linear equations, and the solving of this linearized system. For the outer itera-

tions, the Newton-Raphson method was used, and for the linearized system of equations, a

direct sparse solver was used (ADINA R & D, Inc. (2008b)).

Time steps

Time integration for the FSI simulations is controlled by the fluid model. In the

present study, the second-order ADINA composite method was used for time integration.

This is an implicit time-stepping method; details of this method can be found in Appendix

D.2.

Two time step durations were considered in the present study, 600 time steps of

1ms and 303 time steps, which consisted of 297 time steps of 2ms and 6 time steps of 1ms.

The additional 1ms time steps were included for the times when the valves opened or closed

so that these times matched for both time step durations. The times at which the valves

opened or closed were chosen based on the pressure boundary conditions from Sabbah and

Stein (1981) and three of these four times were most closely approximated by odd integers,

which is the reason for using these additional time steps.

The automatic time stepping option in ADINA was used as a means to facilitate

convergence of the numerical simulations. In the event that the simulations start to diverge
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because the time step is too large, this option automatically subdivides the time step, up to

a specified maximum number of times, which promotes convergence (ADINA R & D, Inc.

(2008b)).

Fluid-structure interaction

Simulations in this work were performed using a direct FSI coupling method, in

which the equations for the fluid, solid, and fluid-solid interface are solved simultaneously.

This contrasts with the partitioned method, in which fluid and solid systems of equations

are solved sequentially. The direct method is faster and more stable than the partitioned

method, but it requires more RAM, because both fluid and solid models need to reside in

memory at the same time. From experience, the direct method has been found to be more

stable than the partitioned method. Attempts to perform simulations in the present study

using the partitioned method resulted in the simulations diverging during the first time

step. Further details on these methods along with the FSI boundary conditions enforced

in ADINA are provided in Appendix D.3.

Initial conditions

Prior to beginning cardiac cycle simulations, initial conditions at end diastole were

generated by inflating DG to an end-diastolic pressure of pLV = 2kPa using a procedure

described in Chapter 4. In the previous study, only the solid geometry was considered

and the simulations were performed statically. In the present study, both the fluid and

the solid were considered, and the simulations were performed quasi-statically, that is with

a sufficiently large time step as to minimize the velocity of the incoming blood flow, such
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that its effect on the deformation of the myocardium was negligible. To do so, the time

interval over which the simulations were performed had to be sufficiently long but not so

long as to prevent the simulations from being completed within an acceptable amount of

computational time. The resulting simulations consisted of 250 time steps, each with a

duration of 80ms.

To verify that the results from the quasi-static FSI simulations were comparable

to the previous solid-only simulations, the calculated LV cavity volumes Vf at end diastole

for the two cases were compared. For the solid-only simulations, Vf = 56.3ml and for the

FSI simulations, Vf = 56.2ml. Considering the small difference between these two values

and the analysis of the results of the solid-only simulations presented in Chapter 4, the

end-diastolic state calculated from the FSI simulations was deemed suitable for use as an

initial state for the present cardiac cycle simulations.

Boundary conditions

Coincident FSI boundary conditions were applied to the inner surfaces of the solid

geometry and the outer surfaces of the ellipsoidal part of the fluid geometry. The basal

plane of the solid geometry was fixed in the vertical direction, while its inner edge was fixed

in all three directions. For the upper part of the fluid geometry, no-slip wall boundary

conditions were applied to all outer walls. As mentioned in Chapter 4, because the heart

is nearly neutrally buoyant in the body, gravity has been neglected in the present study.

Because the LV does not operate in isolation, but is coupled to upstream and down-

stream components of the cardiovascular system, appropriate inflow and outflow boundary

conditions must be defined. In the present study, values of pressures at the distal ends of
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Figure 5.5: Outflow and inflow pressure boundary conditions based on measurements from
Sabbah and Stein (1981).

the LV inflow and outflow tracts were specified based on previous measurements (Sabbah

and Stein (1981)); these pressure boundary conditions are plotted in Fig. 5.5. An alterna-

tive approach would be to couple the LV model to lumped-parameter models representing

the upstream and downstream components of the cardiovascular system (Watanabe et al.

(2004)), but this was beyond the scope of the present study.

To control the flow direction, idealized mitral and aortic valves were modeled as

instantly opening and closing planar boundaries at a distance L2 from the distal ends of

the LV inflow and outflow tracts, as shown in Fig. 5.1b. The choice of instantly opening

and closing valves was made to reduce computational time and complexity in the numerical

model, as accurately modeling the opening and closing of realistic valve geometries is beyond

the scope of the present study. The opening and closing of the valves were controlled by

“gap” boundary conditions, which remove or add wall boundary conditions using time

functions. The times at which the valves opened or closed were chosen to coincide with the
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start of each phase of the cardiac cycle and the application of inflow and outflow pressure

boundary conditions. More specifically, the AV opens at the start of ejection (τ = 0.055)

and closes at the end of ejection (τ = 0.312), and the outflow pressure boundary condition

is applied while the AV is open. The MV opens at the start of filling (τ = 0.385) and closes

at the end of filling (τ = 1.0), and the inflow pressure boundary condition is applied while

the MV is open.

5.4 Preliminary tests

Preliminary tests were performed to determine the best choices of several model

inputs, and the results of these tests are described briefly in this section. Because simu-

lations in this section were of a preliminary nature, some of the model inputs in each test

may have differed from their final chosen values, however, comparisons were made between

results for which only the model input of interest was varied.

5.4.1 Time step dependence

To determine the influence of the time step duration on the simulations results,

simulations were performed using 303 and 600 time steps. Recall that the 303 time step case

consisted of 297 steps of 2ms and 6 steps of 1ms, while the 600 time steps were all 1ms. To

reduce the computational time for these simulations, only IVC and ejection were simulated,

that is simulations were performed over the interval 0 ≤ τ ≤ 0.312. The differences in the

resulting LV pressure and cavity volumes calculated for the two time step durations were

lower than 1%, which are deemed to be insignificant. Therefore, it was determined that
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303 time steps was sufficient to give results that were nearly independent of the time step

duration and it is this number of time steps that was used for all subsequent simulations

presented in this article.

5.4.2 Fluid mesh dependence

Simulations were performed over the interval 0 ≤ τ ≤ 0.312 for the two fluid meshes

described in Section 5.3.3. Differences in pLV , calculated at the centre of the basal plane,

and Vf calculated for the two fluid meshes were found to be lower than 1%. Therefore,

mesh 1, which is coarser than mesh 2, was deemed to be sufficient for use for the remainder

of the simulations presented in this chapter. The use of an even more refined mesh would

be required for a more complete assessment of the mesh dependence of the solution, but

this would also require a substantial increase of the computational cost. Simulations with

additional mesh refinement are delegated to future research.

5.4.3 Variation of multiplier for active material parameter values

Simulations were performed for several values of χ to determine the influence of χ

on the results. For χ = 4, the increase in pLV during IVC was insufficient to cause blood

to exit the LV when the AV opened and ejection began; therefore, it was determined that

χ must be greater than 4. For χ > 4, the maximum value of pLV increases with increasing

χ, such that χ reaches a value for which the simulations diverge during the filling phase due

to an insufficient decrease in pLV during IVR. It was determined that χ must be less than

6 in order for the simulations to converge over a single period. Therefore, χ must be in the

range of 4 < χ < 6. Because an increase in χ increases the maximum value of pLV more
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significantly than it decreases Vf during ejection, a value of χ = 4.5 was chosen for use in

the remainder of the simulations presented in this chapter.

5.4.4 Periodicity

Simulations were performed for four periods using an earlier version of the my-

ocardium geometry with a three-layer wall, and coarser fluid and solid meshes than those

considered in the present study. A few observations can be made about the results from

these four periods. First, the smoothness found in the temporal variations of pLV and Vf

present during the first period gave way to fluctuations in subsequent periods. Second, as

a result of the closing of the AV at the end of each period, pLV decreased shortly after the

start of a new period; in fact, at τ = 5.6× 10−6, pLV became negative for periods 2 and 3

and pLV ≈ 0.99 kPa for period 4. Third, after four periods, there is no indication that the

results would converge towards a periodic solution. Additional periods would be required

to make a more accurate assessment of the degree of periodicity of the solution.

5.5 Results

Results in this section were obtained during the first two periods of the cardiac

cycle simulations, for the chosen geometry and mesh density, and for χ = 4.5.

5.5.1 Left ventricle cavity volume and pressure changes

Figure 5.6a is a plot of pLV as a function of τ over the first two periods of the

cardiac cycle simulations, for which pLV was calculated at a node in the fluid mesh located
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at the centre of the basal plane. This figure also contains measured values of pLV , pLA, and

pAo obtained from Sabbah and Stein (1981), the latter two of which were used as boundary

conditions for the present simulations. The calculated temporal variations of pLV show

fairly good agreement with previous measurements, especially during the first three phases

of the cardiac cycle, IVC, ejection, and IVR, but differ from the measurements during the

early part of filling. During IVC, pLV increased in both the present simulations and the

previous measurements. Trends of pLV for the present simulations were comparable for

most of the two periods, however, at the start of IVC for the second period, pLV < 0 for a

single time step, as a result of the sudden closure of the MV. At τ = 0.055, which signifies

the opening of the AV and the end the IVC phase, pLV was calculated to be pLV = 13.5kPa

for both periods, which is slightly higher than the measured value pLV = 12.7 kPa. During

rapid ejection, pLV increased to a maximum in both studies, before decreasing throughout

the rest of ejection. The maximum value of pLV in the present study exceeded the measured

value by approximately 5 kPa, but at the end of ejection during period 1, pressures in both

studies were nearly equal. During period 2, pLV spiked upward at the end of ejection due to

the sudden closure of the AV. Another noticeable difference between the trends of pLV for

the two periods was that, whereas for period 1 pLV decreased after reaching its maximum

during rapid ejection, during period 2 pLV decreased, then increased, and decreased again,

before finally increasing at the end of ejection. During IVR, pLV decreased in both studies.

At τ = 0.385, which signifies the opening of the MV and the end of IVR, pLV in the present

study was 2.6kPa for period 1 and 2.9 kPa for period 2, both of which are close to the

measured value of pLV = 2.6 kPa. Despite starting IVR from very different pressures, the
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trends and value of pLV at the end of IVR were comparable. Lastly, the calculated trends

in pLV differed from the measurements during rapid filling. Rather than continuing to

decrease towards a minimum pressure near τ = 0.5, the calculated pLV increased shortly

after the start of filling until it exceeded pLA. This difference between the simulations

and measurements led to a non-physiological backflow into the LV during the filling phase.

After this backflow occurred, pLV decreased such that, during the latter two phases of

filling, diastasis and atrial contraction, the calculated trend in pLV was comparable to

the measurements with the magnitude of pLV being approximately equal to the measured

pLA during these phases. For the second period, the maximum value of pLV decreased

and its location shifted to a later time; however, backflow was still present. Based on

the periodicity study described in Section 5.4.4, there is no evidence to suggest that this

decrease in the maximum value of pLV from period 1 to period 2 would lead to removal of

the non-physiological backflow from the present simulations, but additional periods would

be required to determine the validity of this claim. Due to the high computational cost of

running each period, at present, a sufficient number of periods could not be run with the

current mesh density to further study this issue.

Changes in LV cavity volume Vf normalized by the end-diastolic LV cavity volume

Vf,ED, calculated at τ = 0, are plotted vs. τ in Fig. 5.6b for two periods of the cardiac

cycle simulations. During IVC, Vf/Vf,ED increased by 0.01 for period 1 and by 0.08 for

period 2, before decreasing during ejection. Although no fluid enters or exits the LV cavity

during IVC, these volume changes are consistent with the slightly compressible form of

the material model for blood, which was required to ensure model convergence during the
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Figure 5.6: a) Temporal variation of LV cavity pressure from present simulations along with
measured values of pLV , pLA, and pAo from Sabbah and Stein (1981); b) temporal variation
of LV cavity volume; c) variation of LV cavity pressure with LV cavity volume. In these
figures, volumes have been normalized by the end-diastolic volume at τ = 0. Circles denote
the start of a phase of the cardiac cycle and the opening or closing of a valve.
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isovolumetric phases. The change in Vf during ejection can be characterized by two terms,

stroke volume SV or ejection fraction EF . Stroke volume is defined as the difference

between Vf,ED and the end-systolic volume Vf,ES , i.e. SV = Vf,ED − Vf,ES . Ejection

fraction is defined as the ratio of SV to Vf,ED, i.e. EF = SV/Vf,ED. The term EF is

preferred to SV when comparing results from different studies because SV is dependent

on the initial value of Vf . As described in Chapter 2, a physiological EF for a canine

LV is approximately EF = 0.44. In the present study, an insufficient volume of blood

exited the LV during ejection, resulting in EF = 0.081 for period 1 and 0.084 for period

2. For period 1, Vf/Vf,ED increased by 0.01 during IVR, while for period 2, Vf/Vf,ED

increased and then decreased resulting in a net decrease in Vf/Vf,ED of 0.01. At the start

of filling phase, Vf/Vf,ED increased rapidly for both periods to a maximum volume that

was significantly larger than the original value of Vf,ED. The period of time over which

this rapid increase in Vf/Vf,ED occurred corresponded to the range of times over which

pLV increase above pLA. Near τ = 0.5, Vf/Vf,ED reached a maximum, before the observed

non-physiological backflow led to a decrease in Vf/Vf,ED. During the remainder of filling,

Vf/Vf,ED increased and decreased two more times before reaching an end-diastolic value

that was approximately 98% of the end diastolic Vf/Vf,ED at τ = 0 for period 1 and 99%

for period 2.

Figure 5.6c, combines the results from Fig. 5.6a and b into plots of pressure versus

Vf/Vf,ED for the two periods. For period 1, the pressure-volume trends during the first

three phases of the cardiac cycle were consistent with physiological expectations, but the

trend during filling was inconsistent with expectations due to the backflow present during
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this phase. For period 2, the overall trends differed slightly from the trends found for

period 1, primarily during the isovolumetric phases, which showed larger volume changes

during period 2 than during period 1.

5.5.2 Myocardium deformations

Figures 5.7 to 5.10 are contour plots of displacement magnitudes in the my-

ocardium in the y-z centre-plane over two periods of the cardiac cycle; Figures 5.7 and

5.9 contain displacements for selected times during IVC, ejection, and IVR for periods 1

and 2, respectively, while Figs. 5.8 and 5.10 contain displacements for selected times during

filling for periods 1 and 2, respectively. These displacement magnitudes have been cal-

culated with respect to the reference geometry DG. To illustrate the displacements with

respect to end diastole, outlines of the end-diastolic geometries at τ = 0 and τ = 1.0 have

been included for periods 1 and 2, respectively.

For period 1, as shown in Fig. 5.7, small differences in displacement magnitude

are visible from one time to the next for the first three phases of the cardiac cycle. These

small changes in displacement were due to the relatively small value of EF . Displacement

magnitudes are largest at the apex, and lowest near the basal plane whose inner edge is

fixed in space. For period 2, larger displacement magnitudes are visible in Fig. 5.9 than

for the corresponding times during period 1, shown in Fig. 5.7. Additionally, a stronger

asymmetry is visible during the second period as shown by the horizontal motion of the

apex. Despite that fact that the LV cavity volume did not vary much from period 1 to

period 2, it is clear that the shape of the LV geometry differed substantially for the two

periods.
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Figure 5.7: Displacement magnitudes in the myocardium in the y-z centre-plane at selected
times during IVC, ejection, and IVR for period 1. Outline represents end-diastolic geometry
at τ = 0.
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Figure 5.8: Displacement magnitudes in the myocardium in the y-z centre-plane at selected
times during filling for period 1. Outline represents end-diastolic geometry at τ = 0.

146



Figure 5.9: Displacement magnitudes in the myocardium in the y-z centre-plane at selected
times during IVC, ejection, and IVR for period 2. Outline represents end-diastolic geometry
at τ = 1.000.
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Figure 5.10: Displacement magnitudes in the myocardium in the y-z centre-plane at selected
times during filling for period 2. Outline represents end-diastolic geometry at τ = 1.000.
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Larger displacement magnitudes and a more prevalent horizontal motion of the

apex were observed to occur during filling (Fig. 5.8) than during ejection (Fig. 5.7) for

period 1. For period 2, displacement magnitudes during filling, shown in Fig. 5.10, were

of the same order as the displacement magnitudes found for the previous three phases.

Differences in displacement magnitudes during filling between periods 1 and 2 were less

apparent than the differences found during the previous three phases.

One of the criteria for determining whether the simulations would tend to reach a

periodic state is a comparison of the LV geometries calculated at the end of a period to the

geometries at the start of the period, as, for a periodic solution, these geometries should be

identical. For period 1, although Vf at τ = 1.0 was nearly equal to Vf at τ = 0, noticeable

differences are visible between the geometries at the two times, as shown in the last image

in Fig. 5.8. These differences appear to have decreased for the second period, as shown in

the last image in Fig. 5.10; however, additional periods would be required to determine if

the calculated LV geometry at the end of a period would converge to match the results at

the start of the period, that is, if the results would converge to a periodic state.

Principal stretches are defined as the ratios of deformed and undeformed lengths

and are denoted as λi, i = 1, 2, 3. In the present study, these stretches were calculated with

respect to the reference geometry DG. The temporal variations of the principal stretches

during the cardiac cycle are presented in Fig. 5.11 for the first two periods of the cardiac

cycle; these values (and the corresponding principal Cauchy stresses to be discussed in the

next section) were calculated as the average of values obtained at eight nodes, located at

a relative elevation of z/h = 0.5 in DG, and on either side of the centreline through the
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Figure 5.11: Representative temporal variations of principal stretches for two periods of the
cardiac cycle.

thickness of the myocardium at circumferential locations corresponding to the positive and

negative x- and y-axes. The stretches calculated at these eight nodes were nearly equal, with

standard deviations for λ1, λ2, and λ3, respectively, of 0.025, 0.013, and 0.017, averaged over

period 1 and 0.025, 0.015, and 0.018, averaged over period 2. These standard deviations

are small compared to the average and, therefore, do not represent significant differences

between the stretches calculated at each of the eight nodes. The trends in λ1, λ2, and λ3 in

Fig. 5.11 were consistent with the trends in Vf/Vf,ED shown in Fig. 5.6b in the sense that

as Vf/Vf,ED decreased, so too did the deformations in the myocardium. The trends in λ3

were comparable for both periods, while the trends in λ1 and λ2 showed stronger variations

in period 2 than in period 1. The differences in λ1 and λ2 between periods were consistent

with the differences observed in the plots of displacement magnitudes.
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5.5.3 Myocardium stresses

Figures 5.12 to 5.15 show contour plots of effective stresses in the myocardium in

the y-z centre-plane over two periods of the cardiac cycle. The effective stress Te is a scalar

stress calculated as

Te =

√
1

2

[
(Txx − Tyy)

2 + (Txx − Tzz)
2 + (Tyy − Tzz)

2 + 6
(
T 2xy + T

2
xz + T

2
yz

)]
(5.13)

where Tij are the components of the Cauchy stress tensor.

Figures 5.12 and 5.14 show effective stresses for selected times during IVC, ejection,

and IVR for periods 1 and 2, respectively, while Figs. 5.13 and 5.15 show the corresponding

stresses for selected times during filling. These stress contours have been smoothened and

the magnitudes have been truncated to a maximum value of 48kPa for IVC, ejection, and

IVR and 24 kPa for filling to improve visualization of lower magnitude stresses. Because

of the fixed boundary condition applied to the inner edge of the basal plane, the stresses

along this edge are much larger than the values found throughout the myocardium.

For IVC, ejection, and IVR, the stresses shown in Fig. 5.14 for period 2 are

comparable to the stresses shown in Fig. 5.12 for period 1. In both cases, the stresses are

low at the start of IVC, increase during IVC and into ejection due to the contraction of

the muscle fibres, and then decrease during the latter part of ejection and the early part of

IVR due to the relaxation of the muscle fibres. Larger stresses were found near the inner

surface of the myocardium than near the outer surface, which is expected, because the LV

cavity pressure acts on the inner surface. For the filling phase, the effective stresses were

comparable during period 1 (Fig. 5.13) and period 2 (Fig. 5.15), and of a much lower
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Figure 5.12: Effective stresses in the myocardium in the y-z centre-plane at selected times
during IVC, ejection, and IVR for period 1. Outline represents end-diastolic geometry at
τ = 0.
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Figure 5.13: Effective stresses in the myocardium in the y-z centre-plane at selected times
during filling for period 1. Outline represents end-diastolic geometry at τ = 0.
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Figure 5.14: Effective stresses in the myocardium in the y-z centre-plane at selected times
during IVC, ejection, and IVR for period 2. Outline represents end-diastolic geometry at
τ = 1.000.
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Figure 5.15: Effective stresses in the myocardium in the y-z centre-plane at selected times
during filling for period 2. Outline represents end-diastolic geometry at τ = 1.000.
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magnitude than the stresses observed during the other three phases of the cycle. Stresses

during filling are largest at τ = 0.500 (τ = 1.500), which corresponds to the time for which

the LV cavity volume is largest.

Figure 5.16 is a plot of the temporal variations of the principal Cauchy stresses,

denoted as Ti, i = 1, 2, 3, for two periods of the cardiac cycle, calculated as described in

Section 5.5.2. The local principal stress directions will be discussed in Section 5.5.6. The

trends in T1 and T2 were consistent with the trend in pLV shown in Fig. 5.6a, that is,

the stresses and pressure increased to maxima during rapid ejection, decreased gradually

during the reminder of ejection, decreased more significantly during IVR and then fluctuated

during filling. The magnitude of T1 during ejection was found to be substantially larger

than T2, which is as expected due to the application of the majority of the active stresses

from the muscle fibre contract in the fibre direction. Differences in the stresses between

periods are most apparent in T1 during ejection; whereas T1 decreases from its maximum at

early ejection during period 1, for period 2, T1 decreases and then increases during ejection,

before decreasing from the latter part of ejection through IVR. Larger variations were

found for the stresses than for the stretches; the standard deviations for T1, T2, and T3

were, respectively, 3.5, 0.70, and 0.82 when averaged over period 1, and 3.7, 0.82, and 0.87

when averaged over period 2.

Stresses in the myocardium have not been measured in vivo. However, they

have been estimated by DeAnda et al. (1998) using Laplace’s Law for canine LVs with

an ejection fraction of EF � 0.21. The trend of the temporal variation of the average

wall stress calculated by DeAnda et al. (1998) is comparable to the trend of T1 found
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Figure 5.16: Representative temporal variations of principal Cauchy stresses for two periods
of the cardiac cycle, calculated as described in Section 5.5.2.

in the present study. This is to be expected because both the average wall stress and

the maximum principal stress T1 increase and decrease with corresponding increases and

decreases in pressure.

5.5.4 Left ventricle cavity pressure variations

Figures 5.17 to 5.20 show contour plots of pLV in the y-z centre-plane over two

periods of the cardiac cycle; Figures 5.17 and 5.19 show pLV for selected times during IVC,

ejection, and IVR for periods 1 and 2, respectively, whereas Figs. 5.18 and 5.20 show pLV

during filling for periods 1 and 2, respectively. These pressure contours have been truncated

at a maximum value of pLV = 20kPa for IVC, ejection, and IVR and 4 kPa for filling to

improve visualization of lower pressures.

Consistent with the temporal variation of pLV shown in Fig. 5.6a, the pressure

contours in Figs. 5.17 to 5.20 show an increase in pLV during IVC and rapid ejection, a

decrease during the remainder of ejection and through IVR, and relatively low values of
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Figure 5.17: Pressures in the LV cavity in the y-z centre-plane at selected times during
IVC, ejection, and IVR for period 1.
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Figure 5.18: Pressures in the LV cavity in the y-z centre-plane at selected times during
filling for period 1.
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Figure 5.19: Pressures in the LV cavity in the y-z centre-plane at selected times during
IVC, ejection, and IVR for period 2.
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Figure 5.20: Pressures in the LV cavity in the y-z centre-plane at selected times during
filling for period 2.
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pLV during filling. For period 1, differences in the pressure inside the LV cavity during

IVC, ejection, and filling, shown in Fig. 5.17, are lower than the contour plot resolution

of 2.5 kPa, making it appear as though the pressure in the LV cavity for a given time was

uniform. However, as will be shown in Section 5.5.6, small differences in pLV are present

both vertically and horizontally within the LV cavity. For period 2, non-uniformities in

pLV are visible during IVC, ejection, and filling, as shown in Fig. 5.19. Larger non-

uniformities in the pressure contours are also visible during filling for the second period,

shown in Fig. 5.20, compared to those in the first period, shown in Fig. 5.18. For

filling, the range of pressure contours shown is smaller than the range shown for the other

three phases, which improved the contour plot resolution to 0.5kPa in order to illustrate

more effectively small differences in the pressures throughout the LV cavity. In particular,

both vertical and horizontal variations of pLV are visible for τ = 0.500 and 0.583 in Fig.

5.18, and for τ = 1.500 and 1.583 in Fig. 5.20. These complex spatial variations of pLV

show the importance of coupling simulations of blood flow with simulations of myocardium

deformation, rather than performing solid-only simulations, for which a uniform pressure is

imposed as a boundary condition on the inner surface of the myocardium model.

5.5.5 Blood velocities

Figures 5.21 to 5.24 are plots of blood velocity vectors in the LV cavity in the y-z

centre-plane for two periods of the cardiac cycle; Figures 5.21 and 5.23 show velocity vectors

at selected times during IVC, ejection, and IVR, for periods 1 and 2, respectively, whereas

Figs. 5.22 and 5.24 show velocity vectors during filling for periods 1 and 2, respectively.

These velocity vectors are truncated to a maximum value of 1.5m/ s to show as clearly as
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possible the lower velocities within the LV cavity.

The blood velocities in the LV cavity are nearly zero at the start of period 1,

because the initial inflation of the LV geometry to an end-diastolic state was performed

quasi-statically as to minimize the blood velocities. As shown in Fig. 5.21, the velocities

inside the LV cavity remain relatively small during IVC, ejection, and filling, while the

velocities of the fluid exiting through the LV outflow tract are large. Such difference is

expected in view of the fact that the diameter of the LV outflow tract is much smaller

than the width of the LV cavity. During filling, blood enters rapidly the LV cavity at

τ = 0.500, as shown in Fig. 5.22, and then exits as non-physiological backflow at τ = 0.583.

Alternating entering and exiting of blood is visible in the velocity vectors throughout the

remainder of the first period. For IVC, ejection, and IVR, the velocity vectors within

the LV cavity for the second period, shown in Fig. 5.23, are larger in magnitude than the

corresponding vectors for period 1. During filling, the velocity vectors for period 2, shown

in Fig. 5.24, are comparable to the corresponding vectors found for period 1, with slightly

lower magnitudes in period 2, particularly near end-diastole.

5.5.6 Representative times during the cardiac cycle

In this section, detailed descriptions of the solid and fluid mechanics are presented

for selected time during the cardiac cycles. Specifically, results are presented for mid-

ejection (τ = 0.150 and τ = 1.150), end systole (τ = 0.312 and τ = 1.312), and end diastole

(τ = 1.00 and τ = 2.00). Due the non-physiological backflow that presently occurs during

filling, results have not been presented for a selected time during mid-filling. For each

selected time, contour plots of solid displacements and stresses are presented along with a
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Figure 5.21: Blood velocities in LV cavity in the y-z centre-plane at selected times during
IVC, ejection, and IVR for period 1.
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Figure 5.22: Blood velocities in the LV cavity in the y-z centre-plane at selected times
during filling for period 1.
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Figure 5.23: Blood velocities in the LV cavity in the y-z centre-plane at selected times
during IVC, ejection, and IVR for period 2.
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Figure 5.24: Blood velocities in the LV cavity in the y-z centre-plane at selected times
during filling for period 2.
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contour plot of LV cavity pressures and a vector plot of blood velocities.

Calculation methodology

For the myocardium, detailed spatial variations of the principal stretches and

principal stresses in the myocardium are also presented and are calculated as described in

the following. Representative transmural (from the exterior to the interior) variations of

the principal stretches and stresses were calculated in the equatorial plane, which is located

at a relative elevation of z/h = 0.67 in DG. At each relative depth from the exterior

surface in the deformed geometry, denoted as t/tmax, the average principal stretches and

stresses were calculated as the averages of corresponding values obtained along the positive

and negative x- and y-axes. Longitudinal variations (from the apex to the base) of the

stretches and stresses were calculated at a location halfway through the myocardium. At

each relative height c/cmax from the apex in the deformed geometry, average principal

stretches and stresses were calculated as the averages of values obtained at circumferential

locations corresponding to the positive and negative x- and y-axes.

The local principal stress directions y1, y2, and y3 in the myocardium differ from

the local material directions x1 (fibre), x2 (sheet), and x3 (sheet-normal). Differences

between these two sets of directions were characterized in the equatorial plane, in which x3

is radial. To examine these differences, three angles were defined, ϕ1, which is the angle

between y1 and the local circumferential direction, ϕ2, which is the angle between y2 and

the local circumferential direction and ϕ3, which is the angle between y3 and the local radial

direction, which coincides with x3 in the equatorial plane. Average transmural variations

of these angles were calculated using the same method as the average principal stretches
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and stresses described in the previous paragraph.

For the LV cavity, average transmural variations of the pressure and velocities were

calculated in the equatorial plane as the average of values obtained at four radial locations

r/rmax corresponding to the positive and negative x- and y-axes. Average longitudinal

variations of the pressures and velocities were also calculated from the apex to the base in the

centre of the LV cavity. Lastly, average Reynolds numbers were calculated for systole and

diastole based on the definitions proposed by Krittian et al. (2010); the Reynolds number

is defined as Re = ρfvD/µ, where v is the characteristic velocity and D is the characteristic

diameter. For systole, D = DAV and v = ∆Vf,eject/
[
(0.6∆τeject)π (DAV /2)

2
]
and for

diastole, D = DMV and v = ∆Vf,fill/
[
(0.6∆τfill)π (DMV /2)

2
]
.

Mid-ejection

Figure 5.25 shows displacement magnitude and effective stress contours for the

myocardium, while Fig. 5.26 shows pressure contours and velocity vectors for the LV cavity,

all of which are presented in the y-z centre-plane at mid-ejection (τ = 0.150 and 1.150).

The scales for these plots have been chosen to more accurately reflect the range of values

observed for each pair of plots representing periods 1 and 2, rather than being representative

of the range over IVC, ejection, and IVR as was shown in previous sections. At mid-ejection,

flow is rapidly exiting the LV cavity, both the pressures and effective stresses are large, and

large displacements of the myocardium are visible, particularly near the apex.

Figure 5.27 contains several plots at mid-ejection (τ = 0.150 and 1.150), which

show the transmural and longitudinal variations of the principal stretches and stresses, as

well as the transmural variations of the in-plane angles, which characterize the principal
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Figure 5.25: Displacement and effective stress contours for the myocardium in the y-z
centre-plane at mid-ejection for two periods (τ = 0.150 and τ = 1.150).

stress directions. Figure 5.27a shows the deformations of the myocardium increasing from

the exterior to the interior surface in a nearly-linear fashion. The corresponding principal

stresses (Fig. 5.27c) also show an increase in magnitude from the exterior to the interior

surfaces, with non-linear variations consistent with the form of the myocardium material

model. Visible shifts in the stresses near t/tmax = 0.83 are a consequence of insufficient

mesh resolution in this region, which would likely be removed by mesh refinement.

Longitudinally, the principal stretches are nearly constant away from the apex or

the base; changes in λ1, λ2, and λ3 near the basal plane are a consequence of the imposed

fixed boundary conditions along this plane and its inner edge. Trends of the longitudinal

variations of T2 and T3, shown in Fig. 5.27d, are consistent with trends of the corresponding

stretches. T1, which contains a significant amount of the active stresses representing the
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Figure 5.26: Pressure contours and velocity vectors for the LV cavity in the y-z centre-plane
at mid-ejection for two periods (τ = 0.150 and τ = 1.150).

171



Figure 5.27: Representative transmural (a,c,e) and longitudinal (b,d) variations of the prin-
cipal stretches (a,b), principal stresses (c,d), and in-plane angles (e) in the myocardium
during mid-ejection for two periods (τ = 0.150 and τ = 1.150), calculated as described in
Section 5.5.6.
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contraction of the muscle fibres, increases dramatically from the apex until a maximum is

reached near c/cmax = 0.67 for period 1 and c/cmax = 0.40 for period 2. In both cases,

T1 decreases from its maximum with increasing distance from the apex, until it reaches a

plateau at the basal plane.

The transmural variations of ϕ1 and ϕ2, shown in Fig. 5.27e, have five distinct

regions, separated by apparent discontinuities and the values of ϕ1 and ϕ2 are approximately

90◦ out of phase. These discontinuities illustrate the influence of the muscle fibre orientation

on ϕ1 and ϕ2 during systole, particularly the influence of the active stresses, which are

primarily directed in the fibre direction. In the actual LV wall, the muscle fibre angle

varies linearly through the wall. The apparent discontinuities found in Fig. 5.27e can

be partially attributed to the manner in which the muscle fibre angles are described in

the present study, for which the LV wall is divided into six layers, each with their own

muscle fibre angle that varies in a step-wise manner from one layer to the next. One can

speculate that increasing the number of wall layers would likely reduce the magnitudes of the

apparent discontinuities, but potentially increase their number. It seems possible that for a

sufficiently large number of wall layers, or with the use of an alternative methodology that

allows for the definition of a continuous linear variation of the muscle fibre angle through

the wall, these apparent discontinuities may be removed resulting in a smooth variation of

ϕ1 and ϕ2 through the wall. It should be mentioned that, in Chapter 4, the transmural

variations of ϕ1 and ϕ2 for the passive LV myocardium undergoing static loading were found

to be smooth and without the apparent discontinuities present in Fig. 5.27e. The primary

reason for the differences between the two cases is that the presence of the active stresses
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during systole makes the myocardium much more anisotropic than during diastole.

Lastly, ϕ3 was found to be nearly constant through the myocardium with an

average value of 6.5◦ for τ = 0.150 and 4.2◦ for τ = 1.150. This implies that, in the

equatorial plane, y3 is nearly radial.

Plots of the radial and longitudinal variations of pLV and the x-, y- and z-

components of the blood velocity are presented in Fig. 5.28 at mid-ejection (τ = 0.150

and 1.150). Although the resolution of the contours of pLV shown in Fig. 5.26 was insuf-

ficient to show variations of pLV in the LV except near the apex at τ = 1.150, the plots

in Figs. 5.28a and b show small variations in both the radial and longitudinal directions.

For the most parts, the selected average velocity components plotted in Figs. 5.28c and

d were fairly small and constant both radially and longitudinally. Noticeable differences

were found between the first and second periods, with vz for period 2 showing the largest

magnitudes and strongest variability.

End systole

Figure 5.29 is a plot at end systole of the myocardium displacement and effective

stress contours, while Fig. 5.30 is a plot of pressure contours and velocity vectors for the

LV cavity. For period 1, displacement magnitudes were comparable at end systole and mid

ejection, while for period 2, displacement magnitude at end systole were smaller than at

mid-ejection. The effective stresses were lower at end systole than at mid-ejection, because

the muscle fibres were contracting at mid-ejection and relaxing at end systole. Pressures in

the majority of the LV cavity were also lower at end systole than at mid-ejection, however,

due to the closing of the aortic valve, pLV was large near the start of the LV outflow
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Figure 5.28: Representative radial (a,c) and longitudinal (b,d) variations of the LV cavity
pressure (a,b) and blood velocities (c,d) during mid-ejection for two periods (τ = 0.150 and
τ = 1.150), calculated as described in Section 5.5.6.
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Figure 5.29: Displacement and effective stress contours for the myocardium in the y-z
centre-plane at end systole for two periods (τ = 0.312 and τ = 1.312).

tract. The velocity vectors at end systole show noticeable differences between periods. For

period 1, the velocities throughout the LV cavity were relatively small, while for period

2, velocities of the order of 0.5m/ s were observed near the apex, suggesting that the LV

cavity is deforming downward in this region. This difference between periods is most likely

related to the much larger pressure at the start of the LV outflow tract found for period 2.

Figure 5.31 shows plots of the transmural and longitudinal variations of the princi-

pal stretches and stresses at end systole, along with plots of the transmural variations of the

corresponding in-plane angles, which characterize the principal stress directions. Trends

for the transmural and longitudinal variations of the principal stretches and stresses, shown

in Figs. 5.31a-d, are comparable to the trends found in Figs. 5.27a-d at mid-ejection. The

principal stresses have smaller magnitudes at end systole than at mid-ejection, because the
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Figure 5.30: Pressure contours and velocity vectors for the LV cavity in the y-z centre-plane
at end systole for two periods (τ = 0.312 and τ = 1.312).
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muscle fibres are more relaxed at end systole than at mid-ejection. The variations of ϕ1

and ϕ2 are also comparable between mid-ejection and end systole. The average value of

ϕ3 at end systole was 8.2
◦ for period 1 and 10.5◦ for period 2.

Plots of the radial and longitudinal variations of pLV and the x-, y- and z-

components of the blood velocity are presented in Fig. 5.32 at end systole (τ = 0.312

and 1.312). In Fig. 5.32a, pLV decreases slightly from the centre to the outer edge of

the LV cavity, which contrasts with the corresponding mid-ejection plot, for which pLV

increased toward the exterior surface. Further, at end systole, pLV was on average 1.75kPa

larger during period 2 than during period 1, while during mid-ejection pLV was nearly the

same for both periods. Longitudinally, as shown in Fig. 5.32b, pLV increased significantly

from the apex to the base during period 2, while it remained nearly constant during period

1. The velocities at end systole, shown in Fig. 5.32c and d, were fairly small and, for the

most part, were nearly constant, with the exception of vz during period 2. This behaviour

is comparable to that observed at mid-ejection.

For systole, average Reynolds numbers were calculated for each period, as de-

scribed in Section 5.5.6. For period 1, Re = 1749 and for period 2, Re = 2941. These

values would most likely increase if a physiological ejection fraction were achieved. The

Reynolds number calculated for period 2 happens to be comparable to the value 3431 cal-

culated by Krittian et al. (2010) for a human LV. It should be noted, however, that

comparisons of Re for LVs of different species are not necessarily meaningful, because of

differences in the sizes and pulsation rates of the LVs.
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Figure 5.31: Representative transmural (a,c,e) and longitudinal (b,d) variations of the prin-
cipal stretches (a,b), principal stresses (c,d), and in-plane angles (e) in the myocardium at
end systole for two periods (τ = 0.312 and τ = 1.312), calculated as described in Section
5.5.6.

179



Figure 5.32: Representative radial (a,c) and longitudinal (b,d) variations of the LV cavity
pressure (a,b) and blood velocities (c,d) at end systole for two periods (τ = 0.312 and
τ = 1.312), calculated as described in Section 5.5.6.
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End diastole

Figure 5.33 is a contour plot of the myocardium displacement magnitudes and

effective stresses in the y-z centre-plane at end diastole for periods 1 and 2, whereas Fig.

5.34 shows the corresponding pressure contours and velocity vectors in the LV cavity. Dis-

placement magnitudes for period 2 are more symmetric than for period 1. Stresses in

the myocardium are noticeably smaller at end diastole than during systole, because, at end

diastole, the muscle fibres are fully relaxed and have no active stresses. Noticeable pressure

differences are visible in Fig. 5.34 within the LV cavity, however, it should be noted that

the magnitudes of these differences are relatively small (pressure contours have a resolution

of 0.33kPa). Blood flow in the LV cavity at end diastole was greater for period 1 than for

period 2, with higher velocities for period 1 visible in Fig. 5.34, particularly near the apex.

Figure 5.35 contains plots of the transmural and longitudinal variations of my-

ocardium principal stretches and stresses at end diastole, along with a plot of the trans-

mural variations of the corresponding in-plane angles, which characterize the principal stress

directions. Both deformations and the magnitudes of the principal stresses increase with

increasing distance from the exterior surface of the myocardium. The trends of the prin-

cipal stretches are comparable to the trends found during systole as are the trends for T2

and T3; however, the trends for T1 differ between systole and diastole due to the presence

of the active stress during systole, which have a functional form that is different from that

of the passive stresses. Longitudinally, the principal stretches were nearly constant, with

small variations near the apex and near the base. The corresponding values of T2 and

T3 were also nearly constant, with T2 increasing from the apex towards the midpoint and
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Figure 5.33: Displacement and effective stress contours for the myocardium in the y-z
centre-plane at end diastole for two periods (τ = 1.000 and τ = 2.000).

then decreasing near the base. T1 increased substantially from the apex until it reached

a maximum near c/cmax = 0.6 and then decreased towards the base. At end diastole,

the maximum value of T1 occurred at roughly the same value of c/cmax for periods 1 and

2, while during systole there was a noticeable shift in the corresponding locations of the

maximum value of T1 between periods. Lastly, the in-plane angles in Fig. 5.35e showed

very small variations through the myocardium, and were nearly constant for the inner half

of the wall. This is in contrast with the behaviour of the in-plane angles during systole,

which showed large apparent discontinuities through the wall, due to the presence of the

active stresses which primarily act in the fibre direction.

Figure 5.36 contains plots of the radial and longitudinal variations of pLV and the

x-, y- and z-components of the blood velocity at end diastole (τ = 1.00 and 2.00). For
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Figure 5.34: Pressure contours and velocity vectors for the LV cavity in the y-z centre-plane
at end diastole for two periods (τ = 1.000 and τ = 2.000).
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Figure 5.35: Representative transmural (a,c,e) and longitudinal (b,d) variations of the prin-
cipal stretches (a,b), principal stresses (c,d), and in-plane angles (e) in the myocardium at
end diastole for two periods (τ = 1.00 and τ = 2.00), calculated as described in Section
5.5.6.
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Figure 5.36: Representative radial (a,c) and longitudinal (b,d) variations of the LV cavity
pressure (a,b) and blood velocities (c,d) at end diastole for two periods (τ = 1.00 and
τ = 2.00), calculated as described in Section 5.5.6.

both periods 1 and 2, pLV increased slightly from the centre to the outer edge of the LV

cavity, as shown in Fig. 5.36a, while, as shown in Fig. 5.36b, it decreased longitudinally

from the apex to the base for period 2 and increased then decreased for period 1. As for

systole, the velocity components at end diastole, shown in Figs. 5.36c and d, were small

and relatively constant, with the exception of vz for both periods 1 and 2.

For diastole, Reynolds numbers were calculated as described in Section 5.5.6 and

were found to be Re = 193 and 359 for periods 1 and 2, respectively. As with the systolic

values, it is anticipated that these values of Re would be larger for a physiological ejection
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fraction. For diastole, Krittian et al. (2010) calculated Re = 2288 for a human LV, which

is much larger than the values for the canine LV calculated in the present study, however,

as with systole, the significance of this difference is unclear.

5.6 Discussion

In this section, the successes of the present study are discussed along with future

challenges in the modelling of the mechanics of the heart with FSI effects. Additionally,

evaluations of several model inputs are presented.

5.6.1 Geometry and mesh

In the present study, an average canine LV geometry was chosen rather than a

specimen-specific one to allow for the use of average data from the literature instead of

specimen-specific data in consideration of the large variability of data from one specimen to

the next and the difficulty in obtaining all necessary model inputs from a single specimen.

Using an average geometry and average input data, the present simulations were successfully

performed. One of the challenges in defining an average canine LV geometry was to

determine appropriate diameters for the LV inflow and outflow tracts, based on diameters

of the MV and AV found in the literature. As described in Appendix D, the diameters

chosen in the present study were calculated from average data in the literature. However,

it is possible that the assumed sizes of the valve diameters contributed to the low ejection

fraction achieved in the present study. Had the diameter of the LV outflow tract been larger,

more blood may have been able to exit the LV during ejection, which would increase EF .
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The calculated Reynolds numbers for systole and diastole further suggest that modification

of the LV inflow and outflow diameters may be appropriate. The ratio of systolic to

diastolic Re for human LVs, calculated from the values proposed by Krittian et al. (2010)

was approximately 1.5, while, for the present study, this ratio was approximately 9 for period

1 and 8 for period 2. An increase in DAV and a corresponding decrease in DMV may serve

to decrease the systolic Reynolds number and increase the diastolic one, which would in

turn decrease the ratio of the two towards the value calculated for humans. Although it

is not anticipated that these ratios should be equal for different species, these calculations

coupled with the low ejection fraction suggest that revisiting the dimensions of the LV inflow

and outflow tracts may be appropriate. However, it should be mentioned that preliminary

simulations were performed with an earlier version of the LV model, in which the valves were

reversed such that flow exited through the inflow tract, which has a larger diameter than

the outflow tract. Results of these simulations showed little difference in EF compared

to the baseline case. Moreover, the assumption that the LV inflow and outflow tracts

were rigid may have contributed to a reduced EF . Additional details on muscle fibre

orientation and wall thickness for the LV inflow and outflow tracts, not presently available

in the literature, would be required in order for one to model the upper part of the fluid

geometry as deformable.

The lengths of the LV inflow and outflow tracts may also play a role in the devel-

opment of the flow into and out of the LV geometry. Previous FSI simulations (Watanabe

et al. (2004); Cheng et al. (2005); Krittian et al. (2010); Tang et al. (2010)) have consid-

ered inflow and outflow tracts of comparable lengths to the ones considered in the present
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study. It is important to remember that the geometries of the aorta and LA are complex

and should not be represented by long cylindrical tubes. Further, the flow into and out of

the LV would also be complex, so including longer inlet and outlet tracts would not serve

to create flows that are more physiologically correct.

Simulations in the present study have been presented for the finest fluid and solid

meshes for which model convergence could be achieved and simulations could be completed

in a reasonable amount of time. Using the current mesh densities, the calculation of

the initial conditions for the cardiac cycle simulations required approximately two weeks of

computational time, and each period of the cardiac cycle required approximately one week of

computational time. From the work presented in Chapter 4, and the transmural variations

of the principal stresses shown in this chapter, it is clear that additional mesh refinement is

needed for the solid. However, as mentioned in Section 5.3.3, further refinement of the solid

mesh led to divergence of the numerical solution. This divergence took place during the

first time step of the quasi-static FSI simulations of the inflation of the passive LV, which

were used to generate initial conditions for the cardiac cycle simulations. The timing of this

divergence suggests that the time step used in the quasi-static FSI simulations may be the

cause of this issue. Additional simulations, delegated to future work, would be required to

determine if this is indeed the case. A possible solution would be to decrease the size of the

time step used for the calculation of the initial conditions; however, this would substantially

increase the computational time required for these calculations.

As mentioned in Section 5.4.2, additional fluid mesh refinement is also needed

to study fluid mesh dependence. Any additional mesh refinement, particularly for the
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fluid, would increase substantially the computational time per period, as well as the time

required to generate new initial conditions for the cardiac cycle simulations. Balancing mesh

refinement and computational time remains an ongoing issue in these types of numerical

simulations, in particular if one was to consider a specimen-specific geometry for which even

finer meshes would be required.

5.6.2 Other model inputs

During both simulated periods of the cardiac cycles, pressures in the LV cavity

showed fairly good agreement with previous measurements over most of the cycle, with

deviations during early filling that led to non-physiological backflow. This backflow oc-

curred when pLV exceeded pLA during rapid filling. This backflow can be attributed to

the combined effects of insufficient muscle fibre relaxation during this phase, crudeness of

boundary conditions, and/or valve dynamics, as discussed in the following.

During rapid filling, the decrease in LV pressure due to the continuing relaxation

of muscle fibres is stronger than the pressure increase caused by the incoming blood flow,

such that the net effect is a decrease in pLV during this phase. In the present study, the

relaxation of the muscle fibres was controlled by the empirical function F (τ), which despite

numerous adjustments could not be made to prevent this backflow. The objective was to

select a variation F (τ), which enforces a sufficient relaxation of the muscle fibres during IVR

such that the pressure drop during this phase matches physiological values, while at the

same time ensuring that F is sufficiently large to allow for the necessary relaxation during

rapid filling, such that pLV remains less than pLA during filling. In other words, the state

of the muscle fibres must be such that they relax enough during IVR, but not so much that
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they cannot be relaxed further during filling. In the present study, a physiological pressure

drop could not be achieved during IVR without specifying a value of F at the start of filling

that was too small to prevent backflow by producing the appropriate pressure drop. It is

speculated that the reason why F could not be properly set in the present simulations is

related to the low ejection volume achieved during systole. If EF increased, there would

be less fluid inside the LV cavity during IVR, and it would be easier to decrease pLV during

this phase, i.e., the necessary pressure drop during IVR could be achieved with a smaller

change in F than currently required. This would increase the value of F at the start of

filling, which would potentially allow for a sufficient relaxation of the muscle fibres during

rapid filling, such that it would prevent pLV from exceeding pLA and flow from entering the

LV cavity.

Spikes in the pressures were evident, particularly during the second period, near

the times when a valve was closed. These spikes were caused by the abrupt opening and

closing of the valves. Modelling appropriately valve dynamics remains an open challenge

in these types of simulations. Only recently (Wenk et al. (2010)) has a solid-only model

of the mechanics of the LV been developed that included mitral valve motion. Additional

work would be needed to prescribe the motion of the aortic valve in these simulations, and

even more to model the valve operation with FSI. For finite element simulations, using

an ALE approach to model the fluid, there is an issue with the closing of the valves in

three-dimensions, related to the contact of the solid elements with each other at the tips of

the valve leaflets. Even if the contact problem could be solved, including such valve motion

with a sufficiently accurate solid model would require substantially more computational
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time; this would likely increase the computational resources required for such simulations

beyond currently available levels, especially when considering the need for computing mul-

tiple cycles.

An alternative method to address the spikes in the pressure would have been to

couple the LV model with electric circuit models of the circulatory system both upstream

and downstream of the LV. While this has been done by previous researchers (Watanabe

et al. (2004)), in the present study, attempts were made to match the pressures without

introducing this control.

Blood flow in the LV was assumed to be laminar. However, the flow, in fact, may

be transitional or turbulent during parts of the cardiac cycle, particularly during phases

of deceleration. By modelling the flow as laminar, we are solving the full Navier-Stokes

equations and the results of these simulations could be considered to be a low order direct

numerical simulation (DNS) with low spatial resolution. Further fluid mesh refinement

may serve to identify small scale structures present in the flow.

One of the strengths of the present model was the inclusion of a validated my-

ocardium material model that was transversely isotropic for both the passive and active

parts, and for which the passive material properties were calculated for the species of inter-

est. Recent studies of heart mechanics (Watanabe et al. (2002); Watanabe et al. (2004);

Tang et al. (2008); Tang et al. (2010); Krittian et al. (2010)) that have included FSI effects

have utilized simplified myocardium material models and/or passive material parameters

adapted from species different from the ones considered in their studies. Watanabe et al.

(2004) used a similar material model to the one in the present study to perform simulations
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of the mechanics of the human LV, but chose their passive material parameter values to be

proportional to values for rabbit LV, suggested by Lin and Yin (1998). To make matters

worse, Watanabe et al. also incorrectly converted the units of one of their parameter values.

Tang et al. (2010) used a modified version of the Mooney-Rivlin model to model the passive

and active parts of the myocardium rather than one more suitable for modelling ventric-

ular mechanics. Additionally, Tang et al. (2010) only included two layers in their wall,

which was shown in Chapter 4 to be an insufficient number to describe the stresses in the

myocardium. Krittian et al. (2010) used a transversely-isotropic material with parameter

values calculated for pig LVs to model their human LV, and although it is not entirely clear

in their article, it appears that they only applied active stresses in the fibre direction only.

All of these previous studies presented either limited (Watanabe et al. (2002)) or no results

for the myocardium.

One of the challenges in modelling the cardiac cycle using an ALE finite element

approach is addressing the isovolumetric phases, for which both the aortic and mitral valves

are closed and the fluid mesh is deforming. In the present study, these phases were addressed

through the use a slightly compressible material model for blood, which although it led to

small changes in volume during IVC and IVR, did a reasonable job of modelling these

phases. In other recent FSI simulations, the issue of the isovolumetric phases was either

not discussed (Krittian et al. (2010)) or neglected (Tang et al. (2008)).

5.6.3 Periodicity

Periodicity of FSI simulations in the LV has not been well documented; in fact,

recent articles by Krittian et al. (2010) and Tang et al. (2010) give no mention to this issue
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in their simulation results. For the present study it is unclear as to whether additional

periods would lead to convergence towards a periodic state or divergence. Further, if the

simulations were to converge to a periodic state, it is also unclear as to how many periods

would be required to achieve periodicity.

Convergence to a periodic state is at least partially influenced by the initial con-

ditions and convergence over a small number of cycles would only be achieved if the initial

state was close to the periodic state. As the periodic state is unknown at the start of

the simulations, it is unclear as to how far our initial state deviates from a periodic one.

Additional cycles are required to determine the convergence or divergence of the present

simulations.

5.6.4 Compressibility

In the present simulations, both blood and myocardium tissue were assumed to

be slightly compressible to aid in numerical convergence, but with sufficiently high bulk

moduli as to render compressibility effects essentially negligible. Although blood may be

safely assumed to be incompressible, the assumption of an incompressible myocardium may

not be justifiable. The coronary circulatory system is a network of blood vessels through

which blood flows in myocardium. During different phases of the cardiac cycle, the blood

volume in the coronary circulatory system changes. The effect of this change in blood

flow is that the total volume of the myocardium changes during the cardiac cycle, so that

the myocardium behaves as a compressible material, even though all of its components can

be considered to be incompressible. Although the coronary circulation is well-known, it

is generally not considered in numerical models of heart mechanics. For this reason, the
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impact of the change in myocardium volume during the cardiac cycle on its mechanical

behaviour is unknown. Additional simulations would be required to investigate this issue.

These simulations could either model the myocardium as a compressible material to mimic

the effects of the changing blood volume, or simulate roughly the flow of blood in the

myocardium through a finite element or electric circuit approach.

5.6.5 Numerical methods

Simulations in the present study were performed using ADINA, which offers the

advantage of being able to define fluid, solid, and FSI models within a single software

package. Recently, other research groups (Cheng et al. (2005); Tang et al. (2010)) have

also used ADINA for their FSI simulations of LV mechanics. Alternatively, we could

have used other software packages such as ANSYS (ANSYS, Inc., Canonsburg, PA, USA)

or Abaqus (SIMULIA, Providence, RI, USA) for the solid model and FLUENT or CFX

(both from ANSYS, Inc., Canonsburg, PA, USA) for the fluid model. While ANSYS has

built-in FSI coupling for its various software packages, researchers such as Krittian et al.

(2010) have opted for a third-party software called MpCCI (Fraunhofer SCAI, Germany)

to perform their FSI coupling. Krittian et al. (2010) coupled Abaqus and FLUENT, but

MpCCI has also been used to couple ANSYS products. One advantage of MpCCI is that

it allows the user to choose fluid and solid software, even if they are provided by different

companies, and couple them together. As our experience in FSI simulations is limited to

ADINA, we cannot comment on any specific advantages or disadvantages of using these

alternative software packages, but these alternatives could be further investigated in future

studies.
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A different approach would have been to consider some sort of immersed method,

such as the Immersed Boundary Method (IBM), which solves the fluid solution on a regular

grid and does not have the mesh issues related to finite element or finite volume approaches

in which the fluid mesh undergoes large deformations. However, immersed methods are

somewhat limited in their solutions for the solid models and therefore do not generally

allow for detailed solid and fluid results to be obtained from a single simulation. Future

advancements in these methods may allow for such solutions to be obtained, potentially

making these methods advantageous over finite element or finite volume methods.

5.7 Conclusions

Numerical simulations of myocardium motion and blood flow in the canine LV with

FSI effects were successfully performed for two periods of the cardiac cycle. Calculated LV

cavity pressures for the two periods were in good agreement with previous measurements

over most of the cycle, but differed from them during rapid filling, causing backflow which

is non-physiological. Trends in the cavity volume changes were consistent with physiolog-

ical expectations for IVC, ejection and IVR, but the ejection volume was lower than the

physiological one.

Temporal variations of the displacements and stresses in the myocardium were

presented in the form of contour plots at selected times during the two cycles. Stresses

were found to be much larger during ejection than during filling, in conformity with the

expected effects of the contraction of the muscle fibres during ejection. Temporal variations

of the LV cavity pressure and the blood velocities were presented for the same times during
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the cycles as the solid results. Pressure differences in the LV cavity were visible in the

contour plots for ejection for period 2, while, during filling, pressure differences were visible

in the contour plots for both periods. These pressure differences emphasize the impor-

tance of performing FSI simulations of the LV operation instead of solid-only simulations

of myocardium mechanics for which uniform pressures are generally assumed as boundary

conditions on the inner surface of the myocardium.

Detailed spatial variations of the myocardium principal stretches, principal stresses

and in-plane angles (which describe the orientation of the principal stresses) were presented

at mid-ejection, end systole and end diastole, along with plots of detailed spatial variations

of the pressure and velocity components in the LV cavity. The present study is the first one

to report detailed spatial variations of properties for both the myocardium and the blood.

Lastly, choices of several model inputs were discussed and suggestions for future

improvements to the present model were presented.
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Chapter 6

Conclusions and recommendations

for future work

6.1 Conclusions

The following conclusions were reached for each of the three phases of this work.

6.1.1 Myocardium material model

A material model for the canine LV myocardium has been defined for use in finite

element simulations. This model was adapted from one based on measurements to make

it suitable for use in numerical simulations. Specifically, additional terms were added to

ensure convergence at zero stress and positive tensile stresses for small stretches. Material

parameters were calculated for this model, subject to numerical constraints, which were

primarily defined to ensure that both the passive and active parts of the material model

were strictly convex, thus ensuring the convergence of the numerical simulations.
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6.1.2 Inflation of the passive LV

To generate initial conditions for the cardiac cycle simulations, simulations of the

inflation of the passive LV myocardium were performed from an unloaded stress-free state

to end diastole. Dimensions of the geometry at end diastole compared well to end-diastolic

measurements, thus validating the choice of end-diastolic pressure. The observed devel-

opment of complex spatial variations of the stresses at end diastole justifies the present

approach of generating an end-diastolic state rather than imposing an arbitrary stress dis-

tribution at end diastole. A comparison of the stresses obtained at the chosen end-diastolic

pressure to stresses obtained at a lower pressure, further demonstrates that it would be

inappropriate to scale stresses at a lower pressure by a constant factor to approximate

end-diastolic stresses.

6.1.3 Cardiac cycle simulations

Simulations of myocardium motion and blood flow were successfully performed

for two periods of the cardiac cycle. Pressure in the LV cavity showed good agreement

with previous measurements over the cardiac cycle, with the exception of the rapid filling

phase; differences during this phase led to non-physiological backflow. Detailed spatial and

temporal variations of the principal stretches and stresses in the myocardium have been

presented along with pressures and blood velocities in the LV cavity at corresponding times

during the two cardiac cycles. Non-uniform pressures in the LV cavity emphasized the

importance of including blood flow modelling in a study of the mechanics of the LV, rather

than imposing a uniform pressure boundary condition on the inner surface of the LV cavity
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for solid-only simulations. This work reports the first detailed analysis of both the solid

and fluid mechanics of the LV in a single study.

6.2 Recommendations

The following recommendations for future research are made for each of the three

phases of this work.

6.2.1 Myocardium material model

1. It has been shown by previous researchers that an orthotropic material model for the

passive myocardium would be more appropriate than a transversely-isotropic one, as

was used in the present study. To develop such a model, one would require results of

biaxial tensile tests for all possible combinations of the three characteristic directions,

as well as shear test results, such as those performed by Dokos et al. (2002). Once such

results become available, the present simulations can be repeated using an orthotropic

material model.

2. Material models for the active stresses should be extended from transversely-isotropic

to orthotropic by incorporating results of corresponding biaxial tensile tests, once they

become available.

3. Novak et al. (1994) showed variations in stress-stretch properties in different sections

of the LV myocardium. This study should be extended to quantify differences in

myocardium material properties transmurally and in different sections of the ventri-

cles, such as the LV and RV free walls and the septum. Experiments of this nature
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would allow for spatial variations in material properties to be incorporated into a

myocardium material model.

4. Criscione et al. (2001) stated that the invariants of Green’s strain tensor Ii, which

are currently used to define the functional form of myocardium material models are

not independent of each other and suggested alternative invariants that could, in

conjunction with stress-stretch measurements, lead to a different functional form of

myocardium material models. This idea could be developed in future research.

5. The implementation of the recommendations defined previously could potentially lead

to an improved material model for the myocardium, but this model would still be only

representative of an in vitro material. Additional research is needed to correlate these

in vitro measurements with in vivo data, and use this analysis to develop a material

model that it is more representative of the material behaviour of an intact heart.

6.2.2 Inflation of the passive LV

1. Stresses in the LV myocardium during filling, as well as residual stresses in the un-

loaded LV myocardium, have not yet been measured. The measurement of these

stresses would allow for a more complete validation of numerical models to be per-

formed.

2. If residual stresses were measured, a new material model for the LV myocardium

could be developed based on the work of Hoger (1993), which could be utilized in

static filling simulations as a way to account for the residual stresses in the unloaded

myocardium.
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3. An extension of this work to an anatomical LV/RV geometry was briefly described

in Appendix C. Further work on the incorporation of varying muscle fibres angles

and non-uniform myocardium material properties throughout the LV and RV could

be performed to further improve these simulations.

4. It has previously been shown Yin et al. (1996) that the myocardium behaves as a

compressible material due to the transfer of fluid into and out of the myocardium. To

account for the variation in myocardium volume during filling, future researchers could

incorporate poroelastic and viscoelastic effects into material models of the myocardium

as proposed by Huyghe et al. (1991) and Yang and Taber (1991).

5. The improvements suggested previously would provide a more complete model of the

myocardium behaviour during static filling. However, it would be most beneficial to

establish a link between the in vitro data from previous experiments and in vivo data

from living dogs. Performing measurements of pressure, cavity volume, and stresses

in the intact canine myocardium and then performing the same measurements on the

myocardium after it has been excised would allow for a correlation to be made between

in vitro and in vivo data that would allow researchers to correct their models based

on in vitro data to be more representative of an in vivo state.

6.2.3 Cardiac cycle simulations

1. The solid mesh used in the present cardiac cycle simulations was coarser than required

for a mesh-independent solution. Attempts to refine the solid mesh led to model

divergence. Future work should look into ways to get a convergent solution with a
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finer myocardium mesh. Additionally, further mesh refinement is required for the

fluid to make definitive statements on fluid mesh independence. It is recognized,

however, that mesh refinement would entail a substantial increase in computational

cost, which may render the implementation of this recommendation non-feasible in

the near future.

2. In the current numerical model, the pressures at the LV inflow and outflow bound-

aries are defined as model inputs, and no mechanism is in place to adjust them during

the simulations based on flow conditions. Moreover, the abrupt opening and clos-

ing of the valves generated non-physiological spikes in the cavity pressure. Future

work could examine the choice of inflow and outflow boundary conditions as well as

the mechanism used to open and close the valves to improve the flow at the bound-

aries, particularly during valve opening and closing. One way that this could be

accomplished is by coupling the finite element model with electric circuit models rep-

resenting the circulatory system upstream and downstream of the LV and allowing

for less abrupt changes in valve geometry at these boundaries.

3. The forcing function used in the present study to model the dynamics of active muscle

fibre contraction is a crude approximation of physiology. Additional work is needed

to quantify the material properties of the myocardium during the contraction and

relaxation of the muscle fibres and to incorporate these material properties into a

material model that could be used for cardiac cycle simulations.

4. Blood is a non-Newtonian fluid and the flow of blood into, out of, and within the LV

cavity may be turbulent, at least during part of the cycle. A more realistic material
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model of blood as well as a model for turbulence could be included in future studies

of LV mechanics.

5. Lastly, the deformation of the LV is influenced by the RV. Future work could ex-

tend the present study to one of a LV-RV geometry and perform simultaneous FSI

simulations of the mechanics of the LV and the RV.

6.2.4 Extension to patient-specific models

In this section, recommendations for extending this work to patient-specific models

are briefly discussed along with the information that is required to make these extensions.

Ultimately, the goal of a study of the mechanics of the LV would be to describe

the behaviour of the blood and the heart wall in a specific human patient to determine the

health of the patient’s heart, the extent of any diseases, and/or possible treatment options

for these diseases. The challenge in doing so is obtaining all of the necessary model inputs

from a specific patient and incorporating them into a numerical model that can run in a

reasonable amount of time and give solutions that are sufficiently accurate to aid physicians

in diagnosis and treatment decisions.

To extend the present work to a patient-specific study would require a geometry

based on MRI or CT data that would include not only the boundaries of the LV cavity and

wall, but also muscle fibre information. Blood pressures and/or velocities would also be

needed as model inputs. While a solid geometry and fluid boundary conditions allow for

CFD-MRI studies to be conducted, such as those performed by Saber et al. (2003), Long

et al. (2008), and Doenst et al. (2009), in order to extend these studies to fully-coupled
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FSI simulations, material properties for the LV wall would be required. Developing a

methodology to obtain these material properties in vivo and incorporating them and muscle

fibre orientations into a numerical model would allow the deformation of the LV wall to be

calculated along with the blood flow in an FSI simulation. This would allow physicians to

observe areas of atypical behaviour within the LV wall and determine their effects on the

flow of blood in the LV cavity. It would also allow treatment options to be considered by

varying the LV wall properties.

In conclusion, understanding the material behaviour of the LV wall in vivo remains

the biggest challenge to extending FSI simulations from idealized geometries to patient-

specific ones in which the behaviour of the LV wall is accurately captured. The development

of a method to obtain this information would be a significant step in understanding and

treating heart disease.
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Appendix A

Parallel processing

A.1 Introduction

The following is an excerpt from an article (Doyle et al. (2010b)) describing the

parallelization of FSI simulations of the inflation of the passive LV. These simulations

were performed using an earlier version of the numerical model, which has some

differences in the geometry and muscle fibre angles from those used in Chapter 4.

One of the challenges of performing fluid-structure interaction (FSI) simulations in

the left ventricle (LV) is the requirement of large amounts of RAM and CPU power,

which necessitate the use of a high performance computing facility. Such a facility

was available for this work through membership in the High Performance Computing

Virtual Laboratory (HPCVL), a consortium of Universities and Colleges in Eastern

Ontario. Simulations were performed using the commercial finite element software

ADINA v. 8.5.2 (ADINA R&D, Inc., Watertown, MA, USA) on 64-bit Sun computers
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running the Solaris operating system.

The objective of this Appendix is to estimate the RAM and CPU time that are

required for the simulations, as well as to determine an appropriate number of CPUs

based on a parallelization study.

A.2 Methods

A.2.1 Geometries

The dimensions of the solid part of the geometry, representing the myocardium, are

based on averages of measurements of several dog hearts (Streeter and Hanna (1973)).

The outer semi-major and semi-minor axes, denoted as a and b in Fig. A.1, respec-

tively, are 45.2mm and 25.8mm, whereas the thicknesses at the apex and the equator

are ta = 5.1mm and tb = 12.1mm, respectively. The height of the solid geometry

from the apex of the inner surface to the flat top surface is h = 60.2mm. The

solid wall is evenly subdivided into either three or six layers, each with a specific

fibre angle. The fluid geometry consists of two parts. The lower part has an outer

boundary which is identical to the inner boundary of the solid geometry to allow for

FSI effects to be accounted for along the fluid-solid interface. The upper part of the

fluid geometry is rigid and consists of two cylindrical tubes of length L = 8.7mm with

diameters DMV = 16.8mm and DAV = 8.7mm, which represent the LV inflow and

outflow tracts, respectively; the inflow tract houses an idealized mitral valve, while

the outflow tract houses an idealized aortic valve. The fluid geometry is completed by
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Figure A.1: Solid (left) and fluid (right) parts of the isolated LV geometry.

a section of a sphere, which joins the cylinders to the lower part of the fluid geometry.

The fluid and solid parts of the geometry are shown in Fig. A.1.

A.2.2 Meshes

The solid geometry is meshed with an unstructured grid, using ten-node tetrahedral

elements, having nodes on each vertex and halfway along each edge. Higher-order

elements were chosen for the solid mesh instead of lower-order ones to ensure com-

patibility with our material model, which requires the use of a mixed interpolation

formulation. To prevent singularities at the apex of the LV, the solid geometry had
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been subdivided into quarters in the vertical direction. Using the three-layer version

of the solid geometry, two meshes, which will be referred to as “coarse” and “fine”,

have been considered, consisting of 16, 861 elements and 25, 159 nodes, and 103, 411

elements and 148, 328 nodes, respectively.

The fluid geometry is meshed on an unstructured grid, using four-node tetrahedral

elements. These elements have nodes on each vertex for velocity and pressure, and

an additional node at the centre to calculated velocity and ensure stability of the

solution. These elements are generally referred to as MINI elements and the velocity

at the centre is called the bubble velocity (Gresho and Sani (1998)).

Three mesh densities have been considered for the fluid geometry, consisting of 28, 103

elements and 5480 nodes, 193, 372 elements and 34, 652 nodes, and 351, 378 elements

and 71, 915 nodes, respectively. These mesh densities will be referred to as “coarse”,

“medium”, and “fine”, respectively. The FSI coupling used in ADINA does not

require coincident meshes at the FSI interface, allowing the meshes for both the solid

and fluid to be refined or coarsened separately. Figure A.2 shows the coarse and fine

meshes for the solid and fluid models.

A.2.3 Numerical methods

Numerical methods used for the solid model are described in Chapter 4, while nu-

merical methods for the fluid model and the FSI coupling are described in Chapter

5. In this study, FSI simulations are conducted using a direct solver, in which the

fluid and solid equations, along with those on the FSI boundaries, are combined into
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Figure A.2: Solid (left) and fluid (right) meshes with the coarse (a) and fine (b) mesh
densities.

a single matrix and solved simultaneously. An alternative approach would have been

the use of an iterative solver, in which the fluid and solid parts of the model are solved

sequentially, with information passed between them on the FSI boundaries. Never-

theless, the direct solver approach was chosen because the iterative solver proved to

be unstable, leading to a divergent solution during the first time step. Beside its

advantage in reaching convergence, the direct solver yields, in general, faster results

than the iterative solver (ADINA R & D, Inc. (2008b)). On the other hand, the

direct solver requires more RAM than the iterative solver, because, unlike the latter,

the former requires all equations to reside in RAM at any given time.

For the present FSI simulations, using the direct solver with the coarse solid mesh

requires approximately 3.1 GB of RAM for the coarse fluid mesh, 6.7 GB of RAM

for the medium fluid mesh, or 12.4 GB of RAM for the fine fluid mesh, with the

majority of this RAM needed for the fluid model. Simulations in this study were

performed on HPCVL’s Sun SPARC Enterprise M9000 Servers, each consisting of 64
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quad-core Sparc64 VII 2.52GHz processors, which are capable of running 2 threads

per processor.

A.3 Results and discussion

To study the effects of increasing the number of threads on wall clock time, an analysis

of the parallelization performance was carried out for FSI simulations of passive LV

filling using the three-layer geometry, the coarse solid mesh, and the three different

fluid meshes. Simulations were performed using 2, 4, 8, 16, and 32 threads. The

resulting wall clock times were compared to the wall clock time for a single thread to

calculate the speed-up factor (SU), defined as the wall clock time for the single-thread

simulations divided by the wall clock time for the multi-thread simulations.

The results of the calculations of the speed-up factor are presented in Fig. A.3, along

with the ideal speed-up, which is equal to the number of threads. As expected,

the actual speed-up factor increases with increasing number of threads, and with

increasing mesh density. Moreover, the differences between the actual and ideal results

increase with increasing number of threads.

To understand why the speed-up factors are much less than ideal, we will examine

the parallelization procedure in ADINA. This information will be used to determine

the theoretical maximum speed-up factor given by Amdahl’s law

SUmax =
1

(1− P ) + (P/N)
(A.1)
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Figure A.3: Speed-up of parallel FSI simulations with three difference fluid mesh densities
versus the number of threads, plotted in logarithmic axes.

where P is the fraction of the code that is parallelized and N is the number of threads.

To calculate P , the total computational time is divided into the parts that are serial

and the parts that are parallel. An example of the breakdown of the computational

time for one time step with the fine fluid mesh and 1 or 32 threads is given in Table

A.1. In ADINA, only the sparse solver, which is a direct solver used to solve both

the fluid and solid equations, is parallelized (ADINA R & D, Inc. (2008a)). As will

be shown in the following, the solid solver can be assumed to be serial, so that only

the fluid solver needs to be considered as parallel. Although there are differences

in the CPU times from 1 to 32 threads for the “serial components” program control,

solid model, fluid assembly, moving fluid mesh, and fluid output, the sum of these

components is nearly constant (848 s for 1 thread and 838.91 s for 32 threads), even

though the solid solver is also parallelized. In view of the relatively small change in

CPU time for these components, we will assume them to be serial for the purposes
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Table A.1: CPU time for the parts of the simulations with the fine fluid mesh.

Simulation part CPU time (s), N = 1 CPU time (s), N = 32

program control 66.50 44.80
solid model 153.25 173.25
fluid assembly 497.12 560.12
fluid solver 25, 274.12 1947.25
moving fluid mesh 115.88 44.62
fluid output 15.25 16.12

Table A.2: Maximum speed-up factors for the three fluid mesh densities.

Number of threads Coarse Medium Fine

2 1.8 1.9 1.9
4 2.9 3.5 3.6
8 4.2 6.1 6.5
16 5.5 9.5 10.8
32 6.5 13.3 15.9
∞ 7.9 21.9 30.8

of calculating SUmax. P can then be calculated from the results for 1 thread as the

CPU time for the fluid solver divided by the total CPU time. Using this value of P ,

SUmax can be calculated for 2, 4, 8, 16, and 32 threads; an upper limit for SUmax can

be also calculated by letting N −→ ∞. Similarly, P can be found for the other two

mesh densities. The results of the calculations of SUmax are presented in Table A.2.

We now provide some insight on how the parallel fraction P varies for these FSI

simulations. Table A.1 shows that, for our FSI simulations, the solution of the solid

part of the model requires a small fraction of the total computational time, while the

fluid solver uses by far the largest portion of this time. This comes from the fact

that meshes for simulating flows need to be much finer than meshes used in structural

mechanics, which can be coarse and fixed, as we will show in the following. Moreover,

for FSI simulations, the coupling of the motions of the fluid and solid boundaries
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forces repeated flow computations which could, in the worst case, amount to solving

the same flow multiple times on a fixed geometry. These facts imply that, in an effort

to parallelize a FSI code, one must first act on the fluid solver. As the fluid mesh is

refined while the solid mesh remains fixed, the parallel fraction P of the code would

increase. This is demonstrated by our calculations of P , which were 0.87, 0.95, and

0.97 for our test cases with the coarse, medium, and fine fluid meshes, respectively.

A comparison of the results in Table A.2 with those in Fig. A.3 shows that the max-

imum speed-up factors deduced from Amdahl’s law are larger than actual speed-up

factors obtained from computations. Indeed these maximum speed-up factors do not

account for the increase in communication time with growing number of threads and

cannot be achieved in practice. For example, with 32 threads on the fine mesh, SUmax

is about 16, whereas the speed-up factor observed in practice is only about 9. As

for any parallel computations, additional threads improve the performance of our FSI

simulations, and even more so with growing problem size, but the large amounts of

memory and inter-process communications required for FSI severely limit the scalabil-

ity of these parallel simulations. We used the direct fluid-structure solution method

from ADINA. This method reduces the number of flow computations compared to

the iterative fluid and solid solver described in Section A.2.3, but at the expense of

requiring a larger memory and more extensive communications, which combined with

a reduced parallelized fraction P explains our relatively poor speed-up obtained with

a large number of threads.

In spite of their poor performance, parallel computations are necessary for FSI as they
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reduce the total computational time, even if by much less than an ideal case. For

example, in our passive LV filling simulations with the coarse fluid mesh, the total

computational time was reduced from 120.4 h for 2 threads to 34.0h for 32 threads.

This impact is more significant when considering that for the medium and fine fluid

mesh densities, passive LV filling simulations take 119.3 h and 254.4h, respectively,

with 32 threads. The computational time for the full cardiac cycle simulations is

considerably longer than for the passive LV filling, which makes parallelization even

more essential.

The computational times for these simulations should be viewed as lower bounds on

the computational times needed for more complete simulations. Additional fluid

mesh refinement, coupling of the LV geometry with other parts of the cardiovascular

system, and/or the use of a patient-based LV geometry would all add substantially to

the computational time required for simulations. This is clearly one of the reasons

why many researchers have neglected FSI effects in their heart simulations and why

performing FSI simulations in the heart remains a challenging computational problem.

A.4 Conclusions

We have demonstrated by example and by analysis that parallelization is essential to

finite element simulations of the mechanics of the LV with fluid-structure interaction.

In particular, we have shown the importance of parallelization of the fluid solver as

this account for the majority of computational time in our FSI simulations; more

specifically, for simulations on a single thread, the fluid solver requires more than 87%
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of the computational time. Previous simulations of LV mechanics neglecting FSI

effects avoid the significant increase in computational time required by the fluid part

of the model when multiple iterations between the fluid and the solid are performed,

but by doing so they miss an important aspect of the problem. We have shown that

the speed-up factor increases with increasing number of threads and with increasing

mesh density. Even though our speed-up factors are significantly lower than the

theoretical maxima for a given problem size and number of threads, we were still

able to achieve significant reductions in computational time, which would become

increasingly important as we move from passive LV filling to cardiac cycle simulations,

or if we were to introduce further geometric complexity to the model.

The use of high performance computing clusters, such as those available through

HPCVL, will enable continuing improvements in the simulation of heart mechanics,

by allowing additional details, such as an anatomically realistic geometry, to be incor-

porated into heart models, while still allowing researchers to obtain simulation results

within acceptable time limits.
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Appendix B

Additional details on inflation of

the passive left ventricle

B.1 Definition of the governing equations

The following is an expansion of Section 4.2.2, which describes the governing equations

for the solid model. Nodal displacements U at the current load step s + ∆s were

calculated using the following procedure, which is described in more detail in Bathe

(1996). For non-linear static simulations, the governing equation is

R (s+∆s)−F (s+∆s) = 0 (B.1)

where R is the external load vector, F is the force vector equivalent to the element

stresses, and s = n∆s, where n is the total number of load steps (ADINA R & D, Inc.

(2008a)).
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R (s+∆s) is a known quantity, which is assumed to be independent of deformation,

and can be calculated as the sum of body forces, surface forces, initial stresses, and

concentrated loads applied to each element (Bathe (1996)). F (s+∆s), which is

unknown, can be rewritten as

F (s+∆s) = F (s) + ∆F (s) (B.2)

where F (s) is known from the previous load step and ∆F (s) is the change in F during

the interval ∆s, which can be approximated as

∆F (s) ≈K (s)∆U =K (s) [U (s+∆s)−U (s)] (B.3)

where K (s) is the stiffness matrix, which is known and has been calculated at the

previous load step, ∆U is the change in U over the interval ∆s, and U (s) is known

from the previous load step.

Substituting Eqs. (B.2) and (B.3) into Eq. (B.1) leads to

K (s) [U (s+∆s)−U (s)] = R (s+∆s)−F (s) (B.4)

B.2 Left ventricle cavity volume calculations

This section describes the calculation method of the LV cavity volume Vf for solid-only

simulations, because in ADINA, the volume of a mesh cannot be calculated directly.

Towards this purpose, the divergence theorem
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V =

∫∫∫

V

dV =

∫∫

S

(xn1)dS (B.5)

was used to relate the volume to a surface integral, which was then calculated in

ADINA; in this expression, S is the surface of the closed volumic region V , x is a

vector containing the global Cartesian coordinates of the points on the surface mesh

(x = [x y z]T ), and n is a vector containing the surface normals (n = [n1 n2 n3]
T ).

For solid-only simulations, the LV cavity volume cannot be calculated directly from

Eq. (B.5), because the LV cavity is not meshed and its surface is not closed. To

allow for the calculation of the LV cavity volume, a cylindrical tube, with a height of

0.2mm, was added to the solid geometry, as shown in Fig. B.1, for an earlier version

of the geometry, to cover the opening of the LV cavity, enclosing the LV cavity with

surfaces. By isolating the surfaces that border the LV cavity, Vf was calculated from

the solid geometry during solid-only simulations as

Vf =

∫∫

Sf

|xn1| dSf (B.6)

where Sf are the surfaces of the mesh that border the LV cavity. In Eq. (B.6), the

absolute value is used because the sign of the actual surface normal is opposite to its

conventional definition.
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Figure B.1: Zoomed-in view (right) of the cylinder added to the top of the left ventricle
cavity in the solid geometry to allow for calculations of cavity volume to be performed for
the results of solid-only simulations.
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Appendix C

Extension to anatomical

geometry

C.1 Introduction

This appendix briefly describes the extension of this work to an anatomical geometry

consisting of a left and a right ventricle (LV-RV) . In view of limitations described

in the following, simulations were only performed for quasi-static filling of the passive

LV. The methodology for these simulations is described along with the limitations of

the present approach. Preliminary results are presented and challenges that must be

met before extending this work are discussed.
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C.2 Methods

C.2.1 Geometry and mesh

The canine LV-RV geometries used in this study were based on measurements per-

formed by Nielsen et al. (1991) at the University of Auckland in New Zealand.

Point data from these measurements for four dogs are available for downloading from

http://www.cmiss.org/data /heart_data/ (Hunter (2007)). These data have not been

used to generate geometries for the present study, but one set was used to obtain rough

measurements of dimensions in the canine LV as described in Section D.1.

Researchers at INRIA Rocquencourt in France used the point data obtained from

Professor Hunter to generate four different versions of surface geometries for the canine

LV-RV (Coudiere (2005)). Three of these versions were scaled by identical, although

unspecified, scaling factors in the x, y, and z directions. The fourth version, shown

in Fig. C.1, has the same scale as the original geometry. The original geometry

of Nielsen et al. (1991) used relatively few nodes, and higher order elements in its

mesh. In order to perform simulations with this geometry using lower order elements,

researchers at INRIA introduced additional nodes, and applied smoothing techniques

to improve the quality of the surfaces, reducing sharp edges (Coudiere (2005)).

The geometries obtained from INRIA only contained a mesh for the solid part and

were meshed using an in-house format. To make use of these geometries in ADINA,

it was necessary to perform several conversions. The mesh was first converted to

vtk format, which was opened in ParaView (Kitware, Inc., Clifton Park, NY, USA).
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In ParaView, the volume mesh was converted to a surface mesh, and surface nor-

mals were defined. From ParaView, the mesh was converted to stl format using a

converter in the vtk library. The stl files were then imported into SolidWorks (Das-

sault Systèmes SolidWorks Corp., Concord, MA, USA) where they were converted

to parasolid bodies that could be imported into ADINA. Although slight changes in

the geometries have occurred during the conversion processes, they are of little con-

sequence because the smoothed INRIA geometries were also somewhat different from

the original measurements.

Once the solid geometry was imported into ADINA, fluid geometries for the LV and

RV cavities were generated. The first step was to truncate the top of the solid

geometry to form a basal plane, which was the same in the fluid and solid geometries.

This simplification may be justified by the fact that the plane containing the valve

openings was not resolved in the original geometry and, consequently, each ventricle in

the model has a single opening rather than the two separate ones found in the actual

heart. The next step was to define solid blocks that approximated the shape of the

LV and RV cavities. Separate fluid geometries of the LV and the RV were generated

by removing the solid geometry from the two blocks. The two cavities can be seen

in Figs. C.1a and c, whereas the solid geometry is shown in Figs. C.1b and d.

To conform with the definition of the material model, fibre orientation information

may be incorporated into the present simulations by defining layers within the wall

and assigning a fibre orientation to each layer. However, in its present form, the wall

in the geometry in Fig. C.1 is not easy to divide into layers. For this reason, only
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a single layer of muscle fibres was included in this geometry. Moreover, because of

this limitation with the muscle fibre orientation, no attempt has been made to include

valve openings in this geometry.

The meshes for the LV-RV geometry are illustrated in Fig. C.1. They consisted

of 50, 741 nodes and 33, 729 elements for the solid, and 20, 853 nodes and 107, 231

elements for the fluid.

C.2.2 Boundary conditions

Coincident FSI boundary conditions were applied to all outer surfaces of the fluid

geometry and inner surfaces of the solid geometry with the exception of the top

surfaces in both cases. For the solid, the top surface was fixed in all three directions

to anchor this geometry during FSI simulations. For the fluid, uniform pressure

boundary conditions were applied to the top surfaces of the LV and RV cavities. The

LV pressure increased linearly from 0 to 2 kPa, while the RV pressure increased linearly

from 0 to 0.4 kPa, which is equal to one fifth of the LV range, in conformity with the

suggestion by Nash and Hunter (2000).

C.2.3 Numerical methods

Details on the governing equations for the solid and fluid models have been described in

Chapters 4 and 5. Simulations were performed using the “lower” material parameter

values for the myocardium material model, defined in Table 4.2, under the assumption

that material properties in the LV and RV myocardia were equal.
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C.3 Results

Figure C.2a shows a central cross-section of the undeformed LV-RV geometry and Fig.

C.2b shows the same cross-section at the end of the simulations, when pLV = 2kPa.

In this figure, bands of nodal pressure are depicted in the LV and RV cavities and

bands of effective stress are depicted in the myocardium. The bands of effective

stress have been smoothened and truncated at a maximum value of 5kPa to separate

regions of higher and lower stresses. The maximum stresses were much larger than

5 kPa and were found along the edge of the LV cavity. It should be noted that the

white lines visible in Figs. C.2a and b between the LV and RV cavities are artifacts

from ADINA and do not represent any physical structures. Figure C.3 is plot of

∆Vf/Vf,0 vs. pressure for the LV-RV model along with the results for an early version

of the isolated LV geometry with the lower material parameter values, and results

from previous experimental and computational studies. The parameter ∆Vf/Vf,0

was chosen instead of ∆Vf/ms because it was not possible to separate the LV and RV

geometries in order to determine the mass of the isolated LV myocardium.

Large increases in LV and RV cavity volumes are visible in Fig. C.2b. The cavities

of both ventricles expanded more in the horizontal directions than in the vertical di-

rection, causing the LV cavity to become more spherical and decreasing the distance

between the LV and RV cavities. This directional preference for the deformation

can be partially attributed to the alignment of muscle fibres with this direction. As

expected, the pressure inside each cavity was uniform and matched the pressure ap-

plied to the top surface of each cavity as a boundary condition. The stresses in the
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myocardium were largest along the inner edge of the LV cavity and they decreased

with increasing distance from this edge. Higher stresses are also visible in the top

left corner and bottom edge of the RV cavity. The magnitudes of ∆Vf/Vf,0 in Fig.

C.3 are larger for a given pressure for the LV-RV geometry compared to the isolated

LV geometry, and the trend for the results with the LV-RV geometry is steeper than

the trend for the isolated LV geometry, especially for pressures lower than 0.5 kPa.

Considering the crudeness of the assumptions used for this study, the results of these

simulations have not been considered for drawing any conclusions about passive filling

of actual ventricles.

C.4 Discussion

Because of the drastic simplifications made when constructing this LV-RV model, the

results presented in this appendix are not sufficiently reliable. To improve the model,

additional data would be required. Although the present LV-RV geometry is based

on measurements of excised canine ventricles, it is unsuitable for FSI simulations,

because it lacks LV and RV inflow and outflow tracts. One of the versions of the

geometry available from Professor Hunter contains point data of the inflow and out-

flow tracts, but this geometry has not yet been converted into a usable form. Related

to the geometry is the definition of muscle fibre angles within the myocardium. One

of the advantages of the geometries from Professor Hunter is that they are accom-

panied by muscle fibre angle measurements. However, a straightforward method for

incorporating these muscle fibre angles in ADINA does not exist.
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In these simulations, material properties were assumed to be uniform throughout the

LV and RV geometries. Novak et al. (1994) measured the stress-stretch behaviour in

the septum and three sections of the LV free wall and found differences in the results.

Such differences should be incorporated into material models governing the LV and

RV myocardia. Measurements of stress-stretch behaviour of the RV have yet to be

published in the literature, and previous solid-only LV-RV studies, such as Nash and

Hunter (2000), have assumed uniform properties in both ventricles.
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Figure C.1: Front (a-b) and top (c-d) view of the fluid (left) and solid (right) LV-RV
geometry based on surface geometries obtained from researchers at INRIA Rocquencourt
in France (Coudiere (2005)), based on the measurements of Nielsen et al. (1991).
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Figure C.2: Cut plane through the centre of the left and right ventricle geometry. The
leftmost image (a) is for the undeformed case, and the rightmost image (b) is for the case
where p = 2 kPa, and depicts bands of nodal pressure in the fluid part of the geometry and
bands of effective stresses in the solid part of the geometry.

Figure C.3: Percentage volume change results for the left and right ventricle geometry, the
first isolated left ventricle geometry, three previous experimental studies (points), and a
previous computational study (solid line).
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Appendix D

Additional details on cardiac

cycle simulations

D.1 Fluid geometry definition

This section describes the equations used to define the rigid part of the fluid geometry.

Three assumptions have been made in defining the cylindrical tubes that represent

the LV inflow and outflow tracts. First, the diameter of the inflow tract was assumed

to be greater than the diameter of the outflow tract. This assumption is consistent

with diameters of DMV = 23mm and DAV = 10mm, approximated from Hunter’s

canine LV-RV geometry (Hunter (2007)), and DMV = 23mm and DAV = 14mm,

calculated from cross-sectional area measurements made by Ross et al. (1967) using

the average of their systolic and diastolic measurements and the assumption that the

valves are circular. Second, the highest point on the lower surface of both tubes is
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the same, such that a triangle is formed by the lower edge of each tube and the top of

the LV cavity, as shown in Fig. 5.2. Third, the length of the cylindrical tubes L1 was

chosen to be equal to DAV to ensure that the tubes are long enough to allow flow to

develop, but not too long that they lead to unnecessary computations. Using these

assumptions, DMV and DAV were calculated using the sine law as

DMV =
sin (90◦ − α)

sin (θ)
w1 (D.1)

DAV =
sin (90◦ − β)

sin (θ)
w1 (D.2)

where α is the angle between the outflow tract and the basal plane, β is the angle

between the inflow tract and the basal plane, θ is the angle between the two valves

(θ = α+ β), and w1 is the width at the top of the LV cavity.

Nakamura et al. (2003) proposed that θ = 140◦. Approximations of values α, β,

as well as other possible values of θ were obtained from figures of LV geometries in

several papers, as well as measurements of the Hunter LV-RV geometry, are presented

in Table D.1. These values are very rough approximations, because it was difficult to

accurately determine the horizontal and vertical directions in each figure. Because

the value of θ = 140◦ is the only value explicitly taken from the literature, this value

of θ, along with the corresponding values of α and β approximated from Nakamura

et al. (2003), were used as a starting point for determining appropriate angles for the

current geometry.

Based on the dimensions of the solid geometry defined in Chapter 5, w1 = 26.7mm.

Using this value of w1, θ = 140
◦, α = 60◦, and β = 80◦ in Eqs. (D.1) and (D.2) gives
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Table D.1: Approximations of valve angles from several LV geometries.

source α (◦) β (◦) θ (◦)

Nakamura et al. (2003) 60 80 140
Cheng et al. (2005) 52 80 132
Peskin and McQueen (1996) 50 80 130
Pierrakos et al. (2004) 65 60 125
Hunter LV-RV geometry 71 78 149

DMV = 20.8mm and DAV = 7.2mm. Two observations can be made from these

diameters; they are each smaller than the diameters from both the Hunter LV-RV

geometry and the paper of Ross et al. (1967), and the ratio of DAV /DMV = 0.35 is

also smaller than the values of 0.43 and 0.60 from the Hunter LV-RV geometry and the

paper of Ross et al. (1967), respectively. To increase the diameter ratio to a value

between 0.43 and 0.60, either α must be increased or β must be decreased, which

would in turn increase or decrease the value of θ, respectively. The average of the

values of θ in Table D.1 is 135◦, which suggests that β should be decreased. By setting

β = 75◦, while maintaining α = 60◦, θ = 135◦, DMV = 18.88mm, DAV = 9.78mm,

and DAV /DMV = 0.52, which is the average of the two previous diameter ratio values.

These values were deemed to be sufficient to be used in the current geometry.

To determine suitable values of R and zc, equations governing chord length in a circle

were used. Starting from the desired chord wi, the perpendicular distance from the

chord to the centre of the circle is ri, and the perpendicular distance from the chord to

the outer edge of the circle is hi. In this case, there are two known chord lengths w1

and w2 that need to be accounted for to fit the circle through all three points of the

triangle shown in Fig. 5.2, where w1 is known based on the lower part of the geometry,
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and w2 can be calculated as twice the horizontal distance from the highest point of

the proximal end of the LV outflow tract to the centre of the geometry. Using the

Pythagorean Theorem, the variables wi, ri, and R are related to each other through

the following equation

R2 = r2i +

(
1

2
wi

)2
, i = 1, 2 (D.3)

Substituting ri + hi = R into Eq. (D.3) and rearranging leads to

ri =
w2i − 4h2i
8hi

, i = 1, 2 (D.4)

Setting i = 1 and i = 2 in Eq. (D.4) leads to two equations and four unknowns

(r1, h1, r2, and h2). Two additional equations that are needed to solve the system of

equations are

r1 + h1 = r2 + h2 (D.5)

h1 = h2 + h3 (D.6)

where h3 is a known quantity, which can be determined from the geometry as the

difference in height of the two endpoints on the proximal end of either cylinder. Sub-

stituting the right-hand side of Eq. (D.4) into both sides of Eq. (D.5), and then

substituting Eq. (D.6) into the new equation leads to

h3 +
w21 − 4 (h2 + h3)2
8 (h2 + h3)

=
w22 − 4h22
8h2

(D.7)
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Using w1 = 26.7mm, w2 = 9.78mm and h3 = 4.88mm, Eq. (D.7) was solved by

iteration to get h2 = 0.643mm. This value of h2 was then substituted into the other

equations to find R = 18.88mm and zc = 46.78mm.

D.2 Time integration

The ADINA composite time integration method used in the present study consists of

two sub-time steps, which allows for fewer time steps to be used than those required by

the available first-order method, which does not have sub-time steps. This approach

leads to a reduction in overall computational time. The ADINA composite time

integration method is defined as

u (t+ γ∆t) = u(t) + γ∆t
du
(
t+ 1

2γ∆t
)

dt

u (t+∆t) = u (t+ βγ∆t) + (1− α)∆t
du (t+∆t)

dt
(D.8)

where t is time, u (t+ β∆t) = (1 − β)u(t) + βu (t+ γ∆t), γ = 2 − 1/α, β =

α2/ (2α− 1), and α = 1/
√
2(ADINA R & D, Inc. (2008b)).

D.3 Fluid-structure interaction

This section describes details on the boundary conditions enforced by ADINA along

the FSI boundary as well as the coupling method used to solve the system of governing

equations for the fluid and the solid.

248



Two compatibility conditions, the kinematic and the dynamic condition, must be

satisfied on the FSI boundaries. These conditions are defined, respectively, as

df = ds (D.9)

n · σf = n · σs (D.10)

where d is the displacement vector (ADINA R & D, Inc. (2008b)). The underlines

in the above relations represent the FSI boundary, while the subscripts f and s rep-

resenting the fluid and solid, respectively. From Eq. (D.9), the fluid velocity at the

FSI interface can be calculated as

vf =
·

ds (D.11)

From Eq. (D.10), the force on the solid boundary can be calculated as

F (t) =

∫
H

STσf · dS (D.12)

where HS contains the element shape functions (Zhang and Bathe (2001)).

Enforcement of both of the above relations, in which the fluid affects the solid and

the solid affects the fluid is known as two-way coupling, which is the type of coupling

required for the present study. ADINA has two methods of two-way coupling, direct

and partitioned. In the direct method, the fluid and solid parts are lumped into a

single system of linearized equations, which can be written in matrix form as

249







Aff Afs

Asf Ass










∆Xk

f

∆Xk
s




 =


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
Bf

Bs




 (D.13)

where Xf is the fluid solution vector, Xs is the solid solution vector, the superscript

k represents the iteration number, Xk+1 = Xk +∆Xk, and assuming the simulations

are solved using the Newton-Raphson method

Aij =
∂Fk

i

∂Xj
, i, j = f, s (D.14)

Bf = −Fk
f = −Ff

[
X

k
f , λdd

k
s + (1− λd)d

k−1
s

]
(D.15)

Bs = −Fk
s = −Fs

[
X

k
s , λσσ

k
f + (1− λσ)σ

k−1
f

]
(D.16)

where λd and λσ are relaxation factors for the displacement and stress, respectively,

which are chosen in the present study to both be equal to the default value of 1

(ADINA R & D, Inc. (2008b)).

Using the direct method, the system of equations defined in Eq. (D.13) is solved

simultaneously for each iteration. After each iteration, the displacement and stress

residuals are calculated. If they are not lower than a specified threshold, additional

iterations, up to a user-defined maximum, are performed.

In the partitioned method, the fluid and solid equations are solved sequentially rather

than simultaneously. First, the fluid equations are solved, then the stress residual is

computed, then the solid equations are solved, and then the displacement residual is

computed. If either residual is not satisfied, additional iterations of the four steps,

up to a user-defined maximum, are performed until convergence is reached.
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