
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. NUMER. ANAL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 46, No. 5, pp. 2443–2468

SEMI-IMPLICIT TIME-DISCRETIZATION SCHEMES FOR THE
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Abstract. The bidomain model is a system of partial differential equations used to model the
propagation of electrical potential waves in the myocardium. It is composed of coupled parabolic
and elliptic partial differential equations, as well as at least one ordinary differential equation to
model the ion activity through the cardiac cell membranes. The purpose of this paper is to propose
and analyze several implicit, semi-implicit, and explicit time-stepping methods to solve that model,
in particular to avoid the expensive resolution of a nonlinear system through the Newton–Raphson
method. We identify necessary stability conditions on the time step Δt for the proposed methods
through a theoretical analysis based on energy estimates. We next compare the methods for one-
and two-dimensional test cases, in terms of both stability and accuracy of the numerical solutions.
The theoretical stability conditions are seen to be consistent with those observed in practice. Our
analysis allows us to recommend using either the Crank–Nicolson/Adams–Bashforth method or the
second order semi-implicit backward differention method. These semi-implicit methods produce a
good numerical solution; unlike the explicit methods, their stability does not depend on the spatial
grid size; and unlike the implicit methods, they do not require the resolution of a system of nonlinear
equations.
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1. Introduction. The bidomain model is used in electrophysiology to model the
propagation of electrical potential waves in the myocardium. It is obtained by homog-
enization over the discrete cells of the myocardium, in particular using the regular
arrangement of these in fibers [7, 14]. At each point in the computational domain,
two electrical potentials, namely, the intracellular potential ui and the extracellular
potential ue, are recovered, representing the average of the electrical potential over
the extracellular and the intracellular space, respectively, in the vicinity of that point.

There are many ways to write the bidomain model’s equations. Many of them
are introduced in [11], where their respective merits are also discussed. We will use
the following formulation:

∂u

∂t
=

1

ε
f(u, v) + ∇ · (σi∇u) + ∇ · (σi∇ue) ,(1.1)

∇ · (σi∇u + (σi + σe)∇ue) = 0,(1.2)

∂v

∂t
= εg(u, v),(1.3)

where u = ui − ue is the action or transmembrane potential, σi and σe are second
order tensors representing, respectively, the intracellular and the extracellular tissue’s
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electrical conductivity in each spatial direction, v is a lumped ionic variable, and ε is a
parameter linked to the ratio between the repolarization rate and the tissue excitation
rate [21]. It has been proved that the bidomain model has a unique solution [4, 7]. In
[7] the bidomain model is formulated as a system of degenerate parabolic inequalities,
while in [4] the analysis is based on the more standard theory of nonlinear parabolic
PDEs. We chose to use this last formulation of the bidomain model as the basis of
our numerical method because of its connection with standard parabolic and elliptic
PDEs where the theory of finite element methods is well developed. We refer to
[11, 19] for a more complete discussion on the different formulations of the bidomain
model and their use in numerical simulations.

The equation (1.3) is not properly part of the bidomain model but rather models
the ionic activity across the cellular membrane, responsible for the electrical activation
of the tissue. Several models may be used for this task, the most widely known
being the Hodgkin–Huxley model, originally introduced for the propagation of nerve
influx inside neurons. Other models more adapted to the heart muscle have been
derived, such as the Noble and Luo–Rudy models [14]. We will use the FitzHugh–
Nagumo equations, which are a simplification of the Hodgkin–Huxley equations. We
can therefore write the functions f and g as

f(u, v) = u− u3

3
− v,(1.4)

g(u, v) = u + β − γv,(1.5)

where γ is a parameter controlling the ion transport and β is linked to cell excitability.
After an appropriate discretization in space, (1.1)–(1.3) read as a system of

algebraic-differential equations, simply because the second equation (1.2) comes with
no time derivative. The choice of a time-stepping method for that system of algebraic-
differential equations has a strong impact on the stability, computational time, mem-
ory use, and quality of the numerical solution. Until recently, the numerical resolution
of the bidomain model by low order explicit time-stepping methods had been very
popular [11, 18, 22]. Explicit methods are easy to program and inexpensive in terms
of memory use. Each time step costs typically little in terms of computational time
with these methods. On the other hand, they suffer from strong limitations on the
time step Δt to ensure the stability of the solution. Therefore, some of the efforts for
solving the bidomain model migrated towards fully implicit [5, 11, 17], semi-implicit
[9, 11, 13, 19], and operator-splitting [15, 16, 25, 26] methods. Implicit methods have
much weaker conditions on the time step for their stability, but if the system to solve
is nonlinear, as is the bidomain model with any ion kinetics, they require the solution
of a large system of nonlinear equations at every time step. Semi-implicit methods—
also called semi-explicit or implicit-explicit (IMEX)—combine explicit and implicit
methods: they solve the linear terms implicitly and the nonlinear terms explicitly
[1, 2, 23]. These methods are more stable than explicit methods but less so than
implicit methods, and, while they require the solution of a system of equations at
every time step, it is a system of linear equations.

So far, the semi-implicit methods used for the bidomain model have been only
first order in time [9, 11, 13, 19], even if some of these rest on a splitting of the second
order terms according to the Crank–Nicolson scheme. This is simply due to the fact
that the ionic currents in the first equation (1.1) are taken explicitly as for the forward
Euler scheme, lowering the global order of these semi-implicit methods. In [1, 2, 23],
higher order semi-implicit schemes are proposed and analyzed. The goal of this paper
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is precisely to study the use of these higher order semi-implicit schemes to solve the
bidomain model.

The paper is organized as follows: we will introduce several time-stepping schemes
in section 2 and then exhibit theoretical stability conditions on the time step in section
3. This will require an extension of the usual stability estimates for such semi-implicit
schemes, such as done in [1], because the bidomain model can be rewritten as a system
of nonlinear reaction-diffusion equations (see [4] for details) but is not solved as a
standard reaction-diffusion equation. Indeed, the elliptic equation (1.2) is solved at
each time step. We will obtain theoretical stability conditions showing the necessity
of taking implicitly a portion of the second order terms in u and ue, for time-stepping
methods of all orders, to avoid time steps in O(h2). In section 4, numerical results will
be shown with an emphasis on the stability and accuracy of the proposed schemes.

2. Numerical methods. The goal of this section is to introduce the different
numerical methods studied in this article.

2.1. Space discretization. We first introduce a spatial semidiscretization of
the bidomain model through first order simplicial Lagrange finite elements. Let us
assume that the domain Ω can be covered by a regular partition T of simplexes—edges
in one dimension, triangles in two dimensions, and tetrahedra in three dimensions—of
maximal diameter h, with N + 1 nodes, noted x0 to xN . Consider the space P 1

h of
continuous linear finite elements on T and the usual basis of hat functions Φh

0 , . . . ,Φ
h
N

attached to the nodes x0, . . . , xN , respectively. Here we suppose that homogeneous
Neumann boundary conditions are used on ∂Ω for both u and ue.

The semidiscrete bidomain problem then reads as: find a [u, ue, v] ∈ C ([0, T ];P 1
h )3

solution of the following variational equations:∫
Ω

utΦ
h
j dx =

1

ε

∫
Ω

f(u, v)Φh
j dx −

∫
Ω

(σi∇(u + ue)) · ∇Φh
j dx,(2.1)

∫
Ω

(σi∇u) · ∇Φh
j dx +

∫
Ω

((σi + σe)∇ue) · ∇Φh
j dx = 0,(2.2)

∫
Ω

vtΦ
h
j dx = ε

∫
Ω

g(u, v)Φh
j dx(2.3)

for all j = 0, . . . , N .
By setting u(t) =

∑N
i=0 uiΦ

h
i , ue(t) =

∑N
i=0 ue,iΦ

h
i , and v(t) =

∑N
i=0 viΦ

h
i , we

can rewrite these equations under matrix form:

Mut =
1

ε
F (u,v) −Ai(u + ue),(2.4)

Aiu + (Ai + Ae)ue = 0,(2.5)

Mvt = εG(u,v),(2.6)

where u = [u0, . . . , uN ]T , ue = [ue,0, . . . , ue,N ]T , v = [v0, . . . , vN ]T , Ai and Ae are
stiffness matrices obtained by integrating the second order terms, including, respec-
tively, the tensors σi and σe, M is the mass matrix such that M(i, j) =

∫
Ω

Φh
i Φh

j dx,
and F and G are operators obtained by the integration of the zeroth order terms. For
example, by using mass lumping to simplify the nonlinear operator F , we can define
G and F as

G(u,v) = M(u − γv) + β

[∫
Ω

Φh
0 dx, . . . ,

∫
Ω

Φh
N dx

]T
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and

F (u,v) = M

(
u − u3

3
− v

)
,

where u3 = [u3
0, . . . , u

3
N ]T .

2.2. Time discretization. We have considered a variety of explicit, implicit,
and IMEX finite difference methods, using a constant time step Δt, for the time
discretization. Note that the presence of (2.5) in the system has the effect that it is
necessary to solve a system of equations at every time step, even for usually completely
explicit methods such as the forward Euler scheme. Therefore, the following equation
is part of every one of our time-discretization schemes:

Aiu
n+1 + (Ai + Ae)u

n+1
e = 0.

That equation will not be repeated below, but it is understood that it is always part
of the resulting fully discrete bidomain problem. We now present all of the schemes.

2.2.1. First order methods.
(i) forward Euler:

M
un+1 − un

Δt
=

1

ε
F (un,vn) −Ai (u

n + un
e ) ,(2.7)

M
vn+1 − vn

Δt
= εG (un,vn) .

(ii) forward-backward Euler:

M
un+1 − un

Δt
=

1

ε
F (un,vn) −Ai

(
un+1 + un+1

e

)
,(2.8)

M
vn+1 − vn

Δt
= εG (un,vn) .

(iii) Crank–Nicolson–forward Euler (Crank–Nicolson (CN)):

M
un+1 − un

Δt
=

1

ε
F (un,vn) − 1

2
Ai

(
un+1 + un+1

e

)
− 1

2
Ai (u

n + un
e ) ,(2.9)

M
vn+1 − vn

Δt
= εG (un,vn) .

(iv) IMEX first order Gear:

M
3
2u

n+1 − 2un + 1
2u

n−1

Δt
=

1

ε
F (un,vn) −Ai

(
un+1 + un+1

e

)
,(2.10)

M
3
2v

n+1 − 2vn + 1
2v

n−1

Δt
= εG

(
un+1,vn+1

)
.

(v) backward Euler:

M
un+1 − un

Δt
=

1

ε
F
(
un+1,vn+1

)
−Ai

(
un+1 + un+1

e

)
,(2.11)

M
vn+1 − vn

Δt
= εG

(
un+1,vn+1

)
.
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2.2.2. Second order methods.
(i) Crank–Nicolson/Adams–Bashforth (CNAB):

M
un+1 − un

Δt
=

1

ε

(
3

2
F (un,vn) − 1

2
F
(
un−1,vn−1

))

− 1

2
Ai

(
un+1 + un+1

e

)
− 1

2
Ai (u

n + un
e ) ,(2.12)

M
vn+1 − vn

Δt
= ε

(
3

2
G (un,vn) − 1

2
G
(
un−1,vn−1

))
.

(ii) modified Crank–Nicolson/Adams–Bashforth (MCNAB):

M
un+1 − un

Δt
=

1

ε

(
3

2
F (un,vn) − 1

2
F
(
un−1,vn−1

))
− 9

16
Ai

(
un+1 + un+1

e

)
− 3

8
Ai (u

n + un
e ) − 1

16
Ai

(
un−1 + un−1

e

)
,(2.13)

M
vn+1 − vn

Δt
= ε

(
3

2
G (un,vn) − 1

2
G
(
un−1,vn−1

))
.

(iii) second order semi-implicit backward differentiation (SBDF):

M
3
2u

n+1 − 2un + 1
2u

n−1

Δt
=

1

ε

(
2F (un,vn) − F

(
un−1,vn−1

))
− Ai

(
un+1 + un+1

e

)
,(2.14)

M
3
2v

n+1 − 2vn + 1
2v

n−1

Δt
= ε

(
2G (un,vn) −G

(
un−1,vn−1

))
.

(iv) implicit Gear:

M
3
2u

n+1 − 2un + 1
2u

n−1

Δt
=

1

ε
F
(
un+1,vn+1

)
−Ai

(
un+1 + un+1

e

)
,(2.15)

M
3
2v

n+1 − 2vn + 1
2v

n−1

Δt
= εG

(
un+1,vn+1

)
.

2.2.3. Third order method. Third order SBDF:

M
11
6 un+1 − 3un + 3

2u
n−1 − 1

3u
n−2

Δt
=

1

ε

(
3F (un,vn) − 3F

(
un−1,vn−1

)
+ F

(
un−2,vn−2

) )
−Ai

(
un+1 + un+1

e

)
,(2.16)

M
11
6 vn+1 − 3vn + 3

2v
n−1 − 1

3v
n−2

Δt
= ε

(
3G (un,vn) − 3G

(
un−1,vn−1

)
+ G

(
un−2,vn−2

) )
.

By looking at (2.1)–(2.3), one can see that ue appears in these equations only in
the form of its gradient. Because of the Neumann boundary conditions, the variable
ue can be determined only modulo a constant. In other words, the numerical schemes
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(2.7)–(2.16) give rise to singular systems of equations. There exist many ways to solve
this problem [3]; we chose to fix ue at a specific value on a particular node for every
time step. Note that the indefiniteness on u is naturally removed by the nonlinear
term in f in the first equation of the bidomain model. See [4] for details on that
indefiniteness of the system, its physical significance, and its mathematical treatment
for the continuous problem.

Even after removing the indefiniteness, the resulting linear systems are still very
ill conditioned. The choice of linear solver is therefore hard. In the one-dimensional
(1D) case, it is possible to use a direct solver such as the LU factorization. Because
of memory constraints, this becomes much less possible in higher dimensions. Using
an iterative method [10, 24] becomes necessary. Our numerical tests have convinced
us that the conjugate gradient method is most appropriate in this case. We have
also used the incomplete LU factorization to precondition the system. Our computer
memory constraints drive the level of fill we may use with this preconditioner: in 2D
with moderately fine meshes, we have been able to use two levels of fill, but finer
meshes, as well as 3D meshes, would probably require us to use only one level of fill
or none at all.

3. Numerical analysis of the schemes. This section is dedicated to demon-
strating that the previously seen numerical schemes remain stable under appropriate
conditions on the time step Δt. We also analyze the semidiscrete problem introduced
in section 2.1 and prove that its solution is unconditionally stable.

In the rest of the paper, ‖ · ‖0 refers to the L2 norm over Ω and | · |1 to the H1

seminorm over Ω. The constants mi and me denote the infimum of the eigenvalues of
σi and σe, respectively, and Mi and Me the supremum of these eigenvalues, with the
infimum and supremum taken all over Ω as well.

3.1. Stability of the semidiscrete method. We analyze the semidiscrete
formulation (2.1)–(2.3) of the bidomain model. We first redefine the function g as
g(u, v) = u−γv and set S = εβ. This ensures that the graph of f and g goes through
the origin. The term S then goes into the right-hand side of the PDE.

By using as test functions Φh
j = u(t), ue(t), and v(t) in (2.1), (2.2), and (2.3),

respectively, adding the three equations so obtained, and using the following lower
bound for the diffusive terms:∫

Ω

(σi∇(u + ue)) · ∇(u + ue) dx +

∫
Ω

(σe∇ue) · ∇ue dx ≥ mi|u + ue|21 + me|ue|21

≥ m̄(|u|21 + |ue|21),(3.1)

where m̄ depends on mi and me by equivalence of seminorms, one easily obtains the
following inequalities:

d

dt

[
‖u‖2

0 + ‖v‖2
0

]
+ 2m̄

(
|u|21 + |ue|21

)
≤ 2

ε

(∫
Ω

u2 dx − 1

3

∫
Ω

u4 dx −
∫

Ω

uv dx

)

+ 2ε

(∫
Ω

uv dx − γ

∫
Ω

v2 dx

)
+ 2

∫
Ω

Sv dx

≤ 2

ε
‖u‖2

0 − 2εγ‖v‖2
0 +

∣∣ 1
ε − ε

∣∣
k

‖u‖2
0 +

∣∣∣∣1ε − ε

∣∣∣∣ k‖v‖2
0 +

1

r
‖S‖2

0 + r‖v‖2
0

≤ C1

[
‖u‖2

0 + ‖v‖2
0

]
+ C2‖S‖2

0,(3.2)
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where the constants k, r > 0, C1 = max {2/ε + |1/ε− ε|/k, |1/ε− ε|k + r − 2εγ}, and
C2 = 1/r, owing to the fact that, for a, b ∈ R and for k > 0, ab ≤ a2/2k + b2k/2.

Applying Gronwall’s lemma [8, Lemma 6.9, p. 284] to the inequality (3.2) gives:

‖u(t)‖2
0 + ‖v(t)‖2

0 ≤ eC1t
[
‖u(0)‖2

0 + ‖v(0)‖2
0

]
(3.3)

+

∫ t

0

eC1(t−τ)
[
C2‖S‖2

0 − 2m̄
(
|u|21 + |ue|21

)]
dτ

⇒ max
t∈[0,T ]

[
‖u(t)‖2

0 + ‖v(t)‖2
0

]
≤ eC1T

[
‖u0‖2

0 + ‖v0‖2
0

]
+ C2

∫ T

0

eC1(T−τ)‖S‖2
0 dτ,

where u0 and v0 ∈ P 1
h are the initial data for the semidiscrete formulation. In other

words, u and v remain bounded in L∞(0, T ;L2(Ω)).
From (3.3), we obtain

2m̄

∫ T

0

eC1(T−τ)
(
|u|21 + |ue|21

)
dτ ≤ eC1T

[
‖u0‖2

0 + ‖v0‖2
0

]
+ C2

∫ T

0

eC1(T−τ)‖S‖2
0 dτ

⇒
∫ T

0

(
|u|21 + |ue|21

)
dτ ≤ eC1T

2m̄

[
‖u0‖2

0 + ‖v0‖2
0

]
+

C2

2m̄

∫ T

0

eC1(T−τ)‖S‖2
0 dτ.(3.4)

This shows that the H1(Ω) seminorm of u and ue remains L2 bounded on any interval
[0, T ].

By putting together the bounds obtained above, we find that the solution of the
semidiscrete problem remains bounded in the following spaces:

u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),(3.5)

ue ∈ L2(0, T ;H1(Ω)/R),

v ∈ L∞(0, T ;L2(Ω)).

In particular, the extracellular potential ue is bounded only in L2(0, T ;H1(Ω)/R),
not in any Lp(0, T ;L2(Ω)), since we can determine ue only up to a constant. It is
important to note that the relations (3.5) make use of the fact that the FitzHugh–
Nagumo model is used for the ion activity. A nice feature is that the constants in the
estimates (3.5) are independent from the cell size h of the space discretization. The
semidiscrete problem is unconditionally stable. This is a main argument behind the
existence proof given in [4].

3.2. Stability of the discrete methods. Let us now investigate the stability
of some of the fully discrete numerical schemes introduced in section 2. We keep track
as much as we can of the constants in the stability estimates to be able to identify the
relevant parameters in the bidomain model controlling the stability of the numerical
schemes.

3.2.1. Backward Euler. We consider the backward Euler method (2.11) as a
representative of the implicit methods we have used. By using as test function Φ the
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solutions un+1, un+1
e , and vn+1 in their respective variational equations, we obtain:∫

Ω

[
un+1 − un

Δt
− 1

ε
f(un+1, vn+1)

]
un+1 dx+

∫
Ω

(
σi∇(un+1 + un+1

e )
)
·∇un+1 dx = 0,∫

Ω

(σi∇un+1) · ∇un+1
e dx +

∫
Ω

(
(σi + σe)∇un+1

e

)
· ∇un+1

e dx = 0,

∫
Ω

[
vn+1 − vn

Δt
− εg(un+1, vn+1)

]
vn+1 dx =

∫
Ω

Snvn+1 dx.(3.6)

By adding these three equations, using the identity

2(an+1 − an)an+1 = (an+1)2 + (an+1 − an)2 − (an)2,

and proceeding as for the semidiscrete method, we get:

‖un+1‖2
0 + ‖un+1 − un‖2

0 − ‖un‖2
0 + ‖vn+1‖2

0 + ‖vn+1 − vn‖2
0 − ‖vn‖2

0

+ 2Δt m̄
(
|un+1|21 + |un+1

e |21
)

≤ Δt C1

[
‖un+1‖2

0 + ‖vn+1‖2
0

]
+ Δt C2‖Sn‖2

0,(3.7)

where C1 and C2 are defined as they were in the semidiscrete case. Now denote by
M the index of the final time step (i.e., T = MΔt), and sum the previous inequality
for n going from 0 to m− 1, 1 ≤ m ≤ M , to obtain:

(1 − Δt C1)
[
‖um‖2

0 + ‖vm‖2
0

]
+ 2Δtm̄

m∑
n=1

(
|un|21 + |un

e |21
)

≤ ‖u0‖2
0 + ‖v0‖2

0 + Δt C1

m−1∑
n=0

[
‖un‖2

0 + ‖vn‖2
0

]
+ Δt C2

m−1∑
n=0

‖Sn‖2
0.(3.8)

Now, from the discrete Gronwall lemma [20, Lemma 1.4.2, p. 14], by assuming that
Δt < 1/C1, it can be concluded that

max
n=1,...,M

{
‖un‖2

0 + ‖vn‖2
0

}
≤

(
1

1 − Δt C1

[
‖u0‖2

0 + ‖v0‖2
0

]

+
C2

1 − Δt C1

M−1∑
n=0

Δt ‖Sn‖2
0

)
e

TC1
1−ΔtC1 .(3.9)

Let us extend the numerical solutions at discrete times tn to functions u and v piece-
wise constant in time and such that u(nΔt) = un, v(nΔt) = vn for n = 0, . . . ,M − 1.
The last inequality means that u, v ∈ L∞(0, T ;L2(Ω)). This property is true as long

as
∑M−1

n=0 Δt‖Sn‖2
0 remains bounded, which holds if S ∈ L2(0, T ;L2(Ω)).

Now return to (3.8). We can use that inequality to bound the other left-hand
term:

M∑
n=1

Δt
(
|un|21 + |un

e |21
)
≤ 1

2m̄

(
‖u0‖2

0 + ‖v0‖2
0

)
+

TC1

2m̄
max
n

{
‖un‖2

0 + ‖vn‖2
0

}

+
C2

2m̄

M−1∑
n=0

Δt ‖Sn‖2
0.(3.10)
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The left-hand term in this last inequality is nothing more—extending the solution u
and ue to piecewise functions as before—than the L2(0, T ) norm of |u|1 and |ue|1.
We can thus conclude that the solutions u, ue, and v of the fully discrete backward
Euler method live in the same functional spaces as in the semidiscrete case. The
difference is that we have here a constraint on the time step Δt. To ensure the
stability of the method, we must have Δt < 1/C1. Since C1 = O(1/ε) for ε 	 1,
the stability of the backward Euler scheme is guaranteed for Δt = O(ε). Note that
this condition is independent of h. The parameter ε controls the thickness of the
depolarization/repolarization fronts, meaning that the time step Δt must be small
enough to resolve that front to ensure stability.

3.2.2. Second order SBDF. We shall now consider the stability of the sec-
ond order SBDF method (2.14). With un+1, un+1

e , and vn+1 as test functions, the
associated variational equations read as follows:∫

Ω

[
3un+1 − 4un + un−1

2Δt
− 1

ε

(
2f(un, vn) − f(un−1, vn−1)

) ]
un+1 dx

+

∫
Ω

(
σi∇(un+1 + un+1

e )
)
· ∇un+1 dx = 0,∫

Ω

(σi∇un+1) · ∇un+1
e dx +

∫
Ω

(
(σi + σe)∇un+1

e

)
· ∇un+1

e dx = 0,∫
Ω

[
3vn+1 − 4vn + vn−1

2Δt
− ε

(
2g(un, vn) − g(un−1, vn−1)

) ]
vn+1 dx

=

∫
Ω

Snvn+1 dx.(3.11)

Since the reaction terms are taken explicitly, a milder dependency of the reaction
terms on the variables u and v must be assumed; e.g., we suppose that f and g satisfy
the following Lipschitz condition:

‖f(u, v)‖0 ≤ Lf [‖u‖0 + ‖v‖0] ,(3.12)

‖g(u, v)‖0 ≤ Lg [‖u‖0 + ‖v‖0] ,

where Lf , Lg > 0.

Remark 3.1. The functions f(u, v) = u − u3

3 − v and g(u, v) = u − γv in the
FitzHugh–Nagumo ionic model are not Lipschitzian. However, if we make the hy-
pothesis that u ∈ L∞(Ω) and that there exists a constant C > 0 such that ‖u‖∞ ≤ C
for all time t ∈ [0, T ], we have

‖f(u, v)‖0 ≤ ‖u‖0 +
1

3
‖u3‖0 + ‖v‖0 ≤ ‖u‖0 +

1

3
‖u‖2

∞‖u‖0 + ‖v‖0

≤
(

C 2

3
+ 1

)
‖u‖0 + ‖v‖0

≤ Lf [‖u‖0 + ‖v‖0] ,

where Lf = C2

3 + 1. We can also bound the function g:

‖g(u, v)‖0 ≤ ‖u‖0 + γ‖v‖0 ≤ Lg [‖u‖0 + ‖v‖0] ,

where Lg = max{1, γ}. We do observe numerically that, provided that the initial so-
lution (u0(x), v0(x)) at all points x ∈ Ω is in a properly chosen box in the (u, v)-plane,
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(u(x, t), v(x, t)) remains in that box for all time. In other words, u remains bounded in
L∞(Ω), and the constants Lf and Lg can be practically identified. Basically it would
mean that we can replace the cubic function f of the FitzHugh–Nagumo model by an
affine function f̃ outside of that box without changing the solution, the function f̃ now
being Lipschitzian. It should be noted though that, as far as we know, such a maxi-
mum principle has not been proven for the bidomain model with FitzHugh–Nagumo
ion kinetics.

By adding the equations of system (3.11) and applying the identity

(6an+1 − 8an + 2an−1)an+1 = (an+1)2 + (2an+1 − an)2 + (δtta
n+1)2

− (an)2 − (2an − an−1)2,

where δtta
n+1 = an+1 − 2an + an−1 to the time-discretization term, we obtain

‖un+1‖2
0 + ‖2un+1 − un‖2

0 − ‖un‖2
0 − ‖2un − un−1‖2

0 + ‖vn+1‖2
0

+ ‖2vn+1 − vn‖2
0 − ‖vn‖2

0 − ‖2vn − vn−1‖2
0 + 4Δt m̄(|un+1|21 + |un+1

e |21)
≤ Δt C1‖un+1‖2

0 + Δt C2‖vn+1‖2
0 + Δt C3‖un‖2

0 + Δt C4‖vn‖2
0

+ Δt C5‖un−1‖2
0 + Δt C6‖vn−1‖2

0 + Δt C7‖Sn‖2
0.(3.13)

Now sum this inequality for n going from 0 to m− 1, where m is an integer between
1 and M . We will see the values u−1 and v−1 appear. They are used during the first
time step using the second order SBDF scheme; we will take them equal to u0 and
v0, respectively. This yields the following result:

(1 − Δt C)
[
‖um‖2

0 + ‖vm‖2
0

]
+ 4Δt m̄

m∑
n=1

(
|un|21 + |un

e |21
)

≤ 2
(
‖u0‖2

0 + ‖v0‖2
0

)
+ ΔtK

m−1∑
n=0

(
‖un‖2

0 + ‖vn‖2
0

)
+ Δt C7

m−1∑
n=0

‖Sn‖2
0,(3.14)

where C = max{C1, C2} and K = max{C1 + C3 + 2C5, C2 + C4 + 2C6}. Choose Δt
such that Δt < 1/C, and, by applying the discrete Gronwall lemma to (3.14), obtain

max
n=1,...,M

{
‖un‖2

0 + ‖vn‖2
0

}
≤

(
2

1 − Δt C

[
‖u0‖2

0 + ‖v0‖2
0

]

+
C7

1 − Δt C

M−1∑
n=0

Δt ‖Sn‖2
0

)
eTK/(1−ΔtC).(3.15)

By combining (3.15) and (3.14), we write

M∑
n=1

Δt
(
|un|21 + |un

e |21
)
≤ 1

2m̄

(
‖u0‖2

0 + ‖v0‖2
0

)
+

TK

4m̄
max
n

{
‖un‖2

0 + ‖vn‖2
0

}

+
C7

4m̄

M−1∑
n=0

Δt ‖Sn‖2
0.(3.16)

This proves that the solutions u, ue, and v remain bounded in the spaces described
in (3.5) for the second order SBDF method, with the condition that Δt < 1/C is

met. C depends on C1 and C2, C1 = O(
Lf

ε ), and C2 = O(εLg), so we can say
that C = O (max {Lf/ε, εLg}). The stability of the method is guaranteed with Δt =
O(min{ ε

Lf
, 1
εLg

}) = O(ε/Lf ) when ε 	 1 or Lf 
 1.
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3.2.3. Crank–Nicolson/Adams–Bashforth. Take un+1 + un and vn+1 + vn

as test functions in (2.12) for the Crank–Nicolson/Adams–Bashforth method, and
take 1

2 (un+1
e + un

e ) as a test function in (2.2) at times t = tn and t = tn+1. The four
resultant equations can then be summed, and by using the Lipschitz condition (3.12)
and the equivalence of seminorms we get

‖un+1‖2
0 − ‖un‖2

0 + ‖vn+1‖2
0 − ‖vn‖2

0 +
Δt

2
m̄(|un+1 + un|21 + |un+1

e + un
e |21)

≤ Δt C1‖un+1‖2
0 + Δt C2‖vn+1‖2

0 + Δt C3‖un‖2
0 + Δt C4‖vn‖2

0

+ Δt C5‖un−1‖2
0 + Δt C6‖vn−1‖2

0 + Δt C7‖Sn‖2
0.(3.17)

By proceeding as we did for the second order SBDF scheme and using the discrete
Gronwall lemma,

max
n=1,...,M

{
‖un‖2

0 + ‖vn‖2
0

}
≤

(
1

1 − Δt C

[
‖u0‖2

0 + ‖v0‖2
0

]

+
C7

1 − Δt C

M−1∑
n=0

Δt ‖Sn‖2
0

)
eTK/(1−ΔtC)(3.18)

and

M−1∑
n=0

Δt
(
|un+1 + un|21 + |un+1

e + un
e |21

)
≤ 2

m̄

(
‖u0‖2

0 + ‖v0‖2
0

)

+
2TK

m̄
max
n

{
‖un‖2

0 + ‖vn‖2
0

}
+

2C7

m̄

M−1∑
n=0

Δt ‖Sn‖2
0,(3.19)

with C and K defined as before and with Δt < 1/C. This time, we need to extend
our numerical solutions to functions u, ue, and v piecewise affine in time, which shows
that the solutions u, ue, and v remain bounded in the spaces in (3.5) with the same
conditions as for the second order SBDF scheme.

3.2.4. Forward Euler. The use of explicit methods, such as the forward Euler
method considered here, requires more conditions on the time step Δt due to the fact
that the diffusion terms are taken explicitly. We use un+1 and vn+1 as test functions
in (2.12) and un+1

e in (2.2) at time tn+1, as with the backward Euler and second order
SBDF methods, and by adding the resultant variational equations, we get

‖un+1‖2
0 + ‖un+1 − un‖2

0 + ‖vn+1‖2
0 + ‖vn+1 − vn‖2

0 + 2Δt m̄
(
|un+1|21 + |un+1

e |21
)

− 2ΔtMi

[
|un+1 − un|1 + |un+1

e − un
e |1

]
|un+1|1

≤ ‖un‖2
0 + ‖vn‖2

0 + Δt C1‖un+1‖2
0 + Δt C2‖vn+1‖2

0 + Δt C3‖un‖2
0

+ Δt C4‖vn‖2
0 + Δt C5‖Sn‖2

0.(3.20)

We must now bound the term with a negative sign in the left-hand side of the
previous inequality. Let us rewrite the second variational equation of the system as∫

Ω

(
(σi + σe)∇un+1

e

)
· ∇un+1

e dx = −
∫

Ω

(σi∇un+1) · ∇un+1
e dx

⇒ |un+1
e |1 ≤ Mi

mi + me
|un+1|1

⇒ |un+1
e − un

e |1 ≤ Mi

mi + me
|un+1 − un|1(3.21)

by using the linearity of the second equation of the bidomain model.
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By applying an inverse inequality [6, Theorem 3.2.6, p. 140] and the upper bound
(3.21) to the inequality (3.20), we obtain the majoration for any constant s > 0:

‖un+1‖2
0 +

⎛
⎜⎝1 − Δt

C̃ 2M2
i

(
1 + Mi

mi+me

)2

h2s

⎞
⎟⎠ ‖un+1 − un‖2

0 + ‖vn+1‖2
0

+ Δt(2m̄− s)
(
|un+1|21 + |un+1

e |21
)
≤ ‖un‖2

0 + ‖vn‖2
0 + Δt C1‖un+1‖2

0

+ Δt C2‖vn+1‖2
0 + Δt C3‖un‖2

0 + Δt C4‖vn‖2
0 + Δt C5‖Sn‖2

0.(3.22)

To ensure the positivity of all of the terms on the left-hand side of the last inequality,

we restrict s and Δt so that s < 2m̄ and 1−Δt C̃ 2M2
i (1+ Mi

mi+me
)2/h2s ≥ 0; in other

words,

Δt ≤ h2s

C̃ 2M2
i

(
1 + Mi

mi+me

)2 <
2h2m̄

C̃ 2M2
i

(
1 + Mi

mi+me

)2 .(3.23)

Let k = 2m̄− s, C = max{C1, C2}, and K = max{C1 + C3, C2 + C4}. Proceeding as
with the previous methods yields

max
n=1,...,M

{
‖un‖2

0 + ‖vn‖2
0

}
≤

(
1

1 − Δt C

[
‖u0‖2

0 + ‖v0‖2
0

]

+
C5

1 − Δt C

M−1∑
n=0

Δt ‖Sn‖2
0

)
eTK/(1−ΔtC),(3.24)

M∑
n=1

Δt
(
|un|21 + |un

e |21
)
≤ 1

k

(
‖u0‖2

0 + ‖v0‖2
0

)
+

TK

k
max
n

{
‖un‖2

0 + ‖vn‖2
0

}

+
C5

k

M−1∑
n=0

Δt ‖Sn‖2
0.(3.25)

Therefore, if the conditions we have imposed on Δt are met, u, ue, and v remain stable
in the spaces of (3.5). These conditions are Δt < 1/C, with C = O(max{Lf/ε, εLg})
and the condition (3.23). Clearly Δt must be O(h2), which limits the applicability of
the forward Euler method.

3.2.5. Discussion on the stability conditions. We first want to quantify
how small the time step must be to guarantee the stability of fully explicit methods,
such as the forward Euler method. We need to estimate the constants in the stability

condition (3.23), in particular, m̄ and C̃ .
The last inequality in majoration (3.1) can be rewritten as

mi|x + y|2 + me|y|2 = mi|x|2 + 2mi〈x, y〉 + (mi + me)|y|2

=
[
x y

] [ mi mi

mi mi + me

] [
x
y

]
≥ m̄

(
|x|2 + |y|2

)
,(3.26)

with m̄ > 0 the smallest eigenvalue of the above matrix. A simple computation gives

m̄ =
2mi + me −

√
4m2

i + m2
e

2
= O(min{mi,me}).(3.27)
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Let us now estimate the constant C̃ that appears in the inverse inequality in [6,

Theorem 3.2.6, p. 140]. We will start by evaluating C̃ in the 1D case. Consider the
function vh(x) = a + (b − a)x/h ∈ P 1

h on the element K = [0, h]. When evaluating
‖vh‖0 and |vh|1 on K for that function, one must have for the inverse inequality to
be valid that:

C̃ ≥ h
|vh|1
‖vh‖0

=

(
3(a− b)2

a2 + ab + b2

)1/2

.(3.28)

It is easy to find that C̃ = 2
√

3 is the lowest upper bound for the above rational
function.

Now consider the 2D case. Let K be the linear triangular element adjacent to
the nodes at (0, 0), (0, h), and (h/2, h/2). This is not the most general case, since

C̃ is likely to depend on the shape of K, but it is nevertheless representative of
the meshes we will work with in section 4. Let vh be a function in P 1

h on this
element with the property that vh(0, 0) = a, vh(0, h) = b, and vh(h/2, h/2) = c,
i.e., vh(x, y) = a + (2c − (a + b))x/h + (b − a) y/h. Now let us compute ‖vh‖0 and
|vh|1 on K:

‖vh‖0 =

(∫
K

v2
h dx

)1/2

=

(
h2

24

(
a2 + b2 + c2 + ab + ac + bc

))1/2

,(3.29)

|vh|1 =

(∫
K

|∇vh|2 dx

)1/2

=

(
a2

2
+

b2

2
+ c2 − ac− bc

)1/2

.(3.30)

We must choose a value of C̃ such that

C̃ ≥ h
|vh|1
‖vh‖0

=

(
12a2 + 12b2 + 24c2 − 24ac− 24bc

a2 + b2 + c2 + ab + ac + bc

)1/2

.(3.31)

In this case, the optimal value for C̃ may be computed to be 6
√

2.
We consider two cases for the conductivity values.
Case 1: Suppose that mi = me and Mi = λmi for a certain value λ > 1. This is

in fact a case where the bidomain model reduces to a monodomain model [7, 14]. By
using the constants calculated above, the condition on the time step reads as

Δt <
(3 −

√
5)h2

C̃ 2λ2mi

(
1 + λ + λ2

4

)
⇒ Δt <

K̃h2

λ4mi
=

K̃m3
i

M4
i

h2,

where K̃ is a constant that depends on 1/C̃ 2. In that case,

Δt = O

(
min

{
ε

Lf
,

1

εLg
,
m3

i

M4
i

h2

})
.

When h becomes small, the last term is the most stringent with a time step that
decreases also with the cube of the ratio mi/Mi < 1 of the minimal to maximal
intracellular conductivities on the domain.
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Table 3.1

Stability conditions on Δt and on the model used for several methods.

Method Δt Model

Forward Euler O

(
min

{
ε

Lf
,
m3

i
M4

i
h2

})
f , g Lipschitz

Second order SBDF O
(

ε
Lf

)
f , g Lipschitz

Backward Euler O(ε) FitzHugh–Nagumo

Case 2: Take values that approach the physical values found in the heart, for
example, those seen in [12], i.e., mi = 0.0263, me = 0.1087, and Mi = 0.263. By
substituting these and the constants computed above in (3.23), this would mean in 1D
that Δt < 0.00256h2 and in 2D that Δt < 0.000167h2. Not only must the maximal
time step Δt for stability be in O(h2), but in practice the constant appearing in that
bound is very small. In other words, an explicit method cannot be efficient, especially
in higher dimensions or with fine meshes, due to the excessively large number of time
steps needed.

Remark 3.2. Suppose that we change the conductivity over the domain while
keeping it proportional to what it was before, i.e., replace the conductivity tensors
σi,e by μσi,e, just to see how the critical time step scales with the magnitude of the
conductivity. Clearly, from condition (3.23), the time step Δt will have to be taken
μ times smaller. Therefore increasing the conductivity of the domain will reduce the
stability of the forward Euler method.

Table 3.1 summarizes our stability analysis for the numerical time-stepping sche-
mes considered in this section, by supposing that ε 	 1. The stability of implicit and
semi-implicit time-stepping schemes is controlled by the time scale of the ion kinetics
without regard to the space step size, while for fully explicit methods the space step
size also controls the stability through the second order conduction terms.

4. Numerical results. This section presents numerical tests for both 1D and
2D test cases.

4.1. Comparison of the methods in 1D. We have used in the 1D case a
simple finite element code written in Matlab. Our linear systems are solved with the
LU factorization included in Matlab. The ease of implementation of a 1D code and
the ease of use of Matlab have allowed us to test a significant number of methods.

4.1.1. Problem. The 1D bidomain model can be written as

∂u

∂t
=

1

ε
f(u, v) +

∂

∂x

(
σi

∂u

∂x

)
+

∂

∂x

(
σi

∂ue

∂x

)
,(4.1)

∂

∂x

(
σi

∂u

∂x

)
+

∂

∂x

(
(σi + σe)

∂ue

∂x

)
= 0,(4.2)

∂u

∂t
= εg(u, v),(4.3)

where f(u, v) = u − u3

3 − v and g(u, v) = u + β − γv, with Neumann boundary
conditions ∂xu(0) = ∂xu(L) = 0 and ∂xue(0) = ∂xue(L) = 0. Recall that this system
determines only ue modulo a constant. To avoid trying to solve a singular system, we
add the condition ue(0) = 0. Our tests have been done over the domain [0, L] with
several values of L. We choose as parameter values ε = 0.1, β = 1.0, and γ = 0.5 and
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Fig. 4.1. Solution of the 1D bidomain model’s equations at t = 11.

as conductivity tensors σi = σe = 1.0. Note that all of the parameter values and space
and time measures we will use are nondimensional. For the initial condition, we take
u and v constant at the equilibrium value of the system f(u, v) = 0 and g(u, v) = 0
and ue constant at 0, except on the interval [0, 1

20L] where we fix u at a supercritical
value, that is, u(x) = 2. This creates a traveling pulse wave that propagates through
the domain at a constant speed. Figure 4.1 shows a typical wave form at time t = 11.
Except where specifically mentioned, all tests in this section are done with L = 70,
and the final time is T = 30.

4.1.2. Results. Given the impossibility of obtaining an exact solution to the
problem, we have computed a very precise numerical reference solution (mesh res-
olution h = 0.007 and time step Δt = 10−4) with the second order SBDF scheme
(2.14). It is worth noting that, while it is easy to obtain a numerical solution that
qualitatively looks like this reference solution, the numerical error may actually be
important. The reason is that a space mesh that is too coarse, or a time step that
is too large, often produces a traveling wave whose speed is incorrect. Therefore, we
consider the relative error between the speed of the reference and numerical solutions
as a good measure of the quality of the solution. We will also consider the L2 error
between both solutions.

Table 4.1 shows the value of the critical time step Δtc, that is, the largest time
step for which the solution remains bounded, for several methods and three space
resolutions. We have noticed that, for values of Δt slightly inferior to Δtc, oscillations
often appear in regions where the solution has a sharp gradient, but these oscillations
remain bounded and do not grow with time. This is probably due to the nonlinear
reaction term, and it might be a loss of monotonicity rather than a loss of stability.

As expected from the theoretical stability analysis, the dependence of Δtc on the
mesh resolution varies between the different methods. The forward Euler method’s
critical time step seems proportional to h2, in agreement with the analysis in section
3.2.4. By calculating the theoretical critical time steps for that method using the
constants obtained in that section and mi,e = Mi,e = 1, one gets Δtc,th = 5.55×10−4,
1.39×10−4, and 3.47×10−5 for h = 0.14, 0.07, and 0.035 (N = 500, 1000, and 2000),
respectively. The theoretical critical time steps are about 6 times smaller than the
experimental critical time steps, but this is not surprising as the theoretical stability
conditions obtained above are only sufficient.
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Table 4.1

Size of Δtc for the numerical methods used.

Methods h = 0.14 h = 0.07 h = 0.035

Forward Euler 0.003206 0.000813 0.000204
Forward-backward Euler 0.1395 0.1422 0.1415
Crank–Nicolson 0.1299 0.1044 0.08386
IMEX first order Gear 0.1594 0.1594 0.1594
Backward Euler > 0.2 > 0.2 > 0.2
CNAB 0.06772 0.04951 0.04027
MCNAB 0.07538 0.075 0.075
Second order SBDF 0.09375 0.09404 0.09494
Implicit Gear > 0.25 > 0.25 > 0.25
Third order SBDF 0.06834 0.07026 0.07126

For all of the other methods—the implicit, IMEX first order Gear, MCNAB,
and second and third order SBDF methods—the critical time step shows limited
dependence, if any, on the space step h. The fully implicit methods require the
largest Δtc, followed by the first order IMEX methods and then the higher order
IMEX schemes, which require the smallest Δtc. For the backward Euler scheme, we
estimate that Δtc,th ≈ 0.04 by picking the optimal parameter k to equilibrate the
leading order terms in 1/ε in the stability condition of section 3.2.1. The theoretical
step Δtc,th is about 5 times smaller than the experimental step Δtc. Again the
theoretical stability condition is only sufficient, which may explain the discrepancy
between both values. For fully implicit methods, we have indicated a lower bound for
Δtc because, as Δt gets larger, the nonlinear system is harder to solve with Newton’s
method, leading to the stagnation of the iterative solver and making an accurate
evaluation of Δtc difficult. Only two semi-implicit methods required smaller Δtc with
smaller space steps h, namely, the CN and CNAB schemes. For those two methods,
the dependence of Δtc on the mesh resolution is at most of sublinear order, unless
the asymptotic behavior of Δtc when h goes to 0 has not yet been reached even with
h = 0.035.

Figure 4.2 shows the position of the u wave at different times for different methods.
The two top figures show the position of the waves at time t = 20 computed with all
first order methods compared to the position of the reference solution. The bottom
figure at the right shows the same thing but for second order methods. For second
order methods, we used a time step twice as large as for first order methods to have
a comparable workload at each time step and globally to reach a solution at a given
time t. Clearly, for a comparable computational effort, second order methods offer
greater accuracy with less phase lag compared to the reference solution. The figure at
the bottom left shows the solutions obtained with the same second order methods at
an earlier time. The phase error between the reference and numerical solution grows
with time, as a result of the different wave speeds for the different time integration
schemes. We will thus use the wave speed as a measure of error.

Table 4.2 shows the signed relative error between the speed of the numerical
wave cnum and a reference value cref , where cnum is defined as the average speed at
which the level curve for u = 1 moves on the interval [25, 50]. We have computed the
traveling wave speed for our reference solution to be cref = 2.577444. For the section
of Table 4.2 dealing with the forward Euler method, we have chosen to show the wave
speed for a number of time steps nt approximately equal to the number of time steps
necessary to ensure the stability and monotonicity of the solution, as well as for 1.5
and 2 times that number of time steps. For all of the other methods, we could use
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Fig. 4.2. Position of the u wave at different t for several methods (h = 0.14).

the same standardized time steps, sufficiently small to ensure the stability of all of
the methods.

Table 4.2 clearly shows that with an underresolved grid one cannot reliably com-
pute waves with the right speed, irrespective of the time integration scheme used. It
is only for grids with h ≤ 0.14 that the wave speed error is below 1 %, at least for
higher order methods. It had already been observed in [5] that, with a second order
fully implicit Gear scheme, 2D action potential waves could travel with the wrong
speed due to underresolved spatial grids. Here we emphasize that the grid resolution
is only one aspect of the problem; the order of the time integration scheme matters.
Finer grids give better accuracy with all methods, but the semi-implicit or implicit
first order schemes (Crank–Nicolson, IMEX Gear, and forward-backward Euler in the
table) can hardly provide a wave speed error below 1% even on the finest grids con-
sidered. It is only by reducing the time step to values comparable to what is used for
the forward Euler method that these first order schemes can provide accurate results,
at the price of a much higher workload to reach a solution at a given time than for
second order methods. Indeed the forward Euler scheme gave the most accurate wave
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Table 4.2

Relative error (%) between cref and cnum.

Crank–Nicolson/Adams–Bashforth

h = 0.7 h = 0.35 h = 0.14 h = 0.07 h = 0.035

Δt = 0.04 9.702 1.567 −1.041 −1.591 −1.605
Δt = 0.02 10.43 2.406 −0.02937 −0.1765 −0.3810
Δt = 0.01 10.43 2.512 0.07294 −0.07387 −0.07387
Δt = 0.005 10.36 2.512 0.1242 −0.02250 −0.07387

Modified Crank–Nicolson/Adams–Bashforth

h = 0.7 h = 0.35 h = 0.14 h = 0.07 h = 0.035

Δt = 0.04 9.702 1.152 −1.440 −1.866 −1.866
Δt = 0.02 10.43 2.195 −0.02937 −0.3810 −0.4553
Δt = 0.01 10.43 2.512 0.07294 −0.07387 −0.07387
Δt = 0.005 10.43 2.565 0.1242 −0.02250 −0.07387

Second order SBDF

h = 0.7 h = 0.35 h = 0.14 h = 0.07 h = 0.035

Δt = 0.04 8.284 −0.4727 −3.005 −3.544 −3.544
Δt = 0.02 9.942 1.985 −0.6389 −0.7876 −0.7876
Δt = 0.01 10.30 2.406 −0.02937 −0.1765 −0.1765
Δt = 0.005 10.43 2.565 0.1242 −0.07387 −0.07387

Third order SBDF

h = 0.7 h = 0.35 h = 0.14 h = 0.07 h = 0.035

Δt = 0.04 11.16 3.260 1.003 0.1617 0.1617
Δt = 0.02 10.67 2.831 0.3812 0.02890 0.09517
Δt = 0.01 10.55 2.618 0.1755 0.02890 0.02890
Δt = 0.005 10.43 2.565 0.1755 −0.02250 −0.02250

Crank–Nicolson

h = 0.7 h = 0.35 h = 0.14 h = 0.07 h = 0.035

Δt = 0.04 2.121 −6.128 −8.454 −8.620 −8.748
Δt = 0.02 5.999 −1.852 −4.146 −4.491 −4.491
Δt = 0.01 8.167 0.2318 −2.131 −2.283 −2.381
Δt = 0.005 9.225 1.411 −0.9911 −1.241 −1.241

IMEX Gear

h = 0.7 h = 0.35 h = 0.14 h = 0.07 h = 0.035

Δt = 0.04 −5.201 −13.35 −15.13 −15.54 −15.54
Δt = 0.02 1.708 −6.305 −8.454 −8.620 −8.620
Δt = 0.01 5.776 −2.046 −4.520 −4.678 −4.678
Δt = 0.005 7.993 0.1811 −2.229 −2.430 −2.430

Forward-backward Euler

h = 0.7 h = 0.35 h = 0.14 h = 0.07 h = 0.035

Δt = 0.04 −1.483 −8.889 −11.12 −10.96 −11.21
Δt = 0.02 4.240 −3.571 −5.808 −5.969 −6.100
Δt = 0.01 7.243 −0.6721 −3.005 −3.159 −3.159
Δt = 0.005 8.752 0.8949 −1.490 −1.690 −1.690

Forward Euler

h = 0.7 h = 0.35 h = 0.14 h = 0.07 h = 0.035

nt 770 1900 10000 37300 148000
Δt 0.0390 0.0158 0.003 0.000804 0.000203

% (nt) −0.03216 0.2905 −0.3046 −0.2089 −0.1023
% (1.5nt) 1.542 0.8274 −0.1723 −0.1704 −0.09331
% (2nt) 2.348 1.179 −0.09067 −0.1471 −0.08881
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Fig. 4.3. Evolution in time of the L2 error for several methods (h = 0.14).

speed on coarse grids and nearly as accurate results as second order schemes on fine
grids, but this was done with a prohibitive number of time steps.

Except for circumstantial very accurate results (as with CNAB using h = 0.07 and
Δt = 0.005), the most accurate wave speeds have been obtained with the third order
SBDF scheme on fine enough grids. It is worth noting, however, that using methods
of third order and over isn’t necessarily an advantage. The effort in implementing a
third order scheme is larger for a marginal gain in accuracy compared to second order
schemes. The third order SBDF scheme was also subject to much more stringent
numerical stability conditions than its companion second order scheme (see Table
4.1), and even when using a time step size below Δtc the third order SBDF scheme
was more subject to numerical artifacts (Figure 4.2, bottom right). We will come
back to this point below when recommending methods.

Finally, Figure 4.3 shows the progression in time of the L2 error between the
reference and numerical solutions for h = 0.14. The top two images compare the
first order methods to each other and to the second order methods. The two bottom
images compare the second and third order methods for two values of Δt. We see
that, after a certain time interval in which the action potential wave takes form,
the L2 error then seems to grow linearly in time, although with different slopes for
different methods. Among the first order methods, the Crank–Nicolson scheme is the
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most accurate. Figure 4.3 confirms the conclusion reached with Table 4.2 that higher
order methods are necessary to solve this problem. The error is consistently lower
with higher order than first order methods, except for the forward Euler method,
which produces results with a L2 error about the size of the CNAB and implicit Gear
schemes but with a much smaller time step than for these second order methods.

Looking back at Figure 4.2 at the bottom, small oscillations are observed in the
recovery zone behind the repolarization front for the third order SBDF method. Note
that these oscillations are also seen with the CNAB and MCNAB schemes, but they
get smoothed out with the advance of time. The third order SBDF scheme gives a
bounded solution, but more work must be done to make the instabilities disappear.
This method, in fact, does not give better results when h = 0.14, as illustrated in
Figure 4.3. We may therefore conclude that second order methods are in fact the
optimal choice. Among these, we will concentrate on the IMEX schemes, due to the
large cost of every time step with the implicit Gear scheme. The second order SBDF
method appears to be the most interesting one. As seen in Table 4.1, it is more stable
than the CNAB and MCNAB methods—which in fact produce very similar solutions.
While it is true (see Figure 4.2 and Table 4.2) that for larger time steps (for example,
Δt = 0.04) the second order SBDF does not preserve the wave speed quite as well
as the other two, when smaller time steps are used, it produces an as-good solution.
This method also has the advantage of requiring the computation of the diffusion
term only at time step n+1. For all of these reasons, the second order SBDF method
is recommended for solving the bidomain model.

4.2. Comparison of the methods in 2D. In order to solve the 2D bidomain
model, we have used an object-oriented finite element code written in C++ based on
the solver library PETSc [27]. This library allows the user to choose between many
direct and iterative solvers and between many preconditioners. The tests we did on
coarse grids have convinced us that the LU factorization is ideal for this problem,
subject to memory constraints. When finer grids are used, iterative methods become
necessary. Our tests have shown that, of all available solvers and preconditioners, the
conjugate gradient method with an incomplete LU preconditioner (see [24]) use the
least computation time. The tests shown in this section have been done with this
solver and the incomplete LU preconditioner with two levels of fill.

4.2.1. Problem. We consider the 2D formulation of the bidomain model, in-
cluding Neumann boundary conditions. The domain [0, 70] × [0, 70] is used—these
values again being nondimensional. It is meshed with 4N2 triangular elements ob-
tained by dividing the N × N squares into four congruent triangles. For all of our
tests, N = 300 (h = 0.233). As in the 1D case, we fix the parameters ε = 0.1, β = 1.0,
and γ = 0.5. The degeneracy of the system is removed by fixing the value of ue

somewhere on the domain; we have chosen ue(0, 0) = 0.
The initial condition used in all comparisons done below is obtained numerically

as follows. We initiate a spiral (reentrant) wave by setting u and v at their equilibrium
value and ue = 0, except on [0, 3.5]× [0, 70], where we fix u = 2 as explained in section
4.1.1, and also on [31, 39] × [0, 35], where we fix v = 2, which creates a recovery
zone. The result is a planar wave that travels at constant speed until hitting the
recovery zone and then rolls around this zone, forming a spiral wave. Figure 4.4
illustrates the way this spiral wave is formed for the variable u. That spiral wave is
then evolved during enough time steps to go through a transient initial stage and reach
an established (unsteady) regime. The solution at a given time in that established
regime is used as an initial condition. The initial condition is shown on Figure 4.5.
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t = 10 t = 20

t = 30 t = 40

Fig. 4.4. Solution for u of the 2D bidomain equations at different times.

u ue v

Fig. 4.5. Initial condition for the 2D problem.

Due to time and memory constraints, it is very difficult to obtain a precise refer-
ence solution in 2D, as was done with 10, 000 grid points in 1D. Instead of increasing
the number of grid points to a very large value in each direction to reach the grid
independence of the numerical solution, we chose to use only N = 300 but pick values
of the conductivity tensors that are large enough to avoid mesh effects by ensur-
ing a thick enough de-/repolarization wave front. The conductivity tensors are thus
taken as σi = 25 diag{0.263, 0.0263} and σe = 25 diag{0.263, 0.1087}. These tensors
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Table 4.3

Vectors used by different numerical schemes.

Time derivative Reaction term Diffusion term

tn tn−1 tn tn−1 tn

CNAB X X X X
SBDF2 X X X X
CN X X X

are proportional to the values suggested by Hooks et al. [12] for the human heart
conductivities.

4.2.2. Results. We compare the second order SBDF and the CNAB methods,
given the good results they gave in the 1D tests, as well as the Crank–Nicolson–
forward Euler method. We use as a comparison point between the different methods
the trajectory of the spiral tip. The spiral tip is defined as the point where the level
curves with value 0 for u and v meet. We will check if the form of the trajectory of
the spiral tip is the same for the numerical solutions and for the reference solution
and if there is a drift of the spiral tip.

To speed up computations at each time step, we compute and store the linear sys-
tem and preconditioner matrices before the first time step and leave them unchanged
afterwards. Note that we solve all three equations of the system simultaneously, re-
sulting in matrices with 3 × 4N2 rows for the grid used. These matrices involve
the submatrices M , Ai, and Ae defined in section 2.1. Another strategy to reduce
the memory requirements would be to solve each equation of the bidomain model
separately and do subiterations to solve the coupled linear system at each time step.

The three methods that we have tested require only the two matrices mentioned
above. However, they differ in the number of vectors that need assembling at each
time step. Table 4.3 shows which vectors are used by each of these three schemes.
We suppose that the next time step is the one that will compute the solution at time
tn+1. This table shows that the second order SBDF method forces an extra vector—
the solution at time tn−1—to be kept in memory but also approximates the diffusion
term only at time tn+1, which is included in the linear system matrix, while the other
methods require computing the diffusion term at time tn, needing reassembly at each
time step. The assembly of the right-hand term is therefore more costly in terms
of computation time for the Crank–Nicolson/Adams–Bashforth and Crank–Nicolson–
forward Euler methods than for the second order SBDF method.

We have tested each second order method with three different time steps: Δt =
1
50 , Δt = 1

30 , and Δt near Δtc. The Crank–Nicolson method has been tested only
with Δt = 1

50 and Δt = 1
30 . We have found our values of Δt close to Δtc with tests

with decreasing values of Δt until the method becomes stable. We are thus able to
say that, for the initial solution shown in Figure 4.5, 1

12 > Δtc ≥ 1
14 for the second

order SBDF method and 1
17 > Δtc ≥ 1

18 for the CNAB method. We therefore choose
Δt = 1

18 with CNAB and Δt = 1
14 with SBDF. We notice that, just as in the 1D case

(see Table 4.1), the SBDF method is slightly more stable than the CNAB method.
We first note that our largest values of Δt are not sufficient to ensure that the

solution does not contain oscillations. This is obvious on the third image at the right
on the first two lines of Figure 4.6. We already noticed in 1D that the potential wave
lags behind when Δt is too large, for both the second order SBDF and CNAB methods
(see Table 4.2). We can see in Figure 4.6 that this property remains true in 2D: the
solutions for the largest values of Δt do not seem as advanced as for smaller Δt. We
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2nd order SBDF method

Δt = 1
50 Δt = 1

30 Δt = 1
14

Crank–Nicolson/Adams–Bashforth method

Δt = 1
50 Δt = 1

30 Δt = 1
18

Crank–Nicolson–Forward Euler method

Δt = 1
50 Δt = 1

30

Fig. 4.6. Solution for u at t = 80 with several methods. The legend is the same as for Figure 4.5.

also remark that the spiral tip drift is very important when Δt is too large, as shown in
Figure 4.7(a). The dashed and short-dashed curves, respectively, CNAB with Δt = 1

18
and SBDF2 with Δt = 1

14 , get further and further from the solid curve (CNAB with
Δt = 1

50 ) as the solution advances in time. The foot of the trajectory is found at the
left in Figures 4.7(a)–(c), while for Figure 4.7(d) it is in the upper right corner.

As in the 1D case, we have been able to determine that first order methods such
as the Crank–Nicolson–forward Euler method (2.9) are not really appropriate to solve
this particular problem. Even when Δt = 1

50 , as seen in the first image of the third
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Fig. 4.7. Trajectory of the spiral tip for: (a) second order methods and different values of Δt,
t ∈ [10, 55]; (b) CNAB and CN for Δt = 1/50, t ∈ [10, 80]; (c) second order methods and different
values of Δt, t ∈ [10, 80]; (d) second order methods and different values of Δt, t ∈ [70, 80].

row of Figure 4.6, the solution already shows an important phase error when compared
with the second order methods with Δt = 1

50 or even 1
30 . The error is also visible

in Figure 4.7(b), which shows the trajectory of the spiral tip for Crank–Nicolson and
CNAB with Δt = 1

50 . The error on the spiral tip has already shown up in the 10 time
units preceding this image and then increases rapidly.

Figures 4.7(c)–(d) show the evolution of the spiral tip for both second order
methods tested, with Δt = 1

50 and Δt = 1
30 . The solutions are quite similar regardless

of which method is used, but we can note that the solution obtained with the second
order SBDF method with Δt = 1

30 drifts slightly compared with the other more
accurate results. This fact is more easily seen in Figure 4.7(d). On the other hand,
the solution obtained with the CNAB method and Δt = 1

30 follows very closely the
more accurate solutions obtained with Δt = 1

50 . We recall that in our 1D tests the
second order SBDF method produced a wave slightly lagging behind, while the wave
computed with the CNAB method was more precisely located for larger values of
Δt. Each time step is significantly more costly when solving the 2D problem than
the 1D problem, so it is a good idea to use a method that tolerates larger values of
Δt. Therefore, the Crank–Nicolson/Adams–Bashforth method seems a more optimal



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SEMI-IMPLICIT SCHEMES FOR THE BIDOMAIN MODEL 2467

choice when compared with the second order SBDF method. That being said, the
second order SBDF method is almost as accurate as the CNAB method and presents
the advantage, as already stated, that each time step is less costly than with the
CNAB method, and it is likely that, just as it was with our 1D results, with values of
Δt of the order of 1

50 or less, the second order SBDF method would produce a better
solution.

5. Conclusion. In this paper, we have proposed and studied several implicit,
explicit, and IMEX time-stepping methods to solve the bidomain model. We have
noted that the critical time steps for stability obtained through numerical tests, as
seen in Table 4.1, are consistent with the stability analysis of section 3. Indeed, the
numerical value of Δtc depends on h2 for the forward Euler method, while it has
little or no dependence on h for the IMEX and implicit methods. We reached the
conclusion that higher order IMEX methods are the most appropriate for solving the
bidomain model. Indeed, they are quite stable, their stability does not depend on
h, and they produce a good numerical solution even when the time step Δt is not
so small. As shown with our numerical results in section 4.1.2, first order schemes,
such as the Euler or the Crank–Nicolson methods commonly used for the bidomain
model, provide the required accuracy only at the expense of very small time steps,
while the second order schemes studied easily provided an error (well) below 1% on
the wave speed. It is certainly one of the main conclusions of our work: a second
order time-stepping scheme is required, and the Crank–Nicolson scheme the way it is
usually implemented for the bidomain model with a fully explicit occurrence of the
reaction term does not provide second order accuracy.

Another main advantage of these IMEX methods is that they also require only
the solution of a linear system of equations, with both the system and preconditioner
matrices constant over the time steps. Second order fully implicit methods are avail-
able and slightly more stable, but the matrices involved must be reassembled and
factored during Newton–Raphson iterations at each time step.

We have also been able to discriminate between the higher order IMEX methods
considered. Two of them have been especially impressive: the CNAB method and the
second order SBDF method. We reached the conclusion that, while the SBDF method
is more stable than the CNAB method, both methods require a time step about half
of its critical value to produce an acceptable solution. With such a value of Δt, the
SBDF method produces a solution whose delay compared to the reference solution is
slightly larger than the solution obtained with the CNAB method. With yet smaller
values of Δt the SBDF method does produce solutions closer to the reference solution
than the CNAB method. However, the SBDF method also costs less in terms of
computation time than the CNAB method, since it does not require reassembling the
diffusion term every time step.
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