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Commutative clean rings and related rings have received much recent attention. A ring
R is clean if each r ∈ R can be written r = u+e, where u is a unit and e an idempotent.

This article deals mostly with the question: When is the classical ring of quotients of

a commutative ring clean? After some general results, the article focuses on C(X) to
characterize spaces X when Qcl (X) is clean. Such spaces include cozero complemented,

strongly 0-dimensional and more spaces. Along the way, other extensions of rings are

studied: directed limits and extensions by idempotents.
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1. Introduction

1.1. Terminology and notation.

Throughout, all rings are assumed to be commutative with 1. The set of non-zero
divisors (also called regular elements) of R will be denoted R(R), the set of zero-
divisors is Z(R), the set of units is U(R) and the set of idempotents B(R). The
Jacobson radical of R is written J(R). A ring R is called indecomposable if B(R) =
{0, 1}.

∗Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
†wburgess@uottawa.ca

1



April 17, 2008 11:31 WSPC/INSTRUCTION FILE Burgess˙Raphael

2 Burgess, Raphael

A ring is called clean if every element is the sum of a unit and an idempotent,
and it is called almost clean if each element is the sum of a non zero-divisor and an
idempotent. The term local ring will refer to any ring with a unique maximal ideal.
A pm ring (or Gelfand ring) is a ring such that each prime ideal is contained in a
unique maximal ideal. A ring extension R ⊆ S is called an essential ring extension
if for each ideal 0 6= I of S, I ∩R 6= 0.

In Section 2, on rings of continuous functions, the conventions of [10] are fol-
lowed. In particular, a topological space X will always be assumed to be completely
regular. A clopen subset of X will be one which is both closed and open.

1.2. History and Outline.

“Clean”, for not necessarily commutative rings, was defined by Nicholson in [23]
and, for rings where all idempotents are central, “clean” and “exchange” coincide
(e.g., [5, Proposition 1.2 and Theorem 3.4]; see [23] for a discussion of exchange
rings). A history of clean rings is found in McGovern [20], to which the reader is
referred. Almost clean rings were defined by McGovern in [21] and further studied
by Ahn and Anderson ([1]). There have been many subsequent papers devoted to
clean and related rings; more references will appear in the body of this note. The
structure of (commutative) clean and almost clean rings in terms of their Pierce
sheaves is examined in [4].

We recall that an indecomposable ring R is clean if and only if it is local, and
that all clean rings are pm rings (e.g., [1, Theorem 3 and Corollary 4]), but not
all pm rings are clean. Section 1 of this note first looks at the classical ring of
quotients (or total ring of fractions), Qcl (R) of a ring R, to ask when it is clean. At
first glance it seems plausible that when R is almost clean then Qcl (R) should be
clean; however, this is far from the case. Theorem 2.1 characterizes when Qcl (R)
is clean in the case when Qcl (R) is a finite product of indecomposable rings (e.g.,
when R is noetherian). However, Example 2.2 shows that even when R is noetherian
local, Qcl (R) need not be clean. Moreover, there are reduced (almost) clean rings
R with Qcl (R) not clean (Example 2.3).

We then look at directed limits of clean and almost clean rings. Directed limits of
clean rings are always clean, while directed limits of almost clean require additional
hypotheses in order for the limit to be almost clean (Propositions 2.4 and 2.6).

Extensions of clean and almost clean rings, such as polynomial, power series
and group rings have been looked at by various authors. We look at extensions by
idempotents. If idempotents are adjoined to a clean ring the result is always clean;
however, “almost clean” is not always preserved (Example 2.10).

Section 2 is devoted to rings of the form C(X), the ring of continuous real
valued functions on a topological space X. It is known that C(X) is clean if and
only if X is strongly 0-dimensional, that is, if the Čech-Stone compactification is
0-dimensional. (See the notes at the start of Section 2 for references.) We look at
Qcl (C(X)), denoted Qcl (X) as in [9]. It is first seen that, unlike the case of general
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rings, C(X) clean implies Qcl (X) clean (Proposition 3.1). The converse is false but
it is true for F-spaces (Proposition 3.3).

The class of spaces for which Qcl (X) is von Neumann regular (and, hence, clean)
is known to be that of cozero complemented spaces ([13]). This is an extensive
family of spaces which includes all metric spaces (see [13] for a long list of such
spaces as well as a list of spaces which are not cozero complemented). The spaces
for which Qcl (X) is clean are characterized in Theorem 3.5, they are called WZD-
spaces (for weakly zero-dimensional) and they include the cozero complemented
and the strongly 0-dimensional spaces as well as others which have neither of these
properties. However, not all spaces are WZD-spaces as examples show.

The note concludes with examples of WZD-spaces and spaces which are not
WZD. It is also shown that if a WZD-space X is z-embedded in an ambient space
T then T is a WZD-space.

There is on-going work on some related topics by Knox, Levy, McGovern and
Shapiro ([17]).

2. Observations on Qcl (R) and on extensions of clean and almost
clean rings.

Because of the role played by units in clean rings and non zero-divisors in almost
clean rings, the most natural ring of quotients to study is the classical (or total)
ring of quotients. However, a word should be said about the maximal (or complete)
ring of quotients of R, Qmax (R) (e.g., [18, §13]). When, Qmax (R) is self-injective
then it is clean, since for a self-injective ring S, S/J(S) is von Neumann regular,
and, hence, clean and moreover, idempotents lift modulo J(S); this shows that S

is clean (e.g., [12, Proposition 6]). This occurs, in particular, if R is semiprime in
which case Qmax (R) is von Neumann regular (e.g., [18, §13, Exercise 17]). All the
rings C(X) of Section 2 are semiprime. However, there are rings where Qmax (R) is
not clean. The construction in [18, (8.30)], using, for example R = Z, yields Kasch
rings which are not almost clean. Kasch rings, however, coincide with their maximal
rings of quotients.

2.1. When is Qcl (R) clean?

If R is noetherian and the associated primes of 0 are all “isolated” (i.e., minimal
primes) then Qcl (R) is artinian (see, for example, [18, Proposition 12.22]). When
this occurs, Qcl (R) is clean because it is a finite product of local rings. More
generally we have the following which is a version of [1, Theorem 2.5] for Qcl (R). It is
not enough, here, to assume that R is a finite product of indecomposable rings since
that condition does not imply that Qcl (R) is a finite product of indecomposable
rings as will be seen below. We do this for more general rings of fractions.

Theorem 2.1. Let R be a ring and S ⊆ R(R) a multiplicatively closed subset such
that RS−1 is a finite product of indecomposable rings (e.g., if R is noetherian).
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Then, RS−1 is clean if and only if given p, q ∈ Spec R with the properties that
p, q ⊆ Z(R) with (p + q) ∩ S 6= ∅ there exist r ∈ p and r′ ∈ q with r + r′ ∈ S and
rr′ = 0.

Proof. (1) Suppose RS−1 is almost clean. The criterion of [1, Theorem 2.5] applies.
Suppose we have primes p, q ⊆ Z(R) with (p+q)∩S 6= ∅. Then, pS−1+qS−1 = RS−1

and there exists e = e2 ∈ RS−1 with e ∈ pS−1 and 1−e ∈ qS−1. We write e = rs−1

and 1− e = (s− r)s−1 for some r ∈ p, r′ = s− r ∈ q, s ∈ S. Then r + r′ = s ∈ S

and rr′ = 0.
(2) We assume the condition on R. Suppose p′, q′ ∈ Spec RS−1 with p′, q′ ⊆

Z(RS−1) and p′ + q′ = RS−1. Then there are p, q ∈ Spec R with p′ = pS−1 and
q′ = qS−1; moreover, p, q ⊆ Z(R) with (p + q) ∩ S 6= ∅. We find r ∈ p, r′ ∈ q with
r + r′ ∈ S and rr′ = 0. With s = r + r′, rs−1 + r′s−1 = 1 and then e = rs−1 is the
idempotent needed for the criterion of [1, Theorem 2.5].

Example 2.2. There is an indecomposable noetherian almost clean ring R such
that Qcl (R) is indecomposable and not clean. The example can be localized at a
maximal ideal m to give Rm clean but Qcl (Rm) not clean.

Proof. Let K be a field and R = K[W,X, Y, Z]/I where I is generated by
{WX,X2, XY, Y 2, Y Z}. Write w for W + I, x for X + I, etc. The local version will
use the maximal ideal m = (w, x, y, z) and the same arithmetic will apply to Rm.
Elements not in m are non zero-divisors.

A typical element of (w, x, y, z) can be written r = f1(w) + yf2(w) + a1x +
a2y + f3(z) + xf4(z) + f5(w, z), where f1, f2, f3, f4 and f5 all have zero constant
term, terms of f5 all have the form aijw

izj , aij ∈ K and i, j ≥ 1, and a1, a2 ∈ K.
If s ∈ (w, x, y, z) is written similarly using bi ∈ K and gj ,1 ≤ j ≤ 5, then rs =
h1+yh2+c1x+c2y+h3+xh4+h5, where h1 = f1g1, h2 = b2f1+a2g1+f2g1+f1g2,
c1 = 0 = c2, h3 = f3g3, h4 = b1f3 + a1g3 + f4g3 + f3g4, h5 = f1g3 + f3g1 + f1g5 +
f5g1 + f3g5 + f5g3 + f5g5.

Theorem 2.1 is applied to R (or Rm). Note that the prime ideals (w, x, y) and
(x, y, z) of R consist of zero-divisors but r = w + z ∈ R(R). To see this, take, in
the above calculation, r = w + z and s; if rs = 0 one sees that s = 0. The next step
is to show that if r ∈ (w, x, y), s ∈ (x, y, z) and rs = 0 then, r + s /∈ R(R).

The notation of the second paragraph is used again. We have f3 = 0 = g1. If
f1 = 0 then r + s ∈ (x, y, z) ⊆ Z(R) and if g3 = 0, r + s ∈ (w, x, y) ⊆ Z(R). Hence,
we may assume f1, g3 6= 0. In the computation of rs, h5 = f1g3+f1g5+f5g3+f5g5 =
(f1 +f5)(g3 +g5) = 0. Since there are no relations involving only w and z, this only
occurs if f1 + f5 = 0 or g3 + g5 = 0, neither of which is possible because of the form
of these elements.

To see that R need not be almost clean in Theorem 2.1, we look at R =
K[X, Y ]/(X(X − 1)Y ). This is not almost clean ([1, Example 2.9]) but since R

is semiprime, Qcl (R) is a finite product of fields.
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We next look at an example of a reduced almost clean ring whose classical ring
of quotients is not clean. Such an example cannot have the ACC on annihilator
ideals.

Example 2.3. For n ∈ 3N let Rn = (Z/3Z)[X], for n ∈ 3N + 1 let Rn = Z and for
n ∈ 3N +2, say n = 3k +2, let Rn = (Z/pkZ)[X], where pk is the kth prime. Let R

be the ring of sequences (a1, a2, . . .) with an ∈ Rn for all n ∈ N with the proviso that
there is some f ∈ Z[X] such that for some m = 3k, am = f̄ , am+1 = f(0), am+2 = f̄ ,
with the pattern repeated for all triples beyond m. Then, R is almost clean and
reduced but Qcl (R) is not clean.

Proof. The ring R is clearly reduced since all the components are in domains.
We use the Pierce sheaf characterization of an almost clean ring found in [4, The-
orem 2.4], which requires that for each r ∈ R and x ∈ SpecB(R), r is a non
zero-divisor on a neighbourhood of x, or r − 1 is a non zero-divisor on an neigh-
bourhood of x. This is called the NZDC. Here Spec R = N ∪ {∞} and, for n ∈ N,
the stalk is Rn, while R∞ = Z[X]. Notice that the terms in the positions 3N + 2
completely determine the coefficients of f when r is “eventually” f ∈ Z[X] since
the coefficients of f will be reduced modulo infinitely many primes.

A non zero-divisor must be non-zero in all components because all sequences
with only finitely many non-zero components are in R. Let r ∈ R be “eventually”
f ∈ Z[X]. In order to have all the components of r non-zero we must have, in
particular, f(0) 6= 0 and some coefficient of f not divisible by 3. Suppose f(0) = 0
or all coefficients of f are divisible by 3. Then, f − 1 will be non-zero in all but
finitely many components. This shows that the NZDC of [4, Theorem 2.4] is satified
at∞; the condition at the other points of SpecB(R) is clear since n ∈ N is a discrete
point in SpecB(R). Thus, R is almost clean and, as already mentioned, reduced.

Then, by [4, Proposition 2.9(1)], B(Qcl (R)) = B(R). Moreover, Qcl (R) ⊆
(Z/3Z)(X) × Q × (Z/p1Z)(X) × · · · and the only denominators are “eventually”
those f ∈ Z[X] not in (X) ∪ (3), i.e., Qcl (R)∞ = Z[X](X) ∩ Z[X](3), which is not
a local ring. Hence, Qcl (R) is not clean because all the stalks of a clean ring must
be local (e.g., [5, Proposition 1.2]).

A variant of Example 2.3 gives an example of a reduced clean ring R such that
Qcl (R) is not clean. In the example, the rings Rn when 3 divides n are localized at
(X), when n ∈ N+1, Rn is Z localized at (3), and, when n ∈ N+2, Rn is localized
at (X). The sequences now must eventually be in Z[X](3,X). The conclusion will
again be that Qcl (R)∞ = Z[X](3) ∩ Z[X](X) ⊇ Z[X](3,X).

Taking the classical ring of quotients of an indecomposable almost clean ring
can add infinitely many idempotents. Consider the following examples. Let K be
a field and {X1, X2, . . .} a set of variables. Put R = K[X1, X2, . . .]/I, where I is
generated by all monomials

X1X2, X3X4, . . . , X2n−1X2n, . . .
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(see [15, Example 167]). A local version of this is S = Rm, where m is the maximal
ideal generated by the images of the Xi, i ∈ N. Now R is indecomposable and almost
clean because elements not in m are non zero-divisors while 1+m ⊆ R(R). Moreover,
S is local and hence clean. It is easy to verify the criteria of, for example, [14,
Theorem 4.7] to see that our rings are coherent and satisfy the annihilator condition
(i.e., for a, b ∈ R there is c ∈ R such that ann a ∩ ann b = ann c). Thus Qcl (R) and
Qcl (S) are von Neumann regular. They have infinitely many idempotents. If we
write xi for the image of Xi, x2n−1(x2n−1+x2n)−1 is, for any n ∈ N, an idempotent
in the classical ring of quotients.

Some results on Qcl (R) which avoid finiteness conditions are found in [4, Corol-
lary 2.7 and Proposition 2.9].

2.2. Directed limits of clean and almost clean rings.

Various kinds of extensions of clean and almost clean rings are studied in [1], [2],
[12] and [22]; we have begun our study of the classical ring of quotients above. In
this part, we look at directed limits.

Proposition 2.4. Let {Rα, φα,β} be a directed family of clean rings. Then, the
direct limit (R,φα) is a clean ring.

Proof. This is immediate since both units and idempotents are preserved by ho-
momorphisms.

A corollary of this proposition about rings of continuous functions will be left
to Section 2.

We now look at directed limits of almost clean rings.

Lemma 2.5. Let R be a commutative ring and T an essential ring extension of R.
If r ∈ R(R) then r ∈ R(T ).

Proof. If r ∈ R(R) and 0 6= t ∈ T , then there is t′ ∈ T with 0 6= t′t ∈ R. Then,
rt′t 6= 0 and, hence, rt 6= 0.

Proposition 2.6. Let {Rα;φα,β} a directed family of almost clean rings where each
φα,β is an essential ring monomorphism. Then, the direct limit, S of the system is
an almost clean ring.

Proof. Indeed, for r ∈ R(Rα), some α, if 0 6= s ∈ S is such that rs = 0 (identifying
r with its image in S) then for for β ≥ α there is 0 6= t ∈ Rβ with image s and
φα,β(r)t = 0. We get a contradiction using Lemma 2.5. Hence, images of non zero-
divisors in the system are non zero-divisors in S. Hence, S is almost clean.

However, some restrictions on the directed system of almost clean rings is needed
in order that the limit be almost clean, as the following example illustrates.
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Example 2.7. There is a directed family of almost clean rings with monomorphic
maps whose limit is not almost clean.

Proof. It is shown in [4, Example 2.8(i)] that the following ring is not almost clean.
It will be expressed here as a limit of a directed system of almost clean rings. The
set N is partitioned into infinitely many infinite subsets {Nk}k∈N and each Nk is
well ordered as {mk,1,mk,2, . . .}. If n ∈ N is mk,j , then Rn is defined to be Z/pjZ,
where pj is the jth prime. The ring R is defined to be the ring of sequences of the
form (ā1, ā2, . . .) where ān ∈ Rn and, for some m ∈ N, ān = z̄, for all n ≥ m and
some z ∈ Z. Then SpecB(R) = N ∪ {∞} with Rn the Pierce stalk over n ∈ N and
R∞ = Z.

We now define, for n ∈ N, Sn = R1 × · · · × Rn × Z and φn,n+1 : Sn → Sn+1

by φn,n+1((ā1, . . . , ān, z)) = (ā1, . . . , ān, z̄, z). It needs to be verified that R is
the limit of the system {Sn, φn,n+1}. We define, for n ∈ N, φn : Sn → R by
φn((ā1, . . . , ān, z)) = (ā1, . . . , ān, z̄, z̄, . . .) ∈ R. It is now easy to verify that R

satisfies the universal property of a direct limit because R can be viewed as a union
of subrings.

2.3. Extensions by idempotents.

In this paragraph we look at extensions of (almost) clean rings by idempotents,
that is, a ring extension R ⊆ S where S is generated, as a ring, by R and B(S).

Proposition 2.8. Let R be an almost clean ring, T an essential ring extension of
R and E ⊆ B(T ). If S is the subring of T generated by R and E then S is almost
clean. This applies, in particular, when T = Q(R), the complete ring of quotients
of R.

Proof. A typical element of S may be written s = r1e1+· · ·+rnen, for r1, . . . , rn ∈
R and {e1, . . . , en} a complete orthogonal set of idempotents from B(S). For each
i = 1, . . . , n, we can write ri = r′i + fi, where r′i ∈ R(R) and fi ∈ B(R). Then,
s =

∑n
i=1 r′iei +

∑n
i=1 fiei. The second term is an idempotent so we need to show

that u =
∑n

i=1 r′iei ∈ R(S).
To verify this, let v =

∑m
j=1 ajgj ∈ S, where, for j = 1, . . . ,m, aj ∈ R and

{g1, . . . , gm} is a complete orthogonal set of idempotents from B(S). Suppose uv =
0 and, hence, that for each pair i, j, r′iajeigj = 0. Since r′i ∈ R(S), by Lemma 2.5,
each ajeigj = 0. Summing over i yields that ajgj = 0 and, hence, that v = 0, as
required.

An extension of a clean ring by idempotents is clean without any restrictions.

Proposition 2.9. Suppose R is a clean ring which is a subring of a ring T . Let
E ⊆ B(T ) and let S be the subring of T generated by R and E. Then, S is clean.
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Proof. The argument is like that of Proposition 2.8. As before, a typical element
s =

∑n
i=1 riei, with each ri ∈ R and {e1, . . . , en} a complete orthogonal set of

idempotents from B(S). Each ri = ui + fi, ui ∈ U(R) and fi ∈ B(R), with, say,
u−1

i = vi. Then, s = (
∑n

i=1 uiei) + (
∑n

i=1 fiei) where the first term is a unit in S,
with inverse

∑n
i=1 viei and the second is an idempotent.

The extra hypothesis in Proposition 2.8 is needed, as witnessed by the following
example.

Example 2.10. There is an almost clean ring T and an idempotent e from an
extension ring W such that T ′, the subring of W generated by T and e, is not
almost clean

Proof. We can use the ring of [1, Example 2.9] or a similar one given here. Let
R = Z[X] and S = Z[X]/(6X). Set T to be a subring of R×R× S as follows:

T = {(r1, r2, s̄) | r1 ≡ s (mod 2X), r2 ≡ s (mod 3X)} .

Just as in [1, Example 2.9], S is indecomposable and not almost clean (3̄ is a zero-
divisor as is 3− 1)). Next, T is indecomposable. Note that (0, 0, s̄) /∈ T unless s̄ = 0̄.
Hence, a non-trivial idempotent would look like (1, 0, 1̄) or (0, 1, 1̄); however, these
are not possible because s must be in (2X) or (3X) and have constant term 1. The
element (1, 0, 0̄) (or (0, 1, 0̄)) is also excluded since 0 would have to be in (3X) and
have constant term 1.

Next, T is almost clean. The non zero-divisors are the elements of the form
(r1, r2, s̄) with r1, r2 6= 0. Indeed, (0, r2, s̄) is annihilated by (2X, 0, 0̄) and (r1, 0, s̄)
is annihilated by (0, 3X, 0̄). If (0, r2, s̄) ∈ T then (0, r2, s̄) − (1, 1, 1̄) is a non-zero
divisor (similarly for (r1, 0, s̄)). This is because s ∈ (2X) and then r2 = 1 would
imply s− 1 ∈ (3X) showing that the constant term of s is 1, however, we know it
to be 0. Hence, (0, r2, s̄)− (1, 1, 1̄) = (−1, r2−1, s̄− 1̄) is a non zero-divisor because
the middle component is non-zero.

Now, T ⊂ R × R × S and if we adjoin (1, 1, 0̄) to T to get T ′, the ring S splits
off showing that T ′ is not almost clean, since it is clear that a direct factor of an
almost clean ring is almost clean. (Note, however, that Qcl (T ) ∼= Q × Q and the
idempotent we have added is not from Qcl (T ). This can be seen when T is presented
as a subring of Z× Z, as is possible.)

There is also a “generic” extension of a ring by idempotents which is best de-
scribed in terms of the Pierce sheaf and thus is more properly the subject of [4].
It is shown there that a generic extension of an almost clean ring by idempotents
does yield an almost clean ring.
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3. On C(X) and Qcl (X).

The principal aim of this section is to answer the question: When is Qcl (X) clean?
The characterization of when C(X) is clean derives readily from one of the char-
acterizations of clean ring in [20, Theorem 1.7], due to Johnstone ([16, Theo-
rem V.3.9]), which says that a ring R is clean if and only if it is pm and maxSpec R

is 0-dimensional. However, C(X) is always a pm ring ([10, Theorem 2.11]) and
maxSpec C(X) is βX, the Čech-Stone compactification of X ([10, 7.11]). Hence,
C(X) is clean if and only if βX is 0-dimensional, i.e., if and only if X is strongly
0-dimensional. For several other characterizations of when C(X) is clean see Mc-
Govern [21, Theorem 13]. Note that C(X) is clean if and only if it is almost clean,
since this is a property of pm rings ([4, Theorem 3.3]).

It is clear that if R is a pm ring then so is Qcl (R). In particular, C(X) is
always a pm ring and, hence, Qcl (X) is almost clean if and only if it is clean by [4,
Theorem 3.3].

We have seen (Proposition 2.4) that a directed limit of clean rings is clean. A
special case of this follows.

Proposition 3.1. For a completely regular topological space X, if C(X) is clean
(i.e., X is strongly 0-dimensional) then Qcl (X) is clean.

Proof. We have by, e.g., [21, Theorem 13] that X is strongly zero-dimensional
and, by definition, so is βX. By [9, 3.1], Qcl (X) = Qcl (βX). By [9, Corollary 1.10],
Qcl (X) is a direct limit of the rings C(V ), where V is a dense cozero-set of βX.
Hence, by Proposition 2.4, it suffices to show that V is strongly zero-dimensional.
Now V has a strongly zero-dimensional compactification, namely βX, and so is zero-
dimensional by [10, 16D(2)] and, hence, strongly zero-dimensional by [10, 16.11]
because V is Lindelöf.

We have just seen that C(X) clean implies that Qcl (X) is clean. Recall that
a space X is cozero complemented if, for every cozero set V , there is a cozero set
U such that V ∩ U = ∅ and V ∪ U is dense in X. It is easy to find spaces where
C(X) is not clean but Qcl (X) is. It is shown in [13, Theorem 1.3] that X is cozero
complemented if and only if Qcl (X) is von Neumann regular, and, hence, clean. A
long list of cozero complemented spaces is found in [13] and these include all metric
spaces. If we take a space like R, then the connectedness of R shows that C(R) is
not clean but Qcl (R) is clean.

The proof of Proposition 3.1 also applies to any ring of fractions A obtained
from a filter of dense cozero sets in X; this shows that A is a clean ring if C(X) is.
As just mentioned, the converse of Proposition 3.1 is false. However, the converse
holds for F-spaces. Recall ([10, 14.25]) two of the characterizations of these spaces:
X is an F-space if and only if for each p ∈ βX, the ideal Op of elements zero on a
neighbourhood of p is prime; equivalently, if and only if the primes contained in a
given maximal ideal form a chain.
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In what follows, homeomorphism is denoted by ∼ .

Proposition 3.2. Let X be a topological space and S ⊆ R(C(X)) be multiplica-
tively closed.

(1) There is a continuous surjection Θ: maxSpec S−1C(X) → βX.
(2) If, in addition, X is an F-space, Θ is a homeomorphism.

Proof. (1) Since C(X) is a pm ring ([7, Theorem 1.2]) Ψ: Spec C(X) →
maxSpec C(X), sending a prime ideal to the unique maximal ideal containing it, is a
continuous surjection. For any p ∈ minSpec C(X) there is a unique largest element
q in the chain of prime ideals from p to the maximal ideal containing it which does
not meet S. Call the set of such prime ideals Max-S. Since C(X) → S−1C(X) is a
ring epimorphism, the natural continuous map φ : Spec S−1C(X) → Spec C(X) is
one-to-one. Moreover, φ, restricted to maxSpec S−1C(X), call it φS , is a continuous
bijection between the subspaces maxSpec S−1C(X) and Max-S. Keeping in mind
that maxSpec C(X) ∼ βX, we put Θ = Ψ ◦ φS : maxSpec S−1C(X) → βX. Since
every chain of prime ideals of C(X) from a minimal prime to a maximal ideal passes
through Max-S, Θ is surjective.

(2) The extra hypothesis ensures that Θ is one-to-one. We now have a continuous
bijection Θ: maxSpec S−1C(X) → βX. However, βX is compact and Hausdorff,
showing that Θ is a homeomorphism.

Proposition 3.3. Let X be an F-space. The following statements are equivalent.
(1) C(X) is clean.
(2) S−1C(X) is clean for each multiplicatively closed set S ⊆ R(C(X)).
(3) S−1C(X) is clean for some multiplicatively closed set S ⊆ R(C(X)).

Proof. (1) ⇒ (3) by Theorem 3.1 using S = R(C(X)) or S = ∅. Clearly (2) ⇒
(3) and (2) ⇒ (1) using S = ∅.

(3) ⇒ (2): We fix S with S−1C(X) clean. Proposition 3.2 (2) shows
that maxSpec S−1C(X) ∼ βX. By hypothesis and using [20, Theorem 1.7],
maxSpec S−1C(X) is strongly 0-dimensional. Hence, βX and X are strongly 0-
dimensional. Now we can apply Proposition 3.2 (2) to any multiplicatively closed
set T ⊆ R(C(X)) to get that maxSpec T−1C(X) is strongly 0-dimensional. Since
T−1C(X) is a pm ring, [20, Theorem 1.7], again, says that T−1C(X) is clean. This
proves (2).

There are F-spaces where C(X) is clean and F-spaces where it is not. Any
extremally disconnected space will give a strongly 0-dimensional F-space while the
connected F-space βR+ \ R+ does not (see [10, 14.27]). As an illustration of a
ring strictly between C(X) and Qcl (X) in Proposition 3.3, we take the strongly
0-dimensional F-space βN; let f ∈ R(C(βN)) be given by f(n) = 1/n, n ∈ N and
define S = {fm | m ∈ N}. Then S−1C(βN) is such a ring.
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The conclusion of Proposition 3.3 does not imply that X is an F-space as the
following shows. Recall ([19]) that a space X is an almost P-space if each non-
empty zero-set has non-empty interior. If X is an almost P-space, X is the only
dense cozero set and hence ([24, page 72]) Qcl (X) = C(X).

Proposition 3.4. Suppose K is a compact strongly 0-dimensional almost P-space,
X is the free sum

⋃
n∈N Kn, where each Kn = K, and ωX is the one-point compact-

ification of X. Then, for each multiplicatively closed S ⊆ R(C(ωX)), S−1C(ωX)
is clean. There are choices of K for which ωX is not an F-space.

Proof. Note that Qcl (ωX) =
∏

n∈N C(Kn). It suffices to pick S = {s, s2, s3, . . .},
for some non zero-divisor s ∈ C(αX) which is not a unit. A separate proof for
S = ∅ will follow. If we write ωX = X ∪ {∞}, then, by the hypotheses on K, s

is non-zero everywhere on X and s(∞) = 0. For f ∈ C(ωX) and m ∈ N, we need
to look at fs−m ∈ S−1C(ωX). We have that sn = s|Kn

is a unit in C(Kn) and if
f |Kn

= fn, fns−m
n = un + en, un a unit in C(Kn) and en ∈ B(C(Kn)). We next

define u, e ∈
∏

n∈N C(Kn) to have components un and en, respectively.
It will be seen that es ∈ C(X) can be extended to an element of C(ωX). For

each m ∈ N, {x ∈ X | |es(x)| < 1/m} = (s−1((−1/m, 1/m)) ∩ X) ∪ Z(e), whose
complement in X is an intersection of a compact with a closed set; it is, hence,
compact. This means that es can be extended to ∞ by making the function 0
there. Hence, es · s−1 = e ∈ S−1C(ωX). The equation fs−m = u + e now has
e ∈ S−1C(ωX), showing that u ∈ S−1C(ωX), as well. Since u is a unit in Qcl (X),
it is in R(S−1C(X)). Hence, S−1C(ωX) is almost clean. By [4, Theorem 3.3], an
almost clean pm ring is clean, hence, S−1C(X) is clean.

Next suppose S = ∅. We need to show that ωX is strongly 0-dimensional. Since
it is compact, it suffices to show it has a basis of clopen neighbourhoods. If x ∈ X

and U is an open set with x ∈ U , we have that x ∈ Kn for some n. However, Kn

is strongly 0-dimensional and we can pick a clopen neighbourhood V of x in Kn

which is inside U . Then, V is clopen in ωX. Next, let U be a neighbourhood of ∞.
Since X \U is compact, X \U ⊆

⋃m
n=1 Kn, for some m ∈ N. Then, ωX \

⋃m
n=1 Kn

is a clopen neighbourhood of ∞ inside U .
The particular case of ωN, with K = {x}, which is not an F-space, finishes the

proof.

We now characterize completely regular spaces X such that Qcl (X) is clean. The
condition, called “WZD” in the next result, is a strict generalization both of “cozero
complemented” and of “strongly 0-dimensional” as examples will show. That is,
there are spaces X such that Qcl (X) is clean but not regular and, moreover, C(X)
is not clean. Recall from [9] that V0(X), or simply, V0, is the set of dense cozero sets
of a space X. The condition is labeled WZD (for weak zero dimensional) because it
is a weakening of the strong 0-dimensional condition. Since the characterization of
the WZD property is algebraic (Qcl (X) is clean) a space X satisfies the property
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if and only if its realcompactification υX does.

Theorem 3.5. Let X be a completely regular space. Then, Qcl (X) is clean if and
only if the following condition holds

WZD: Given V ∈ V0 and disjoint zero sets K1 and K2 of V , there exist
W ∈ V0, W ⊆ V , and a clopen decomposition W = W1∪̇W2 such that
K1 ∩W ⊆ W1 and K2 ∩W ⊆ W2.

Proof. We first assume that Qcl (X) is clean. Suppose that V ∈ V0 and let K1, K2

be disjoint zero-sets in V . There is an f ∈ C(V ) such that f is 0 on K1 and 1 on K2.
Then, f gives rise to an element q ∈ Qcl (X) which can be written q = u+e, u a unit
and e an idempotent. For some W ∈ V0, for which we may assume W ⊆ V , f |W =
u + e, where now, u, e ∈ C(W ). The idempotent e yields a clopen decomposition
W = W1∪̇W2 where Z(e) = W2. It follows that K1 ∩ W ⊆ Z(f) ∩ W ⊆ W1 and
K2 ∩W ⊆ W2, as required.

Now assume that X is a WZD-space. Let q ∈ Qcl (X) coming from some f ∈
C(V ), V ∈ V0. Let K1 = Z(f) and K2 = {v ∈ V | f(v) = 1}. We invoke the
condition to get W ∈ V0, W ⊆ V , and a clopen decomposition W = W1∪̇W2 with
K1 ∩ W ⊆ W1 and K2 ∩ W ⊆ W2. Let e = e2 ∈ C(W ) with Z(e) = W2. Then,
f |W − e = u is a unit in C(W ), as needed. This expression lifts to an expression of
q as a unit plus an idempotent in Qcl (X).

Recall ([6, Definition 7.4 and Theorem 7.8] that if Y is a locally compact, non
pseudocompact space and Z is a weak Peano space then there is a compactification
X of Y such that Z = X\Y ; a weak Peano space is a compact Hausdorff space which
contains a dense continuous image of R. Thus if D is an infinite discrete space then
βD and the one-point compactification D are both strongly 0-dimensional but there
are compactifications αD which are not. More details are found in Examples 3.7,
below.

Lemma 3.6. Suppose that Y is a dense C∗-embedded subset or a dense cozero set
of a space X. Then Qcl (Y ) = Qcl (X). In particular, if Y is a locally compact
Lindelöf space and X a compactification of Y , then Qcl (X) ∼= Qcl (Y ).

Proof. We use a standard argument for the first case. Let ρ : C(X) → C(Y ) be the
restriction map. By hypothesis, ρ is one-to-one and C∗(Y ) ⊆ Im ρ. If f ∈ R(C(X))
then coz ρ(f) is dense in Y , i.e., ρ(f) ∈ R(C(Y )). This implies that ρ extends to
σ : Qcl (X) → Qcl (Y ), which is also one-to-one. For g ∈ C(Y ), g/(1 + g2), 1/(1 +
g2) ∈ Im ρ and the extension of 1/(1+g2) is in R(C(X)). Hence, g ∈ Im σ. Moreover,
if g ∈ R(C(Y )) then the extension of g/(1 + g2) is also in R(C(X)). This shows
that σ is onto. In the case when Y is a cozero set of X, C(Y ) lies between C(X)
and Qcl (X) so Qcl (X) ∼= Qcl (Y ).

In the particular case where Y is locally compact Lindelöf, Y is a dense cozero
set in X and the second statement applies.
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It follows from Lemma 3.6 that if a space X has a dense C∗-embedded subset
or a dense cozero set satisfying WZD then X is a WZD-space.

The next aim is to specialize the spaces X and Y in the lemma. The two
families of examples which follow give WZD-spaces but which are neither cozero
complemented nor strongly 0-dimensional.

Examples 3.7. (1) There is an example of a locally compact Lindelöf space Y and
a compactification X such that Qcl (X) = C(Y ) is clean but C(X) is not clean.

(2) There is an example of a locally compact Lindelöf space Y and a com-
pactification X such that Qcl (X) = Qcl (Y ) is clean but C(Y ) and C(X) are not
clean.

Proof. (1) Let Y be an almost P strongly 0-dimensional space which is locally
compact but not compact. (For example, a free union of infinitely many copies of
βN \N.) Then Y has a compactification X that is not 0-dimensional. For example
we may take a compactification X of Y , where X \ Y is a connected Peano space,
say, [0, 1]. If X were strongly 0-dimensional then X \ Y would not be connected.
When Y is Lindelöf as well then it is a cozero set of X showing that C(Y ) is a ring
of fractions of C(X) and, hence, Qcl (Y ) = Qcl (X). However, here, Qcl (Y ) = C(Y ).

As a specific example we can take Vn, n ∈ N, each a copy of the one-point com-
pactification of an uncountable discrete space and Y =

⋃
n∈N Vn, a free union. The

space Y is locally compact and Lindelöf and is neither compact nor pseudocompact.
In this particular example, C(Y ) is not von Neumann regular and thus X is not
cozero complemented.

(2) An example of this type may be constructed using (1). Suppose, for each
n ∈ N, Xn is the compact space constructed in (1). Set Y =

⋃
n∈N Xn, a free

union, and let X be a compactification of Y such that X \ Y is a connected Peano
space. Once again Y is a dense cozero set of X and C(Y ) is a ring of fractions of
C(X). It follows that Qcl (X) = Qcl (Y ). However, Y is not strongly 0-dimensional
showing that Qcl (X) 6= C(Y ). We have that C(Y ) =

∏
n∈N C(Xn) and, hence,

Qcl (Y ) =
∏

n∈N Qcl (Xn), a product of clean rings and, thus, a clean ring ([12,
Proposition 7]).

If X is a WZD-space and V is a dense cozero set of X or a dense C∗-embedded
subspace of X then, clearly, V is a WZD-space. A compact subspace of a WZD-
space need not be WZD; for example, take X = βR+ and Y = βR+\R+. Moreover,
Gruenhage, [11, Theorem 1.5], has shown that any space X can be embedded as a
closed subspace of a cozero complemented and, hence, a WZD-space; in fact there
is a metrizable space M such that X ×M is cozero complemented. We do have the
following using the property z-embedded, a generalization of “C∗-embedded”.

Proposition 3.8. Let X be a WZD-space and suppose X is a dense z-embedded
subspace of a space T . Then, T is a WZD-space.
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Proof. Consider V ∈ V0(T ) and Z1, Z2 disjoint zero-sets of V . The WZD condition
needs to be verified. Put V ′ = V ∩X ∈ V0(X) and Yi = Zi∩X ⊆ V ′, i = 1, 2, which
are zero-sets of V ′. There exists U ∈ V0(X), U ⊆ V ′ and a clopen decomposition

U1

·
∪ U2 of U such that Yi ∩ U ⊆ Ui, i = 1, 2. Since each Ui is a cozero set of the

cozero set U of X, there is a cozero set Ũi of T , i = 1, 2 such that Ũi ∩ X = Ui,
because X is z-embedded in T .

Let Z ′
i = Zi ∪ (T \ V ), i = 1, 2, a zero-set of T and set S1 = Ũ1 ∩ (T \ Z ′

2) and
S2 = Ũ2 ∩ (T \ Z ′

1) both cozero sets of T . Now set S = (S1 ∪ S2) ∩ V , a cozero set
of T .

(1) S1 ∩X = U1 ∩ (T \ Z ′
2) = U1 ∩ (T \ (Z2 ∪ (T \ V )))

= U1 ∩X ∩ (T \ Z2 ∩ V ) = U1 ∩X ∩ (V \ Z2)

= U1 ∩ (V \ Z2) = U1

and, similarly, S2 ∩X = U2.
(2) S1 ∩ S2 ∩X = U1 ∩ U2 = ∅ and, hence, S1 ∩ S2 = ∅.
(3) S1 ∪ S2 is dense since it contains U . Hence, S is dense.

The required splitting of S is using S1 ∩ V and S2 ∩ V .

By [3, Theorem 4.1], if X is Lindelöf or almost compact, it is z-embedded in any
space T of which it is a subspace. Hence, Proposition 3.8 will apply to any Lindelöf
or almost compact space X and space T in which X is a dense subspace.
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