
October 26, 2010

On primitively divisible modules and related rings

W.D. Burgess
Department of Mathematics and Statistics,
University of Ottawa, Ottawa, ON K1N 6N5
wburgess@uottawa.ca
A. Mojiri
Department of Mathematics,
Saint Xavier University, Chicago, IL 60655
mojiri@sxu.edu
Key words: primitively divisible, π-regular, max-ring.
Mathematics Subject Classification: 16D60, 16D50, 16E50.

Abstract. For a ring R, 0 6= M ∈ R-Mod is primitively divisible if for
each left primitive ideal P , PM = M ; R is a left noprimdiv ring if it has
no primitively divisible left modules. The class of left noprimdiv rings
strictly includes that of left max-rings. Rings which are left primitive or
regular or biregular are left noprimdiv. Properties of such rings are given
and closure properties of the class of left noprimdiv ring is studied. A
theorem of Snider on π-regular max-rings is extended by including some
rings not of finite index. At the other extreme are rings R where RR

can be embedded in a primitively divisible module; these are known to
be the rings over which every injective left module is primitively divisi-
ble. Analogies with classical divisibility are studied and examples found.
Commutative rings with this property are characterized.

1. Introduction and basic examples. The class of rings R over which
every non-zero left module has a maximal (proper) submodule, called left
max-rings, has been extensively studied (see Tuganbaev, [17, §26] and the
many references of that section). If R is a left max-ring and 0 6= M is a
left R-module then there is a left primitive ideal P such that PM 6= M .
This property will be seen to be weaker than “left max-ring” but is still
quite restrictive. The two concepts coincide for PI-rings ([16]). When this
property fails there is a module 0 6= M ∈ R-Mod such that PM = M for
all left primitive ideals P .

Definition 1.1 (See [16]). For a ring R, if for some 0 6= M ∈ R-Mod, for
each left primitive ideal P , PM = M then M is called primitively divisible.
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Definition 1.2. If R is a ring with no primitively divisible left modules it
is called a left noprimdiv ring. Similarly for right noprimdiv rings.

Notation and terminology. In a ring R, if A is a subset then 〈A〉 is
the ideal of R generated by A. The class of left modules over a ring R is
denoted R-Mod and that of right modules is Mod-R. The set of maximal
ideals of a ring R is MaxR, the set of minimal prime ideals is MinR, and
the set (boolean algebra) of central idempotents of R is denoted B(R). For
an R-module M , E(M) denotes any injective hull. The Jacobson radical of
R is written J(R) and its prime radical is P(R). The left (right) annihilator
in X of Y is denoted lannX Y (rannX Y ). The set of left primitive ideals of
a ring R is denoted Pl(R), or just Pl. The term “regular ring” will always
mean “von Neumann regular ring”.

A. Introduction. It will be seen (Examples 1.7) that there are left noprim-
div rings which are not left max-rings. The former are known to include, for
example, all regular and all biregular rings. A characterization of PI-rings
which are left noprimdiv rings is known and is quoted below ([16, Theo-
rem 2]). Many of the known examples are found in [16], due to Tuganbaev.
The purpose here, in the first two sections, is to give constructions of families
of examples of left noprimdiv rings, to examine the class of left noprimdiv
rings and to look at rings which are not left noprimdiv rings.

The paper begins with a list of known classes of left noprimdiv rings and
then (Proposition 1.4) some examples where the condition fails. Proposi-
tion 1.10 shows that it suffices to test the submodules of any cogenerator
module. Then it is shown that a ring R is a left noprimdiv ring if and
only if R/J(R) is and J(R) is left T-nilpotent (Proposition 1.11). A basic
example due to Snider (Example 1.13) shows that even when “noprimdiv”
and “max” coincide, the condition is not right-left symmetric. By Snider’s
[15, Theorem 1], it is known that a semiprimitive π-regular ring of finite
index is a left (and right) max-ring. Theorem 1.15 extends this to some
π-regular rings not of finite index using a condition on the structure space.
Examples 1.16 illustrate this.

The next topic (Section 2) is to examine closure properties of the class
of left noprimdiv rings. The class is not closed under homomorphic images,
subrings, direct or inverse limits or infinite products (Propositions 2.1 and
2.7). On the other hand, “left noprimdiv” is a Morita invariant (Theo-
rem 2.5) and a ring is a left noprimdiv ring if and only if each of its Pierce
stalks is (Theorem 2.4). The property is preserved under some ring exten-
sions such as polynomial rings as well as finite products (Proposition 2.6).



Primitively divisible modules 3

The third section looks at rings, called left IPD rings, where each in-
jective left module is primitively divisible. This can be expressed in terms
of a form of divisibility by finite sets of elements (Proposition 3.5 and The-
orem 3.4) and is classical divisibility in PIDs. Every domain which is not
left primitive is a left IPD ring (Proposition 1.4). Most of the discussion in
Section 3 is of commutative rings. A commutative ring R is an IPD ring if
and only if each P ∈ MaxR contains a finite subset with zero annihilator
(Theorem 3.4). If R is a commutative IPD ring then MinR ∩MaxR = ∅
(Theorem 3.6) and the condition is sufficient when R is reduced and MinR
is compact (Proposition 3.7), but not in general (Example 3.10). Examples,
including of rings of continuous functions, are presented as illustrations.

B. Classes of rings which are left noprimdiv rings and some which
are not. Some classes of left noprimdiv rings (although the name was not
used) are found in Tuganbaev, [16].

Definition 1.3 ([16]). A left R-module M is called primitively pure if for
each N ⊆ M and each left primitive ideal P , PM ∩N = PN . The ring R
is left primitively pure if RR is.

It is shown in [16, Lemma 1] that to show a module is primitively pure,
it suffices to look at cyclic submodules. If RR is primitively pure then R is a
left noprimdiv ring ([16, Lemma 4]). This result gives some of the following
classes of examples of left noprimdiv rings. Others will be added later.

Class 1. Every left primitive ring is a left noprimdiv ring.

Class 2. Every left max-ring is a left noprimdiv ring.

Class 3. ([16, Theorem 2]) If R is a PI-ring then R is a left noprimdiv
ring if and only if it is a left max-ring and if and only if R is a right
noprimdiv ring if and only if R is a right max-ring.

Class 4. ([16, Lemma 4]) If R is left weakly regular (I2 = I for all
left ideals I) then ([17, Lemma 20.3(7)]) R is left primitively pure
and, hence, a left noprimdiv ring. Regular rings and biregular ring
are both left and right weakly regular; hence, they are left and right
noprimdiv rings.

Class 5. ([4, Lemma 1]) All right semi-artinian rings are left noprim-
div rings.

The rings of Class 3 are characterized in [16, Theorem 2] as those PI-rings
R where J(R) is left (and right) T-nilpotent and R/J(R) is π-regular.
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The paper cited in Class 5, above, has as its main purpose the construc-
tion of a right semi-artinian regular ring R which is a right max-ring but
is not a left max-ring. However, R is (by Class 4) a left noprimdiv ring.
Hence, the class of left noprimdiv rings is strictly larger than that of left
max-rings. (See also Examples 1.7.)

In the other direction, a ring like Z is not a noprimdiv ring because Q,
as a Z-module is primitively divisible. This observation can be generalized
to include, as examples, all domains which are not left primitive and all
commutative rings in which each maximal ideal contains a non zero-divisor.
(This topic is expanded upon in Section 3.)

Proposition 1.4. (i) Let R be a ring such that it has a left or right Ore set
T of non zero-divisors such that for each left primitive ideal P , P ∩ T 6= ∅.
Then, R is not a left noprimdiv ring.

(ii) Let R be a left non-singular ring such that every left primitive ideal
P contains a ∈ P such that ra = 0 implies r = 0. Then, R is not a left
noprimdiv ring.

Proof. (i) Let S be the ring of left or right fractions corresponding to T .
Then RS is primitively divisible since for each left primitive ideal P , there
is t ∈ P ∩ T and PS ⊇ tS = S.

(ii) Let S = Ql
max(R) be the left maximal ring of quotients of R, a reg-

ular ring. If a ∈ R is such that ra = 0 ⇒ r = 0, let a′ ∈ S be such that
aa′a = a. Then, aa′ = e is an idempotent and, if e 6= 1, S(1 − e) ∩ R 6= 0.
For 0 6= r ∈ S(1 − e) ∩ R, ra = rea = 0, showing that e = 1 and a is left
invertible in S. If a ∈ P , some ideal P , aa′ = 1 ∈ PS = S.

Any domain, whether Ore or not, which is not left primitive satisfies
the conditions of Proposition 1.4 (ii). In [16] there is also a discussion of
R-modules which are maximally divisible, i.e., 0 6= M ∈ R-Mod such that
for each maximal ideal P , PM = M . The reasoning above will show that
there can be a left noprimdiv ring which has a maximally divisible module.

Remark 1.5. There is a left noprimdiv ring R and 0 6= M ∈ R-Mod such
that for any maximal ideal P , PM = M .

Proof. By [11, Theorem 11.27] (due to Formanek) the free ring over Z
in more than one variable is left primitive. Take R to be a primitive domain
which is not a division ring. Let S = Ql

max(R). Then, as in the proof of
Proposition 1.4 (ii), IS = S for any non-zero ideal I.
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The example just recalled is one of a class of left noprimdiv rings which
are not left max-rings. Since, by [17, Lemma 26.1 (6)] the centre of a prime
left max-ring is a field, the next remark follows.

Remark 1.6. If R is a left primitive ring whose centre is not a field then
R is a left noprimdiv ring but not a left max-ring.

Examples 1.7. A free Z-ring in more than one variable and, for any field
K, a free K-algebra in more than one variable are left (and right) noprimdiv
rings which are not left max-rings. If K is a division ring not algebraic over
its centre C then R = K[X] is left and right primitive but not a left or right
max-ring.

Proof. The free rings and algebras are left primitive but are not left
max-rings because they each have a homomorphic image of the form K[X],
K a field, which is not a left max-ring.

The second statement follows from [11, Proposition 11.14] which says
that R is left and right primitive. The centre of R is C[X] and so R is not
a left (or right) max-ring by Remark 1.6.

As a special case of Class 3, above, if R is a commutative ring it is
a noprimidiv ring if and only if J(R) is T-nilpotent and all prime ideals
are maximal. The following remark shows how to construct a primitively
divisible module when there is a prime ideal which is not maximal.

Remark 1.8. Let R be a commutative ring which has a prime ideal P which
is not maximal. Then the localization RP , as an R-module, is primitively
divisible.

Proof. Let Q be any maximal ideal of R. Then, there is r ∈ Q\P whose
image in RP is invertible. It follows that QRP = RP .

The following remark is easily shown.

Remark 1.9. A ring R is a left noprimdiv ring if and only if no subdirectly
irreducible left module is primitively divisible.

The following criterion shows an analogy with one given by Faith for
max-rings ([5, One-Module Theorem]); the proofs are similar.

Proposition 1.10. A ring R is a left noprimdiv ring if and only if there is a
cogenerator C in R-Mod such that no non-zero submodule of C is primitively
divisible. This occurs when for each simple module S, no non-zero submodule
of E(S) is primitively divisible.
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Proof. One direction is clear. Suppose C has the stated properties. If
0 6= M were primitively divisible then, for some index set K, there is an
embedding M ↪→ CK and, for some k ∈ K, the kth projection πk : CK → C
is non-zero on M . Then, πk(M) would be a non-zero primitively divisible
submodule of C. This is not possible.

The second statement follows similarly since C =
⊕

S simpleE(S) is a
cogenerator and the projection of the first part of the proof can be followed
by a non-zero projection onto one of the components E(S).

An idempotent radical on R-Mod suited to left max-rings is developed in
[5]. The appropriate one for a left noprimdiv ring R is found for M ∈ R-Mod
by transfinitely iterating r(M) =

⋂
P∈Pl PM . It is zero when R is a left

noprimdiv ring. This subject will not be pursued here.
The next step is to be able to reduce the study of left noprimdiv rings

to the semiprimitive case (Cf. [17, Lemma 26.2] for left max-rings).

Proposition 1.11. For any ring R, R is a left noprimdiv ring if and only
if R/J(R) is a left noprimdiv ring and J(R) is left T-nilpotent.

Proof. If R is a left noprimdiv ring then for any R̄ = R/J(R)-module
M 6= 0, there is a left primitive ideal P ofR with PM 6= M . Since P ⊇ J(R),
P̄M 6= M . By, e.g., [11, Theorem 23.16], if J(R) is not left T-nilpotent there
is 0 6= M ∈ R-Mod with J(R)M = M , which is not possible.

In the other direction, if R̄ is a left noprimdiv ring and J(R) is left T-
nilpotent then for any 0 6= M ∈ R-Mod, J(R)M 6= M and M/J(R)M is
not primitively divisible. Hence, M is not primitively divisible.

The proof of Proposition 1.11 also shows that if N is any left T-nilpotent
ideal of a ring R then R is a noprimdiv ring if and only if R/N is.

Corollary 1.12. A left self injective ring is a left noprimdiv ring if and
only if J(R) is left T-nilpotent.

Proof. A left self-injective ring is regular modulo its Jacobson radical.
The result follows from Proposition 1.11 and the fact that regular rings are
left (and right) noprimdiv rings.

C. Examples and counterexamples. The following example due to
Snider ([15]) will be very useful in what follows. It shows, among other
things that, even when the left and right primitive ideals coincide with the
maximal ideals, the noprimdiv condition (which, here, coincides with the
max-ring condition) is not left-right symmetric. By [16, Lemma 10], if the
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left primitive images of a ring R are artinian then R is a left noprimdiv ring
if and only if it is a left max-ring. (In fact, if the left primitive images of
R are any left max-rings then the same equivalence holds.) Details of the
example are quoted because they will be used later.

Example 1.13 ([15]). There is a semiprimitive π-regular ring R whose left
and right primitive ideals coincide, whose primitive images are artinian and
which is a right max-ring but not a left noprimdiv (max-)ring.

Proof. Fix a field K; all the matrices will be over K. For m > 1, let B be
an m×m-matrix; then for k ≥ 0 set B(k) to be the (m+k)×(m+k)-matrix
formed from B by adding k columns of zeros on the right and k rows of zeros
on the bottom. Let R be the ring of sequences (An) of n×n-matrices, n ∈ N,
such that for some m > 1 there is a strictly upper triangular m×m-matrix
B and f ∈ K such that for all n = m + k, k ≥ 0, An = B(k) + fIn. The
left and right primitive ideals are maximal and they are all the prime ideals.
They are of two sorts: Pm, m ∈ N , where Pm = {(An) ∈ R | Am = 0}, and
P = {(An) ∈ R | such that f = 0}. For each m ∈ N, R/Pm ∼= Mm(K) while
R/P ∼= K. Now let I =

⊕
n∈N Pn and set S = R/I; J(S) is right but not

left T-nilpotent. Proposition 1.11 then says that S it is not a left noprimdiv
ring; however, it will be seen below that if the left primitive ideals of a ring
are maximal then a homomorphic image of a left noprimdiv ring is a left
noprimdiv ring (Proposition 2.2 (i)).

That R is a right noprimdiv ring follows from Proposition 1.14, be-
low.

Snider’s [15, Theorem 1], which says that a semiprimitive π-regular ring
of bounded index is a left max-ring, can be generalized to some π-regular
rings which are not of finite index; however, the condition of bounded index
in that result cannot simply be dropped because of Example 1.13 ([15, Ex-
ample 1]). The following proposition is suggested by the manner in which
many examples are constructed.

Proposition 1.14. Suppose that in a ring R there is a set of central idem-
potents, {eα | α ∈ A} such that (i) for each α ∈ A, eαR, as a ring, is a
left noprimdiv (left max-)ring, and (ii) setting I =

∑
α∈A eαR, R/I is a left

noprimdiv (left max-)ring. Then, R is a left noprimidiv (left max-)ring.

Proof. The proof is given for left noprimdiv rings; that for left max-rings
is similar. For each α ∈ A and P ∈ Pl(R), eα ∈ P or 1 − eα ∈ P . Then,
Pl(eαR) = {eαP | P ∈ Pl(R), eα /∈ P}.
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Let 0 6= M ∈ R-Mod. If, for some α ∈ A, eαM 6= 0, then, for some
P ∈ Pl(R) with eα /∈ P , eαPM 6= eαM . It follows that PM 6= M .
If eαM = 0 for all α ∈ A then M is an R/I-module and there is some
P ∈ Pl(R), P ⊇ I with PM 6= M .

The next step is to find a family of rings satisfying the conditions of
Proposition 1.14. In a ring whose left primitive images are artinian, the left
primitive ideals coincide with the maximal ideals . In what follows the left
primitive ideals of R will be maximal and so the (left) Jacobson structure
space of R will be MaxR. A closed set in MaxR will, as usual, be denoted
V (I) = {P ∈ MaxR | P ⊇ I}, for some ideal I.

Theorem 1.15. Let R be a π-regular ring whose primitive images are ar-
tinian and such that for any ideal I, J(R/I) is left T-nilpotent. Write
Un = {P ∈ MaxR | indexR/P = n} and suppose that for all n ∈ N,
except for a finite set F ⊂ N, Un is open in MaxR. Then, R is a left
max-ring.

Proof. Since, by hypothesis, J(R) is left T-nilpotent, it can immediately
be assumed that R is semiprimitive (Proposition 1.11). In what follows,
arguments from [15] will come into play where finite index can be used.

Put Y = {n ∈ N | n /∈ F and Un 6= ∅}; by Snider’s result it may be
assumed that Y is infinite. For each n ∈ Y let Ln =

⋂
P∈MaxR\Un

P . Since
MaxR \Un is closed, there is an ideal Kn 6= 0 so that MaxR \Un = V (Kn).
It follows that MaxR \ Un = V (Ln) and Ln 6= 0. If Ln is considered as a
ring (possibly without 1) then its primitive ideals are those of MaxR not
containing Ln, i.e., those P ∈ MaxR with indexR/P = n, and, since R/P
is simple, Ln/(P ∩ Ln) ∼= R/P is of index n. Hence, Ln, as a ring, is a
homogeneous π-regular ring of index n. If Zn is the centre of Ln then, [10,
Theorem 4.3], LnZn is a regular and biregular ring of index n.

Now suppose that e 6= 0 is a central idempotent of LnZn. If P ∈ MaxR
then, as in [15], if e /∈ P , e has image 1 ∈ R/P . Thus, e has image 0 or 1 in
each R/P showing e ∈ B(R).

Now fix 0 6= M ∈ R-Mod; it will be shown not to be primitively divisible.
If LnZnM 6= 0, exactly as in [15], there is e ∈ B(LnZn) ⊆ B(R) with
eM 6= 0. Then, M = eM ⊕ (1− e)M has a maximal submodule since eM , a
module over the V-ring eR, does. (More precisely, eR = eLnZnR = eLnZn
is a regular, biregular ring with identity and is homogeneous of index n.)
Thus, it may be supposed that for all n ∈ Y , LnZnM = 0.

Set I =
∑

n∈Y LnZn. By assumption, IM = 0. Since each Ln/LnZn,
n /∈ F , is nil ([10, Theorem 4.3]), if P ∈ MaxR contains LnZn it also
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contains Ln. In other words, the maximal ideals containing I are those con-
taining each Ln, n ∈ Y . Thus, if P ∈ MaxR is such that P ⊇ I, P /∈ Un
for all n ∈ Y . Because F is finite, the ring R/I is π-regular whose left
primitive images are of bounded index. It need not be semiprimitive (Ex-
ample 1.13). However, by hypothesis J(R/I) is left T-nilpotent and, thus,
J(R/L)M 6= M (e.g., [11, Theorem 23.16]). Put R̄ = (R/I)/J(R/I). By
[15, Theorem 1], the R̄-module M/J(R/I)M has a maximal submodule since
R̄ is is a semiprimitive π-regular of finite index. Hence, M has a maximal
submodule and R is a left max-ring.

Theorem 1.15 is illustrated by Example 1.13 ([15, Example 1]) where the
right hand version of the hypotheses are satisfied but not the left. The space
MaxR can be identified with the one-point compactification N∪ {∞} of N
and, for each n ≥ 2, Un = {n} is both open and closed. The condition on the
radicals of images in Theorem 1.15 is necessary by Corollary 2.3 although
in the proof it is only used for one ideal. The following contains a more
elaborate illustration of Theorem 1.15 using Example 1.13 as a model; in
this ring, the subrings LnZn are no longer rings with 1.

Examples 1.16. (i) Let K be a field and, for each m ∈ N, Sm is a copy of
the ring of Example 1.13. Put R to be

⊕
m∈N Sm with a copy of K adjoined

to make a ring with 1. Then, R satisfies the conditions of Theorem 1.15 on
the right.

(ii) Let K be a field and for each n > 1, let Sn be the ring of se-
quences from M2n(K) which are eventually constant of the form (A 0

0 A ),
where A ∈ M2n−1(K). Let R be the direct sum of Sn, n > 1, with a copy
of K adjoined. Then, R satisfies the conditions of Proposition 1.14 but not
those of Theorem 1.15.

Proof. (i) MaxR can be identified with the topological space which is the
one-point compactification of a disjoint union of the spaces MaxSm,m ∈ N.
For each n ≥ 2, Un is N as a discrete space and is open in MaxR. In the
language of the proof of Theorem 1.15, LnZn = Ln is regular and biregular;
the ideal I is

∑
n≥2 Ln. If, in Sm, the ideal which is the sum of the matrix

rings is Im then R/I is
⊕

m∈N Sm/Im with a copy of K adjoined to make a
ring with 1. The radical of R/I is right T-nilpotent and (R/I)/J(R/I) is a
commutative regular ring.

(ii) In this case, U2n consists of a copy of the discrete space N with one
point added from the constant part of S2n+1 . No neighbourhood of this
point is contained in U2n . However, each copy of M2n(K) can be identified
with a central idempotent. The sum of these, over n > 1, gives an ideal
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I and R/I can be identified with the ring of sequences with components
(An 0

0 An
) ∈ M2n(K), n > 1, which are eventually constant and scalar. This

ring satisfies the conditions of Proposition 1.14 and, hence, so does R.

2. The class of left noprimdiv rings. In this section the class of left
noprimdiv rings is examined. The first thing to note is that it is not closed
under homomorphic images even though the classes 2 through 5 listed in
Section 1 all are closed under homomorphic images. Moreover, the class of
rings which are left primitively pure is closed under homomorphic images
([16, Lemma 4(4)]).

Proposition 2.1. The class of noprimdiv rings is not closed under homo-
morphic images; it in not closed under subrings.

Proof. As already mentioned, a free ring over Z in more than one vari-
able is left primitive. It follows that every ring is the homomorphic image of
a left primitive, and, hence, left noprimdiv ring. For the second statement
it suffices to look at Z and Q.

Sometimes homomorphic images behave well.

Proposition 2.2. Let R be a left noprimdiv ring.
(i) If the left primitive ideals of R are maximal then any homomorphic

image of R is a left noprimdiv ring.
(ii) If I is an ideal of R generated by central idempotents then R/I is a

left noprimdiv ring.

Proof. (i) If I is an ideal of R and 0 6= M ∈ R/I-Mod then there is a left
primitive ideal P of R with PM 6= M . If P ⊇ I then P/I is left primitive
in R/I giving what is required. Otherwise, P + I = R and, since IM = 0,
(P + I)M = M = PM , which is impossible.

(ii) This is done similarly. If 0 6= M ∈ R/I-Mod there is a left primitive
ideal P of R with PM 6= M . Suppose, as above, that P 6⊇ I. There is a
central idempotent e ∈ I, e /∈ P . Then, 1− e ∈ P giving P + I = R.

An idempotent e ∈ R is called semi-central is eR(1−e) = 0 or (1−e)Re =
0. In the proof of Proposition 2.2(ii) it suffices to assume that I is generated
by semi-central idempotents. The left primitive skew polynomial rings of [11,
Proposition 11.12] show that the converse to Proposition 2.2 (i) fails.

If the left primitive ideals of R are maximal then Proposition 2.2 (i) yields
a necessary condition for R to be left noprimdiv.
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Corollary 2.3. Let R be a ring whose left primitive ideals are maximal. If
R is a left noprimdiv ring then, for any ideal I, J(R/I) is left T-nilpotent.

Proposition 2.2 (ii) has a further application. Recall the nature of the
Pierce sheaf of a ring R. Every ring R is the ring of sections of a sheaf
whose base space is Spec B(R) and whose stalks are of the form R/Rx,
where x ∈ Spec B(R). For details, see [14] and [9, V §2].

Theorem 2.4. A ring R is a left noprimdiv ring if and only each of the
stalks of its Pierce sheaf is a left noprimdiv ring.

Proof. First assume that R is a left noprimdiv ring. Then, since the
Pierce stalks have the form Rx = R/Rx, for a maximal ideal x of the
boolean algebra of central idempotents B(R), Rx is a left noprimdiv ring
(Proposition 2.2.).

In the other direction assume that each Pierce stalk Rx is a left noprim-
div ring. For any 0 6= M ∈ R-Mod, there is some x ∈ Spec B(R), Mx =
M/xM 6= 0 ([14, Proposition 1.7], M is a subdirect product of the Mx).
Then, there is a left primitive ideal P of R such that PMx = PxMx 6= Mx.
However, (PM)x = PxMx 6= Mx, showing that PM 6= M .

This result allows one to construct many examples. It was already men-
tioned that biregular rings are left and right noprimdiv rings. They are the
rings whose Pierce stalks are simple rings.

The Pierce sheaf construction can be iterated, perhaps transfinitely, to
get a presentation of a ring R as a subdirect product of indecomposable
rings (with only 0 and 1 as central idempotents), called the maximal in-
decomposable factors (see [3]). Details will not be given here but as in
[17, Lemma 26.2], for left max-rings, the methods of Theorem 2.4 and Re-
mark 1.9 will show that a ring R is a left noprimdiv ring if and only if each
of its maximal indecomposable factors is a left noprimdiv ring.

It is now shown that “left noprimdiv” is a Morita invariant.

Theorem 2.5. Let R and S be Morita equivalent rings. Then, R is a left
noprimdiv ring if and only if S is.

Proof. Let R ∼M S be Morita equivalent rings. By [1, Theorem 22.2],
there is a balanced module SPR with SP and PR progenerators and with

HomR(P,−) : R-Mod→ S-Mod and P ⊗S − : S-Mod→ R-Mod

inverse equivalences. Moreover, Q = HomR(P,R) is a balanced bi-module
RQS with RQ and QS progenerators. By [1, Proposition 21.11] there is a
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lattice isomorphism Φ from the lattice of two-sided ideals of R to that of S
so that R/I ∼M S/Φ(I). In fact, Φ(I) = HomR(P, IP ). Since primitiveness
of a ring is a Morita invariant property, I is a left primitive ideal if and
only if Φ(I) is a left primitive ideal. Suppose R is a left noprimdiv ring and
0 6= M ∈ S-Mod. Then, there is a left primitive ideal I in R such that
I(P ⊗S M) 6= P ⊗S M . (Notice that IP = PΦ(I) [12, proof of 18.44].)
Then, I(P ⊗S M) = IP ⊗S M = PΦ(I) ⊗S M = P ⊗S Φ(I)M . Therefore
Φ(I)M 6= M .

Proposition 2.6. (i) Let R be a left noprimdiv ring which is not left prim-
itive and S = R[T ] an extension of R such that R ∩ 〈T 〉 = 0. Then, S is
a left noprimdiv ring. (ii) A finite direct product of left noprimdiv rings is
a left noprimdiv ring. (iii) A trivial extension of a left noprimdiv is again
one. (iv) The ring of upper triangular n× n matrices over a left noprimdiv
ring is again one.

Proof. (i) If S = R[T ] is as described, then for any ideal I of R, I + 〈T 〉
is an ideal of S and S/(I + 〈T 〉) ∼= R/I. Suppose 0 6= M ∈ S-Mod is
primitively divisible. For any left primitive ideal P of R, P + 〈T 〉 is a left
primitive ideal of S and M = (P + 〈T 〉)M ⊆ PM . Hence, M would be
a primitively divisible R-module, which is not possible. (ii) is clear (but
see Proposition 2.7 (ii)); (iii) and (iv) follow from the remark after Proposi-
tion 1.11 and (ii).

Polynomial rings and free R-rings are among the rings covered by Propo-
sition 2.6 (i). The proviso that R not be left primitive in part (i) is essential.
If K is a field, K is a noprimdiv ring but the polynomial ring K[X] is not.
There is no similar result for group rings. Let G be an infinite cyclic group
and R = (Z/pnZ)[G], where p is a prime and n > 1. Then, R/pR ∼= Fp[G],
a domain. By the remark after Proposition 1.11, since R/pR is not a no-
primdiv ring, neither is R; however, Z/pnZ is a noprimdiv ring.

The class of left noprimdiv rings is not closed under direct limits or
products, as will now be shown.

Proposition 2.7. (i) There is a directed family of left noprimdiv rings
whose direct limit is not a left noprimdiv ring. (ii) There is a direct product
of left noprimdiv rings which is not a left noprimdiv ring. (iii) There is an
inverse limit of left noprimdiv rings which is not a left noprimdiv ring.

Proof. (i) Example 1.13 will provide an example. By Theorem 2.4, the
stalks of the Pierce sheaf of a left noprimdiv ring are left noprimdiv rings.
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The Pierce stalks of the ring R of Example 1.13 are as follows: for each
n ∈ N, there is a stalk Mn(K). The remaining stalk, R∞, is the direct limit
over N of rings Tn which are n×n-matrices which are upper triangular with
constant diagonal; the embeddings are B+fIn 7→ B(1) +fIn+1, where B is
sent to an (n+1)×(n+1) matrix as in Example 1.13. Each Tn has nilpotent
radical and Tn/J(Tn) ∼= K; hence, each Tn is a left (and right) noprimdiv
ring. However, we know that the limit is not a left noprimdiv ring.

(ii) The rings Tn, n ∈ N, from the proof of part (i) can be used here.
Put Π =

∏
n∈N Tn. Let U be a non-principal ultrafilter on N and I =

{(rn) ∈ Π | for some F ∈ U , rm = 0,∀m ∈ F}. Consider Π/I = S. Define
L = {(rn) ∈ I | rm is strictly upper triangular ∀m ∈ F, some F ∈ U}. It
follows that L ⊇ I is an ideal of Π and L̄ = L/I is an ideal of S. Moreover,
S/L̄ is a field which is a non-standard model of K and for a ∈ L̄, 1 + a
is invertible. Thus, L̄ = J(S) and, just as in Example 1.13, L̄ is not left
T-nilpotent. Hence, S, a homomorphic image of Π, is not a left noprimdiv
ring. However, the left primitive ideals of Π are maximal and, hence, by
Proposition 2.2(1), Π is not a noprimdiv ring. (It can also be observed that
S is a Pierce stalk of Π and Theorem 2.4 can be used.)

(iii) For a prime number p, the ring of p-adic integers Zp is not a no-
primdiv ring but it is an inverse limit of Z/〈pn〉, n ∈ N, each of which is a
noprimdiv ring.

3. Ring whose injective left modules are primitively divisible. It
was shown in [16, Proposition 4] that RR can be embedded in a primitively
divisible module if and only if every injective left module is primitively
divisible. This property resembles classical divisibility and coincides with it
for commutative PIDs. In this section this phenomenon is examined.

Definition 3.1. A ring R such that every injective left module is primitively
divisible is called a left IPD ring (for injective left modules primitively di-
visible). A commutative left IPD ring is called an IPD ring.

The classes of left noprimdiv and left IPD rings are not exhaustive; Z×Q
is neither in one nor the other.

Tuganbaev [16] supplies the basic tools.

Theorem 3.2 ( [16] Propositions 4 and 5). The following statements are
equivalent: (1) R is a left IPD ring, (2) RR can be embedded in a primitively
divisible module, (3) E(RR) is primitively divisible, and (4) given P ∈ Pl

there are a1, . . . , ak ∈ P and x1, . . . , xk ∈ E(RR) such that 1 =
∑k

i=1 aixi.
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With this in hand it is possible to give a characterization of left IPD
rings.

Theorem 3.3. A ring R is a left IPD ring if and only if each P ∈ Pl(R)
contains a finite subset with zero left annihilator.

Proof. Theorem 3.2 (4) says, in particular, that the condition is neces-
sary.

Suppose now that each P ∈ Pl(R) contains a finite subset with zero left
annihilator. Let {a1, . . . , ak} be a subset of R with zero left annihilator.
Define S = R〈X1, X2, . . .〉, the free R-ring in countably many variables.
A free R-basis for S is the set of monomials in the variables, including the
empty monomial, 1. Define L = ES(SS), the S injective hull of SS. Consider
now f = a1X1 + · · · akXk ∈ S. Because of the statement about the R-basis,
it follows that lannS f = 0.

It follows that for each u ∈ L, the S-homomorphism φu : Sf → S
defined by φu(f) = u is well-defined. By injectivity, φu lifts to some
ψu : S → L. Let ψu(1) = v; then φu(f) = ψu(f) = fψu(1) = fv = u.
Hence, u =

∑k
i=1 aiψu(Xi). Now suppose that {a1, . . . , ak} ⊆ P ∈ Pl(R).

Then, each u ∈ L can be expressed as an element of PL. Hence, PL = L for
all P ∈ Pl(R). When viewed as a left R-module, L is a primitively divisible
R-module containing RR. By Theorem 3.2 (2), R is a left IPD ring.

Corollary 3.4. A commutative ring is an IPD ring if and only if each
maximal ideal contains a finite subset with zero annihilator.

Similar reasoning yields the following.

Proposition 3.5. A ring R is a left IPD ring if and only if for each P ∈ Pl

there are a1, . . . , ak ∈ P such that for any injective E ∈ R-Mod and y ∈ E
the equation

∑k
i=1 aizi = y has a solution yi . . . , yk ∈ E.

Proof. Assume that R is a left IPD ring. For P ∈ Pl find a1, . . . , ak ∈ P
and x1, . . . , xk ∈ E(RR) such that 1 =

∑k
i=1 aixi. For y ∈ E, define

φ : RR → E by φ(1) = y. This lifts to ψ : E(RR) → E and y = ψ(1) =
ψ(

∑k
i=1 aixi) =

∑k
i=1 aiψ(xi). The converse is clear.

All domains which are not left primitive are examples of left IPD rings.
The rest of this section concerns commutative rings. A commutative

ring which is a noprimdiv ring is 0-dimensional. Something quite different
occurs in IPD rings; no maximal ideal can be a minimal prime ideal.
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Theorem 3.6. Let R be a commutative IPD ring. Then, MinR∩MaxR =
∅.

Proof. First suppose that R is local with maximal ideal P where P ∈
MinR. Since, here, P is a nil ideal, any finite subset of P has non-zero
annihilator, which is not possible in an IPD ring.

In any ring R as in the statement, let P ∈ MaxR; RP , as an R-module,
embeds in a primitively divisible module, say M . In particular, PM = M .
Since RP ∼= RP ⊗R RP , RP embeds, using the isomorphism and flatness,
into RP ⊗RM = RP ⊗RPM = RPP⊗RM = PPRP ⊗RM = PP (RP ⊗RM).
Hence, RP ⊗RM is a primitively divisible RP -module.

If P ∈ MinR∩MaxR then RP would be an IPD ring and this would be
a contradiction.

It will be seen shortly (Example 3.10) that the condition of Theorem 3.6
is not sufficient even for reduced rings. However, the next proposition gives
an instance where the converse holds. It is illustrated by Example 3.8.

Proposition 3.7. Let R be a reduced commutative ring. If MinR is compact
and MinR ∩MaxR = ∅ then R is a IPD ring.

Proof. Put Q = Qmax (R), a regular ring since R is reduced. By [8,
Theorem 4.3], MinR = {N ∩R | N ∈ SpecQ}. If, for P ∈ MaxR, PQ 6= Q,
then there is N ∈ SpecQ with PQ ⊆ N . Then, N ∩ R ⊇ P is in MinR,
which is not possible.

Recall that a commutative p.p. ring is one where the annihilator of an
element is generated by an idempotent ([2]).

Example 3.8. If R is a commutative p.p. ring with MinR ∩ MaxR = ∅
then R is an IPD ring.

Proof. It only needs to be shown that MinR is compact. For any a ∈ R,
ann a = Re, some e2 = e ∈ R. Then, ann(〈a〉+Re) = 0. It follows from [8,
Theorem 4.3] that MinR is compact. (It is also easy to show directly, using
[2, Lemma 3.1], that Qcl (R) is primitively divisible; here the Pierce stalks
are domains which are not fields.)

Rings of continuous real valued functions form a rich class of reduced
commutative rings. All terminology is from [7] and [6]. Recall that if X is
a compact Hausdorff space the maximal ideals of C(X) have the form: for
x ∈ X, Mx = {f ∈ C(X) | f(x) = 0}. A point x ∈ X is called a P-point if
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Mx is a minimal prime ideal, i.e., if f ∈ C(X) is such that f(x) = 0 then f
is zero on a neighbourhood of x. If every point is a P-point, X is called a
P-space; these are exactly the spaces for which C(X) is a regular ring ([7,
4J]). A point x is an almost P-point ([13]) if f(x) = 0 implies the zero-set
of f has non-empty interior.

For these rings Qcl (C(X)) is written Qcl (X) and Qmax (C(X)) is Q(X).

Proposition 3.9. Let X be a compact Hausdorff space and C(X) the cor-
responding ring of continuous real valued functions. (1) The ring C(X) is a
noprimdiv ring if and only if X is a P-space (i.e., C(X) is regular). (2) If
X has a P-point then C(X) is not an IPD ring. (3) C(X) is an IPD ring
if and only if for each x ∈ X, there is a dense cozero set U with x /∈ U .
In this case, Qcl (X) is primitively divisible. (4) For all M ∈ MaxC(X),
MQ(X) 6= Q(X) if and only if X is an almost P-space.

Proof. (1) Since a reduced commutative noprimdiv ring is one with all
prime ideals maximal, the only rings of the form C(X) of this type are those
where X is a P-space.

(2) Since a maximal ideal in an IPD ring cannot be a minimal prime
ideal, X cannot have a P-point.

(3) If, for some x ∈ X, Mx(X) = Q(X) then there are f1, . . . , fk ∈ Mx

such that {f1, . . . , fk} has zero annihilator. It follows that f = f2
1 +· · ·+f2

k ∈
Mx is a non zero-divisor in C(X). Hence, coz f is dense. Conversely, if, for
each x ∈ X there is f ∈ Mx with coz f dense in X, then f is invertible in
Qcl (X) ([6, Theorem, p. 15]).

(4) Follows from the proof of (3) since an almost P-space ([13, Propo-
sition 1.1]) is one where every non-empty zero-set has non-empty interior,
which is saying that f ∈ C(X) is either a zero-divisor or invertible.

Any compact metric space without isolated points, such as the unit in-
terval, will satisfy the conditions of Proposition 3.9 (3).

Recall that in C(X), X compact, a maximal ideal Mx is not minimal if
and only if there is f ∈ Mx such that the zero-set of f does not contain a
neighbourhood of x ([7, §14.12]).

Example 3.10. There is a reduced commutative ring R such that MinR ∩
MaxR = ∅ but R is not an IPD ring.

Proof. A space X is constructed so that C(X) is the required example.
In order to have MinC(X) ∩ MaxC(X) = ∅, it suffices that X have no
P-points; to prevent C(X) from being an IPD ring X must have an almost
P-point. Take Y be a topological sum (disjoint union) of uncountably many
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copies of the unit interval and X = Y ∪ {∞}, the one-point compactifica-
tion. Every y ∈ Y has the property that MyQ(X) = Q(X), however, when
0 6= f ∈ C(X) has value f(∞) = 0 then its zero-set need not be a neigh-
bourhood of ∞ but is always contains a non-empty open set. Hence, ∞ is
almost P-point which is not a P-point. Thus, M∞Q(X) 6= Q(X).

The next example illustrates Theorem 3.4. The “A + B” construction
of [8, §26] is used. The construction begins with a commutative reduced
ring D and a subset P of SpecD indexed by A. Then, I = A × N and,
for each i = (α, n) ∈ I, Pi = Pα. Consider the ideal B =

⊕
i∈I Di, where

Di = D/Pi, in Π =
∏
i∈I Di; φ : D → Π is defined by φ(d) = (d+Pi) and A

is the image of φ. Then, the ring R = A+B ⊆ Π. Note that if
⋂
P∈P P = 0

then R/B ∼= D.

Example 3.11. There is a commutative ring R satisfying the requirements
of Theorem 3.4 which has a maximal ideal consisting of zero-divisors.

Proof. The “A+B” construction is used. Let K be an algebraically
closed field and D = K[X,Y ]. Let P be the set of all one-generator, non-
zero prime ideals of A. The resulting ring R has two sorts of maximal
ideals: (1) those of the form M(i, Qi) = {φ(a) + b | (φ(a) + b)i ∈ Qi}, where
Qi ∈ MaxDi; (2) an ideal of the form φ(Q) + B, where Q ∈ MaxD. Each
maximal ideal of the first sort contains a non zero-divisor. If φ(Q) + B is
of the second kind then Q can be written Q = 〈f, g〉, f, g irreducible. Any
single element of h ∈ Q has an irreducible factor and so each φ(h)+b, b ∈ B,
is a zero-divisor. However, {(φ(f), φ(g)} has zero annihilator.

Much of this section has been about reduced commutative rings. The
next and final example shows that the IPD property does not lift modulo
the prime radical, even when it it is nilpotent.

Example 3.12. Let M be the Z-module
⊕

p prime Z/〈p〉 and R the trivial
extension of Z by M . Then, R is not an IPD ring while R/P(R) ∼= Z is.

Proof. The maximal ideals of R are, for a prime p, Qp = {(pz, x) | z ∈
Z, x ∈ M}. If QpE(RR) = E(RR), then (Proposition 3.5), Qp has a finite
subset with trivial annihilator. However, any finite subset of Qp will be an-
nihilated by (0,m), where the only non-zero component of m is in Z/〈p〉.
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