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Abstract. Let R be any ring; a ∈ R is called a weak zero-divisor if there
are r, s ∈ R with ras = 0 and rs 6= 0. It is shown that, in any ring R,
the elements of a minimal prime ideal are weak zero-divisors. Examples show
that a minimal prime ideal may have elements which are neither left nor right
zero-divisors. However, every R has a minimal prime ideal consisting of left
zero-divisors and one of right zero-divisors. The union of the minimal prime
ideals is studied in 2-primal rings and the union of the minimal strongly prime
ideals (in the sense of Rowen) in NI-rings.
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Introduction. E. Armendariz asked, during a conference lecture, if, in any ring, the
elements of a minimal prime ideal were zero-divisors of some sort. In what follows
this question will be answered in the positive with an appropriate interpretation
of “zero-divisor”.

Two very basic statements about minimal prime ideals hold in a commutative
ring R: (I) If P is a minimal prime ideal then the elements of P are zero-divisors,
and (II) the union of the minimal prime ideals is M = {a ∈ R | ∃ r ∈ R with ar ∈
N∗(R) but r /∈ N∗(R)}, where N∗(R) is the prime radical. We will see that (I),
suitably interpreted, is true for all rings. The statement (II) is false in general non-
commutative rings but a version of it does hold in rings where the set of nilpotent
elements forms an ideal.

In a commutative ring R we always have that R/N∗(R) is reduced (i.e., has
no non-zero nilpotent elements); this fails in the non-commutative case. Hence we
can expect “commutative-like” behaviour when, for a non-commutative ring R,
R/N∗(R) is reduced; these rings are called 2-primal and have been extensively
studied. Statement (II), above, holds for these rings. A larger class of rings is
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where the set of nilpotent elements, N(R), forms an ideal (called NI-rings). Once
again statements (I) (Corollary 2.9) and (II) (Corollary 2.11) hold when “minimal
prime ideals” are replaced by “minimal r-strongly prime ideals” whose definition
is recalled below. (The two types of prime ideal coincide in commutative rings.)

Various weakened forms of commutativity yield results which show that min-
imal prime ideals consist of (left or right) zero-divisors. A thorough study of this
is in [2, e.g., Corollary 2.7]. Our purpose here is to look at minimal prime ideals
in general where elements need not be zero-divisors but always are what we call
weak zero-divisors (Theorem 2.2); an element a in a ring R is a weak zero-divisor
if there are r, s ∈ R with ras = 0 and rs 6= 0. It will also be seen that, in spe-
cial cases, other sorts of prime ideals consist of weak zero-divisors. Examples will
show that “weak zero-divisor” cannot be replaced by “left (or right) zero-divisor”
(Examples 3.2, 3.3 and the semiprime Example 3.4), however, in any ring R there
is a minimal prime ideal consisting of left zero-divisors and one consisting of right
zero-divisors (Proposition 2.7).

Terminology: For a ring R (always unital) the prime radical is denoted N∗(R),
the upper nil radical N∗(R) and the set of nilpotent elements N(R). As usual, R
is called semiprime if N∗(R) = 0, while R is called an NI-ring if N∗(R) = N(R).
Recall that an ideal P in a ring R is called completely prime if R/P is a domain.

There are several uses of the term “strongly prime”. In the sequel we will
use the definition chosen by Rowen (see [13] and [6]). In order to avoid confusion
we will say that a prime ideal P in a ring R is an r-strongly prime ideal if R/P
has no non-zero nil ideals. (Since every maximal ideal of R is an r-strongly prime
ideal, there are r-strongly prime ideals which are not completely prime.) A ring
in which every minimal prime ideal is completely prime is called 2-primal. The
2-primal rings are special cases of NI-rings.

The (two-sided) ideal of a ring R generated by a subset X is written 〈X〉 or
by an element a ∈ R written 〈a〉.

Section 1 is devoted to a brief look at r-strongly prime ideals. Section 2 con-
tains the main results and Section 3 is devoted to examples, counterexamples and
special cases.

1. On r-strongly prime ideals.

The main topic will be deferred to the next section. Since r-strongly prime
ideals will show up in several places we first briefly study these ideals. We get a
description of r-strongly prime ideals in terms of special sorts of m-systems. Recall
that an m-system S in a ring R is a subset of R \ {0} such that 1 ∈ S and for
r, s ∈ S there is t ∈ R such that rts ∈ S. The complement of a prime ideal is an
m-system and an ideal maximal with respect to not meeting an m-system S is a
prime ideal (e.g., [11, §10]). A subset S of R \{0} containing 1 and which is closed
under multiplication is an example of an m-system.
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A ring R, viewed as an algebra over Z, has an enveloping algebra Re =
R ⊗Z R

op. The bimodule RRR can be thought of as a left Re-module. The ring
M(R) = Re/ annRe R is called the multiplication ring of R. Then, R is a faithful
M(R)-module. For λ ∈ M(R) we can lift λ to some

∑n
i=1 ri ⊗ si ∈ Re and,

for a ∈ R, think of λa as
∑n

i=1 riasi. We now formalize the definitions (cf. [13,
Definition 2.6.5]). (In [9], the multiplication algebra was used in the definition of
a different sort of “strongly prime” ideal.)

Definition 1.1. Let R be a ring. (1) A prime ideal P of R is called an r-strongly
prime ideal if R/P has no non-zero nil ideals. (2) A subset S of R \ {0} is called
an nm-system if (i) S is an m-system and (ii) for t ∈ S there is λ ∈ M(R),
depending on t, such that (λt)n ∈ S for all n ≥ 1.

It is readily seen that any r-strongly prime ideal contains an r-strongly prime
ideal which is minimal among r-strongly prime ideals. The intersection of the
(minimal) r-strongly prime ideals of a ring R is N∗(R) (see [13, Proposition 2.6.7]).
The connection between r-strongly prime ideals and nm-systems is clear. The basic
information is contained in the following.

Proposition 1.2. Let R be a ring. Then
(i) If S ⊆ R\{0} with 1 ∈ S is multiplicatively closed then S is an nm-system.
(ii) If P is an r-strongly prime ideal then R \ P is an nm-system.
(iii) If S is an nm-system and I is an ideal maximal with respect to not

meeting S, then I is an r-strongly prime ideal.
(iv) Every r-strongly prime ideal in R contains a minimal r-strongly prime

ideal (i.e., minimal among the r-strongly prime ideals).

Proof. (i) This is clear since for t ∈ S we can use λ = 1 ∈ M(R) and then
(λt)n = tn ∈ S for all n ≥ 1.

(ii) If P is an r-strongly prime ideal and S = R \ P , S is an m-system and
because R/P has no non-zero nil ideals, for t ∈ S there is λ ∈M(R) such that λt
is not nil modulo P , which is exactly the defining feature of an mn-system.

(iii) If S is an nm-system and I an ideal maximal with respect to not meeting
S then I is prime since S is an m-system. Suppose that x /∈ I generates an ideal
which is nil modulo I. Consider the ideal I + 〈x〉. Using maximality we pick,
t ∈ (I + 〈x〉) ∩ S and write t = a + y, a ∈ I, y ∈ 〈x〉. There is λ ∈ M(R) such
that (λt)n ∈ S for all n ≥ 1. Now (λt)n = (λa + λy)n = b + (λy)n, where b ∈ I .
However, for some m ≥ 1, (λy)m ∈ I, which is impossible. Hence, I is an r-strongly
prime ideal.

(iv) Clear. �

The result [6, Lemma 2.2], using a multiplicatively closed set for S, is a special
case of Proposition 1.2(iii).

In a commutative ring R a multiplicatively closed set S ⊆ R \ {0}, 1 ∈ S,
has a “saturation” T = {t ∈ R | 〈t〉 ∩ S 6= ∅} which is a multiplicatively closed set
and is the complement of the union of the prime ideals maximal with respect to
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not meeting S. There is a similar result, [9, Proposition 3.6], in connection with
the “strongly prime ideals” of that paper. However, there is no “saturation” for
nm-systems, in general. A given nm-system can in some cases be enlarged but
Example 3.1 will show that there is not always a “saturation”.

Remark 1.3. Let R be a ring and S ⊆ R \ {0} an nm-system. Define T = {t ∈ R |
∃ r, s ∈ R with rts ∈ S}. Then, T is an nm-system whose complement contains
the same ideals as the complement of S.

Proof. We first show that T is an m-system. If t, u ∈ T there are r, s, r′s′ ∈ R
with rts, r′us′ ∈ S. Since S is, in particular, an m-system there is x ∈ R with
rtsxr′us′ ∈ S. It follows that tsxr′u ∈ T , showing that T is an m-system. More-
over, if rts ∈ S there is λ ∈ M(R) with (λ(rts))n ∈ S, for all n ∈ N. However,
rts ∈ T . �

Theorem 2.10, below, gives examples of multiplicatively closed sets which are
saturated. As a final remark in this section we have the following companion to
a result of Shin, [14, Proposition 1.11]: R is 2-primal if and only if each minimal
prime ideal is completely prime.

Proposition 1.4. A ring R is an NI-ring if and only if each minimal r-strongly
prime ideal is completely prime.

Proof. If R is an NI-ring then each minimal r-strongly prime ideal is com-
pletely prime by [6, Theorem 2.3(1)]. In the other direction, if each minimal r-
strongly prime ideal is completely prime then R/N∗(R) is reduced. This means
that N∗(R) = N(R). �

2. Weak zero-divisors.

The following definition contains some terminology to be used throughout.

Definition 2.1. Let R be a ring. (i) An element a ∈ R is called a left zero-divisor if
there is 0 6= r ∈ R with ar = 0. The set of elements which are not left zero-divisors
is denoted Snl. (Similarly for right zero-divisors and Snr.) (ii) An element a ∈ R
is called a weak zero-divisor if there are r, s ∈ R with ras = 0 and rs 6= 0. The set
of elements of R which are not weak zero-divisors is denoted by Snw.

The notion of a weak zero-divisor is what is needed to answer the question
about elements of minimal primes.

Theorem 2.2. Let R be a ring and P a minimal prime ideal of R. Then, for each
a ∈ P , a is a weak zero-divisor.

Proof. Let P be a minimal prime ideal and put S = R \ P . Suppose, on the
contrary, that a ∈ P is not a weak zero-divisor. Consider the set

T = {r1ai1r2 · · · rkaikrk+1 | k ∈ N, ij ≥ 0, r1 · · · rk+1 ∈ S} .
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It is clear that T ⊇ S. The claim is that T is an m-system. It first must be shown
that 0 /∈ T . If 0 = r1a

i1r2 · · · rkaikrk+1 ∈ T then the product remains 0 if any fac-
tors a are removed since a ∈ Snw; once all the factors are removed from the expres-
sion we get r1 · · · rk+1 = 0, which is not possible since that product is in S. It is next
shown that T is an m-system: given two elements of T , r1ai1r2 · · · rkaikrk+1 and
s1a

j1s2 · · · sla
jlsl+1, we know that there is t ∈ R such that r1 · · · rk+1ts1 · · · sl+1 ∈

S. From that, r1ai1r2 · · · rkaikrk+1ts1a
j1s2 · · · sla

jlsl+1 ∈ T , as required. �

Examples 3.2 and 3.3, below, show that left or right zero-divisors cannot
replace weak zero-divisors in Theorem 2.2. However, in a reduced ring weak zero-
divisors are both left and right zero-divisors.

Corollary 2.3. In a ring R, if a is an element of a minimal prime ideal then there
are r, s ∈ R such that ras ∈ N∗(R) and rs /∈ N∗(R). If R/N∗(R) is reduced (i.e.,
N∗(R) = N(R)) then there is r /∈ N∗(R) such that ra ∈ N∗(R) and ar ∈ N∗(R).

Proof. The first part is Theorem 2.2 applied to R/N∗(R). The second follows
since in a reduced ring S, abc = 0 implies acb = bac = 0. �

Corollary 2.3 can, of course, be restated for any ideal I of R in place of N∗(R)
and using the prime ideals minimal over I.

The following simple lemma will be used here and again later.

Lemma 2.4. Let R be any ring and X a subset of R. Set M(X) = {a ∈ R | ∃ r, s ∈
R with ras ∈ X but rs /∈ X} and Mr(X) = {a ∈ R | ∃ r ∈ R with ar ∈ X but r /∈
X}. Then, R \M(X) and R \Mr(X) are multiplicatively closed and both contain
1.

Proof. We write M for M(X) and Mr for Mr(X). Suppose a, b ∈ R \ M
and ab ∈ M . Then, there are r, s ∈ R with rabs ∈ X while rs /∈ X. Since a /∈ M ,
rbs ∈ X and then b ∈M . This contradiction shows ab /∈M . The statements about
Mr are proved similarly. �

In Lemma 2.4 there is an analogous statement for Ml = Ml(X) = {a ∈ R |
∃ r ∈ R with ra ∈ X but r /∈ X}. Results about Mr for various sets X can be
restated for Ml.

Corollary 2.5. Let R be a ring. Then, Snw and Snl are closed under multiplication
and contain 1; in particular, Snw and Snl are nm-systems with Snw ⊆ Snl.

Proof. In Lemma 2.4 we take X = {0}. Moreover, if a is a left zero-divisor
then it is a weak zero-divisor. �

Remark 2.6. Let R be a ring. If the set of weak zero-divisors in R forms an ideal W
then W is a completely prime ideal. Moreover, if a minimal prime ideal P contains
all the weak zero-divisors, then P is completely prime and P = N∗(R) = N(R).
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Proof. By Corollary 2.5, R \W is a multiplicatively closed set. Hence, W is
prime and if rs ∈W then r ∈W or s ∈W .

For the remaining part, the minimal prime ideal P is the only minimal prime
and is, hence, N∗(R). �

Remark 2.6 can be illustrated by a trivial extension of a domain. If R is the
ring of column finite ℵ0×ℵ0 upper triangular matrices with constant diagonal over
a domain D, then R is an example of the situation of Remark 2.6 with P = N∗(R)
nil but not nilpotent. Rings of the type in Remark 2.6 are the subject of [7].

According to Proposition 1.2(iii) or [6, Lemma 2.2], if S is a multiplicatively
closed set in a ring R with 0 /∈ S and 1 ∈ S, then an ideal maximal with respect
to not meeting S is an r-strongly prime ideal.

Proposition 2.7. Let R be any ring. (i) There is an r-strongly prime ideal consisting
of weak zero-divisors. (ii) There is an r-strongly prime ideal consisting of left zero-
divisors. There is a minimal prime ideal consisting of left zero-divisors. Similarly
for right zero-divisors.

Proof. By Proposition 1.2(i) and (iii), an ideal maximal with respect to not
meeting the multiplicatively closed set Snw is an r-strongly prime ideal. Similarly
for Snl. Moreover, among the prime ideals not meeting Snl there are minimal prime
ideals. �

The ring of Example 3.2 has two minimal prime ideals, one consists of ele-
ments which are both left and right zero-divisors while the other has weak zero-
divisors which are not left or right zero-divisors. See also Example 3.6.

Proposition 2.8. Let P be a completely prime ideal in a ring R which is minimal
among r-strongly prime ideals. Then, the elements of P are weak zero-divisors.

Proof. We use Proposition 1.2(iii) and put S = R \ P . The argument of
Theorem 2.2 is modified. If a ∈ P is not a weak zero-divisor then put T =
{r1ai1r2 · · · rkaikrk+1 | ij ≥ 0, rj ∈ S, j = 1, . . . , k}. It follows that T is a multi-
plicatively closed set strictly containing S and with 0 /∈ T . An ideal maximal with
respect to not meeting T is an r-strongly prime and is contained in P . This is not
possible. �

There is an example, [6, Proposition 1.3], based on [6, Example 1.2], of a
prime NI-ring R in which N∗(R) 6= 0. Hence, there are r-strongly prime ideals
minimal among r-strongly prime ideals but which are not minimal prime ideals (0
is the only minimal prime ideal). Moreover, by [6, Theorem 2.3(1)], these minimal
r-strongly prime ideals are completely prime; then Proposition 2.8 applies and the
elements of such ideals are weak zero-divisors. We will use the construction of [6,
Example 1.2] and our Example 3.2 to show that in Proposition 2.8 weak zero-
divisors are required (see Example 3.3, below). We collect some of the remarks
above as follows.



Elements of minimal prime ideals in general rings 7

Corollary 2.9. Let R be an NI-ring and P a minimal r-strongly prime ideal. Then,
P consists of weak zero-divisors.

Proof. As already mentioned, [6, Theorem 2.3(1)] says that Proposition 2.8
applies. �

It also follows from [6, Example 1.2] that, unlike the commutative semiprime
case, the union of the minimal primes is not the set of weak zero-divisors. However,
in an NI-ring there is an analogous result. Recall (e.g., [12, §2.1, Exercise 11]), that,
in a commutative ring R we always have N∗(R) = N(R) and, also, the union of
the minimal prime ideals is {r ∈ R | ∃s /∈ N∗(R) such that rs ∈ N∗(R)}.

Recall that an ideal I of R is called a completely semiprime ideal if R/I is a
reduced ring; if I is a completely semiprime ideal then the prime ideals minimal
over I are completely prime. The next result mimics the commutative case.

Theorem 2.10. Let R be a ring and I a completely semiprime ideal. Then, Mr(I) =
{a ∈ R | ∃ r ∈ R with ar ∈ I but r /∈ I} is the union of the completely prime ideals
minimal with respect to containing I. In addition, R \Mr(I) is multiplicatively
closed and contains 1. The sets Mr(I) and Ml(I) coincide.

Proof. Let P be the set of completely prime ideals minimal over I. Suppose
a ∈ P for some P ∈ P and we can suppose a /∈ I. In the reduced ring R/I, a+ I
is a left zero-divisor. I.e., there is r /∈ I such that ar ∈ I, showing that a ∈Mr(I).

In the other direction, if we have a ∈Mr(I) with r /∈ I and ar ∈ I but a /∈ P
for each P ∈ P, then, since these primes are completely prime, r would be in I,
which is impossible. Hence, Mr(I) =

⋃
P∈P P .

The next part is an application of the second part of Lemma 2.4 applied to
X = I. The last observation follows since left and right zero-divisors coincide in a
reduced ring. �

The set R \Mr(I) in Theorem 2.10 is a saturated nm-system as discussed at
the end of Section 1.

When R is an NI-ring Theorem 2.10 yields a result analogous with the com-
mutative case.

Corollary 2.11. Let R be an NI-ring and Mr = Mr(N(R)) = {a ∈ R | ∃ r ∈
R with ar ∈ N(R) but r /∈ N(R)}. Then, Mr is the union of the minimal r-
strongly prime ideals of R. Moreover, R \Mr is closed under multiplication and
contains 1.

Proof. We need only invoke Theorem 2.10 with I = N(R) and the fact that
in an NI-ring N(R) is completely semiprime (e.g., [6, Lemma 2.1]). �

In the special case of a 2-primal ring, the minimal r-strongly prime ideals
of Corollary 2.11 are, in fact, the minimal prime ideals; in a 2-primal ring Corol-
lary 2.11 is exactly as for commutative rings.
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It is remarked in [5, page 4869] that if R is a PI-ring or a ring of bounded
index then R is a NI-ring if and only if R is 2-primal.

The conclusion of Corollary 2.11 need not hold when the ring is not an NI-
ring: see Example 3.5, below.

3. Examples and special rings.
Our first example is to illustrate how an nm-system can fail to have a satu-

ration.

Example 3.1. There is a ring R such that T = {t ∈ R | 〈t〉 = R} = {t ∈ R |
〈t〉 ∩ S 6= ∅} is not an m-system and is not a saturation for S = {1}.

Proof. Let K be a field and F = K〈Y,X1, X2〉 a free algebra in 3 vari-
ables. Set I to be the ideal of F generated by ρ = X1Y X2 − 1 and R = F/I.
We write the images Y + I = y,X1 + I = x1 and X2 + I = x2. By con-
struction, y ∈ T (as are x1 and x2). However, in order to have v, uj , wj ∈ F ,
j = 1, . . . ,m with

∑
j ujY vY wj − 1 ∈ I we would need an equation of the form∑

j ujY vY wj − 1 =
∑

i riρsi for some ri, si ∈ F , i = 1, . . . , n. The equation shows
that for some k, 1 ≤ k ≤ n, rksk has a non-zero constant term. The corresponding
rkX1Y X2sk, when split into monomial terms, has a monomial term with only one
copy of Y . No such term can exist in the other expression. Hence, no element of
yRy is in T . This shows that T is not an m-system. �

When a semiprime ring R has only finitely many minimal prime ideals (see
[10, Theorem 11.43] for characterizations of such rings) then each element of a
minimal prime is a left and a right zero-divisor. The following example shows that
even when there are only finitely many minimal prime ideals weak zero-divisors
may be required when the ring is not semiprime.

Example 3.2. Let K be a field and R = K〈X,Y 〉/I where I is generated by the
monomials XY iX, i ≥ 1. Write X + I = x and Y + I = y. Then, 〈y〉 is a minimal
prime of R, R has only two minimal primes and N∗(R) 6= 0. Moreover, y is neither
a left nor a right zero-divisor but xyx = 0 while x2 6= 0.

Proof. Since R/〈y〉 ∼= K[X], 〈y〉 is a prime ideal, and, similarly, 〈x〉 is a prime
ideal. Put L = 〈x〉 ∩ 〈y〉. Then, L3 = 0. Moreover, R/L is reduced since if r2 ∈ L
and r is written as a polynomial with no terms containing a factor xyix, i ≥ 1,
then r /∈ L would mean that r has a term purely in x or in y. Then, r2 would also
have such a term. It follows that any prime ideal Q of R contains L and, hence,
〈x〉〈y〉 ⊆ Q. Hence, the minimal primes are 〈x〉 and 〈y〉. However, y is not a left
or a right zero-divisor while xyx = 0 and x2 6= 0. On the other hand the elements
of 〈x〉 are all left and right zero-divisors. �

The ring R in Example 3.2 is an NI-ring (even 2-primal) because 〈x〉 ∩ 〈y〉 =
N(R) = N∗(R). The set Mr from Corollary 2.11 is 〈x〉 ∪ 〈y〉 and R/N(R) is
the reduced ring K〈X,Y 〉/K, where K is generated by {XY, Y X}. Moreover (cf.,
Corollary 2.5), Snw = R \ (〈x〉 ∪ 〈y〉) and Snl = R \ 〈x〉 = Snr.
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Example 3.3. There is an example of an NI-ring R such that N∗(R) 6= N(R) in
which there is a prime ideal minimal over N(R) whose elements are neither left
nor right zero-divisors (they are weak zero-divisors).

Proof. We rename the ring from Example 3.2 as S and use it as the seed ring
in the construction of [6, Example 1.2]. To recall the construction: for each n ∈ N
let Sn be the ring of 2n×2n upper triangular matrices over S, and Sn is embedded
in Sn+1 by sending A ∈ Sn to ( A 0

0 A ). Then, R is the direct limit of this system of
rings. According to [6, Example 1.2], R is an NI-ring but N∗(R) 6= N(R).

Now let P be the set of elements r from R which from some n ∈ N, the
matrices representing r have an element of 〈y〉 in the (1, 1) position. The claim is
that P is a prime ideal minimal over N(R). It is clear that it is an ideal. Moreover,
R/P ∼= S/〈y〉 ∼= K[x], a prime ring. Just as in Example 3.2, a prime ideal contained
in P and containing N(R) would have to contain the elements with (1, 1) entry
equal to y. Again as in Example 3.2, if we take for a ∈ P an element represented
by ( y 0

0 y ) ∈ S1, then the equation ar = 0 in R with r 6= 0 would imply that there
is a representative of r in, say, Sn. The element corresponding to a in Sn is yI2n

where I2n is the identity matrix. Then the product ar = 0 in Sn multiplies each
row of r by y. Since y is not a left zero-divisor, we have a contradiction. Similarly,
a is not a right zero-divisor. �

In the ring R of Example 3.3, r ∈ N(R) if and only if r has a representative
whose diagonal elements are in N(S). Examples 3.2 and 3.3 are not semiprime; the
next example is of a semiprime ring which has a minimal prime whose elements
are neither left nor right zero-divisors.

Example 3.4. There is a semiprime ring R and a minimal prime ideal P along
with a ∈ P such that a is neither a left nor a right zero-divisor.

Proof. We again use the ring of Example 3.2 as a starting point. We will
here call that ring R0. Let R1 be the ring K〈X,Y, Z〉/I where I is generated
by {XY iX | i ≥ 1}, the same defining relations as for R0. There is a natural
embedding of R0 into R1. However, R1 is a prime ring.

The ring R is defined as follows: R is the ring of all sequences r = (rn) from
R1 such that for some k ∈ N, depending on r, rj ∈ R0 is constant for all j ≥ k.
The ring R is semiprime. To see this, if r = (rn) ∈ R and, for some k ∈ N, rk 6= 0
then rkR1rk 6= 0, showing that rRr 6= 0.

We define P = {r = (rn) ∈ R | rn is eventually constant and in 〈y〉}. Since
R/P ∼= R0/〈y〉, P is a prime ideal. It now needs to be shown that P is a minimal
prime ideal. Suppose that Q ⊆ P is a prime ideal. For any idempotent e ∈ R (all
the idempotents in R are central), eR(1− e) = 0 means that e ∈ Q or 1− e ∈ Q.
However, if e is eventually 1, e /∈ P and, hence, e /∈ Q. Thus

⊕
i∈N R1 ⊆ Q.

For u ∈ R0, let û denote the element of R which is constantly u. We will see
that x̂Rŷx̂ ⊆ Q. Indeed, for v ∈ R, we may assume that v /∈

⊕
i∈N R1 and,

hence, that v has the form v = (0, . . . , 0, w, w, . . .), where w ∈ R0. Then, as in the
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proof of Example 3.2, x̂vŷx̂ ∈ Q. The rest of the proof follows as in the proof of
Example 3.2, showing that ŷ ∈ Q and that Q = P .

Finally, ŷ is neither a left nor a ring zero-divisor but is, of course, a weak
zero-divisor. �

It can also be seen that the ring of Example 3.4 is left and right nonsin-
gular. See also Proposition 3.9 for more about constructions related to that in
Example 3.4.

Example 3.5. There is a ring R with N∗(R) = 0 where Mr = Mr(N(R)) = {a ∈
R | ∃ r /∈ N(R) with ar ∈ N(R)} is not the union of the minimal ( r-strongly)
prime ideals.

Proof. Consider a division ring D and the ring R of sequences of 2×2 matrices
over D which are eventually a constant diagonal matrix (e.g., [14, Example 5.6]).
Then the von Neumann regular ring R has no non-zero nil ideals and the minimal
r-strongly prime ideals are also the minimal prime ideals; they are the maximal
ideals (i) In of sequences zero in the nth component, and (ii) the ideals Pi, i = 1, 2,
of sequences eventually a constant diagonal matrix which is zero in the ii position.
Consider a ∈ R where, for i = 1, . . . , n, n ≥ 1, the ith component of a, ai, is non-
zero but there is 0 6= ri, which is not nilpotent, with airi = 0, while the constant
part of a can be the identity matrix. Put r ∈ R to be ri for i = 1, . . . , n and 0
beyond. Then, ar = 0 but a is not in the union of the minimal (r-strongly )prime
ideals. For example, a = (( 1 0

0 0 ), ( 1 0
0 1 ), ( 1 0

0 1 ), . . .) and r = (( 0 0
0 1 ), ( 0 0

0 0 ), ( 0 0
0 0 ), . . .).

Hence, a ∈ Mr but is not in the union of the prime ideals. Similarly, a is in the
set Ml = Ml(N(R)).

On the other hand, the union of the prime ideals is contained in Mr∩Ml. �

In the ring R of Example 3.5, the minimal prime ideals consist of left (and
right) zero-divisors. The set of elements of R with constant part 0 is a completely
semiprime ideal, call it K. The minimal prime ideals containing K are P1 and
P2 whose union is, according to Theorem 2.10, Mr(K) = Ml(K). As in any von
Neumann regular ring, the set of left zero-divisors is {a ∈ R | Ra 6= R} = Mr(0)
and that of right zero-divisors in {a ∈ R | aR 6= R} = Ml(0); these coincide
if, as in our example, the ring is directly finite. However, elements of a proper
ideal in a von Neumann regular ring are all left and right zero-divisors. (See also
Proposition 3.8, below, for information about a related class of rings to that of the
von Neumann regular ones.)

The next example illustrates the left and right versions of Proposition 2.7.

Example 3.6. Let A be a domain which is neither left nor right Ore and R = ( A A
0 A ).

Then, R has two minimal prime ideals, one consists of left zero-divisors and the
other of right zero-divisors; neither consists of both.

Proof. The two minimal prime ideals are I = ( A A
0 0 ) and J = ( 0 A

0 A ). �
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See also [2, Example 2.6] and its references for information on minimal prime
ideals and zero-divisors of rings of the form of that of Example 3.6..

The ring K〈X,Y 〉/I, where I = 〈XY 〉, of [2, Example 2.8] shows the same
phenomenon as that of Example 3.6.

As in the commutative case, zero-divisors of all sorts do not behave well with
respect to homomorphic images. Some information can be gleaned.

Proposition 3.7. Suppose R is an NI-ring. (i) If a + N(R) ∈ R/N(R) is a weak
zero-divisor then a is a weak zero-divisor in R. (ii) If every element of a proper
ideal of R/N(R) is a weak zero-divisor then every element of a proper ideal of R
is a weak zero-divisor.

Proof. (i) Suppose that a ∈ R is such that a + N(R) is a weak zero-divisor.
Then, there are r, s ∈ R such that ras ∈ N(R) and rs /∈ N(R). For some min-
imal m ∈ N, (ras)m = 0. If some of the factors a in (ras)m can be removed to
get a non-zero element, the proof is complete. Removing all the factors a, if neces-
sary, leaves (rs)m 6= 0, which gives the result. (ii) This follows directly from (i). �

The converse of Proposition 3.7 is false even in the commutative case. Con-
sider a field K and the ring R = K[X,Y ]/I, where I = 〈{Xn, XY }〉, for some
n ≥ 2. Then Y + I is a zero-divisor in R but not modulo N∗(R) = 〈X + I〉.

The argument in Proposition 3.7(i) does not work for left zero-divisors and,
in fact, the conclusion is false for left (or right) zero-divisors. In Example 3.3, the
element a shown to be a weak zero-divisor but neither a left nor a right zero-divisor,
is both a left and right zero-divisor modulo N(R).

There are various weak forms of von Neumann regularity which guarantee
that elements of proper ideals are in fact zero-divisors. Recall that a ring R is right
weakly π-regular if for every a ∈ R there is m ∈ N such that am ∈ am〈am〉.

Proposition 3.8. Let R be a right weakly π-regular ring. Then, every element of a
proper ideal is a left zero-divisor.

Proof. Let a ∈ R be in a proper ideal and we may assume that a is not nilpo-
tent. We can write, for somem ∈ N, am = am

∑n
i=1 ria

msi and am(1−
∑
ria

msi) =
0. We know that

∑
ria

msi 6= 1 and, thus, there is a minimal k ≥ 1 such that
ak(1−

∑
ria

msi) = 0. Then, ak−1(1−
∑
ria

msi) ∈ rann a. �

Proposition 3.7 applies to rings not covered by Proposition 3.8. Using [1,
Theorem 2.6], one needs to find NI-rings R which do not satisfy the idempotent
condition WCI ([1, Definition 2.1]), and, hence, is not right weakly π-regular, but
for which R/N(R) is right weakly π-regular. One such is [1, Example 1.7].

For a von Neumann regular ring satisfying general comparability ([4, Defi-
nition, page 83]), the minimal prime ideals are generated by central idempotents
([4, Theorem 8.26]) and, hence, an element of a minimal prime ideal is annihilated
by a non-zero central idempotent. More generally the observation applies to any
ring in which the minimal primes are generated by central idempotents. We will
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not go into details here but the condition that each minimal prime of a ring R is
generated by central idempotents is equivalent to saying that the Pierce sheaf of
R has prime stalks (see [8, V 2] or [3]). Biregular rings have this property as do
full products of prime rings.

More generally we have the following which will help in the construction of
examples. The key property of a Pierce sheaf of a ring R which we will use is that
if for some x ∈ Spec B(R) and r, s ∈ R we have rx = sx then there is e ∈ B(R) \x
such that re = se.

Proposition 3.9. Let R be a ring whose Pierce sheaf has stalks Rx which have
the property that each minimal prime ideal of Rx consists of left or of right zero-
divisors. Then each minimal prime ideal of R consists of left or of right zero
divisors.

Sketch of proof. Let Rx be a stalk of R (x refers to a maximal ideal of the
boolean algebra B(R) of central idempotents of R and Rx = R/Rx).

Since for any prime ideal P of R, P ∩B(R) = x, for some x ∈ Spec B(R) and
R → Rx = R/Rx is surjective, a minimal prime ideal P of R has the following
form. For x = P ∩B(R) and Q = Px = P/Rx, P = {r ∈ R | rx ∈ Q}. Moreover,
each such pair (x,Q) yields a minimal prime ideal of R.

Then, if Q, a minimal prime ideal of Rx, consists, say, of left zero-divisors,
for u ∈ P , as constructed above, there is r ∈ R with rx 6= 0x and uxrx = 0. For
some e ∈ B(R) \ x, ure = 0. Since re 6= 0, u is a left zero-divisor. �

The converse is true in a ring like that in Example 3.4 but a small change in
that example shows that it is false in general.

Example 3.10. There is a ring R which has a Pierce stalk Rx so that Rx has a
minimal prime ideal with an element which is neither a left nor a right zero-divisor
but the corresponding minimal prime ideal of R consists of zero-divisors.

Proof. Let R0 be the ring of Example 3.2 and S = K〈x, y, z〉/I, where I is
generated by {xyix | i ≥ 1} and {zxy, zx2}. Then, let R be the ring of sequences
from S which are eventually constant and in R0. The Pierce stalks of R are Rn = S,
n ∈ N, and R∞ = R0. Let P = {r ∈ R | r∞ ∈ 〈y〉}; P is a minimal prime ideal
of R. It can be seen that the elements of P are all right zero-divisors even though
P∞ has an element which is not a right zero-divisor. Indeed, any monomial in 〈y〉
is annihilated on the left by zx 6= 0. Now let r ∈ P be such that r∞ = u ∈ R0,
u 6= 0. Then, for some n ∈ N, rn = u. Let e ∈ R be such that em = 0 if m 6= n
and en = 1. Then, zxer = 0, while zxe 6= 0. �
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