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Abstract. S.-P. Liu and C. Paquette defined a class of artin algebras,
more general than the standardly stratified ones, called quasi-stratified
algebras. Not only is the Cartan Determinant Conjecture (CDC) true
for these algebras, so is its converse. This article shows that this class
of algebras is preserved under “pruning” sources and sinks from the left
quiver. It compares the classes of quasi-stratified and left serial algebras,
as well as quasi-stratified and gentle algebras. Holm has shown that the
CDC holds for gentle algebras; the converse is also established. It is
shown when a Yamagata family of algebras of large finite global dimen-
sion yield quasi-stratified ones and constructs quasi-stratified elementary
algebras from smaller ones.

Introduction.
All rings considered will be artin algebras; in some cases we will specialize to

finite dimensional algebras over a field. For such an algebra A, we fix a complete
orthogonal set of primitive idempotents, {e1, . . . , en}. The radical is denoted
J(A), or just J. Some of the results involving left quasi-stratified rings could
be proved for general left artinian rings but for reasons of economy the stronger
hypothesis will be imposed. It will be seen in an appendix that the class of
quasi-stratified algebras is closed under Morita equivalence and, hence, we will
usually assume in proofs that our algebras are basic. All the proofs below could
be adapted to non-basic algebras.

The (left) Cartan matrix of a basic algebra A, C(A) ∈ Mn(Z), has i, j entry
the number of copies of Aei/Jei in a composition series of Aej . The Cartan
determinant, cdA = det C(A). There is a right version but, for artin algebras,
the two Cartan determinants are equal (e.g., Fuller (1992, Proposition 1.2)). A
result of Eilenberg (see Fuller (1992, Theorem 1.1)) says that if gl.dim. A < ∞
then cdA = ±1. The Cartan determinant conjecture asserts that if gl.dim. A <
∞ then cd A = 1. The survey Fuller (1992) shows the state of the conjecture
up to 1992.

The algebras, quasi-stratified algebras, (definitions are in Section 1) studied
by S. Liu and C. Paquette (Liu & Paquette (2006)) have the property that not
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only does the Cartan determinant conjecture hold for them (since their Cartan
determinants are always strictly positive) but so does its converse; i.e., the global
dimension is finite if and only if the Cartan determinant is 1. These algebras
are filtered by chains of projective ideals with the innovation that an ideal in
the chain may be projective on the left or on the right, and these ideals need
not be idempotent. The aims of this article are to find families of examples of
quasi-stratified algebras, to relate them to other interesting classes such as left
serial and gentle algebras, and to present constructions.

The article is divided into sections. The first shows that questions about
quasi-stratified algebras may be reduced to those about algebras whose (left)
quiver has neither sources nor sinks. This is then used in Section 2 to show that
in a left serial algebra if the vertices in the quiver which are sources are removed
(as in Section 1) we then can look at an algebra which is a division algebra or
whose quiver is an oriented cycle. These latter algebras are here called left serial
of serial type. A left serial algebra A of serial type is left quasi-stratified if and
only if it contains a primitive idempotent e where AAeA is projective. From this,
a left serial algebra is quasi-stratified if and only if it is left standardly stratified.
Section 3 looks at the families of algebras constructed in Yamagata (1994), all
An in a family are shown to be quasi-stratified, in fact, ultimate-hereditary, the
quasi-stratified algebras of finite global dimension (Definition 1.2), if the seed
algebra A0 is hereditary. The main purpose of Section 4 is to show that new,
more complex, quasi-stratified elementary algbras over a field can be built from
an existing one. There are two constructions. Section 5 looks at monomial
algebras. A characterization is given of when the ideal generated by a path
is left or right projective. This result is specialized to the case of quadratic
monomial algebras, monomial algebras whose relations are generated by paths
of length 2. If A is quadratic monomial and gl.dim. A < ∞ then A is left
and right ultimate-hereditary. Then a theorem of Holm is used to show that
a gentle algebra satisfies the converse of the Cartan determinant conjecture.
A brief sixth section uses a result of Colby to look at endomorphism rings of
tilting and cotilting modules over a quasi-stratified algebra. The paper ends
with an appendix where a sketch is given of a proof showing that the class of
quasi-stratified algebras is closed under Morita equivalence.

1. Definitions and quiver reductions.
Idempotent ideals which are projective on one side have been extensively

studied (see Dlab & Ringel (1989)); the article Liu & Paquette (2006) extends
this study to ideals which are not necessarily idempotent.

Definition 1.1 (Liu & Paquette (2006)). (i) An ideal I of an algebra A is
called projective if AI or IA is projective. Given an ideal I of A, for some
k ≥ 1, Ik = Ik+1. Then, Ik is called the idempotent part of I. (ii) A projective
ideal I is called quasi-stratifying if its idempotent part has the form AeA where
e = 0 or e is a primitive idempotent. If, in addition, eJ e = 0, I is called
quasi-heredity.

Definition 1.2 (Liu & Paquette (2006)). (i) An algebra A is called quasi-
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stratified if it has a quasi-stratifying chain, i.e., a chain of ideals

0 = I0 ⊂ I1 ⊂ · · · ⊂ It−1 ⊂ It = A

so that, for j = 1, . . . t, Ij/Ij−1 is a quasi-stratifying ideal in A/Ij−1.
(ii) If A is quasi-stratifying with a quasi-stratifying chain as above where

each Ij/Ij−1 is quasi-heredity, then A is called ultimate-hereditary.
(iii) If all the ideals Ij/Ij−1 in (i) or (ii) are projective on the left (right)

then the algebra is called left (right) quasi-stratified or left (right) ultimate-
hereditary.

The paper Liu & Paquette (2006) has much more information about the
algebras defined above than can be quoted here, the key results for this note, Liu
& Paquette (2006, Proposition 1.3, Corollary 1.4, Proposition 2.1, Corollary 2.3
and Theorem 2.5), are assembled in the following.

Theorem 1.3 (Liu & Paquette (2006)). Let A be an algebra and I a projective
ideal with idempotent part AeA, e2 = e and t minimal with It = AeA.

(I) gl.dim. A/I ≤ gl.dim. A + 2(t − 1) and gl.dim. eAe ≤ gl.dim. A ≤
gl.dim. eAe+gl.dim. A/I+2; hence, gl.dim. A < ∞ if and only if gl.dim. eAe <
∞ and gl.dim. A/I < ∞ (by convention gl.dim.0 = −1).

(II) cd A = (cd eAe)(cdA/I) (by convention cd0 = 1).
(III) (i) If A is quasi-stratified then cd A > 0; and,
(ii) the following are equivalent for a quasi-stratified algebra A:
(a) cd A = 1, (b) gl.dim. A < ∞ and (c) A is ultimate-hereditary.

The left quiver Ql(A) of a basic left artinian ring A has r arrows from i to
j if J ei/J2 ei has r copies of Aej/J ej , 1 ≤ i, j ≤ n. The right quiver Qr(A) is
defined similarly. If i is a vertex in Ql(A) so that there are no arrows entering
i except possibly loops at i, then i is called an l-source. An l-sink is defined
similarly. In general, if i is an l-source in Ql(A) then AeiA = Aei is projective
(recall that our algebras are assumed to be basic) and if i is an l-sink in Ql(A),
AAeiA is semisimple and AeiA = eiA is projective as a right module. The
initial and terminal vertices of a path p in Ql(A) are denoted, respectively, s(p)
and t(p).

For future reference we record the following two simple lemmas and a corol-
lary. The corollary is a special case of Fuller (1992, Proposition 2.3).

Lemma 1.4. Let I be an ideal in a basic algebra A. (i) If I is nilpotent,
Ql(A) and Ql(A/I) have the same vertices. (ii) If I is generated by a primitive
idempotent, say I = Ae1A, then the vertices of Ql(A/I) are 2, . . . , n. (iii) If
Ae1A is the idempotent part of I then the vertices of Ql(A/I) are 2, . . . , n.

Lemma 1.5. Let e be an idempotent of an algebra A so that AeA = Ae or
AeA = eA and K an ideal. Then A/(K +AeA) ∼= (1−e+K)(A/K)(1−e+K).

Proof. When AeA = Ae, the isomorphism is given by θ : a + (K + AeA) 7→
(1− e)a(1− e) + K.
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Corollary 1.6. Let e be a primitive idempotent in a basic algebra A such that
e corresponds to an l-source or an l-sink in Ql(A). Then, Ql((1 − e)A(1 − e))
is obtained from Ql(A) by removing the corresponding vertex and the arrows to
or from it. When the vertex is an l-source, AeA = Ae is projective. When the
vertex is an l-sink in Ql(A), AeA = eA is projective.

Theorem 1.7. Let A be a quasi-stratified algebra whose quiver has more than
one vertex and with quasi-stratification

0 = I0 ⊂ I1 ⊂ · · · ⊂ It−1 ⊂ It = A .

Suppose that 1 is an l-source or an l-sink in Ql(A). Then, the proper inclusions
of

0 = I0 ⊂ Ae1A ⊆ I1 + Ae1A ⊆ · · · ⊆ It−1 + Ae1A ⊆ It = A

form a quasi-stratification of A.

Proof. We may assume, using Theorem 7.3, below, that A is basic. We will
prove that case where 1 is an l-source and, since A is basic, we have Ae1A = Ae1.
It needs to be shown that, for j = 1, . . . , t, Ij+Ae1A

Ij−1+Ae1A is projective on one side

as an A
Ij−1+Ae1A = Ã-module, if Ij + Ae1A 6= Ij−1 + Ae1A. There are two cases

where we write A/Ij−1 = Ā. We will identify Ã with (1 − ē1)Ā(1 − ē1) using
Lemma 1.5.

Case 1: ĀĪj is projective. For each k 6= 1, Īj ēk is a direct sum of indecom-
posable left Ā-projective modules each isomorphic to Āēs, for some s 6= 1 (since
Āē1Āēk = 0 when k 6= 1). From Īj ēk(1− ē1) = Īj ēk we have (1− ē1)Īj ēk(1− ē1)
is isomorphic to a direct sum of indecomposable projective left modules of the
form (1− ē1)Āēs(1− ē1), some s 6= 1. Hence, (1− ē1)(Īj + Āē1Ā)(1− ē1) is left
projective.

Case 2: (Īj)Ā is projective. For k 6= 1, ēk Īj is a direct sum of indecomposable
projective right Ā-modules of the form L = ēkūēsĀ, ū ∈ Ā and 1 ≤ s ≤ n. Then,
(1− ē1)L(1− ē1) = ēkūēsĀ(1− ē1), which is a projective right (1− ē1)Ā(1− ē1)-
module (it is 0 if s = 1).

We next need to verify that each proper inclusion gives a quasi-stratifying
ideal. If Ij + Ae1A is nilpotent modulo Ij−1 + Ae1A, there is nothing to be
done. Otherwise, it needs to be shown that the idempotent part of Ij +Ae1A is
generated by a primitive idempotent modulo Ij−1+Ae1A. Since (Ij +Ae1A)k =
(Ij)k + Ae1A, we may assume that, for some r and some primitive idempotent
ē ∈ Ā, that (Īj)r = ĀēĀ is the idempotent part of Īj and that (Ij + Ae1A)r is
the idempotent part of Ij + Ae1A, modulo Ij−1 + Ae1A.

For some i > 1, ĀēĀ = ĀēiĀ (by Lemma 1.4 (iii)). By Lemma 1.4 (ii) ēi is
a primitive idempotent in Ā/Āē1Ā = A/(Ij−1 + Ae1A).

If one wished a proof of Theorem 1.7 without assuming A basic, the idem-
potent e1 would be replaced by the sum of the primitive idempotents equivalent
to it. The above proof works for any idempotent E with AEA = AE (or
AEA = EA) where there is a quasi-stratifying chain of ideals of A leading up
to AEA; however, there is no obvious application of the more general form.
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Definition 1.8. If A is a basic algebra whose quiver has more than one vertex
and is such that Ql(A) has an l-source, say 1, then passing to (1− e1)A(1− e1)
is called pruning an l-source. Similarly for an l-sink.

Corollary 1.9. Let A be a basic algebra. There is an algebra B so that Ql(B)
has only one vertex or Ql(B) has neither l-sources nor l-sinks and A is quasi–
stratified if and only if B is quasi-stratified.

Proof. An algebra B1 is obtained from A by a sequence of steps of pruning
an l-source from the previous algebra in the sequence so that Ql(B1) has only
one vertex or Ql(B1) has no l-sources. An algebra B is obtained from B1 by a
sequence of steps of pruning an l-sink from the previous algebra in the sequence
so that Ql(B) has only one vertex or Ql(B) has neither l-sources nor l-sinks.

We may renumber the vertices of Ql(A) so that the vertices (if any) removed
in passing to B1 are, in order, 1, . . . ,m1, and those (if any) removed in passing
from B1 to B are m1 + 1, . . . , r. There is nothing to prove if no vertices are
removed and it is assumed that r > 0. We then put εi = e1 + · · · + ei, for
i = 1, . . . , r and ε0 = 0. By a repeated application of Lemma 1.5 we have that
τ : A → (1− εr)A(1− εr), given by τ(a) = (1− εr)a(1− εr), is a ring surjection.

Suppose that 0 = I0 ⊂ I1 ⊂ · · · ⊂ Ik = B is a quasi-stratification of B.
Then,

0 = Aε0A ⊂ Aε1A ⊂ · · · ⊂ AεrA ⊂ τ−1I1 ⊂ · · · ⊂ τ−1Ik = A

is a quasi-stratification of A. Conversely, if 0 = I0 ⊂ I1 ⊂ · · · ⊂ Ik = A is a
quasi-stratification of A then, using repeated applications of Theorem 1.7, we
see that the proper inclusions of

0 = Aε0A ⊂ Aε1A ⊂ · · · ⊂ AεrA ⊆ I1 + AεrA ⊆ · · · ⊆ Ik + AεrA = A

form a quasi-stratification of A. Dividing by AεrA gives a quasi-stratification
of A/AεrA = B.

The proof of Corollary 1.9 also shows that “quasi-stratified” may be replaced
by “left (or right) quasi-stratified”; if sources and sinks are used instead of l-
sources and l-sinks, the proof also works for “(left or right) ultimate-hereditary”.

Along the same lines as Fuller (1992, Corollary 2.13), we have the first part
of the following. The irreducible components are algebras of the form EjAEj ,
where Ej is the sum of the primitive idempotents corresponding to an irreducible
component (also called a strongly connected component) of Ql(A) (ibid, p. 55.)

Proposition 1.10. (i) Let A be an algebra such that its irreducible components
are quasi-stratified. Then, gl.dim.(A) < ∞ if and only if cd(A) = 1.

(ii) Let A be a quasi-stratified (an ultimate-hereditary) algebra, then the
irreducible components of A are also quasi-stratified (ultimate-hereditary).

Proof. (i) Suppose there are s irreducible components, EjAEj , j = 1, . . . , s.
According to Fuller (1992, Corollary 2.6), the global dimension of A is bounded
above by the sums of the global dimensions of the irreducible components plus
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s− 1. Moreover, for each irreducible component EjAEj , cd(EjAEj) > 0 (The-
orem 1.3 (III)) and gl.dim.(EjAEj) < ∞ if and only if cd(EjAEj) = 1. Finally
(Fuller (1992, Proposition 2.4)), cd(A) =

∏s
j=1 cd(EjAEj).

(ii) Let 0 ⊂ I1 ⊂ · · · ⊂ It−1 ⊂ It = A be a quasi-stratifying chain for A.
One of the idempotents, say Ej , is fixed as in part (i). It will suffice to show
that the proper inclusions of 0 ⊆ EjI1Ej ⊆ · · · ⊆ EjIt−1Ej ⊆ EjAEj form a
quasi-stratifying chain. We reason as in Theorem 1.7 by noting that for k 6= l,
EkAEl = 0 or ElAEk = 0. We put Ā = A/Ii−1. It easy to see that if Īi has an
indecomposable left projective component L̄ 6= 0, say L̄ = Āēlūēk

∼= Āēl where
right multiplication by ū is an isomorphism, then ĒjĀēlūēkĒj = 0 if ēlĒj = 0
or ēkĒj = 0; otherwise,

ĒjL̄Ēj = ĒjĀĒj ēlūēk
∼= ĒjĀĒj ēl = ĒjĀĒj ēlĒj ,

an indecomposable projective ĒjĀĒj-module. The method is similar for the
case where Īi is right projective. If Ēj ĪiĒj is nilpotent we are done, otherwise
let the idempotent part of Īi be ĀēpĀ. Then Ēj ēp = ēp and the primitive
idempotent ēp is in Ēj ĪiĒj , and is the idempotent part of Ēj ĪiĒj .

The final part about A ultimate-hereditary follows from part (i) and Liu &
Paquette (2006, Theorem 2.5) (quoted in Theorem 1.3 (III) (ii)).

However, having the irreducible components quasi-stratified does not mean
that the algebra is quasi-stratified. Example 2.5, below, will illustrate this.

2. On left serial algebras.
In this section, quasi-stratified serial and left serial algebras will be char-

acterized. Recall that a connected algebra A is one with no non-trivial central
idempotents, i.e., Ql(A) is a connected graph. We will use some results origi-
nally stated for connected serial rings but which work equally well for left (or
right) serial rings for which the left (right) quiver is either a path or an oriented
cycle. The results in question are those stated entirely in terms of one-sided
ideals. The restriction on the shape of the quiver means that these rings have
Kupisch series (Anderson & Fuller (1992, page 348)) on the appropriate side.
In particular the left hand version of ibid, Lemma 32.5 works here. In addition,
all the results of Burgess & Fuller (1989, Section 2) hold in this setting (as was
pointed out at the end of that section). We give a name to the one-sided serial
rings just described.

Definition 2.1. A connected left serial algebra A is said to be of serial type if
its left quiver is a path or an oriented cycle. The right hand version is defined
similarly.

Proposition 2.2. Let A be a connected left serial algebra of serial type.
(i) If A has a quasi-stratifying ideal I, with AI projective, then there is a

primitive idempotent ei with AAeiA projective.
(ii) If A is not quasihereditary and has a primitive idempotent e with AAeA

projective, then A is of infinite global dimension.
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(iii) If A is a serial algebra then (i) also applies with IA projective giving
a primitive idempotent ei with AeiAA projective. Moreover, if e is a primi-
tive idempotent of A so that AAeA is projective, then AeAA is projective, and
conversely.

Proof. Once again it will be assumed that A is basic. Throughout, if x ∈ A,
right multiplication by x will be denoted by ρx. For an integer i, [i] means the
smallest positive residue of i modulo n.

(i) If Ql(A) has a source, say 1, then Ae1 = Ae1A is projective. In the
contrary case, Ql(A) is an oriented cycle whose vertices are numbered with
arrows i → [i + 1], i = 1, . . . , n. If AI is not nilpotent, its idempotent part
gives what is required. Thus, we can assume that 0 6= AI is nilpotent. We may
renumber the idempotents cyclically so that Iei

∼= Aen for some i, 1 ≤ i < n.
It will be shown that AAenA is projective.

As in Anderson & Fuller (1992, Lemma 32.5), the arrows j → [j + 1] are
labeled aj = e[j+1]ajej . Then, each Jr ej = Aa[j+r−1] · · · aj . With this notation,
Iei = AenAei = Aan−1 · · · ai. From this, ρan−1···ai is one-to-one on Aen. Hence,
for i ≤ j < n, ρan−1···aj

is one-to-one on Aen. It follows that, for i ≤ j < n,
AenAej is projective. If AAenA is not projective, there is a maximal j, 1 ≤
j < i, with AenAej not projective. However, AenAej ⊂ Iej since AenAej =
Ieiai+1 · · · aj . Since Iej is projective, Iej

∼= Aes, for some s, s 6= j, n, and
AenAej ( Iej . There are two cases to be considered.

(a) j < s < n: Then ρas+1···aj
is one-to-one on Aes and, hence, also on

AenAes
∼= Aen. This contradicts the choice of j.

(b) 1 ≤ s < j: In this case,

Iej = AesAej = Aa[s−1] · · · ai · · · aj = AesAenan−1 · · · ai · · · aj ⊆ AenAej ,

which is not possible since we have AenAej ( Iej .
This contradiction shows that AAenA is projective, as required.
(ii) We know from Theorem 1.3 (II) that cd(A) = cd(eAe) cd(A/AeA). By

Burgess & Fuller (1989, Lemma 2.1 and Lemma 2.2), A/AeA is quasiheredi-
tary, showing that cd(A/AeA) = 1 (Burgess & Fuller (1989, Proposition 1.3)).
However, since AeA is not a heredity ideal, i.e., eJ e 6= 0, cd(eAe) > 1. Hence,
cd(A) > 1, showing infinite global dimension.

(iii) We use Anderson & Fuller (1992, Lemma 32.5) once more; it shows that
the same elements ai (as in (i)) give the right structure of A. We may again
assume that Ql(A) is an oriented cycle. Suppose that AAenA is projective. This
means

(∗) if i 6= n and an−1 · · · ai 6= 0 and 0 6= x = xen then xan−1 · · · ai 6= 0 ;

and we may take x to be an appropriate product of the aj . We need the
right hand version of this to be true. We want each eiAenA = a[n−i] · · · anA
to be projective. I.e., if i 6= n and a[i−1] · · · an 6= 0 and x = enx 6= 0 then
a[i−1] · · · anx 6= 0. We may take x = an−1 · · · aj , where the indices of the factors
may go through complete cycles, and we need to do an induction on the number
of times an, call this r, occurs in the product for x.
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Case 1: r = 0. Then, a[i−1] · · · anx = a[i−1] · · · an · an−1 · · · aj 6= 0 by (∗).
Case 2: We assume the statement for r = t ≥ 0 and that the expression

for x has t + 1 occurrences of an. Let y be the product of all the factors
of x, from the left, up to but not including the t + 1 copy of an with x =
yan · · · aj . The induction hypothesis gives a[i−1] · · · an · y 6= 0. Now (∗) shows
that a[i−1] · · · an · y · an · · · aj = a[i−1] · · · an · x 6= 0.

We now have that AenAA is projective.

Burgess & Fuller (1989, Proposition 2.3) says that a serial algebra A is
quasihereditary if and only if it has a heredity ideal; i.e., if and only if there is
a primitive idempotent e so that AeA is a heredity ideal. This is generalized.

Corollary 2.3. A left serial algebra A of serial type is left quasi-stratified if and
only it has a primitive idempotent e such that AAeA is projective. Moreover, if
A is a serial algebra and is quasi-stratified it is both left and right quasi-stratified.

Proof. If A is left quasi-stratified it has a quasi-stratifying ideal I projective
on the left. The proof of Proposition 2.2 (i) proceeds by showing that AAenA is
projective or that there is an idempotent ej with ej ∈ I. Then I is not nilpotent
and its “idempotent part” (Liu & Paquette (2006, Lemma 1.1)), 0 6= AeA ⊆ I
and AeA is projective, as required.

In the other direction, A/AeA is quasihereditary by Burgess & Fuller (1989,
Lemma 2.1 and Lemma 2.2). Hence, A is left quasi-stratified.

The second statement follows from Proposition 2.2 (iii) because a quasi-
hereditary algebra is both left and right quasi-stratified.

Proposition 2.2 (ii) and Corollary 2.3 also give: if A is left serial of serial type
and is left quasi-stratified then it is either quasihereditary or gl.dim. A = ∞.

Corollary 1.9 allows us to characterize left or right serial algebras which are
left or right quasi-stratified, respectively.

Theorem 2.4. Let A be a connected left serial algebra. There is a factor algebra
B of A which is of serial type and is either a simple algebra or whose quiver
is an oriented cycle such that A is left quasi-stratified (quasihereditary) if and
only if B is left quasi-stratified (quasihereditary). The statements for right serial
algebras are analogous.

Proof. We once again assume that A is basic. The form of the left quiver of
a connected left serial algebra is described, for example, in Burgess et al. (1985,
page 160) or Fuller (1992, page 58); in particular, if the sources are pruned one
by one, as in Corollary 1.9, the result is either a single vertex without loops or
an oriented cycle. This shows that the process described in the statement can
be carried out to arrive at an algebra B as described in the statement. Then
Corollary 1.9 says that A is left quasi-stratified if and only if B is. Moreover,
the remark after Corollary 2.3 also shows that A is quasihereditary if and only
if B is quasihereditary; this is because the ideals used in the pruning process
are heredity ideals.
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The global assumption that our rings are artin algebras is essential in The-
orem 2.4 since the example after Fuller (1992, Corollary 3.7) is of a right serial
ring R with cdR = 1 and gl.dim. R = ∞. The right Cartan determinant is,
however, 0.

Recall from, e.g., Ágoston et al. (1998, Definition 1.3) the definition of a (left)
standardly stratified algebra in terms of ideals generated by primitive idempo-
tents. Then Theorem 2.4 also yields: A left serial algebra is left quasi-stratified
if and only if it is standardly stratified. In one direction the ordering of the
primitive idempotents follows the pruning of the sources and then Corollary 2.3
is used; the converse is true for all algebras.

It is easy to find an example of a serial algebra which is not quasihereditary
but has a left projective ideal of the form AeA, e primitive; it is, thus, quasi-
stratified.

Example 2.5. The following diagrams define, over some field K, a serial al-
gebra A which is not quasihereditary (it is of infinite global dimension) but has
a left projective ideal Ae1A and thus is quasi-stratified. Moreover, the same al-
gebra can be augmented to give an algebra B whose irreducible components are
quasi-stratified but B is not (cf. Proposition 1.10).

The algebra A is the one with idempotents e1, e2 and e3. The algebra B
has, in addition, e4 and e5. I.e., A = (e1 + e2 + e3)B(e1 + e2 + e3). We have
cd(A) = cd(B) = 2. The irreducible components of B are two quasi-stratified
serial algebras. The diagrams, showing the left and right structures, make clear
why B has no quasi-stratifying ideals projective on the left or right. (There are
simpler examples, of finite global dimension, which are not quasi-stratified but
whose irreducible components are quasi-stratified.)

1 2 3 4 AA}}
5 AA

2 3 1 1 5 4 3

3 1 2 2 3 5

1 2 3 3

3 1

1

1 AA 2 3 AA 4 5

3 4 1 AA 2 5 5 4

2 3 4 1 AA 4 5

1 2 3 4

3 2

2

We next quote an example of a serial algebra of global dimension 4 which
has no projective ideals of the form AeA, e = e2 primitive. Hence, it is not
quasi-stratified. Recall (Burgess & Fuller (1989, Proposition 2.7)) that every
serial algebra of global dimension ≤ 3 is quasihereditary.

Example 2.6. The serial algebra A from Dlab & Ringel (1989, Example,
page 283) is of global dimension 4 but is not quasi-stratified.

It is shown in Dlab & Ringel (1989) that the same algebra is obtained as
the endomorphism algebra of a tilting module over a quasihereditary algebra.



10 Burgess & Mojiri

In light of the remark after Corollary 2.3, this fact also shows that the class of
quasi-stratified algebras is not closed under tilting (cf. Proposition 6.1, below).

3. On the Yamagata families of algebras.
The article Yamagata (1994) gives a method to construct families {An}n≥0

of algebras so that the algebras in the family share a set of idempotents, they all
have the same Cartan determinant and, if gl.dim. A0 < ∞, all the algebras have
finite, but strictly increasing, global dimension. More information is available
about the global dimensions in Yamagata (1994). Our purpose is to show that
in any such family {An}n≥0, if some An is quasi-stratified, so is An+1.

In Yamagata’s construction, the Loewy length of the algebras strictly in-
creases in passing from An to An+1. In Kirkman & Kuzmanovich (1990) there
is a construction of a family {An}n≥1 of algebras each with two primitive idem-
potents and each with Loewy length 4. These are all of finite global dimension
but, even at n = 2, are not quasi-stratified. Cellular algebras (see König &
Xi (2005)) share with quasi-stratified algebras the property that their Cartan
determinants are positive and they are ultimate-hereditary exactly when the
Cartan determinant is 1 (in fact, the cellular algebras of Cartan determinant
one are even quasihereditary). However, the algebra A in the example after
König & Xi (2005, Proposition 4.2) is cellular but not quasi-stratified.

The Yamagata construction begins with an algebra A0 and a decomposition
of AA0 = P0,1 ⊕ · · · ⊕ P0,m. Then, it is assumed that there is a sequence of
algebras A0, A1, A2, . . . with decompositions AAn = Pn,1 ⊕ · · · ⊕ Pn,m and, for
n > 0, algebra surjections pn : An → An−1 so that pn|Pn,i

= pn,i : Pn,i → Pn−1,i,
i = 1, . . . ,m. Moreover, the following two conditions are assumed for n > 0.
(I) There are exact sequences of An-modules

0 → P
αn,i

n,i+1

qn,i−→ Pn,i
pn,i−→ Pn−1,i → 0 ,

for i = 1, . . . ,m− 1, and

0 → P
αm,n

n−1,1

qn,m−→ Pn,m
pn,m−→ Pn−1,m → 0 .

(II) For i = 1, . . . ,m, the image of qn,i is in JPn,i and, by restricting the
codomain, q′n,i : ker pn,i → JPn,i gives a split exact sequence

0 → ker pn,i

q′n,i−→ JPn,i

r′n,i−→ Pn−1,i → 0 ,

with splitting r′n,i : Pn−1,i → JPn,i. The homomorphisms r′n,i and qn,m are as
An-modules.

It should be noted that the idempotents corresponding to the decompositions
of the algebras, denoted e1, . . . , em in all the algebras An, are not required to
be primitive.

Theorem 3.1. Let {An}n≥0 be a family of algebras satisfying the two Yamagata
conditions, (I) and (II). If, for any n > 0, An−1 is quasi-stratified, so is An. In
particular, if A0 is quasi-stratified, so are all An, n ≥ 0; if A0 is quasi-stratified
of finite global dimension then each An is ultimate-hereditary.
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Proof. We will see that An has nilpotent ideals I1 ⊆ I2 so that I1 is left
An-projective, I2/I1 is left An/I1-projective and that I2 = ker pn. Since the
two ideals are nilpotent, they are quasi-stratifying. Then it is only necessary to
continue the quasi-stratification using a quasi-stratification of An/I2 = An−1.

We put I1 =
⊕m−1

j=1 ker pn,j . By property (I) this is a projective left ideal.
It must be shown that it is an ideal. For aj ∈ Aej , j < k, pn(I1aej) = 0 and
it follows that I1aej ⊆ ker pn,j ⊆ I1. We also need that I1Aem = 0. However,
I1Aem ⊆ JPm.n

∼= Pn−1,m⊕P
αm,n

n−1,1, as left An-modules, by (I) and (II). Hence,
I1Aem ⊆ (ker pn)JPm,n = 0.

We write ¯ for “modulo I1”. The candidate for I2 is I1 + ker pn,m = ker pn.
We have that Pn,i = Anei

∼= Pn−1,i, for i = 1, . . . ,m− 1. Since I1 ∩Anem = 0,
An = An (1− em) ⊕ Anem

∼=
⊕m−1

i=1 Pn−1,i ⊕ Pn,m, as An-modules. Hence,
ker pn,m

∼= P
αm,n

n−1,1 is An-projective.
We further need that Ī2 = ker pn is an ideal of Ān. However, this follows

since I1 ⊆ I2 and I2 = ker pn is an ideal of An.

If An is quasi-stratified then the quasi-stratifying chain for An+1 begins with
two nilpotent ideals. In fact, if A0 is quasi-stratified, then An, n > 0, has a
quasi-stratifying chain starting with 2n nilpotent ideals.

All the algebras given in Section 3 of Yamagata (1994) are quasi-stratified
since they all begin with A0 quasi-stratified. In fact they are left ultimate-
hereditary because their starting points are hereditary.

4. Elementary algebras – two constructions.
Throughout this section we have an elementary algebra A = KΓ/I, where

K is a field, Γ a finite quiver and I an admissible ideal (see, e.g. Auslander
et al. (1997, page 65)). The purpose of this section is to show how to build
quasi-stratified algebra from a given one.

In Liu & Paquette (2006, Example 1.9), the authors use a construction for a
specific purpose in which an idempotent is added. The construction is attractive
because it illustrates two aspects of the Lui-Paquette work, that some of the
ideals in a quasi-stratifying chain may be nilpotent and that projectivity is not
only on one side. For that reason, it is worthwhile to generalize it.

Construction 1. We fix an elementary algebra A = KΓ/I, as above. Two
sets of vertices, {a1, . . . , as} and {b1, . . . , bt} are chosen (they do not need to
be disjoint). A new vertex x is added to Γ along with new arrows αi : ai → x,
i = 1, . . . , s and βj : x → bj , j = 1, . . . , t to form a quiver Γ′. The new admissible
ideal, I ′, is generated as follows: (i) I ⊆ I ′ (ii) for i = 1, . . . , s and j = 1, . . . , t,
βjαi ∈ I ′, and (iii) for i = 1, . . . , s, a set, possibly empty, Li is chosen of
elements of the form rik = eai

rikec ∈ KΓ \ I, each rik a K-linear combination
of paths of length > 0 starting at some vertex c; then, all the elements αirik

are in I ′. We now define B = KΓ′/I ′. It is clear that I ′ is an admissible ideal
and that B is K-finite dimensional (any path in Γ′ which goes through x more
than twice is in I ′). There are several claims.

Claim 1. U =
∑t

j=1 B(βj + I ′)B =
∑t

j=1 B(βj + I ′) is projective and
U2 = 0.
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Proof. The only arrows which can precede a βj is one of the αi; however
βjαi ∈ I ′. Hence, we have the first part of the claim. We notice also that
for each j = 1, . . . , t, B(βj + I ′) ∼= Bebj

because, in the set of generators for
I ′ given above, no relation starts in βj . The same observation shows that the
sum

∑t
j=1 B(βj + I ′) is direct. Hence, we have the projectivity. Since any path

passing first through βj and then through βk, 1 ≤ j ≤ k ≤ t, would contain
some βkαi, some i; it would be in I ′. This shows that U2 = 0.

Claim 2. V =
∑s

i=1 B(αi+I ′)B =
∑s

i=1(αi+I ′)B and VB is not projective
if any of the sets Li is non-empty. This claim is not used to get the conclusion
but shows that there need not be left-right symmetry.

Claim 3. We put B̄ = B/U . Then, B̄exB̄ = exB̄ is projective and
ex J(B̄)ex = 0. I.e., B̄exB̄ is a heredity ideal.

Proof. The algebra B̄ can be viewed as an elementary algebra KΓ′′/I ′′,
where Γ′′ is obtained from Γ′ by removing the arrows βj , j = 1, . . . , t, and I ′′

is generated by I and the relations in (iii), above. The vertex x is now a sink
in Γ′′ and B̄exB̄ = exB̄, which is B̄ projective. Since the only arrows leaving x
are the βj , ex J(B̄)ex = 0.

Claim 4. B/(U + BexB) = A.
Proof. We already have that B̄ = KΓ′′/I ′′ and that x is a sink in Γ′′. Then,

as in Corollary 1.6, B̄/B̄exB̄ = (1− ex)B̄(1− ex) = A.
What has been shown is that, with the data above, if A is quasi-stratified

(ultimate-hereditary) then B is quasi-stratified (ultimate-hereditary).
In the above construction, multiple arrows ai → x and x → bj may be in-

troduced without changing the conclusions.

Construction 2. We use the same notation as above. In this case we produce
a new algebra B with an ideal L so that L2 = 0, BL is projective and B/L = A.

We pick two distinct vertices a and b from Γ and add a new arrow α : a → b
to form the quiver Γ′. An ideal of relations is generated in KΓ′ by I and
{αλ | t(λ) = a}. The new algebra is B = KΓ′/I ′. This ideal I ′ is clearly
admissible since any path of sufficient length either has a factor in I or it will
contain α twice and be in I ′.

We now consider the ideal L = B(α + I ′)B. It is easy to verify that (1) L =
B(α + I ′), (2) L ∼= Beb, (3) L2 = 0 and (4) B/L = A.

The construction of a square zero ideal projective on the right is similar.
The two constructions show how increasingly complex quasi-stratified and

ultimate-hereditary elementary algebras may be built.

5. Monomial algebras and quadratic monomial algebras.
In this section we will be looking at finite dimensional monomial algebras,

that is, elementary algebras of the form A = KΓ/I, where K is a field, Γ is
a finite quiver and I is an admissible ideal generated by paths of length ≥ 2.
For such an algebra we will write I = 〈ρ〉, where ρ is a minimal generating
set which is a set of paths. The minimal projective resolutions of the simple
A-modules can be constructed algorithmically by looking at certain overlaps of
the relations in ρ. Details of this method are found in Green et al. (1985) and
Anick & Green (1987).
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The first result is a characterization of when an ideal of the form ApA, p /∈ I,
a path, is left or right projective. (When it is clear from context what is intended,
we write p for p + I.) It should be noted that a projective nilpotent ideal in a
monomial algebra need not be one generated by a path. The proposition is for
AApA projective but the formulation of the right hand version is clear.

Proposition 5.1. Let A = KΓ/I be a monomial algebra.
(i) For a vertex i, AAeiA is projective if and only if for any path q = eiq /∈ I,

with length(q) > 0 and q has no factorization q1eiq2 with length(q1) > 0, there
is no relation r1r2 ∈ ρ, where length(r2) > 0 and r2 is a left factor of q.

(ii) For a path p /∈ I with length(p) > 0, AApA is projective if and only if
for a path q where pq /∈ I and q does not have p as a factor, there is no relation
r1r2 ∈ ρ where length(r2) > 0 and r2 is a left factor of pq.

Proof. We prove (ii) since the two parts are essentially the same except for
some changes in wording. We set S = {q a path | pq /∈ I and q has no factor p}.
Because A is a monomial algebra, we have ApA =

⊕
q∈S Apq.

(⇐): Given a path q ∈ S, then Apq ∼= Aet(p); this is because if Aet(p) → Apq,
given by right multiplication by pq, had a non-trivial kernel, there would be a
relation of the excluded type.

(⇒): in this direction we need only observe that each Apq, q ∈ S, is projec-
tive. If q = qei, then the condition says that Apq ∼= Aei via right multiplication
by pq.

Monomial algebras where all the relations in ρ are of length 2 are called
quadratic monomial algebras. They come up in various contexts. Proposition 5.1
applied to this case gives an interesting result.

Definition 5.2 (Holm (2005)). If A = KΓ/I is a quadratic monomial alge-
bra, an oriented cycle αk, . . . , α1, given by its arrows, in Γ is said to have full
relations if α1α2, . . . , αk−1αk and αkα1 are in ρ.

Proposition 5.3. Let A = KΓ/I be a quadratic monomial algebra. (i) If
gl.dim. A < ∞ then A is left (and right) ultimate-hereditary. (ii) If gl.dim. A =
∞ then there is a chain of ideals 0 = I0 ⊂ I1 ⊂ · · · ⊂ Ik ⊂ Ik+1 = A, where,
for each j = 1, . . . , k, Ij/Ij−1 is nilpotent and left or right A/Ij−1 projective.
Moreover, B = A/Ik is quadratic monomial and contains an oriented cycle with
full relations.

Proof. (i) We may assume that gl.dim. A ≥ 3 since if gl.dim. A ≤ 2 then A is
quasi-hereditary (Dlab & Ringel (1989)). Suppose that there are relations in ρ of
the form α1α2, α2α3, . . . , αk−1αk but with no relations of the form βα1 or αkγ.
By Green et al. (1985), the global dimension is determined by such overlaps and
k cannot exceed the global dimension. More exactly, these overlapping relations
yield a k + 1-chain in the sense of Anick & Green (1987, Definition 2.5) (the
conditions of the definition are readily verified for these relations of length 2).
For the same reason, all the arrows in the set of k relations are distinct. The
next step is to show that AAα1A (and, similarly, AαkAA) is projective.
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If AAα1A is not projective, then the criterion (ii) of Proposition 5.1 fails.
This says that there is a relation which, by the nature of ρ, must be of the form
βα1, for some arrow β. However, this would contradict the assumption about
the set of relations.

The algebra A/Aα1A is also of finite global dimension (Theorem 1.3 I) and
it is a quadratic monomial algebra. The process can continue until we arrive at
a factor algebra where the set of generating relations has no overlaps, that is,
at a hereditary algebra.

(ii) Even if gl.dim. A = ∞, the process described in the proof of (i) may
proceed if there is a set of relations with overlaps, α1α2, . . . , αk−1αk so that
the list cannot be extended with βα1 ∈ ρ or αkγ ∈ ρ. If some arrow appears
more than once in the list, we will already have an oriented cycle with full
relations, and, hence, we can assume that the arrows in the list are distinct.
Then I1 = Aα1A or I1 = AαkA is a nilpotent ideal projective on one side.
By Theorem 1.3 I, gl.dim. A/I1 = ∞. This process continues until there is
no longer a set of overlapping relations which cannot be extended to the left
or to the right. We call the resulting quadratic monomial algebra B. Since
gl.dim. B = ∞, Ql(B) must contain an oriented cycle and, since the algebra is
finite dimensional, such a cycle has a relation, say α1α2. This relation has an
overlap, say α2α3, and this second relation also has an overlap. We get a set of
relations with overlaps, α1α2, α2α3, . . . which must, eventually, have a repeated
arrow, αiαi+1, . . . , αj−1αj , αjαi, giving a cycle with full relations.

Holm (2005) gives a formula for the Cartan determinant of a gentle algebra
over a field K. Such an algebra is Morita equivalent to a quadratic monomial
gentle algebra. To recall: An elementary algebra A = KΓ/I is a gentle algebra
if (i) Each vertex of Γ has in-degree at most 2 and out-degree at most 2; (ii) For
each arrow α there is at most one arrow β with αβ /∈ I and at most one arrow
γ with γα /∈ I; (iii) A is quadratic monomial; and (iv) For each arrow α there
is at most one arrow β with t(β) = s(α) and αβ ∈ I, and at most one arrow γ
with s(γ) = t(α) and γα ∈ I. (An algebra satisfying the first two properties is
called special biserial.) Holm (2005, Theorem 1) says, in particular, that if A is
an elementary gentle algebra then cdA ≥ 0 and, moreover, cdA = 1 if and only
if A has no oriented cycle with full relations.

In what follows we will need the observation that if A = KΓ/I is a gentle
algebra and α is an arrow in Γ then A/AαA is also a gentle algebra. It is easily
seen that the four conditions remain true in the factor algebra.

Corollary 5.4. Let A = KΓ/I be a gentle algebra. Then, gl.dim. A < ∞ if
and only if cd A = 1.

Proof. By Proposition 5.3 (i), if gl.dim. A < ∞ then A is ultimate-hereditary
and cdA = 1. (Of course, this also follows because monomial algebras are
positively graded.) In the other direction, if cdA = 1, we have, by Theo-
rem 1.3 I that gl.dim. A < ∞ if and only if gl.dim. B < ∞, where B is the
quotient of A described in Proposition 5.3 (ii). Moreover, by Theorem 1.3 (II),
cd A = cd B = 1. If Ql(B) has no oriented cycle, then gl.dim. B < ∞, as re-
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quired. Otherwise, we saw in Proposition 5.3 (ii) that the gentle algebra B has
a cycle with full relations, giving that cd B 6= 1, by Holm (2005, Theorem 1),
excluding that possibility.

There are gentle algebras which are not quasi-stratified. Indeed if A is gentle
and its quiver consists of an oriented cycle with full relations and has more than
one vertex then A cannot have a quasi-stratifying ideal. Corollary 5.4 does not
extend to more general quadratic monomial algebras as the next example shows.
There are also quadratic monomial algebras with negative Cartan determinant.

Example 5.5. There is a quadratic monomial, special biserial algebra A such
that gl.dim. A = ∞ but cd A = 1.

Proof. The following diagram shows the left structure of an algebra with the
stated properties.

1 2
}} AA 3

}} AA 4 5

2 1 3 4 5 2 3

6. Tilting and cotilting.
In Colby (1993) it is shown that if AT is a tilting or a cotilting module and

B = End((T ), then cdA and cdB have the same sign. If, in addition, A is an
algebra over an algebraically closed field, then cdA = cdB. We conclude with
the following immediate consequence.

Proposition 6.1. Let A be a quasi-stratified algebra and B an algebra obtained
from A by a series of operations of taking endomorphism rings of tilting or
cotilting modules. (i) The Cartan determinant conjecture holds for B. (ii) If, in
addition, A is an algebra over an algebraically closed field then also the converse
of the Cartan determinant conjecture holds for B.

Proof. (i) Since cdA > 0, then cdB > 0 by Colby (1993, Theorem 1).
(ii) If cdB = 1 then cdA = 1, again by Colby (1993, Theorem 1), and,

hence, gl.dim. A < ∞. It follows that all the algebras leading up to B have
finite global dimension because finite global dimension is preserved by taking
endomorphism rings of tilting or cotilting modules.

7. Appendix
In this appendix we sketch the proof of the fact that the class of quasi-

stratified algebras is closed under Morita equivalence. The only surprising aspect
is that if we look at an equivalence between categories of left modules, the right
projectivity of a quasi-stratifying ideal carries over. The notation and results
of Anderson & Fuller (1992, §21 and §22) are used throughout. Let A and B
be Morita equivalent algebras (written A ∼M B) given by an A-B balanced
progenerator APB ; there are equivalences

HomA(P,−) : A-Mod � B-Mod: P ⊗B −
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which give a lattice isomorphism, Φ from the lattice of two-sided ideals of A
to that of B so that A/I ∼M B/Φ(I) (Anderson & Fuller (1992, Proposi-
tion 21.11)). More exactly, if I is an ideal of A then Φ(I) = HomA(P, IP ).
This sends nilpotent ideals to nilpotent ideals (Anderson & Fuller (1992, Corol-
lary 21.13)) and, by the equivalence A/I ∼M B/Φ(I), if the idempotent part of
I is generated by a primitive idempotent so is that of Φ(I). (In fact, idempotent
ideals are sent to idempotent ideals.) It remains to show that if I is an ideal of
A with AI projective then BΦ(I) is projective and that if IA is projective then
Φ(I)B is projective. The two lemmas are true for rings in general.

Lemma 7.1. Suppose I is an ideal of A with AI projective. Then, AIP is
projective and BΦ(I) is projective.

Proof. First, for any AM ∈ A-Mod,

HomA(IP,M) ∼= HomA(I ⊗A P,M) ∼= HomA(P,HomA(I, M)) ,

by Anderson & Fuller (1992, Proposition 20.6), showing that HomA(IP,−) is
exact on A-Mod, and it follows that B HomA(P, IP ) is projective.

The next lemma follows from the left-right symmetry of Morita equivalence
but it is interesting to prove it using the given equivalence of A-Mod and B-Mod.

Lemma 7.2. Suppose I is an ideal of A and IA is projective. Then, IPB is
projective and Φ(I)B is projective.

Proof. If A(X) → IA → 0 splits, so does A(X) ⊗A P = P (X) → I ⊗A

P = IP → 0. Moreover (Anderson & Fuller (1992, Proposition 20.11)), for
M ∈ Mod-B,

HomB(HomA(P, IP ),M) ∼= HomB(IP,M)⊗A P ,

so that HomB(HomA(P, IP ),−) is exact on Mod-B.

Theorem 7.3. Let A and B be artin algebras with A ∼M B. Then, A is
quasi-stratified if and only if B is quasi-stratified.

Proof. Given a stratifying chain for A, it suffices to apply one of the two
lemmas and the remarks preceding them to each step in the chain.
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