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Abstract
We report on measurements of the dc and ac magnetic susceptibility, 155Gd Mössbauer spectra,
and specific heat of the 1/1 approximant Ag50In36Gd14, and of the ac magnetic susceptibility of
the icosahedral quasicrystal Ag50In36Gd14. These alloys are shown to be spin glasses. For the
icosahedral quasicrystal Ag50In36Gd14, spin freezing occurs at Tf = 4.3 K, and the frequency
dependence of Tf is well accounted for by the Vogel–Fulcher and power laws. Spin freezing in
the 1/1 approximant Ag50In36Gd14 occurs in two stages: at Tf1 = 3.7 K, Gd spins develop
short-range correlations but continue to fluctuate, and then long-range freezing is achieved at
Tf2 = 2.4 K. The frequency dependences of Tf1 and Tf2 can be accounted for by means of the
Vogel–Fulcher law and the critical slowing down dynamics. It is shown that the spin freezing in
both alloys is a nonequilibrium phenomenon rather than a true equilibrium phase transition. The
155Gd Mössbauer spectra of the 1/1 approximant Ag50In36Gd14 confirm that the Gd spins are
frozen at 1.5 K and are fluctuating at 4.6 K. The magnetic specific heat exhibits a maximum at a
temperature that is 30% larger than Tf1 , but the temperature derivative of the magnetic entropy
peaks at Tf1 . The Debye temperature of the 1/1 approximant Ag50In36Gd14 is 199(1) K as
determined from the Mössbauer data, and 205(2) K as determined from the specific heat data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quasicrystals (QCs) are a new form of solid which differs
from the other two known forms, crystalline and amorphous,
by possessing a new type of long-range translational order,
quasiperiodicity, and a noncrystallographic orientational order
associated with classically forbidden symmetry axes [1]. A
central problem in condensed-matter physics is determining
whether quasiperiodicity leads to physical properties which are
significantly different from those of crystalline and amorphous
materials of the same/similar compositions.

The discovery of the first binary icosahedral (i-)QCs
YbCd5.7 and CaCd5.7 by Tsai et al [2] has led to the finding of
many ternary i-QCs by total or partial replacement of Yb or Ca

and Cd with other metallic elements. In particular, by replacing
Yb with rare-earth (RE) elements and Cd with Ag and In, a
series of new Ag–In–RE i-QCs was synthesized [3, 4]. Cubic
crystalline alloys YbCd6 and CaCd6 are 1/1 approximants [5]
to the i-QCs YbCd5.7 and CaCd5.7, respectively [6, 7]. A
similar replacement in YbCd6 of Yb with RE elements and
Cd with Ag and In has led to the discovery of ternary Ag–
In–RE 1/1 approximants to the Ag–In–RE i-QCs [4, 8].
The availability of icosahedral and 1/1 approximant Ag–In–
RE alloys of the same composition allows for a study of
the influence of quasiperiodicity on the physical properties
of these alloys. In this paper, we report on structural,
magnetic, 155Gd Mössbauer spectroscopy (MS), and specific
heat studies of the two alloys of the same composition:
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the i-QC Ag50In36Gd14 and its 1/1 crystalline approximant
Ag50In36Gd14.

2. Experimental methods

The i-QC Ag50In36Gd14 was synthesized as described
earlier [9]. To synthesize the 1/1 approximant Ag50In36Gd14,
starting elements in the form of Ag shots (purity, 99.99%),
In shots (purity, 99.999%), and Gd chunks (purity, 99.9%)
were used as received. Appropriate amounts of these elements
corresponding to the composition Ag50In36Gd14 were weighed
(±0.1 mg) and weld-sealed under an argon atmosphere into a
tantalum container. The container was in turn held within an
evacuated SiO2 jacket to avoid oxidation in air. The mixture
was melted using an induction furnace.

X-ray diffraction measurements were performed at 298 K
in Bragg–Brentano geometry using a PANanalytical X’Pert
scanning diffractometer, using Cu Kα radiation. The Kβ line
was eliminated by using a Kevex PSi2 Peltier-cooled solid-
state Si detector. In order to avoid deviation from intensity
linearity of the solid-state Si detector, its parameters and the
parameters of the diffractometer were chosen in such a way as
to limit the count rate from the most intense Bragg peaks to
less than 9000 counts s−1 [10].

The dc magnetic susceptibility was measured with a
Quantum Design (QD) Magnetic Property Measurement
System at various magnetic fields in the temperature range
2.0–300 K. The ac magnetic susceptibility data were collected
using a QD Physical Property Measurement System (PPMS)
between 2.0 and 30 K in a 1 Oe ac magnetic field and zero
external magnetic field for frequencies varying from 20 Hz
to 10 kHz. The specific heat data in the temperature range
2.0–300 K were collected using the same QD PPMS via the
relaxation method.

The 155Gd Mössbauer measurements were conducted
using a standard Mössbauer spectrometer operating in a sine
mode and a source of 155Eu(SmPd3). The source was kept
at the same temperature as the absorber. The spectrometer
was calibrated with a Michelson interferometer [11], and the
spectra were folded. The Mössbauer absorber was made of
pulverized material pressed into a pellet which was then put
into an Al disk container of thickness of 0.008 mm to ensure
a uniform temperature over the whole sample. The surface
density of the Mössbauer absorber of the 1/1 approximant
Ag50In36Gd14 was 356 mg cm−2. The 86.5 keV γ -rays were
detected with a 2.5 cm NaI(Tl) scintillation detector covered
with a 0.6 mm Pb plate to cut off the 105.3 keV γ -rays emitted
from the source.

The Mössbauer spectra were analyzed by means of a
least-squares fitting procedure which entailed calculations of
the positions and relative intensities of the absorption lines
by numerical diagonalization of the full hyperfine interaction
Hamiltonian. In the principal axis coordinate system of the
electric field gradient (EFG) tensor, the Hamiltonian can be
written as [12]

Ĥ = gμB Hhf
[
Îz cos θ + 1

2 ( Î+e−iφ + Î−eiφ) sin θ
]

+ eQVzz

4I (2I − 1)

[
3 Î 2

z − I (I + 1) + η

2
( Î 2

+ + Î 2
−)

]
, (1)

where g is a nuclear g-factor of a nuclear state, μB is the
nuclear Bohr magneton, Hhf is the hyperfine magnetic field
at a nuclear site, Q is the quadrupole moment of a nuclear
state, I is the nuclear spin, Vzz is the z component of the
EFG tensor, η is the asymmetry parameter defined as η =
|(Vxx − Vyy)/Vzz | (if the principal axes are chosen such that
|Vxx | < |Vyy| < |Vzz |, then 0 � η � 1), θ is the angle between
the direction of Hhf and the Vzz-axis, φ is the angle between
the Vxx -axis and the projection of Hhf onto the xy plane, and
the Îz , Î+, and Î− operators have their usual meaning. During
the fitting procedure, the g-factor and the quadrupole moment
ratios for 155Gd (Ig = 3/2, Iex = 5/2) were constrained to
gex/gg = 1.235 and Qex/Qg = 0.087, respectively [13]. The
interference factor ξ for the E1 transition of 86.5 keV in 155Gd
was fixed to the value of 0.0520 which was derived from the fit
of the 155Gd Mössbauer spectrum of GdFe2 at 4.2 K [14].

The resonance line shape of the Mössbauer spectra was
described using a transmission integral formula [15]. In
addition to the hyperfine parameters, only the absorber Debye–
Waller factor fa and the absorber linewidth 	a were fitted
as independent parameters. The source linewidth 	s =
0.334 mm s−1 and the background-corrected Debye–Waller
factor of the source f ∗

s [15], which were derived from the fit
of the 155Gd Mössbauer spectrum of GdFe2 at 4.2 K [14], were
used. The 155Eu(SmPd3) source at 1.5 K emits a broadened
emission line; from the fit of the 155Gd Mössbauer spectrum of
GdFe2 at 1.5 K we found that 	s = 0.708 mm s−1 [14].

3. Results and discussion

3.1. Structural characterization

All major Bragg peaks of the XRD spectrum of the i-QC
Ag50In36Gd14 could be indexed to a simple icosahedral (SI)
six-dimensional Bravais lattice [9]. The value of the six-
dimensional hypercubic lattice constant a6D for this i-QC is
7.805 Å [9].

The 1/1 approximant Ag50In36Gd14 crystallizes in the
YbCd6-type crystal structure [7] with the space group Im3̄
(No. 204). There are 24 formula units of (Ag, In)6Gd per
unit cell. The x-ray powder diffraction pattern of the 1/1
approximant Ag50In36Gd14 is shown in figure 1. In the
Rietveld refinement, the atomic positions for the Ag, In, and
Gd sites and their occupancies were fixed to the positions
and occupancies, respectively, for the Cd and Gd sites in the
GdCd6 approximant [7]. The Rietveld refinement of the x-ray
powder diffraction data was performed (figure 1), yielding the
lattice parameter a = 15.202(1) Å. The reliability factors [16]
achieved are Rexp = 6.2%, Rp = 17.2%, and χ2 = 9.4.
The sample studied contains traces of second phases of Ag3In
(space group P63/mmc) in the amount of 5.2(6) wt% and
of Gd (space group Fm3̄m) in the amount of 0.6(2) wt%, as
determined from the Rietveld refinement of the XRD pattern
(figure 1).

The lattice constant a of a 1/1 approximant to an i-QC is
related to the six-dimensional hypercubic lattice constant a6D

of the i-QC via the relation a =
√

2
2+τ

(1 + τ )a6D, where τ

is the golden mean (τ = (1 + √
5)/2) [17]. From the value
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Figure 1. The x-ray diffraction spectrum of the 1/1 approximant Ag50In36Gd14 at 298 K. The experimental data are denoted by open circles,
while the line through the circles represents the results of the Rietveld refinement. The upper set of vertical bars represents the Bragg peak
positions corresponding to the principal Ag50In36Gd14 phase, while the lower two sets refer to the positions of the minor impurity phases of
Ag3In (space group P63/mmc) and Gd (space group Fm3̄m). The lower solid line represents the difference curve, between experimental and
calculated spectra.

a6D = 7.805 Å for the i-QC Ag50In36Gd14, one would expect
a = 15.192 Å, which is in good agreement with the value of
15.202 Å obtained from the Rietveld refinement.

3.2. Magnetic measurements

3.2.1. The dc magnetic susceptibility. The magnetic sus-
ceptibility χ of the i-QC Ag50In36Gd14 showed irreversibility
between field-cooled (FC) and zero-field-cooled (ZFC) condi-
tions, thus demonstrating that this QC is a spin glass, with the
spin freezing temperature Tf = 4.25(5) K [9].

The temperature dependence of χ for the 1/1 approximant
Ag50In36Gd14 measured in an applied magnetic field of 50 Oe
is shown in figure 2(a). The sample was field cooled to
2.0 K and the measurement was performed while warming the
sample up to 300 K. The χ(T ) curve exhibits a definite peak at
3.6(1) K indicating magnetic ordering. The χ(T ) data above
70 K could be fitted to a modified Curie–Weiss law

χ = χ0 + C

T − �p
, (2)

where χ0 is the temperature-independent magnetic suscepti-
bility, C is the Curie constant, and �p is the paramagnetic
Curie temperature. The Curie constant can be expressed as

C = Nμ2
eff

3kB
, where N is the concentration of magnetic atoms

per unit mass, μeff is the effective magnetic moment, and kB

is the Boltzmann constant. Figure 2(b) shows the inverse
magnetic susceptibility corrected for the contribution χ0 as
(χ − χ0)

−1 versus temperature; the validity of the modified
Curie–Weiss law is evident. The values of χ0, C , and �p ob-
tained from the fit are, respectively, 8.94(48) × 10−6 emu g−1

(7.49(40)×10−3 emu/(mol Gd)), 8.71(20)×10−3 emu K g−1,
and −55.9(2) K. This value of C corresponds to μeff =
7.64(9) μB per Gd atom.

Figure 2. (a) The temperature dependence of the magnetic
susceptibility of the 1/1 approximant Ag50In36Gd14, measured in an
external magnetic field of 50 Oe. The solid line is the fit to
equation (2) in the temperature range 70–300 K, as explained in the
text. (b) The inverse magnetic susceptibility corrected for the
contribution χ0, (χ − χ0)

−1, versus temperature T for the 1/1
approximant Ag50In36Gd14. The solid line is the fit to equation (2).

The temperature-independent magnetic susceptibility χ0

includes contributions from the Pauli susceptibility of
conduction electrons and the diamagnetic susceptibility of core
electrons, χ0 = χP + χd. The latter can be estimated as a
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Figure 3. The temperature dependence of the ZFC and FC magnetic
susceptibility of the 1/1 approximant Ag50In36Gd14, measured in an
external magnetic field of 50 Oe.

weighted mean of the susceptibilities of the constituents of the
alloy [18], and is thus χd = −1.55 × 10−4 emu/(mol Gd).
The value of χP is therefore 7.65(40) × 10−3 emu/(mol Gd).
The derived value of χP is about two times larger than that
found for other single-crystalline Gd-containing alloys [19].
The large value of χP found here results most probably from
the contribution to χ0 from the small amount of ferromagnetic
Gd impurity present in the studied sample.

For a free Gd3+ ion (electronic configuration 8S7/2), the
theoretical value of μth

eff = gμB
√

J (J + 1) is 7.94 μB [20].
The fact that the experimental value μeff = 7.64(9) μB is close
to the theoretical value of 7.94 μB confirms that the magnetic
moment is localized on the Gd3+ ions and that, as expected, Ag
and In atoms carry no magnetic moment. The negative value of
�p indicates the predominantly antiferromagnetic interaction
between the Gd3+ spins.

To determine the nature of the magnetic transition at
3.6 K, we measured the temperature dependence of the ZFC
and FC magnetic susceptibility between 2 and 10 K in an
applied magnetic field of 50 Oe (figure 3). The occurrence
of a bifurcation between the ZFC and FC data at the freezing
temperature Tf = 3.6(1) K is evident. Above Tf the ZFC and
FC data are essentially identical. Such a behavior of the ZFC
and FC susceptibility data is characteristic of a spin glass [21].

The occurrence of spin-glass behavior requires both
randomness and frustration [21, 22]. The frustration parameter
f , defined as f = −�p/Tf [23], is an empirical measure
of frustration. Compounds with f > 10 are categorized as
strongly geometrically frustrated compounds [23]. The value
of f for the 1/1 approximant Ag50In36Gd14 is 15.5(1.1). The
value of f for the i-QC Ag50In36Gd14 is 8.7 [9]. Thus the 1/1
approximant Ag50In36Gd14 belongs to a category of strongly
geometrically frustrated magnets.

3.2.2. The ac magnetic susceptibility. Figure 4 shows the
temperature dependence of the in-phase component χ ′ and the
out-of-phase component χ ′′ of the ac magnetic susceptibility
of the i-QC Ag50In36Gd14 for different frequencies between
20 Hz and 10 kHz. As the magnitude of χ ′′ is typically a few
per cent of the value of χ ′ for spin glasses [21], this leads to
a reduced signal-to-noise ratio in the χ ′′ data. Both χ ′ and χ ′′

Figure 4. The temperature dependence of the in-phase magnetic
susceptibility χ ′ (a) and out-of-phase magnetic susceptibility χ ′′ (b)
measured for different applied frequencies from 20 Hz to 10 kHz for
the i-QC Ag50In36Gd14. The inset in (a) is a magnification around the
maximum in χ ′.

curves show maxima whose amplitudes and positions depend
on the frequency f of the applied ac magnetic field. With
increasing frequency, the peak positions are shifted to higher
temperatures, the peak intensity of χ ′(T ) decreases, and the
peak intensity of χ ′′(T ) increases. These features are typical
for canonical spin glasses [21]. The position of the sharp
peak in χ ′(T ) can be used to define Tf. Below the maximum
in χ ′(T ), the magnitude of χ ′ is frequency dependent, but it
becomes independent of frequency at temperatures just above
Tf. This behavior is qualitatively similar to that of canonical
spin glasses [21]. The out-of-phase component χ ′′ is vanishing
above Tf, but is non-zero for temperatures just below Tf,
which implies dissipation not only at the freezing transition
but also for temperatures below it, a common feature of spin
glasses [21].

The temperature (Tf) of the maximum in χ ′(T )

(figure 4(a)) was determined from a curve fitting procedure,
where the variation χ ′(T ) near Tf was assumed to be a
Gaussian function. The frequency dependence of Tf is
shown in figure 5. A quantitative measure of the change
of the freezing temperature with frequency in spin glasses is
represented by the relative change in Tf per decade change in
f defined as [21]

K = 
Tf

Tf
 log f
. (3)

From a linear fit of the data in figure 5, and using the average
value of Tf = 4.42 K for the range of frequencies used, one
finds that K = 0.010(2). This value is a factor of about
2 greater than that found for such canonical spin glasses as
Cu1−x Mnx (K = 0.005), Au1−x Mnx (K = 0.0045), and
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Figure 5. The frequency dependence of the freezing temperature Tf

for the i-QC Ag50In36Gd14. The solid line is the best linear fit to the
Tf data.

Ag1−xMnx (K = 0.006), but comparable to that of several
other canonical spin glasses such as Au1−x Fex (K = 0.010)
and Pd1−xMnx (K = 0.013) [21]. We note that the value of K
reported for another i-QC Tb9Mg34Zn57 is 0.049 [24].

There are essentially two different possible interpretations
of the spin-glass freezing process. The first one assumes the
existence of spin clusters and, in this case, the freezing is a
nonequilibrium phenomenon [25]. The second interpretation
assumes the existence of a true equilibrium phase transition
at a finite temperature [26]. For magnetically interacting
clusters, the frequency dependence of Tf is described by the
phenomenological Vogel–Fulcher law [21, 25]

f = f0 exp[−Ea/kB(Tf − T0)], (4)

where f0 is a characteristic frequency, Ea is the activation
energy, and T0 is the Vogel–Fulcher temperature which is a
measure of the strength of interaction between clusters in the
spin glass [27]. Equation (4) implies a linear dependence
of 1/(Tf − T0) with log( f ). The best fit of the Tf( f ) data
to equation (4) (figure 6), assuming f0 = 1 × 1013 Hz as
typically observed for other spin glasses [25], yields Ea/kB =
9.09(38) K and T0 = 4.04(2) K. For this fit, the coefficient
of determination [28] r 2 = 0.9981. Similarly to what was
observed for other spin glasses [25], we find T0 < Ea/kB.

In the second interpretation of the spin freezing
phenomenon, the characteristic relaxation time τ = 1/ f of
magnetic moments will show a critical slowing down when
approaching Tf from above, characterized by a power law
τ ∝ ξ z , where ξ is the correlation length and z is the dynamic
scaling exponent [29]. The correlation length ξ itself is related
to the reduced temperature t = (Tf − Tc)/Tc as ξ ∝ t−ν ,
where Tc is the phase transition temperature and ν is the critical
correlation length exponent [29]. Therefore, the temperature
dependence of f obeys the power-law divergence [21, 29]

f = f0

(
Tf − Tc

Tc

)zν

, Tf > Tc, (5)

where f0 is the microscopic relaxation time. The best fit of
the Tf( f ) data in figure 7 to equation (5), assuming f0 =

Figure 6. The frequency dependence of the freezing temperature Tf

for the i-QC Ag50In36Gd14. The solid line is the best fit to
equation (4).

Figure 7. The frequency dependence of the freezing temperature Tf

for the i-QC Ag50In36Gd14. The solid line is the best fit to
equation (5).

1 × 1013 Hz as typically observed for other spin glasses [25],
gives Tc = 4.35(3) K and zν = 5.97(10). For this fit,
r 2 = 0.9907. The value of zν obtained falls in the range 4–
12 of zν values found for many different spin glasses [21, 30].

The value of r 2 corresponding to the fit of the Tf( f ) data
to equation (4) is larger than that corresponding to the fit to
equation (5), which indicates that the spin freezing in the i-QC
Ag50In36Gd14 is a nonequilibrium phenomenon rather than a
phase transition.

The temperature dependence of χ ′ for the 1/1 approxi-
mant Ag50In36Gd14 for selected frequencies between 300 Hz
and 10 kHz is shown in figure 8. The χ ′(T ) curve shows two
maxima: one at ≈3.6 K and the other at ≈2.4 K. The maxi-
mum at ≈3.6 K is similar to that observed in the dc χ(T ) data
(figure 3). The amplitudes and positions of these two maxima
depend on the frequency f of the applied ac magnetic field.
The position of the maximum in χ ′(T ) is used to define Tf.
It thus appears that the spin freezing in the 1/1 approximant
Ag50In36Gd14 is a two-stage process: it starts at Tf1 ≈ 3.6 K
and is completed at Tf2 ≈ 2.4 K.

Figure 9 shows the temperature dependence of χ ′′ for
the 1/1 approximant Ag50In36Gd14 for selected frequencies
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Figure 8. The temperature dependence of the in-phase magnetic
susceptibility χ ′ measured for different applied frequencies from
300 Hz to 10 kHz for the 1/1 approximant Ag50In36Gd14. The inset
shows a magnification of the low-temperature region.

Figure 9. The temperature dependence of the out-of-phase magnetic
susceptibility χ ′′ measured for different applied frequencies from
300 Hz to 10 kHz for the 1/1 approximant Ag50In36Gd14. The insets
show a magnification of the low-temperature region.

between 300 Hz and 10 kHz. One can clearly observe a
sudden increase of χ ′′ above its background value near Tf1 and
a sudden decrease of χ ′′ back to its background value near Tf2 .

The temperatures Tf1 and Tf2 of the maxima in χ ′
(figure 8) were determined using a curve fitting procedure. The
frequency dependence of Tf1 and Tf2 is shown in figure 10.
From a linear fit of the data in figure 10, and using the average
values of Tf1 = 3.70 K and Tf2 = 2.44 K for the range
of frequency used, we find from equation (3) that K1 =
9.4(1.5) × 10−3 and K2 = 6.4(1.1) × 10−3. These values
of K1 and K2 are very similar to the value of K = 0.010(2)

found for the i-QC Ag50In36Gd14. It would thus appear that the
spin dynamics are similar for these two spin glasses.

The best fits of the Tf1( f ) and Tf2( f ) data (figure 11) to the
Vogel–Fulcher law (equation (4)), assuming f0 = 1×1013 Hz,
yield E1

a /kB = 6.60(79), T 1
0 = 3.41(4) K and E2

a /kB =
2.56(41), T 2

0 = 2.32(2) K, respectively. The values of r 2

Figure 10. The frequency dependence of the freezing temperatures
(a) Tf1 and (b) Tf2 for the 1/1 approximant Ag50In36Gd14. The solid
lines are the best linear fits to the data.

Figure 11. The frequency dependence of the freezing temperatures
(a) Tf1 and (b) Tf2 for the 1/1 approximant Ag50In36Gd14. The solid
lines are the best fits to equation (4).

corresponding to these fits are, respectively, 0.9924 and 0.9879.
As observed for other spin glasses [25], the parameters derived
fulfil the inequality T0 < Ea/kB.

Figure 12 shows the fits of the Tf1( f ) and Tf2( f ) data
to the power law (equation (5)), with the corresponding r 2

6
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Figure 12. The frequency dependence of the freezing temperatures
(a) Tf1 and (b) Tf2 for the 1/1 approximant Ag50In36Gd14. The solid
lines are the best fits to equation (5).

values of 0.9887 and 0.9802, respectively. The parameters
derived from the fits, assuming that f0 = 1 × 1013 Hz, are
T 1

c = 3.63(2) K, (zν)1 = 5.64(30), and T 2
c = 2.42(1) K,

(zν)2 = 4.70(25). The values determined for zν are consistent
with the values obtained for other spin-glass systems [21, 30].

Clearly, the values of r 2 are larger for the fits of the Tf1( f )

and Tf2( f ) data to equation (4) than to equation (5). This
may be interpreted as evidence that the spin freezing in the
1/1 approximant Ag50In36Gd14, similarly to the case for the
i-QC Ag50In36Gd14, is not a true equilibrium phase transition
but rather a nonequilibrium phenomenon.

The presence of two distinct features in the χ ′(T ) and
χ ′′(T ) dependences (figures 8 and 9) is perhaps the most
interesting aspect of the spin freezing phenomenon for the
1/1 approximant Ag50In36Gd14. In virtually all known spin
glasses, spin freezing is a one-stage process [21, 30]. It appears
that spin freezing in the 1/1 approximant Ag50In36Gd14 is
occurring in two stages: at ≈3.6 K spins develop short-range
correlations but they continue to fluctuate at low frequencies,
and then long-range freezing is achieved upon further cooling
to below ≈2.4 K. A similar two-stage freezing process
has been observed for geometrically frustrated magnets,
Gd3Ga5O12, Dy2−xYbx Ti2O7, and Ho2Ti2O7 [31–33].

The occurrence of a two-stage freezing process in the
1/1 approximant Ag50In36Gd14 can possibly be related to its
atomic structure. The atomic structure of the 1/1 approximant
Ag50In36Gd14 is the same as that of the 1/1 approximant
GdCd6 [7], with Ag/In atoms occupying the Cd sites. The
atomic structure of the 1/1 approximant Ag50In36Gd14 can
thus be described as a body-centered-cubic arrangement
of partially interpenetrating rhombic triacontahedral cluster

Figure 13. The 155Gd Mössbauer spectrum of the 1/1 approximant
Ag50In36Gd14 at 4.6 K fitted (solid line) with an electric quadrupole
hyperfine interaction. The zero-velocity origin is relative to the
source.

units. The rhombic triacontahedral cluster consists of
four successive shells: the inner Ag/In tetrahedron, the
Ag/In dodecahedron, the Gd icosahedron, and the Ag/In
icosidodecahedron. The location of magnetic Gd atoms at
the vertices of the icosahedron is the source of frustration
necessary for the occurrence of a spin-glass behavior. There
are only two linkages between the neighboring triacontahedral
clusters: one along the twofold axes and the other along
the threefold axes [34, 35]. It follows that the same two
linkages occur between the neighboring Gd icosahedra, and
this may be related to the two-stage freezing process in the 1/1
approximant Ag50In36Gd14

3.3. Mössbauer spectroscopy

Figure 13 shows the 155Gd Mössbauer spectrum of the 1/1
approximant Ag50In36Gd14 measured at 4.6 K, i.e., in the
paramagnetic region above Tf1 . The Gd3+ ions are located
at the site with the point symmetry m . . . [7], which ensures
a non-zero EFG at the Gd3+ site, and hence a non-zero
electric quadrupole hyperfine interaction. The Mössbauer
spectrum in figure 13 does indeed exhibit the presence of a
substantial electric quadrupole hyperfine interaction and the
absence of the magnetic dipole hyperfine interaction. The
absence of the magnetic dipole hyperfine interaction in the
Mössbauer spectrum in figure 13 proves that at 4.6 K the
Gd spins are not in a frozen state. For 155Gd nuclei, the
quadrupole moment of the excited nuclear state Qex =
0.12 b [13] is significantly smaller than that of the ground
nuclear state, Qg = 1.30 b [36]. This causes the quadrupole
splitting of the excited nuclear state, which is sensitive to
the sign of Vzz and the magnitude of η, to be smaller than
the natural linewidth 	nat = 0.250 mm s−1. Consequently,
only the absolute value of the effective quadrupole splitting
parameter 
eff

g = eQg|Vzz |
√

1 + η2/3 can be derived from
a Mössbauer spectrum of a sample in the paramagnetic
state [37]. The parameters derived from the fit (χ2 = 1.11)
of the Mössbauer spectrum (figure 13) are: the isomer shift
(relative to the 155Eu(SmPd3) source) δ = 0.506(6) mm s−1,

7
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Figure 14. The 155Gd Mössbauer spectrum of the 1/1 approximant
Ag50In36Gd14 at 1.5 K fitted (solid line) with combined magnetic
dipole and electric quadrupole hyperfine interactions. The
zero-velocity origin is relative to the source.


eff
g = 1.897(19) mm s−1, fa = 10.3(1)%, and 	a =

0.424(16) mm s−1. The value of δ confirms the trivalent
state of Gd in the 1/1 approximant Ag50In36Gd14 [37]. The
value of 
eff

g is close to that for the i-QC Ag50In36Gd14 [9],
which indicates a strong similarity of the local atomic structure
around the Gd atoms in the 1/1 approximant and the i-QC
Ag50In36Gd14.

In terms of the Debye approximation of the lattice vibra-
tions, the absorber Debye–Waller factor fa is expressed [12] in
terms of the Debye temperature, �D, as

fa(T ) = exp

{
−3

4

E2
γ

Mc2kB�D

[
1 +

(
T

�D

)2

×
∫ �D/T

0

x dx

ex − 1

]}
, (6)

where Eγ is the energy of the Mössbauer transition, M is the
mass of the Mössbauer nucleus, and c is the speed of light. The
value of fa = 10.3(1)% derived from the fit of the Mössbauer
spectrum in figure 13 yields via equation (6) �D = 199(1) K,
which is the same as �D for the i-QC Ag50In36Gd14 [9]. This
means that the phonon dynamics are very similar for these
two alloys. The low value of �D of the 1/1 approximant
Ag50In36Gd14 compares well with the value of 145.2 K for the
1/1 approximant YbCd6 derived from the specific heat [38].

The 155Gd Mössbauer spectrum of the 1/1 approximant
Ag50In36Gd14 at 1.5 K, i.e. below Tf2 , clearly shows
(figure 14) the presence of combined magnetic dipole and
electric quadrupole hyperfine interactions. The presence of
the magnetic dipole hyperfine interaction in the Mössbauer
spectrum in figure 14 proves that at 1.5 K the Gd spins are
frozen. The Mössbauer spectrum in figure 14 was fitted by
fixing the value of 	a to 0.424 mm s−1 obtained from the
fit of the 4.6 K Mössbauer spectrum, and the value of θ to
0.0◦. The parameters derived from the fit (χ2 = 1.06) of the
Mössbauer spectrum (figure 14) are: δ = 0.483(18) mm s−1,
Hhf = 137.3(11.8) kOe, the quadrupole splitting constant
eQgVzz = 1.899(29) mm s−1 (Vzz = 4.21(6) × 1021 V cm−2),
η = 0.2(2), and fa = 10.4(1)%. A substantial value of Hhf

indicates a considerable magnetic moment of Gd atoms.

Figure 15. The temperature dependence of the specific heat of the
1/1 approximant Ag50In36Gd14. The inset shows a magnification of
the low-temperature region. The solid line is the fit to equation (7) of
the specific heat data in the temperature range 13–20 K.

3.4. Specific heat

The temperature-dependent specific heat (C) data for the 1/1
approximant Ag50In36Gd14 are shown in figure 15. At room
temperature, C is 2469 J mol−1 K−1. This is close to the
value 3r R (r is the number of atoms per formula unit and
R is the molar gas constant) of 2494 J mol−1 K−1 expected
from the law of Dulong and Petit [20]. There is a broad
maximum in C (inset in figure 15) at a temperature higher than
Tf (Tmax ≈ 1.3Tf) and a gradual fall-off of C at increasing
temperatures T −→ 2.5Tf. Such a temperature dependence of
C around Tf has been observed for various spin glasses [21].

In order to determine the magnetic contribution Cm to
the specific heat of the 1/1 approximant Ag50In36Gd14, the
electronic and lattice contributions were determined first by
fitting the C(T ) data in the temperature range 13–20 K (inset
in figure 15) to the equation

C(T ) = γ T + βT 3, (7)

where γ is the electronic specific heat coefficient and
β = 12π4 Rr

5�3
D

is the lattice specific heat coefficient. The

values of γ and β obtained from the fit are, respectively,
6.77(19) J mol−1 K−2 and 22.5(6) mJ mol−1 K−4. This value
of β corresponds to �D = 205(2) K, which is very close to the
value of 199(1) K inferred from the Mössbauer data.

The magnetic contribution to the specific heat for the
1/1 approximant Ag50In36Gd14 obtained by subtracting the
electronic and lattice contributions from C is shown in
figure 16. It exhibits a broad maximum at ≈4.5 K. This
temperature is about 30% higher than Tf. The fact that
the temperature at which Cm reaches its maximum is larger
than Tf (figure 16) agrees with what has been observed for
many spin glasses [21]. Interestingly, the plot of Cm/T
(=dSm/dT , Sm being the magnetic entropy) as a function of
temperature (figure 17) shows that the temperature at which
Cm/T attains its maximum coincides with Tf. It would
appear that in the 1/1 approximant Ag50In36Gd14 spin glass
the spin freezing is associated with a change in the magnetic

8
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Figure 16. The magnetic contribution to the specific heat for the 1/1
approximant Ag50In36Gd14 as a function of temperature.

entropy (revealed by Cm/T ) rather than with a change in
the magnetic internal energy (revealed by Cm). A similar
coincidence between the temperature at which Cm/T attains its
maximum and Tf was observed in several spin-glass systems:
Pd1−x Mnx [39], Cu1−xMnx [40, 41], Au1−xFex [41, 42], and
i-QC Al70Mn9Pd21 [43].

The temperature dependence of the magnetic entropy,
Sm = ∫ T

0 (Cm/T ′) dT ′, was calculated by integration of the
Cm/T versus T dependence (figure 17), after an extrapolation
of the Cm/T data down to the origin (i.e., for T = 0, Sm =
0). Sm saturates at 60.3 J mol−1 K−1, which amounts to only
24.9% of the expected value x R ln(2J + 1) (x is the number
of atoms carrying the magnetic moment per formula unit) of
242 J mol−1 K−1. The Sm(T ) dependence reveals (figure 17)
that 63% of the entropy is released above Tf. This suggests that
spin freezing at Tf removes only a small contribution to the
magnetic entropy, and implies a significant short-range order
of the magnetic moments above Tf.

4. Summary

Measurements of the dc and ac magnetic susceptibility, 155Gd
Mössbauer spectra, and specific heat of the 1/1 approximant
Ag50In36Gd14, and of the ac magnetic susceptibility of the
icosahedral quasicrystal Ag50In36Gd14 are reported. It is shown
that these two alloys develop no long-range magnetic order,
but are spin glasses. Freezing of Gd spins occurs at Tf =
4.3 K in the icosahedral quasicrystal Ag50In36Gd14 and the
frequency dependence of Tf can be described by means of
the Vogel–Fulcher law and the power-law divergence. In the
1/1 approximant Ag50In36Gd14, Gd spin freezing takes place
in two stages: at Tf1 = 3.7 K Gd spins develop short-range
correlations but continue to fluctuate, and then long-range
freezing is achieved upon further cooling below Tf2 = 2.4 K.
The dependences of Tf1 and Tf2 on frequency can be accounted
for by the Vogel–Fulcher and power laws. It is argued that the
spin freezing, in both alloys, is not a true equilibrium phase
transition but rather a nonequilibrium phenomenon. The 155Gd
Mössbauer spectra of the 1/1 approximant Ag50In36Gd14

confirm that the Gd spins are frozen at 1.5 K and are fluctuating

Figure 17. Cm/T as a function of temperature and the magnetic
entropy Sm as a function of temperature for the 1/1 approximant
Ag50In36Gd14.

at 4.6 K. The maximum in the magnetic specific heat occurs at
a temperature that is 30% larger than Tf1 , but the temperature
derivative of the magnetic entropy has a maximum at Tf1 . The
Debye temperature of the 1/1 approximant Ag50In36Gd14 is
199(1) K as determined from the Mössbauer data, and 205(2) K
as determined from the specific heat data.
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