Structural, magnetic, and Mössbauer spectral study of the icosahedral quasicrystal Zn$_{77}$Fe$_7$Sc$_{16}$

K. Al-Qadi, 1, P. Wang, 1, Z. M. Stadnik, 1, * and J. Przewoźnik 2

1 Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
2 Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Kraków, Poland

(Received 3 February 2009; revised manuscript received 14 May 2009; published 8 June 2009)

The structural, magnetic, and Mössbauer spectral properties of the icosahedral quasicrystal Zn$_{77}$Fe$_7$Sc$_{16}$ are reported. The thermodynamically stable quasicrystal Zn$_{77}$Fe$_7$Sc$_{16}$ has a primitive six-dimensional Bravais lattice at room temperature with a six-dimensional hypercubic lattice constant of 7.087(1) Å. Based on dc magnetization measurements, no evidence is found for a transition to a ground state with long-range magnetic order in the temperature range between 2 and 300 K. The dc zero-field-cooled and field-cooled susceptibility data indicate that the studied quasicrystal is a spin glass with freezing temperature $T_f=7.75(2)$ K. This is further confirmed by observing aging effects through the dc zero-field-cooled magnetization and the thermoremanent magnetization time decays and by the analysis of the frequency dependence of T_f using the Vogel-Fulcher law and the dynamic scaling behavior near T_f. However, the observed increase in the thermoremanent magnetization with the magnetic field in the low-field regime is incompatible with the ultrametrically organized phase space of a canonical spin glass. The nature of the spin-glass state of the icosahedral quasicrystal Zn$_{77}$Fe$_7$Sc$_{16}$ is therefore fundamentally different from that of a canonical spin glass. The bimodal distribution of the electric quadrupole splitting and of the hyperfine magnetic field derived from Mössbauer spectra indicates the existence of two classes of Fe sites.

DOI: 10.1103/PhysRevB.79.224202 PACS number(s): 61.44.Br, 75.50.Kj, 75.50.Lk, 76.80.+y

I. INTRODUCTION

Solids are traditionally divided into two groups: crystalline and amorphous. The dramatic discovery of an icosahedral Al-Mn alloy in 1984 by Shechtman et al. 1 extended this dichotomous division by introducing the notion of quasicrystals (QCs). These are compounds that possess a new type of long-range translational order, quasiperiodicity, and noncrystallographic orientational order associated with the classically forbidden fivedfold, eightfold, tenfold, and twelvefold symmetry axes. 2 A central problem in condensed-matter physics is determining whether quasiperiodicity leads to physical properties which are significantly different from those of crystalline and amorphous materials of the same/similar compositions.

One of the main questions in the physics of QCs is that of the possibility of the existence of long-range magnetic order in these alloys. The initial intuition suggests that quasiperiodicity necessarily leads to geometrical frustration and is therefore incompatible with long-range magnetic order. However, the symmetry-based arguments clearly show that quasiperiodicity does not disallow long-range magnetic order in QCs. In addition, theoretical considerations based on the Ising model, the XY model, the Heisenberg model, and the Hubbard model lead to the possibility of the existence of long-range magnetic order in these alloys.

On the experimental side, all known QCs are either diamagnets, paramagnets, or spin glasses. The recent claim of the existence of long-range magnetic order in icosahedral (i)R-Mg-Zn (R=rare earth) QCs was shown to result from the presence of magnetic impurities in the studied samples. Recent extensive neutron-diffraction studies of i-R-Mg-Zn and i-R-Mg-Cd QCs, which are of very high structural quality and which can be produced in single-grain form, revealed the presence of short-range spin correlations at low temperatures and the absence of long-range magnetic order; these QCs are spin glasses.

Recently, new thermodynamically stable i QCs were discovered in the Zn-TM-Sc (TM=transition-metal) system. These QCs are formed by replacing some of the Zn in the binary 1/1 approximant Zn$_8$Sc (Ref. 13) with the TM. As the 1/1 approximant Cd$_8$Yb to the thermodynamically stable binary i-YbCd$_{12.7}$ QC is isostructural with Zn$_8$Sc, it is expected that the structure of the i-Zn-TM-Sc QCs must be similar to that of the i-YbCd$_{12.7}$ QC. The crystal structure of the i-YbCd$_{12.7}$ QC has been solved very recently. It is based on three building units (rhombic triacontahedra linked with acute and obtuse rhombohedra) arranged quasiperiodically with unique atomic decorations. One would expect that Sc and TM atoms are distributed among the Yb sites (on the vertices of the icosahedron and inside the acute rhombohedron) and the Zn atoms are located at the Cd sites.

The new i-Zn-TM-Sc QCs could possibly possess sizeable 3d magnetic moments on the TM atoms and perhaps exhibit long-range magnetic order. It is therefore of interest to determine the magnetic properties of these new QC’s. We report in this paper on structural, magnetic, and 57Fe Mössbauer spectroscopy (MS) studies of the i alloy Zn$_{77}$Fe$_7$Sc$_{16}$.

II. EXPERIMENTAL METHODS

As starting elements, Zn shots (purity 99.999%), Fe foil (purity 99.99%), and Sc chunks (purity 99.9%) were used as received; Fe element was enriched to 95.4% in the 57Fe isotope. Appropriate amounts of these elements corresponding to the composition Zn$_{77}$Fe$_7$Sc$_{16}$ were weighed (± 0.1 mg) and weld sealed under an argon atmosphere into a tantalum container. The container was in turn held within an evacuated...
SiO$_2$ jacket to avoid its air oxidation. The mixture was melted at 1000 °C for 2 h, followed by annealing at 700 °C for 120 h.

X-ray diffraction (XRD) measurements were performed at 298 K in Bragg-Brentano geometry on the PANalytical X’Pert scanning diffractometer using Cu Kα radiation. The Kβ line was eliminated by using a Kevex PSI2 Peltier-cooled solid-state Si detector. In order to avoid deviation from intensity linearity of the solid-state Si detector, its parameters and the parameters of the diffractometer were chosen in such a way as to limit the count rate from the most intense Bragg peaks to less than 9000 counts/s.16 To allow for possible instrumental aberration and specimen displacement, corrections were made to the 2Θ angles using a fourth-order polynomial calibration curve17 obtained from a scan of the specimen mixed with 10 wt% of a Si standard.18

The dc magnetic susceptibility was measured with a Quantum Design superconducting quantum interference device (SQUID) magnetometer at various magnetic fields in the temperature range of 2.0–300 K. The sample in chunk form (the linear size of the chunks was about 0.5 mm) was placed in a low-background fused silica sample holder of geometry similar to that described by Lewis and Bussmann.19 Our sample holder consisted of an unsealed fused silica tube at the center of which a fused silica cylindrical container (a cup with a lid) was sandwiched between two smaller fused silica tubes. The bottom of the outer tube was narrowed to hold the inner structure in place. The gap between the cup and the lid was smaller than the size of the sample chunks inside the cup; this ensured that the sample could not accidentally leave the cup and that it was in direct thermal contact with a He gas flowing inside the silica tubes. The ac magnetic susceptibility data were collected in a Quantum Design physical property measurement system between 2.0 and 30 K in a 1 Oe ac magnetic field and zero external dc magnetic field for frequencies varying from 20 Hz to 10 kHz. The sample in a disk form was securely anchored to a low-background sample holder.

The 57Fe MS measurements in the temperature range of 1.9–289.4 K were conducted using a standard Mössbauer spectrometer operating in sine mode and a 57Co(Rh) source at room temperature. The spectrometer was calibrated with a 6.35-μm-thick α-Fe foil,20 and the spectra were folded. The full linewidth at half maximum of the inner pair of the α-Fe Zeeman pattern was 0.210(2) mm/s, and this value can be regarded as the resolution of the Mössbauer spectrometer. The Mössbauer absorber consisted of a mixture of pulverized material and boron nitride, which were pressed into a pellet that was put into an Al disk container of thickness 0.008 mm to ensure a uniform temperature over the whole absorber. The surface densities of the Mössbauer absorbers of the i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC were 1.10 and 1.21 mg 57Fe/cm2 for measurements below and above 4.2 K, respectively.

III. RESULTS AND DISCUSSION

A. Structural characterization

The XRD pattern of the sample measured in the 2θ range of 5–90° (Fig. 1) shows the presence of 39 i Bragg peaks. Bragg peaks of very small intensity due to an unidentified second phase are also observed (Fig. 1). The positions of all the detected i Bragg peaks corresponding to $K\alpha_1$ radiation [the value of its wavelength λ is 1.540 598 1 Å (Ref. 21)] in terms of the angle $2\theta_i$ and the corresponding wave number $Q_{exp}=4\pi \sin \theta_i/\lambda$, as well as their relative intensities and full widths at half maximum Γ_Q, were determined from the profile fitting using the procedure described by Schreiner and Jenkins.22 These parameters, corresponding to 39 detected i peaks, whose positions are indicated by vertical lines in Fig. 1, are presented in Table I. This table also contains the theoretical positions Q_{cal} which were calculated by taking the position of the second most intense i peak as the reference. Since there are several schemes employed to index the i peaks, we present in Table I the indices that correspond to the most frequently used schemes.23–25

The form of indices of the observed i Bragg peaks (Table I) shows that the i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC has a primitive six-dimensional Bravais lattice. There is good agreement between the observed Q_{exp} and theoretical Q_{cal} positions of the i Bragg peaks (Fig. 1 and Table I). The value of the six-dimensional hypercubic lattice constant calculated from the value Q_{exp} that corresponds to the (18,29) i peak is 7.087(1) Å. The width Γ_Q of most of the i peaks is very narrow: for example, $\Gamma_Q=0.009$ Å$^{-1}$ corresponding to the (52/84) i Bragg peak (Table I) is nearly equal to that of the (400) Bragg peak of the Si standard (0.008 Å$^{-1}$) measured with the same x-ray diffractometer. This is indicative of a high degree of structural order of the studied QC.
TABLE I. Positions in terms of $2\theta_i$ (in degrees) corresponding to Cu Kα$_1$ radiation and Q_{exp} (in Å$^{-1}$), full width at half maximum Γ_Q (in Å$^{-1}$), and relative area A normalized to 100.0 of all detected icosahedral Bragg peaks. Q_{cal} (in Å$^{-1}$) is the calculated Q value by taking the position of the ninth line with the I index 18/29 as the reference line. $I1$ and $I2$ are the indices (N/M) and $(h/k/l/l')$ based on the indexing scheme of Cahn et al. (Ref. 23), whereas $I3$ and $I4$ are the indices corresponding, respectively, to the indexing schemes of Elser (Ref. 24) and Bancel et al. (Ref. 25).

<table>
<thead>
<tr>
<th>Label</th>
<th>$2\theta_i$</th>
<th>Q_{exp}</th>
<th>Q_{cal}</th>
<th>Γ_Q</th>
<th>A</th>
<th>$I1$</th>
<th>$I2$</th>
<th>$I3$</th>
<th>$I4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.791</td>
<td>0.625</td>
<td>0.627</td>
<td>0.016</td>
<td>0.1</td>
<td>2/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15.002</td>
<td>1.065</td>
<td>1.067</td>
<td>0.011</td>
<td>0.3</td>
<td>4/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21.098</td>
<td>1.493</td>
<td>1.495</td>
<td>0.014</td>
<td>3.0</td>
<td>6/6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24.401</td>
<td>1.724</td>
<td>1.726</td>
<td>0.011</td>
<td>1.2</td>
<td>8/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26.108</td>
<td>1.842</td>
<td>1.836</td>
<td>0.017</td>
<td>0.9</td>
<td>10/13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>28.791</td>
<td>2.028</td>
<td>2.029</td>
<td>0.008</td>
<td>1.9</td>
<td>12/16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>32.547</td>
<td>2.286</td>
<td>2.283</td>
<td>0.015</td>
<td>1.5</td>
<td>14/21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>34.792</td>
<td>2.439</td>
<td>2.441</td>
<td>0.007</td>
<td>0.2</td>
<td>16/24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>38.002</td>
<td>2.656</td>
<td>2.656</td>
<td>0.014</td>
<td>51.5</td>
<td>18/29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40.017</td>
<td>2.791</td>
<td>2.792</td>
<td>0.012</td>
<td>100.0</td>
<td>20/32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>41.145</td>
<td>2.866</td>
<td>2.862</td>
<td>0.015</td>
<td>5.0</td>
<td>22/33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>42.970</td>
<td>2.988</td>
<td>2.989</td>
<td>0.010</td>
<td>3.7</td>
<td>24/36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>45.677</td>
<td>3.166</td>
<td>3.167</td>
<td>0.011</td>
<td>43.6</td>
<td>26/41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>47.473</td>
<td>3.283</td>
<td>3.283</td>
<td>0.008</td>
<td>5.7</td>
<td>28/44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>48.368</td>
<td>3.342</td>
<td>3.342</td>
<td>0.009</td>
<td>2.6</td>
<td>30/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>50.041</td>
<td>3.450</td>
<td>3.452</td>
<td>0.010</td>
<td>1.3</td>
<td>32/48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>52.564</td>
<td>3.612</td>
<td>3.607</td>
<td>0.015</td>
<td>0.3</td>
<td>34/53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>54.057</td>
<td>3.707</td>
<td>3.709</td>
<td>0.008</td>
<td>0.3</td>
<td>36/56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>57.878</td>
<td>3.947</td>
<td>3.949</td>
<td>0.009</td>
<td>0.8</td>
<td>40/64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>58.713</td>
<td>3.999</td>
<td>3.999</td>
<td>0.014</td>
<td>0.3</td>
<td>42/65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>62.383</td>
<td>4.224</td>
<td>4.222</td>
<td>0.010</td>
<td>1.0</td>
<td>46/73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>63.765</td>
<td>4.308</td>
<td>4.310</td>
<td>0.009</td>
<td>1.3</td>
<td>48/76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>64.520</td>
<td>4.354</td>
<td>4.355</td>
<td>0.010</td>
<td>0.7</td>
<td>50/77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>67.248</td>
<td>4.517</td>
<td>4.518</td>
<td>0.009</td>
<td>12.0</td>
<td>52/84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>67.994</td>
<td>4.561</td>
<td>4.562</td>
<td>0.011</td>
<td>2.4</td>
<td>54/85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>69.361</td>
<td>4.641</td>
<td>4.642</td>
<td>0.007</td>
<td>0.6</td>
<td>56/88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>71.375</td>
<td>4.758</td>
<td>4.759</td>
<td>0.010</td>
<td>7.5</td>
<td>58/93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>72.718</td>
<td>4.836</td>
<td>4.837</td>
<td>0.008</td>
<td>5.4</td>
<td>60/96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>73.430</td>
<td>4.876</td>
<td>4.877</td>
<td>0.009</td>
<td>0.9</td>
<td>62/97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>74.755</td>
<td>4.952</td>
<td>4.953</td>
<td>0.006</td>
<td>0.2</td>
<td>64/100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>76.706</td>
<td>5.061</td>
<td>5.062</td>
<td>0.009</td>
<td>4.0</td>
<td>66/105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>78.010</td>
<td>5.134</td>
<td>5.135</td>
<td>0.005</td>
<td>0.2</td>
<td>68/108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>81.243</td>
<td>5.311</td>
<td>5.312</td>
<td>0.008</td>
<td>1.7</td>
<td>72/116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>81.953</td>
<td>5.349</td>
<td>5.348</td>
<td>0.009</td>
<td>0.6</td>
<td>74/117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>83.229</td>
<td>5.417</td>
<td>5.418</td>
<td>0.007</td>
<td>0.4</td>
<td>76/120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>85.128</td>
<td>5.517</td>
<td>5.518</td>
<td>0.010</td>
<td>0.5</td>
<td>78/125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>86.399</td>
<td>5.584</td>
<td>5.585</td>
<td>0.007</td>
<td>3.2</td>
<td>80/128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>87.055</td>
<td>5.618</td>
<td>5.620</td>
<td>0.007</td>
<td>0.2</td>
<td>82/129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>88.367</td>
<td>5.685</td>
<td>5.686</td>
<td>0.008</td>
<td>1.3</td>
<td>84/132</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIG. 2. (Color online) (a) The temperature dependence of the magnetic susceptibility of the i-Zn$_{77}$Fe$_7$Sc$_{16}$ quasicrystal, measured in an external magnetic field of 50 Oe. The solid line is the fit to Eq. (1) in the temperature range of 40–300 K, as explained in the text. (b) The inverse magnetic susceptibility corrected for the contribution $\chi_0 (\chi - \chi_0)^{-1}$ versus temperature T of the i-Zn$_{77}$Fe$_7$Sc$_{16}$ quasicrystal. The solid line is the fit to Eq. (1).

B. Magnetic measurements

1. dc magnetic susceptibility

The magnetic susceptibility χ of the i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC measured in an applied magnetic field of 50 Oe between 2.0 and 300 K is shown in Fig. 2(a). The sample was zero-field cooled (ZFC) to 2.0 K, and the measurement was performed while warming the sample up to 300 K. The $\chi(T)$ curve exhibits a definite peak at 7.74(4) K indicating magnetic ordering. The $\chi(T)$ data above 40 K could be fitted to a modified Curie-Weiss law,

$$\chi = \chi_0 + \frac{C}{T - \Theta_p}, \quad (1)$$

where χ_0 is the temperature-independent magnetic susceptibility, C is the Curie constant, and Θ_p is the paramagnetic Curie temperature. The Curie constant can be expressed as $C = \frac{N\mu_{\text{eff}}^2}{3k_B}$, where N is the concentration of magnetic atoms per unit mass, μ_{eff} is the effective magnetic moment, and k_B is the Boltzmann constant. Figure 2(b) shows the inverse magnetic susceptibility corrected for the contribution $\chi_0 (\chi - \chi_0)^{-1}$ versus temperature. The values of χ_0, C, and Θ_p obtained from the fit are, respectively, 1.07(1) \times 10$^{-3}$ emu/g [9.40(9) \times 10$^{-3}$ emu/(mol Fe)], 1.80(1) \times 10$^{-3}$ emu K/g [1.58(1) emu K/(mol Fe)], and 10.6(2) K. This value of C corresponds to μ_{eff} of 3.55(1) μ_B per Fe atom.

For a metallic compound, the temperature-independent magnetic susceptibility χ_0 is expected to consist of two contributions: the diamagnetic susceptibility of core electrons and the Pauli susceptibility of conduction electrons, $\chi_0 = \chi_d + \chi_P$. The diamagnetic contribution χ_d in an alloy is usually estimated as a weighted average of the susceptibilities of the constituents of the alloy. Using the diamagnetic susceptibilities for metallic Zn, Fe, and Sc, one finds that $\chi_d = -0.31 \times 10^{-3}$ emu/(mol Fe). This gives the Pauli susceptibility of 9.71(9) \times 10$^{-3}$ emu/(mol Fe). The derived value of χ_P is significantly larger than the largest values [on the order of 1 \times 10$^{-3}$ emu/(mol Fe)] for Fe-containing compounds and is comparable to the χ_P values for heavy-fermion systems. The most probable reason for the large value of χ_P found here is the contribution to χ_0 of unidentified impurity/impurities present in our sample.

The positive value of Θ_p indicates the predominantly ferromagnetic interaction between the Fe atoms. The magnetic moment of 3.55 μ_B per Fe atom is the highest ever reported for a stable QC containing a TM element. Recent electronic structure calculations for a cubic approximant to the i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC predict the magnetic moment per Fe atom in the range of 1.2–2.4 μ_B.

To determine the nature of the magnetic transition at 7.74 K, we measured the temperature dependence of the ZFC and field-cooled (FC) magnetic susceptibility around 8.0 K in an applied magnetic field of 50 Oe (Fig. 3). The occurrence of a bifurcation between the ZFC and FC data at the freezing temperature $T_f = 7.75(2)$ K is evident. Above T_f, both ZFC and FC data are identical. Such a behavior of the ZFC and FC susceptibility data is characteristic of a spin glass.

The i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC is thus a spin glass with a freezing temperature $T_f = 7.75(2)$ K.

2. Relaxation effects in the dc magnetization

An aging phenomenon, which was discovered by Lundgren et al., is an inherent characteristic of a spin-glass system. The measurement of aging effects in spin glasses is carried out either via the ZFC magnetization decay measurement or the complementary thermoremanent magnetization (TRM) decay measurement. The first involves cooling the sample in zero magnetic field from above T_f to the measuring temperature T_m below T_f, allowing the sample to stay at T_m for a certain waiting time t_w, and then applying a small magnetic field and recording the change in magnetization with time. The second utilizes cooling the sample in a small
magnetic field from above \(T_f \) to \(T_m \) below \(T_f \), keeping the sample at \(T_m \) for a time \(t_w \), and then rapidly removing the magnetic field and recording the change in magnetization with time. The dependence of the magnetization decays on \(t_w \) is called aging.

Figure 4 shows the ZFC magnetization decays at \(T_m = 4.8 \) K=0.62\(T_f \) and in 20 Oe for different waiting times. It is clear from the figure that the measured ZFC magnetization strongly depends on \(t_w \): the longer the \(t_w \), the slower the decay of the ZFC magnetization. The system becomes “stiffer” for larger waiting times. This confirms the existence of aging processes in the \(i-Zn_{77}Fe_{7}Sc_{16} \) QC. The observed dependence of the ZFC magnetization on \(t_w \) is the same as that observed for canonical spin glasses.31

Among the various functional forms that have been proposed to describe the magnetization decay, one of the most successful in describing the data is a stretched exponential of the form

\[
M(t) = M_0 - M_r \exp \left[- \left(\frac{t}{\tau_r} \right)^{1-n} \right],
\]

where \(M_0 \) relates to an intrinsic ferromagnetic component, \(M_r \) is a glassy component, \(\tau_r \) is the characteristic time constant, and \(n \) is the stretched exponential exponent.33 The time constant \(\tau_r \) and the exponent \(n \) are related to the relaxation rate of the spin glass. The data could be well fitted to Eq. (2) as evidenced by the solid lines in Fig. 4. The values of the fitted parameters are listed in Table II. Within experimental error, \(n \) and \(M_r \) are independent of \(t_w \), whereas \(\tau_r \) increases with \(t_w \). The independence of \(n \) and \(M_r \) of \(t_w \) was observed for canonical spin glasses.33,34

The aging phenomenon in the \(i-Zn_{77}Fe_{7}Sc_{16} \) QC was also studied by the TRM decay measurements. Figure 5 shows the TRM decays for different waiting times at a cooling field of 50 Oe and at \(T_m = 4.8 \) K=0.62\(T_f \) and \(T_m = 6.0 \) K=0.77\(T_f \). The following observations follow from the data (Fig. 5): (1) the TRM decreases substantially as \(T_f \) is approached; (2) the larger the \(t_w \), the larger the TRM; (3) and the time decay of the TRM slows down as \(t_w \) increases. These three dependencies are precisely the same as those observed for canonical spin glasses33–36 and can be explained within the context of an ultrametric organization of the metastable states in a spin glass.35,36

The ultrametric topology of the metastable states was predicted by Parisi37 and co-workers38 via replica-symmetry solution of the Sherrington-Kirkpatrick infinite-range spin-glass model.39 A pure state \(\alpha \) of a spin glass is characterized by the thermal average magnetization at a site \(i, m_i^a \). An overlap function between two states \(\alpha \) and \(\beta \) is \(q^{\alpha \beta} = N^{-1} \Sigma_{i=1}^N m_i^\alpha m_i^\beta \), where \(N \) is the total number of spins, which are assumed here to be of Ising type. The self-overlap \(q^{\alpha \alpha} \) is the Edwards-Anderson (EA) order parameter,40 and it fulfills

![FIG. 4. (Color online) The time dependence of the ZFC magnetization for an applied magnetic field of 20 Oe at 4.8 K for different waiting times \(t_w \) of the \(i-Zn_{77}Fe_{7}Sc_{16} \) quasicrystal. The solid lines are the fits to Eq. (2).](image-url)

![FIG. 5. (Color online) The TRM time decays at \(H=50 \) Oe for the different waiting times \(t_w \) at (a) 4.8 and (b) 6.0 K of the \(i-Zn_{77}Fe_{7}Sc_{16} \) quasicrystal. The solid lines are guides for the eyes.](image-url)
the relation $-q_{EA}(T) = q^{\alpha\beta} \leq q_{EA}(T)$. The number N_3 of metastable states, or equivalently the number of relative minima of the free energy, is equal to the number of solutions to the Thouless-Anderson-Palmer equations.\cite{41} Close to T_f, N_3 increases exponentially with T as \cite{42} $N_3 = \exp[(8/81)N \times (1-T/T_f)^6]$. As a result, the complexity of the free-energy landscape in configuration space increases dramatically with decreasing T. It was shown \cite{38,43} that the structure of the organization of the metastable states obeys a property called ultrametricity: for any three states α, β, and γ, having mutual overlaps $q^{\alpha\beta}$, $q^{\alpha\gamma}$, and $q^{\beta\gamma}$, at least two of the overlaps are equal and the third is larger than or equal to the other two. This property can be represented as a hierarchical tree-like organization of the states\cite{44} (Fig. 6). As the temperature is lowered from, say, T_1 to T_2 ($T_3 < T_1 < T_2$), a given metastable state α at T_1 gives “birth” to N_α new states at T_2.

The three dependencies of the TRM observed here for the studied i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC and for canonical spin glasses can be explained\cite{35,36} within the framework of the ultrametric organization of the metastable states (Fig. 6). When the spin system is cooled to T_m in the magnetic field H, it explores during the waiting time t_w different metastable states in the phase space by jumping over the energy barriers. Assuming that the jumps occur via a thermally activated process, the part of the phase space explored is characterized by the highest surmounted energy barrier Δ_{\max} that depends on T_m and t_w and is given by $\Delta_{\max}(T_m, t_w) = T_a \ln(\frac{T_f}{T_m})$, where τ is a macroscopic attempt time. At the end of the waiting time t_w, the magnetic field is reduced from H to zero, and the TRM decay is measured. Here, two closely related processes take place. First, a new set of metastable states with zero magnetization replaces the set of the metastable states with magnetization M_{FC} as the ground state. Second, this results in a “tilt” in the free-energy surface which rapidly empties those occupied states with M_{FC} with energy barriers less than or equal to the change in Zeeman energy, HM_{FC}. This accounts for the rapid change in the magnetization (so-called reversible part) upon cutting the magnetic field H to zero. For longer times, the diffusion process from occupied states with M_{FC} with energy barriers larger than HM_{FC} to the states with zero magnetization occurs. This leads to the slow decay of the so-called irreversible part of the magnetization (TRM). For longer waiting times, the weight of the populated FC phase space bounded by energy barriers larger than the change in Zeeman energy increases, and consequently, the magnitude of the TRM should increase. Moreover, because of a larger fraction of states surrounded by higher energy barriers for longer waiting time, it takes a longer time for the system to leave these states and decay toward the “sink” among low-barrier heights which have been overcome by HM_{FC}. This explains why the decay of the TRM is slower for longer waiting times.

The existence of the ultrametrically organized phase space in a spin glass can also be evidenced by studying the TRM decay as a function of the cooling field H, which should be in the low-field region where the ZFC and FC magnetizations differ substantially.\cite{36} The decay of the TRM for $t_w = 3600$ s at $T_m = 4.8$ K = 0.62T_f, and $T_m = 6.0$ K = 0.77T_f as a function of the cooling field H is shown in Fig. 7. It is clear from Fig. 7 that the magnitude of the TRM increases with the cooling field. The TRM dependence on H observed here is exactly opposite to that observed for a canonical spin glass where the TRM decreases with H. The decrease in the TRM with H is expected for the ultrametrically organized phase space in a spin glass;\cite{36} the larger the cooling field H, the smaller the region of populated states bounded by barriers of height.

![FIG. 6.](https://example.com/figure6.png) FIG. 6. (Color online) The hierarchical organization of the metastable states in a spin glass. The coarse-grained free-energy surface is represented at each level corresponding to a given temperature. When the temperature is decreased ($T_3 < T_1 < T_2$), each valley subdivides into others. Aging refers to jumping of the system over ever increasing energy barriers during the waiting time t_w.

![FIG. 7.](https://example.com/figure7.png) FIG. 7. (Color online) The TRM decays for $t_w = 3600$ s at (a) 4.8 and (b) 6.0 K for different cooling fields H of the i-Zn$_{77}$Fe$_7$Sc$_{16}$ quasicrystal. The solid lines are guides for the eyes.
HM so that a smaller TRM remains after $H \to 0$. We thus have to conclude that the observed increase in the TRM with H in the i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC is inconsistent with the ultrametrically organized phase space. This result contradicts the spin-glass nature of the ground state in the i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC in the sense of a canonical spin glass.

3. ac magnetic susceptibility

The in-phase component χ' and the out-of-phase component χ'' of the ac magnetic susceptibility for i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC, measured in the temperature range from 2 to 30 K and for selected frequencies between 20 Hz and 10 kHz, are shown in Figs. 8 (a) and 8 (b), respectively. Both $\chi'(T)$ and $\chi''(T)$ curves show maxima whose amplitudes and positions depend on the frequency f of the applied ac magnetic field.

$$\Delta(t_\infty) > H M_{PC}$$

so that a smaller TRM remains after $H \to 0$. We thus have to conclude that the observed increase in the TRM with H in the i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC is inconsistent with the ultrametrically organized phase space. This result contradicts the spin-glass nature of the ground state in the i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC in the sense of a canonical spin glass.

The in-phase component χ' and the out-of-phase component χ'' of the ac magnetic susceptibility for i-Zn$_{77}$Fe$_7$Sc$_{16}$ QC, measured in the temperature range from 2 to 30 K and for selected frequencies between 20 Hz and 10 kHz, are shown in Figs. 8 (a) and 8 (b), respectively. Both $\chi'(T)$ and $\chi''(T)$ curves show maxima whose amplitudes and positions depend on the frequency f of the applied ac magnetic field.

$$K = \frac{\Delta T_f}{T_f \Delta \log f}.$$ (3)

From a linear fit of the data in Fig. 9, and using the average value of $T_f=8.08$ K for the range of frequencies used, we find $K=0.016(1)$. This value is a factor of 3 greater than that observed for the canonical Cu$_{1-x}$Mn$_x$ spin glass but comparable to that of several other canonical spin glasses. We note that the value of K reported for another i-Tb$_{8}$Mg$_{83}$Zn$_{17}$ QC is 0.049.

FIG. 8. (Color online) The temperature dependence of the (a) in-phase magnetic susceptibility χ' and (b) out-of-phase magnetic susceptibility χ'' measured for different applied frequencies from 20 Hz to 10 kHz for the i-Zn$_{77}$Fe$_7$Sc$_{16}$ quasicrystal. The inset in (a) is a magnification around the maximum in χ'. (b)

FIG. 9. (Color online) The frequency dependence of the freezing temperature T_f for the i-Zn$_{77}$Fe$_7$Sc$_{16}$ quasicrystal. The solid line is the best linear fit to the T_f data.

FIG. 10. (Color online) The frequency dependence of the freezing temperature T_f for the i-Zn$_{77}$Fe$_7$Sc$_{16}$ quasicrystal. The solid line is the best fit to Eq. (4).

There is a sharp peak in $\chi'(T)$ which can be used to define T_f. $\chi'(T)$ attains a maximum at T_f that shifts toward higher temperatures with higher frequencies, which is typical for conventional spin glasses. Below the maximum, the magnitude of χ' is frequency dependent, but it becomes independent of frequency at temperatures just above T_f. This behavior is qualitatively similar to that of conventional spin glasses.

The out-of-phase component χ'' is vanishing above T_f but is nonzero for temperatures just below T_f, which implies dissipation not only at the freezing transition but also for temperatures below it, a common feature of spin glasses.

The frequency dependence of T_f, which was determined from the maximum of the data in Fig. 8 (a), obtained by curve fitting, is shown in Fig. 9. A quantitative measure of the change in the freezing temperature with frequency in spin glasses is represented by the relative change in T_f per decade change in f defined as

$$K = \frac{\Delta T_f}{T_f \Delta \log f}.$$ (3)

From a linear fit of the data in Fig. 9, and using the average value of $T_f=8.08$ K for the range of frequencies used, we find $K=0.016(1)$. This value is a factor of 3 greater than that observed for the canonical Cu$_{1-x}$Mn$_x$ spin glass but comparable to that of several other canonical spin glasses. We note that the value of K reported for another i-Tb$_{8}$Mg$_{83}$Zn$_{17}$ QC is 0.049.

FIG. 11. (Color online) The frequency dependence of the freezing temperature T_f for the i-Zn$_{77}$Fe$_7$Sc$_{16}$ quasicrystal. The solid line is the best fit to Eq. (5).
There are basically two different interpretations of the spin freezing phenomenon in spin glasses: one is a cluster model in which the system is considered as a set of interacting superparamagnetic clusters and the other is a model which assumes the occurrence of a true phase transition. The frequency dependence of T_f in spin glasses is described within the cluster model by the phenomenological Vogel-Fulcher law,

$$f = f_0 \exp\left[-\frac{E_a}{k_B(T_f - T_0)}\right],$$

(4)

where f_0 is a characteristic frequency, E_a is the activation energy, and T_0 is the Vogel-Fulcher temperature which is a measure of the interaction strengths between clusters in the spin glass. Equation (4) implies a linear dependence of $1/(T_f - T_0)$ on $\log(f)$. The best fit of the $T_f(f)$ data to Eq. (4) (Fig. 10) yields $f_0 = 7.20(22) \times 10^{11}$ Hz, E_a/k_B to

FIG. 12. (Color online) The 57Fe Mössbauer spectra of the i-$\text{Zn}_7\text{Fe}_{77}\text{Sc}_{16}$ quasicrystal obtained at the indicated temperatures fitted (solid lines) with the quadrupole splitting distributions $P(\Delta)$ shown in Fig. 13. The residuals are shown above each spectrum. The zero-velocity origin is relative to α-Fe at room temperature.
Similar to what was observed for other spin glasses, the values of \(f_0 \), \(E_a/k_B \), and \(T_0 \) obtained for the i-Zn\(_{77}\)Fe\(_{7}\)Sc\(_{16}\) QC are in general agreement with similar parameters reported for other spin-glass systems. The frequency-dependent maximum of \(\chi'(T) \) indicates the freezing temperature \(T_f \) where the maximum relaxation time, \(\tau \), of the system is equal to the characteristic time \(1/f \) set by the frequency of the ac-susceptibility measurement. The derived values of \(f_0 \) and \(z \) are similar to those for the canonical Cu\(_{1-x}\)Mn\(_x\) spin glass.

The frequency-dependent maximum of \(\chi'(T) \) indicates the freezing temperature \(T_f \) where the maximum relaxation time, \(\tau \), of the system is equal to the characteristic time \(1/f \) set by the frequency of the ac-susceptibility measurement. The derived values of \(f_0 \) and \(z \) are similar to those for the canonical Cu\(_{1-x}\)Mn\(_x\) spin glass.\(^{31,49} \)

FIG. 13. (Color online) The quadrupole splitting distributions \(P(\Delta) \) which fit best the \(^{57}\)Fe Mössbauer spectra in Fig. 12.

\[
\tau = \tau_0 \left(\frac{T_f - T_c}{T_c} \right)^{-\nu z}, \quad T_f > T_c, \tag{5}
\]

where \(\tau_0 \) is the microscopic relaxation time, \(z \) is the dynamic exponent relating the correlation length \(\xi \) and \(\tau \) as \(\tau \propto \xi^z \), and \(\nu \) is the critical exponent for the correlation length \(\xi \propto (T_f - T_c)^{-\nu} \). The best fit of the \(T_f(f) \) data to Eq. (5) (Fig. 11) gives \(\tau_0 = 1.47(32) \times 10^{-12} \) s, \(T_c = 7.72(8) \) K, and \(\nu z = 6.77(1.1) \). The derived values of \(\tau_0 \) and \(\nu z \) are similar to those for the canonical Cu\(_{1-x}\)Mn\(_x\) spin glass.\(^{31,49} \)
The Mössbauer spectra of the i-Zn$_7$Fe$_7$Sc$_{16}$ QC recorded at temperatures at which no magnetic dipole hyperfine interaction50 is present are shown in Fig. 12. All the spectra consist of a broadened doublet which results from the distribution of the quadrupole splitting, $P(\Delta)^{51}$ a quadrupole splitting that is given by

$$\Delta = \frac{1}{2} eQ|V_{c\ell}| \sqrt{1 + \eta^2/3},$$

where e is the proton charge and Q is the electric quadrupole moment of the 57Fe nucleus. The asymmetry parameter $\eta = (V_{xx} - V_{yy})/V_{zz}$, $0 \leq \eta \leq 1$, where V_{xx}, V_{yy}, and V_{zz} are the eigenvalues of the electric field gradient (EFG) tensor in order of increasing magnitude.50 The distribution $P(\Delta)$ is the consequence of the distributions of the EFG and of the asymmetry parameter. The Mössbauer spectra in Fig. 12 were fitted with the Voigt-based quadruple distribution method of Rancourt and Ping.52 To account for a small asymmetry of the spectra, a linear coupling between the center shift, δ, and

![Graph](image.png)
For the elementary Lorentzian doublets was assumed.52,53 The best fits of the Mössbauer spectra in Fig. 12 could be obtained with the probability quadrupole splitting probability distribution functions $P(\Delta)$ shown in Fig. 13.

The determined distributions $P(\Delta)$ (Fig. 13) clearly have a bimodal character. This is in contrast to the unimodal distribution $P(\Delta)$ observed for the thermodynamically stable i-Al\textsubscript{62.5}Cu\textsubscript{24.5}Fe\textsubscript{13} QC.54 The bimodal character of $P(\Delta)$ may be indicative of the presence of two classes of Fe sites in the structure of the i-Zn\textsubscript{77}Fe\textsubscript{7}Sc\textsubscript{16} QC. The lack of \textit{ab initio} calculations of the distribution of the EFG in the i-Zn\textsubscript{77}Fe\textsubscript{7}Sc\textsubscript{16} QC inhibits a comparison of the experimentally determined $P(\Delta)$ with theory. Such calculations are very desirable because the experimentally determined shape of $P(\Delta)$ could be directly used to determine which of the possible structural models of the i-Zn\textsubscript{77}Fe\textsubscript{7}Sc\textsubscript{16} QC is the most appropriate.

FIG. 16. (Color online) The hyperfine magnetic field distributions $P(H_{hf})$ which fit best the 57Fe Mössbauer spectra in Fig. 15.
The average value of the quadrupole splitting, $\bar{\Delta}$, at a given temperature was calculated from the $P(\Delta)$ distribution at that temperature (Fig. 13). One can note a small increase in $\bar{\Delta}$ with decreasing temperature (Fig. 14). The temperature dependence of $\bar{\Delta}$ could be fitted well (Fig. 14) to the empirical equation

$$\bar{\Delta}(T) = \bar{\Delta}(0)(1 - BT^{3/2}),$$

where $\bar{\Delta}(0)$ is the value of $\bar{\Delta}$ at 0 K and B is a constant. Such a $T^{3/2}$ temperature dependence has been observed in many metallic noncubic crystalline alloys, in some metallic amorphous alloys, and recently in QC. The inequality $T_f^m > T_f$ is often observed for many other spin glass systems. The freezing temperature of a spin glass determined from MS, T_f^m, as the temperature at which the magnetic dipole hyperfine interaction disappears, which was estimated from the spline extrapolation of the $H_{hf}(T)$ data in Fig. 17, is $9.60(5)$ K. If one defines the freezing temperature of a spin glass determined from MS, T_f^m, as the temperature at which the magnetic dipole hyperfine interaction disappears, then $T_f^m = 9.60(5)$ K. Clearly, T_f^m is significantly larger than the freezing temperature $T_f = 7.75(2)$ K determined from the dc magnetic susceptibility data. The systematically higher values of T_f^m than T_f have been observed for many other spin glass systems. The inequality $T_f^m > T_f$ results from a time window τ_{exp} of an experimental technique used to determine

![FIG. 17. (Color online) The temperature dependence of the average hyperfine magnetic field of the i-$Zn_{77}Fe_{7}Sc_{16}$ quasicrystal. The solid line is a guide for the eyes.](image1)

![FIG. 18. (Color online) The temperature dependence of the average center shift of the i-$Zn_{77}Fe_{7}Sc_{16}$ quasicrystal. The solid line is the fit to Eq. (8), as explained in the text.](image2)

![FIG. 19. (Color online) The temperature dependence of the normalized absorption area of the Mössbauer spectra of the i-$Zn_{77}Fe_{7}Sc_{16}$ quasicrystal. The solid line is the fit to Eq. (10), as explained in the text.](image3)
the freezing temperature. For MS, τ_{exp} is given by the Larmor precession time $\tau_{\text{L}} = \omega_{L}^{-1} = \frac{h}{2\pi m_{s}A}$, where ω_{L} is the angular Larmor frequency and f_{sa} and E_{s} are the spin and the magnetic moment of the excited nuclear state, respectively, 0.226×10^{-8} s ($f_{L}=8.4$ MHz) for $T_{F}=160.2$ K at 1.9 K. With a wide distribution of the relaxation times τ of fluctuating spin clusters in a spin glass, those clusters fluctuating with τ larger than τ_{exp} of a given experimental technique will appear frozen and will be discerned at a higher temperature than by the experimental technique characterized by a smaller τ_{exp}. Thus, one expects to observe an increase in T_{F} with decreasing τ_{exp}, which is indeed universally observed in spin glasses.\cite{31,60,62}

The average center shift at temperature T, $\bar{\delta}(T)$, determined from the fits of the spectra in Figs. 12 and 15, is given by

$$\bar{\delta}(T) = \delta_{0} + \delta_{\text{SOD}}(T),$$

where δ_{0} is the intrinsic isomer shift and $\delta_{\text{SOD}}(T)$ is the second-order Doppler (SOD) shift which depends on lattice vibrations of the Fe atoms.\cite{50} In terms of the Debye approximation of the lattice vibrations, $\delta_{\text{SOD}}(T)$ is expressed\cite{50} by the Debye temperature, Θ_{D}, as

$$\delta_{\text{SOD}}(T) = \frac{9}{2} \frac{k_{B}T}{Mc^{2}} \left(\frac{T}{\Theta_{D}} \right)^{3} \int_{0}^{\Theta_{D}/T} \frac{x^{3}}{e^{x}-1} dx,$$

where M is the mass of the Mössbauer nucleus and c is the speed of light. By fitting the experimental data (Fig. 18) to Eq. (9), the quantities δ_{0} and Θ_{D} were found to be, respectively, 0.226(1) mm/s and 443(8) K.

The absorption area $A(T)$ of a Mössbauer spectrum is proportional to the absorber Debye-Waller factor f_{a} given\cite{50} by

$$f_{\text{a}}(T) = \exp \left[-\frac{3}{4} \frac{E_{\gamma}}{M^{2}c^{2}k_{B}T} \left(1 + \left(\frac{T}{\Theta_{D}} \right)^{2} \int_{0}^{\Theta_{D}/T} \frac{x}{e^{x} - 1} dx \right) \right],$$

where E_{γ} is the energy of the Mössbauer transition. Figure 19 shows the temperature dependence of the relative area $A(T)/A(T_{0})$ ($T_{0}=4.4$ K) derived from the fits of the Mößbauer spectra in Figs. 12 and 15. The fit of the relative area (Fig. 19) to Eq. (10) gives $\Theta_{D}=455(4)$ K. This value of Θ_{D} is close to the value of 443(8) K derived from the $\delta_{\text{SOD}}(T)$ dependence.

The Θ_{D} derived from the $\delta_{\text{SOD}}(T)$ dependence is expected to be larger than that derived from the $f_{\text{a}}(T)$ dependence. This is because, in the expressions for δ_{SOD} and f_{a}, the phonon angular frequency (ω) distribution is weighted by, respectively, ω and ω^{-1}. Thus the high-ω phonons contribute more to δ_{SOD} than to f_{a}. The similar values of Θ_{D} derived from the $\delta_{\text{SOD}}(T)$ and $f_{\text{a}}(T)$ dependences may be interpreted as an indication that the phonon spectrum in the studied QC is relatively narrow. The value of Θ_{D} found here is comparable to the values of Θ_{D} found for other i QCs containing TM elements.\cite{54,57,58}

IV. SUMMARY

A new thermodynamically stable i QC Zn$_{77}$Fe$_{2}$Sc$_{16}$ has been studied with x-ray diffraction, dc and ac magnetic susceptibility, and 57Fe Mössbauer spectroscopy. It has a primitive six-dimensional Bravais lattice at room temperature with the six-dimensional hypercubic lattice constant of 7.087(1) Å. Based on dc magnetization measurements, it is shown that the i QC Zn$_{77}$Fe$_{2}$Sc$_{16}$ develops no long-range magnetic order in the temperature range between 2 and 300 K. The temperature dependence of the dc magnetic susceptibility follows the modified Curie-Weiss law with the paramagnetic Curie temperature at 10.6(2) K and an effective magnetic moment of 3.55(1) μ_{B} per Fe atom. The dc zero-field-cooled and field-cooled susceptibility data indicate that the studied QC is a spin glass with the freezing temperature $T_{F}=7.75(2)$ K. This spin-glass state of the i QC Zn$_{77}$Fe$_{2}$Sc$_{16}$ is further confirmed by observing aging effects through the dc zero-field-cooled magnetization and the thermoremanent magnetization time decays and by the analysis of the frequency dependence of T_{F} using the Vogel-Fulcher law and the dynamic scaling behavior near T_{F}. However, the observed increase in the thermoremanent magnetization with the magnetic field in the low-field regime is shown to be incompatible with a highly degenerate, ultrametrically organized free-energy landscape of a canonical spin glass. The nature of the spin-glass state of the i QC Zn$_{77}$Fe$_{2}$Sc$_{16}$ is thus fundamentally different from that of a canonical spin glass. The bimodal distribution of the electric quadrupole splitting and of the hyperfine magnetic field derived from Mössbauer spectra indicates the existence of two classes of Fe sites. The decrease in the average quadrupole splitting with temperature is well described by a power-law T^{2} relation. The hyperfine magnetic field sets in at a temperature of 9.87(5) K, which is significantly higher than T_{F}. The lattice vibrations of the Fe atoms are well described by a Debye model, with the Debye temperature at 453(4) K.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and Engineering Research Council of Canada. Support from the Polish Ministry of Science and Higher Education and the Structural Funds of the European Commission (Project No. SPO WKP 1.4.3) is gratefully acknowledged.