Absence of charge fluctuations of europium in metallic single crystals of EuCu₂Si₂

Z. M. Stadnik · P. Wang · J. Żukrowski · B. K. Cho

Published online: 16 November 2006 © Springer Science + Business Media B.V. 2006

Abstract The ¹⁵¹Eu Mössbauer effect study in the temperature range 2.2–299.5 K on pulverized single crystals of $EuCu_2Si_2$ synthesized from an indium flux is presented. In contrast to previous studies on polycrystalline samples in which valence fluctuations for Eu were reported, we find that the Eu atoms are divalent in the whole temperature range. Therefore, there are no charge fluctuations of Eu in $EuCu_2Si_2$.

Key words valence fluctuation · divalent Eu

1 Introduction

The ternary alloy $EuCu_2Si_2$ is one of the first europium-based alloys in which intermediate valence behaviour was observed [1]. It is also one of the most well studied [2–5]. Previous ¹⁵¹Eu Mössbauer studies of $EuCu_2Si_2$ [1, 4, 5] found that the effective valence of Eu changes from ~2.6 at room temperature to ~2.8 at lowest temperature.

Recently, single crystals of $EuCu_2Si_2$ were synthesized from an In flux and studied again [6, 7]. Surprisingly, magnetic susceptibility, electron-spin-resonance, and specific heat results [6, 7] are consistent with Eu being in stable divalent state. Here, we present the preliminary ¹⁵¹Eu Mössbauer spectroscopy results on the single crystals of $EuCu_2Si_2$. We demonstrate that Eu in $EuCu_2Si_2$ is in the divalent state in the temperature range 2–300 K.

Z. M. Stadnik (🖂) · P. Wang

Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada e-mail: stadnik@uottawa.ca

J. Żukrowski

Solid State Physics Department, AGH University of Technology, 30-059 Cracow, Poland

B. K. Cho

Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea

2 Experimental procedure

Single crystals of EuCu₂Si₂ were synthesized from an In flux, as described in [7]. They were found to be single phase, crystallizing in the tetragonal ThCr₂Si₂ structure with lattice constants a=4.10 Å and c=9.93 Å [7].

¹⁵¹Eu Mössbauer measurements were performed in the temperature range 2.2–299.5 K with a standard Mössbauer spectrometer operating in a sine mode using a 330 mCi ¹⁵¹Sm (SmF₃) source kept at room temperature. The spectrometer was calibrated with a 6.35-μm α -Fe foil, and the spectra were folded. The Mössbauer absorber was prepared by mixing the

pulverized crystals of EuCu₂Si₂ with powdered BN to ensure a uniform thickness of the absorber and the random orientation of sample particles. This mixture was then put into a plastic sample holder. The surface density of the Mössbauer absorber was 18.0 mg Eu/cm², which corresponds to the effective absorber thickness $8.1f_a$, where f_a is the absorber Lamb–Mössbauer factor.

3 Results and discussion

The Mössbauer spectra of EuCu₂Si₂ at selected temperatures above the antiferromagnetic ordering temperature T_N =8.5 K [8] are shown in Figure 1. In contrast to the Mössbauer spectra of a polycrystalline EuCu₂Si₂ [1, 4, 5], the spectra of the studied specimen consist of one line located at ~-8.65 mm/s. This shows that Eu is divalent and there are no signs of valence fluctuations in the temperature range 77.5–299.5 K.

The spectra in Figure 1 result from a pure electric quadrupole interaction. They were fitted with the transmission integral and the positions and relative intensities of absorption lines were calculated by numerical diagonalization of the hyperfine Hamiltonian [8]. The source ¹⁵¹Sm(SmF₃) used is not a monochromatic source as ¹⁵¹Sm nuclei are located in the SmF₃ matrix at the site of noncubic symmetry. By measuring the spectra of the cubic EuSe we determined [8] that the electric quadrupole coupling constant eQ_gV_{zz} in our source is -3.98(13) mm/s (Q_g =0.903 b [9]), which is very close to the value found in [10]. The precise shape of the source emission line was taken into account in the fits of the spectra in Figure 1.

The values of the electric quadrupole coupling constant eQ_gV_{zz} and the asymmetry paramer η obtained from the fits of the spectra in Figure 1 are temperature independent [8] and are, respectively, 6.11(8) mm/s and η =1.0(1). The temperature dependence of the area under the resonance curve (Figure 2) derives from the temperature dependence of f_a . The fit of the relative area to the expression for f_a within the Debye theory of lattice vibration gives the Debye temperature Θ_D =236(4) K. This value is close to the value of 210 K found from the specific heat data for the polycrystalline EuCu₂Si₂ [2].

The Mössbauer spectra of EuCu₂Si₂ at selected temperatures below and around T_N are shown in Figure 3. It is evident that these spectra are the spin relaxation spectra, even at the

Figure 3 151 Eu Mössbauer spectra of EuCu₂Si₂ at various temperatures below and around the magnetic ordering temperature. The zero of the velocity scale is relative to the 151 Sm (SmF₃) source at room temperature. The *solid line* is a leastsquares fit, as described in the text.

lowest temperature of 2.2. K. They were fitted (Figure 3) using the line shape function given by Blume and Tjon [11]. The analysis of these relaxation spectra are discussed in detail elsewhere [8]. Here we notice that the isomer shift δ of these spectra is ~-8.68 mm/s. This demonstrates that the Eu atoms in the studied alloy are divalent.

The temperature dependence of δ of the spectra in Figures 1 and 3 is shown in Figure 4. It is evident that δ changes very little with temperature and its value proves that Eu in EuCu₂Si₂ is divalent in the temperature range 2.2–299.5 K. Consequently, there are no charge fluctuations of Eu in EuCu₂Si₂.

1298

4 Conclusions

The ¹⁵¹Eu Mössbauer effect study in the temperature range 2.2–299.5 K on a ternary alloy EuCu₂Si₂ synthesized from an In flux has been presented. The values of the electric quadrupole coupling constant eQ_gV_{zz} and the asymmetry paramer η are, respectively, 6.11 (8) mm/s and η =1.0(1). The Debye temperature of the studied alloy is 236(4) K. The Eu atoms are in stable divalent state in the temperature range 2.2–299.5 K.

Acknowledgements This work was supported by the Natural Sciences and Engineering Research Council of Canada. The work at GIST was supported by ABRL program in Ewha Woman University funded by KRF, Korea.

References

- 1. Bauminger, E.R., Froindlich, D., Nowik, I., Ofer, S., Felner I., Mayer, I.: Phys. Rev. Lett. **30**, 1053 (1973)
- 2. Sales, B.C., Viswanathan, R.: J. Low Temp. Phys. 23, 449 (1976)
- 3. Buschow, K.H.J., Campagna, M., Wertheim, G.K.: Solid State Commun. 24, 253 (1977)
- 4. Röhler, J., Wohlleben, D., Kaindl G., Balster, H.: Phys. Rev. Lett. 49, 65 (1982)
- 5. Abd-Elmeguid, M.M., Sauer, C., Zinn, W.: J. Phys. C 18, 345 (1985)
- Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Hundley, M.F., Sercheli, M.S., Urbano, R.R., Rettori, C., Fisk Z., Oseroff, S.B.: Phys. Rev., B 63, 092406 (2001)
- 7. Rhyee, J.-S., Cho, B.K., Ri, H.C.: J. Appl. Phys. 93, 8346 (2003)
- 8. Stadnik, Z.M., Wang, P., Żukrowski J., Cho, B.K. (to be published)
- Tanaka, Y., Steffen, R.M., Shera, E.B., Reuter, W., Hoehn, M.V., Zumbro, J.D.: Phys. Rev. C 29, 1830 (1984)
- 10. Nowik, I., Felner, I.: Hyperfine Interact. 28, 959 (1986)
- 11. Blume, M., Tjon, J.A.: Phys. Rev. 165, 446 (1968)