
Hypcrfinc Interactions 69 (1991) 493-496 493 

VOIGT--BASED M E T H O D S  FOR ARBITRARY S H A P E  Q U A D R U P O L E  
SPLITTING DISTRIBUTIONS (QSD's) A P P L I E D  TO QUASI- -CRYSTALS 

J.Y. PING ~ D.G. R A N C O U R T  and Z.M. STADNIK 

Departulent o f  Physics, University of  Ottawa, Ottawa, Canada KIN 6N5 

It is now well established that, as with amorphous alloys, the 
Mossbauer spectra of icosahedral alloys exhibit QSD's. This 
is evidence for intrinsic local disorder present in 
icosahedral structures. The shapes of the QSD's have not been 
unambiguously established and, as a result, it has been 
difficult to link these shapes with other physical properties 
of these novel and complex alloys. We apply a recently 
developed arbitrary shape static hyperfine parameter 
distribution method to the case of a new icosahedral alloy 
series: A165Cu20Cr15_xFe x. The method proves to be a 

powerful and useful tool in this application. It enables us 
to evaluate several robust features and to identify other 
features that are subject to large uncertainties due to 
extreme sensitivity to details. 

Powerful Voigt-based methods for arbitrary shape QSD's and 
hyperfine field distributions (HFD's) have recently been developed 
/i/. These have so far only been applied to HFD's where they exhibit 
clear advantages compared to other methods, due to the correctness of 
assuming that the true HFD can be represented by a sum of Gaussian 
components /1,2/. 

It is intuitively obvious that any physical arbitrary shape 
distribution can be expressed as a sum of Gaussian components. For a 
QSD, we write: 

N 

P(A) = ~ Pi Gi A) (I) 
i=l (Aoi, ffAi; 

where each Gaussian G. is normalized to an area of i, has a center at 
1 

Aoi and has a width ffAi" Pi is a weight factor and Zpi = i. N is the 

chosen number of components. 
To the extent that the true QSD is Gaussian-like, N = 1 will 

already give a fair representation of the spectrum. Of course, each 
elemental doublet also has a center shift 6 that is taken to be 
related to the quadrupole splitting (QS ~ A) by: 

6 = 6 o + 61 4. (2) 

It follows /i/ that the lineshape is a sum of 2N Voigt lines: 
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N 

Q(~) i ~ 1 ~  k~• + ~ o i  + kAoi/2 I~i + k = . , ~l~Ai, ~, hk; v) 
(3) 

where ~ is the elemental Lorentzian FWHM and h k are the elemental 

Lorentzian heights for low (k = -i) and high (k = +i) energy 
components. For a perfect powder, neglecting thickness effects, and 
in the absence of the Goldanski-Karyagin effect, h_ = h+. 

We have made a detailed comparison of this method with both the 
shell model and the Hesse-Riibartsch/LeCaer-Dubois method /3/. We find 
that the shell model imposes a restricted QSD shape that in turn gives 
rise to a questionable 6-A coupling requiring a large quadratic term 
(i.e. 6 A2) . The Hesse-Ri/bartsch/LeCaer-Dubois method gives rise to 
spuriou~ structure in the form of oscillations in P(A) that are overly 
sensitive to details such as the exact assumed values of ~. 

In this paper, we restrict ourselves to illustrating how well a 
single Gaussian component (N = i) Voigt-based analysis is able to 
model the room temperature spectra of the quasi-crystal series 
A165Cu20Cr15_xFe x with x = 0.075, 3, 6, 9, 12, and 15. 

The samples were prepared using a single roller melt-spinning 
apparatus. They are single phase within the sensitivity of standard 
X-ray diffraction, except the x = 9 composition that contains an 
unidentified second phase. The absorber thicknesses were in the range 

57 2 ! . . 

0.005-0.087 mg Fe/cm . All 6 s are glven relatlve to ~-Fe at room 
temperature. 

The N = 1 fit results are given in Table i. Since we impose 
h_ = h+, the two Voigt lines in a given spectrum (Eq.3) have equal 

areas by design. Three representative fitted spectra are shown in 
Fig.l with difference spectra. The number of free parameters, 
including a flat BG, is 7; the same number as would be required by two 
individual Lorentzian lines with a flat BG. Such Lorentzians give 
much poorer (and unphysical) fits. 

Table i. N = 1 fit results for A165Cu20Cr15_xFe x. 

2 
x ~A Ao 6o 61 ~ Zred 

at.% mm/s mm/s mm/s mm/s 

0.075 0.180 
3 0.199 
6 0.208 
9 0.200 

12 0.184 
15 0.176 

0 585 
0 508 
0 505 
0 453 
0 397 
0 365 

0.284 -0.ii0 
0.243 -0.026 
0.262 -0.049 
0.256 -0.041 
0.245 -0.016 
0.235 +0.016 

0 279 
0 221 
0 214 
0 226 
0 239 
0 237 

2.9 
0.8 
1.4 
2.3 
5.8 
4.6 

2 
As indicated by the reduced chi-squared (Zred) and by the fits 

2 
themselves, the fit to the x = 3 spectrum is ideal (Zre d - i) whereas 

those for x = 6 and 9 are almost ideal and the fits for x = 0.075, 12, 
and 15 are statistically unsatisfactory. 

Indeed, the x = 3 fit (Fig.l) is a good example of a case where a 
single Gaussian QSD gives a perfect fit. Allowing more free 
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Fig. l. N=I fits to room 
temperature Mdssbauer spectra 
and difference spectra for 
three compositions. 

parameters, or using a QSD method that allows more structure than that 
of a simple Gaussian, would not be justified. Any such structure 
should be considered suspect and artificial. More structure may exist 
in the true QSD. Unfortunately, the true QSD does not follow uniquely 
from the spectrum /3/. 

The misfits occurring at compositions x ~ 3 are qualitatively the 
same. They are associated to the low-velocity absorption lines where 
they correspond to "doublets" in the difference spectra (e.g. x = 
0.075, Fig.l; at -0.03 and -0.38 mm/s). These differences cannot be 
attributed to impurities since they closely follow the associated 
absorption lines (e.g. x = 15, Fig.l; th~ difference "peaks" here are 
at +0.13 and -0.18 mm/s). Such different patterns occur with various 
intensities at all compositions x = 3 and may be intrinsic components 
of the true quasi-crystal spectra. It is just such features that give 
N > 1 structure in extracted QSD's /3/. 

The low-velocity difference peak (e.g. at -0.38 mm/s, x = 0.075) 
always corresponds to a visible shoulder on the low-velocity side of 
each low-velocity doublet absorption line. Only such visible spectral 
features can give rise to true features in the QSD's. QSD 
oscillations and bumps that are not required by either observed 
spectral features or the particular spectral shape cannot be believed. 
With featureless spectra, many different QSD's give equivalent 
statistically acceptable fits. True spectral features seen in 
high-quality spectra significantly reduce this number of "allowed" 
QSD's and eliminate entire categories of distributions. 

Our fitting model is the simplest model (with the fewest free 
parameters) that gives near-ideal fits to several alloys in our series 
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Fig.2. Average QS (filled circles) and FWHM of the QSD 
(open circles) as functions of x. The dashed line is Eq. (4). 

and shows the main compositional trends. 
These trends are apparent in the spectra themselves (Fig.l). As 

x is increased the low-velocity absorption line becomes relatively 
narrower and deeper and the average QS decreases. 

The average QS and the FWHM of the QSD are shown versus x in 
Fig.2. Apart from the x = 3 point, the average QS closely follows a 
linear decrease given by: 

<QS(mm/s)> = 0.59(1) - 0.0151(7) x(at.%) (4) 

The distribution width, on the other hand, does not decrease 
monotonically with x but is relatively constant (Fig.2). 

Any model for the structure and positions of Fe in this 
quasi-crystal system will have to be consistent with these trends. 

From the fit results given in Table i, we also conclude that, for 
all x, the average RT center shift (relative to ~-Fe at RT) is <6> = 
+0.235(3) mm/s, 60 = +0.25(1) mm/s, and the 6-A coupling parameter is 

6. = -0.03(1). Also ~ always converges to -0.24 mm/s, giving us good 
c~nfidence in our method. 

Ongoing work /3/ accounts for the above mentioned spectral misfits 
by allowing N > 1 QSD structure. The robustness of resulting 
additional QSD features is being examined. The results presented here 
(e.g. Fig.2) are not significantly affected by this fine tuning. 

In conclusion, the new QSD method /i/ works well. It has the 
significant advantage over other methods of only allowing as much QSD 
structure as is required by the spectra (by increasing N gradually 
until statistically acceptable fits are obtained). Artificial 
oscillations are avoided by design. With N = 1 rapid convergence to 
unique solutions was obtained. 
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