¹⁵¹Eu MÖSSBAUER STUDIES OF Eu₂IrH₅

ZBIGNIEW M. STADNIK*

Department of Physical Chemistry, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen (The Netherlands)

RALPH O. MOYER, Jr.

Department of Chemistry, Trinity College, Hartford, CT 06106 (U.S.A.) (Received July 2, 1983; in revised form September 29, 1983)

Summary

¹⁵¹Eu Mössbauer measurements of the ternary hydride Eu₂IrH₅ in the temperature range 4.2 - 300 K are reported. It is shown that the europium ions are divalent and that the hyperfine magnetic field $H_{\rm hf}$ at the ¹⁵¹Eu nuclei follows a J = 7/2 Brillouin function with $T_{\rm C} = 19.9$ (0.4) K and $H_{\rm hf}(\rm T=0) = 243.7$ (5.3) kOe. The exchange mechanism causing ferromagnetism in Eu₂IrH₅ is probably the same as that in EuH₂.

1. Introduction

Hydrides have been intensively studied in the last few years, but until recently most of the investigations have dealt with binary metallic hydrides [1, 2]. Now there is much interest in ternary hydrides [3]. Among the different experimental techniques used, Mössbauer spectroscopy is useful since many hydrides contain elements for which there exists a suitable Mössbauer isotope. The application of Mössbauer spectroscopy to investigations of hydrides has been recently discussed in reviews by Wagner and Wortmann [4], Cohen [5] and Shenoy *et al.* [6]. In particular, the ¹⁵¹Eu Mössbauer technique, which is used in the present paper, was used to study the europium dihydride EuH₂ [7, 8], the hydrides of alloys Eu_{0.025}Pd_{0.975} [9], EuPd [10], EuRh₂ [10, 11], EuMg₂ [12], EuNi₅ [12], (La_{0.9}Eu_{0.1})Ni_{4.6}Mn_{0.4} [13, 14] and the ternary hydride Eu₂RuH₆ [15].

The ternary hydride Eu_2IrH_5 was studied by Moyer and Lindsay [16] using X-ray diffraction, electrical resistivity and magnetometric measurements. In particular, they showed that above 140 K the temperature dependence of the susceptibility could be fitted with the Curie–Weiss law.

^{*}On leave from the Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow, Poland. Present address: Department of Physics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.

The paramagnetic Curie temperature θ derived from the fit was 18 K, suggesting ferromagnetic ordering. This was confirmed by their low temperature data which showed a sharp increase in magnetization at $T_c = 20$ K. The value of the Curie constant was consistent with the europium ions being divalent. Resistivity data indicated semiconductor behavior of the compound.

The present Mössbauer study was performed to obtain independent evidence concerning the magnetic interactions in Eu_2IrH_5 and the oxidation state of the europium ions.

2. Experimental details

A polycrystalline sample of Eu_2IrH_5 was prepared by mixing EuH_2 and iridium powders in a 2:1 mole ratio and heating the mixture at 973 K in a hydrogen atmosphere. The reaction is

$$2\mathrm{EuH}_2(\mathrm{s}) + \mathrm{Ir}(\mathrm{s}) + \frac{1}{2} \mathrm{H}_2(\mathrm{g}) \longrightarrow \mathrm{Eu}_2\mathrm{Ir}\mathrm{H}_5(\mathrm{s})$$

Further details of the sample preparation are given elsewhere [16]. Elemental analysis of Eu_2IrH_5 confirmed its chemical composition. An X-ray diffraction pattern showed a pure ternary phase and a trace of impurity in the form of EuH_2 .

A Mössbauer absorber of thickness 27.5 mg cm⁻² was prepared by mixing some sample with boron nitride and pressing the mixture into a lucite container, which was then covered with aluminum foil. Mössbauer measurements were made in the temperature range 4.2 - 300 K using the 21.53 keV transition in ¹⁵¹Eu. Spectra were recorded with a conventional constantacceleration spectrometer using a ¹⁵¹Sm(SmF₃) source kept at 4.2 or 300 K. The multichannel analyzer was operated in the time mode. Calibration was by a Michelson interferometer with an He–Ne laser. A symmetric sawtooth reference signal produced two mirror Mössbauer spectra, which were later folded and fitted by a computer program [17]. γ rays were detected by an Xe–CO₂-filled proportional counter. The source and absorber temperature measurement and stabilization are accurate to within 0.5% at all temperatures.

3. Results and discussion

A typical Mössbauer spectrum in the paramagnetic region is shown in Fig. 1. It comprises two singlets with isomer shifts of -10.933 (0.007) and 0.645 (0.010) mm s⁻¹ (Table 1), which are characteristic of Eu²⁺ and Eu³⁺ ions respectively [18]. The former can be assigned to the ternary hydride and some EuH₂ impurity, whereas the latter arises from an Eu₂O₃ impurity. The Mössbauer absorber was prepared in an atmosphere of ambient air. Under this condition EuH₂ is unstable and consequently partially oxidized

Fig. 1. ¹⁵¹Eu Mössbauer spectrum of Eu₂IrH₅ with both source and absorber at 300.3 K.

TABLE 1						
¹⁵¹ Eu Mössbauer	parameters o	f the Eu ₂ I	rH ₅ sample	e in the j	paramagne	tic region

<i>T</i> _a (K)	Mössbauer paramete	rs for Eu ²⁺	Mössbauer parameters for Eu ³⁺		
	$\delta \text{ (mm s}^{-1}\text{)}$	$\Gamma (\mathrm{mm} \mathrm{s}^{-1})$	$\delta \text{ (mm s}^{-1}\text{)}$	$\Gamma (\text{mm s}^{-1})$	
300.3ª	-10.933 (0.007)	2.912 (0.022)	0.645 (0.010)	3.064 (0.035)	
78.3 ^a	-10.895 (0.008)	3.102 (0.026)	0.713 (0.011)	3.211 (0.037)	
20.0 ^b	-11.172 (0.011)	3.870 (0.034)	0.592 (0.012)	3.532 (0.036)	

 $T_{\rm a}$, absorber temperature; δ , isomer shift relative to the ${}^{151}{\rm Sm}({\rm SmF_3})$ source; Γ , the full linewidth at half-maximum absorption.

^aSource at 300 K.

^bSource at 4.2 K.

forming Eu_2O_3 . The actual amount of Eu_2O_3 present in the sample is smaller than that suggested by the area ratio of the lines, since Eu_2O_3 has a comparatively large recoil-free fraction [15]. As a result of the large difference in isomer shifts of Eu^{2+} and Eu^{3+} ions [18], the presence of Eu_2O_3 in the sample does not affect the Mössbauer parameters of the ternary hydride.

The temperature dependence of the isomer shift (Table 1) is caused by the second-order Doppler effect [19]. The decrease in the full linewidth at half-maximum absorption with increasing temperature (Table 1) is due to both spin relaxation effects [20, 21] and a temperature dependence of the effective absorber thickness [19].

Fig. 2. ¹⁵¹Eu Mössbauer spectrum of Eu₂IrH₅ at 14.0 K (the source was at 4.2 K).

Below the ordering temperature, the spectra consist of the following three subspectra (Fig. 2): an 18-line Zeeman pattern centered at -10.88(0.03) mm s⁻¹ corresponding to Eu²⁺ ions in Eu₂IrH₅; a single very broad line at -11.91 (0.06) mm s⁻¹ due to Eu²⁺ ions in EuH₂; a single line at 0.59 (0.02) mm s⁻¹ corresponding to Eu³⁺ ions in Eu₂O₃. The Curie temperature of EuH₂ is 16.2 K [7], and therefore its Mössbauer spectrum close to $T_{\rm C}$ can be well approximated by a single line.

Values of the hyperfine magnetic fields $H_{\rm hf}$ in Eu₂IrH₅ were derived from spectra taken at different temperatures assuming the following: the ratio $\mu_{\rm e}/\mu_{\rm g}$ of the nuclear magnetic moment of the excited state to the ground state is 0.7465 and $\mu_{\rm g} = 3.465\mu_{\rm N}$ [22]. The results are shown in Fig. 3 together with the fit to a J = 7/2 Brillouin function. The parameters derived from the fit are the saturation hyperfine magnetic field $H_{\rm hf}(0) = 243.7$ (5.3) kOe and the Curie temperature $T_{\rm C} = 19.9$ (0.4) K.

The value of the isomer shift $\delta = -10.88 \text{ mm s}^{-1}$ lies between that of highly ionic EuF₂ (-13.58 mm s⁻¹ [18]) and that of europium metal (-7.8 mm s⁻¹ [18]). This means that the s electron density at ¹⁵¹Eu nuclei in Eu₂IrH₅ is larger than that in EuF₂ and smaller than that in europium metal. This is in accordance with previous Mössbauer studies [5 - 15] which showed that the value of the electron density at the ¹⁵¹Eu nuclei in hydrides is reduced from that in metallic systems. In divalent europium compounds the electronic configuration can be represented by (4f)⁷(5s)²(6s)^x [23], with x =0 for EuH₂. The value δ of -10.88 mm s⁻¹ for Eu₂IrH₅ indicates some admixture of the 6s electron density caused by covalency effects. This is confirmed by the fact that the hyperfine magnetic field $H_{hf}(0) = 243.7$ kOe

Fig. 3. Temperature dependence of the hyperfine magnetic field $H_{\rm hf}$ at the ¹⁵¹Eu nuclei in Eu₂IrH₅: -----, fit to a J = 7/2 Brillouin function.

in Eu₂IrH₅ is smaller than the absolute value of the core polarization contribution to $H_{hf}(0)$ of -340 kOe for Eu²⁺ ions in insulators [24]. The difference of about +100 kOe is due to a contribution to H_{hf} arising from the polarization of conduction or valence s electrons, a phenomenon expected since Eu₂IrH₅ is a semiconductor [16].

The results of ¹⁵¹Eu Mössbauer investigations of hydrided intermetallics showed [5, 10, 12] that the values of δ and $H_{\rm hf}$ were close to those for EuH₂, which was interpreted as evidence of the importance of the Eu-H bond. Our values of δ and $H_{\rm hf}$ for Eu₂IrH₅, as well as those for Eu₂RuH₆ [15], are also close to those for EuH₂ [7]. This result is also noteworthy because the different preparations used (direct chemical synthesis for Eu₂IrH₅ [16] and Eu₂RuH₆ [15] and hydriding for other intermetallics [5 - 14]) might be expected to result in different hyperfine interactions.

The value $T_{\rm C}$ of 19.9 (0.4) K determined from the temperature dependence of $H_{\rm hf}$ is in excellent agreement with the value of 20 K found by Moyer and Lindsay [16]. For Eu₂RuH₆, $T_{\rm C} = 28.0$ (0.2) K [15]. A comparison of $T_{\rm C}$ values for Eu₂IrH₅ and Eu₂RuH₆ with those of hydrided intermetallics (ref. 10, Table 1) shows a general constancy, as with the values of δ and $H_{\rm hf}$. This constancy of $T_{\rm C}$ also demonstrates that the Eu–H bond is most important in determining the physical behavior of different hydrides.

The exchange mechanism leading to the magnetic ordering in hydrides is not well understood. It is believed that in Eu^{2+} hydrides the Eu-Eu separation (3.63 - 3.87 Å for EuH_2 [8]) is too large to allow direct exchange via the overlap of 4f orbitals on adjacent Eu^{2+} ions. This is probably also true for Eu_2IrH_5 hydride, for which the Eu-Eu distance is 3.790 Å. The exchange mechanism in Eu_2IrH_5 is probably similar to that in EuH_2 [7, 8], *i.e.* it arises either from the indirect cation-cation exchange via overlapping 5d (t_{2g}) orbitals on adjacent Eu^{2+} ions, which are coupled via intra-atomic 4f-5d exchange [8], or from the indirect routing of exchange via H⁻ ions [7]. The Eu-Ir distance in Eu_2IrH_5 of 3.282 Å is much smaller than the Eu-Eu distance. Thus it is probable that the iridium ions also participate in exchange. This can be tested with ¹⁹³Ir Mössbauer measurements which are planned for the future.

Acknowledgment

Technical assistance of A. E. M. Swolfs is highly appreciated.

References

- G. Alefeld and J. Völkl (eds.), Hydrogen in Metals I, Top. Appl. Phys., 28 (1978).
 G. Alefeld and J. Völkl (eds.), Hydrogen in Metals II, Top. Appl. Phys., 29 (1978).
- 2 G. G. Libowitz and A. J. Maeland, in K. A. Gschneidner, Jr., and L. Eyring (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 3, North-Holland, Amsterdam, 1979, p. 299.
- 3 K. H. J. Buschow, P. C. P. Bouten and A. R. Miedema, *Rep. Prog. Phys.*, 45 (1982) 937.
- 4 F. E. Wagner and G. Wortmann, in G. Alefeld and J. Völkl (eds.), Hydrogen in Metals I, Top. Appl. Phys., 28 (1978) 131.
- 5 R. L. Cohen, J. Phys. (Paris), Colloq. C1, 41 (1980) 333.
- 6 G. K. Shenoy, B. D. Dunlap, P. J. Viccaro and D. Niarchos, Hydrogen Storage Materials, Adv. Chem. Ser. 194 (1981) 501.
- 7 A. Mustachi, J. Phys. Chem. Solids, 35 (1974) 1447.
- 8 A. H. Zaheer, W. G. Bos, P. J. Ouseph and S. L. Ruby, J. Inorg. Nucl. Chem., 38 (1976) 103.
- 9 M. Meyer, J. M. Friedt, L. Iannarella and J. Danon, Solid State Commun., 17 (1975) 585.
- 10 K. H. J. Buschow, R. L. Cohen and K. W. West, J. Appl. Phys., 48 (1977) 5289.
- 11 R. L. Cohen, K. W. West and K. H. J. Buschow, Solid State Commun., 25 (1978) 293.
- 12 F. W. Oliver, K. W. West, R. L. Cohen and K. H. J. Buschow, J. Phys. F, 8 (1978) 701.
- 13 R. L. Cohen, K. W. West and J. H. Wernick, J. Less-Common Met., 70 (1980) 229.
- 14 R. L. Cohen, K. W. West and J. H. Wernick, J. Less-Common Met., 73 (1980) 273.
- 15 I. Fernandez, R. Greatrex and N. N. Greenwood, J. Chem. Soc., Dalton Trans., (1980) 918.
- 16 R. O. Moyer, Jr., and R. Lindsay, J. Less-Common Met., 70 (1980) P57.
- 17 G. H. M. Calis, Ph.D. Thesis, University of Nijmegen, Nijmegen, 1981.
- 18 E. R. Bauminger, G. M. Kalvius and I. Nowik, in G. K. Shenoy and F. E. Wagner (eds.), *Mössbauer Isomer Shifts*, North-Holland, Amsterdam, 1978, p. 661.
- 19 P. Gütlich, R. Link and A. Trautwein, Mössbauer spectroscopy and transition metal chemistry, in *Inorganic Chemistry Concepts*, Vol. 3, Springer, Berlin, 1978.
- 20 G. Groll, Z. Phys., 243 (1971) 60.
- 21 G. Ya. Selyutin, Phys. Lett. A, 62 (1977) 350.
- 22 J. G. Stevens, in J. W. Robinson (ed.), Handbook of Spectroscopy, Vol. III, Chemical Rubber Co., Boca Raton, FL, 1981, p. 464.
- 23 H. H. Wickman, I. Nowik, J. H. Wernick, D. A. Shirley and R. B. Frankel, J. Appl. Phys., 37 (1966) 1246.
- 24 J. M. Baker and F. I. B. Williams, Proc. R. Soc. London, Ser. A, 267 (1962) 283.

164