MÖSSBAUER EFFECT STUDY OF SPIN REORIENTATION IN ERBIUM IRON GARNET
 Z.M.Stadnik*
 Department of Physical Chemistry, Faculty of Science, University of Nijmege:, Toernooiveld, 6525 ED Nijmegen, The Netherlands

Abstract

The spin reorientation in erbium iron garnet has been investigated with 57 Fe Mössbauer effect. It is shown that the easy magnetic axis rotates in a continuous way in the temperature rance $65(5)-95(5) \mathrm{K}$ from the <100 > to the <111> direction through the angle $54^{\circ} 44^{\prime}$ in a $\{110\}$ plane.

1. Li:tr duction. - 'fuch attention hus been piaid rccently to the investigations of magnetic phase transitions of the order-order type in rare-earth magnets, and in particular to the studies of the spin reorientation phase transitions (1). Among different methods used in studies of these transitions, the Mössbauer effect has proved to be a very useful tool (2). The temperature range of spin reorientation in garnets is usually determined from qualitative analysis of the shape of Mössbauer spectra (2,3). The present paper shows that more quantitative information on the spin reorientation in garnets can be derived from studies of temperature dependence of effectivci uadrupole interaction.

The confusion in the literature concerning the direction of the easy magnetic axis in ebium ron garnet (ErIG) has been discussed recenty in 3,4). Other references pertinent to this problem and not cited in $(3,4)$ can also be consulted (5--10). Optical measurements by Belyaeva et al. (5--7) showed that at 4.2 K the easy magnetic ixis is in the [100] direction. This was also fornd by Streever and Caplan with ${ }^{167}$ Er NMR (8). ${ }^{57}{ }_{F}$ Nössbauer spectra measured below the Néel temperature T_{N} were analysed without taking int . account the orientation of the easy magnctizatioti

[^0]axis (9,10). In the analysis of ${ }^{166}$ Er Mössbauer spectra measured in the temperature range 4.2 -- 85 K it was assumed incorrectly that the [111] direction is the easy magnetic axis (9). The main cause of the confusion associated with the direction of the easy axis of magnetization in ErIG was the narrow temperature range of most measurements.
2. Analysis and discussion.- ${ }^{57}$ Fe Mössbauer spectra of ErIG have been measured in the temperature range 1.5-579 K. The experimental details have been described elsewhere (3).

It can be shown for a cubic ferrimagnet that when the first two constants of magnetic anisotropy are only taken into account, then a minimum ct the free energy is achieved only for the orientation of the magnetization along one of the three different crystallographic directions: [100], [111] or [110] (1). Since the signs and magnitudes of anisotropy constants may change with toperature, this may lead to a reorientatist: of the magnetization.

The octahedral (a) and tetrahedral (d) sites In rare-wrth iron garnets $\left\{\mathrm{RE}_{3}\right\}\left[\mathrm{Fe}_{2}\right]\left(\mathrm{Fe}_{3}\right) \mathrm{O}_{12}$ are nagretically euivalent or inequivalent depending - In whether the angles θ between the direction of magnetization and the axes of local symmetry at tiat a anc a ites are qual or not. The point

Table 1.- Characteristics of iron sites in $\left\{\mathrm{RE}_{3}\right\}\left[\mathrm{Fe}_{2}\right]\left(\mathrm{Fe}_{3}\right) 0_{12}$ for three easy directions of magnetization. RI - relative number of iron ions occupying sites characterized by a given angle θ.

Iron site	Easy direction of magnetization								
	[100]			[111]			[110]		
	θ	RI	State	θ	RI	State	θ	RI	State
Octahedral (a)	$54^{\circ} 44^{\prime}$	4	a	$\begin{gathered} 70^{\circ} 32^{\prime} \\ 0^{\circ} \end{gathered}$	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & a_{2} \\ & a_{1} \end{aligned}$	$\begin{gathered} 90^{\circ} \\ 35^{\circ} 16^{\prime} \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	a_{2} a_{1}
Tetrahedral (d)	$\begin{gathered} 90^{\circ} \\ 0^{\circ} \end{gathered}$	4 2	$\begin{aligned} & d_{2} \\ & d_{1} \end{aligned}$	$54^{\circ} 44^{\prime}$	6	d	$\begin{aligned} & 45^{\circ} \\ & 90^{\circ} \end{aligned}$	4 2	d_{2} d

to be axially symmetric and the symmetry axes are equally distributed among the [111] directions. The point symmetry $\overline{4}$ of the d sites also requires an axially symmetric EFG tensor with the axes of symmetry equally distributed among the [100] directions. The values of the angles θ for the three possible easy axes of magnetization in $\mathrm{RE}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ are summarized in table 1. Thus, for the easy magnetic axes in the directions [100], [111] or [110], the Mössbauer spectra should consist of three, three or four nuclear Zeeman patterns, respectively, with the intensity ratios RI (table 1).

In the spin reorientation region the Mössbauer spectra of ErIG should be fitted with seven Zeeman patterns (four a-site and three d-site patterns) for an arbitrary direction of the easy magnetic axis. However, since all three possible directions of the easy axes of magnetization lie in \{110\} type planes it is reasonable to assume that the spin reorientation in ErIG takes place in the \{110\} type planes. Then the number of d-site Zeeman patterns reduces to two (θ_{1} and $\theta_{2}=\theta_{3}$ Zeeman patterns - figure 1), and the number of a-site Zeeman patterns reduces to three (the angles α_{i} between the magnetization and the a-site local symmetry axes are: $\alpha_{1}=$ $54^{\circ} 44^{\prime}-\theta_{1}, \alpha_{2}=54^{\circ} 44^{\prime}+\theta_{1}, \alpha_{3}=\alpha_{4}=$ $\cos ^{-1}\left(3^{-\frac{1}{2}} \cos \theta_{1}\right)$). In garnets the quadrupole coupling constant $\Delta E_{q}=\frac{1}{2} e^{2} q Q$ at the a site is about two times smaller than the one at the d site (11). This causes a considerable overlap of the three
a-site Zeeman patterns. Therefore, the spectra in the reorientation region have been fitted with two d-site and one a-site Zeeman patterns. The distance $\Delta v_{i}(d)=v_{i}\left(d_{2}\right)-v_{i}\left(d_{1}\right), i=1,2 \ldots 6$, between the $i-$ th d_{2} and d_{1} lines is equal to $\Delta v_{i}(d)=\frac{3}{4} \Delta E_{q}(d)\left(\cos ^{2} \theta_{1}-\cos ^{2} \theta_{2}\right)$.
From figure 1 one can find that
$\cos ^{2} \theta_{2}=\frac{1}{2} \sin ^{2} \theta_{1}$.
This leads to
$\Delta v_{i}(d)=\frac{3}{8} \Delta E_{q}(d)\left(3 \cos ^{2} \theta_{1}-1\right)$.
The value of $\Delta E_{q}(d)$ can be abtaled from the f; t of Mössbauer spectra measured at helium temper tures (3). By measuring the cistase $\Delta v_{i}(d)$ in the spin reorientation region on $i s$ able to d termine from equation (2, ?) the temperature dependence of the angle θ_{1}, and corsequently the temperature range of spin rearintation.

Fig. 1. Geometry of the spin reorientation in a \{110\} plane.

Mössbauer spectra between 1.5 and 60 K are characteristic for the [100] direction of the magnetization (figure 2). In this temperature range the values of Δv_{i} (d) remain constant within the experimental error. The spectra at 99.5 K and higher temperatures show that the [11.1] direction is the easy magnetic axis. In the spin reorientation region $\Delta v_{i}(d)$ decreases with temperature (figure 2). This corresponds to the increase of θ_{1} with temperature (figure 3). Figure 3 shows that the spin reorientation occurs gradually over a wide temperature region of about 30 K . The temperatures of an onset and completion of the spin reorientation are 65(5) K and 95(5) K, respectively. It is concluded from the variation of the angle θ_{1} as a function of temperature that the easy magnetic axis in ErIG rotates in a continuous way in the temperature range $65(5)-95(5) \mathrm{K}$

Fig. 2. Representative temperature spectra of ErIG. The solid lines are the best fitted theoretical spectra with their Zeeman components. A broad single line near zero velocity comes from Fe impurities in the absorber holder.
from the <100> to the <111> direction through the angle $54^{\circ} 4^{\prime}$ in a $\{110\}$ plane. In recent papers by Guillot et al. $(12,13)$ it has been found from magnetization measurements that the [100] direction is the easy one below 50 K (12), whereas specific heat measurements gave the value 54 (2) K (13). The spin reorientation process in garnets involves the changes of magnetic space groups. This problem has been discussed in (13,14).

Fig. 3. Temperature dependence of the angle θ_{1}.

Since below 65(5) K the easy axis is in the [100] direction and above $95(5) \mathrm{K}$ - in the [111] direction, this offers a unique possibility of determining the signs of ΔE_{q} at both a and d sites. They are both negative in ErIG (3). The negative signs of ΔE_{q} at those sites were also found in TbIG and YIG (15). This is in accordance with monopole point-charge lattice calculations which show that in all REIG the signs of ΔE_{q} are negative at both sites (16). The only exception is SmIG where the signs of ΔE_{q} (a) and ΔE_{q} (d) are negative and positive, respectively (17,18).

References

(1) BELOV K.P., ZVEZDIN A.K., KADOMTSEVA A.M. and LEVITIN R.Z., Usp. Fiz. Nauk 119 (1976) 447 / Sov. Phys. Usp. 19 (1976) 574.
(2) BALESTRINO G., GELLER S., TOLKSDORF W. and WILLICH P., Phys. Rev. B22 (1980) 2282.
(3) STAPNIK Z.M., CALIS G.H.M. and LIPKO H., Solid State Commun. 38 (1981) 719.
(4) GELLER S., in Physics of Magnetic Garnets, ed. A. Paoletti (North-Holland, Amsterdam) 1978, p. 1.
(5) BELYAEVA A.I., EREMENKO V.V., SILAEV V.I., VAISHNORAS R.A. and POTAKOVA V.A., Fiz. Tverd. Tela $\frac{17}{(1975)} 369 /$ Sov. Phys. Solid State 17 (1975) 233.
(6) Belyaeva A.I., Vaishnoras R.A., SIlaEV V.i. and STEL"MAKHOV YU.N., Fiz. Tverd. Tela 17 (1975) 1827 / Sov. Phys. Solid State 17 (1975) 1196.
(7) BELYAEVA A.I., VAISHNORAS R.A., EREMENKO V.V., SILAEV V.I. and STEL`MAKHOV YU.N., Fiz. Nizkikh Temp. 1 (1975) 353 / Sov. J. Low Temp. Phys. $\frac{1}{1}$ (1975) 175.
(8) STREEVER R.L. and CAPLAN P.J., Phys. Rev. B8 (1973) 3138.
(9) HÜFNER S., KIENLE P., WIEDEMANN W., FREY J. and ZINN W., Proc. Intern. Conf. Magnetism, Nottingham, 1964 (The Institute of Physics and the Physical Society, London) 1965, p. 672.
(10) ZARIN P.P., Izv. Vysshikh Ucheb. Zaved., Fizika, No. 11 (1976) $123 /$ Sov. Phys. J. 19 (1976) 1489.
(11) BELOGUROV V.N. and BILINKIN V.A., Phys. Stat. Sol. (a) 63 (1981) 45.
(12) GUILLOT M., MARCHAND A., TCHÉOU F., FELDMANN P. and LE GALL H., Z. Phys. B44 (1981) 41.
(13) GUillot m., tchéou f., marchand a., feldmann P, and LAGNIER R., Z. Phys. B44 (1981) 53.
(14) GELLER S. and BALESTRINO G., Phys. Rev. B21 (1980) 4055.
(15) BELOZERSKII G.N., KHIMICH YU.P. and GITSOVICH V.N., Phys. Stat. Sol. (b) 97 (1977) K125.
(16) OTTERLOO B., private communication.
(17) ATZMONY U., BAUMINGER E.R., MUSTACHI A., NOWIK I., OFER S. and TASSA M., Phys. Rev. 179 (1969) 514.
(18) VAN KLEFFENS H.J., VAN DER KRAAN A.M. and VAN LOEF J.J., Proc. Conf. Mössb. Spectrom., Dresden, eds. H. Schnorr and M. Kautz, Vol. $\underline{2}$ (1971), 309.

[^0]: * (n leave from tle lnstitute of Physics, 'agiellonian University, Cracow, Polund.

