Mossbauer Effect Reference and Data Journal 1, 217-24 (1978)

MÖSSBAUER SPECTROSCOPY SOURCE MATERIALS AND THEIR PROPERTIES

Zbigniew M. Stadnik Institute of Physics Jagiellonian University Cracow, Poland

A good Mössbauer source should emit a monochromatic line whose width is very close to natural Heisenberg width Γ_{nat} and should have a substantial fraction of zero-phonons f_s . Source materials selected for inclusion in the table are those for which these two parameters are the best currently known. For these materials values of f_s are compiled from the literature. Some of the values have been calculated using standards statistical procedures, the details of which are described elsewhere.¹ Uncertainties of f_s , given in parentheses, indicate calculated standard deviation; e.g., $0.784(9) = 0.784 \pm 0.009$. For some source materials there are no experimental data on f_s available. For these materials only the suitable source temperature T_s is given.

Footnotes for isotopes in the table contain details of source preparation plus relevant references. Other information and references on those sources which may be of special interest to the readers are available from the author.

Source Materials and Their Properties

Isotope	E _γ (ke∨)	Γ_nat ^(mm∕s)	Footnote	Source Material	T _s (K)	f
57 _{Fe}	14.41	0.194	a	Cr	300	0.784(9)
				SS310	300	0.604(47)
				SS	300	0.678(20)
	1			Rh.	300	0,784(13)
					4.2	0.875(18)
				Pd	300	0.660(1)
					77	0.863(2)
					4.2	0.813(17)
				Cu	300	0,708(1)
					4.2	0.910(2)
				Pt	300	0.724(2)
					77	0.890(4)
				-	4.2	0.851(53)
	,			CoO	300	0.735(27)
61 _{Ni}	67.41	0,770	Ь	Ni-Cr alloy	4.2	· .
				Ni-V alloy	4.2	0,162(3)
99 Ru	89,36	0.149	C	Ru(Rh)	4.2	0.140(50)
119 Sn	23.87	0.646	ď	SnO _n	300	0,471(28)
	-	·	•	2	77	0,585(35)
					4.2	0,885(15)
				CaSnO	300	0.574(17)
				BaSn O _o ³	300	0,623(21)
				Pd (Sn) ³	300	0.383(29)
				PdgSn	300	0.340(50)
				Ū	4.2	0,750(15)
	. ,			V(Sn)	300	0.460(30)
					77	0.780(30)
				Mg_Sn	300	0.280(26)
		1	,	2	77	0,770(80)

Reprints available from author.

Isotope	E _γ (ke∨)	rat ^(mm/s)	Footnote	Source Material	т _, (К)	fs
119 _{Sn}	23.87	0,646	d	α–Sn β–Sn	77 300 77 4.2	0.046(3) 0.446(12) 0.716(16)
121 _{Sb}	37.15	2.10	e	^{SnO} 2 BaSnO ₃ B-Sn Ni ₂₁ ^{Sn} 2 ^B 6	300 77 77 77 300 77	0.212(21) 0.320(31) 0.450(50) 0.160(20) 0.070(20) 0.290(50)
125 _{Te}	35,46	5,209	f	^β -TeO ₃ PbTe Cu(l) Rh(Sb) Cu(Sb)	300 77 300 77 77 4.2 4.2 to 77 300 77	0.320(40) 0.531(23) <0.029 0.250(32) 0.143(30) 0.400(50) <0.029 0.442(59)
127	57.60	2,49	a	ZnTe	4.2	0.120(24)
129	27.77	0,586	h	ZnTe	77	0,232(43)
149 _{Sm}	22.49	1,708	i	Eu203 EuF3	300 300	••••••
¹⁵¹ Eu	21.53	1.31	i	SmF3 SmF3+2H2O Sm2O2	300 300 300	0.275(125) 0.440(60)
153 _{Eu}	103.2	0,68	k	Sm ₂ O ₂	20	0.050(10)
155 _{Gd}	86.55	0.499	I	Pd (Eu) Sm (Eu) Sm ₂ Sn ₂ O ₋₇	4.2 4.2 4.2	0.110(10)
¹⁶¹ Dy	26.66	0.378	m .	ୁ ଦୁ ଦୁ ଟ୍ୟେ ଦୁ ପୁ ଟ୍ୟୋମ୍ବି ସ୍ଥ ସେ(୩୦)	300 300 300	0.230(50)
166 _{Er}	80,56	1.816	n	HoAI2	25-30	
170 _{Yb}	84.25	2,019	0	TmB ₁₂ TmAl ₂ Tm	4.2 4.2 4.2	0.340(10) 0.180(10)
181 _{Ta}	6.24	0,0064	Pr Pr	Mo(W) W Ta(W) Pt(W)	300 300 300 300	
182 _W	100,1	2.09	. 9	Τα	4.2	0,150(30)
193 _{ir}	73.04	0.595	r	Pt(Os) Os Nb(Os)	4.2 4.2 4.2	

Source Materials and Their Properties (continued)

218

Isotope	E _γ (ke∨) γ	r (mm/s)	Footnote	Source Material	T _s (K)	fs
195 _{Pt}	98.86	16,28	· 5	Pt(Au) Pt Ir(Au)	20 77 4.2 20	0.089(2) 0.021(3) 0.0523(5)
197 _{Au}	77.35	1.882	t	Pt	77 4.2	0.069(5) 0.272(26)
237 _{Np}	59.54	0.067	U	Th(Am) ∨0 ₂	4,2 to 77 4,2 to 77	

Source Materials and Their Properties (continued)

(a) The 14.41 keV level is populated by electron capture decay of 5^{7} Co (which is the most frequent route of population), by Coulomb excitation, and by nuclear reaction. The parent nucleus 5^{7} Co is produced by irradiating an iron target with 9.5-MeV deuterons (for this energy this process is the most efficient) by the reaction 5^{6} Fe(d,n) 5^{7} Co. After irradiation the target is dissolved in mineral acids. The radioactive carrier free 5^{7} Co is obtained by isopropyl ether extraction, which is followed by an ion exchange separation. Next, the carrier free 5^{7} Co is deposited on the surface of a suitable matrix by means of the electrolytic method or by evaporation to dryness of 5^{7} Co salt solution. Then 5^{7} Co is diffused into the matrix by annealing at an appropriately high temperature in vacuum or in inert gas atmosphere during a suitable period of time.

At the initial stage of development of Mössbauer spectroscopy the commonly used source was 57 Co in stainless steel because of its easy preparation. However, it emitted a considerably broadened line due to the existence of various impurities and large resonance self-absorption in stainless steel. The best single line sources are 57 Co in Pt, Pd, Cu and Cr matrices, of which 57 Co in Cr has the largest f, and 57 Co in Pd the smallest. The intermediate values of f, approximately equal, are characteristic for 57 Co in Pt and Cu matrices are very close to the natural linewidth. The 57 Co in Cr source emits a slightly broadened line, but if suitable source preparation procedure is employed this source also gives an unbroadened line.² The disadvantage of 57 Co in Pt, 57 Co in Pd sources is comparatively large atomic absorption (large Z). There are some difficulties in producing thin Cr foils for the 57 Co in Cr source and the use of thick foils requires very precise homogeneous distribution of 57 Co in the surface layer. The 57 Co in Cu source is not chemically stable; Cu has very low solubility for Fe and Co, and it gives on anomalously asymmetric line, This asymmetry may be removed by appropriate source preparation.³ The source in the form of 57 Co in CoO has also very good parameters.⁴ 57 Co in Cr seems to be the best source at 300 K and 57 Co in Rh at 4.2 K.

In certain experiments, such as investigation of the Mössbauer effect in scattering geometry or under high pressures, strong sources are needed. The increase in source activity deteriorates the source parameters on account of considerable broadening of the emission line caused by resonance self-absorption. This resonance broadening seems to be the limiting factor for strong sources. 57 Co in stainless steel is better as a strong source than 57 Co in Cu and Pd. It was found that non-ferromagnetic compounds of high Co content may be used as high-activity sources. 5 They have high f and emit single broadened lines. CoO is also a good matrix for a high-activity source.

Mössbauer experiments using polarized gamma radiation give significant simplification of complex spectra and yield a considerable amount of information, not, or with difficulty, obtainable by means of unpolarized radiation. The difficulty lies in producing a source emitting a single line of definite polarization. The simplest palarized source is ⁵⁷Co in an iron foil magnetized in the proper direction, but the emission line is not monochromatic and the absorption spectra are complex. A better polarized source, although emitting two lines, is ⁵⁷Co embedded into a suitable monocrystal. A single line source of definite polarization may be obtained using a suitable moving filter (this requires two driving systems) or a motionless properly prepared filter. References: 2–7.

(b) The radioactive decay of 61 Co, produced by 64 Ni(p,a) 61 Co, 62 Ni(y,p) 61 Co reactions, and 61 Cu, produced by 63 Cu(y,2n) 61 Cu, 60 Ni(d,n) 61 Cu, 58 Ni(a,n) 61 Zn <u>electron capture</u> 61 Cu reactions, both populate the 67.41 keV level of 61 Ni. The 61 Cu parent nucleus has not been utilized as often as 61 Co because of the complexity of the decay scheme and the difficulty in its production. The emission line of the sources using Ni matrix is broadened owing to magnetic hyperfine interactions. The cubic matrices prepared by alloying either chromium or vanadium with Ni (about 15% Cr or V) proved to be very useful because the Curie point of nickel decreases rapidly with the addition of these elements. At 4.2K 61 Co in these matrices gives a single line very close in width to Γ_{nat} .

Reference: 8.

(c) The parent nucleus ⁹⁹Rh may be produced by ⁹⁹Ru(p,n)⁹⁹Rh or by ⁹⁹Ru(d,2n)⁹⁹Rh reaction. A ruthenium metal host lattice, even though it has a hexagonal structure, was used in all reported studies. The ⁹⁹Rh in Ru source gives a single line. A slight broadening is caused by quadrupole interaction and resonance self-absorption in the Ru matrix. The source produced by Ru bombardment without further chemical treatment shows an appreciably smaller f_s than that produced by chemical separation of ⁹⁹Rh activity followed by re-incorporation into Ru metal. Cubic Rh may be used as a source material but it has a much lower f_s . Reference: 9.

(d) The 23.87 keV level is populated by isomeric transition in ^{119m}Sn, produced through ¹¹⁸Sn(n, γ)^{119m}Sn reaction, or by electron capture decay of ¹¹⁹Sb produced by ¹¹⁹Sn(p,n)¹¹⁹Sb or ¹²⁰Sn(p,2n)¹¹⁹Sb reaction. In nearly all sources isomeric transition in ^{119m}Sn is employed. The sources used in early measurements were ^{119m}Sn in SnO₂ and Sn. The ^{119m}Sn in SnO₂ source has a high f_s at 300 K but there are some problems in precise definition of its stoichiometry and the width of its emission line is more than two times greater than Γ_{not} . The main disadvantage of ^{119m}Sn in α -Sn and β -Sn sources, apart from line broadening, is a very low f_s at 300 K. The ^{119m}Sn in Mg₂Sn source gives a slightly broadened line but it has a rather small f_s at 300 K, hence either cooling of the source or long-data accumulation time is required. Furthermore, Mg₂Sn is chemically unstable when exposed to moisture, resulting in an increase in emission linewidth. A very good source, now frequently used, is ^{119m}Sn in BaSnO₃. It emites a single line very close in width to Γ_{nat} and has a high f_s at 300 K. The Pd(Sn) source material also has good parameters at 300 K. However, apart from the Pd_{0.97}Sn_{0.03} matrix, there may exist different Pd Sn compounds, since Pd Sn is a substitutional type alloy, resulting in broadened of the emission line. Good sources, though less often used, are ^{119m}Sn in Pd₃Sn and CaSnO₃.

References: 10-14.

(e) The 37.15 keV level is entirely populated by β^{-} -decay of ^{121m}Sn produced by ¹²⁰Sn(n, γ)^{121m}Sn reaction. The first source used was ^{121m}Sn in β -Sn, but it had a small value of f_{s} and gave a slightly broadened line owing to the non-cubic β -Sn matrix. The sources mainly employed now are ^{121m}Sn in SnO₂, BaSnO₃, CaSnO₃ and Ni₂₁Sn₂B₆ matrices. All these sources emit slightly broadened single lines. The stannate sources are probably preferable to ^{121m}Sn in SnO₂ sources because of the higher f_{s} of the former and the non-cubic symmetry of the latter. All the above-mentioned sources, except ^{121m}Sn in Ni₂₁Sn₂B₆, show very large isomer shifts relative to InSb, which means that a large velocity scale is required for the investigation of Sb compounds. The ^{121m}Sn in Ni₂₁Sn₂B₆ source does not have this disadvantage. Its parameters are comparable with the other sources at 77 K.

Reference: 15.

(f) The 35.46 keV level of 125 Te may be populated by 6^{-} -decay of 125 Sb, produced via 124 Sn(n, γ) 125m Sn $\frac{125}{\beta^{-}$ -decay} reaction; or isomeric transition in 125m Te, produced through 124 Te(n, γ) 125m Te reaction. The source with the highest f is 125m Te in θ -TeO₃. Its only disadvantage is a short half-life (fifty eight days) of the metastable 125m Te state. The sources in which the parent nucleus is 125 Sb (t₁ = 2.7 years) do not have this drawback. From them 125 Sb in Rh has been found to be the best. The sources using 125 I parent nucleus have substantially worse parameters. References: 16, 17.

(g) The parent nucleus ^{127m} Te is produced via ¹²⁶ Te(n, γ)^{127m} Te reaction. The commonly used source is ^{127m} Te in Zn Te which emits a single line very close in width to Γ_{nat} . The Te(OH)₆ and Te matrices have been less satisfactorily used. References: 18, 19.

(h) The parent nuclei $129m_{Te}$ and 129 Te of 129 I Mössbauer isotope are obtained by $128 Te(n,\gamma)$ reaction. The matrix generally used is ZnTe. The value of f_s for the $129m_{Te}$ in ZnTe source is about four times smaller than for the 129 Te in ZnTe source and hence tended to be preferred in Mössbauer spectroscopy of the latter. However, the short half-life restricts its applicability to laboratories not too far from a reactor.

Reference: 20.

(i) The parent nucleus ¹⁴⁹Eu is obtained by 150 Sm(p,2n) ¹⁴⁹Eu or 149 Sm(p,n) ¹⁴⁹Eu reaction, or by a spallation by irradiation of Ta with protons. The irradiated Sm₂O₃ may be directly used as the source or 149 Eu activity may be separated by ionexchange techniques and incorporated into Eu₂O₃. There is no resonance self-absorption in the latter source. A good source is 149 Eu in EuF₃. It emits a slightly broadened line due to unresolved quadrupole interaction and paramagnetic hyperfine effects. All sources are used at room temperature since lower temperatures produce substantial line broadening owing to paramagnetic hyperfine effects.

Reference 21.

(i) This Mössbauer level may be populated by electron capture decay of 151 Gd, produced by 151 Eu(p,n) 151 Gd or 151 Eu(d,2n) 151 Gd reaction, β^- decay of 151 Sm, produced by 150 Sm(n, γ) 151 Sm reaction, and by Coulomb excitation. 151 Gd in Nd₂O₃ and Eu₂O₃, and 151 Sm in Sm₂O₃ and in SmF₃ give a single line without appreciable hyperfine broadening and have a high f_s at 300 K. In an Coulomb excitation experiment the Eu₂O₃ target emits a single, slightly broadened line. Reference: 22.

(k) The 103.2 keV level is populated by electron capture decay of ¹⁵³Gd, produced by ¹⁵²Gd(n, γ)¹⁵³Gd, ¹⁵³Eu(d,2n)¹⁵³Gd, ¹⁵³Eu(d,2n)¹⁵³Eu(d,2n)¹⁵³Gd, ¹⁵³Eu(d,2n)¹⁵³Eu(d,2n)¹⁵³Eu(d,2n)¹⁵³Gd, ¹⁵³Eu(d,2n)¹⁵³Eu(d

(1) The parent nucleus 155 Eu is produced via 154 Sm(n, γ) 155 Sm $\xrightarrow{\beta^2 - decay}$ 155 Eu reaction. The sources initially used, 155 Eu in Sm₂O₃ and in SmH₂, give split emission lines. The sources in YbAl₂ and Sm_{0.05}Al_{0.95} matrices suffer from line broadening. Good parameters are characteristic for the sources of 155 Eu in Sm₂Sn₂O₇, Pd, SmPd₃. References: 25,26

(m) The parent nucleus ¹⁶¹Tb is produced by ¹⁶⁰Gd(n, γ)¹⁶¹Gd $\xrightarrow{\beta^{-} - \text{decay}}$ ¹⁶¹Tb reaction. The sources ¹⁶¹Tb in Gd₂O₃ and in Dy₂O₃ used initially emit single, very broad lines. Their linewidths are two orders of magnitude greater than Γ_{nat} . The ¹⁶¹Tb in Mg and ¹⁶¹Tb in Mo sources emit slightly narrower lines. This broadening is caused by paramagnetic relaxation effects. The ¹⁶¹Tb in $Gd_{0.5}Dy_{0.5}F_3$ and ¹⁶¹Tb in GdF_3 sources are much better than those mentioned above. The sharpest line is emitted from the ¹⁶¹Tb in $Gd_2Ti_2O_7$ source but its temperature must be kept at 150 K. References: 27, 28.

(n) The parent nucleus ¹⁶⁶ Ho is obtained via the reaction ¹⁶⁵Ho(n,γ)¹⁶⁶ Ho. The source ¹⁶⁶ Ho in Ho₂O₃ used at the beginning gives a very broad line. A better source, widely used now, is ¹⁶⁶ Ho in HoAl₂ whose linewidth is about three times greater than Γ_{nat} but it must be kept at 25-30 K in order to avoid magnetic hyperfine splittings. The ¹⁶⁶Ho in Ho_{0.15}Y_{0.85}Al₂ source also gives an unsplit line but it may be kept at lower temperatures than the Curie point (27 K) of the HoAl₂ matrix. The single line source ¹⁶⁶Ho in (Ho_{0.4}Y_{0.6})H₂ matrix may be used at 4.2 K and its preparation is easy. **Reference**: 29.

(o) The parent nucleus 170 Tm is produced by 169 Tm(n, γ) 170 Tm reaction. The sources generally used are 170 Tm in TmAl₂' in Tm_{0.1}Al_{0.91} and in TmB₁₂. The last source has the highest f. References: 30, 31.

(p) The parent nucleus ¹⁸¹W is obtained by ¹⁸⁰W(n, γ)¹⁸¹W, ¹⁸¹Ta(d,2n)¹⁸¹W or ¹⁸¹Ta(p,n)¹⁸¹W reactions. The difficulties in preparing a good source lie in the large quadrupale moment of ¹⁸¹Ta, hence any electric field gradients produced by impurities and lattice imperfections cause an appreciable broadening of the emission line as compared with a very small value of Γ_{nat} . From among the different source matrices used, the most suitable is a tungsten matrix. Reference: 32.

(q) This level may be populated by β^{-} - decay of 182 Ta produced by 181 Ta $(n,\gamma)^{182}$ Ta or 181 Ta $(d,p)^{182}$ Ta reactions, or by Coulomb excitation. The commonly used radioactive source is 182 Ta in cubic Ta lattice. This gives a single line very close in width to Γ_{nat} and has a reasonably high f_s at low temperatures. In the case of Coulomb excitation, the W targets emit slightly broadened single lines and have a lower f_s as a result of radiation damage or localized heating effects. References: 33, 34.

(r) The parent nucleus ¹⁹³Os is produced by ¹⁹²Os(n, γ)¹⁹³Os reaction. Owing to the non-zero electric field gradient at the nuclear sites in the hexagonal osmium lattice, the emission line of the commonly used source ¹⁹³Os in Os is an unresolved quadrupale doublet. The sources of ¹⁹³Os in Pt, Nb and V emit sharper lines. Reference: 35.

(s) This level is populated by electron capture decay of ¹⁹⁵Au or by isomeric transition in ^{195m}Pt. ¹⁹⁵Au is produced by the ¹⁹⁵Pt(d,2n) ¹⁹⁵Au or ¹⁹⁵Pt(p,n) ¹⁹⁵Au reaction, and ^{195m}Pt may be obtained by ¹⁹⁴Pt(n,γ) ^{195m}Pt reaction. The main disadvantage of the very often used sources ¹⁹⁵Au in Pt, ^{195m}Pt In Pt is the resonance self-absorption in the source matrix. The disadvantage mentioned above is avoided by using Ir and Cu matrices. The ¹⁹⁵Au in Ir, ¹⁹⁵Au in Cu sources emit single, only slightly broadened lines.

References: 36, 37.

(t) The 77.35 keV level may be populated by β^- - decay of ¹⁹⁷Pt, obtained by ¹⁹⁶Pt(n, γ)¹⁹⁷Pt reaction, or electron catture of ¹⁹⁷Hg, produced by ¹⁹⁶Hg(n, γ)¹⁹⁷Hg. The ¹⁹⁷Pt parent nucleus is widely used because it gives a simpler photon spectrum than ¹⁹⁷Hg. The best matrix for ¹⁹⁷Pt is Pt. The linewidth of such source at 4.2 K is very close to Γ_{nat} . Reference: 38 (u) The 59.54 keV level of ²³⁷Np may be populated by β^{-} -decay of ²³⁷U, produced by ²³⁶U(n, γ) reaction, α -decay of ²⁴¹Am, and electron capture of ²³⁷Pu, obtained via ²³⁷Np(d,2n)²³⁷Pu reaction, the latter not being employed on account of difficulties in preparation. In almost all Mossbauer studies ²⁴¹Am parent nucleus is employed because of its longer half-life and cleaner gamma-spectrum as compared with ²³⁷U. ²⁴¹AmO₂ in NpO₂, ²³⁷UO₂ in NpO₂, ²⁴¹Am in Am and in Cu give single lines thirty times broader in width than Γ_{nat} . The best source thus far is ²⁴¹Am in Th, giving the narrowest line which is still more than fifteen times broader than Γ_{nat} . Reference; 39.

Much useful information on the methodology of many Mössbauer isotopes can be found in Reference 40. This survey covers the literature through June, 1977. More detailed data and information on any isotope may be obtained from the author. Both the author and the staff at the Mössbauer Effect Data Center would appreciate receiving additional information, published or unpublished, which will add to or modify the material presented above.

References

- 1. J. G. Stevens and B. D. Dunlap, J. Phys. Chem. Ref. Data 5, 1093 (1976).
- 2. G. Longworth and B. Window, J. Phys. D 4, 835 (1971).
- 3. J. C. Carrell and D. K. Dieterly, Nucl. Instrum. Methods 111, 333 (1973).
- 4. C. J. Song and J. G. Mullen, Nucl. Instrum. Methods 140, 81 (1977).
- 5. S. K. Godovikov, R. N. Kuz'min, and E. D. Politova, Vestn. Mosk. Univ., Fiz. Astron. 13, 655 (1972).
- 6. P. M. Dryburgh, J. Sci. Instrum. 41, 640 (1964).
- 7. S. B. Tomilov, Radiokhimiya 6, 377 (1964)/Sov. Radiochem. 6, 366 (1964).
- 8. F. E. Obenshain, in <u>Mossbauer Effect Data Index</u>, <u>Covering the 1972 Literature</u> (Ed. J. G. Stevens and V. E. Stevens), IFI/Plenum, New York, 1973, p. 13.
- 9. M. L. Good, in <u>Mossbauer Effect</u> Data Index, <u>Covering</u> the <u>1972</u> Literature (Ed. J. G. Stevens and V. E. Stevens), IFI/Plenum, New York, 1973, p. 18.51
- 10. R. H. Herber, H. A. Stockler, and W. T. Reichle, J. Chem. Phys. 42, 2447 (1965).
- 11. S. Ligenza, Inst. Nucl. Res. Swierk, Rep. No. 1136/11/PS/1967.
- 12. H. Sano and R. H. Herber, J. Inorg. Nucl. Chem. 30, 409 (1968).
- 13. F. Ambe, S. Ambe, and H. Shoji, Radiochem. Radioanal. Lett. 15, 349 (1973).
- 14. W. Muller, H. Winkler, and E. Gerdau, J. Phys. (Paris), Colloq. 35 Suppl. C6-375 (1974).
- L. H. Bowen, in <u>Mössbauer Effect Data Index</u>, <u>Covering the 1972 Literature</u> (Ed. J. G. Stevens and V. E. Stevens), IFI/Plenum, New York, 1973, p 71.
- 16. C. E. Violet and R. Booth, Phys. Rev. 144, 225 (1966).
- 17. P. Boolchand, B. B. Triplett, S. S. Hanna, and J. P. deNeufville, in Mössbouer Effect Methodology, Volume 9 (Ed. I. J. Gruverman, C. W. Seidel, D. K. Dieterly), Plenum Press, New York, 1974, p. 71.
- 18. F. de S. Barros, N. Ivantchev, S. Jha, and K. R. Reddy, Phys. Lett. 13, 142 (1964).
- 19. G. J. Perlow and M. R. Perlow, J. Chem. Phys. 45, 2193 (1966).
- 20. H. de Waard, in Mossbauer Effect Data Index, Covering the 1973 Literature (Ed. J. G. Stevens and V. E. Stevens), IFI Plenum, New York, 1975, p. 447.
- 21. J. M. D. Coey, J. Inorg. Nucl. Chem. 38, 1139 (1976).
- C. M. P. Barton and N. N. Greenwood, in Mossbauer Effect Data Index, Covering the 1973 Literature (Ed. J. G. Stevens and V. E. Stevens), IF1 Plenum, New York, 1975, p. 395.
- 23. M. Richter, W. Henning, and P. Kienle, Z. Phys. 218, 223 (1969).
- 24. H. Armon, E. R. Bouminger, A. Diamant, I. Nowik, and S. Ofer, Phys. Lett. 44A, 279 (1973).
- 25. D. B. Prowse, A. Vas, and J. D. Cashion, J. Phys. D 6, 646 (1973).
- 26. H. Armon, E. R. Bauminger, A. Diamant, I. Nowik, and S. Ofer, Nucl. Phys. A233, 385 (1974).
- 27. R. L. Cohen and H. J. Guggenheim, Nucl. Instrum. Methods 71, 27 (1969).
- 28. A. Almong, E. R. Bauminger, A. Levy, I. Nowik, and S. Ofer, Solid State Commun. 12, 693 (1973).
- 29. J. Stohr and J. D. Cashion, Phys. Rev. B 12, 4805 (1975).

- 30. K. G. Plingen, B. Wolbeck, and F. J. Schröder, Nucl. Phys. A165, 97 (1971).
- 31. F. Gonzalez Jimenez, P. Imbert, J.-C. Achard, and A. Percheron, Phys. Status Solidi A 19, 201 (1973).
- G. Kaindl, D. Salomon, and G. Wortmann, in <u>Mossbauer Effect</u> <u>Methodology</u>, <u>Volume 8</u> (Ed. I. J. Gruverman and C. W. Seidel), Plenum Press, New York, 1973, p. 211.
- 33. R. B. Frankel, Y. Chow, L. Grodzins, and J. Wulff, Phys. Rev. 186, 381 (1969).
- N. Hershkowitz and C. G. Jacobs, Jr., in <u>Mössbauer Effect Methodology</u>, <u>Volume 6</u> (Ed. I. J. Gruverman), Plenum Press, New York, 1971, p. 143.
- 35. F. Wagner and U. Zahn, Z. Phys. 233, 1 (1970).
- 36. J. R. Harris, N. Benczer-Koller, and G. M. Rothberg, Phys. Rev. A 137, 1101 (1965).
- 37. B. Wolbeck and K. Zioutas, Nucl. Phys. <u>A181</u>, 289 (1972).
- L. D. Roberts, in <u>Mössbauer Effect Data Index</u>, <u>Covering the 1973 Literature</u> (Ed. J. G. Stevens and V. E. Stevens), IFI Plenum, New York, 1975, p. 349.
- J. A. Stone, in Mossbauer Effect Data Index, Covering the 1972 Literature (Ed. J. G. Stevens and V. E. Stevens), IFI/Plenum, New York, 1973, p. 33.
- 40. G. M. Kalvius, F. E. Wagner, and W. Potzel, J. Phys. (Paris), Colloq. 37 Suppl. C6-657 (1976).