1. The solution key will be posted today on the web. Solutions will be worked out in the next DGD.
2. You must respond to all exercises.
3. Periodic Table and relevant values are at the end.
4. A few scratch sheets are at the very end. Report in the booklet the minimum amount of calculations to show your reasoning.

Read carefully:

Cellular phones, unauthorized electronic devices or course notes (unless an open-book exam) are not allowed during this exam. Phones and devices must be turned off and put away in your bag. Do not keep them in your possession, such as in your pockets. If caught with such a device or document, the following may occur: academic fraud allegations will be filed which may result in your obtaining a 0 (zero) for the exam.

By signing below, you acknowledge that you have read and ensured that you are complying with the above statement.

Signature: ________________________________
1. **(1 point)** A normal breath takes in about 1.0 L of air. Assuming that air has an average molar mass of 28.8 g (molar mass of air = 28.8), and that its density is 0.97 g/L, how many molecules of air do you take in with each breath?

1L of air corresponds to 0.97 g.

The “moles” of air are: $0.97/28.8$ and which once multiplied by N gives:

Answ. 2.0×10^{22}

2. **(2 points)** Terephthalic acid, used in the production of polyester fibers and films, is composed of carbon, hydrogen, and oxygen. When 0.6943 g of terephthalic acid was subjected to combustion analysis it produced 1.471 g CO$_2$ and 0.226 g H$_2$O. What is its empirical formula?

Grams of C in the sample: $1.471/44 \times 12 = 0.40$
Grams of H in the sample: $0.226/18 \times 2 = 0.025$
Grams of O in the sample = $0.6943 - 0.40 - 0.025 = 0.269$

Moles of C = $0.40/12 = 0.033$
Moles of H = $0.025/1 = 0.025$
Moles of O = $0.269/16 = 0.0168$

The ratio would give C$_{2.5}$H$_{1.5}$O$_1$ and which should be multiplied by 2 yielding:

Anw. C$_4$H$_3$O$_2$

3. **(3 points)** Balance the following equation:

\[
\text{Ca}_3(\text{PO}_4)_2(s) + \text{SiO}_2(s) + \text{C}(s) \rightarrow \text{CaSiO}_3(s) + \text{CO}(g) + \text{P}_4(s)
\]

P exchanges 10 electrons to get into P$_4$ and C exchanges 2 and the electron balance yields:
2Ca₃(PO₄)₂(s) + SiO₂(s) + 10C(s) → CaSiO₃(s) + 10CO(g) + P₄(s)

the subsequent mass balance yields:

2Ca₃(PO₄)₂(s) + 6SiO₂(s) + 10C(s) → 6CaSiO₃(s) + 10CO(g) + P₄(s)

Asw. 2Ca₃(PO₄)₂(s) + 6SiO₂(s) + 10C(s) → 6CaSiO₃(s) + 10CO(g) + P₄(s)

4. **(2 points)** Aluminum metal dissolved in hydrochloric acid as follows:

 \[
 2\text{Al}(s) + 6\text{HCl}(aq) \rightarrow 2\text{AlCl}_3(aq) + 3\text{H}_2(g)
 \]

 a. What is the minimum volume of 6.0 \(M\) \(\text{HCl(aq)}\) needed to completely dissolve 3.20 g of aluminum in this reaction?
 b. What mass of \(\text{AlCl}_3\) would be produced by complete reaction of 3.20 g of aluminum?

Moles of Al = \(\frac{3.2}{26.98} = 0.118\)

\[
\text{Al} + 3\text{HCl} \rightarrow \text{AlCl}_3 + \frac{3}{2}\text{H}_2
\]

Thus moles \(\text{HCl}\) needed: \(0.118 \times 3 = 0.356\) which, divided by the molarity, corresponds to 59.3 mL

The mass of \(\text{AlCl}_3\) = 0.118 moles \(
\times\) molar mass \(\text{AlCl}_3\) \(= 15.8\) g

Asw. a) 59.3 mL
 b) 15.8 g
5. (1 point) A flask containing neon gas is connected to an open-ended mercury manometer. The open end is exposed to the atmosphere, where the prevailing pressure is 745 torr. The mercury level in the open arm is 50 mm/Hg below that in the arm connected to the flask of neon. What is the neon pressure, in torr?

\[P_{\text{int}} = P_{\text{ext}} = P_{\text{atm}} = P_{\text{ne}} + P_{\text{Hg}} \]

\[P_{\text{atm}} - P_{\text{Hg}} = P_{\text{Ne}} \]

745 - 50 = 695 torr

6. (1 point) Small quantities of hydrogen can be prepared by the addition of hydrochloric acid to zinc. A sample of 195 mL of hydrogen was collected over water at 25°C and 1.00 bar. What mass of hydrogen was collected? \((P_{H_2O} = 0.0320 \text{ bar at 25°C})\).

Zn + 2HCl → ZnCl₂ + H₂

Moles of \(H₂\) = \(V \times (P_{\text{atm}} - P_{H_2O}) / RT = 0.195 \times 0.968 / 298 \times 0.0831\)

\(\text{gr} \ H₂ = 2 \times \text{moles} \ H₂ = 0.0154 \ \text{g}\)

7. (2 points) Aluminum metal shavings (10.0 g) are placed in 100 mL of 6.00 \(M\) hydrochloric acid. What is the maximum volume of hydrogen, measured at STP (273K, 101.325 kPa), which can be produced?

2Al(s) + 6HCl(aq) → 2AlCl₃(aq) + 3H₂(g)

Find the limiting reagent:

Based on Al: \(10.0 / 26.98 \times 3 / 2 = 0.557\) moles of \(H₂\)

Based on HCl: \(0.1 \times 6.00 \times 3 / 6 = 0.3\) moles of \(H₂\)

Maximum moles of \(H₂\) are 0.3 which at STP converts to 6.81 L
8. (1 point) For the following reaction, \(K = 0.262 \) at 1000°C:

\[
C(s) + 2H_2(g) \rightleftharpoons CH_4(g)
\]

At equilibrium, \(P_{H_2} \) is 1.22 bar. What is the equilibrium partial pressure of \(CH_4(g) \)?

\[
\begin{align*}
P_{CH_4} &= K \cdot \left(P_{H_2} \right)^2 \\
&= (0.262)(1.22)^2 \\
&= 0.38996 \text{ bar} = 0.390 \text{ bar}
\end{align*}
\]

9. (2 points) Compound A decomposes according to the following equation:

\[
A(g) \rightleftharpoons 2B(g) + C(g)
\]

A sealed 1.00-L container initially contains \(1.75 \times 10^{-3} \) mol of \(A(g) \), \(1.25 \times 10^{-3} \) mol of \(B(g) \), and \(6.50 \times 10^{-4} \) mol of \(C(g) \) at 100°C. At equilibrium, [A] is \(2.15 \times 10^{-3} \) mol/L. Find [B] and [C].

Initial concentrations:

- \([A] = (1.75 \times 10^{-3} \text{ mol})/(1.00 \text{ L}) = 1.75 \times 10^{-3} \text{ mol/L}\)
- \([B] = (1.25 \times 10^{-3} \text{ mol})/(1.00 \text{ L}) = 1.25 \times 10^{-3} \text{ mol/L}\)
- \([C] = (6.50 \times 10^{-4} \text{ mol})/(1.00 \text{ L}) = 6.50 \times 10^{-4} \text{ mol/L}\)

Concentration (mol/L) \(A(g) \rightleftharpoons 2B(g) + C(g) \):

| Concentration (mol/L) | \(A(g) \) | \(\rightleftharpoons \) | \(2B(g) \) | \(+ \) | \(C(g) \) |
|-----------------------|------------|----------------|----------|-------|
| Initial | 1.75\times10^{-3} | 1.25\times10^{-3} | 6.50\times10^{-4} |
| Change | \(-x\) | \(+2x\) | \(+x\) | |
| Equilibrium | 1.75\times10^{-3} - x | 1.25\times10^{-3} + 2x | 6.50\times10^{-4} + x | |

\[
[A]_{eq} = 2.15 \times 10^{-3} = 1.75 \times 10^{-3} - x \\
x = -0.00040
\]

\[
[B]_{eq} = 1.25 \times 10^{-3} + 2x = 4.5 \times 10^{-4} \text{ mol/L}
\]

\[
[C]_{eq} = 6.50 \times 10^{-4} + x = 2.5 \times 10^{-4} \text{ mol/L}
\]
Bonus question (4 points)

The following reaction takes place at 80.1°C:
\[\text{Ru(NH}_3\text{)}_5\text{Cl}^{2+} (aq) + \text{H}_2\text{O} (l) \rightarrow \text{Ru(NH}_3\text{)}_5(\text{H}_2\text{O})^{3+} (aq) + \text{Cl}^- (aq) \]

The following time and concentration data are collected:

<table>
<thead>
<tr>
<th>t (s)</th>
<th>[Ru(NH\text{)}_3\text{)}_5\text{Cl}^{2+}]</th>
<th>ln ([Ru(NH\text{)}_3\text{)}_5\text{Cl}^{2+}]</th>
<th>1/(Ru(NH\text{)}_3\text{)}_5\text{Cl}^{2+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.50 x 10^{-2}</td>
<td>-4.20</td>
<td>66.7</td>
</tr>
<tr>
<td>1.00 x 10^{-3}</td>
<td>1.08 x 10^{-2}</td>
<td>-4.53</td>
<td>92.6</td>
</tr>
<tr>
<td>2.00 x 10^{-3}</td>
<td>7.78 x 10^{-3}</td>
<td>-4.86</td>
<td>128.5</td>
</tr>
<tr>
<td>3.00 x 10^{-3}</td>
<td>5.61 x 10^{-3}</td>
<td>-5.18</td>
<td>178.2</td>
</tr>
<tr>
<td>5.40 x 10^{-3}</td>
<td>2.55 x 10^{-3}</td>
<td>-5.97</td>
<td>392</td>
</tr>
<tr>
<td>1.01 x 10^{-2}</td>
<td>5.46 x 10^{-4}</td>
<td>-7.51</td>
<td>1830</td>
</tr>
<tr>
<td>4.00 x 10^{-2}</td>
<td>3.01 x 10^{-8}</td>
<td>-17.3</td>
<td>3.32 x 10^7</td>
</tr>
</tbody>
</table>

Which of the following is the correct value of the rate constant?

Answer: 328 1/s
Mokeur's Periodic Table of the Elements

<table>
<thead>
<tr>
<th>Period</th>
<th>Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IA</td>
<td>H, He</td>
</tr>
<tr>
<td>2</td>
<td>IIA</td>
<td>Li, Be, B, C, N, O, F, Ne</td>
</tr>
<tr>
<td>3</td>
<td>IIIA</td>
<td>Na, Mg, Al, Si, P, S, Cl, Ar</td>
</tr>
<tr>
<td>4</td>
<td>IVIA</td>
<td>K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr</td>
</tr>
<tr>
<td>5</td>
<td>VIB</td>
<td>Rb, Sr, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe</td>
</tr>
<tr>
<td>6</td>
<td>VIIB</td>
<td>Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr</td>
</tr>
</tbody>
</table>

Notes
- Under normal conditions, solid symbols correspond to solid state, liquid symbols correspond to liquid state, and gas symbols correspond to gaseous state.

© Copyright 1968, Ivan Mokeur
Data For Water

Density = 1.00 g/mL (at 25°C)
s = 2.13 J g⁻¹ K⁻¹ (solid)
s = 4.184 J g⁻¹ K⁻¹ (liquid) \(\Delta H^\circ_{\text{gas}} = 6.02 \text{ kJ mol}^{-1}\)
s = 2.01 J g⁻¹ K⁻¹ (gas) \(\Delta H^\circ_{\text{vap}} = 40.7 \text{ kJ mol}^{-1}\)

Constants and Conversion Factors

<table>
<thead>
<tr>
<th>Conversion Factor</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mmHg = 1 torr</td>
<td>760 mmHg = 1 atm</td>
</tr>
<tr>
<td>1 cm³ = 1 mL</td>
<td>1000 mL = 1 L</td>
</tr>
</tbody>
</table>

- Avogadro’s Number \(N\) \(6.022 \times 10^{23} \text{ mol}^{-1}\)
- Boltzmann’s constant \(k\) \(1.38066 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}\)
- Faraday’s constant \(F\) \(96.485 \text{ C} \cdot \text{mol}^{-1}\)
- Gas constant \(R\) \(8.31451 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}\)
- \(R\) \(0.08206 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}\)
- \(R\) \(8.31451 \text{ m}^3 \text{Pa} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}\)
- \(R\) \(0.0831451 \text{ bar} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}\)
- Planck’s constant \(h\) \(6.62608 \times 10^{-34} \text{ J} \cdot \text{s}\)
- Speed of Light \(c\) \(2.99792458 \times 10^8 \text{ m} \cdot \text{s}^{-1}\)
Gas Laws

\(PV = nRT \)

\(\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \)

\(P_T = P_1 + P_2 + P_3 + \ldots \)

\(d = \frac{m}{V} = \frac{P \cdot MM}{RT} \)

\(E_k = \frac{1}{2}mv^2 \)

\(\sqrt{\frac{3RT}{MM}} \)

\(\frac{\text{Rate } A}{\text{Rate } B} = \sqrt{\frac{MM_B}{MM_A}} \)

\(\left(P + \frac{n^2a}{V^2} \right) \left(V - nb \right) = nRT \)

Equilibrium

\(K_p = K_C(RT)^\Delta n \)

Acid/Base

\(pKOH = -\log[OH^-] \)

\(pH = -\log[H^+] \)

\(pH + pOH = 14 \)

\(K_s \times K_b = K_w \)

\(pH = pK_a + \log \left(\frac{[A^-]}{[HA]} \right) \)

\(pH = \frac{pK_{a1} + pK_{a2}}{2} \)

Thermochemistry

\(\Delta U = q + W \)

\(W_{\text{system}} = -P\Delta V = -\Delta nRT \)

\(\Delta H = \Delta U + P\Delta V \)

\(q_p = \Delta U + P\Delta V \)

\(q = ms\Delta T \)

\(\Delta H_{\text{rxn}} = \sum n\Delta H_f^{\circ}(\text{pds}) - \sum n\Delta H_f^{\circ}(\text{rxts}) \)

The atom

\(E = h\nu \)

\(c = \nu\lambda \)

\(E = \frac{-B}{\alpha^2} \)

Kinetics

\([A]_t = [A]_o - kt \)

\(\ln[A]_t = \ln[A]_o - kt \)

\(1/[A]_t = 1/[A]_o + kt \)

\(k = Ae^{(E_a/R)T} \)

\(\ln(k_0/k_1) = (E_a/R)(1/T_2 - 1/T_1) \)