Dynamics of a non-smooth epidemic model with three thresholds

Aili Wang1 · Yanni Xiao2 · Robert Smith3

Received: 3 March 2019 / Accepted: 29 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
A non-smooth epidemic model with piecewise incidence rate dependent on the derivative of the case number is proposed for the transmission dynamics of an infectious disease with media coverage, enhanced vaccination and treatment policy. This is an implicitly defined system, which is converted into an explicit system with three thresholds by employing the properties of the Lambert W function. We first analyze the dynamics of the proposed model for the limiting case, which induces two non-smooth but continuous models. The dynamic analysis of the model demonstrates that either one of the two generalized equilibria or the pseudo-equilibrium is globally asymptotically stable if the disease does not die out. This suggests that the case number can be contained either at an a priori level or at a high/low level, depending on the threshold, which governs whether the enhanced vaccination and treatment policies are implemented. Media coverage cannot help eradicate the disease, but it significantly delays the epidemic peak and lowers the peak case number. Hence, a good threshold policy and continuously updating the awareness of case numbers are required to combat the disease successfully.

Keywords Media coverage · Multiple thresholds · Non-smooth model · Sliding dynamics · Global dynamics

Introduction
During the outbreak of an infectious disease, pharmaceutical interventions may not provide protection for the public, since an effective vaccine may not exist or antiviral drugs may not be available in sufficient quantities. Non-pharmaceutical control measures may thus play an important role in fighting against these diseases, especially for developing countries. Considering media coverage as a kind of non-pharmaceutical measure of heightened information awareness helps both the government and the public respond to and implement measures to curb the disease.

In 1973, cholera was curbed within a few days in southeast Italy, because media coverage led the local people to adopt strict measures to avoid being infected (Capasso and Serio 1978). In 2009, media coverage helped governments make interventions to contain the spread of swine flu (H1N1) (Funk et al. 2010; Xiao et al. 2015). Further, the degree of AIDS awareness in educated women and men is 4.69 and 77.73 times of those uneducated women and men in Bangladesh, and the probability of being aware of AIDS in individuals regularly watching TV is about 8.6 times of the probability in those who never watch TV (Rahman and Rahman 2007). It is also suggested that those placing risk perception foremost in their minds are more inclined to conduct precautionary behaviors, such as wearing masks, frequent hand washing, avoiding travel and social distancing (Tracy et al. 2009; Brewer et al. 2007; Kristiansen et al. 2007).

Media coverage triggers behavior changes in the population, which consequently leads to a reduction in the effective contact rates. Understanding how media coverage affects the transmission of an epidemic during an outbreak is vital (Al Basir et al. 2018; Misra et al. 2018; Liu et al. 2007; Cui et al. 2008a; Sahu and Dhar 2015; Wang and Xiao 2014; Xiao et al. 2013; Tchuenche and Bauch 2012; Li and Cui 2009; Sun et al. 2011; Tchuenche et al. 2011;
Mathematically, there are two ways of modeling the impact of media awareness. One method is to consider the media campaign as a separate state variable to address the cumulative number of TV, media advertisements, Internet information and posters (Al Basir et al. 2018; Misra et al. 2018). The other method is to incorporate an explicit function in the transmission term of the model to describe the media effect (Liu et al. 2007; Cui et al. 2008a; Sahu and Dhar 2015; Wang and Xiao 2014; Xia et al. 2013; Tchuenche and Bauch 2012; Li and Cui 2009; Sun et al. 2011; Tchuenche et al. 2011; Cui et al. 2008b; Wang et al. 2016; Berrhazi et al. 2017; Chen et al. 2018; Khan et al. 2018; Song and Xiao 2018). It follows that the precise functioning of media coverage becomes very important. Negative exponential forms, such as βe^{-zt} and $\beta e^{-z_1 t + z_2 I}$, have been adopted to describe the reduction factor (Liu et al. 2007; Cui et al. 2008a; Sahu and Dhar 2015). Multiple positive equilibria, multiple outbreaks and rich dynamics have been observed in these studies. Another functioning method is to use the nonlinear function $\beta - \frac{\beta I}{m + I}$ to reflect the intrinsic characters of media coverage (Li and Cui 2009; Tchuenche et al. 2011; Wang et al. 2016; Berrhazi et al. 2017; Chen et al. 2018; Khan et al. 2018), which can be expanded to a general contact rate $\beta_1 - \beta_2 f(I)$ (Sun et al. 2011; Cui et al. 2008b). Alternatively, non-smooth models with piecewise smooth transmission functions have been used to evaluate the effect of media coverage (Xiao et al. 2013, 2015; Wang and Xiao 2014; Tchuenche and Bauch 2012; Chen et al. 2018). These results have shown that media coverage can have a significant impact on the epidemic, such as delaying the peak and reducing the severity of the outbreak.

However, almost all of these formulations are based on a large number of infectious cases. How human behavior and social responses vary depends on not only the reported case number but also the change in the case number, especially in the early stage of outbreak (Jones and Salathe 2009). Significantly increasing the case number can cause individuals to engage in protective behavior. In order to better understand the impact of the rate of the case number on disease transmission, Xiao et al. (2013) and Tchuenche and Bauch (2012) proposed epidemic models with piecewise smooth incidence rates dependent on both the case number and its rate of change. This implicitly defined model has been converted into a non-smooth and continuous model with one threshold (Xiao et al. 2013).

Furthermore, vaccination and antiviral drugs serve as the two most effective ways to prevent and control disease transmission. However, if the strain is either unknown or novel at the initial stage, these pharmaceutical resources may not be available or may be limited (Kabineh et al. 2018; Wandeler et al. 2018; Jiang and Zhou 2018). Wang proposed a piecewise function to model limited resource capacity, which resulted in a non-smooth continuous model (Wang 2006). Saturated incidence functions have been incorporated into classical smooth epidemic models to explore how limited medical resources affect the disease transmission (Zhou and Fan 2012; Abdelrazec et al. 2016). In Wang et al. (2019), we embedded a piecewise-defined function into a continuous epidemic model, giving a non-smooth model with one threshold, to quantify the effect of threshold level and the limiting capacity on disease spread. To examine the effect of hospital resources on disease control, we formulated a Filippov model with one threshold to examine the impact of medical resource constraints on disease control (Wang et al. 2018). In recent years, Filippov systems have gained a substantial amount of attention and have been extensively applied to examine the effect of threshold policies on disease control (Xiao et al. 2012; Chong et al. 2016; Tang et al. 2016; Zhou et al. 2016; Qin et al. 2016; Chen et al. 2018) and pest management (Tang et al. 2012).

The main purpose of this paper is to construct a negative exponential function to describe the reduction factor induced by changes in the case number; i.e., df/dt. Additionally, we will consider the vaccination and treatment measures driven by the case number, which is defined as follows: when the case number exceeds a threshold level, the enhanced vaccination and treatment policies are conducted; otherwise, the general vaccination policy is adopted without any treatment measure. We will convert the implicitly defined system to an explicitly defined system by using the properties of the Lambert W function in the next section. The resulting system is a non-smooth system with three thresholds. In the third section, we will address the dynamics of the subsystem with only the media coverage considered. We will examine the sliding dynamics and global dynamics of our targeted model for the whole parameter space in the fourth and fifth sections, respectively. Concluding remarks are presented in the last section.

Model formulation

We consider the impact of media coverage, vaccination and treatment on the disease spread. Media coverage affects individuals’ awareness by reporting the case number and its changing rate. When the case number increases, the public will take measures to avoid being infected. This results in a reduction in contact rates and ultimately a decrease in transmission. Thus, we adopt a function dependent on the changing rate of case number (i.e.,
exp[-xψ_1(df/dt)] to describe the impact of media coverage on the disease. A general vaccination proportion \(p \) is enhanced by a proportion \(f \) when the case number increases and exceeds a threshold level \(I_c \). A proportion of infected individuals (\(c \)) are treated and return to the susceptible class in this case. Then, the model takes the form

\[
\begin{align*}
\frac{dS}{dt} &= \mu - \beta \exp\left(-x\psi_1\left(\frac{df}{dt}\right)\right)SI - \mu S - [p + f\psi_2(I)]S + \gamma\psi_2(I)I, \\
\frac{dI}{dt} &= \beta \exp\left(-x\psi_1\left(\frac{df}{dt}\right)\right)SI - \mu I - \delta I - \gamma\psi_2(I)I, \\
\frac{dV}{dt} &= [p + f\psi_2(I)]S - \mu V.
\end{align*}
\]

(1)

with

\[
\psi_1\left(\frac{df}{dt}\right) = \max\left\{0, \frac{df}{dt}\right\}
\]

(2)

and

\[
\psi_2(I) = \begin{cases} 0, & I < I_c, \\ 1, & I > I_c, \end{cases}
\]

(3)

where \(S(t), I(t) \) and \(V(t) \) are the proportions of susceptible, infected and immune individuals at time \(t \), respectively. All other parameters are positive constants, where \(\mu \) represents natural birth (death) rate, \(\beta \) denotes the basic transmission rate, \(p \) (or \(f \)) stands for the basic (or enhanced) vaccination rate, \(\gamma \) is the treatment rate and \(\delta \) is the disease-induced death rate.

Note that the vaccinated class in (1) does not affect the susceptible and infected class, so we only need to consider the following system

\[
\begin{align*}
\frac{dS}{dt} &= \mu - \beta \exp\left(-x\psi_1\left(\frac{df}{dt}\right)\right)SI - \mu S - [p + f\psi_2(I)]S + \gamma\psi_2(I)I, \\
\frac{dI}{dt} &= \beta \exp\left(-x\psi_1\left(\frac{df}{dt}\right)\right)SI - \mu I - \delta I - \gamma\psi_2(I)I.
\end{align*}
\]

(4)

It is easy to show \(\Omega = \{(S, I) \in \mathbb{R}^2_+ : S + I \leq 1\} \) is an attraction region of system (4). Next, we introduce the properties of the Lambert W function, which will be used in the rest of this paper (Corless et al. 1996).

Definition 1 The Lambert W function is a multi-valued inverse of the function \(x \mapsto xe^x \) with

\[
\text{Lambert } W(x) \exp(\text{Lambert } W(x)) = x.
\]

We further have

\[
\text{Lambert } W(x) = \frac{\text{Lambert } W(x)}{x(1 + \text{Lambert } W(x))}.
\]

In fact, since \((x \exp(x))' = (x + 1) \exp(x) \) is positive for \(x > -1 \), the inverse function of \(x \exp(x) \) restricted on \([-1, +\infty) \) is defined as Lambert \(W(0, x) = \text{Lambert } W(x) \). The inverse function of \(x \exp(x) \) on \((-\infty, -1) \) is similarly defined as Lambert \(W(-1, x) \).

It is worth emphasizing that the equations in model (4) are dependent on the sign of \(df/dt \), which makes them implicit equations. To simplify them to explicit equations, it is crucial to determine the conditions under which the sign of \(df/dt \) is positive. If \(df/dt > 0 \), we have \(\psi_1(df/dt) = df/dt \), and so the second equation of model (1) takes the form

\[
\frac{dI}{dt} = \beta \exp\left(-x\frac{df}{dt}\right)SI - (\mu + \delta + \gamma\psi_2(I))I.
\]

Multiplying both sides of the above equation by \(x \) and moving the second term on the right-hand side to the left-hand side, we get

\[
x(\mu + \delta + \gamma\psi_2(I))I + x\frac{df}{dt} = x\beta SI \exp\left(-x\frac{df}{dt}\right).
\]

It follows that

\[
x \left[(\mu + \delta + \gamma\psi_2(I))I + \frac{df}{dt} \right] \\
\times \exp\left(x\frac{df}{dt} + x(\mu + \delta + \gamma\psi_2(I))I\right) \\
= x\beta SI \exp(x(\mu + \delta + \gamma\psi_2(I))I).
\]

Employing the properties of the Lambert W function yields

\[
\frac{dI}{dt} = \frac{1}{x} \text{Lambert } W(x\beta SI \exp(x(\mu + \delta + \gamma\psi_2(I))I)) \\
- (\mu + \delta + \gamma\psi_2(I))I.
\]

(5)

Setting \(df/dt = 0 \), we get

\[
S = \frac{\mu + \delta + \gamma\psi_2(I)}{\beta} \equiv S_{c1},
\]

(6)

\[
\frac{\mu + \delta + \gamma}{\beta} \equiv S_{c2}.
\]

according to the definition of \(\psi_2(I) \). Note that \(df/dt \) defined by (5) is strictly monotonic with respect to \(S \), so \(df/dt > 0 \) is mathematically equivalent to \(S > S_{c1} \) (or \(S > S_{c2} \)). It follows that

\[
\frac{dI}{dt} > 0 \iff S > S_c,
\]

where \(S_c \) denotes \(S_{c1} \) or \(S_{c2} \). Then model (4) becomes as follows, which we shall refer to as the targeted model:
\[
\frac{dS}{dt} = \mu - \beta SI - \mu S - pS \equiv F_{11}, \quad S \leq S_1,
\]
\[
\frac{dI}{dt} = \beta SI - \mu I - \delta I \equiv F_{12},
\]
\[
\frac{dS}{dt} = \mu - \beta \exp\left(-\frac{dI}{dt}\right)SI - \mu S - pS \equiv F_{21}, \quad S > S_1,
\]
\[
\frac{dI}{dt} = \beta \exp\left(-\frac{dI}{dt}\right)SI - \mu I - \delta I \equiv F_{22},
\]
\[
\frac{dS}{dt} = \mu - \beta \exp\left(-\frac{dI}{dt}\right)SI - \mu S - (p + f)S + \gamma I \equiv F_{31}, \quad S \leq S_2,
\]
\[
\frac{dI}{dt} = \beta \exp\left(-\frac{dI}{dt}\right)SI - \mu I - \delta I - \gamma I \equiv F_{32},
\]
\[
\frac{dS}{dt} = \mu - \beta \exp\left(-\frac{dI}{dt}\right)SI - \mu S - (p + f)S + \gamma I \equiv F_{41}, \quad S > S_2,
\]
\[
\frac{dI}{dt} = \beta \exp\left(-\frac{dI}{dt}\right)SI - \mu I - \delta I - \gamma I \equiv F_{42},
\]
(7)

Before further examining the dynamics of model (7), we introduce some technical definitions (Utkin 1992; Filippov 1988).

Denote \(R^2_0 = \{ Z = (x, y) : x \geq 0, y \geq 0 \} \). A general planar non-smooth continuous system takes the form

\[
\frac{dZ}{dt} = \begin{cases}
F_{G_i}(Z), & \sigma(Z) \leq 0, \\
F_{G_j}(Z), & \sigma(Z) > 0,
\end{cases} \quad (8)
\]

with \(F_{G_i}(Z) \equiv F_{G_j}(Z) \) for \(Z \in \{ Z : \sigma(Z) = 0 \} \), where \(\sigma(Z) \) is a smooth scalar function.

Definition 2 Let \(Z^* \) be such that \(F_{G_i}(Z^*) = 0 \) (i = 1, 2). Then, \(Z^* \) is called a real equilibrium of system (8) if it belongs to \(G_i \) and a virtual equilibrium if it belongs to \(G_j, j \neq i \). Both the real equilibrium and virtual equilibrium are called regular equilibria.

Definition 3 A point \(Z^* \) is called a generalized singular point of model (8) if \(F_{G_i}(\sigma(Z^*))F_{G_j}\sigma(Z^*) \leq 0 \), where \(F_{G_i}\sigma(Z^*) = F_{G_j}(Z) \cdot \text{grad} \sigma(Z^*) \) (i = 1, 2) represents the Lie derivative of \(\sigma \) with respect to the vector field \(F_{G_i} \) at the point \(Z^* \). The generalized singular point is also called an irregular singular point.

A general Filippov system reads

\[
\frac{dZ}{dt} = \begin{cases}
F_{G_i}(Z), & \sigma(Z) < 0, \\
F_{G_j}(Z), & \sigma(Z) > 0,
\end{cases} \quad (9)
\]

where \(\sigma(Z) \) is a smooth scalar function. Besides the regular equilibria, another type of equilibrium may exist for Filippov system (9), which is defined as follows.

Definition 4 A point \(Z^* \) is called a pseudo-equilibrium of Filippov system (9) if it satisfies \(\lambda F_{G_i}(Z^*) + (1 - \lambda)F_{G_j}(Z^*) = 0, \sigma(Z^*) = 0 \) with \(0 < \lambda < 1 \) and

\[
\dot{\lambda} = \frac{F_{G_i}\sigma(Z^*)}{(F_{G_i} - F_{G_j})\sigma(Z^*)}.
\]

This suggests a pseudo-equilibrium is indeed an equilibrium of the sliding-mode dynamics.

Media impact switching policy

Two threshold strategies occur in model (1), which are guided by the case number or the derivative of the case number. In particular, the derivative of the case number guides whether the media impact occurs in the disease control, while the case number itself guides whether the enhanced vaccination and treatment are carried out. In this section, we first examine the dynamics of system (7) with only the media impact switching policy. This type of switching policy is guided by the sign of the derivative of case number, which is mathematically converted to the switching policy guided by the susceptible numbers according to the “Model formulation” section. In this case, there are two possibilities to consider: \(I_c = +\infty \) and \(I_c = 0 \). For \(I_c = +\infty \), no enhanced vaccination or treatment strategy is carried out, so the system takes the form

\[
\frac{dS}{dt} = \mu - \beta SI - \mu S - pS, \quad S \leq S_{c1},
\]
\[
\frac{dI}{dt} = \beta SI - \mu I - \delta I, \quad S > S_{c1},
\]
(10)

which is a non-smooth but continuous model. In this case, the media coverage takes effect only when the proportion of susceptible individuals is above the threshold value \(S_{c1} \); otherwise, the classic model is present. For \(I_c = 0 \), enhanced vaccination and treatment are always adopted, so the system takes the form

\[
\frac{dS}{dt} = \mu - \beta SI - \mu S - (p + f)S + \gamma I, \quad S \leq S_{c2},
\]
\[
\frac{dI}{dt} = \beta SI - \mu I - \delta I - \gamma I, \quad S > S_{c2},
\]
(11)

For convenience, we denote \(Z = (S, I)^T \) in the rest of this work. System (10) can be rewritten as
\[
\frac{\text{d}Z}{\text{d}t} = \begin{cases} F_{M_1}, & S \leq S_{c1}, \\ F_{M_2}, & S > S_{c1}, \end{cases}
\]

with \(F_{M_1} = (F_{11}, F_{12})^T, F_{M_2} = (F_{21}, F_{22})^T \). Denote
\[
G_M = \{(S, I) \in \mathbb{R}_+^2 : S \leq S_{c1} \}, \quad GM = \{(S, I) \in \mathbb{R}_+^2 : S > S_{c1} \}
\]
and \(\Sigma_M = \{(S_{c1}, I) : I \geq 0 \} \). We denote the subsystem of (10) determined by \(F_{M_i} (i = 1, 2) \) as subsystem \(S_{M_i} \).

For subsystem \(S_{M_1} \), there is one disease-free equilibrium \(E_{01} = (\mu/\mu + p) \), which is locally asymptotically stable if \(R_{01} < 1 \), where \(R_{01} = \beta \mu / (\mu + p)(\mu + \delta) \). There exists one endemic equilibrium \(E_1 = (S_1, I_1) \) for \(R_{01} > 1 \) with
\[
S_1 = \frac{\mu + \delta}{\beta}, \quad I_1 = \frac{\beta \mu - (\mu + p)(\mu + \delta)}{\beta (\mu + \delta)}.
\]

The Jacobian of subsystem \(S_{M_1} \) is
\[
J_{M_1}(S, I) = \begin{pmatrix} \beta I & -\beta S \\ \beta I & -\beta I \end{pmatrix}.
\]

Then, \(E_1 \) is locally asymptotically stable provided it is feasible. We can further preclude the existence of limit cycles for \(S_{M_1} \) by defining the classic Dulac function \(B_1 = 1/S \). The endemic equilibrium \(E_1 \) (or disease-free equilibrium \(E_{01} \)) is thus globally asymptotically stable for \(R_{01} > 1 \) (or \(R_{01} < 1 \)).

For subsystem \(S_{M_2} \), it follows from the properties of the Lambert \(W \) function that
\[
\exp\left(-\frac{\text{d}I}{\text{d}t}\right) = \frac{\text{Lambert}(z/\beta S(\mu + \delta))}{z/\beta S},
\]
so subsystem \(S_{M_2} \) can be rewritten as
\[
\begin{align*}
\frac{\text{d}S}{\text{d}t} &= \mu - \frac{1}{2} \beta \text{Lambert}(z/\beta S(\mu + \delta)) S(\mu + p) S, \\
\frac{\text{d}I}{\text{d}t} &= \frac{1}{2} \beta \text{Lambert}(z/\beta S(\mu + \delta)) S(\mu + \delta) I.
\end{align*}
\tag{12}
\]

There is one disease-free equilibrium \(E_{01} \) for system (12). The endemic equilibrium of (12) satisfies
\[
\begin{align*}
\mu - \frac{1}{2} \beta \text{Lambert}(z/\beta S(\mu + \delta)) S(\mu + p) S &= 0, \\
\frac{1}{2} \beta \text{Lambert}(z/\beta S(\mu + \delta)) S(\mu + \delta) I &= 0.
\end{align*}
\]

We derive
\[
\text{Lambert}(z/\beta S(\mu + \delta) I) S(\mu + \delta) I \Rightarrow S = \frac{\mu + \delta}{\beta}
\]
from the last equation, so it is also \(E_1 \) that acts as the endemic equilibrium of subsystem \(S_{M_2} \). Note that both the disease-free equilibrium and the endemic equilibrium coincide with their counterpart of subsystem \(S_{M_1} \). Denote
\[
A_1 = \frac{\text{Lambert}(z/\beta S(\mu + \delta))}{z/\beta S(1 + \text{Lambert}(z/\beta S(\mu + \delta)))}, \quad A_2 = \frac{\text{Lambert}(z/\beta S(\mu + \delta))}{z/\beta S(1 + \text{Lambert}(z/\beta S(\mu + \delta)))}.
\]

The Jacobian of subsystem \(S_{M_1} \) takes the form
\[
J_{M_1}(S, I) = \left(\begin{array}{cc} -A_1 - (\mu + p) & A_2 \\ A_1 & -A_2 - (\mu + \delta) \end{array} \right).
\]

The disease-free equilibrium \(E_{01} \) is locally asymptotically stable for subsystem \(S_{M_1} \) when \(R_{01} < 1 \), while the endemic equilibrium \(E_1 \) is locally asymptotically stable for the subsystem \(S_{M_1} \) when \(R_{01} > 1 \).

Thus, when \(R_{01} < 1 \), we are in the disease-free state, and when \(R_{01} > 1 \), we are in the endemic state.
\[
J_M(S_{11}, I_{11}) = \left(-q(\mu + p + \beta I_{11}) - (1 - q) \left[\frac{(\mu + \delta)I_{11}}{1 + \alpha(\mu + \delta)I_{11}}S_{11} + (\mu + p) \right] - (\mu + \delta) \right),
\]

where \(q \in [0, 1] \). It follows that the generalized equilibrium \(E_i \) is locally asymptotically stable for the non-smooth system (10). To further obtain the global stability of both the equilibria \(E_{01} \) and \(E_1 \), we examine the existence of limit cycles for system (10). In fact, no limit cycles totally in the discussion, so we only need to exclude the existence of crossing cycles.

Lemma 1 There is no crossing cycle containing pieces of the trajectories of subsystems \(S_M \) and \(S_M \) for the non-smooth continuous system (10).

Proof Let
\[
B_M = \exp \left(z \max \left\{ 0, \frac{dI}{dt} \right\} \right),
\]
which is continuous and equivalent to
\[
B_M = \begin{cases}
\frac{1}{SI} \equiv B_1, & S \leq S_{c_1} \\
\frac{\alpha \beta}{\text{Lambert } W(\alpha \beta SI \exp(\alpha(\mu + \delta)I))} \equiv B_2, & S > S_{c_1},
\end{cases}
\]
Denote \(Q = \{(S, I) \in \mathbb{R}^2: S > 0, I > 0\} \) and
\[
\frac{dZ}{dt} = F_M = \begin{cases}
F_{M_1}, & S \leq S_{c_1}, \\
F_{M_2}, & S > S_{c_1},
\end{cases}
\]
and we derive
\[
B_M F_M = \begin{cases}
B_1 F_{M_1}, & S \leq S_{c_1}, \\
B_2 F_{M_2}, & S > S_{c_1},
\end{cases}
\]
It is easy to verify that \(F_M \) has the following properties:
- \(Q \) is open in \(\mathbb{R}^2 \), which is divided into two subregions \(Q_1 = \{(S, I) \in Q : S \leq S_{c_1}\} \) and \(Q_2 = \{(S, I) \in Q : S > S_{c_1}\} \) with \(\overline{Q_1} \cup \overline{Q_2} = \overline{Q} \).
- \(Q_1 \cap Q_2 = \Sigma_{M_1} \), where \(F_M \) is piecewise smooth.
- \(F_M \) is Lipschitz in both \(Q_1 \) and \(Q_2 \) and continuous along \(\Sigma_{M_1} \).
- For every point \(Z_c \in \Sigma_{M_1} \), \(F_M \) specifies into which \(Q_i \) \((i = 1, 2)\) the flow is directed.

Thus, we can prove this lemma based on the idea proposed by Melin (2004). Let \(\chi_i \) \((i = 1, 2)\) be the characteristic function of \(Q_i \). We get
\[
B_M F_M = \chi_1 B_1 F_{M_1} + \chi_2 B_2 F_{M_2} = (\chi_1 B_1 F_{11} + \chi_2 B_2 F_{21}, \chi_1 B_1 F_{12} + \chi_2 B_2 F_{22})\top.
\]
Suppose that there is a non-smooth continuous limit cycle \(\Gamma_M \) in \(Q \) with tangent vector \((\dot{S}, \dot{I})\). Denote the interior of \(\Gamma_M \) as \(D_M \) and the normal vector of \(\Gamma_M \) as \(N = (-\dot{I}, \dot{S}) \). Let \(t \) be in some \(\Delta_i \) \((i = 1, 2)\) and consider the part of the line integral \(\int_{\Gamma_M} \langle B_M F_M, N \rangle \text{d}s \) in \(Q_i \) \((i = 1, 2)\). We get
\[
\int_{\Gamma_M} \langle \chi_1 B_1 F_{M_1}, N \rangle \text{d}s = \int_{\Delta_1} (-B_1 F_{11} \dot{I} + B_1 F_{12} \dot{S}) \text{d}t
\]
\[
= \int_{\Delta_1} (-B_1 F_{11} F_{12} + B_1 F_{12} F_{11}) \text{d}t = 0,
\]
\[
\int_{\Gamma_M} \langle \chi_2 B_2 F_{M_2}, N \rangle \text{d}s = \int_{\Delta_2} (-B_2 F_{21} \dot{I} + B_2 F_{22} \dot{S}) \text{d}t
\]
\[
= \int_{\Delta_2} (-B_2 F_{21} F_{22} + B_2 F_{22} F_{21}) \text{d}t = 0,
\]
so
\[
\int_{\Gamma_M} \langle B_M F_M, N \rangle \text{d}s = \int_{\Gamma_M} \langle \chi_1 B_1 F_{M_1} + \chi_2 B_2 F_{M_2}, N \rangle \text{d}s
\]
\[
= \int_{\Gamma_M} \langle \chi_1 B_1 F_{M_1}, N \rangle \text{d}s + \int_{\Gamma_M} \langle \chi_2 B_2 F_{M_2}, N \rangle \text{d}s = 0.
\]

Since both \(F_M(S, I) \) and \(B_M(S, I) \) are continuous in \(Q \), the function \(B_M F_M(S, I) \in L^1(Q) \) in our case. According to Hörmander (1990), the Gauss–Green formula holds for \(B_M F_M(S, I) \), which implies
\[
\int_{\Gamma_M} \text{d} \text{v} \cdot \text{d} M F_M S \text{d} I = - \int_{\Gamma_M} \langle B_M F_M, N \rangle = 0 \quad (13)
\]
on the one hand. On the other hand, denote the Heaviside function
For the non-smooth continuous system (11), implementing a similar procedure yields one disease-free equilibrium \(E_{02} = \left(\frac{\mu}{\mu + p}, 0 \right) \), which is globally asymptotically stable for \(R_{02} < 1 \) with

\[
R_{02} = \frac{\beta \mu}{(\mu + p + f)(\mu + \delta + \gamma)}.
\]

If \(R_{02} > 1 \), there exists one generalized endemic equilibrium \(E_2 = (S_2, I_2) \), which is globally asymptotically stable, where

\[
S_2 = \frac{\mu + \delta + \gamma}{\beta}, \quad I_2 = \frac{\beta \mu - (\mu + p + f)(\mu + \delta + \gamma)}{\beta(\mu + \delta)}.
\]

Sliding dynamics of the targeted model

To explore the global behavior of the targeted model (7), we examine the trajectory through a point \(Z \in \Sigma_j \ (j = 1, 2, 3) \). There are three types of regions—crossing region, escaping region and sliding region on a discontinuous boundary—according to whether or not the vector field points toward it. See Wang and Xiao (2013) for the detailed definition of the three discontinuous boundaries.

For system (7), there are three non-smooth switching boundaries:

\[
\Sigma_1 = \{(S_1, I) : 0 < I < I_c \}, \quad \Sigma_2 = \{(S_c, I) : I_c < I \leq 1 \}, \quad \Sigma_3 = \{(S, I_c) : S \geq 0 \}.
\]

They divide the \((S, I)\) space \(\mathbb{R}_+^2 \) into four subregions as follows:

\[
G_1 = \{(S, I) \in \mathbb{R}_+^2 : S \leq S_c \text{ and } I < I_c \}, \quad G_2 = \{(S, I) \in \mathbb{R}_+^2 : S > S_c \text{ and } I < I_c \}, \quad G_3 = \{(S, I) \in \mathbb{R}_+^2 : S \leq S_c \text{ and } I > I_c \}, \quad G_4 = \{(S, I) \in \mathbb{R}_+^2 : S > S_c \text{ and } I > I_c \}.
\]

The dynamics in subregion \(G_i \ (i = 1, 2, 3, 4) \) are governed by \(F_i = (F_{i1}, F_{i2})^T \), which we call subsystem \(S_i \) for convenience.

For the discontinuous boundary \(\Sigma_1 \) and \(\Sigma_2 \), only the crossing region is available. For the discontinuous boundary \(\Sigma_3 \), define \(H(S, I) = I - I_c \); direct calculation yields no escaping region. We now examine the existence of a sliding-mode region for \(\Sigma_3 \), which is defined as

\[
\Sigma_S = \{Z \in \Sigma_S : F_i H(Z) \geq 0, F_{m} H(Z) \leq 0 \},
\]

where \(I = 1 \text{ or } 2, \ m = 3 \text{ or } 4 \text{ and } F_{j} H(Z) = F_{j} \cdot \text{grad } H(Z) \ (j = 1, 2, 3, 4) \) is the Lie derivative of \(H \) with
Fig. 1 Phase plane S-I for the non-smooth continuous model (10), showing the asymptotic equilibrium (small square E_{01} and small circle E_1) for different parameter sets. The isoclinic lines g_1^s (resp. g_1^b) and $S = S_{el}$ are plotted for the subsystem S_{el} (S_{m}). The curves respect to F_j. We have the following three possibilities to consider:

(a) $\Sigma_S = \{(S,I_c) : S_{c1} \leq S \leq S_{c2} \text{ with } S_{c1}, S_{c2} \in [0,S_{el}]\}$,

(b) $\Sigma_S = \{(S,I_c) : S_{c2} \leq S \leq S_{c1} \text{ with } S_{c1}, S_{c2} \in [S_{el}, S_{c1}]\}$,

(c) $\Sigma_S = \{(S,I_c) : S_{c1} \leq S \leq S_{c2} \text{ with } S_{c1}, S_{c2} \in [S_{el}, 1]\}$.

For (a), it is sufficient to solve

\[
\begin{cases}
F_1H(Z) \geq 0, \\
F_3H(Z) \leq 0, \\
S \leq S_{c1}.
\end{cases}
\]

Direct calculation yields no solution, which leads to a null set Σ_S. No sliding-mode region exists for system (7) in this scenario.

For (b), it is sufficient to solve the inequalities

\[
\begin{cases}
F_2H(Z) \geq 0, \\
F_3H(Z) \leq 0, \\
S_{c1} \leq S \leq S_{c2}.
\end{cases}
\]

Solving $F_2H(Z) \geq 0$ yields $S \geq \frac{\mu + \delta}{\beta}$. Similarly, solving $F_3H(Z) \leq 0$ yields $S \leq \frac{\mu + \delta + \gamma}{\beta}$. We thus derive the sliding-mode region as the following form:

\[
\Sigma_S = \{(S,I_c) : \frac{\mu + \delta}{\beta} \leq S \leq \min\left(\frac{\mu + \delta + \gamma}{\beta}, 1\right)\},
\]

which is also called a sliding segment.

For (c), Σ_S is empty, and so no sliding-mode region exists. As a result, (14) is the unique sliding-mode region. In particular, (14) takes the form

\[
\Sigma_S = \left\{(S,I_c) : \frac{\mu + \delta}{\beta} \leq S \leq \frac{\mu + \delta + \gamma}{\beta}\right\} = \Sigma_{S_1}
\]

for $\frac{\mu + \delta + \gamma}{\beta} \leq 1$, while it takes the form

\[
\Sigma_S = \left\{(S,I_c) : \frac{\mu + \delta}{\beta} \leq S \leq 1\right\} = \Sigma_{S_2}
\]

for $\frac{\mu + \delta + \gamma}{\beta} > 1 \geq \frac{\mu + \delta}{\beta}$.

Denote the two endpoints $((\mu + \delta)/\beta, I_c)$ and $((\mu + \delta + \gamma)/\beta, I_c)$ of the sliding segment Σ_S as T_1 and T_2, and we have $T_1 = (S_{c1}, I_c)$ and $T_2 = (S_{c2}, I_c)$.

Now we determine the dynamics of system (7) on the sliding-mode region Σ_S. There are three mathematical methods—Utkin’s equivalent control method Utkin (1992), Filippov convex method Filippov (1988) and a singular approach Claudio et al. (2006)—to explore the sliding dynamics. We shall adopt the Filippov convex method to compute the sliding dynamics of system (7) on Σ_S. Let

\[
\lambda \equiv \frac{\langle H_2(Z), F_3(Z) \rangle}{\langle H_2(Z), F_3(Z) - F_2(Z) \rangle}.
\]

Then, the sliding dynamics are determined by

\[
\frac{dZ}{dr} = \lambda F_2 + (1 - \lambda)F_3 = \left(\frac{\lambda F_{21} + (1 - \lambda)F_{31}}{\lambda F_{22} + (1 - \lambda)F_{32}}\right).
\]

After some algebra, we get
\[
\dot{\lambda} = \frac{\beta SI_c - (\mu + \delta + \gamma)I_c}{\beta SI_c - \frac{1}{2} \text{Lambert } W(\alpha(\beta SI_c \exp(\alpha(\mu + \delta + \gamma))) - \gamma I_c}.
\]

(16)

Substituting (16) into (15) and simplifying yield \(dS/dt = 0\) and

\[
\frac{dS}{dt} = \mu - (\mu + p + f)S - (\mu + \delta)I_c + \frac{(\beta S - \mu - \delta - \gamma)fI_c S}{(\beta S - \gamma)I_c - \frac{1}{2} \mathcal{W}_1},
\]

(17)

where \(S \in \Sigma_S\) and \(\mathcal{W}_1\) are as defined in the “Media impact switching policy” section. Equation (17) is a scalar equation defined on the sliding-mode region \(\Sigma_S\) and describes the sliding dynamics of system (7). Let

\[
G(S) \equiv \left[\mu - (\mu + p + f)S - (\mu + \delta)I_c\right]
\]

\[
\times \left[(\beta S - \gamma)I_c - \frac{1}{2} \mathcal{W}_1\right] + (\beta S - \mu - \delta - \gamma)fI_c S,
\]

\[
\tilde{G}(S) \equiv \frac{G(S)}{(\beta S - \gamma)I_c - \frac{1}{2} \mathcal{W}_1},
\]

and so equation (17) can be rewritten as

\[
\frac{dS}{dt} = \tilde{G}(S).
\]

We first examine the monotonicity of the function \(\tilde{G}(S)\). According to the properties of the Lambert \(W\) function, we have \(\mathcal{W}_1 \geq \alpha(\mu + \delta)I_c\) for \(S \in \Sigma_S\). It follows that

\[
(\beta S - \gamma)I_c - \frac{1}{2} \mathcal{W}_1 \leq (\beta S - \mu - \delta - \gamma)I_c \leq 0
\]

for \(S \in \Sigma_S\), which suggests \((\beta S - \gamma)I_c - \frac{1}{2} \mathcal{W}_1 < 0\) for \(S \in \Sigma_S\). Since

\[
\frac{\partial \tilde{G}}{\partial S} = \frac{G_1 + G_2 + G_3}{G^2(S)};
\]

where

\[
G_1 = -(\mu + p + f)\left[(\beta S - \gamma)I_c - \frac{1}{2} \mathcal{W}_1\right]^2,
\]

\[
G_2 = 2fI_c(\beta S - \mu + \delta + \gamma)\left[(\beta S - \gamma)I_c - \frac{1}{2} \mathcal{W}_1\right],
\]

\[
G_3 = -fI_c(\beta S - \mu - \delta - \gamma)\left[I_c - \frac{\mathcal{W}_1}{2S(1 + \mathcal{W}_1)}\right],
\]

the monotonicity of the function \(\tilde{G}(S)\) is determined by the relationship of \(G_1 + G_2 + G_3\) and 0. To this end, we consider the following two cases in terms of the relationship of \(\mu + \delta\) and \(\gamma\).

Case (A) \(\mu + \delta \geq \gamma\).

In this case, we have

\[
S \in (S_{c1}, S_{c2}) \implies S > \frac{\mu + \delta + \gamma}{2\beta},
\]

so \([2fI_c(\beta S - fI_c(\mu + \delta + \gamma))] > 0\) and

\[
G_2 < [2fI_c(\beta S - fI_c(\mu + \delta + \gamma))]((\beta S - \mu - \delta - \gamma)I_c).
\]

It follows that

\[
G_2 + G_3 < \tilde{G}(\beta S - \mu - \gamma)^2
\]

\[
+ fI_c(\beta S - \mu - \gamma)\frac{\mathcal{W}_1}{2S(1 + \mathcal{W}_1)}.
\]

By (18), we have

\[
G_1 < -(\mu + p + f)((\beta S - \mu - \delta - \gamma)I_c)^2,
\]

so

\[
G_1 + G_2 + G_3 < -(\mu + p)((\beta S - \mu - \delta - \gamma)I_c)^2
\]

\[
+ fI_c(\beta S - \mu - \gamma)\frac{\mathcal{W}_1}{2S(1 + \mathcal{W}_1)} < 0.
\]

For \(S = S_{cj}\) \((j = 1, 2)\), we can easily get \(G_1 + G_2 + G_3 < 0\). Hence, \(\frac{\partial \tilde{G}}{\partial S} < 0\) and \(\tilde{G}\) is monotonically decreasing in this case.

Case (B) \(\mu + \delta < \gamma\).

In this case, we have \(S_{c1} < \frac{\mu + \delta + \gamma}{2\beta} < \frac{\mu + \delta + \gamma}{2\beta}\), and there are the following two possibilities to consider: \((B_1) \quad \frac{\mu + \delta + \gamma}{2\beta} \leq S \leq S_{c2} \; ; \; (B_2) \quad S_{c1} \leq S < \frac{\mu + \delta + \gamma}{2\beta}\).

When (B1) holds, we have \(G_1 + G_2 + G_3 < 0\) for \(S > \frac{\mu + \delta + \gamma}{2\beta}\) by Case (A), so we only need to examine whether \(G_1 + G_2 + G_3 < 0\) for the possibility \(S = \frac{\mu + \delta + \gamma}{2\beta}\). According to (18), we have

\[
G_1 + G_2 + G_3 < -fI_c\left[\frac{\mathcal{W}_1}{2S(1 + \mathcal{W}_1)}\right] - (\mu + p + f)G_0^2
\]

\[
\leq \left[fI_c\left(\frac{\mathcal{W}_1}{2S(1 + \mathcal{W}_1)}\right) - (\mu + p)G_0 - f(\beta S - \mu - \delta - \gamma)I_c\right]
\]

\[
\leq 0.
\]

where \(G_0 = (\beta S - \mu - \delta - \gamma)I_c\). Hence, we have \(G_1 + G_2 + G_3 < 0\) for the possibility \((B_1)\).

When (B2) holds, we only need to examine the possibility \(S_{c1} < S < \frac{\mu + \delta + \gamma}{2\beta}\) since \(G_1 + G_2 + G_3 < 0\) for \(S = S_{c1}\). We have
\[G_1 + G_2 = \left[(\beta S - \gamma)I_e - \frac{1}{\alpha}W_1 \right] \]
\[\times \left\{ -(\mu + p) \left[(\beta S - \gamma)I_e - \frac{1}{\alpha}W_1 \right] \right. \]
\[+ \frac{1}{\alpha}fW_1 + f\beta SI_e - (\mu + \delta)I_e \right\} \]
\[\text{and} \]
\[-(\mu + p) \left[(\beta S - \gamma)I_e - \frac{1}{\alpha}W_1 \right] \]
\[+ \frac{1}{\alpha}fW_1 + f\beta SI_e - (\mu + \delta)I_e > 0. \]

It follows that
\[G_1 + G_2 + G_3 < G_0 \]
\[\times \left\{ -(\mu + p) \left[(\beta S - \gamma)I_e - \frac{1}{\alpha}W_1 \right] \right. \]
\[- G_0 \left(I_e - \frac{W_1}{\alpha(1 + W_1)} \right) \]
\[< G_0 \left\{ -(\mu + p) \left[(\beta S - \gamma)I_e - \frac{1}{\alpha}W_1 \right] \right. \]
\[+ \frac{1}{\alpha}fW_1 + f\beta SI_e - (\mu + \delta)I_e \right\} < 0. \]

By (B1) and (B2), we have \(G_1 + G_2 + G_3 < 0 \) for \(\mu + \delta < \gamma \), which demonstrates that \(\tilde{G} \) is also monotonically decreasing in this case. Concluding the above discussion for Case (A) and (B), the function \(\tilde{G} (S) \) is monotonically decreasing for \(S \in \Sigma_3 \), which demonstrates that the equilibrium of Eq. (17) is unique if it is feasible.

Next we examine the existence of roots for \(\tilde{G} (S) \) on \(\Sigma_3 \). According to (18), it is sufficient to solve \(G(S) = 0 \) with respect to \(S \). Direct calculation yields
\[G(S_{c1}) = -\frac{\gamma I_c}{\beta} [\beta\mu - (\mu + p)(\mu + \delta) - \beta(\mu + \delta)I_c], \]
\[G(S_{c2}) = \frac{1}{\beta} \left[(\mu + \delta)I_c - \frac{1}{\alpha}W_1 \right] \]
\[\left[\beta\mu - (\mu + p + f)(\mu + \delta + \gamma) - \beta(\mu + \delta)I_c \right]. \]

By (18), an equilibrium \(S_c \) exists for equation (17) if \(G(S_{c1}) \geq 0 \) and \(G(S_{c2}) \leq 0 \), which are equivalent to \(I_2 \leq I_e \leq I_1 \) if \(j = 1, 2 \) is positive. In terms of the monotonicity of \(\tilde{G} \), if there exists a root \(S_c \) for \(\tilde{G} \), it is unique. If \(R_{00} < 1 \), we have \(R_{02} < 1 \) and neither of \(I_1 \) and \(I_2 \) is positive. Then, no equilibrium exists for (17). If \(R_{02} > 1 \), both \(I_1 \) and \(I_2 \) are positive. If we further have \(I_2 \leq I_e \leq I_1 \), there is a unique equilibrium \(S_c \) for (17), and so a unique pseudo-equilibrium \(E_3 \equiv (S_c, I_e) \) exists for system (7). If \(R_{02} < 1 < R_{01}, I_1 \) is positive, while \(I_2 \) is negative. If \(I_e \geq I_2 \) is further true, a unique equilibrium \(S_c \) exists for (17), and so a unique pseudo-equilibrium \(E_3 \equiv (S_c, I_e) \) exists for system (7). Note that \(\tilde{G} (S) \) is monotonically decreasing on the sliding-mode region \(\Sigma_3 \); we further know the unique pseudo-equilibrium \(E_3 \) is locally asymptotically stable within the vicinity of \(\Sigma_3 \) provided \(E_3 \) exists. Therefore, we have the following result.

Theorem 3

(i) There is a unique pseudo-equilibrium \(E_3 \) for system (7), which is locally asymptotically stable within the vicinity of \(\Sigma_3 \), if the following inequalities hold:
\[(H_1) \ R_{02} > 1 \text{ and } I_2 \leq I_e \leq I_1. \]

(ii) The unique pseudo-equilibrium \(E_3 \) exists for system (7) and is locally asymptotically stable within the vicinity of \(\Sigma_3 \), if the following inequalities hold:
\[(H_2) \ R_{02} < 1 < R_{01} \text{ and } I_2 < I_e < I_1. \]

Global dynamics of the targeted model

In this section, we will examine the long-term behavior of system (7). To this end, we initially conclude the dynamics of subsystem \(S_i \) as follows: For subsystems \(S_1 \) and \(S_2 \), by the “Media impact switching policy” section, there is a generalized equilibrium \(E_1 \), which is locally asymptotically stable within the region \(G_1 \cup G_2 \); for subsystems \(S_1 \) and \(S_4 \), we similarly derive that there is another generalized equilibrium \(E_2 \), which is locally asymptotically stable within the region \(G_3 \cup G_4 \).

It is worth mentioning that there are three switching boundaries, \(\Sigma_1, \Sigma_2 \) and \(\Sigma_3 \). Different locations of the equilibrium \(E_i (i = 1, 2) \) between or on these switching boundaries will lead to different results. We first consider the location of equilibrium \(E_1 \) (resp. \(E_2 \)) on the switching boundary \(\Sigma_1 \) (resp. \(\Sigma_2 \)); since it is exactly on the switching boundary, it is not a regular equilibrium but a generalized equilibrium. Second, we analyze the location of the equilibrium \(E_1 \) (or \(E_2 \)) compared to the switching boundary \(\Sigma_3 \), for which there are two cases: (a) \(E_1 \) (resp. \(E_2 \)) is below \(\Sigma_3 \) (resp. above \(\Sigma_3 \)); i.e., it is in its own region \(G_1 \cup G_2 \) (resp. \(G_3 \cup G_4 \)); (b) \(E_1 \) (resp. \(E_2 \)) is above \(\Sigma_3 \) (resp. below \(\Sigma_3 \)); i.e., it is in the opposite region \(G_3 \cup G_4 \) (resp. \(G_1 \cup G_2 \)). If (a) is true, the equilibrium \(E_j (j = 1, 2) \) is not only generalized but also real. To highlight this nature and distinguish it from the generalized equilibrium of a non-smooth continuous system with one threshold and distinguish it from the real equilibrium of a Filippov system with one threshold, we denote it by \(E_j^p \). If (b) is true, \(E_j \) is virtual, denoted by \(E_j^v \). Only the real generalized equilibria can be attractors for system (7).

To further address the global stability of the equilibria for system (7), we next explore the nonexistence of limit cycles.
Nonexistence of limit cycles

In this section, we shall establish several lemmas to preclude the existence of limit cycles for system (7). If there exist limit cycles for system (7), they could take one of the following forms:

(L1) Regular cycles, those lying totally in one of the regions G_j $(j = 1, 2, 3, 4)$, as shown in Fig. 2a.

(L2) Crossing cycles (I) that do not surround the sliding segment, which are composed of pieces of trajectories of the subsystems S_j and S_{j+1}, where $j = 1$ or $j = 3$, as shown in Fig. 2b.

(L3) Crossing cycles (II) that do not surround the sliding segment, which are composed of pieces of trajectories of the subsystems S_j and S_{j+2}, and points of the crossing region $S_3 \setminus S_2$, where $j = 1$ or $j = 2$, as shown in Fig. 2c.

(L4) Canard cycles, which are composed of pieces of the trajectories of subsystems S_j and S_{j+1}, and pieces of the trajectory of sliding dynamics with $j = 1$ or $j = 3$. These types of cycles are tangent to or contain part of the sliding segment, as shown in Fig. 2d.

(L5) Crossing cycles surrounding the sliding segment, which are composed of pieces of orbits of subsystems S_j $(j = 1, 2, 3, 4)$, and points of the crossing region $S_3 \setminus S_2$, as shown in Fig. 2e.

According to the “Media impact switching policy” section, there are no limit cycle totally in subregion G_1 and no limit cycle totally in subregion G_2 for system (7), which can be seen by defining the Dulac functions B_1 and B_2. We can easily get the nonexistence of limit cycles totally contained in subregion G_3 for system (7) by adopting the Dulac function B_1. Define the Dulac function $B_3 = \frac{zx}{Lambert W(x\beta SI \exp(x(\mu + \delta + \gamma)I))}$, and we can rule out the existence of a limit cycle totally in subregion G_4 for system (7). Thus, no limit cycle of the form (L1) exists, as shown in Fig. 2a, and we get the following conclusion.

Lemma 4 There is no regular cycle for system (7).

For those crossing cycles of the form (L2), Lemma 1 excludes the existence of those cycles totally in the region $G_1 \cup S_1 \cup G_2$ (i.e., the limit cycle γ_1 shown in Fig. 2b) for system (7). Let

$$B_{M_1} = \begin{cases} \frac{1}{SI}, & S \leq S_{c2}, \\ \frac{zx}{Lambert W(x\beta SI \exp(x(\mu + \delta + \gamma)I))}, & S > S_{c2}. \end{cases}$$

Performing a similar analysis to Lemma 1, we derive that there is no crossing cycle totally in the region $G_1 \cup S_3 \cup G_4$, which rules out the existence of the limit cycle γ_2 shown in Fig. 2).

Fig. 2 Phase plane of model (7) demonstrating the form of possible limit cycles. The thick gray solid lines represent sliding segments, the thin gray dashed lines represent crossing regions, and γ_j $(j = 1, 2, 3, 4)$ denotes the possible limit cycles.
For those crossing cycles of the form \((L_3)\)—i.e., the limit cycles \(\gamma_1\) and \(\gamma_2\) shown in Fig. 2c—we shall explore their existence by analyzing the vector field of system \((7)\). Without loss of generality, we carry out the analysis for the case when \(E_{1g}^r\) and \(E_{2g}^r\) coexist for system \((7)\). The vector field to the left of the null isoline \(g_1^1\) and \(g_2^1\) points downward, and that to the right of \(g_1^2\) and \(g_2^2\) points upward, as shown in Fig. 3, so no crossing cycle of the form \((L_3)\) exists for system \((7)\). Now we have ruled out the existence of all possible crossing cycles that do not surround the sliding segment; i.e., the cycles of the form \((L_2)\) and \((L_3)\) as shown in Fig. 2b, c.

Lemma 5 There is no crossing cycle that does not surround the sliding segment for system \((7)\).

We now rule out the existence of the canard cycles; i.e., the limit cycles of the form \((L_4)\), which are tangent to or contain part of the sliding segment as shown in Fig. 2d.

Lemma 6 There are no canard cycles for system \((7)\).

Proof It follows from the “Sliding dynamics of the targeted model” section that if there exists a pseudo-equilibrium \(E_S\) for system \((7)\), it is stable within the vicinity of the sliding segment \(\Sigma_s\). No canard cycles exist in this scenario, and it is sufficient to preclude the existence of the canard cycles when \(E_{1g}^r\) and \(E_{2g}^r\) \((j, l = 1, 2\) and \(j \neq l)\) coexist for system \((7)\). Without loss of generality, we implement the analysis for the case when \(E_{1g}^r\) and \(E_{2g}^r\) coexist, as shown in Fig. 5. By Sect. 3.1, \(E_{1g}^r\) is locally stable within the region \(G_1 \cup G_2\). We claim that the trajectory initiating from the point \(T_1\), which we denote as \(I_1\) for convenience, will not reach the switching boundary \(\Sigma_3\) again. In fact, \(I_1\) approaches \(E_{1g}^r\) directly or spirally depending on whether \(E_{1g}^r\) is a node or a focus. If the former case is true, \(I_1\) cannot reach \(\Sigma_3\). If the latter case is true, \(I_1\) must intersect with the line segment \(T_1E_{1g}^r\) at some point \(P\). Since \(T_1E_{1g}^r\) is a non-tangent segment, the point \(P\) is between \(T_1\) and \(E_{1g}^r\). This suggests the trajectory \(I_1\) cannot reach \(\Sigma_3\) again. Therefore, no limit cycle is tangent to or contains part of the sliding segment \(\Sigma_3\) for system \((7)\). □

Finally, we shall prove there is no crossing cycle surrounding the sliding segment.

Lemma 7 There is no limit cycle surrounding the sliding segment for system \((7)\).

Proof Suppose there is a limit cycle \(\Gamma\) surrounding the sliding segment \(\Sigma_S\) for system \((7)\). Let \(\Gamma_j = \Gamma \cap G_j\ (j = 1, 2, 3, 4)\), as shown in Fig. 4. Denote the intersection points of \(\Gamma\) and the switching boundaries \(\Sigma_j\) \((j = 1, 2)\) by \(D_1\) \((l = 1, 2, 3, 4)\); the intersection points of \(\Gamma\) and the two horizontal auxiliary lines \(l = I_1 - s, l = I_2 + s\) by \(M_{11}, M_{12}, M_{21}, M_{22}\); the intersection points of \(\Gamma\) and the four vertical auxiliary lines \(S = S_0 - s, S = S_1 + s, S = S_2 - s, S = S_2 + s\) by \(M_{2j}\) \((j = 3, 4, 5, 6)\); and the intersection points of the two vertically auxiliary lines and the four vertically auxiliary lines by \(M_{22}\) \((j = 3, 4, 5, 6)\), where \(s\) is any sufficiently small positive number. Let \(D_{G_j}\) \((\text{resp. } D_{G_3})\) be the bounded region that is delimited by \(\Gamma_1\) \((\text{resp. } \Gamma_2)\) and the auxiliary lines \(l = I_1 - s\) and \(S = S_0 - s\) \((\text{resp. } S = S_0 - s)\); and \(D_{G_1}\) \((\text{resp. } D_{G_3})\) be the region delimited by \(\Gamma_3\) \((\text{resp. } \Gamma_4)\) and the auxiliary lines \(l = I_2 + s\) and \(S = S_0 + s\) \((\text{resp. } S = S_0 + s)\). Denote the boundary of \(D_{G_j}\) \((j = 1, 2, 3, 4)\) by \(X_{G_j}\).

Let the Dulac functions \(B_1, B_2, B_3\) be defined as before. By Green’s theorem, we derive

\[
\int_{D_{G_1}} \left[\frac{\partial (B_1 F_{11})}{\partial S} + \frac{\partial (B_1 F_{12})}{\partial I} \right] dSdI
\]

\[
= \int_{X_{G_1}} B_1 (F_{11} dI - F_{12} dS)
\]

\[
= \int_{M_{31} M_{32}} B_1 F_{11} dI - \int_{M_{31} M_{11}} B_1 F_{12} dS,
\]

\[
\int_{D_{G_2}} \left[\frac{\partial (B_2 F_{21})}{\partial S} + \frac{\partial (B_2 F_{22})}{\partial I} \right] dSdI
\]

\[
= \int_{X_{G_2}} B_2 (F_{21} dI - F_{22} dS)
\]

\[
= \int_{M_{41} M_{42}} B_2 F_{21} dI - \int_{M_{41} M_{21}} B_2 F_{22} dS.
\]
Suppose the abscissae of the points $D_1, D_2, M_{11}, M_{21}, M_{12}, M_{22}$ are $x_1, x_2, x_1 + s_1(s), x_1 + \tilde{s}_1(s), x_2 - s_2(s), x_2 - \tilde{s}_2(s)$ and the ordinates of the points $D_3, D_4, M_{31}, M_{41}, M_{32}, M_{42}$ are $y_1, y_2, y_1 + s_3(s), y_1 - \tilde{s}_3(s), y_2 + s_4(s)$ and $y_2 - \tilde{s}_4(s)$, where $s_j(s)$ $(j = 1, 2, 3, 4)$ and $\tilde{s}_j(s)$ are continuously dependent on s and satisfy $\lim_{s \to 0} s_j(s) = \lim_{s \to 0} \tilde{s}_j(s) = 0, s_j(0) = \tilde{s}_j(0) = 0$. Then we have

$$
\int_{M_{31}M_{32}} B_1 F_{11} dI + \int_{M_{42}M_{41}} B_2 F_{21} dI
= \int_{L - s}^{L - s} B_1 F_{11} dI + \int_{y_1 + s_2(s)}^{y_1 + \tilde{s}_2(s)} B_2 F_{21} dI
= \int_{x_1 + s_1(s)}^{x_1 + \tilde{s}_1(s)} \left[-\beta + \frac{\mu}{SI} - \frac{\mu + p}{I} \right] dI
+ \int_{y_1 + s_2(s)}^{y_1 + \tilde{s}_2(s)} \left[-\beta + \frac{\beta \mu}{\mathcal{W}_1} - \frac{\beta (\mu + p) S}{\mathcal{W}_1} \right] dI.
$$

By the properties of the Lambert W function, we derive

$$
\lim_{s \to 0} \left[\frac{\mu}{SI} - \frac{\beta \mu}{\mathcal{W}_1} \right]
= \frac{\beta \mu}{\alpha (\mu + \delta)^2 I} \left[\text{Lambert } W(\alpha(\mu + \delta) I \exp(\alpha(\mu + \delta) I)) \right]
- \alpha(\mu + \delta) I = 0.
$$

We similarly have

$$
\lim_{s \to 0} \left[\frac{\beta (\mu + p) S}{\mathcal{W}_1} - \frac{\mu + p}{I} \right] = 0,
$$

so

$$
\lim_{s \to 0} \left\{ \int_{M_{31}M_{32}} B_1 F_{11} dI + \int_{M_{42}M_{41}} B_2 F_{21} dI \right\} = 0.
$$

Applying Green’s theorem on D_{Γ_3} and D_{Γ_4} yields

$$
\int \int_{D_{\Gamma_3}} \left[\frac{\partial (B_1 F_{31})}{\partial S} + \frac{\partial (B_1 F_{32})}{\partial I} \right] dS dI
= \int_{S_{\Gamma_3}} B_1 (F_{31} dI - F_{32} dS)
= \int_{M_{52}M_{51}} B_1 F_{31} dI - \int_{M_{52}M_{51}} B_1 F_{32} dS
= \int \int_{D_{\Gamma_4}} \left[\frac{\partial (B_3 F_{41})}{\partial S} + \frac{\partial (B_3 F_{42})}{\partial I} \right] dS dI
= \int_{S_{\Gamma_4}} B_3 (F_{41} dI - F_{42} dS)
= \int_{M_{61}M_{62}} B_3 F_{41} dI - \int_{M_{61}M_{62}} B_3 F_{42} dS.
$$

Then we have

$$
\lim_{s \to 0} \left\{ \int_{M_{52}M_{51}} B_1 F_{31} dI + \int_{M_{61}M_{62}} B_3 F_{41} dI \right\}
= \lim_{s \to 0} \left\{ \int_{L + s}^{y_4 + s_4(s)} B_1 F_{31} dI + \int_{y_4 - \tilde{s}_4(s)}^{L + s} B_3 F_{41} dI \right\}
= \lim_{s \to 0} \left\{ \int_{L + s}^{y_4 + s_4(s)} \left[-\beta + \frac{\gamma}{S} + \frac{\mu}{SI} - \frac{\mu + p + f}{I} \right] dI
+ \int_{y_4 - \tilde{s}_4(s)}^{L + s} \left[-\beta + \frac{\beta \mu}{\mathcal{W}_1} + \frac{\beta (\mu + p + f) S}{\mathcal{W}_1} + \frac{\beta \gamma f}{\mathcal{W}_1} \right] dI \right\}
= 0.
$$

It follows that
By the properties of the Lambert W function, we have

\[\lim_{x \to 0} \left\{ \int_{S_{x_1}^{x_1-x_1}} \left[\beta - \frac{\mu + \delta}{S} \right] dS - \int_{S_{x_1}^{S_{x_1}}} \left[\beta - \frac{\mu + \delta + \gamma}{S} \right] dS \right\} = \gamma \ln \frac{S_{x_1}}{x_1}. \]

By the properties of the Lambert W function, we have

\[\lim_{x \to 0} \left\{ \int_{S_{x_1}^{x_1-x_1}} \left[\beta - \frac{\mu + \delta}{S} \right] dS - \int_{S_{x_1}^{S_{x_1}}} \left[\beta - \frac{\mu + \delta + \gamma}{S} \right] dS \right\} = \gamma \ln \frac{S_{x_1}}{x_1}. \]

where

\[W_1 = \text{Lambert } W(\alpha(\mu + \delta + \gamma)I \exp(\alpha(\mu + \delta)I)). \]

Similarly, we get

\[\lim_{x \to 0} \left\{ \int_{S_{x_1}^{x_1-x_1}} \left[\beta - \frac{\alpha(\mu + \delta)I}{W_1} \right] dS - \int_{S_{x_1}^{S_{x_1}}} \left[\beta - \frac{\alpha(\mu + \delta + \gamma)I}{W_2} \right] dS \right\} = 0. \]

Hence, we have

\[
\begin{align*}
\lim_{x \to 0} & \left\{ \int_{S_{x_1}^{x_1-x_1}} \left[\beta - \frac{\alpha(\mu + \delta)I}{W_1} \right] dS - \int_{S_{x_1}^{S_{x_1}}} \left[\beta - \frac{\alpha(\mu + \delta + \gamma)I}{W_2} \right] dS \right\} \\
& > 0.
\end{align*}
\]

which contradicts (19). This excludes the existence of limit cycles surrounding the sliding segment. \(\Box \)

Global dynamics

In this subsection, we study the dynamics of system (7). We have \(R_{01} > R_{02} \), so there are three cases to consider.

Case \((C_1) R_{01} > R_{02} > 1. \)

In this case, the sliding segment is \(\Sigma_S \). To determine the location of the sliding segment \(\Sigma_S \), we need to compare the
relationship of its endpoints T_i ($i = 1, 2$) and the attraction region Ω. Solving the equations
\[
\frac{\mu + \delta}{\beta} = 1 - I_e \quad \text{and} \quad \frac{\mu + \delta + \gamma}{\beta} = 1 - I_e
\]
with respect to I_e gives
\[
I_e = \frac{\beta - \mu - \delta}{\beta} \equiv I_{\text{min}} \quad \text{and} \quad I_e = \frac{\beta - \mu - \delta - \gamma}{\beta} \equiv I_{\text{max}}.
\]

Then we know that the sliding segment Σ_S lies entirely in the attraction region Ω for $I_e < I_{\text{min}}$, partly in the attraction region Ω for $I_{\text{min}} < I_e < I_{\text{max}}$, and entirely out of the attraction region Ω for $I_e > I_{\text{max}}$. Direct calculation gives $I_{\text{max}} > I_1, I_{\text{max}} > I_2$ and $I_{\text{max}} > I_{\text{min}}$.

In this scenario, there are two disease-free equilibria (E_{01} and E_{02}) and two generalized equilibria (E_1 and E_2) for system (7). If the inequalities (H1) in Theorem 3 are true, there exists a pseudo-equilibrium E_S. The disease-free equilibria E_{01} and E_{02} cannot be attractors of system (7) since E_{02} is virtual and E_{01} is unstable, although it is real. Hence, one of the regular endemic equilibria E_1 and E_2 or the pseudo-equilibrium E_S acts as the attractor of system (7). There are further three possibilities to consider:

(1) $I_1 > I_1$, (2) $I_2 > I_1$, (3) $I_2 < I_1$.

If the case (C1) is true, the generalized endemic equilibrium E_1 is real and denoted by $E_{1\text{n}}^p$, while the generalized endemic equilibrium E_2 is virtual and denoted by $E_{2\text{n}}^p$. No pseudo-equilibrium exists in this scenario. If we further have $I_e < I_{\text{min}}$ or $I_{\text{min}} < I_e < I_{\text{max}}$, the sliding segment Σ_S lies totally outside the attraction region Ω; if we have $I_e > I_{\text{max}}$, the sliding segment Σ_S lies entirely out of the attraction region Ω. It follows from Lemmas 4–7 that there is no limit cycle for system (7) under these conditions, so the generalized equilibrium $E_{1\text{n}}^p$ is globally asymptotically stable, as shown in Fig. 5. In Fig. 5, the circular points represent the endemic equilibrium, and the square points represent the disease-free equilibrium. The dashed dotted lines stand for the trajectories of subsystem S_1, which is the absence of media effect, enhanced vaccination or treatment; the thin solid lines stand for the trajectories of subsystem S_2, which includes media effect but not enhanced vaccination or treatment; the dashed lines stand for the trajectories of subsystem S_3, which includes enhanced vaccination and treatment but excludes media effects; the thick solid lines stand for the trajectories of the subsystem S_4, which includes media effects, enhanced vaccination and treatment. We use these notations throughout the rest of this paper.

If case (C12) is true, we similarly get that the generalized endemic equilibrium E_2 is real and E_1 is virtual, so they are denoted by $E_{2\text{n}}^p$ and $E_{1\text{n}}^p$. There is no pseudo-equilibrium for system (7) in this case. We easily get $I_e < I_{\text{min}}$, so the sliding segment Σ_S is totally in the attraction region Ω. By Lemmas 4–7, no limit cycle exists for system (7). It follows that the generalized equilibrium $E_{2\text{n}}^p$ is globally asymptotically stable in this scenario, as shown in Fig. 6a.

For case (C13), both the generalized endemic equilibria E_1 and E_2 are virtual, which are denoted by $E_{1\text{v}}^p$ and $E_{2\text{v}}^p$. In this scenario, the pseudo-equilibrium E_S exists for the Filippov system (7). According to Theorem 3, E_S is locally asymptotically stable. If we further have $I_e < I_{\text{min}}$ or $I_{\text{min}} < I_e < I_{\text{max}}$, the sliding segment Σ_S is totally or partly in the attraction region Ω. By Lemmas 4–7, no limit cycle exists and so the pseudo-equilibrium E_S is globally asymptotically stable for system (7), as shown in Fig. 6b.

Case (C12) $R_{01} > 1 > R_{02}$.

In this case, the generalized endemic equilibrium E_1 coexists with the two disease-free equilibria E_{01} and E_{02}. The pseudo-equilibrium E_S exists if the inequalities (H2) in Theorem 3 are true. The disease-free equilibrium E_{01} is not stable, since $R_{01} > 1$. The disease-free equilibrium E_{02} is stable for the subsystems S_3 and S_4, but it cannot act as the attractor of system (7) since it is virtual in this scenario. Both $(\mu + \delta + \gamma)/\beta \leq 1$ and $(\mu + \delta)/\beta \leq 1$ may be true due to $R_{02} < 1$. For the former case, the sliding segment is Σ_S, while the sliding segment takes the form Σ_{SI}, for the latter case. There are two possibilities to consider in this case:

(1) $I_1 > I_1$, and (2) $I_2 < I_1$.

For the case (C11), the generalized endemic equilibrium E_1 is real, which is denoted by $E_{1\text{n}}^p$, and no pseudo-equilibrium exists for system (7). If $(\mu + \delta)/\beta \leq 1 < (\mu + \delta + \gamma)/\beta$, the sliding segment is Σ_{SI}, which is partly in the attraction region Ω. If $(\mu + \delta + \gamma)/\beta \leq 1$, the sliding segment is Σ_{SI}. If we further have $I_e > I_{\text{min}}$ or $I_{\text{min}} < I_e < I_{\text{max}}$, the sliding segment Σ_{SI} is entirely or partly in the attraction region Ω; if we have $I_e > I_{\text{max}}$, Σ_{SI} is entirely out of Ω. Since the generalized endemic equilibrium $E_{1\text{n}}^p$ is locally asymptotically stable and Lemmas 4–7 exclude the existence of limit cycles for system (7), E_1 is globally asymptotically stable, as shown in Fig. 7a.

For case (C22), the endemic equilibrium E_1 is virtual and the pseudo-equilibrium E_S exists for system (7). Similarly, we know that the sliding segment takes the form Σ_S, which is partly out of the attraction region Ω, for $(\mu + \delta)/\beta \leq 1 < (\mu + \delta + \gamma)/\beta$, while for $(\mu + \delta + \gamma)/\beta \leq 1$, the sliding segment is Σ_S, which is entirely or partly out the attraction region Ω for $I_e < I_{\text{min}}$ or $I_{\text{min}} < I_e < I_{\text{max}}$. By the local stability of the pseudo-equilibrium E_S in the vicinity of the sliding segment Σ_S and Lemmas 4–7, the pseudo-equilibrium E_S is globally asymptotically stable, as shown in Fig. 7b.
Various precautions (e.g., hand washing, social distancing, wearing face masks), which can help them reduce the chance of being infected. That can influence the pattern of disease transmission and lower the rate of infection. In this work, we adopted a negative exponential function dependent on the derivative of the case number to represent the reduction effect of media coverage. We also considered vaccination and treatment policies driven by the case number in order to determine a threshold policy. The resulting system was an implicitly defined and non-smooth one [i.e., system (1)–(3)], for which there exist some difficulties in analyzing its dynamics.

By applying the properties of the Lambert W function, the implicitly defined system was converted into an explicit one [i.e., the targeted model, system (7)], which is a non-smooth system with three thresholds (I_c, S_{c1}, S_{c2}). Once the case number exceeded the threshold level I_c (i.e., $I > I_c$), the enhanced vaccination and treatment measures were implemented; otherwise, only the general vaccination measure (and no treatment) was carried out. For $I > I_c$ (or $I < I_c$), there was further a threshold level S_{c2} (or S_{c1}), which governs whether the media coverage is effective. In particular, the classic epidemic model applies if the number of susceptible individuals is less than the threshold value S_{c2} (or S_{c1}); otherwise, the reduction factor in the incidence rate induced by the media coverage is incorporated into the classic model, as defined in system (7).

We initially considered the limiting cases $I_c = +\infty$ (or $I_c = 0$), in which both the enhanced vaccination and treatment measures were always suspended (or always implemented). They ultimately led to two non-smooth but continuous systems; i.e., model (10) and model (11). By employing the generalized Jacobian and distribution theory, we examined the global stability of all the equilibria, including the regular equilibria (E_{01} and E_{02}) and generalized equilibria (E_1 and E_2). For model (10), the disease-free equilibrium E_{01} (or the generalized endemic equilibrium E_1) was globally asymptotically stable when the basic reproduction number $R_{01} < 1$ (or $R_0 < 1$). This suggests that the disease can be eradicated for $R_{01} < 1$, while it becomes endemic for $R_{01} > 1$. These results have demonstrated that, although media coverage could not eradicate the disease, it nevertheless postponed the arrival of the infection peak, as shown in Fig. 9. It is also shown in Fig. 9 that media coverage diminishes the outbreak size. Similar results were derived for system (11).

The main purpose of this work is to establish all possible dynamic behaviors that our targeted model—i.e., model (7)—can exhibit. The present reduction factor to the infection rate triggers two switching boundaries (Σ_1 and Σ_2) besides the switching boundary Σ_3. The threshold policy with three thresholds (S_{c1}, S_{c2}, I_c) results in a variable structure system with four distinct structures (i.e.,

![Diagram](image-url)

Fig. 5 Phase plane for the targeted model (7), showing the asymptotic equilibria (small circles E_{01}^g, E_{02}^g and small squares: E_{01}^g, E_{02}^g for Case (C1)). Parameters values are $\mu = 0.5, \gamma = 0.8, \beta = 1.8, \delta = 0.2, \gamma = 0.5, p = 0.1, f = 0.1, I_c = 0.5$

In this case, no endemic equilibrium or pseudo-equilibrium exists for system (7), since $R_{0i} < 1$ ($i = 1, 2$). The disease-free equilibrium E_{02} is virtual, so only the disease-free equilibrium E_{01} can act as the attractor of system (7).

Since no limit cycle exists by Lemmas 4–7, Theorem 8

(i) The disease becomes endemic for $R_{01} > R_{02} > 1$. In particular, one of the two generalized equilibria (E_{01}^g or E_{02}^g) or the pseudo-equilibrium (E_3) is globally asymptotically stable if we further have $I_c > I_1$ or $I_c < I_2$ or $I_2 < I_c < I_1$.

(ii) The disease also becomes endemic for $R_{01} > 1 > R_{02}$. In particular, the generalized equilibrium E_1^g or the pseudo-equilibrium E_2 is globally asymptotically stable for $I_c > I_1$ or $I_c < I_1$.

(iii) The disease can be eradicated from the population for $R_{02} < R_{01} < 1$. In particular, the disease-free equilibrium E_{01} is globally asymptotically stable in this case.

Discussion

It is widely acknowledged that media coverage plays a key role in influencing both public behavior and government control strategies toward epidemics. The public will take
Fig. 6 Phase plane for the targeted model (7), showing the asymptotic equilibria (small circle E_i ($i = 1, 2$), small square E_0 ($i = 1, 2$) and small diamond E_3) for different parameter sets. The isoclinic lines g_i^V (resp. g_3^V) and $S = S_1$ are plotted for the subsystem S_1 (S_{11}). The curves represent the orbits in the phase plane indicating the asymptotic equilibria. Parameters values are $\mu = 0.5, \alpha = 0.8, \beta = 1.8, \delta = 0.2, p = 0.1, f = 0.1$ with (a) $\gamma = 0.35, L_c = 0.08$ and (b) $\gamma = 0.5, L_c = 0.3$

Fig. 7 Phase plane for the non-smooth model (7), showing the asymptotic equilibria (small circle E_i ($i = 1, 2$), small square E_0 ($i = 1, 2$) and small diamond E_3) for different parameter sets. The isoclinic lines g_i^V (resp. g_3^V) and $S = S_1$ are plotted for the subsystem S_i (S_{11}). The curves represent the orbits in the phase plane indicating the asymptotic equilibria. Parameters values are $\mu = 0.5, \alpha = 0.8, \beta = 1.5, \delta = 0.2, \gamma = 0.8, p = 0.1, f = 0.1$ with (a) $I_c = 0.4$ and (b) $I_c = 0.2$

Since only the crossing region is available on the switching boundaries Σ_1 and Σ_2, the sliding dynamics are obvious; for the switching boundary Σ_3, the sliding dynamics are determined by the scalar equation (17). It is interesting to note that there does not exist any regular endemic equilibrium for system (7). In fact, the three endemic equilibria (E_1, E_2 and E_3) lie on the switching boundaries Σ_i ($i = 1, 2, 3$), respectively. The two endemic equilibria E_1 and E_2 are generalized equilibria, while E_3 is a pseudo-equilibrium. The global stability of these endemic equilibria is addressed by excluding all the possible limit cycles, including general cycles, crossing cycles without surrounding the sliding segment, crossing cycles surrounding the sliding segment and canard cycles, as shown in Fig. 4. The results suggest that the real endemic equilibria (E_1^R and E_2^R), pseudo-equilibrium (E_3) and the disease-free equilibrium (E_{01}) can act as the attractors of system (7). In particular, the disease-
free equilibrium E_{01} is globally asymptotically stable if $R_{02} < R_{01} < 1$; the endemic equilibrium E^T_{12} or pseudo-equilibrium E_{S} is globally asymptotically stable if $R_{02} < 1 < R_{01}$; and the endemic equilibria E^T_{1} or E^T_{2} or the pseudo-equilibrium E_{S} is globally asymptotically stable if $1 < R_{02} < R_{01}$.

The main results indicate that the enhanced vaccination policy, the treatment policy or the media impact cannot drive an epidemic extinct. However, if we choose a relatively small threshold level such that the enhanced vaccination policy and treatment policy are carried out earlier (i.e., $I_c < I_1$), the number of infected individuals can be contained at a priori level (I_c) for $R_{02} < 1 < R_{01}$, while it can be curbed at a relatively low level (I_2) for $R_{01} > R_{02} > 1$. If we choose an appropriate threshold level to implement the enhanced vaccination and treatment policies (i.e., $I_2 < I_c < I_1$), the number of infected individuals can also be controlled at the previously given level I_c. If we select a relatively large threshold level (i.e., $I_c > I_1$), then the case number ultimately stabilizes at a high level (I_1) for $R_{01} > 1$. In this case, the media coverage significantly reduces the epidemic size and contributes to diminishing the disease spread, as shown in Fig. 9, although it has no effect in destabilizing the endemic steady state. Under certain conditions, different initial data can cause different disease transmission dynamics. For instance, Fig. 5 shows that the ultimate endemic state is reached via the following distinct processes: (a) with or without media effect and free from enhanced vaccination and treatment; (b) with media effect and free from enhanced vaccination and treatment; then alternation of common and enhanced vaccination, alternation of no treatment and treatment, and alternation of no media effect and media effect; (c) with media effect, treatment and enhanced vaccination; then the above three types of alternations; and finally no media effect or treatment or enhanced vaccination.

In this study, we have explored the impact of media coverage, enhanced vaccination and treatment on disease spread by proposing a non-smooth model with three thresholds. The main results obtained in this work demonstrate that the infection size can be contained either at an a priori level or at a relatively low/high level depending on the threshold level, if the disease cannot be eradicated. The media coverage significantly reduces the outbreak size and delays the epidemic peak. This will be beneficial for policymakers to determine appropriate control strategies.

Acknowledgements AW was supported by the National Natural Science Foundation of China (NSFC, 11801013) and the funding from Baoji University of Arts and Sciences (ZK1048). YX was supported by the National Natural Science Foundation of China (NSFC, 11571273 and 11631012) and Fundamental Research Funds for the Central Universities (GK 08143042). RS? was supported by an Discovery Grant. For citation purposes, note that the question mark in “Smith?” is part of his name.

References

