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Abstract
Most models of COVID-19 are implemented at a single micro or macro scale, ignoring
the interplay between immune response, viral dynamics, individual infectiousness and
epidemiological contact networks. Here we develop a data-driven model linking the
within-host viral dynamics to the between-host transmission dynamics on amultilayer
contact network to investigate the potential factors driving transmission dynamics and
to inform how school closures and antiviral treatment can influence the epidemic.
Using multi-source data, we initially determine the viral dynamics and estimate the
relationship between viral load and infectiousness. Then, we embed the viral dynam-
ics model into a four-layer contact network and formulate an agent-based model to
simulate between-host transmission. The results illustrate that the heterogeneity of
immune response between children and adults and between vaccinated and unvac-
cinated infections can produce different transmission patterns. We find that school
closures play a significant effect on mitigating the pandemic as more adults get vac-
cinated and the virus mutates. If enough infected individuals are diagnosed by testing
before symptom onset and then treated quickly, the transmission can be effectively
curbed. Our multiscale model reveals the critical role played by younger individuals
and antiviral treatment with testing in controlling the epidemic.
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1 Introduction

COVID-19 was first reported in December 2019 (Wu et al. 2020) and as of November
18, 2022, has resulted in 633,263,617 confirmed cases and 6,594,491 deaths (WHO
2022), which forced most affected countries to adopt unprecedented interventions
(Min et al. 2020; Hellewell et al. 2020). At the early stage of the pandemic, children
made up a small fraction of the total reported cases globally, with a lower risk of severe
disease (Sun et al. 2020; Shim et al. 2020). This was a different phenomenon compared
to pandemic influenza and has resulted in priority given to adult vaccination (Moore
et al. 2021). At the time of writing, over 73% of adults have been fully vaccinated in
western Europe (COVID-19 Vaccine Tracker 2022). However, the persistent mutation
of the virus weakens the protection rate of the vaccine; consequently, the Delta variant
has caused many regions in Europe to experience a fourth epidemic wave (Bernal
et al. 2021; World Health Organization 2022). Vaccine effectiveness against infection
for the Delta variant is reduced (Bernal et al. 2021), while a booster program has
been developed for the Omicron variant. Compared to the beginning of the epidemic,
the distribution of incidence for adults and children was inverted in the subsequent
outbreak of COVID-19 (World Health Organization 2022). However, it is not clear
what drives different transmission patterns.

The low proportion of infected children in the first epidemic wave has been ana-
lyzed from different perspectives. It was originally thought that children were not
getting infected as frequently (Sun et al. 2021; Davies et al. 2020). However, some
contact-tracing studies reported similar attack rates across all age groups (Bi et al.
2020; Lavezzo et al. 2020). It has been suggested that school closures changed the risk
of exposure to SARS-CoV-2 infection by reducing the contact rates that children have.
As schools reopened in Europe in September 2020 (Gaythorpe et al. 2021), however,
there were still no school-based outbreaks (Danis et al. 2020; Heavey et al. 2020).
Meanwhile, it was discovered that children generally have milder clinical symptoms
and are not a driver of family transmission, which is indicative of reduced infectious-
ness (Swann et al. 2020; Ludvigsson 2020). Jones et al. found that the viral loads of
infected younger subjects were lower than that of the older subjects and concluded
that the lower viral load results in younger patients with milder clinical symptoms
and lower infectiousness (Jones et al. 2021); other studies showed that there was no
significant difference in viral loads between young and old patients (He et al. 2020).
Recently, immunologists suggested that the stronger innate immunity and less adap-
tive immune response in children may be responsible for the phenomenon (Mallapaty
2021; Cohen et al. 2021).

As more people get vaccinated and the virus continues to mutate (Mlcochova et al.
2021; Tartof et al. 2021), their mixing effect on the transmission of disease remains
unclear. A quantitative understanding of the relationships between multiscale factors
such as immune response, viral loads, infectiousness, vaccination and contacts is
critical for implementing both pharmaceutical and nonpharmaceutical interventions.
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First, quantifying the relationship between viral load and infectiousness would allow
for precise prediction of infectiousness of infected individuals based on their viral
loads. This could in turn give us a chance to measure the effect of the antiviral drug
PAXLOVID (Pfizer 2021) on the infectiousness of infected individuals and then on the
between-host transmission of COVID-19. Second, evaluating the association between
immune response and viral dynamics could lead to quantification of the contribution of
different age groups to the overall transmission in a community and help shape public-
health policy. This could provide better insights into school-based interventions. Third,
as the virus mutation may lead to higher viral loads (Mlcochova et al. 2021) and the
vaccine may decrease viral loads in breakthrough infections (Levine-Tiefenbrun et al.
2021), a multi-scale quantification will inform how factors such as virus mutation and
booster doses will affect infectiousness and transmission.

Mathematical models have been applied to quantitatively understand the spread
of SARS-CoV-2 in the population and to evaluate the effect of interventions (Chen
et al. 2021; Thurner et al. 2020; Karaivanov 2020; Sofonea et al. 2021; Matrajt et al.
2021; Kucharski et al. 2020; Xue et al. 2020), but most of these studies are developed
at a single scale, and the relationship between different scales is rarely quantified.
Multiscale models have been used in some diseases, such as HIV (Shen et al. 2015;
Park and Bolker 2017; Doekes et al. 2017), but only a couple of models have thus far
integrated multiple scales of COVID-19 infection. Ford and Ciupe built a multi-scale
immuno-epidemiological model that connects the virus profile of infected individuals
with transmission and testing at the population level in order to quantify rapid COVID-
19 testing, finding that employing low-sensitivity tests at high frequency is an effective
tool (Forde and Ciupe 2021a). The same authors also used a multiscale COVID-19
model in a vaccinated population to predict the role of testing in an outbreak with
variants of increased transmissibility, finding that testing was most effective when
vaccination levels were low (Forde and Ciupe 2021b).

We develop a data-driven multi-scale mathematical model by linking the within-
host viral dynamics to the between-host transmission dynamics on a contact network.
Specifically, by combining viral loads and epidemiological data, we model the viral
dynamics and infer the relationship betweenviral load and infectiousness of an infected
individual. Thenweembed the viral dynamicsmodel into a 4-layer contact network and
formulate an agent-based stochastic model to mimic the infections in a community.
Based on the simulations of the stochastic multi-scale model, we describe the key
epidemiological conditions and investigate their effects on the transmission of disease.
We use the model to evaluate the impact of interventions from different macro and
micro scales—including school closures and antiviral treatment—on the spread of the
epidemic.

2 Multi-Scale Infectious Disease Model

To investigate the relationship between immune response, viral load and infectious-
ness, we coupled the within-host viral dynamics to the between-host transmission
dynamics and modelled the spread of disease on a multilayer contact network using a
“bottom-up” approach.
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2.1 Within-Host Viral Dynamic Model

If individual i is infected at time ti with initial viral load V0, then the within-host viral
dynamics are described by

dV (τ )

dτ
= rV (τ ) − e(τ )V (τ ), (1)

with infection age τ = t− ti , t ≥ ti . Here, r is the net replication rate of virus and e(τ )

represents the clearance rate of virus influenced by immune response.We describe this
using a Hill function (To et al. 2020), written as

e(τ ) = a

1 + exp[−(τ − b)/c] ,

where a is the maximal clearance rate of virus, b is the time-delayed response of the
immune system and c controls the steepness of immune curve during infection. For
τ < b, e(τ ) is increasing with c; for τ > b, e(τ ) is decreasing with c. It follows
that when c increases, a faster immune response can be mounted at the early stage of
infection, and the overall immune effect e(τ ) is more flat.

2.2 Transforming theViral Load into Infectiousness

Transmission depends on the infectiousness of the infected host, which varies with
infection age, due to changes in disease biology (notably viral shedding) and contact
with other infected individuals (Grassly and Fraser 2008; Ferretti et al. 2020). Hence
the infectiousness at time t can be defined as

β(t) = C(t) · βb(t − ti ), (2)

where C(t) is the contact rate and βb(t − ti ) is the biological infectiousness. In par-
ticular, the biological infectiousness is an increasing function of the viral load (Quinn
et al. 2000). Here, we assume the biological infectiousness of an infected individual
is proportional to the within-host viral load (Fraser et al. 2007). That is,

βb(τ ) = β0V (τ ). (3)

The biological infectiousness measures the probability that an infected individual
infects a susceptible, with infection age changing. Note that this quantity is for a
specific population; an infectious individual in a more protected population would
have lower infectiousness, even if there were no difference in viral load.

2.3 Between-Host TransmissionModel

Transmission occurs at the population level through contact between susceptible
and infected individuals. Given a population with the real-time contact matrix
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C(t) = {Ci j (t)} among N individuals, transmission occurs in discrete events in this
population. After infection, the viral load in the host follows model (1) with an ini-
tial condition, while the infectiousness is given by (2). We divide the (continuous)
disease-progression status into the classic SIR framework with three compartments:
a susceptible individual (S) enters the infective (I ) compartment after successful
infection, and the infected individual enters the recovered (R) compartment after the
within-host viral load drops below a threshold Ve. This segment of our model is guided
by the between-host model of Kucharski et al. (2020), which also considered multi-
ple layers of transmission (household, work, school, other). Our modelling differs
from theirs by the inclusion of within-host dynamics and using different probability
calculations for the transitions between states.

2.3.1 Transition from S to I

For any infected individual j with infection time t j , the force of infection the suscep-
tible individual i faces at time t is

hi (t) =
n∑

j=1

Ci j (t)βb(t − t j ), (4)

where Ci j (t) represents contact between individual i and individual j at time t . Then,
the probability that susceptible individual i is not infected until time t is

Hi (t) = exp

[
−

∫ t

t0
hi (ι)dι

]
.

Consequently, the probability of susceptible individual i being infected during the
period (t, t + δt] is

Pi (t, δt) = Hi (t) − Hi (t + δt)

Hi (t)
= 1 − exp

[∫ t+δt

t
hi (l)dl

]
. (5)

To implement the transmission event in the simulations, we sample a random number
u from the uniform distributionU (0, 1). The individual i can be infected successfully
during this period if u ∈ [0, Pi ].

2.3.2 Transition from I to R

The infected individual j becomes a recovered individual at time t if the within-host
viral loads drop to a sufficiently low level Ve:

Vj (t − t j ) ≤ Ve,

where t − t j is the infection age of individual j . For simplicity, we assume lifelong
immunity, so the recovered compartment (R) is the final state of the infected individ-
uals.
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2.4 The Structure of the Contact Network

Consider a population of N individuals. To mimic the contacts between them, we for-
mulate a time-varying multilayer contact network C(t) = {Ch(t), Cs(t), Cw(t), Cp(t)},
describing household, school, workplace and community layers. Both the household
layer and community layer contain all individuals, while the school layer and the
workplace layer divide these individuals into two complementary parts. In the house-
hold layer, there are nh disconnected families with different household sizes. In the
community layer, there is only one single component. In the school and workplace
layers, there are ns and nw disconnected schools and workplaces. Ns individuals,
including teachers and students, are assigned to the school layer, while the remaining
Nw = N − Ns adults are assigned to the workplace layer. Note that if there exists
high-resolution data, students/workers can be assigned to different schools/workplaces
based on school-size/workplace-size distribution (Liu et al. 2018). However, most
countries or regions lack complete data for these settings, so researchers generally
assume that contact numbers are not directly dependent on the school or workplace
size, since it is unlikely that each student or worker is in close contact with all other
individuals (Kerr et al. 2021). We hence set ns = 1, nw = 1.

The contact number depends on which layer an individual is in and has a large
variance (Mossong et al. 2008). In household layer, we assume that each individual
is in contact with all family members. We let Ds(n), Dw(n) and Dp(n) denote the
probability mass function of the number of contacts in the school, workplace and
community layers, respectively. For each individual i (i = 1, 2, ..., N ), we sample
a triple (nsi (t), n

w
i (t), n p

i (t)) from the probability mass functions Ds(n), Dw(n) and
Dp(n) to represent the contact number of individual i in each layer at time t . At
this time step, individual i has (nsi (t), n

w
i (t), n p

i (t)) connected neighbours randomly
selected from a corresponding cluster in each layer. Note that nsi (t) × nw

i (t) = 0
because individual i cannot be in both school and workplace layers simultaneously.

At time t , we characterize the contact network Ck(t) (k ∈ {h, s, w, p}) by a layer-
specific adjacency matrixCk(t)with elementsCk

i j (t) = ck if there is a link connecting

individual i and individual j in layer k; otherwise, Ck
i j (t) = 0, where ck represents

layer-specific connection strength and is related to the duration that individuals stay
in layer k. Consequently, the connection between individuals i and j in the multilayer
contact network C(t) can be characterized as

Ci j (t) =
∑

k∈{h,s,w,p}
Ck
i j (t). (6)

This contactmatrix is used in the epidemic transmissionmodel (4) and can be estimated
using demographic data and contact data.
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3 Computational Analysis and Parameter Estimation

3.1 Dynamics of SARS-CoV-2 and Biological Infectiousness

To estimate the parameters of system (1), we use the growth kinetics of viral RNA
concentrations from in vitro experiments (Mlcochova et al. 2021) and the time series of
detected viral loads in confirmed cases (Wölfel et al. 2020;Kimet al. 2021).Wefirst use
the in vitro data to estimate the net replication rate r . For in vitro experiments, we can
omit the immune response (i.e., we set e(τ ) = 0). System (1) implies V (τ ) = V0erτ ,
which yields

ln(V (τ )) = rτ + ln(V0). (7)

Based on formula (7), we use linear regression on the in vitro data (Fig. 1A) and obtain
r = 3.45/day.

Jones et al. found that the expected degradation rate of viral load is almost constant
after the peak time and that the peak viral load occurs prior to the onset of symptoms
(Jones et al. 2021). The serum antibody responses during infection by SARS-CoV-2
(To et al. 2020) also imply that the immune response is very sharp after activation.
Consequently, we assume that the immune response has already reached themaximum
at the onset time τon (i.e., e(τon) ≈ a). Therefore, after the onset of symptoms, the
temporal profiles of the within-host viral load can be approximated by V (τ − τon) =
V (τon)e(r−a)(τ−τon), which yields

ln(V (τ − τon)) = (r − a)(τ − τon) + ln(V (τon)). (8)

Based on formula (8), we obtain a = 4.17/day using linear regression on the in vivo
data (Fig. 1B).

The incubation period of COVID-19 is 5–6 days, and peak viral load occurs one
day prior to the onset of symptoms (Jones et al. 2021), (He et al. 2020). Hence, we
assume the onset time of symptoms is τon = 5.5 and the peak time of viral load is
τp = 4.5. From model (1), at peak time τp, we obtain rV (τp) − e(τp)V (τp) = 0,
which implies

c = b − τp

ln(a/r − 1)
. (9)

We initialize themodel using different values and then estimate the remaining unknown
parameters by fitting model (1) to the median of in vivo data. Comparing different
fitting results (Fig. 1C), we select V0 = 103.5 copies/ml as our initial value and obtain
the estimates b = 3.62 and c = 0.56.

The infectiousness (2) determines the basic reproduction number R0 of new infec-
tions caused by one infectious individual i in a population (Heffernan et al. 2005).
The relationship is
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Fig. 1 Within-host viral dynamics and biological infectiousness. A Virus growth kinetics in vitro. The
growth rate is net replication rate of SARS-CoV-2. B Viral RNA concentrations in confirmed cases. Data
below the limit of quantification (virus concentration of 100 copies/ml) are defaulted to 10. C Estimated
viral load kinetics in the infected individual. The blue circles are the median of in vivo data, and the curve
is the result of fitting model (1) to viral loads. D Estimated infectiousness of the infected individual over
their entire infection age (Color figure online)

R0 =
∫ ∞

ti
β(t)dt = lim

n→∞

n∑

k=1

∫ ti+k

ti+k−1

C(t)βb(t − ti )dt, (10)

where ti is the time when individual i was infected and [ti+k−1, ti+k] refers to the
kth day after infection. Using the first mean-value theorem for definite integrals on
[ti+k−1, ti+k], we have

∫ ti+k
ti+k−1

C(t)βb(t − ti )dt = βb(tσk − ti )
∫ ti+k
ti+k−1

C(t)dt with
tσk ∈ [ti+k−1, ti+k]. Viral dynamics (Fig. 1C) show that the within-host viral load is
already relative low in the limited days after infection. Combining with (3), we obtain

β0 = R0∑n
k=1 V (tσk − ti )

∫ ti+k
ti+k−1

C(t)dt
, (11)

where
∫ ti+k
ti+k−1

C(t)dt represents the contact number of individual i during the kth day
after infection. Based on the data (Locatelli et al. 2021), we set R0 = 2.2 and the
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number of contacts that one person has per day in our research population is set to
C(t) = 12.84. We take tσk = (ti+k−1 + ti+k)/2 and set n = 25, after which the
viral load is very low (Fig. 1C). Consequently, we obtain β0 = 1.97 × 10−10, which
can affect the biological infectiousness of one typical infectious individual in the
population. See Fig. 1D.

3.2 Contact Network

Based on demographic and contact data of some western European countries, we
formulate a detailed network to mimic the contacts in a typical western European
community. First, to construct the synthetic population, we consider nh = 3000
disconnected families. The size of each family is sampled from the household-size
distribution Dh(n), which is derived from the POLYMOD data. (Mossong et al. 2008)
Figure 2A plots the household-size distribution Dh(n) with household type. Based on
this distribution, we divide all individuals into youth (age ≤ 18) with size Ny = 3057
and adults (age > 18) with size Na = 6889. We make the assumption that all indi-
viduals in the youth group are students and are mapped onto the school layer. The
number of teachers in the school layer on the basis of the teacher-to-student ratio of
UK is 0.028Ny (OECD 2019). Consequently, there are Ns = 3143 individuals in the
school layer and Nw = 6803 individuals in the workplace layer. Here, we assume
there is only a single component (ns = 1 or nw = 1) in the school and workplace
layer, separately, because of the small size of the synthetic population and the lack of
data.

To construct the connection between individuals, we calculated the daily contacts
of individuals using the BBC Pandemic dataset (Kucharski et al. 2020). Figure 2B and
C plot the probability mass functions Ds(n), Dw(n) and Dp(n) for youth and adults in
different layers. The number of individual contacts is highly heterogeneous, ranging
from0 to hundreds. Here, we assume that an individualwill contact all familymembers
and fixed classmates (or colleagues) during each day. However, one’s community
contacts are different at each step. Specifically, at time t , for individual i , the triple
(nsi (t), n

w
i (t), n p

i (t)) = (nsi , 0, n
p
i (t)) if this individual comes from the youth group.

The elements nsi and nci (t) are sampled from the contact distribution for youth in
Fig. 2B and C, respectively. Similarly, at time t , the triple (nsi (t), n

w
i (t), n p

i (t)) =
(0, nw

i , n p
i (t)) if this individual is an adult, and the nonzero elements are sampled from

the distribution for adults. The neighbours of individual i are determined by random
sampling from the corresponding layer. Note that if an individual i is a teacher, the
nw
i connections are sampled from the school layer.
We determined the layer-specific connection strength ck by combining the relative

duration spent in different layers and having a weighted mean close to the R0 = 2.2
value for a well-mixed population (Kerr et al. 2021). Based on survey data (OECD
2014), we set the time an individual spends in the household (minus 8h for sleeping
time), school/workplace and community settings as 5, 8 and 3 hours per day, respec-
tively. Note that individuals sleeping at night is similar to the quarantine-at-home
policy (CDC 2022b), so we assume that infected individuals will not transmit virus
during this time, since they will not be interacting with other individuals. Although
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Fig. 2 (Color Figure Online) Construction of the multi-level contact network. A The distribution of house-
hold size with household type. The degree distribution of contacts at B school/workplace and C community
for individuals younger or older than 18

Table 1 Estimated parameters of multi-scale model by data fitting

Parameters Description Estimate

r Net replication rate 3.45 day−1

a Maximal clearance rate of virus 4.17 day−1

b Time-delayed response of the immune system 3.62 (baseline)

c The factor that changes the steepness of immune curve 0.56 (baseline)

β0 Transmission coefficient 1.97 × 10−10

ch,s/w,p Layer-specific connection strength 0.86, 1.3755, 0.516

some people are couples and sleep in the same bed, we assume that they already have
ample opportunities to infect each other throughout the day or evening. Next, we set
the layer-specific connection strength as ch = 5k0, cs/w = 8k0 and cp = 3k0. To
keep consistency with the basic reproduction number (10) of an infected individual in
a well-mixed population, we calculated the average number of contacts of a typical
individual in different layers: Ch = 3.26, Cs/w = 5.93 and Cp = 3.65. Note that

123



Coupling the Within-Host Process and Between-Host Transmission… Page 11 of 25     6 

Ch + Cs/w + Cp = 12.84. Hence we can define

R0 = lim
n→∞

n∑

k=1

∫ ti+k

ti+k−1

(chCh + cs/wCs/w + cpCp)βb(t − ti )dt, (12)

which implies that ch = 0.86, cs/w = 1.3755 and cp = 0.516. Consequently, the
contact matrix (6) is determined by these estimates.

4 Application and Results

Using our multi-scale framework of how viral loads and infectiousness vary with time
since infection and subsequently how the disease spreads in the contact network, we
will analyze the impact of individual immune response, virus mutation and vaccina-
tion on the transmission patterns and further investigate some strategies from different
scales and subpopulations, which cannot be evaluated using a single scale or homoge-
nous model.

4.1 Individual Immune Response Impacts onViral Load and Transmission

To mimic the stronger innate immunity and weaker adaptive immunity in children, we
increased the value of the parameter c, which controls the steepness of an individual’s
immune response to the virus. Figure 3A plots the immune response curve e(τ ) and
viral load within an infected individual for different values of c. When c increases,
a faster immune response can be mounted at the early infected stage, and the overall
immune effect e(τ ) is more flat, which is consistent with the stronger innate immunity
(Mallapaty 2021) and observed lower T-cell concentration in infected children com-
pared to adults (Cohen et al. 2021). Hence, in the following investigations, we assume
c = 0.56 for adults and increase c to represent the parameter value of viral dynamics
within children.

Our simulations show that younger individuals have a lower viral load, especially
in the early stages after infection (Fig. 3A), while the viral loads of infected indi-
viduals in different ages would be very close after the onset of symptoms (5.5 days
after infection). In observational cohort studies, some researchers found the viral load
was lower in younger individuals (To et al. 2020), while others found no significant
difference between children and old people (He et al. 2020). Our simulation implies a
possibility for these differing observations: namely, that the viral load of most infected
individuals was tested after the onset of illness, which introduces a bias to the sample.
We also found that there is a bigger difference between different age groups around
the peak of viral load in the simulations. This is consistent with the experimental data
of a previous study (Jones et al. 2021).

To study the effect of different immune responses in children, we simulate the
between-host disease transmission. In each simulation, we initialize two infected chil-
dren and two infected adults and then follow the between-host transmission model (5).
Figure 3B and C plot the simulated daily new infections of both children and adults.
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Fig. 3 (Color Figure Online) The effect of an individual’s immune response on within-host viral load and
between-host disease transmission. A Variations of immune effective curve and viral load with respect to
c in infected individuals. A higher value of c corresponds to a faster immune response at the early infected
stage, and the overall immune effect e(τ ) is more flat. B Dynamics of new infected children and adults
when the immune responses are identical (c = 0.56). Curves represent the mean new infections, and shaded
areas represent the interquartile ranges (IQR, Q1–Q3), from 200 simulations. C The time series of new
infected children and adults for the viral dynamics parameter c = 0.56 in adults and c = 1 in children. D
The cumulative incidence of children and adults in an outbreak, calculated by the sum of new infections in
young/adult subpopulation during 6months, dividing the number of all young individuals/adults in thewhole
synthetic population, separately. Larger c values for viral dynamics of children can produce the observed
lower incidence. Coloured bars represent the mean cumulative incidence, and vertical lines represent the
interquartile ranges (IQR, Q1–Q3)

In Fig. 3B, there is no difference in immune response between infected children and
adults. In Fig. 3C, we take parameter c = 1 in children to generate stronger innate
immunity and weaker adaptive immunity in children compared to adults. The number
of infected children in this context is smaller than the results in Fig. 3B, which is more
in line with the characteristics of the observed data in the first year of COVID-19.

To further investigate the effects of the immune response in children on the spread
of COVID-19, we calculate the cumulative incidence in the young and adult subpop-
ulations for one outbreak using repeated simulations. Cumulative incidence is defined
as the sum of new infections in the young/adult subpopulation during 6 months, divid-
ing the number of all young individuals/adults separately. From Fig. 3D, we found
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that the cumulative incidence in children would be slightly lower than adults if there
is no difference in immune response between infected child and infected adult. With
the increase of c in children, the difference in cumulative incidence between children
and adults becomes larger. For c = 1 in children, the cumulative incidence of chil-
dren is about 60% of adults, which is essentially the same as in the European Union
(World Health Organization 2022). In conclusion, by modelling and simulating the
differences in the immune systems of the two age groups, we found that even if there
is no difference in susceptibility between children and adults, we can still reproduce
the phenomenon that children have lower incidence in the population. Our results
give an explanation for the observations in immune response, viral load and disease
transmission.

4.2 Virus Mutation andVaccination Can Reshape the Transmission of COVID-19

To mimic the mutation of SARS-CoV-2, we increase the replication rate (r ) of the
virus (Mlcochova et al. 2021). Here we consider three different values of parameter
r (Fig. 4A). As a baseline, r = 3.45 represents the original strain, which caused the
first wave of COVID-19, corresponding to the basic reproduction number R0 = 2.2
[51]. We take r = 3.6 to represent the Delta strain, which can generate the basic
reproduction number R0 = 5 (Liu and Rocklöv 2021).We take a larger value r = 3.68
to represent Omicron, which produces the basic reproduction number R0 = 8. In short,
the simulation predicts that the increased replication rate of the virus alone can increase
its biological infectiousness.Without further interventions, the new strainwith a higher
replication rate would cause more people to be infected.

To simulate faster viral clearance (Singanayagam et al. 2021) and lower viral loads
(Levine-Tiefenbrun et al. 2021) in breakthrough infections, we varied b, which repre-
sents the time-delay of immune response of an infected individual in model (1). Here
we consider three values of parameter b, with b = 3.62 representing the immune
response in unvaccinated individuals and smaller b representing the faster immune
response, which is consistent with the results obtained in Levine-Tiefenbrun et al.
(2021). Therefore, in the following, we describe the difference in immune responses
between breakthrough infections and unvaccinated infections by changing the parame-
ter value b. Figure 4B plots the immune effect curve e(τ ) and thewithin-host dynamics
of Delta (r = 3.6) with the variations of b. The simulations show that the viral load
for breakthrough infections becomes lower than that of unvaccinated individuals as
the immune response advances, which is consistent with previous research (Levine-
Tiefenbrun et al. 2021). This result also implies that the infectiousness of vaccinated
individuals is lower.

To investigate the mixed effect of virus mutation and vaccination, we used our
multi-scale model and simulated the transmission of the Delta strain in the synthetic
population with vaccination. In Western Europe, about 86% of adults have been fully
vaccinated as of June 2022, and the vaccine effectiveness against infection after five
months of waning is 47% (Tartof et al. 2021). We classify individuals effectively
protected by the vaccine as recovered. We introduced four infected individuals in
the population initially and consider different values of b under the virus replica-
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Fig. 4 (Color Figure Online) The effect of virus mutation and vaccination on biological infectiousness
and disease transmission. A Biological infectiousness of individuals infected with different strains of the
virus. The virus with higher replication rate induces higher biological infectiousness. B The influence of
vaccination on within-host viral loads. Here the baseline represents the Delta strain. Smaller b means that
the vaccination triggers a more timely immune response in the infected individuals, although larger b values
produce higher, if later, peaks in the viral load.C The adults-only vaccination scheme changes the epidemic
pattern in the population, making the incidence of children higher than that of adults. Colored bars represent
mean cumulative incidence, and vertical lines represent the interquartile ranges (IQR, Q1–Q3) from 200
simulations.D The cumulative incidence in the population (i.e., the total fraction of the new infections over
6 months) with the variations of virus replication rate and vaccine effectiveness

tion rate r = 3.6. Figure 4C plots the simulated cumulative incidence of the young
subpopulation and adults with different immune response lag b. If there is no differ-
ence in immune response between infected vaccinators and unvaccinated individuals
(b = 3.62), the cumulative incidence of adults is still higher than that of children.
However, if the immune response in vaccinated infected individuals is faster than
unvaccinated individuals (Fig. 4C), the transmission pattern would be inverted. In par-
ticular, if b = 3.08, the cumulative incidence of adults is about 60% that of children,
which is consistent with the transmission situation of the Delta strain in the European
Union (World Health Organization 2022). Comparing Fig. 4C and D, we found the
mixture of virus mutation and age-specific vaccination reverses the epidemic pattern
of COVID-19 in the population.
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The Omicron variant has spread widely and aroused the vigilance of various coun-
tries, although its transmission characteristics are still unclear. Since virus mutation
and the effectiveness of the vaccine declines over time (Tartof et al. 2021; Bernal
et al. 2021), booster shots have been put on the agenda. Here we considered different
viral replication rates and vaccine effectiveness. The baselines for virus replication
and vaccine effectiveness are 3.6 and 0.47, respectively. Figure 4D plots the simulated
cumulative incidence in the synthetic population, which is the total fraction of new
infections over the course of the epidemic (6 months). On the one hand, we found the
current vaccine scheme can prevent the outbreak of disease caused by original variant
(r = 3.45). Vaccination with booster shots to maintain the effectiveness at a high level
is critical to suppress more transmittable variants. On the other hand, the cumulative
incidence seems to be very sensitive to virus mutations. From the upper left corner
to the lower right corner of Fig. 4D, the cumulative incidence increases significantly,
even though vaccination effectiveness grows substantially.

4.3 The Effects of Macro Interventions Targeted at the School Layer

The mixed effect of virus mutation and vaccination reshaped the transmission pat-
terns of COVID-19 (Fig. 4C). The incidence of COVID-19 in younger individuals,
especially primary- and middle-school students, has becomes very significant as the
epidemic has worn on (World Health Organization 2022). Hence, we investigate the
effect of some macro interventions targeted at the school layer. As a comparison, we
first consider the effects of school closure before age-related vaccination and virus
mutation (setting the replication rate of virus to be relatively low at r = 3.45). We
simulated school closures by removing the contacts occurring in the school layer.
Figure 5A plots the time series of new infections and the cumulative incidence in the
population when schools are both closed and open. We find that school closure has
little effect on suppressing viral transmission and only results in a 14% reduction in the
cumulative incidence. After considering virus mutation (r = 3.6) and vaccination, we
repeated the same simulations in the synthetic population and visualized the results in
Fig. 5B. The result demonstrates that the closure of schools now has a very significant
effect on the prevention and control of the epidemic, which can reduce the cumulative
incidence by 90%.

We further investigated somemoderatingmeasures such as online/offline combined
classes and vaccinating younger students. For the first strategy, we simulated the
infections when different proportions of children are in school. Figure 5C shows that
reducing the number of students in school is effective in preventing and controlling
the epidemic. When the proportion of offline students is only 25% of the total, the
cumulative incidence is less than half of the previous rate. To some extent, this is
consistent with the result of Best et al. (2021) that it is efficient to mitigate disease
transmission by reducing class size such as online/offline combined classes. To test the
effect of vaccination in the school layer, we consider three age-dependent vaccination
strategies. As a baseline, the vaccination only covers adults (age > 18), as in previous
simulations. Other vaccination schemes assume that all children in the corresponding
age group are vaccinated and that the effectiveness of the vaccine is consistent with
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Fig. 5 (Color Figure Online) The effects of interventions targeted at the school layer. A New infections
and cumulative attack rate before vaccination and virus mutation. Curves represent mean new infections,
and shaded areas show the density distribution of new infections obtained in the 200 realizations. B New
infections and cumulative incidence with adult vaccination and virus mutation. C Variations of the cumu-
lative incidence with different proportions of children in the school layer. Colored bars represent the mean
cumulative incidence, and vertical lines represent the 0th–100th percentiles from all 200 simulations. D
Variations of the cumulative incidence in different vaccination age groups

that of adults. Figure 5D plots the cumulative incidence with different vaccination
strategies being implemented. The results show that expanding vaccination coverage
is of great significance to epidemic prevention if the effectiveness of vaccines can be
maintained. If all students older than 10 are vaccinated, the infections can be reduced
by more than 70%. Furthermore, we found that expanding vaccination coverage to
younger ages (14–18 years old) would be more effective than implementing vaccine
boosters if vaccine effectiveness is less than 60%.

4.4 The Influence of Antiviral Treatment Targeted at the Individual Level

Effective therapeutics may lead to reduced viral loads within an infected individual.
Our modelling approach is well suited to quantify the impact of antiviral treat-
ment on the infectiousness of a person and the subsequent transmission potential.
Pfizer announced a novel oral antiviral candidate PAXLOVID (Protease Inhibition)
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Fig. 6 (Color Figure Online) The effects of antiviral treatment on the transmission of disease. A Time-
varying drug concentration in an infected individual with treatment. B The corresponding time-varying
pharmacodynamics effect within a treated individual. C Viral loads within a treated adult without uptake
of vaccination under three different treatment-initiation times. D Cumulative incidence under different
initiation times and proportions of treatment

on November 5th, 2021. The scheduled interim analysis showed an 89% reduction
in risk of COVID-19-related hospitalization or death within three days of symptom
onset (Pfizer 2021). Hence, we will further investigate the effect of usage of antiviral
drugs on viral dynamics and disease transmission by extending the above multi-scale
mathematical model to couple Pharmacokinetics into the viral dynamical model. See
model (15) in the Appendix.

Figure 6A and B describe the time-varying drug concentration and time-varying
effectiveness of drug in an infected individual with antiviral treatment using models
(13) and (14) in the Appendix. We chose three different treatment-initiation times,
based on days after infection onset.Wefind that plasma approaches periodic oscillation
more quickly than the pharmacodynamics effectη(t),which has an approximately two-
day delay. The impact of treatment on the within-host viral dynamics is displayed in
Fig. 6C. We plot the viral loads of a treated adult without vaccine uptake. The results
show that treatment accelerates viral clearance and hence mitigates new infections as
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the basic reproduction number declines. Early treatment can control viral loads at a
low level and decrease the basic reproduction number below the outbreak threshold 1.

Consequently, we further simulate the infections in the population to investigate the
effects of antiviral treatment on transmission and control of disease. Specifically, we
calculated the cumulative incidence by changing the initiation time and proportion of
treatment in the infected population, as shown in Fig. 6D. These results demonstrate
that when treatment begins from the 7th day post-infection (i.e., after symptom onset),
an outbreak always occurs, even though all infections are treated. If treatment begins
from the 5th day after infection onset, around the peak time of virus, a 75% treatment
rate can completely control the transmission of disease. If treatment occurs by the third
day, only half of the infections need to be treated to prevent the outbreak. This means
that if enough infected individuals can be diagnosed by RT-PCR or antigen testing
before or around symptom onset and are treated in a timely fashion, then disease
transmission can effectively be curbed. This is similar to the strategies adopted for
some universities (Lopman et al. 2021; Brook et al. 2021)

5 Discussion

Many mathematical models have been developed to understand the transmission
dynamics of COVID-19 and to explain the different transmission patterns between
COVID-19 and influenza, but most of them are implemented at a single micro or
macro scale, ignoring the interplay between immune response, viral dynamics, indi-
vidual infectiousness and contact networks. We developed a data-driven multi-scale
model that coupled the viral dynamics to the transmission dynamics on a contact
network in order to analyze the key epidemiological conditions and produced trans-
mission patterns both before and after age-related vaccination and viral mutation. We
used this coupled framework to investigate the role that school closures and antiviral
treatment play during the epidemic.

Our research provides a method to fuse multi-source data in order to more fully
reflect the actual situation by simultaneously including the two most important factors
in epidemic dynamics: viral dynamics of infected individuals and the contact network
of the population. Our approach extends existing multi-scale models (Ke et al. 2021;
Wang et al. 2020) by including the heterogeneity of contacts and also extends agent-
based network models (Atti et al. 2008; Thurner et al. 2020; Karaivanov 2020) by
describing the heterogeneity of patient infectiousness.

Using this model, we first investigated the key epidemiological factors and gave a
possible answer to what drives different transmission patterns of COVID-19, which
are not clearly quantified by previous studies. Specifically, we considered the hetero-
geneity of immune responses between children and adults and between vaccinated
and unvaccinated individuals, which influences the viral dynamics and hence the
infectiousness. We found that the heterogeneity of immune response between adults
and children produced the observed phenomenon that children have lower incidence
(Ferguson et al. 2006). The differing immune responses between vaccinated and unvac-
cinated infections could reshape the transmission dynamics. Further, we used our
multi-scale framework to investigate some strategies at different scales to reduce the
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potential SARS-CoV-2 transmission.We found that, in contrast to the role that schools
play during influenza (Fumanelli et al. 2016), school closures had little effect at the
beginning of the outbreak of COVID-19, but their influence became critical as more
adults got vaccinated. This may suggest that the transmission pattern of COVID-19 is
evolving into the pattern of influenza. If antiviral treatment begins after symptomonset,
an outbreak may occur. If 75% (resp. 50%) of infected individuals can be diagnosed
by RT-PCR or antigen testing around (resp. before) symptom onset, and be treated in
a timely fashion, then the transmission of the disease can be effectively curbed.

Our model has some limitations, which should be acknowledged. First, our pop-
ulation only included 10,000 individuals due to computational limits. Second, in the
contact network, the school and workplace layers were not given a detailed substruc-
ture. The contacts occurring in different layers have different impacts, which depend
on several factors such as type of contact, distance during contact, etc. However, we
only weighted them by the relative fraction of a day an individual stays at different
places, since we do not have detailed data. We omitted transmission events that may
occur for couples sleeping in the same bed, which may underestimate the effects of
household infection. Third, to simulate school closures, we only removed contacts
occurring in the school layer, but did not consider the effects of this measure on con-
tacts occurring in other layers because of the lack of relevant data. Fourth, Ke et al.
(2021) found that there is a saturation effect on the infectious of viruses when the viral
load is very high (e.g., 109 copies/mL). However, we assume the relationship between
the viral load and infectiousness is linear, since our estimation for peak value of the
viral load is less than 109.

It follows that some interventions targeted to children after higher vaccination rates
in adults have taken effect can have significant effects on mitigating the subsequent
spread of disease. On the micro scale, if enough infected individuals are diagnosed
by testing before symptoms and then treated in a timely fashion, the transmission can
effectively be curbed. On the macro scale, school closures can play a crucial role as
vaccination uptake rates increase. Our results demonstrate that a multiscale approach
to COVID-19 allows for perspectives that cannot easily be gleaned from a single scale
or homogenous mixing model.

Acknowledgements YX, DC and ST were supported by the National Natural Science Foundation of China
(NSFCs, 11631012 (YX, ST), 12031010 (ST), 61772017 (ST)). YX and DC were recipients of Chinese
Scholarship Council (CSC) funding. SRS? was supported by NSERC Discovery and Alliance Grants. For
citation purposes, please note that the question mark in “Smith?” is part of her name.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

123



    6 Page 20 of 25 Y. Xue et al.

6 Appendix: Coupling Pharmacokinetics into Viral Dynamics

If individual i is treated by antiviral drug with intake interval T , the pharmacokinetics
are given by

dDa

dτ
= −KaDa,

dD

dτ
= FKaDa − KeD,

}
τ �= mT ,

Da(mT+) = D0 + Da(mT ),

D(mT+) = D(mT ),

}
τ = mT ,

Da(t0) = D0, D(t0) = 0,

(13)

where Da(τ ) and D(τ ) represent drug dosage in the absorption and central compart-
ments at time τ, Ka is the absorption rate constant, Ke is the elimination rate constant
and F is the bioavailability.

For τ ∈ (nT , (n + 1)T ], the drug dosages Da(τ ) and D(τ ) are given by

Da(τ ) = 1 − e−KanT

1 − e−KaT
D0e

−Ka(τ−nT ),

D(τ ) = D0FKa

Ka − Ke

[
1 − e−KenT

1 − e−KeT
e−Ke(τ−nT ) − 1 − e−KanT

1 − e−KaT
e−Ka(τ−nT )

]
.

The corresponding plasma concentration of drug is

C(τ ) = D0FKa

Vd(Ka − Ke)

[
1 − e−KenT

1 − e−KeT
e−Ke(τ−nT ) − 1 − e−KanT

1 − e−KaT
e−Ka(τ−nT )

]
,

where Vd is the apparent volume of distribution of the central compartment.
Based on the description of dose–response relationships, the pharmacodynamic

effect is

η(τ) = 1

1 + (
IC50
C(τ )

)θ
, (14)

where IC50 is the drug concentration that causes 50%of themaximum inhibitory effect
and θ is a slope parameter mathematically analogous to the Hill coefficient.

With anti-viral treatment, the viral dynamics are described by

dV (τ )

dτ
= (1 − η(τ))rV (τ ) − e(τ )V (τ ). (15)

We determine the parameters of the model using some results derived from the pop-
ulation pharmacokinetics of lopinavir/ritonavir in HIV and COVID-19 patients. See
Table 2.
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