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Abstract
Host defense and pathogen virulence interact and mutually shape each other’s evo-
lution. Host–pathogen co-evolutionary outcomes have potentially significant impacts
on population dynamics and vice versa. To investigate host–pathogen interactions
and explore the impact of micro-level co-evolutionary outcomes on macro-level epi-
demics, we develop a co-evolutionary model with a combined host-defense strategy.
Our results illustrate that host–pathogen co-evolutionmay induce infection cycling and
lead to the vanishing of the disease-induced hydra effect, whereas pathogen mono-
evolution strengthens the hydra effect in both range and magnitude. As the recovery
rate increases, we find a counter-intuitive effect of increased disease prevalence due
to host–pathogen co-evolution: the disease is first highly infectious and lethal, then
highly infectious but with low lethality. Such diverse outcomes suggest that this com-
bined co-evolutionary and epidemiological framework holds great promise for a better
understanding of infection.

Keywords Host–pathogen co-evolution · Infection cycling · Transmission patterns ·
Hydra effect

1 Introduction

In species with antagonistic interactions, such as in host–pathogen systems, co-
evolution is recognized as one of the most significant processes in creating and
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maintaining species diversity (Mougi and Iwasa 2010). Typically, host–pathogen
interactions have strong effects on individual fitness and can significantly alter the
evolutionary trajectory of species; conversely, evolutionary outcomes can affect host–
pathogen populations (Tibayrenc 2024;BuckinghamandAshby2022; Simmonds et al.
2019; Yang et al. 2022). These factors suggest that for an accurate understanding of
infectious diseases, host–pathogen co-evolutionary processes need to be understood
in epidemiological contexts. Experimental studies of host–pathogen co-evolutionary
processes have recently gained increasing attention from biologists, epidemiologists
andmathematical modellers (Lopez-Pascua andBuckling 2008; Bonachela 2024; Hall
et al. 2011; Gómez and Buckling 2011; Castledine et al. 2022), but demonstrating co-
evolutionary mechanisms of host–pathogen interactions remains difficult and is one
of the key challenges for evolutionary biology.

Pathogens can be a primary source of host selection by shortening host lifespan
or reducing their fertility (Restif and Koella 2004); conversely, the host can shape
pathogen evolution (Simmonds et al. 2019). Hosts have evolved various defensemech-
anisms to reduce the damaging effects of infection. These defenses — which may
depend on the immune system, cell surface modifications, changes in behaviour or
life-history strategies — generally fall into two distinct categories: resistance, which
reduces the pathogen load (Boots and Bowers 1999; Malo and Skamene 1994), and
tolerance, which ameliorates the damage that a pathogen causes to its host, without
reducing the pathogen load (Boots et al. 2009; Vitale and Best 2019). Hosts can evolve
a wide range of resistance mechanisms in response to pathogens, which can be func-
tionally classified as avoidance, increased recovery and reduced pathogen replication
rate (Boots et al. 2009; Miller et al. 2007). Tolerance, on the other hand, is primarily
classified based on its effect on reducing the pathogen’s impact on host mortality or
reproduction (Restif and Koella 2004; Best et al. 2017). A key assumption in almost
all theoretical evolutionary studies is that adaptive defense is costly, and host defenses
increase at the expense of other traits (Boots et al. 2009; Vitale and Best 2019; Cressler
et al. 2015; Antonovics and Thrall 1994), such as fecundity, with both theoretical
arguments and empirical evidence (Yang et al. 2022; Boots et al. 2009; Bartlett et al.
2018; Best et al. 2015; Gascuel et al. 2013). Theoretical studies on the evolution of
pathogens typically assume a trade-off between mortality and transmission, known as
the mortality–transmission trade-off (Yang et al. 2022; Bull and Lauring 2014; Liu
and Xiao 2023). According to this trade-off theory, a pathogen cannot simultaneously
increase its transmission and prolong infection; in other words, host mortality con-
strains transmission. As a result, pathogens aim to maximize their fitness while being
subject to these costs, a concept that has been empirically supported (Doumayrou et al.
2013).

A number of different modelling approaches have been developed to study evo-
lutionary mechanisms, such as quantitative genetic methods, locus-based methods
and adaptive dynamics (Boots et al. 2009; Iwasa et al. 1991). The study of long-
term dynamics is of great significance for epidemiology, and the adaptive-dynamics
approach allows us to examine long-term evolutionary factors (Dieckmann and Law
1996; Geritz et al. 1998; Metz et al. 1992). The long-term behavior of host–pathogen
interactions is directly linked to the interplay between evolutionary traits of both
species, known as co-evolutionary dynamics (Yang et al. 2022; Boots et al. 2009; Best
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et al. 2009). Given the limited empirical research on co-evolution, here we consider
the question: can modelling host–pathogen co-evolution on the micro scale produce
tangible outcomes on the macro scale?

Mathematical models have been applied to explore the evolution of single pheno-
typic traits; namely, pathogen virulence (Liu andXiao 2023; Alizon et al. 2009; Boldin
and Diekmann 2008) or defense in the form of resistance or tolerance (Vitale and Best
2019; Gascuel et al. 2013; Hulse et al. 2023; Singh and Best 2023; Bonneaud et al.
2019). However, host–pathogen interactions are generally co-evolutionary processes
in nature (Simmonds et al. 2019; Yang et al. 2022; Woolhouse et al. 2002), and the
co-evolutionary dynamics of quantitative traits in both host and pathogen is rarely
investigated. Previous studies on host–pathogen co-evolution mainly considered pure
host strategies; i.e., either resistance or tolerance (Yang et al. 2022; Best et al. 2009;
Hulse et al. 2023; McLeod and Day 2015; Best et al. 2011). In practice, however,
host defense involves both resistance and tolerance (Liu et al. 2020; McCarville and
Ayres 2018; Singh and Best 2021), and empirical studies have found both defense
mechanisms present within a single population (Stowe 1998; Carmona and Fornoni
2013; Núñez-Farfán et al. 2007). Population dynamics are intrinsically linked to evo-
lutionary dynamics, forming an eco-evolutionary feedback (Post and Palkovacs 2009)
and enabling modelling of more complex biological scenarios, such as evolutionary
cycling (Mougi and Iwasa 2010; Buckingham and Ashby 2022; Yang et al. 2022;
Ashby et al. 2019). Host–pathogen co-evolutionary cycling has been observed exper-
imentally (Hall et al. 2011; Decaestecker et al. 2007), which is a crucial effect of
maintaining diversity (Buckingham and Ashby 2022). Disease prevalence could be
influenced by evolution, potentially leading to disease reversal that may compromise
the effectiveness of prevention and control methods (Singh and Best 2023), but the rel-
evant literature in the context of host–pathogen co-evolution is scarce. The paradoxical
effect of increasing population density due to the introduction of a disease is termed
the disease-induced hydra effect (Jaramillo et al. 2022). To the best of our knowledge,
no modelling study has yet considered the impact of co-evolutionary effects on such
hydra effects.

Here, we aim to investigate the co-evolutionary dynamics of combined host defense
(resistance and tolerance) and pathogen virulence to describe host–pathogen inter-
actions and, in turn, explore the impact of micro-level evolutionary outcomes on
macro-level epidemics and vice versa. Based on the adaptive-dynamics framework
and simulations of the co-evolutionary model, we determine conditions where host
and pathogen phenotypic traits co-evolve into a continuous stable strategy or periodic
cycling. Specifically, we examine disease-reversal phenomena and disease-induced
hydra effects in various evolutionary contexts.

The rest of our paper is organized as follows. In Section 2,we formulate the epidemi-
ological model and classify the existence of equilibria and investigate their stability.
We then analyze the existence of the disease-induced hydra effect in our model in
the absence of evolution. In Section 3, using the approach of adaptive dynamics, we
analyze the co-evolutionary invasion process of host defense and pathogen virulence,
and we propose a corresponding co-evolutionary model. In Section 4, numerical simu-
lations are performed to illustrate how co-evolutionary adaptation affects the dynamic
behaviour of population size and trait values. We conclude with a discussion.
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2 Epidemiological model

We assume that there is only one monomorphic host type and one monomorphic
pathogen type in the initial community. The host population is regulated by intraspe-
cific competition for resources, and we hypothesize that the population birth rate is a
density-dependent function and that infection could affect reproduction and intraspe-
cific competition. We assume that the pathogen can cause direct transmission without
latency and that the incidence of host infection is bilinear. Infected individuals can
recover, but recovery does not provide immunity. These assumptions form an extended
model based on the classic host–pathogen structure (Anderson and May 1981). The
population dynamics of the host–pathogen interaction are given by

dS

dt
= b(S + τ1 I )F(S + τ2 I ) − βSI − dS + γ I ,

d I

dt
= βSI − (α + d + γ )I .

(1)

Here, the variables S(t) and I (t) represent the numbers of susceptible and infectious
individuals at time t , respectively. We model disease transmission using mass-action
incidence βSI . β denotes the transmission rate, α represents the disease-induced
death rate, and γ is the recovery rate. The term bF(S + τ2 I ) is the density-dependent
birth rate, and b is the per-capita birth rate. The parameter τ1 denotes the fecundity
of infected individuals compared to susceptible individuals, and τ2 represents their
relative ability to compete for resources, where τ1, τ2 ∈ [0, 1]. This assumption implies
that infection could prevent reproduction and intra-specific competition. We further
assume that τ1 = τ2 = τ for simplicity; that is, reductions in recruitment and resource
competition for infectious individuals are the same. Specifically, τ = 1, τ = 0 and
τ ∈ (0, 1) respectively indicate that the disease has no effect, completely inhibits or
partially inhibits the recruitment of infected individuals. The function F(X) satisfies
F ′(X) < 0, bF(∞) < d and the intrinsic growth rate bF(0) > d, where d is the
natural death rate. We further take F(S+ τ I ) = 1−q(S+ τ I ) throughout this paper,
where q models the crowding effect on births. All parameters inmodel (1) are positive.

Note that the recruitment function bXF(X) is a downward-facing quadratic func-
tion in X , and hence there exists a maximum value b/(4qd) > bXF(X). Denote
N (t) = S(t) + I (t). We obtain

dN

dt
= b(S + τ I )F(S + τ I ) − dN − α I ≤ b

4q
− dN ,

which yields

lim
t→∞ sup N (t) ≤ b

4qd
.

The feasible region for (1) is D = {(S, I ) ∈ R
2+ : S + I ≤ b

4qd }.
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2.1 Existence and stability of the ecological equilibria

In the following, we focus on the feasibility and stability of the equilibria of system
(1).

Theorem 1 The boundary equilibrium E00 = (0, 0) of system (1) is always feasible
and unstable. The disease-free equilibrium E0(S0, I0) = ( b−d

bq , 0) of system (1) is
always feasible under the assumption b > d and is locally asymptotically stable when
R0 < 1, where

R0 = βS0
α + d + γ

, S∗ = α + d + γ

β
,

I ∗ =
{ (α+d+γ )(b(β−q(α+d+γ ))−βd)

β2(α+d)
, τ = 0

bτ(1−2qS∗)−α−d+√	
2bτ 2q

, τ ∈ (0, 1],

with 	 = (bτ(1 − 2qS∗) − α − d)2 + 4bτ 2q(bS∗(1 − qS∗) − dS∗). When R0 >

1, the unique endemic equilibrum E(S∗, I ∗) of system (1) exists, and E is locally
asymptotically stable.

The proof is presented in Appendix A. Here, R0 is the basic reproduction number,
which denotes the expected number of secondary cases produced in a completely
susceptible population by a typical infected individual during their entire infectious
period (Heffernan et al. 2005). Next, we discuss the global asymptotic stability of the
ecological equilibria at specific values of τ .

Theorem 2 If τ = 0, the disease-free equilibrium E0 and the endemic equilibrium E
of system (1) are globally asymptotically stable when the basic reproduction number
R0 < 1 and R0 > 1, respectively. If τ = 1, the disease-free equilibrium E0 of system
(1) is globally asymptotically stable when R0 < 1.

The proof is presented in Appendix B.

2.2 The disease-induced hydra effect

A model with an asymptotically stable endemic equilibrium has a disease-induced
hydra effect if the endemic population size (N∗ = S∗ + I ∗) is greater than the disease-
free population size (S0) for some values of the basic reproduction number R0 > 1.
We found that a disease-induced hydra effect could arise in epidemiological model
(1), as shown in Fig. 1(a). This is further described in the following theorem.

Theorem 3 Suppose R0 > 1. At the stable endemic equilibrium (S∗, I ∗), one of the
following conditions is required to guarantee the existence of a disease-induced hydra
effect in system (1):

(1) For τ = 0, the sufficient and necessary condition is d
dS∗ [S∗F(S∗)] < −α

b ;
(2) For τ ∈ (max{0, τb}, τt ), the sufficient conditions are 	̄ > 0, 2d < b and

2qS∗ ≤ 1, where

	̄ = b2(1 − 2qS∗)2 + 8(α + d)(bqS∗ − b + d), τt = b(1 − 2qS∗) +
√

	̄
4(b − d − bqS∗)

, τb = b(1 − 2qS∗) −
√

	̄
4(b − d − bqS∗)

.
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Fig. 1 An illustration of the disease-induced hydra effect due to resource competition in system (1). (a) A
disease-induced hydra effect occurs for 1 < R0 < 7 (varying β). (b) The recruitment function bXF(X) as
population size X changes and with β = 0.6985 (ratio N∗/S0 = 1.0002) fixed. The blue square indicates
the reproducing population size (S∗ + τ I∗ ≈ 5.69), and the red square represents the total population size
(S∗ + I∗ ≈ 9.97) in the epidemiological system (1). Parameter values are b = 0.7, τ = 0.5, q = 0.1,
d = 0.00001, r = 0.8, α = 0.2. The initial values are (S0, I0) = (170, 2) (color figure online)

We note that there is no disease-induced hydra effect in system (1) when τ = 1.

The proof is presented in Appendix C.
The existence of the disease-induced hydra effect in epidemiologic model (1) is

due to the overcompensatory nature of resource competition in the recruitment func-
tion bXF(X); i.e., d

dX (bXF(X)) < 0 for some interval (Jaramillo et al. 2022). The
total equilibrium population in the epidemiological system is S∗ + I ∗ (red square),
while the total equilibrium in the reproducing population is S∗ + τ I ∗ (blue square),
shown in Fig. 1(b). It can be seen from Fig. 1(b) that by reducing the size of the
reproductive population, the concave-down form of the recruitment function bXF(X)

allows the population to increase recruitment significantly. The increased recruitment
compensates for the population loss caused by disease-induced mortality, allowing the
endemic population size (N∗ = S∗ + I ∗) to exceed the disease-free population size
(S0). Given Theorem 3, we see that such a disease-induced hydra effect may exist in
epidemiological model (1), as determined by the parameter τ .

In the next section, we analyze the co-evolutionary invasion process of host defense
and pathogen virulence, andwe derive the co-evolutionary dynamics of host–pathogen
interaction.We choose our parameters such that the disease persists in the system (i.e.,
R0 > 1) at an endemic equilibrium (S∗, I ∗).

3 Co-evolutionary dynamics of host–pathogen interactions

The interaction between host and pathogen drives a co-evolutionary process, and the
long-term behaviour of their interactions may depend on the interplay of evolutionary
traits in both species. Consequently, we assume that host defense will evolve in tandem
with the evolving virulence of the pathogen. Since developing host defenses is costly,
we hypothesize that increased host defense is associated with a decreased rate of host
reproduction b. There are two alternative types of defense: resistance (R) and tolerance
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(T ) (Boots et al. 2009). We consider a combined strategy using these two types of
defense to reduce both the disease-induced mortality α and the transmission rate β.
We model host investment in the immune system as a combined host-defense strategy,
represented by a single phenotypic trait x . Pathogen virulence is represented by a single
phenotypic trait y, and we assume that the transmission rate β and disease-induced
mortality α are positively related to y. Note that y is a genetic trait of the pathogen
only. Furthermore, host investment x and pathogen virulence y have a physiological
maximum, which we denote by xmax and ymax , respectively. The feasible trait region
is denoted by C = [0, xmax ] × [0, ymax ]. Thus, system (1) becomes

dS

dt
= b(x)(S + τ I )(1 − q(S + τ I )) − β(x, y)SI − dS + γ I ,

d I

dt
= β(x, y)SI − (α(x, y) + d + γ )I .

(2)

Physiological considerations suggest that the arbitrary forms of the trade-off functions
b(x), α(x, y) and β(x, y) have the following properties with x, y ∈ C:

(H1) b(x) is a positive function and b′(x) < 0;
(H2) α(x, y) is a non-negative function, α′

x (x, y) < 0 and α′
y(x, y) > 0;

(H3) β(x, y) is a non-negative function, β ′
x (x, y) < 0 and β ′

y(x, y) > 0.

In this context, evolution is modelled as a sequence of steps of trait invasion and
substitution under the assumptions of finitely small and rare mutational events and
clonal reproduction (Vitale and Best 2019). Denote the resident traits as (x, y) and the
mutant traits as (xm, ym). Based Baalen’s method (Baalen 1998), we use the expected
lifetime reproductive success of an individual as the invasion fitness for the mutant
host (see Appendix D for details). We obtain

f1(xm , x, y) = b(xm)(d + α(xm , y) + γ + β(xm , y)I∗(x, y)τ )F(S∗(x, y) + τ I∗(x, y))

(d + β(xm , y)I∗(x, y))(d + α(xm , y) + γ ) − β(xm , y)I∗(x, y)γ
.

If f1(xm, x, y) > 1, the mutant host will increase, and we claim that the mutant
host can invade when the resident is at equilibrium. Note that f1(xm, x, y) |xm=x=
f1(x, x, y) = f1(x, y) = 1.
Further, we use the basic reproduction number of a rare mutant as the invasion

fitness for mutant pathogen (see Appendix D), which is given by

f2(ym, x, y) = β(x, ym)S∗(x, y)
d + α(x, ym) + γ

.

If f2(ym, x, y) > 1, the population density of the mutant pathogen can invade. Note
that f2(ym, x, y) |ym=y= f2(y, x, y) = f2(x, y) = 1. Furthermore, in line with most
evolutionary modelling studies, we assume that invasion implies trait substitution;
namely, the resident is — after a period of epidemic transmission that is short at the
timescale of mutation — monomorphic again, but with a different trait (Geritz et al.
2002).
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Through successive invasion and replacement, the host defense and pathogen vir-
ulence will evolve step by step. The evolutionary direction is determined by the signs
of selection gradients g1(x, y) and g2(x, y), which are

g1(x, y) = ∂ f1(xm, x, y)

∂xm

∣∣∣∣
xm=x

= F(S∗(x, y) + τ I ∗(x, y)) ∗ G(x, y)

((d + β(x, y)I ∗(x, y))(d + α(x, y) + γ ) − β(x, y)I ∗(x, y)γ )2
,

g2(x, y) = ∂ f2(ym, x, y)

∂ ym

∣∣∣∣
ym=y

= S∗(x, y)(β ′
y(x, y)(d + α(x, y) + γ ) − β(x, y)α′

y(x, y))

(d + α(x, y) + γ )2
,

where

G(x, y) = (b′(x)(d + α(x, y) + γ + β(x, y)I∗(x, y)τ ) + b(x)(α′
x (x, y) + β ′

x (x, y)I
∗(x, y)τ ))

× ((d + β(x, y)I∗(x, y))(d + α(x, y) + γ ) − β(x, y)I∗(x, y)γ ) − b(x)(d + α(x, y)

+ γ + β(x, y)I∗(x, y)τ )(β ′
x (x, y)I

∗(x, y)(d + α(x, y))

+ (d + β(x, y)I∗(x, y))α′
x (x, y)).

Rapid rates of sequence change are typically observed when viral evolution is
measured on short timescales; however, on longer timescales, pathogens evolve several
orders of magnitude slower, approaching those of their hosts (Simmonds et al. 2019;
Aiewsakun and Katzourakis 2016). Since the mutant is small and rare, at the slow
time-scale of evolution T we can approximate the expected value of phenotypic traits
(x, y) as (Yang et al. 2022; Vitale and Best 2019)

dx

dT
≈ μx g1(x, y),

dy

dT
≈ μyg2(x, y),

(3)

where μx and μy are positive coefficients that take into account the evolutionary
speed and variance of the mutation process. An evolutionary singular strategy (x∗, y∗)
satisfies g1(x, y) = 0 and g2(x, y) = 0 (Cressman 2010; Christiansen 1991). In
particular, when μx = 0 (resp. μy = 0), only the evolution of virulence (resp. host
defense) is considered; i.e., amono-trait evolution case.We assume that superinfection
does not occur.We linkwithin-host dynamics (3) to between-host dynamics (1) through
co-evolution of pathogen virulence and host defense.

3.1 Continuously stable strategy

Next, we study the convergence stability (CS) and evolutionary stability (ES) of the
evolutionary singular strategy (x∗, y∗).We use the linear approximationmethod (Yang
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et al. 2022) to estimate the convergence stability of the evolutionary singular strategy
in system (3). The Jacobian matrix J at the singular strategy (x∗, y∗) is given by

J (x∗, y∗) =
[
μx

∂g1(x,y)
∂x μx

∂g1(x,y)
∂ y

μy
∂g2(x,y)

∂x μy
∂g2(x,y)

∂ y

] ∣∣∣∣x=x∗
y=y∗

. (4)

The evolutionary singular strategy (x∗, y∗) is locally convergence stable provided that

det[J (x∗, y∗)] = μxμy

(
∂g1(x, y)

∂x

∂g2(x, y)

∂ y
− ∂g1(x, y)

∂ y

∂g2(x, y)

∂x

) ∣∣∣∣x=x∗
y=y∗

> 0,

tr[J (x∗, y∗)] =
(

μx
∂g1(x, y)

∂x
+ μy

∂g2(x, y)

∂ y

) ∣∣∣∣x=x∗
y=y∗

< 0

hold true; i.e., a population with a nearby strategy can be invaded by a mutant that is
even closer to (x∗, y∗) (Smith 1982).

If the evolutionary singular strategy (x∗, y∗) cannot be invaded by any nearby
strategy, this indicates that it is evolutionarily stable (Smith 1982). One can estimate
this by calculating the second-order derivatives of the host and pathogen invasion
fitness functions with respect to the mutant trait (Yang et al. 2022; Zu et al. 2020) as
follows:

∂2 f1(xm, x, y)

∂x2m

∣∣∣∣y=y∗
xm=x=x∗

< 0,
∂2 f2(ym, x, y)

∂ y2m

∣∣∣∣x=x∗
ym=y=y∗

< 0. (5)

An evolutionary singular strategy (x∗, y∗) that is both convergence stable and evolu-
tionarily stable is a continuously stable strategy (CSS) and represents a final endpoint
of the evolutionary process (Zu et al. 2011). For the continuously stable strategy
(x∗, y∗), the monomorphic host and monomorphic pathogen can stably coexist on a
long-term evolutionary timescale. The co-evolutionary process of traits stops when
a continuously stable strategy (CSS) or the extinction boundary of one species is
reached (Geritz et al. 1998). When the singularity cannot be achieved — i.e., it is not
convergent stable — it is referred to as a repeller.

3.2 Specific Trade-Offs

From Eqs. (4)–(5), we can see that whether the singular strategy (x∗, y∗) is a CSS
depends on the curvature of the trade-off function at (x∗, y∗) and the population density
(S∗(x, y), I ∗(x, y)). Under epidemiological considerations, we obtain arbitrary trade-
off forms (H1)–(H3) that are biologically meaningful. To give an example to illustrate
the case of CSS, we take the following general trade-off function:

b(x) = b0
1 + b1x

.
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We choose the simple form of the birth rate b(x); specifically, we choose the coupled
form of transmission rate β(x, y) and disease-induced mortality α(x, y):

β(x, y) = β0

1 + β1e(β2x−β3y)
, α(x, y) = α0yn

1 + α1xn + α2yn
,

whereβ0 is themaximum transmission rate,β1 adjusts the concavity and convexity, and
β2 and β3 are the shape parameters of the function that characterizes the asymmetric
interaction. Note that β(x, y) is a sigmoidal function if β2 = β3, which approaches
a step function as β2 or β3 increases. This function can be suitable for a variety of
asymmetric interactions (Mougi and Iwasa 2010;Yang et al. 2022;Nuismer et al. 2007;
Kisdi 1999). It takes a flexible form that is more consistent with empirical evidence
and is applicable to a wider range of asymmetric host–pathogen interactions (Yang
et al. 2022). The function α(x, y) is a monotonically decreasing (resp. increasing)
function with respect to x (resp. y), where α0 is the maximum mortality rate, α1
weighs the negative effect of host defense on the mortality rate and α2 is the parameter
that measures the saturation effect of virulence. Finally, n is the shape parameter. All
parameters are non-negative.

Note that we consider combined-host strategies; that is, host defense refers to both
resistance and tolerance. When β2 = 0 (resp. α1 = 0), host defense refers only to
tolerance (resp. resistance), a pure strategy. An example illustrating a CSS for host–
pathogen co-evolution is given in Fig. 2. It can be seen from Fig. 2(c)–(d) that natural
selection keeps hosts and pathogens evolving towards the maximal fitness level.

4 Numerical simulations

In the following, numerical simulations are carriedout to illustrate howco-evolutionary
adaptation affects the dynamic behavior of the population sizes and trait values by
changing some parameters of interest.

4.1 Evolutionary cycling

From Theorem 2, it follows that there are no periodic orbits in system (1) at τ = 0.
Thismeans that if the infection completely inhibits recruitment, the number of infected
individuals can be controlled at a stable state, without bifurcations or extreme fluctu-
ations. However, epidemiological feedback on host–pathogen co-evolution may yield
long-term periodic oscillations in traits (Yang et al. 2022; Ashby and Boots 2015) and
consequently in the host equilibrium density, as shown in Fig. 3. The local asymptotic
stability of the evolutionary singularity strategy (x∗, y∗) implies convergence stability.
Mathematically, if the strategy (x∗, y∗) is not convergence stable, then model (3) may
exhibit a Hopf bifurcation; that is, the phenotypic traits may evolve to a stable limit
cycle (see Fig. 3(a)). This suggests that host–pathogen co-evolution may complicate
disease propagation and play a crucial role in disease-transmission patterns.

Further, we examine how the reduction factor τ influences evolutionary cycling
within the remaining parameter range (τ ∈ (0, 1]). As shown in Fig. 4(a), evolutionary
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Fig. 2 Continuously stable strategy of host–pathogen co-evolution. Pairwise invasibility plots (PIP) for (a)
fixed-pathogen-virulence strategy y = y∗ = 0.12 and (b) fixed-host-defense strategy x = x∗ = 0.81.
The blue regions indicate the feasible invasion regions of the invading traits (mutant host defense (a) and
mutant virulence (b)). The dark grey region marks the disease-extinction space. Invasion fitness landscape
of the mutant defense (c) and of the mutant virulence (d) when the resident strategy is (x, y) = (x∗, y∗).
Parameter values are b0 = 0.8, b1 = 0.25, τ = 0.5, q = 0.15, d = 0.005, α0 = 0.5, α1 = 0.5, α2 = 1,
β0 = 0.2, β1 = 1.5, β2 = 1, β3 = 0.4, γ = 0.28, μx = 0.01, μy = 0.1 and n = 2, with initial condition
(x0, y0) = (0.4, 0.6) (color figure online)

cycling does not occur when the reduction τ is relatively small, but it emerges when
τ is increased, resulting in the associated population cycling (see Fig. 4(b)). This
indicates that the lower the degree of recruitment inhibition by infection, the more
likely evolutionary cycling is to occur. Note that the amplitude of oscillations in the
trait value of the pathogen (y) is much larger than that of the host (x) as the host
and pathogen co-evolve, as shown in Fig. 4(a). This difference can be explained by
considering variations in the sensitivity of trait dynamics to epidemiological feedback
between species (Mougi and Iwasa 2010). From an epidemiologic perspective, this
difference, in turn, leads to greater oscillations in the population size of the infected
than in that of susceptibles over the long term (see Fig. 4(b)). The amplitudes of
infected individuals fluctuate the most at an intermediate level of reduction τ (around
τ = 0.6), whereas the amplitudes of susceptibles and traits are relatively insensitive
to variations in τ . This means that, under the influence of co-evolution, if the infection
partially inhibits recruitment, the result may be a wider range of disease fluctuations,
compared to the case of completely unaffected recruitment.
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Fig. 3 Evolutionary cycling for τ = 0. (a) Time series curves of traits x(t) and y(t) obtained though
simulation model (3) with initial condition (x0, y0) = (0.4, 0.6). (b) Corresponding evolving equilibrium
population level of the host (both the susceptible S∗(x, y) and infectious I∗(x, y)) when the traits x and y
co-evolve. Parameter values are b0 = 0.8, b1 = 0.2, q = 0.1, d = 0.00005, α0 = 1.2, α1 = 0.5, α2 = 0.8,
β0 = 0.8, β1 = 2.5, β2 = 2, β3 = 1.55, γ = 0.2, μx = 0.005, μy = 0.1 and n = 2

Fig. 4 Bifurcation diagrams of trait dynamics (a) and corresponding population equilibrium level (b) in
relation to the reduction τ . The points indicate the minimum and maximum values. Parameter values are
q = 0.02, α0 = 0.5, β1 = 2, β2 = 1.85, β3 = 2 and γ = 0.17. Remaining parameters are as in Fig. 3

It should be mentioned that in epidemiological model (1), which does not incor-
porate evolutionary adaptation, numerical simulations show that there is no periodic
solution for τ ∈ (0, 1] under the parameters of Fig. 4. Due to the complex nonlin-
earity, the result of evolutionary cycling is only illustrated by numerical simulation
examples. Next, we focus on CSS strategies (x∗, y∗) to study stable investments in
host–pathogen interaction mechanisms.

4.2 Evolution-driven disease-prevalence patterns

To investigate the role of co-evolution in driving host defense and pathogen virulence
selection, we examine its feedback on disease prevalence P under different ecological
conditions. We have P = I ∗(x∗, y∗)/(S∗(x∗, y∗) + I ∗(x∗, y∗)), where S∗(x∗, y∗)
and I ∗(x∗, y∗) denote the susceptible and infected host equilibrium levels at CSS
strategies (Singh and Best 2023). We first consider the situation as the recovery rate
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γ changes, where an increase in recovery may be attributed to the effects of improved
environmental hygiene, such as improved living conditions enhancing the host’s phys-
iological state. It follows from Fig. 5(a) that the prevalence is a decreasing function of
γ in the absence of host evolution (only pathogen evolution Pv or no evolution Po), but
an increasing function of γ when hosts co-evolve (Pco). This implies that co-evolution
could reverse the disease-prevalence pattern corresponding to the recovery rate γ .

For non-evolving strategies (traits x and y are constants), increased recovery rates
simply indicate that fewer hosts remain in the infected state, thus lowering the disease
prevalence Po; i.e., Po decreases as γ increases.When considering pathogen evolution
only, the pathogen evolves gradually towards higher virulence levels with increasing
recovery rate γ ; i.e., CSS y∗

v is an increasing function in γ (Fig. 5(b)). Increased viru-
lence yields an elevation in transmissibility; however, the resulting higher infectivity
is insufficient to compensate for the shorter duration of infection caused by improved
recovery and disease-induced mortality. Thus the prevalence Pv , despite being main-
tained at a higher level, decreases continuously with increasing γ , consistent with
the no-evolution scenario. When the host co-evolves, we see that both host defense
and pathogen virulence evolve towards lower levels with increasing recovery, but vir-
ulence is maintained at a higher level than the pathogen mono-evolution case. This
implies that host co-evolution could shift the direction of pathogen evolution and cause
an increase in overall virulence levels. Hence, this co-evolution allows increases in
transmissibility and mitigations in disease-related mortality to outweigh increases in
recovery, resulting in an overall increase in prevalence, thereby reversing the disease
pattern corresponding to recovery rates.

When evolution is not considered, an increase in the recovery rate accelerates
the transition of individuals from the infected class (I ) back to the susceptible class
(S), while also decreasing R0. The reduction in R0 indicates that the number of sec-
ondary cases generated by an infected individual during their infectious period in
a fully susceptible population decreases, meaning the inflow of infected individu-
als is reduced. Consequently, the steady-state proportion of infected individuals in
the population also gradually decreases. Therefore, disease prevalence should be a
decreasing function of the recovery rate. However, when co-evolution is considered,
disease prevalence increases with the recovery rate. This means that as the recovery
rate increases, the steady-state proportion of infected individuals in the population
paradoxically increases. Fig. 5 illustrates this phenomenon, where the gray dashed
line decreases as the recovery rate γ increases.

The counter-intuitive phenomenon of prevalence reversal means that any medi-
cation designed to improve recovery without affecting pathogen transmission and
toxicity may result in potentially higher disease prevalence due to host–pathogen
interaction. This is consistent with the conclusions in Gandon et al. (2003, 2001), but
we additionally emphasize the role of host co-evolution in our study. Our results fur-
ther suggest that host evolution could induce selection for highly virulent pathogens
(y∗

co > y∗
v in Fig. 5(b)), indicating that any imposed changes in host-defense med-

ication may risk selection for high virulence. Pathogen evolution is highly sensitive
to that of the host (Best et al. 2009), which could result in the evolution of highly
virulent pathogens (Buckingham and Ashby 2022). There is evidence that the high
immune adaptability of some variants to their host could further enhance infection
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Fig. 5 An illustration of prevalence reversal resulting from co-evolution. (a) Patterns displaying how evolu-
tion drives the disease prevalence P for varying γ with host co-evolution (Pco), without host co-evolution
(Pv , μx = 0) and without evolution (Po, μx = μy = 0). (b) CSS investment variation in (x∗, y∗) as γ

varies with and without host co-evolution. Parameters are as in Fig. 2

Fig. 6 An illustration of prevalence reversal resulting from co-evolution for a varying environment. The
environment was changed by varying (a) the crowding effect q (when d = 0.005) and (b) the natural
mortality rate d (when q = 0.15) with γ = 0.3 fixed. Remaining parameters are as in Fig. 2

(McCallum et al. 2022; Day et al. 2022). Our focus is illustrating that host evolution
could also exert a strong impact on pathogen evolution, yielding unexpected epidemi-
ological scenarios. In Section 4.3, we use numerical simulations to demonstrate two
different transmission patterns, which further illustrates the necessity for considering
this co-evolutionary effect rather than a separate evolutionary effect.

We further examine the case of changing the environment (via varying crowding
effect q and natural mortality rate d). Fig. 6 shows that co-evolution could reverse the
patterns of disease prevalence corresponding to q and d, yielding similar conclusions
as above. This suggests that prevalence reversal may not be an uncommon scenario in
the context of host–pathogen co-evolution. In addition, from Figs. 5 and 6, we found
that considering only the evolution of pathogens may overestimate disease prevalence
(Pv is above Pco and Po). The decline in prevalence is greater under no evolution in all
cases, as shown in Fig. 6. The above results suggest that host–pathogen co-evolution
is closely linked to disease prevalence and that for a better understanding, we need to
take into account this co-evolutionary effect rather than a separate evolutionary one.
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4.3 Two different transmission patterns resulting from co-evolution

We assume that both the transmission rate β(x, y) and the disease-induced mortality
rate α(x, y) are binary functions of host defense x and pathogen virulence y. Over
time, host defense and pathogen virulence co-evolve until the evolutionary process
reaches an endpoint (CSS strategy (x∗, y∗)); consequently, β(x, y) and α(x, y) vary
until stabilization is achieved. The transmission and disease-induced mortality rate
will remain constant for a long time until the external environment changes and re-
stabilizes again. Next, we consider the general scenario where the recovery rate γ

varies and obtain an illustration of the two transmission patterns in Fig. 7.
From Fig. 7(a), we found that the steady-state disease-induced mortality rate

α(x∗, y∗) initially increases with increasing recovery γ (for γ < γ α) but begins
to decline as γ continues rising, forming a concave-down shape. The steady-state
transmission rate β(x∗, y∗) increases with recovery, and its gradient remains positive
but becomes less steep at higher recovery rates. This suggests that altering recovery
may sequentially cause two different transmission patterns, resulting in a reversal of
the prevalence (see Pco in Fig. 7(b)). The biological interpretation for this difference
can be given by the following intuitive explanation.

Initially, the pathogen evolves to compensate for losses due to more rapid removals
by increasing virulence y∗ as recovery increases. Since the virulence is not too high and
the infected host lives long enough to infect new susceptible individuals, pathogens
could benefit. However, with further increments in recovery and virulence, the infected
groups decrease rapidly, and the pathogen is unable to compensate for the decline in
infected hosts through higher virulence, making increased virulence an inappropri-
ate strategy. Hence, increasing virulence is not sufficient to maintain fitness at high
recovery (γ > γ y), and the pathogen would evolve towards lower virulence to reduce
additional mortality instead. Since hosts can contribute to fitness once they return
to the susceptible state, increasing recovery leads to less selection for host defense.
Consequently, with increasing recovery, CSS virulence y∗ is a concave-down shape,
but host defense x∗ is monotonically decreasing (Fig. 7(b)). The predominance of low
virulence and defense results in higher transmission but lower mortality within the
population, leading to prevalence reversal.

The first transmission pattern is both highly infectious and lethal, such as the plague
(Pechous et al. 2016), but is seldom observed. For most emerging pathogens (that have
just crossed species to a new host, such as humans), there is often no history of long-
term co-evolution with the new host. As a result, those pathogens tend to exhibit
relatively high virulence, due to uncontrolled replication and severe tissue damage
in the host, as well as high transmissibility, because of a large amount of replication
and a high amount of virus excretion (Bonneaud and Longdon 2020). However, in the
long term, pathogens that maintain both high transmission and high lethality are less
common (Kun et al. 2023). The second transmission pattern occurs more frequently.
This high-infectivity and low-lethality characteristic, as a universal feature of pathogen
evolution in the long term, is highly conducive to pathogen spread, as observed in the
common cold. Our co-evolutionary framework simulates these two successive modes
of transmission, which, to the best of our knowledge, are not available in related
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Fig. 7 An illustration of how co-evolution induces two transmission patterns for varying recovery rate γ .
(a) Transmission rate β(x∗, y∗) and disease-induced mortality α(x∗, y∗) at corresponding CSS strategies
(x∗, y∗) for varying γ . (b) CSS investment variation in (x∗, y∗) and corresponding disease prevalence Pco
along with varying γ . The vertical dashed lines indicate two thresholds γ α = 0.166 and γ y = 0.1545.
Parameter values are b1 = 0.3, q = 0.1, d = 0.002, α2 = 0.8, β0 = 0.1, β1 = 1.8 and β3 = 1.31.
Remaining parameters are as in Fig. 2

mathematical-modelling studies. The above analysis shows that host–pathogen co-
evolution may be responsible for some specific patterns of transmission; as such, we
need to take this co-evolution into account.

4.4 Impact of host–pathogen co-evolution on hydra effects

From Theorem 3, we see that a disease-induced hydra effect may arise from resource
competition and reduced recruitment (0 ≤ τ < 1) by infectious individuals. There is
a threshold recruitment value of τ for this hydra effect. In the following, we examine
the impact of evolution on the disease-induced hydra effect.

In the absence of evolution, host defense x and pathogen virulence y are con-
stants. The ratio of the endemic population size to the disease-free population size is
N∗(x0, y0)/S0(x0, y0), which we denote as the o-ratio, where (x0, y0) are the initial
resident traits. From Fig. 8(a), we see that a disease-induced hydra effect could arise in
model (2) and that there is no such hydra effect at τ = 0 (pink dot, o-ratio < 1) when
R0 = 3.4279 (β0 = 0.8). We then illustrate in Fig. 8(b)–(c) (grey dashed curve, right
axis) the reduction threshold for the disease-induced hydra effect in the absence of evo-
lution. It shows that o-ratio > 1 only occurs for 0.041 ≤ τ ≤ 0.551. This means that,
without evolution, a disease-induced hydra effect occurs when an infected individual’s
contribution to recruitment is about 4–55% of a susceptible individual’s contribution.
With co-evolution, host defense co-evolves with pathogen virulence until it reaches an
evolutionary endpoint (CSS strategies). When the disease is eliminated, host defenses
decrease to zero, but the pathogen can still evolve further in the environment until
virulence stabilizes. Thus, the ratio becomes N∗(x∗, y∗)/S0(0, ȳ0) when the host and
pathogen co-evolve, denoted as co-ratio N∗/S0, where (x∗, y∗) are the CSS strategies
and ȳ0 is the steady-state pathogen virulence in vitro. It follows from Fig. 8(b) that
co-ratio < 1 in the entire range of τ (the blue solid curve is below 1). This implies
that host–pathogen co-evolution may induce the vanishing of the disease-induced
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hydra effect. Without host evolution, the ratio becomes N∗(x0, y∗
v )/S0(x0, ȳv

0 ), which
we denote as the v-ratio, where y∗

v and ȳv
0 are the CSS strategies in the presence

and absence of disease, respectively. As can be seen in Fig. 8(c), compared to the
no-evolution scenario, the range of τ where the hydra effect can occur is wider in
the absence of host evolution, approximately 0.001 ≤ τ ≤ 0.961 (v-ratio > 1). In
addition, the corresponding change in ratio amplitude increases. This suggests that
considering pathogen evolution alone may overestimate the scope and magnitude of
the disease-induced hydra effect.

Comparing Fig. 8(b) with Fig. 8(c), our results illustrate that host–pathogen co-
evolution may result in the loss of the disease-induced hydra effect, whereas pathogen
mono-evolution strengthens said hydra effect (both the existence range and the mag-
nitude). The pattern shown in Fig. 8 is obtained by assuming that, in the no-evolution
scenario, model (2) does not have a disease-induced hydra effect at τ = 0, but sim-
ilar conclusions are reached even if we choose the presence of such hydra at τ = 0,
shown in Fig. 9, which we achieved by changing the initial resident traits (x0, y0).
In this case, the disease-induced hydra effect occurs at the pink dot when it did not
in Fig. 8(a). Our work emphasizes the potential role of host–pathogen interactions in
epidemic infections, which could lead to different epidemiological effects. Therefore,
taking such co-evolutionary interactions into account is a necessary step towards a
better understanding of disease infection.

5 Discussion

Host–pathogen interactions are a typical co-evolutionary process. Establishing a basic
framework for such co-evolutionary dynamics is therefore essential for a compre-
hensive understanding of evolutionary mechanisms and outcomes. We studied the
co-evolutionary interactions between host defense and pathogen virulence, which are
generallymodelled separately. Various forms of defense have been described in natural
systems and theoretical models, with two main types of defense available: resistance
(R) and tolerance (T ) (Boots et al. 2009). Previously established co-evolutionary
models only consider pure defense strategies like tolerance or resistance, whereas in
practice, host defense is likely to be a combined strategy (both R and T ). There-
fore, based on the theory of adaptive dynamics, we proposed a co-evolutionary
model considering a combined host-defense strategy that affects transmission rate and
disease-induced mortality, in order to describe the host–pathogen system interactions.
The epidemic dynamics are described by an SIS-type model with density-dependent
reproduction. Using this modelling framework, the investment levels in defense and
virulence, as well as their feedback impact on epidemic transmission, we investigated.

We first analysed the existence and local stability of all possible equilibria for epi-
demiological system (1) and then examined the global stability of the equilibria at
specific τ values. Based on adaptive-dynamics theory, explicit analytic expressions
for trait dynamics we derived. We found that the evolutionary outcomes we driven
by multiple factors, depending not only on the shape and strength of asymmetric
host–pathogen interactions but also on the equilibrium population densities of sus-
ceptible and infected hosts. Due to the complex nonlinearity of trait system (3), we
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Fig. 8 An illustration of the vanishing of the disease-induced hydra effect due to co-evolution. (a) Without
evolution, a disease-induced hydra effect occurs for 1 < R0 < 3.3 (τ = 0, varying β0). The pink dot
illustrates the absence of the hydra effect at β0 = 0.8. (b) For varying τ , host–pathogen co-evolution causes
the disappearance of the disease-induced hydra effect (blue solid curve co-ratio N∗/S0 < 1, left axis).
(c) For varying τ , a disease-induced hydra effect occurs for 0.001 ≤ τ ≤ 0.961 without host evolution
(red dashed curve v-ratio, left axis). Without evolution and with R0 = 3.4279 (β0 = 0.8) fixed, the
disease-induced hydra effect only occurs for 0.041 ≤ τ ≤ 0.551 (grey dotted curve in (b)–(c), right axis).
Remaining parameters are b0 = 0.2, b1 = 0.4, q = 0.2, d = 0.0005, α0 = 0.4, α1 = 0.5, α2 = 0.8,
β0 = 0.8, β1 = 1.5, β2 = 1, β3 = 0.4, γ = 0.3 and n = 2. The resident traits are (x0, y0) = (0.6, 0.4),
with initial condition (S0, I0) = (170, 2) (color figure online)

numerically observed evolutionary cycling resulting fromhost–pathogen co-evolution,
which yielded long-term periodic oscillations in infection, even though no cycling was
inherent in the corresponding epidemiological system. Further numerical simulations
showed that evolutionary cycling was more likely when the recruitment of infec-
tion was less inhibited. For variations in the recovery rate, we find that co-evolution
may reverse disease-prevalence patterns, compared to no-evolution or pathogen-only-
evolution scenarios. Notably, with increasing recovery rate, we observe an illustration
of two transmission patterns, whereby the disease is first highly infectious and lethal,
then highly infectious but with low lethality. We theoretically demonstrated that a
disease-induced hydra effect may exist in epidemiological system (1). Numerical sim-
ulations, however, further revealed that host–pathogen co-evolution may lead to the
vanishing of the disease-induced hydra effect, whereas pathogen virulence mono-
evolution strengthens such hydra effect in both range and magnitude. To the best of
our knowledge, there are no detailed studies on the two specific transmission modes or
the vanishing of the disease-induced hydra effect due to host–pathogen co-evolution.
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Fig. 9 An illustration of the vanishing of the disease-induced hydra effect due to co-evolution. (a) Without
evolution, a disease-induced hydra effect occurs for R0 > 1 (τ = 0, varying β0). The pink dot illustrates
the presence of the hydra effect at β0 = 0.8. (b) For varying τ , host–pathogen co-evolution causes the
disappearance of the disease-induced hydra effect (blue solid curve co-ratio N∗/S0 < 1, left axis). (c)
For varying τ , a disease-induced hydra effect occurs for 0.001 ≤ τ ≤ 0.971 without host evolution
(red dashed curve v-ratio, left axis). Without evolution and with R0 = 4.3053 (β0 = 0.8) fixed, the
disease-induced hydra effect only occurs for 0.001 ≤ τ ≤ 0.966 (grey dotted curve in (b)–(c), right axis).
Remaining parameters are as in Fig. 8. The resident traits are (x0, y0) = (0.35, 0.12), with initial condition
(S0, I0) = (170, 2) (color figure online)

We focused on combined host-defense strategies, where resistance (R) and tol-
erance (T ) co-evolve simultaneously with pathogen virulence. However, we did not
address the question of whether there could be a combined continuously stable strat-
egy (CSS). That is, it may be possible to have no CSS with simultaneous investments
to resistance and tolerance, but only pure strategies (only CSS with R or T ) when the
host favours pure strategies instead of combined ones. To do this, we need to establish
host-defense fitness functions for resistance and tolerance (see Appendix E for details)
and investigate the issue further in a host–pathogen co-evolutionary context. We leave
these for future work. Evolutionary branching, where a continuous trait may converge
to a singularity followed by spontaneous splitting of a unimodal trait distribution into
a bimodal – or multimodal – one (Wakano and Iwasa 2013), has been a focus of adap-
tive dynamics research. However, research on evolutionary branching is scarce in the
context of host–pathogen co-evolution, and we did not investigate it in this paper but
will addressed it in a future study.
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Our model has several limitations, which should be acknowledged. We ignored
the difference between the reduction in reproduction and resource competition for
infectious individuals in our model; future work could consider this difference, the
τ1 �= τ2 case. The evolutionary speeds we constant in our model, whereas organismal
mutation rates may vary according to the environment (Duffy et al. 2008). If the
evolutionary speeds are considered variables, the situation is much more complicated.
We confined the host-defense mechanism to avoidance, but such defense mechanisms
are diverse. Therefore, exploring the co-evolution of host and pathogen under different
defensemechanisms in conjunctionwith actual datawill be amatter of further research.

We focused on feedback of host–pathogenmicro-co-evolutionary effects onmacro-
epidemics and vice versa, which generated complex biological scenarios. The main
results obtained in this work indicate that theory could provide novel insights for
future empirical investigations and disease management, given the limited empirical
studies on the co-evolution of host and pathogen. We encourage the need for empir-
ical datasets that explicitly measure recovery rates, especially for highly infectious
diseases. Specifically, the design of medications on host defense and recovery should
be cautious. Further, our work emphasizes that the reduction τ in reproduction and
resource competition for infectious individuals may have important implications for
disease management, since different levels of reduction may contribute to population
cycling and disease-induced hydra effects. This suggests that— for sustained interven-
tions such as improved sanitation or continuous medical interventions that influence
the reduction τ or the recovery γ — decision-makers may need to carefully consider
the proportion of the infected people who receive such interventions.

Appendix A. Existence and local stability of the ecological equilibria

By calculating the spectral radius of the next-generation matrix for model (1), the
basic reproduction number is

R0 = β(b − d)

bq(α + d + γ )
.

By direct calculation, we obtain that the boundary equilibrium E00 = (0, 0) and
disease-free equilibrium E0 = ( b−d

bq , 0) always exists for model (1) for b > d. When
R0 > 1, there is a unique positive equilibrium E = (S∗, I ∗) for model (1), where

S∗ = α + d + γ

β
, I ∗ =

{ (α+d+γ )(b(β−q(α+d+γ ))−βd)

β2(α+d)
, τ = 0

bτ(1−2qS∗)−α−d+√	
2bτ 2q

, τ ∈ (0, 1],
	 = (bτ(1 − 2qS∗) − α − d)2 + 4bτ 2q(bS∗(1 − qS∗) − dS∗).

The stability of these equilibria is obtained by analyzing the Jacobian matrix of system
(1).

J (S, I ) =
(
b(1 − 2q(S + τ I )) − β I − d bτ(1 − 2q(S + τ I )) − βS + γ

β I βS − α − d − γ

)
.
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By simple calculation, the Jacobianmatrix at E00 has two real eigenvalues: (b−d) > 0
and−(α+d+γ ) < 0. This implies that E00 is always an unstable saddle. Similarly, the
Jacobian matrix at E0 has two real eigenvalues: − b−d

b < 0 and β(b−d)
bq − (α +d +γ ).

It is easy to verify that E0 is locally asymptotically stable when R0 < 1 and unstable
when R0 > 1. If R0 > 1, the Jacobian matrix at epidemic equilibrium E∗ has a
positive determinant (det[J (S∗, I ∗)] > 0) and a negative trace (tr[J (S∗, I ∗)] < 0),
where

det[J (S∗, I ∗)] = −β I ∗(bτ(1 − 2q(S∗ + τ I ∗)) − βS∗ + γ ),

tr[J (S∗, I ∗)] = b(1 − 2q(S∗ + τ I ∗)) − β I ∗ − d.

Hence, the real parts of its eigenvalues are negative. Thus, E∗ is the unique stable
equilibrium of the system when R0 > 1 holds.

Appendix B. Global stability of the ecological equilibria at specific �
values

To show the global stability of system (1) at τ = 0, denote the right-hand side of the
S and I equations in system (1) by P and Q, respectively. Taking the Dulac function
as B(S, I ) = 1

SI , we obtain

∂(BP)

∂S
+ ∂(BQ)

∂ I
= −bq

I
− γ

S2
< 0

for all S > 0 and I > 0. Applying the Dulac–Bendixson Theorem (Dumortier et al.
2006), we can rule out the existence of periodic orbits and homoclinic loops for system
(1). Since E0 is the only locally asymptotically stable equilibrium when R0 < 1 and
E is the only locally asymptotically stable equilibrium when R0 > 1, it follows that
E0 and E are globally asymptotically stable when R0 < 1 and R0 > 1, respectively.

For τ = 1, we have dN/dt = bN F(N ) − dN − α I ≤ N ((b− d) − bqN ). Direct
calculation yields

N (t) = (b − d)e(b−d)t+(b−d)c

1 + bqe(b−d)t+(b−d)c
.

Hence, we obtain N (t) ≤ (b−d)/bq. To show the global stability of E0, we consider
the following Lyapunov function: V (I ) = I (t).The time derivative of V (I ) computed
along solutions of system (1) is
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dV

dt
= (βS − α − d − γ )I

≤ (α + d + γ )

(
β(b − d)

bq(α + d + γ )
− 1

)
I

= (α + d + γ )(R0 − 1)I .

As all parameters are positive, it follows that dV /dt ≤ 0 for all I (t) ≥ 0 with
dV /dt = 0 only at I (t) = 0 when R0 < 1. Applying LaSalle’s Invariant Principle
(Dumortier et al. 2006), we have lim

t→∞ I (t) = 0. Hence, E0 is a global attractor of

system (1) when R0 < 1.

Appendix C. Existence conditions for the disease-induced hydra effect

Recall the assumption that reduction in reproduction and resource competition for
infectious individuals are the same, denoted by τ . Infectious diseases may completely
unaffect (τ = 1), completely inhibit (τ = 0) or partially inhibit (τ ∈ (0, 1)) recruit-
ment. Here, we discuss the existence of the disease-induced hydra effect and the
sufficient conditions required for its existence in each of the above three cases. Note
that the unique endemic equilibrium (S∗, I ∗) exists if the basic reproduction number
R0 > 1, where R0 = βS0/(d + α + γ ). Denote N∗ = S∗ + I ∗. For the first case
(τ = 1), we have

bN∗F(N∗) = dN∗ + α I ∗ > dN∗ = bF(S0)N
∗ ⇒ F(N∗) > F(S0).

Since F(x) is a monotonically decreasing function, we obtain N∗ < S0. This implies
that there is no disease-induced hydra effect in system (1) when τ = 1.

For the second case (τ = 0), simple calculation yields

N∗ = S∗(bF(S∗) + α)

d + α
and

∂S∗

∂R0
= − S0

R2
0

.

Differentiating N∗ with respect to R0 gives

∂N∗/∂R0 > 0 ⇔ d

dS∗ [S∗F(S∗)] < −α

b
.

This implies that the existence of disease-induced hydra effect requires an overcom-
pensatory recruitment; i.e., d

dS (bSF(S)) < 0 for some interval (Jaramillo et al. 2022).
It is easy to verify that the resource competition among hosts in epidemiological
model (1) yields overcompensatory recruitment. That is, the disease-induced hydra
effect could occur in system (1) when τ = 0.

Next, we consider the third case (τ ∈ (0, 1)). Recall that we want conditions where
the endemic equilibrium is greater than the disease-free equilibrium; i.e., N∗ > S0
when R0 > 1. Thus, wewant 2τ 2bqS∗+(bτ(1−2qS∗)−α−d+√	) > 2τ 2(b−d),
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where 	 = (bτ(1 − 2qS∗) − α − d)2 + 4bτ 2q(bS∗(1 − qS∗) − dS∗) > 0. For this
inequality to hold, it is sufficient to have

2(bqS∗ − b + d)τ 2 + b(1 − 2qS∗)τ − (α + d) > 0. (6)

We can verify that the left-hand side of inequality (6) is a downward-facing quadratic
functionwhen R0 > 1 (bqS∗−b+d < 0). This shows that inequality (6)mayhold only
if the downward-facing quadratic function has two eigenvalues with τb < τt < 1 and
τt > 0. That is, we need to restrict 	̄ = b2(1−2qS∗)2+8(α+d)(bqS∗ −b+d) > 0.
The interval of validity is τ ∈ (max{0, τb}, τt ). Further, we can verify that τt < 0when
2qS∗ > 1. Thus, we need to constrain 2qS∗ ≤ 1. Simple calculation gives

τt = b(1 − 2qS∗) +
√

	̄
4(b − d − bqS∗)

> 0, τb = b(1 − 2qS∗) −
√

	̄
4(b − d − bqS∗)

.

When 2qS∗ = 1, the interval of validity is τ ∈ (0, τt ); when 2qS∗ < 1, the interval
of validity is τ ∈ (τb, τt ). Note that we need 2d < b to ensure that τt < 1. Sufficient
conditions for the existence of the disease-induced hydra effect in epidemic system
(1) are summarized in Theorem 3.

Appendix D. Invasion fitness of mutant host andmutant pathogen

To analyze the dynamic process of co-evolution, we assume for the sake of simplic-
ity that mutations are minor and rare and that the host and pathogen cannot mutate
simultaneously. The basic reproduction number R0 represents the expected number
of secondary cases produced by a typical infected individual during his/her infectious
period in a fully susceptible population. For pathogens, the goal is to maximize their
population size, which at the macro level translates to infecting as many individuals
as possible. Therefore, using R0 as the fitness for the pathogen is appropriate. For
the host (including both susceptible and infected individuals), fitness must account for
both groups rather than just the susceptible population. Thus, we use expected lifetime
reproductive success (ELRS) as the fitness for the host. ELRS quantifies the expected
number of offspring that the host (both susceptible and infected) can produce over
their lifetime, making it a reasonable choice for host fitness.

First, we consider the presence of mutant hosts. Note that the host fitness function
must include two reproductive phases: uninfected and infected. Consider the mutant
host with traits (b(xm), α(xm, y), β(xm, y)) that tries to invade the resident host (b(x),
α(x, y), β(x, y)) set at its equilibrium (S∗(x, y), I ∗(x, y)). The mutant dynamics are
given by the system

dSm
dt

= b(xm)(Sm + τ Im)F(S∗(x, y) + τ I ∗(x, y)) − β(xm, y)Sm I
∗(x, y)

− dSm + γ Im,

d Im
dt

= β(xm, y)Sm I
∗(x, y) − (α(xm, y) + d + γ )Im .
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Let pS(t) and pI (t) be the respective probabilities of remaining in the uninfected and
infected states; i.e., the proportions of uninfected and infected mutant hosts relative
to the initial mutant host density at time t (Baalen 1998). Further, we have

d �p
dt

= Am �p(t),

where

Am =
(−β(xm, y)I ∗(x, y) − d γ

β(xm, y)I ∗(x, y) −d − α(xm, y) − γ

)
,

�p(t) =
(
pS(t)
pI (t)

)
and �p(0) =

(
1
0

)
.

The expected time spent in either state is given by the following expression:

∫ ∞

0
�p(t)dt = −A−1

m · �p(0), (7)

which sum to the expected longevity of the host (Baalen 1998). Note that the birth
rate vector �bm is given by

�bm = (
b(xm)F(S∗(x, y) + τ I ∗(x, y)) τb(xm)F(S∗(x, y) + τ I ∗(x, y))

)T
.

The mutant host fitness f1(xm, x, y) is defined as the scalar product of vector (7) and
the vector of birth rates �bm . If f1(xm, x, y) > 1, the population density of the mutant
host will increase, and we claim that the mutant host can invade. It is easy to verify
that f1(xm, x, y) |xm=x= f1(x, x, y) = f1(x, y) = 1.

Next, suppose amutant pathogenwith different virulence ym enters into the resident
community at low density. Denote the individual infected by the mutant pathogen as
Im . The resident-mutant population dynamics becomes

dS

dt
= b(x)(S + τ I + τ Im)F(S + τ I + τ Im)

− (β(x, y)I + β(x, ym)Im)S − dS + γ (I + Im),

d I

dt
= β(x, y)SI − α(x, y)I − d I − γ I ,

d Im
dt

= β(x, ym)SIm − α(x, ym)Im − d Im − γ Im .

(8)

The stability of the boundary equilibrium Eb(S∗(x, y), I ∗(x, y), 0) determines
whether the mutant pathogen can successfully invade or not (Yang et al. 2022). The
Jacobian matrix associated with the linearization for model (8) at Eb is

J (Eb) =
(
Jres J12
�0 Jmut

)
,
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where

Jres =
(
b(x)(1 − 2q(S + τ I )) − β(x, y)I − d τb(x)(1 − 2q(S + τ I )) − β(x, y)S + γ

β(x, y)I β(x, y)S − α(x, y) − d − γ

)
,

J12 = (τb(x)(1 − 2q(S + τ I )) − β(x, ym)S + γ, 0)T , �0 = (0, 0),

Jmut = β(x, ym)S∗(x, y) − d − α(x, ym) − γ.

Since the endemic equilibrium (S∗(x, y), I ∗(x, y)) of model (1) is asymptotically
stable, the local stability of Eb is determined by the single eigenvalue of Jmut . If
Jmut > 0, then the population density of mutant pathogen will increase. Note that the
expected number of secondary cases produced by a single host infected by this mutant
over its entire infectious period (Gandon et al. 2001) is given by

R0[ym, x, y] = β(x, ym)S∗(x, y)
d + α(x, ym) + γ

.

Since Jmut > 0 ⇔ R0[ym, x, y] > 1, the mutant pathogen fitness f2(ym, x, y) is then
defined as R0[ym, x, y]. If f2(ym, x, y) > 1, we claim that the mutant pathogen can
invade. Simple calculation yields f2(ym, x, y) |ym=y= f2(y, x, y) = f2(x, y) = 1.

Appendix E. The invasion fitness of resistance and tolerance

For simplicity, we assume that the pathogen virulence has reached the evolutionary
endpoint (CSS, y = y∗ fixed). If host defense refers to resistance only and we restrict
the scope to avoidance case— i.e., host resistance results in reduced transmission rates
— the trade-off functions become b(xr ), β(xr , y) and α(y). Epidemiologically, the
non-negative trade-off functions satisfy (H1), (H3) and α′(y) > 0 for all xr , y ∈ C..
The invasion fitness for the mutant host is

fr (x
r
m , xr , y) = b(xrm)(d + α(y) + γ + β(xrm , y)I∗(xr , y)τ )F(S∗(xr , y) + τ I∗(xr , y))

(d + β(xrm , y)I∗(xr , y))(d + α(y) + γ ) − β(xrm , y)I∗(xr , y)γ
.

Similarly, if the host defense refers to tolerance only, the trade-off functions become
b(xt ), β(y) and α(xt , y), which satisfy (H1)–(H2) and β ′(y) > 0 for all xr , y ∈ C..
The invasion fitness for the mutant host is

ft (x
t
m , xt , y) = b(xtm)(d + α(xtm , y) + γ + β(y)I∗(xt , y)τ )F(S∗(xt , y) + τ I∗(xt , y))

(d + β(y)I∗(xt , y))(d + α(xtm , y) + γ ) − β(y)I∗(xt , y)γ
.

The evolutionary dynamics of host traits (xr , xt ) is given by

dxr

dT
≈ μr gr (x

r , y),

dxt

dT
≈ μt gt (x

t , y),
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where

gr (x
r , y) = ∂ fr (xrm, xr , y)

∂xrm

∣∣∣∣
xrm=xr

, gt (x
t , y) = ∂ ft (xtm, xt , y)

∂xtm

∣∣∣∣
xtm=xt

.

For the next step, we need to consider pure and combined host-defense strategies in
the context of host–pathogen co-evolution. We leave these for future work.
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