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Abstract Impulsive differential equations are a useful tool for assessing timeliness
of regular interventions, but the question of stochasticity in the timing and nature
of the impulses has not been investigated. We use a previously published model
of malaria as a baseline to investigate varying three key parameters: the time of
the impulse, the duration between impulses and the degree of effectiveness of the
impulse. Surprisingly, themodel remains impervious tomost biologically reasonable
variations. However, we also showed that some extreme theoretical possibilities—
such as very small durations or impulses that go backwards in time—can lead to
unexpected outcomes. The malaria model can withstand large stochastic variations
in the impulse parameters, suggesting that impulsive differential equations are fairly
robust, at least when the virulence of the disease is high.

Keywords Malaria · Impulsive differential equations · Stochasticity

1 Introduction

Impulsive differential equations are a useful tool for including semi-discrete effects
that describe short interruptions to a continuous process [1, 2]. The duration of such
interruptions is assumed to be negligible, which is a reasonable assumption when
the cycle time is large compared to the duration of the impulsive approximation [3].
Impulsive differential equations are characterised by two key factors: the time of the
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impulse and the strength of the impulsive effect. Either of these could be subject to
variations, perhaps significantly.

Stochasticmodels, thoughmore complex than their deterministic counterparts, are
more realistic and asymptotically tend to their deterministic cousins [4]. Stochastic
models lead to varying, non-equilibrium outcomes, can hasten disease extinction and
result in resonance oscillations [5]. Stochastic effects have been widely investigated
in continuous differential equations, but investigation of the impact of stochasticity
on the thresholds of semi-discrete modelling is limited, and very little work has
been done on the comparison between continuous and semi-continuous systems in
a stochastic context. We use an impulsive malaria model as an example in order to
investigate this problem.

Malaria is an infectious disease transmitted to humans primarily by the bite of
female mosquitos of the genus Anopheles infected by a parasite of the genus Plas-
modium [6, 7]. The mild symptoms present as fever, chills, headaches and respira-
tory difficulties, whereas the more severe symptoms include jaundice, kidney failure,
impaired consciousness and abnormal bleeding [6, 7, 9]. The resulting infection in
humans can be entirely curable and preventable when addressed early and effec-
tively [6]. Nonetheless, the burden of the disease in African countries causes numer-
ous fatalities, particularly in pregnant women and children under five [7, 9]. As of
2021, 50% of the world population was at risk of malaria, but 95% of the 247 million
cases and 96% of the 619 000 deaths were in the African region. The predominant
microorganism in Africa, P. falciparum, causes more severe cases of malaria and
thrives in the local climate year-round. Poor access to resources and unstable socio-
economic conditions render preventative strategies hard to implement consistently
and effectively. The COVID-19 pandemic significantly increased the malaria burden
in 2020 and 2021 in Africa, due to interruptions in control measures [8]. Countries
with higher gross domestic product (GDP) benefit from high-quality intervention
and infrastructure, which reduces their malaria incidence compared to countries
with lower GDPs [10, 11].

Malaria prevention and control strategies that are cost-effective and easily imple-
mented are urgently needed to combat the severe consequences in public health and
the economy that have been present for decades already inAfrica [12]. Vector-control
strategies, such as long-lasting insecticide-treated nets (LLINs) and indoor residual
spraying (IRS), are effective against malaria transmission and a manageable and sus-
tainable option for many African communities [13]. IRS has had a significant impact
worldwide in the GlobalMalaria Eradication Campaign [7]. IRS is effective in unsta-
ble malaria conditions [14]: a meta-analysis concluded that when IRS is reapplied
consistently and includes DDT (dichloro-diphenyl-trichloroethane), it could reduce
risk of malaria by 65%, [10]. These strategies show a lowered incidence of malaria
despite a minor effect on prevalence, resulting in the need for increased research in
vector-control strategies [13].

Mathematical modelling of malaria is a crucial tool to help optimise management
strategies by making predictions. The first model for malaria was developed by Ross
in 1911, where humans can move from the susceptible to the infected state and back
to the susceptible state (SIS), and where mosquitos only move from susceptible to
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infected (SI) [15]. In 1957, the Ross model was modified by Macdonald to include
the incubation period for the parasite to make a mosquito infectious, thereby fol-
lowing an SEI framework for mosquitos, where an individual must go through the
exposed state before reaching the infected state [16]. Anderson and May improved
the model by adding an exposed category to the humans, following an SEIS model,
in addition to the mosquitos following an SEI model [17]. The increased complexity
fromRoss’s initial model led to a decrease in the reproductive ratio (R0), which leads
to lower prevalence in the long term [18]. R0 represents the number of cases that
result from one infected individual and is an important indicator used to compare
interventions [19]. In search of effective eradication techniques, more complex mod-
els have been developed based on the Ross–Macdonald and Anderson–May models
to include various socio-economic, demographic, geographic and environmental fac-
tors, although no model can be exhaustive due to the enormous complexity of the
malaria dynamics [18, 20]. The idea that lowering mosquito numbers below a cer-
tain threshold can control malaria was first brought up by Ross and is the basis of
disease modelling today [15, 18, 20]. The early Ross–Macdonald model focused on
adult female mosquitos as the most effective target, which led to the implementation
of IRS as a large-scale effort [18, 20]. In order to effectively apply these concepts
to dynamic and unpredictable populations where known techniques are insufficient,
more recent models have included stochasticity, which was not included in the earlier
models and can provide more realistic predictions [20, 21].

Previously, we used a system of impulsive differential equations to determine the
ideal intervals to apply IRS, providing valuable insight to better benefit from IRS [22].
However, this model excludes stochastic noise in the impulses, which may alter the
results over a long-term period. This variation may come from irregular application
of insecticides, the delay in reapplication of IRS and the quality of the sprayed
insecticide. Even with optimistic outcomes from modelling, results will be worse
than expected when there is a lack of resources and awareness [23]. Furthermore,
vector-control strategies are strongly influenced by the local population size and
ecology, so an IRS frameworkmay not be compatible fromone region to another [24].
Studying the modelling of IRS, including various degrees of randomness within
key parameters, will lead to further comprehension that better represents the reality
of communities with insufficient infrastructure in order to explore the accuracy of
malaria predictions.

2 The Model

We use the model from Smith? and Hove-Musekwa as our baseline [22]. This
baseline model is built on the biological interactions between the different classes
of humans and mosquitos. The system of differential equations includes susceptible
(S), infected (I) and recovered (R) humans, as well as susceptible (M) and infected
(N) mosquitos. Humans recover without immunity at rate h or become immune
temporarily at rate α before returning to the susceptible state at rate δ. A susceptible
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Fig. 1 A schematic
representation of the malaria
model (1). This illustration
excludes the birth and death
rates for clarity
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individual is infected at rate βH , and susceptible mosquitos are infected at rate βM .
π is the human birth rate, μH is the human background death rate, γ is the human
death rate from malaria, � is the mosquito birth rate, and μ is the mosquito death
rate. The model is illustrated in Fig. 1 and given by the following set of differential
equations:

dS

dt
= π − βH SN + hI + δR − μH S,

d I

dt
= βH SN − hI − α I − (μH + γ )I,

dR

dt
= α I − δR − μH R, (1)

dM

dt
= � − μM − βMM I,

dN

dt
= βMM I − μN .

Finally, we add impulses that represent the addition of insecticide via the IRS
strategy. We can do this by adding conditions where the addition of insecticide
removes both susceptible and infected mosquitos at a rate r (where 0 ≤ r ≤ 1) for a
given time of application tk (k = 0, 1, 2, 3, ...). Therefore, immediately following a
spraying event, the system undergoes the impulsive conditions [22]:

�M = −rM−,

�N = −r N−.
(2)

When t = tk , �M = M+ − M−, where M− ≡ M(t−k ) and M+ ≡ M(t+k ). The
period between impulses is defined as τ ≡ tk+1 − tk (assumed constant at baseline).
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3 Numerical Simulations

For theoretical analysis of the baseline model (1), see Smith? and Hove-
Musekwa [22]. Here, we ran numerical simulations with different degrees of ran-
domness in three relevant parameters in order to analyze the resulting behavioural
patterns.

The system of differential equations with the impulses representing regular IRS
is represented graphically in Fig. 2. Here, regular spraying is applied four times a
year for five years where the recovered humans (in red) stabilise as the majority.
Under perfect conditions, this model predicts that with the IRS strategy, malaria is
still occurring but is kept at a moderate level. The mosquito populations have consid-
erable overlap during the impulses, but the overall trend is that the infected mosquito
population size is larger than the susceptible mosquito population. The human popu-
lations havemuchmore distinction, where the recovered human population stabilises
as the largest size, followed by the infected humans and then susceptible humans as
the smallest group. None of the human populations overlap during the impulses,
except in the first instance where the initial susceptible and infected populations
trend downwards and the recovered population trends upwards. The range of the
impulses in the three human populations is smaller than that observed in the two
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Fig. 2 Regular IRS spraying. Green represents susceptible individuals, blue represents
infected individuals, and red represents recovered individuals. The values used are � = 1000
mosquitos×years−1; μ = 1/7.3 days−1; βM = 0.05 mosquitos−1×days−1; α = 1/8 days−1; h =
1/9 days−1; βH= 0.5 humans−1×days−1; π= 100 humans×days−1; γ= 1/20 days−1; δ= 1/30
days−1; μH= 1/30 years−1
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mosquito populations. We want to describe the effect of randomness on the model
to see whether or not the outcome changes. We will modify three parameters: the
impulse period τ , which translates to irregular spraying; t0, representing the time
delay between the application of the spray and when it begins to have an effect; and
r , which represents the variability in the effectiveness of the insecticide.

3.1 Individual Randomness

First, we examine each parameter’s role in the model. In Fig. 3, the parameters τ ,
t0 and r were assigned a random value between zero and one. In Fig. 3a, the effect
of irregular spraying is observed. The overall trends of each population remain the
same as in Fig. 2, but the impulses occur at irregular intervals. The possible activation
delay of the insecticide is shown in Fig. 3b. Once again, each population stabilises
similarly to the regular model (Fig. 2), but the time to produce 20 impulses increases
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(a) τ only
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Fig. 3 Isolated stochastic behaviour in τ , t0 and r between 0 and 1
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due to the delay in reaching the maximum at each impulse. In Fig. 3c, the minimum
value of each impulse varies, representing the variation in the effectiveness of the
insecticide, where impulses with higher minimum values leave a larger proportion
of mosquitos alive. Nonetheless, each population stabilises at the same values as
predicted by the regular model (Fig. 2).

3.2 Combined Randomness

Next, we want to combine the randomness of the three parameters. Initially, we pre-
dict that randomness translates to irregular spraying and that unreliable insecticides
will have a long-term negative impact on population survival. However, as we see
in Fig. 4, where τ , t0 and r were assigned a random value between zero and one
simultaneously, the outcome repeats the patterns of Fig. 2. Despite some impulses
being substantially different from the regular impulses, the population size returns to
the same equilibrium value in every case. We see that in some instances, for example
in Figs. 4d–e, the mosquito population is close to zero, which we had hypothesised
would substantially affect the population dynamics, but, due to the nonzero birth
rate, the model regains stability.

3.3 Large Randomness

Randomness between 0 and 1 did not appear to have a significant effect on the overall
trends of the impulsive model, so we next tried simulations with a larger range for
τ and t0, where the value can be greater than one. Figures5 and 6 show that there is
some difference in the time scale and some larger deviations from the regular model,
but the result remains very similar to Fig. 4. The outstanding trends and stabilities of
each group follow the regular model, and we see that the model is very resistant to
the randomness.

3.4 Restricted Randomness

We return to the range of biologically relevant values by adding randomness in a
more localised manner. The biological ranges of the three variables are not equal,
so we want to better reflect how stochasticity is incorporated into communities by
adding randomness around a set value. Instead of a random value between 0 and 1, r
and t0 now have a value of 0.5 plus a random value between 0 and 0.5, whereas τ has
a value of 0.25 plus a random value between 0 and 0.5. These numbers are chosen
based on the model represented in Fig. 2, where r = 0.85, t0 = t f and τ = 0.25. This
simulation will more closely depict a situation that might happen biologically, so we
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Fig. 4 Combined stochastic behaviour of τ , t0 and r between 0 and 1
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Fig. 5 Combined and isolated stochastic effect for τ and t0 between 0 and 5 and r between 0 and 1

can make some more relevant conclusions. In Fig. 7, we see similarly to the previous
simulations that there is little overall effect from the addition of randomness.

3.5 Small Randomness

In order to understand the full scope of themodel, we next assigned τ , r and t0 random
values between 0 and 0.2. These values have no biological meaning, but we can learn
more about the model by looking at the full range of possible values. In Fig. 8, we see
for the first time a large deviation from the regular model. There is a clear distinction
between the infected and susceptible mosquito populations instead of an overlap, and
the recovered humans take longer to reach equilibrium. Nonetheless, the stability of
recovered humans and infected mosquitos mirrors all the previous cases.
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Fig. 6 Combined stochastic behaviour for τ and t0 with large intervals and r between 0 and 1

3.6 Extreme Values

Finally, we consider what happens when we set the parameters to zero and infinity.
So far we have only seen one possible outcome, so we will look at the range of
all possibilities to see if there is a change at any point. First, we set the parameters
to infinity (Fig. 9), and we see, as expected, that the model has one impulse and
approaches the equilibrium values quickly. In Fig. 10a, we see that r set to zero and
τ set to 0.25 provide the same outcome as in Fig. 9. In Fig. 10b, we have a more
interesting result with τ . This parameter cannot be set to zero, because that would
represent all impulses happening simultaneously, so we arbitrarily choose a value of
10−6. (Note that the impulsive assumptions break down for τ small, so this is merely
a theoretical exercise.)
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Fig. 7 Combined stochastic behaviour for τ between 0.25 and 0.75 and t0 and r between 0.5 and 1

The outcome is very different from any of the previous models: the mosquito
population quickly dies out, and the susceptible humans are the majority at equilib-
rium. When we combine the two, in Fig. 10c, we see both the infected mosquitos
and humans are the overarching majority, but the model does not seem to reach an
equilibrium within 20 impulses.

In Fig. 11,we set r to zero and t0 = t f to look at the effect of τ over 5000 repetitions.
We can see that a switch occurs between τ = 10−6 (Fig. 11c) and τ = 10−5 (Fig. 11d),
where the equilibrium changes from amajority of infected individuals remaining to a
majority of recovered individuals remaining. If we increase the value of τ further, the
model increasingly resembles Fig. 9.We can also see that decreasing the value of τ , as
in Fig. 11a, leads to recovered and infected humans at zero and susceptible individuals
remaining; the opposite occurs for mosquitos, with susceptible individuals at zero
and only infected individuals remaining.

So far, we have set t0 = t f , but we can continue our analysis of the parameters
by including randomness in tk+1. In this case, time can go backwards because the
impulse at tk+1 can occur before the impulse at time tk . In Fig. 12, we can see that
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Fig. 8 Combined stochastic behaviour for τ , t0 and r between 0 and 0.2

at zero (10−10 for τ ), infected and recovered humans are at zero and susceptible
humans are at the initial values. In Fig. 12b–f, we see the model converge towards
the regular model as we increase the value of the parameters. In this scenario, time
can move backwards (due to the nature of the impulses), so this is only performed
as a theoretical exercise.

4 Discussion

Models using impulsive differential equations often exclude stochasticity for con-
ciseness or simplicity. However, these small disruptions have the potential to change
the outcome entirely when considering whether a disease will die out or become
endemic. The results of the various degrees of randomness in the malaria model
presented in Figs. 3, 4, 5, 6 and 7, regardless of the amount of randomness added,
maintain the same overall trends, and the different populations consistently stabilise
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Fig. 9 Parameters set to infinity

around the same equilibrium values. The main difference observed in Figs. 5c and
6 is the increase in time required to produce 20 impulses. This change is due to
higher values in tk+1. This correlates to the insecticides requiring multiple years to
take effect, which is not a realistic scenario, but we can still conclude that the model
can withstand large variations and make the same predictions as the regular model
(Fig. 2). Also, it can be concluded that the mosquito populations are more affected
by the variation in the parameters. Figure8 shows a significant disturbance in the
outcomes; however, this is due to the values of the parameters tk+1, τ and r being
small, not due to the randomness. In Fig. 8, the parameters are constrained to values
between 0 and 0.2, which changes the meaning of the model. We can conclude that
the small values have local effects on the model that can be counteracted by higher
values when the range of randomness is larger, but when constrained to a small inter-
val, the model loses its stability. Figures3, 4, 5, 6 and 7 demonstrate the resilience
in the model.

The various numerical simulations exploring the effects of variability in the
malaria model retained the same general trends as the original model. When we
added increasing degrees of randomness to the parameters τ , tk+1 and r , the equi-
librium of the different proportions within the mosquito and human populations
remained similar. Infected mosquitos stabilise higher than susceptible mosquitos,
with large overlapping impulses. Recovered humans stabilise at the highest value,
followed by infected and susceptible humans; all three categories are distinct and do
not overlap.
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(c) r = 0 and τ = 0

Fig. 10 Individual and combined behaviour for r equal to 0 and τ approaching 0

It should be noted that despite large variation in randomness for the impulsive
effect, the mosquitos largely persist, even in extreme cases, with the exception of
Fig. 10b. This exception is due to the fact that τ ≈ 0, so that mosquitos are eradicated
instantaneously. In all other cases, themosquito population persists. This is due to the
virulence of malaria-infected mosquitos in this model, with an R0 value of 12 × 106.
(Note that these data match those in the previously published paper [22].) This is an
extreme case for an exceptionally virulent disease, whereas diseases with smaller R0

values may be more susceptible to stochastic effects from varying the impulses.
These findings can be useful in further studies on vector-control strategies for

malaria, where the model excluding the variations can be used and still be applicable
in communities where perfect conditions may not occur. This justifies the lack of
stochasticity, because the model output is not easily disturbed by variability in the
τ , tk+1 and r parameters.

Although our results imply stability, it is difficult to say how the local disturbances
in models translate biologically. For example, the iteration in Fig. 4b has a local
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(b) τ = 10−7
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(c) τ = 10−6
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(d) τ = 10−5

Fig. 11 Small values of τ

plateau in the infected mosquito population, where none of the mosquitos have been
eliminated by the insecticide after multiple years. Although the associated human
population graph is not affected, the outcomemay not reflect biological reality. There
may be additional cultural or economic factors that influence malaria dynamics that
are not included in the model. We also explored strategies that disturb the impulsive
assumptions and involve backward time, which are not realistic but nevertheless
provide further insights into the issue of randomness in the key parameters. Further
studies on the effect of randomness on other malaria control and prevention schemes
would be useful to understand how our results could apply to different strategies and
where randomness might play a critical role in disease outcomes.
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(a) r = tk+1 = 0, τ = 10−8 (b) r = tk+1 = τ = 10−4
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(c) r = tk+1 = τ = 0.01
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(d) r = tk+1 = τ = 0.3
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0 1 2 3 4
Time (Years)

0

5

10

15

20

25

P
op

ul
at

io
n 

S
iz

e

Mosquitos

0 1 2 3 4
Time (Years)

0

5

10

15

20

25

P
op

ul
at

io
n 

S
iz

e

Humans

(f) r = tk+1 = τ = 0.8

Fig. 12 Increasing the value of the parameters from zero
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