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A B S T R A C T

Self-cycling fermentation is an automated process used for culturing microorganisms. We
consider a model of 𝑛 distinct species competing for a single non-reproducing nutrient in a self-
cycling fermentor in which the nutrient level is used as the decanting condition. The model is
formulated in terms of impulsive ordinary differential equations. We prove that two species are
able to coexist in the fermentor under certain conditions. We also provide numerical simulations
that suggest coexistence of three species is possible and that competitor-mediated coexistence
can occur in this case. These results are in contrast to the chemostat, the continuous analogue,
where multiple species cannot coexist on a single nonreproducing nutrient.

. Introduction

Self-cycling fermentation (SCF) is a technique used to culture microorganisms. In this process, a tank is filled with a liquid
edium that contains all the nutrients required for microbial growth. The medium is inoculated with microorganisms that use the
utrient to grow and reproduce. The contents of the tank are carefully monitored by a computer, and when predefined conditions
called the decanting criteria) are met, the computer then instigates a rapid emptying and refilling process, called a decanting
rocess. During the decanting process, a set fraction of the contents of the tank is removed and replaced by an equal volume of
resh medium. Once the fresh medium has been added to the tank, the process begins anew, with the microorganism consuming
he new medium until the decanting criteria are met again. Under the right conditions, this cycling continues indefinitely, and the
rocess does not require an operator or any estimate of the natural cycle time of the microorganisms in advance.

SCF was originally developed as a method to cultivate synchronized cultures of bacteria; i.e., cultures in which all cells are the
ame age [1,2]. The process quickly found use in wastewater treatment [3–5], where the decanting criteria could be set so that
he treated medium conformed to standards set by environmental-protection agencies. A two-stage variation on the SCF process
as been used for bacteriophage cultivation [6]. Bacteriophages have been identified as useful biomedical tools, not only in the
pplication of phage therapy [7] but also in bacterial control [8] and the production of recombinant proteins for drug delivery [9].
CF has also shown promise as a method to produce some biologically derived compounds such as shikimic acid [10], which is an
mportant component of the antiviral drug Oseltamivir, and cellulosic ethanol [11,12], which is a type of biofuel produced from
therwise unusable plant fibres.

The original model of SCF was developed using the dissolved oxygen concentration as the decanting condition [13]. The nutrient-
riven process, which uses a value of the nutrient concentration as the decanting condition, has been analysed more thoroughly. The
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initial model of the nutrient-driven SCF process [14] was used to determine an optimal decanting fraction to maximize fermentor
throughput under the assumption that the fermentor was being used for wastewater treatment. The nutrient-driven SCF model has
been extended to investigate the role of cell size [15], to investigate how resources that are inhibitory at high concentrations affect
the process [16] and to investigate how multiple resources affect the long-term dynamics [17,18]. The model is described using
impulsive differential equations, which accurately describe semi-continuous systems when the period being approximated is short
compared to the cycle times [19,20]. In the case of self-cycling fermentation, the emptying and refilling process is fast compared
to the time between such events, making it an ideal process for modelling with impulsive differential equations.

The outcomes of multiple-species competition have been discussed in many other scenarios. In the chemostat with constant
nput resource concentration and dilution rate, the species that can subsist on the lowest resource concentration will exclude
ll others [21,22]. In contrast, an arbitrary number of species are able to coexist in the periodic chemostat, provided that
ertain conditions are met [23]. Similarly, at least two species have been shown to coexist in serial transfer cultures [24], which
an be thought of as a time-driven self-cycling fermentation process. Many of these theoretical results have also been verified
xperimentally [25,26].

In wastewater systems, operators often want to curate an environment that selects for one species over another [27]. For example,
ne of the main challenges facing the full-scale implementation of anaerobic ammonium oxidation is the competition between
itrite-oxidizing bacteria and the desired anaerobic-ammonium-oxidizing bacteria [28]. Similarly, glycogen-accumulating organisms
ust be excluded from biological phosphate-removal systems, since their presence can lead to reduced efficiency or even reactor

ailure [29]. On the other hand, mixed-culture systems show promise as a method to reduce the production costs of some biologically
anufactured plastics such as polyhydroxyalkanoates [30]. Therefore, a solid theoretical understanding of the mechanisms that lead

o the coexistence of multiple species or competitive exclusion is important in order to achieve desired outcomes.
This paper is organized as follows. In Section 2, we introduce the model for 𝑛 species competing for a single limiting nutrient. In

ection 3, we consider a simplified version of the model with two species, run some numerical simulations that suggest coexistence
nder certain conditions, and present our main theorem. We prove that two species can coexist on a single nonreproducing nutrient,
nder certain conditions. In Section 4, we display numerical simulations that suggest three species can also survive on a single
imiting nutrient, and we demonstrate that such survival is an example of competitor-mediated coexistence. In Section 5, we discuss
he implications of the results. The proofs of all of the results can be found in Appendix A.

. A model for 𝒏 competing species

For a given function 𝑧(𝑡) and time 𝑡, let 𝑧(𝑡−) ≡ lim𝑡→𝑡− 𝑧(𝑡) and 𝑧(𝑡+) ≡ lim𝑡→𝑡+ 𝑧(𝑡). We consider the following model for 𝑛 species
ompeting for a single growth-limiting nutrient in a nutrient-driven self-cycling fermentor:

𝑑𝑠
𝑑𝑡

= −
𝑛
∑

𝑗=1

𝑥𝑗𝑓𝑗 (𝑠)
𝑌𝑗

𝑑𝑥𝑗
𝑑𝑡

= 𝑥𝑗 (𝑓𝑗 (𝑠) − 𝑑𝑗 ) 𝑗 = 1,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝑠(𝑡) ≠ 𝑠 (2.1a)

𝑠(𝑡+) = 𝑟𝑠in + (1 − 𝑟)𝑠(𝑡−)

𝑥𝑗 (𝑡+) = (1 − 𝑟)𝑥𝑗 (𝑡−) 𝑗 = 1,… , 𝑛

}

𝑠(𝑡−) = 𝑠. (2.1b)

This model is a generalization of the model described by Smith and Wolkowicz [14]. Here, 𝑠 denotes the concentration of nutrient
in the fermentation vessel, 𝑥𝑗 is the biomass of the 𝑗th population of microorganisms that consume the nutrient, 𝑌𝑗 is the cell yield
constant, 𝑑𝑗 is the natural decay rate of the 𝑗th population, 𝑠̄ is the nutrient concentration that triggers the decanting process, 𝑠in is
the concentration of nutrient in the medium added during the decanting process and 𝑟 is the fraction of medium removed during
the decanting process. We assume that 𝑌𝑗 > 0, 𝑠in > 𝑠̄ > 0, 𝑑𝑗 ≥ 0 and 0 < 𝑟 < 1. We note that by rescaling 𝑥𝑗 by the factor 1

𝑌𝑗
,

these yield constants can be eliminated from the model. This rescaling is equivalent to setting each yield constant to 1. Thus, we
consider this rescaled model for the remainder of the paper.

The functions 𝑓𝑗 ∶ R → R describe the rate at which the 𝑗th species consumes nutrient and converts it to biomass. We assume
the 𝑓𝑗 are continuously differentiable, monotone non-decreasing and satisfy 𝑓𝑗 (0) = 0. This class of functions includes the commonly
used mass-action and Monod forms [31]. In numerical simulations, we will use the Monod form for the response functions:

𝑓𝑗 (𝑠) =
𝑚𝑗𝑠

𝐾𝑗 + 𝑠
, 𝑗 = 1,… , 𝑛,

where 𝑚𝑗 is the maximum specific growth rate and 𝐾𝑗 is the half saturation constant for the 𝑗th species. That is, 𝑓𝑗 (𝐾𝑗 ) =
1
2𝑚𝑗 .

For each 𝑗 ∈ {1,… , 𝑛}, let 𝜆𝑗 denote the nutrient concentration at which 𝑓𝑗 (𝜆𝑗 ) = 𝑑𝑗 . These values are referred to as break-even
concentrations, since if the nutrient level were to be held constant at 𝜆𝑗 , then the 𝑗th species would not experience any growth or
decay.

Note that since 𝑠 is decreasing, if 𝑠(0) < 𝑠̄, then 𝑠̄ is never reached and there will be no impulsive effect. In this case, the system
will approach an initial-condition-dependent equilibrium point with 𝑠 = 0 or 𝑠 = 𝑠(0) if 𝑥𝑗 (0) = 0 for all 𝑗 ∈ {1,… , 𝑛}. We assume,
without loss of generality, that 𝑠(0) > 𝑠̄, so that there is no immediate impulsive effect. For simplicity of notation, define

𝑠̄+ ≡ 𝑟𝑠in + (1 − 𝑟)𝑠̄.
2
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For each 𝑗 ∈ {1,… , 𝑛}, let

𝜇𝑗 ≡ ∫

𝑠̄+

𝑠̄
1 −

𝑑𝑗
𝑓𝑗 (𝑠)

𝑑𝑠.

his represents the net growth in the 𝑗th species throughout one cycle when it is the only species present in the fermentation vessel.
Throughout, we will make the technical assumption that

𝜇𝑚𝑖𝑛 ≡ ∫

𝜆𝑚𝑎𝑥

𝑠̄

min𝑗 (𝑓𝑗 (𝑠) − 𝑑𝑗 )
min𝑗 (𝑓𝑗 (𝑠))

𝑑𝑠 + ∫

𝑠̄+

𝜆𝑚𝑎𝑥

min𝑗 (𝑓𝑗 (𝑠) − 𝑑𝑗 )
max𝑗 (𝑓𝑗 (𝑠))

𝑑𝑠 > 0, (2.2)

here 𝜆𝑚𝑎𝑥 = max{𝜆1,… , 𝜆𝑛}, max𝑗 (𝑓𝑗 (𝑠)) = max{𝑓1(𝑠), 𝑓2(𝑠),… , 𝑓𝑛(𝑠)} and min𝑗 (𝑓𝑗 (𝑠)) = min{𝑓1(𝑠), 𝑓2(𝑠),… , 𝑓𝑛(𝑠)}. We note that if
𝑚𝑖𝑛 > 0, then 𝜇𝑗 > 0 for each 𝑗 ∈ {1,… , 𝑛}. Hence, if 𝑛 = 1, then 𝜇𝑚𝑖𝑛 = 𝜇1. In particular, this condition is satisfied if each species
s selected so that 𝜆𝑗 ≤ 𝑠̄ and the growth rate of each species remains positive throughout each cycle.

roposition 1. Assume the initial conditions of system (2.1) satisfy

𝑠(0) = 𝑠̄+, 𝑥𝑗 (0) ≥ 0, 𝑗 ∈ {1,… , 𝑛},
𝑛
∑

𝑗=1
𝑥𝑗 (0) ≠ 0

nd that 𝜇𝑚𝑖𝑛 > 0. Then all solutions remain nonnegative and bounded. If 𝑥𝑗 (0) > 0 for some 𝑗 ∈ {1,… , 𝑛}, then 𝑥𝑗 (𝑡) > 0 for all 𝑡 > 0.
urthermore, there exists an infinite sequence of times {𝑡𝑘}𝑘∈N such that 𝑠(𝑡−𝑘 ) = 𝑠̄ and 𝑡𝑘 → ∞ as 𝑘 → ∞.

The conditions of Proposition 1 ensure that each species is capable of surviving in the fermentor on their own and that the
ermentor will cycle indefinitely. In the case where only a single species is present initially (i.e., 𝑥𝓁(0) > 0 for some 𝓁 ∈ {1,… , 𝑛}
nd 𝑥𝑗 (0) = 0 if 𝑗 ≠ 𝓁), model (2.1) reduces to the model studied in [14]. We summarize the main results of that paper in the
ollowing proposition.

roposition 2 (Smith & Wolkowicz [14]). Fix 𝓁 ∈ {1, 2,… , 𝑛}. Assume that the initial conditions of system (2.1) satisfy

𝑠(0) = 𝑠̄+, 𝑥𝑗 (0) = 0 for 𝑗 ∈ {1,… , 𝑛}, 𝑗 ≠ 𝓁, 𝑥𝓁(0) > 0,

nd that 𝜇𝓁 > 0.

(1) There exists a unique nontrivial periodic orbit. This periodic orbit has exactly one impulse per period and is globally asymptotically
stable.

(2) At the times of impulse {𝑡𝑘}𝑘∈N, the periodic orbit satisfies

𝑠(𝑡−𝑘 ) = 𝑠̄, 𝑠(𝑡+𝑘 ) = 𝑠̄+,

𝑥𝓁(𝑡−𝑘 ) =
1
𝑟
𝜇𝓁 , 𝑥𝓁(𝑡+𝑘 ) =

1 − 𝑟
𝑟

𝜇𝓁 .

3. Two-species competition in the self-cycling fermentation process

In this section, we consider pairwise competition between different species. We assume 𝜇𝑚𝑖𝑛 > 0 so that each species is capable
f surviving in the fermentor if other species are not present. In the event that one of the species is a strictly better competitor than
nother species, then the worst competitor will be driven to extinction.

roposition 3. Consider system (2.1) and fix 𝑗, 𝑘 ∈ {1,… , 𝑛} with 𝑗 ≠ 𝑘. If 𝑓𝑗 (𝑠) − 𝑑𝑗 > 𝑓𝑘(𝑠) − 𝑑𝑘 for all 𝑠 ∈ (𝑠̄, 𝑠̄+), then 𝑥𝑘 → 0 as
→ ∞.

Geometrically, this means that the two response functions must cross at some point in order for coexistence to be possible
etween these two species.

We now restrict our attention to model (2.1) in the case where 𝑛 = 2. By Proposition 2, the (𝑠, 𝑥1, 0) subspace and (𝑠, 0, 𝑥2)
ubspace each contain a periodic orbit that is globally attracting with respect to solutions with initial conditions in the interior of
hat subspace. At the impulse points, these periodic orbits satisfy

(𝑠(𝑡−𝑛 ), 𝑥1(𝑡
−
𝑛 ), 𝑥2(𝑡

−
𝑛 )) =

(

𝑠̄,
𝜇1
𝑟
, 0
)

(3.1a)

(𝑠(𝑡+𝑛 ), 𝑥1(𝑡
+
𝑛 ), 𝑥2(𝑡

+
𝑛 )) =

(

𝑠̄+,
(1 − 𝑟)𝜇1

𝑟
, 0
)

(3.1b)

and

(𝑠(𝑡−𝑛 ), 𝑥1(𝑡
−
𝑛 ), 𝑥2(𝑡

−
𝑛 )) =

(

𝑠̄, 0,
𝜇2
𝑟

)

(3.2a)

(𝑠(𝑡+𝑛 ), 𝑥1(𝑡
+
𝑛 ), 𝑥2(𝑡

+
𝑛 )) =

(

𝑠̄+, 0,
(1 − 𝑟)𝜇2

𝑟

)

, (3.2b)
3
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respectively.
We analyse the stability of these planar periodic orbits with respect to the interior of R3

+ using impulsive Floquet theory
(see [19,20]). Each of these periodic orbits has three Floquet multipliers; one of the multipliers equals one, and from calculations
in [14], another multiplier is 1 − 𝑟, which is strictly less than one. We denote the third multiplier for the orbit with 𝑥𝑗 (𝑡) > 0 by 𝛬𝑗𝑘
for 𝑗, 𝑘 ∈ {1, 2} with 𝑗 ≠ 𝑘.

Theorem 1. Consider system (2.1) with 𝑛 = 2. Assume 𝜇𝑚𝑖𝑛 > 0 and that |𝛬𝑗𝑘| > 1 for 𝑗, 𝑘 ∈ {1, 2} with 𝑗 ≠ 𝑘. Then all solutions with
initial conditions that satisfy

𝑠(0) = 𝑠̄+, 𝑥1(0) > 0, 𝑥2(0) > 0

are persistent; i.e.,

lim inf
𝑡→∞

𝑥1(𝑡) > 0 and lim inf
𝑡→∞

𝑥2(𝑡) > 0.

Theorem 1 gives conditions under which there is coexistence of the two species, independent of initial conditions (provided both
species are present to begin with). However, it says nothing about the nature of that coexistence. In the special case with 𝑑1 = 𝑑2 = 0,
we can show that there is an attracting impulsive periodic orbit with one impulse per period. Numerical simulations in the case
where 𝑑𝑗 ≠ 0 also indicate that coexistence is in this form.

3.1. Competition with 𝑑1 = 𝑑2 = 0

The species-specific death rates are often assumed to be negligible in applications [32]. This is a valid approximation when the
cycle length is not too long, since bacteria in the fermentor will remain in their exponential growth phase for the duration of a
cycle. When 𝑑𝑗 = 0, all of the consumed nutrient is converted to biomass. Without any mass lost to cell death, the total amount of
mass in the fermentor is conserved between impulses. As a result, the total mass present in the fermentor converges to a constant
value as the number of impulses increases.

Lemma 1. Consider system (2.1) with 𝑑𝑗 = 0 for all 𝑗 ∈ {1,… , 𝑛} and assume that the initial conditions satisfy

𝑠(0) = 𝑠̄+, 𝑥𝑗 (0) ≥ 0, 𝑗 ∈ {1,… , 𝑛},
𝑛
∑

𝑗=1
𝑥𝑗 (0) ≠ 0.

Then 𝑠 +
∑𝑛

𝑗=1 𝑥𝑗 → 𝑠in as 𝑡 → ∞.

As a consequence of Lemma 1, we only need to consider solutions of system (2.1) restricted to the set {(𝑠, 𝑥1,… , 𝑥𝑛) ∈ R1+𝑛
+ ∣

𝑠 +
∑𝑛

𝑗=1 𝑥𝑗 = 𝑠in}. Thus, for 𝑛 = 2 we consider the reduced system

𝑑𝑥1
𝑑𝑡 = 𝑥1𝑓1(𝑠in − 𝑥1 − 𝑥2)
𝑑𝑥2
𝑑𝑡 = 𝑥2𝑓2(𝑠in − 𝑥1 − 𝑥2)

}

𝑥1(𝑡) + 𝑥2(𝑡) ≠ 𝑠in − 𝑠̄, (3.3a)

𝑥1(𝑡+) = (1 − 𝑟)𝑥1(𝑡−)
𝑥2(𝑡+) = (1 − 𝑟)𝑥2(𝑡−)

}

𝑥1(𝑡−) + 𝑥2(𝑡−) = 𝑠in − 𝑠̄, (3.3b)

with (1 − 𝑟)(𝑠in − 𝑠̄) = 𝑠in − 𝑠̄+ ≤ 𝑥1 + 𝑥2 ≤ 𝑠in − 𝑠̄. If 𝑡𝑘 is the 𝑘th moment of impulse, then we can write 𝑥2(𝑡+𝑘 ) = 𝑠in − 𝑠̄+ − 𝑥1(𝑡+𝑘 ) and
2(𝑡−𝑘 ) = 𝑠in − 𝑠̄ − 𝑥1(𝑡−𝑘 ) by Eq. (3.3b).

heorem 2. Consider system (3.3) with initial conditions satisfying 𝑠in − 𝑠̄+ ≤ 𝑥1(0) + 𝑥2(0) < 𝑠in − 𝑠̄. Exactly one of the following holds:

(1) There is at least one periodic orbit with both species present and one impulse per period.
(2) All solutions converge to the periodic orbit (3.1a)–(3.1b) with 𝑥1(𝑡) > 0 and 𝑥2(𝑡) = 0.
(3) All solutions converge to the periodic orbit (3.2a)–(3.2b) with 𝑥1(𝑡) = 0 and 𝑥2(𝑡) > 0.

Theorem 2 completely characterizes the long-term dynamics of system (3.3). Coupling this with Lemma 1, we have a complete
nderstanding of the possible dynamics of system (2.1) when 𝑛 = 2 and 𝑑1 = 𝑑2 = 0. Thus, if the conditions for Theorem 1 are met,
hen every solution with positive initial conditions must converge to a positive periodic solution with one impulse per period. This
iscussion suffices as proof of the following corollary.

orollary 1. Consider system (2.1) with 𝑛 = 2 and 𝑑1 = 𝑑2 = 0. If |𝛬𝑗𝑘| > 1 for 𝑗, 𝑘 ∈ {1, 2} with 𝑗 ≠ 𝑘, then all solutions with initial
onditions that satisfy

𝑠(0) = 𝑠̄+, 𝑥1(0) > 0, 𝑥2(0) > 0
4

onverge to a positive periodic orbit with one impulse per period.
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Fig. 1. Outcomes of two species, 𝑥1 and 𝑥2, competing in the fermentor. Parameters 𝑠in, 𝑠̄, 𝑚2 and 𝐾2 were fixed, and parameters 𝑚1 and 𝐾1 were varied. A.
𝑓2(𝑠) > 𝑓1(𝑠) for 𝑠̄ < 𝑠 < 𝑠̄+, so species 𝑥2 wins the competition. B. The two uptake functions cross, but 𝑥2 still wins the competition. C. In the green region
in the centre, both Floquet multipliers are greater than 1, so, as predicted by Corollary 1, both species coexist. D. The uptake functions cross, but 𝑥1 wins the
competition. E. 𝑓1(𝑠) > 𝑓2(𝑠) for 𝑠̄ < 𝑠 < 𝑠̄+, so 𝑥1 wins the competition.

Example. Consider system (2.1) with 𝑛 = 2, 𝑑1 = 𝑑2 = 0, and assume the response functions have Monod form

𝑓𝑗 (𝑠) =
𝑚𝑗𝑠

𝐾𝑗 + 𝑠
.

It can be shown that the Floquet multipliers for the periodic orbit on the face 𝑥𝑘 ≡ 0 are 1, 1 − 𝑟 and

𝛬𝑗𝑘 =
( 1
1 − 𝑟

)

𝑚𝑘 (𝐾𝑗+𝑠in)

𝑚𝑗 (𝐾𝑘+𝑠in)
−1 (𝐾𝑘 + 𝑠̄+

𝐾𝑘 + 𝑠̄

)

𝑚𝑘 (𝐾𝑗−𝐾𝑘 )

𝑚𝑗 (𝐾𝑘+𝑠in) , 𝑗 ≠ 𝑘. (3.4)

See Appendix B for the calculations of this multiplier. By Corollary 1, if 𝛬12 > 1 and 𝛬21 > 1, then solutions converge to a positive
periodic solution.

In Fig. 1, we fix the parameters inherent to the system as well as 𝑚2 and 𝐾2. This is equivalent to having species 𝑥2 already in
the fermentor. We then vary 𝑚1 and 𝐾1 to simulate different possible choices of species 𝑥1. Fig. 1 shows the various states in 𝑚1-𝐾1
space. The other constants are 𝑚2 = 1, 𝐾2 = 1, 𝑠in = 20, 𝑠̄ = 0.1 and 𝑟 = 1

2 . Two species can coexist in the central green region
(C). The point (1, 1) corresponds to the case when the two uptake functions are identical and both multipliers are equal to one. The
bounding curves of the central green region (C) are tangent to one another at this point [33].

4. Three-species competition and simulations

The possibility of survival for two competing species in the self-cycling fermentation process raises the question of whether more
species can coexist on a single nonreproducing limiting nutrient. The results in the previous sections cannot easily be applied to
competition of 𝑛 ≥ 3 species. The impulsive Floquet multipliers can only be calculated with relative ease for systems that can be
reduced to two-dimensional systems. However, numerical simulations were run to determine whether three species could coexist.

For the system with three competitors, let 𝛬𝑗𝑘 denote the nontrivial Floquet multiplier for the periodic orbit on the boundary
𝑥𝑘 = 0, for the system where species 𝑗 and 𝑘 are present, but the third species is absent. Then 𝛬𝑘𝑗 is the nontrivial Floquet multiplier
for the periodic orbit on the boundary 𝑥𝑗 = 0, where the third species is absent. We can then apply Theorem 1 to each of the three
cases where two species are present and the third species is absent.

System (2.1) with 𝑛 = 3 was simulated using the DifferentialEquations.jl toolbox in Julia [34] with 𝑠in = 20, 𝑠̄ = 0.1, 𝑟 = 1
2 and

species-specific parameters listed in Table 1.
Using these data, if 𝑥1 is absent, we have

𝛬 = 1.137600, 𝛬 = 1.049998.
5

23 32
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Table 1
Species-specific parameters used in Fig. 2. The parameters for
Species 𝑥1 were chosen from Region D in Fig. 1, while the
parameters for Species 𝑥3 were chosen from Region C.
𝑗 𝑚𝑗 𝐾𝑗 𝑑𝑗
1 2.142653 6.33 0.0
2 1.0 1.0 0.0
3 7.0 32.5 0.0

Fig. 2. A. Three microorganisms competing for a single resource in the self-cycling fermentor. The species appear to be persisting over time, suggesting coexistence.
Note in particular that 𝑥2 is the weakest competitor. B. Species 𝑥2 cannot survive in the presence of 𝑥1 if 𝑥3 is absent, demonstrating competitor-mediated
coexistence. C. Species 𝑥1 and 𝑥3 coexist. D. Species 𝑥2 and 𝑥3 coexist.

Thus, in the absence of 𝑥1, we see that 𝑥2 and 𝑥3 persist by Theorem 1. If 𝑥2 is absent, we have

𝛬13 = 1.008808, 𝛬31 = 1.014487.

Thus, in the absence of 𝑥2, we see that 𝑥1 and 𝑥3 persist by Theorem 1. However, if 𝑥3 is absent, we have

𝛬12 = 0.985852, 𝛬21 = 1.089587.

Thus, in the absence of 𝑥3, we find that 𝑥1 and 𝑥2 cannot coexist. It follows that this system is an example of competitor-mediated
coexistence, since 𝑥2 cannot survive in the presence of 𝑥1 unless 𝑥3 is also present.

5. Discussion

Coexistence of more than one species is possible in the self-cycling fermentation process. The model with only two species is
simple enough that we are able to prove when two species are able to survive in the same environment using impulsive Floquet
theory. However, we are not able to determine the exact form of that coexistence in a general setting. In the special case where the
decay rates of both species are negligible, we are able to reduce the dynamics to those of a one-dimensional monotone dynamical
system. The general theory of monotone dynamical systems allows us to conclude that coexistence is in the form of a periodic
solution with one impulse per period.

In the analogous model of the chemostat, where the nutrient is pumped in continuously at a constant rate, coexistence of two
species competing for a single nonreproducing nutrient is not possible (aside from a few knife-edge cases involving the equality of
certain parameters) [21,22]. The results here are similar to competition in the chemostat with periodic dilution rate [23]. There,
multiple species are able to coexist provided that each species is the best competitor for a significant portion of the dilution cycle.
A similar condition was required for the coexistence of two species in a model of serial transfer cultures [24]. Here, we have
6

extended those results to competition in the self-cycling fermentation process. If one species is the best competitor at every nutrient
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concentration, then that species will out-compete the others. However, while being a better competitor at some nutrient levels is
necessary for survival, it is not sufficient.

We were unable to find analogous theoretical results to determine the outcome of three-species competition. However, numerical
imulations show that coexistence between three species is possible. Interestingly, two of the species in our example are unable to
oexist without the third species present. This phenomenon of competitor-mediated coexistence has also been observed in other
esource-competition models [35].

In applications where the system is best served by a particular class of microorganism, we give conditions for the exclusion of
ther competing species or strains. Our results suggest that it may be possible to tune reactor parameters, such as the decanting
raction 𝑟 and decanting criterion 𝑠̄, in order to exclude unwanted competitors. This could be an important strategy used to maintain
esired populations in wastewater treatment systems [28,29,36].

For applications in which the goal is to maximize the throughput of the system — as would be the case in the production of
olyhydroxyalkanoates — having multiple species present may provide a more robust system. The coexistence of multiple species
ffers a buffer in the event that one species abruptly dies off. Experimental evidence suggests that an increase in production efficiency
ue to the presence of more species is possible [37]. The fact that three species can co-exist in the self-cycling fermentor suggests
he possibility of multiple species co-existing simultaneously under appropriate conditions. This has implications for more efficient
reatment of wastewater and greater yield, with a buffer against unexpected species extinction.
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Appendix A. Proofs

Proof of Proposition 1. That 𝑠(𝑡) remains nonnegative is obvious. The faces of R1+𝑛
+ with 𝑥𝑗 = 0 are invariant under (2.1a); therefore,

by the uniqueness of solutions to ODEs, the interior of R𝑛+1
+ is invariant. Since impulses take 𝑥𝑗 (𝑡) to (1 − 𝑟)𝑥𝑗 (𝑡), if 𝑥𝑗 (0) > 0, then

𝑥𝑗 (𝑡) > 0 for all 𝑡.
Next we show that solutions with the given initial conditions reach 𝑠(𝑡) = 𝑠̄ in finite time. Suppose not. Then there exists 𝑠∗ > 𝑠̄

such that as 𝑡 → ∞, 𝑠(𝑡) → 𝑠∗ and 𝑥𝑗 (𝑡) → 0 for each 𝑗 ∈ {1,… , 𝑛}. If 𝑢(𝑡) = ∑𝑛
𝑗=1 𝑥𝑗 (𝑡), then

𝑑𝑢
𝑑𝑠

=

∑𝑛
𝑗=1(𝑓𝑗 (𝑠) − 𝑑𝑗 )𝑥𝑗
−
∑𝑛

𝑗=1 𝑓𝑗 (𝑠)𝑥𝑗
.

Integrating with respect to 𝑠 gives

𝑢(𝑠) − 𝑢(𝑠̄+) = ∫

𝑠̄+

𝑠

∑𝑛
𝑗=1(𝑓𝑗 (𝜎) − 𝑑𝑗 )𝑥𝑗 (𝜎)
∑𝑛

𝑗=1 𝑓𝑗 (𝜎)𝑥𝑗 (𝜎)
𝑑𝜎.

If 𝑠∗ ≥ 𝜆𝑚𝑎𝑥, then the integrand is positive for all 𝑠∗ < 𝑠 < 𝑠̄+. This implies that

0 > −𝑢(𝑠̄+) = ∫

𝑠̄+

𝑠∗

∑𝑛
𝑗=1(𝑓𝑗 (𝜎) − 𝑑𝑗 )𝑥𝑗 (𝜎)
∑𝑛

𝑗=1 𝑓𝑗 (𝜎)𝑥𝑗 (𝜎)
𝑑𝜎 > 0,

yielding a contradiction. If 𝑠 ≤ 𝑠∗ < 𝜆𝑚𝑎𝑥, then

−𝑢(𝑠̄+) = ∫

𝑠̄+

𝑠∗

∑𝑛
𝑗=1(𝑓𝑗 (𝜎) − 𝑑𝑗 )𝑥𝑗 (𝜎)
∑𝑛

𝑗=1 𝑓𝑗 (𝜎)𝑥𝑗 (𝜎)
𝑑𝜎

≥ ∫

𝜆𝑚𝑎𝑥

𝑠∗

min𝑗 (𝑓𝑗 (𝜎) − 𝑑𝑗 )
min𝑗 (𝑓𝑗 (𝜎))

𝑑𝜎 + ∫

𝑠̄+

𝜆𝑚𝑎𝑥

min𝑗 (𝑓𝑗 (𝜎) − 𝑑𝑗 )
max𝑗 (𝑓𝑗 (𝜎))

𝑑𝜎

≥ 𝜇𝑚𝑖𝑛,
7
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where the last inequality follows since the integrand of the first integral is negative on the domain of integration. Therefore 𝑠̄ is
reached in finite time and an impulse occurs.

The solution is then reset so that 𝑠 = (1 − 𝑟)𝑠̄ + 𝑟𝑠in > 𝑠̄ (since 𝑠in > 𝑠̄), and the sum of the 𝑥𝑗 ’s remain positive. Therefore, the
original assumptions on the initial conditions are once again satisfied. Hence, solutions cycle indefinitely. □

Lemma 2. The function 𝜑 = 𝜑(𝑡, 𝜏, 𝜉) that solves (2.1a) for 𝑛 = 2 with initial condition 𝜑(𝜏, 𝜏, 𝜉) = 𝜉 is continuous in (𝑡, 𝜏, 𝜉).

roof. We have

⎛

⎜

⎜

⎝

𝑠′

𝑥′1
𝑥′2

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

−𝑓1(𝑠)𝑥1 − 𝑓2(𝑠)𝑥2
𝑥1(𝑓1(𝑠) − 𝑑1)
𝑥2(𝑓2(𝑠) − 𝑑2)

⎞

⎟

⎟

⎠

= 𝐹 (𝑡, 𝑤),

here 𝑤 = (𝑠, 𝑥1, 𝑥2). Then

𝐹𝑤 =
⎡

⎢

⎢

⎣

−𝑓 ′
1(𝑠)𝑥1 − 𝑓 ′

2(𝑠)𝑥2 −𝑓1(𝑠) −𝑓2(𝑠)
𝑥1𝑓 ′

1(𝑠) 𝑓1(𝑠) − 𝑑1 0
𝑥2𝑓 ′

2(𝑠) 0 𝑓2(𝑠) − 𝑑2

⎤

⎥

⎥

⎦

.

Each function 𝑓𝑖 (𝑖 = 1, 2) is continuously differentiable, so 𝐹 and 𝐹𝑤 are continuous. Hence 𝜙(𝑡, 𝜏, 𝜉) is continuous in (𝑡, 𝜏, 𝜉) by
Theorem 7.1 in [38]. □

Proof of Theorem 1. Consider any initial point (𝑠̄+, 𝑥1(0), 𝑥2(0)) where 𝑥1(0) > 0 and 𝑥2(0) > 0. By Proposition 1, there exists a first
ime 𝑡1 such that solutions of (2.1) satisfy

𝑠(𝑡−1 ) = 𝑠̄, 𝑥1(𝑡−1 ) > 0, 𝑥2(𝑡−1 ) > 0.

hen if 𝑡𝑛 denotes the time of the 𝑛th impulse point, we have, for 𝑡𝑛−1 < 𝑡 < 𝑡𝑛 (𝑛 > 1),

0 < 𝑠̄ < 𝑠(𝑡) < 𝑠̄+,

and, for each 𝑗 ∈ {1, 2}, either

0 < (1 − 𝑟)𝑥𝑗 (𝑡−𝑛−1) < 𝑥𝑗 (𝑡) or 0 < 𝑥𝑗 (𝑡−𝑛 ) < 𝑥𝑗 (𝑡).

Therefore, it suffices to consider the sequence {(𝑢𝑛, 𝑣𝑛)}∞𝑛=1 where 𝑢𝑛 = 𝑥1(𝑡−𝑛 ) and 𝑣𝑛 = 𝑥2(𝑡−𝑛 ) and to show that

lim inf
𝑛→∞

𝑢𝑛 > 0 and lim inf
𝑛→∞

𝑣𝑛 > 0.

The equilibrium point (𝑠̄, 0, 0) of system (2.1) is unstable with a one-dimensional centre manifold along the 𝑠-axis and a
two-dimensional unstable manifold that intersects the plane

𝑆𝑠̄ =
{

(𝑠, 𝑥1, 𝑥2) ∶ 𝑠 = 𝑠̄, 𝑥1 ≥ 0, 𝑥2 ≥ 0
}

along a smooth curve, say 𝑔(𝑥1, 𝑥2) = 0. This curve in R2
+ connecting the boundary points (𝑥̂1, 0) and (0, 𝑥̂2), where 𝑥̂1 > 0 and 𝑥̂2 > 0,

divides the plane 𝑆𝑠̄ into a bounded region and an unbounded region. Without loss of generality, assume

𝑋 = {(𝑥1, 𝑥2) ∶ 𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑔(𝑥1, 𝑥2) ≥ 0}

denotes the unbounded region.
Define the map 𝑓 ∶ 𝑋 → 𝑋 in the following way:

𝑓 (𝑢𝑛, 𝑣𝑛) = (𝑢𝑛+1, 𝑣𝑛+1),

where we set 𝑠(0) = 𝑠̄+, 𝑥1(0) = 𝑢+𝑛 , 𝑥2(0) = 𝑣+𝑛 and then determine 𝑢𝑛+1 = 𝑥1(𝑡−1 ) and 𝑣𝑛+1 = 𝑥2(𝑡−1 ) from system (2.1).
Note that for any initial condition of the form 𝑠(0) = 𝑠̄+, 𝑥1(0) > 0 and 𝑥2(0) > 0, we have 𝑠(𝑡−1 ) = 𝑠̄, 𝑥1(𝑡−1 ) > 0 and 𝑥2(𝑡−1 ) > 0, so

𝑠(𝑡+1 ) = 𝑠̄+, 𝑥1(𝑡+1 ) > 0 and 𝑥2(𝑡+1 ) > 0 and then 𝑠(𝑡−2 ) = 𝑠̄ and 𝑔(𝑥1(𝑡−2 ), 𝑥2(𝑡
−
2 )) > 0. It follows that 𝑓 (𝑋) ⊂ 𝑋.

Next we show that 𝑓 is continuous on 𝑋 by showing that 𝑓 is a composition 𝑝◦𝑞 ∶ 𝑋 → 𝑋 of two continuous functions,

𝑞 ∶ 𝑋 → 𝑋 and 𝑝 ∶ 𝑋 → 𝑋.

Define

𝑞(𝑥1, 𝑥2) =
(

(1 − 𝑟)𝑥1, (1 − 𝑟)𝑥2
)

and

𝑝(𝑥1, 𝑥2) = (𝑢(𝑥1, 𝑥2), 𝑣(𝑥1, 𝑥2)),

where 𝑢(𝑥1, 𝑥2) = 𝑥1(𝑡) and 𝑣(𝑥1, 𝑥2) = 𝑥2(𝑡) such that (𝑠(𝑡), 𝑥1(𝑡), 𝑥2(𝑡)), 0 ≤ 𝑡 ≤ 𝑡 is the solution of the associated ODE (2.1a) with
initial conditions

+

8

𝑠(0) = 𝑠̄ , 𝑥1(0) = 𝑥1, 𝑥2(0) = 𝑥2
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and 𝑠̄ < 𝑠(𝑡) < (1 − 𝑟)𝑠̄ + 𝑟𝑠in for 0 < 𝑡 < 𝑡 and 𝑠(𝑡) = 𝑠̄.
It is clear that 𝑞 is continuous. That 𝑝 is continuous follows from continuous dependence on initial data for ordinary differential

quations (see Lemma 2).
The map 𝑓 has two equilibrium points, 𝑃1 = (𝑥̄1, 0) and 𝑃2 = (0, 𝑥̄2), where 𝑥̄𝑗 > 0, 𝑗 = 1, 2. 𝑃1 and 𝑃2 represent single species

urvival equilibria of the map and correspond to the nontrivial periodic orbits on the 𝑠-𝑥1 and 𝑠-𝑥2 planes, respectively, of system
(2.1). Each 𝑃𝑗 , 𝑗 = 1, 2, is clearly an isolated invariant set.

Assume that (𝑥1(𝑡1), 𝑥2(𝑡1)) is any point in 𝑋 that satisfies 𝑥1(𝑡1) > 0 and 𝑥2(𝑡1) > 0. Consider the compact positive orbit
𝑥1(𝑡𝑛), 𝑥2(𝑡𝑛)

}

𝑛∈Z+
generated by the map 𝑓 . Assume also that

lim inf
𝑛→∞

𝑥1(𝑡𝑛) = 0 or lim inf
𝑛→∞

𝑥2(𝑡𝑛) = 0.

hen either

(a) there is a subsequence such that

lim
𝑘→∞

𝑥1(𝑡𝑛𝑘 ) = 0 and lim
𝑘→∞

𝑥2(𝑡𝑛𝑘 ) > 0, or

(b) there is a subsequence such that

lim
𝑘→∞

𝑥1(𝑡𝑛𝑘 ) > 0 and lim
𝑘→∞

𝑥2(𝑡𝑛𝑘 ) = 0.

In case (a), we must have

𝑃2 ∈ 𝜔
(

{

𝑥1(𝑡𝑛), 𝑥2(𝑡𝑛)
}

𝑛∈Z+

)

.

owever, since 𝛬21 > 1, the stable manifold of 𝑃2 is the set

𝑊 +(𝑃2) = {(𝑥1, 𝑥2) ∶ 𝑥1 = 0, 𝑥2 > 0}.

ince 𝑥1(𝑡𝑛𝑘 ) > 0 for all 𝑘,
{

𝑥1(𝑡𝑛), 𝑥2(𝑡𝑛)
}

𝑛∈Z+
⊆ 𝑊 +

w(𝑃2)∖𝑊 +(𝑃2).

ence, by Theorem 3.1 of [39], there exists a positive orbit
{

𝑎(𝑡𝑛), 𝑏(𝑡𝑛)
}

𝑛∈Z+
in

𝜔
(

{

𝑥1(𝑡𝑛), 𝑥2(𝑡𝑛)
}

𝑛∈Z+

)

uch that (𝑎(𝑡1), 𝑏(𝑡1)) ≠ 𝑃2 and
{

𝑎(𝑡𝑛), 𝑏(𝑡𝑛)
}

𝑛∈Z+
⊆ 𝑊 +(𝑃2).

ence 𝑎(𝑡𝑛) = 0 for all 𝑛. It follows that the omega limit set of
{

𝑥1(𝑡𝑛), 𝑥2(𝑡𝑛)
}

𝑛∈Z+
is a subset of 𝑊 +(𝑃2).

The orbit
{

𝑥1(𝑡𝑛), 𝑥2(𝑡𝑛)
}

𝑛∈Z+
is a pseudo-asymptotic orbit of 𝑓 , so by Lemma 2.3 in [40] the omega limit set is nonempty, compact

nd invariant. This set cannot include the portion of the 𝑥2 axis above 𝑃2, since it is unbounded.
Consider the set

𝑀 =
{

(0, 𝑥2) ∶ 𝑥̂2 ≤ 𝑥2 ≤ 𝑥̄2
}

.

learly 𝑓 (𝑀) ⊂ 𝑀 , but 𝑀 ⊄ 𝑓 (𝑀), since 𝑓 is a non-decreasing map on 𝑀 and 𝑓 (0, 𝑥̂2) = (0, 𝑦) where 𝑦 > 𝑥̂2. Thus 𝑀 is not an
nvariant set.

The only other invariant set in 𝑊 +(𝑃2) is 𝑃2 itself. Thus

𝜔
(

{

𝑥1(𝑡𝑛), 𝑥2(𝑡𝑛)
}

𝑛∈Z+

)

= 𝑃2.

owever, this implies that
{

𝑥1(𝑡𝑛), 𝑥2(𝑡𝑛)
}

𝑛∈Z+
⊂ 𝑊 +(𝑃2),

which is a contradiction. Thus case (a) is impossible.
Case (b) can be ruled out in a similar fashion.
Hence, for any point (𝑥1(𝑡1), 𝑥2(𝑡1)) with 𝑥1(𝑡1) > 0, 𝑥2(𝑡1) > 0, we have

lim inf
𝑛→∞

𝑥1(𝑡𝑛) > 0 and lim inf
𝑛→∞

𝑥2(𝑡𝑛) > 0. □

Proof of Lemma 1. Assume that 𝑑𝑗 = 0, 𝑖 = 1,… , 𝑛. Then, adding together all the equations in (2.1), it follows that between
impulses

(

𝑠 +
∑𝑛

𝑗=1 𝑥𝑗
)′

(𝑡) = 0. Therefore, for each 𝑘 ∈ N, we can define a constant 𝑐𝑘 such that

𝑠(𝑡) +
𝑛
∑

𝑥𝑗 (𝑡) = 𝑐𝑘
9

𝑗=1
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for 𝑡𝑘 < 𝑡 < 𝑡𝑘+1. At the moments of impulse, we have

𝑐𝑘+1 = 𝑠(𝑡+𝑘+1) +
𝑛
∑

𝑗=1
𝑥𝑗 (𝑡+𝑘+1)

= 𝑟𝑠in + (1 − 𝑟)𝑠(𝑡−𝑘+1) + (1 − 𝑟)
𝑛
∑

𝑗=1
𝑥𝑗 (𝑡−𝑘+1)

= 𝑟𝑠in + (1 − 𝑟)𝑐𝑘,

a recurrence relation that has the general solution

𝑐𝑘 = (1 − 𝑟)𝑘𝑐1 + 𝑟𝑠in(1 + (1 − 𝑟) + (1 − 𝑟)2 +⋯ + (1 − 𝑟)𝑘−1)

= (1 − 𝑟)𝑘𝑐1 + 𝑠in(1 − (1 − 𝑟)𝑘), 𝑘 ∈ N.

Therefore, lim𝑘→∞ 𝑐𝑘 = 𝑠in, so it follows that 𝑠(𝑡) +
∑𝑛

𝑗=1 𝑥𝑗 (𝑡) → 𝑠in as 𝑡 → ∞. □

Proof of Proposition 3. Assume without loss of generality that 𝑗 = 1, 𝑘 = 2 and that 𝑥1(0) > 0, 𝑥2(0) > 0. By Proposition 1, 𝑥1(𝑡) > 0
and 𝑥2(𝑡) > 0 for all 𝑡, and there is an infinite sequence of impulse times {𝑡𝓁}𝓁∈N. Thus, the ratio 𝑥2(𝑡)

𝑥1(𝑡)
is well defined. At the moments

of impulse, we have

𝑥2(𝑡+𝓁 )

𝑥1(𝑡+𝓁 )
=

(1 − 𝑟)𝑥2(𝑡−𝓁 )
(1 − 𝑟)𝑥1(𝑡−𝓁 )

=
𝑥2(𝑡−𝓁 )
𝑥1(𝑡−𝓁 )

by Eq. (2.1). For 𝑡 ∈ (𝑡𝓁 , 𝑡𝓁+1) we have 𝑥𝑖(𝑡) = 𝑥𝑖(𝑡+𝓁 )𝑒
∫ 𝑡
𝑡𝓁

𝑓𝑖(𝑠(𝜉))−𝑑𝑖𝑑𝜉 for 𝑖 ∈ {1, 2} and therefore

𝑥2(𝑡+𝓁+1)

𝑥1(𝑡+𝓁+1)
=

𝑥2(𝑡+𝓁 )

𝑥1(𝑡+𝓁 )
𝑒∫

𝑡𝓁+1
𝑡𝓁

(𝑓2(𝑠(𝑡))−𝑑2)−(𝑓1(𝑠(𝑡))−𝑑1)𝑑𝑡.

Since 𝑓1(𝑠) − 𝑑1 > 𝑓2(𝑠) − 𝑑2 for all 𝑠 ∈ (𝑠̄, 𝑠̄+), the exponential factor is strictly less than 1. Thus,

𝑥2(𝑡+𝓁 )

𝑥1(𝑡+𝓁 )
→ 0

as 𝓁 → ∞. □

Proof of Theorem 2. Let 𝛤+ = {(𝑥1, 𝑥2) ∈ R2
+ ∣ 𝑥2 = 𝑠in − 𝑠̄+ − 𝑥1} and 𝛤− = {(𝑥1, 𝑥2) ∈ R2

+ ∣ 𝑥2 = 𝑠in − 𝑠̄ − 𝑥1}. Let 𝜑 ∶ 𝛤+ → 𝛤− be
he map that takes points in 𝛤+ to points in 𝛤− along the flow generated by (3.3a). Define

𝐺(𝑥1) = (1 − 𝑟)
(

𝜑(𝑥1, 𝑠in − 𝑠̄+ − 𝑥1)
)

1 , (A.1)

here (𝜑(𝑥1, 𝑥2))1 is the first component of 𝜑(𝑥1, 𝑥2). Fixed points of 𝐺 correspond to periodic orbits with one impulse per period
f system (3.3). Note that 𝑥1 = 0 and 𝑥1 = 𝑠in − 𝑠̄+ are fixed points that correspond to the periodic orbits with only 𝑥2 present and
nly 𝑥1 present, respectively.

The dynamical system defined by iterating 𝐺 is a one-dimensional monotone dynamical system; by Theorem 5.6 in [41], every
rbit of this dynamical system converges to a fixed point.

Thus, if there exists 𝑥∗ ∈ (0, 𝑠in − 𝑠̄+) such that 𝐺(𝑥∗) = 𝑥∗, then the solution to system (3.3) with (𝑥1(0), 𝑥2(0)) = (𝑥∗, 𝑠in − 𝑠̄+ − 𝑥∗)
s periodic with one impulse per period. If no such 𝑥∗ exists, then either 𝐺(𝑥) > 𝑥 or 𝐺(𝑥) < 𝑥 for all 𝑥 ∈ (0, 𝑠in − 𝑠̄). In the first case,
1(𝑡+𝑘 ) is increasing with 𝑘, and all solutions converge to the periodic orbit with 𝑥2 = 0. In the second case, 𝑥1(𝑡+𝑘 ) is decreasing with
, and all solutions converge to the periodic orbit with 𝑥1 = 0. □

ppendix B. Floquet multipliers

Consider the two-dimensional system
𝑑𝑠
𝑑𝑡

= 𝑃 (𝑠, 𝑥), 𝑑𝑥
𝑑𝑡

= 𝑄(𝑠, 𝑥) (𝑠, 𝑥) ∉ 𝑀

𝛥𝑠 = 𝑎(𝑠, 𝑥), 𝛥𝑥 = 𝑏(𝑠, 𝑥) (𝑠, 𝑥) ∈ 𝑀,
(B.1)

where 𝑡 ∈ R and 𝑀 ⊂ R2 is the set defined by the equation 𝜙(𝑠, 𝑥) = 0.
Assume that (B.1) has a 𝑇 -periodic solution 𝑝(𝑡) = [𝛾(𝑡), 𝜂(𝑡)] with

|

|

|

|

𝑑𝛾
𝑑𝑡

|

|

|

|

+
|

|

|

|

𝑑𝜂
𝑑𝑡

|

|

|

|

≠ 0.
10

ssume further that the periodic solution 𝑝(𝑡) has 𝑞 instants of impulsive effect in the interval (0, 𝑇 ).
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One of the Floquet multipliers is equal to 1, since we have a periodic orbit. From Chapter 8 of Bainov and Simeonov [20], the
ther is calculated according to the formula

𝜇 =
𝑞
∏

𝑘=1
𝛥𝑘 exp

[

∫

𝑇

0

(

𝜕𝑃
𝜕𝑠

(𝛾(𝑡), 𝜂(𝑡)) + 𝜕𝑄
𝜕𝑥

(𝛾(𝑡), 𝜂(𝑡))
)

𝑑𝑡
]

, (B.2)

where

𝛥𝑘 =
𝑃+

(

𝜕𝑏
𝜕𝑥

𝜕𝜙
𝜕𝑠 − 𝜕𝑏

𝜕𝑠
𝜕𝜙
𝜕𝑥 + 𝜕𝜙

𝜕𝑠

)

+𝑄+

(

𝜕𝑎
𝜕𝑠

𝜕𝜙
𝜕𝑥 − 𝜕𝑎

𝜕𝑥
𝜕𝜙
𝜕𝑠 + 𝜕𝜙

𝜕𝑥

)

𝑃 𝜕𝜙
𝜕𝑠 +𝑄 𝜕𝜙

𝜕𝑥

.

ere, 𝑃 , 𝑄, 𝜕𝑎
𝜕𝑠 , 𝜕𝑏

𝜕𝑠 , 𝜕𝑎
𝜕𝑥 , 𝜕𝑏

𝜕𝑥 , 𝜕𝜙
𝜕𝑠 and 𝜕𝜙

𝜕𝑥 are computed at the point (𝛾(𝑡𝑘), 𝜂(𝑡𝑘)) and 𝑃+ = 𝑃 (𝛾(𝑡+𝑘 ), 𝜂(𝑡
+
𝑘 )), 𝑄+ = 𝑄(𝛾(𝑡+𝑘 ), 𝜂(𝑡

+
𝑘 )).

Consider the periodic orbit on the 𝑥1-face for system (2.1) with 𝑛 = 2. Denote this periodic orbit by (𝜁 (𝑡), 𝜉(𝑡), 0). We use the
otation

𝜁0 = 𝜁 (0+), 𝜁1 = 𝜁 (𝑇 ), 𝜉0 = 𝜉(0+), 𝜉1 = 𝜉(𝑇 ).

rom the condition of 𝑇 -periodicity, 𝜁+1 = 𝜁0 and 𝜉+1 = 𝜉0. Thus

𝜁0 = 𝑠̄+ 𝜉0 = (1 − 𝑟)(𝑠in − 𝑠̄)

𝜁1 = 𝑠̄ 𝜉1 = (𝑠in − 𝑠̄).

n particular,

𝜉1 =
1

1 − 𝑟
𝜉0,

nd we have the relationship

𝜁 (𝑡) + 𝜉(𝑡) = 𝑠in (B.3)

y Lemma 1.
We thus have the two-dimensional system

𝑑𝑠
𝑑𝑡

= −𝑥1𝑓1(𝑠) −
(

𝑠in − 𝑠 − 𝑥1
)

𝑓2(𝑠) 𝑠 ≠ 𝑠̄

𝑑𝑥1
𝑑𝑡

= 𝑥1𝑓1(𝑠) 𝑠 ≠ 𝑠̄

𝛥𝑠 = −𝑟𝑠̄ + 𝑟𝑠in 𝑠 = 𝑠̄

𝛥𝑥1 = −𝑟𝑥1 𝑠 = 𝑠̄.

(B.4)

Using impulsive Floquet theory and (B.3), we have

𝑃 = − 1
1 − 𝑟

𝜉0𝑓1(𝑠̄) 𝑃+ = −𝜉0𝑓1(𝑠̄+)

𝑄 = 1
1 − 𝑟

𝜉0𝑓1(𝑠̄) 𝑄+ = 𝜉0𝑓1(𝑠̄+)

𝜕𝑏
𝜕𝑥1

= −𝑟
𝜕𝜙
𝜕𝑠

= 1

𝜕𝑏
𝜕𝑠

= 0
𝜕𝜙
𝜕𝑥1

= 0

𝜕𝑎
𝜕𝑠

= 0 𝜕𝑎
𝜕𝑥1

= 0.

Thus

𝛥1 =
−𝜉0𝑓1(𝑠̄+) (−𝑟 ⋅ 1 − 0 ⋅ 0 + 1) + 𝜉0𝑓1(𝑠̄+) ⋅ 0

− 1
1−𝑟 𝜉0𝑓1(𝑠̄) +

1
1−𝑟 𝜉0𝑓1(𝑠̄) ⋅ 0

= (1 − 𝑟)2
𝑓1(𝑠̄+)
𝑓1(𝑠̄)

.

hen, using (B.3), we have

∫

𝑇

0

[

𝜕𝑃
𝜕𝑠

(𝜁 (𝑡), 𝜉(𝑡)) + 𝜕𝑄
𝜕𝑥1

(𝜁 (𝑡), 𝜉(𝑡))
]

𝑑𝑡 = ∫

𝑇

0

[

−𝜉𝑓 ′
1(𝜁 ) + 𝑓2(𝜁 ) −

(

𝑠in − 𝜁 − 𝜉
)

𝑓 ′
2(𝜁 ) + 𝑓1(𝜁 )

]

𝑑𝑡

= ∫

𝑇

0

[

−𝜉𝑓 ′
1(𝜁 ) + 𝑓1(𝜁 ) + 𝑓2(𝜁 )

]

𝑑𝑡

= ∫

𝑇
[

𝑓 ′
1(𝜁 ) 𝜁 ′ +

𝜉′
+ 𝑓2(𝜁 )

]

𝑑𝑡
11

0 𝑓1(𝜁 ) 𝜉
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= ∫

𝑠̄

𝑠̄+

𝑓 ′
1(𝜁 )

𝑓1(𝜁 )
𝑑𝜁 + ∫

1
1−𝑟 𝜉0

𝜉0

𝑑𝜉
𝜉

+ ∫

𝑇

0
𝑓2(𝜁 )𝑑𝑡

= ln
(

𝑓1(𝑠̄)
𝑓1(𝑠̄+)

)

+ ln 1
1 − 𝑟

+ ∫

𝑇

0
𝑓2(𝜁 )𝑑𝑡.

Now

∫

𝑇

0
𝑓2(𝜁 )𝑑𝑡 = ∫

𝑇

0

𝑓2(𝜁 )
−𝜉𝑓1(𝜁 )

𝜁 ′𝑑𝑡

= −∫

𝑠̄

𝑠̄+

𝑓2(𝜁 )
𝑓1(𝜁 )(𝑠in − 𝜁 )

𝑑𝜁

= ∫

𝑠̄+

𝑠̄

𝑚2(𝐾1 + 𝜁 )
𝑚1(𝐾2 + 𝜁 )(𝑠in − 𝜁 )

𝑑𝜁

=
𝑚2
𝑚1 ∫

𝑠̄+

𝑠̄

[

𝐾1 + 𝑠in

(𝐾2 + 𝑠in)(𝑠in − 𝜁 )
+

𝐾1 −𝐾2

(𝐾2 + 𝑠in)(𝐾2 + 𝜁 )

]

𝑑𝜁,

using partial fraction decomposition. Therefore

∫

𝑇

0
𝑓2(𝜁 )𝑑𝑡 =

[

−
𝑚2(𝐾1 + 𝑠in)
𝑚1(𝐾2 + 𝑠in)

ln(𝑠in − 𝜁 ) +
𝑚2(𝐾1 −𝐾2)
𝑚1(𝐾2 + 𝑠in)

ln(𝐾2 + 𝜁 )
]𝑠̄+

𝑠̄

= −
𝑚2(𝐾1 + 𝑠in)
𝑚1(𝐾2 + 𝑠in)

ln(1 − 𝑟) +
𝑚2(𝐾1 −𝐾2)
𝑚1(𝐾2 + 𝑠in)

ln
(

𝐾2 + 𝑠̄+

𝐾2 + 𝑠̄

)

=
𝑚2(𝐾1 + 𝑠in)
𝑚1(𝐾2 + 𝑠in)

ln 1
1 − 𝑟

+
𝑚2(𝐾1 −𝐾2)
𝑚1(𝐾2 + 𝑠in)

ln
(

𝐾2 + 𝑠̄+

𝐾2 + 𝑠̄

)

.

Denote the second Floquet multiplier for the periodic orbit on the 𝑥1-axis by 𝛬12 and the one on the 𝑥2-axis by 𝛬21. We thus
have

𝛬12 = (1 − 𝑟)2
𝑓1(𝑠̄+)
𝑓1(𝑠̄)

⋅
𝑓1(𝑠̄)
𝑓1(𝑠̄+)

⋅
1

1 − 𝑟
⋅
( 1
1 − 𝑟

)

𝑚2(𝐾1+𝑠
in)

𝑚1(𝐾2+𝑠in) ⋅
(

𝐾2 + 𝑠̄+

𝐾2 + 𝑠̄

)

𝑚2(𝐾1−𝐾2)
𝑚1(𝐾2+𝑠in)

𝛬12 =
( 1
1 − 𝑟

)

𝑚2(𝐾1+𝑠
in)

𝑚1(𝐾2+𝑠in)
−1

⋅
(

𝐾2 + 𝑠̄+

𝐾2 + 𝑠̄

)

𝑚2(𝐾1−𝐾2)
𝑚1(𝐾2+𝑠in) . (B.5)

By an identical process applied to the orbit (𝜁 (𝑡), 0, 𝜈(𝑡)), we have the symmetric result

𝛬21 =
( 1
1 − 𝑟

)

𝑚1(𝐾2+𝑠
in)

𝑚2(𝐾1+𝑠in)
−1

⋅
(

𝐾1 + 𝑠̄+

𝐾1 + 𝑠̄

)

𝑚1(𝐾2−𝐾1)
𝑚2(𝐾1+𝑠in) . (B.6)

Note that we can calculate these Floquet multipliers only because the system reduces to a two-dimensional one in each case.
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