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A B S T R A C T

Clonorchiasis is an important food-borne parasitic disease that has been largely understudied. We examine the
dynamics of clonorchiasis with human treatment and fish vaccination versus snail control. Four mathematical
models are proposed and analysed, both analytically and numerically. We show that fish vaccination is a valid
method of control and derive the maximal period of molluscicide application in order to control the snail
populations. It follows that a variety of methods may be necessary to control clonorchiasis.
1. Introduction

The liver fluke Clonorchis sinensis is a high-risk pathogenic para-
sitic helminth that is predominantly endemic in Asian countries —
including Korea, China, Taiwan, Vietnam and the far eastern parts of
Russia — and is still actively transmitted, causing the disease condition
clonorchiasis, which is associated with urinary bladder cancer [1].
Currently, more than 35 million people are infected with clonorchiasis
[2], with 750 million at risk [3]. The public-health importance of
liver-fluke infections, especially clonorchiasis, has been neglected for
decades, despite a persistent and growing number of infections and
corresponding disease burden [4].

Snails act as a first intermediate host, while freshwater fish act as
a secondary intermediate host [4]. Freshwater snails ingest eggs laid
by hermaphrodite adult worms and produce cercariae, which escape
from the snails and adhere to freshwater fish [5]. When people eat
raw or undercooked fish, metacercarie separate from the flesh through
gastric digestion, and juvenile flukes migrate to the bile ducts, where
they become adult flukes [6]. Eggs laid by hermaphrodite adult worms
reach the human intestine and are eliminated with the faeces [7]. The
egg-laying capacity of an adult C. sinensis fluke has been estimated at
around 4000 eggs per worm per day [8].

Piscivorous animals, especially cats and dogs (both wild or reared as
pets or guardians), can also serve as reservoir hosts for C. sinensis; these
animals are widely distributed and can maintain the lifecycle of the
parasite in endemic areas without involvement of people [4]. Infection
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in cats is higher than dogs, possibly due to their preference for eating
fish [9].

Praziquantel is virtually the only drug for treating C. sinensis in-
fections and has been recommended by the World Health Organiza-
tion (WHO) for more than 30 years [10]. Monotherapy is 70%–90%
effective, but this is a potentially dangerous situation if drug resis-
tance should emerge [11]; possible emergence of praziquantel-resistant
strains (or isolates) of S. mansoni and S. japonicum has been documented
in the laboratory [12], raising the spectre that resistance may emerge
against C. sinensis. Another drug, Albendazole, requires long treatment
courses over multiple days [13] and has a high rate of egg reduction but
low cure rates [14] and so is rarely used [11]. Reinfection in animals is
common, making practical treatment of cats and dogs infeasible [15].

No commercially produced or effective vaccine is available for the
treatment of C. sinensis infection in human or other hosts as of yet.
However, the possibility of developing a fish vaccine, in combina-
tion with the use of non-polluted water for the culture of fish, has
been proposed [16]. Snail control has also been suggested as a way
to interrupt the transmission cycle [17], specifically with predator
fish [4], as widespread molluscicide is not recommended [18]. Other
environmental controls include removing toilets over fish ponds —
although complete removal of faecal contamination is not feasible [4]
— or culturally sensitive education aimed at raising awareness of the
transmission cycle and stimulating behaviour changes that discourage
consumption of raw fish and improve sanitary practices [18]. The
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Fig. 1. Schematic diagram of model (2.1) of clonorchiasis with human treatment and fish vaccination versus snail control.
cost-effectiveness of intervention measures in China has been exam-
ined for chemotherapy, education and environmental control, with
chemotherapy proving to be the most cost-effective strategy [19].

Only a handful of models have been developed for clonorchiasis.
Song and Kang [20] used a mathematical analysis of age prevalence
to determine egg-positive rates of clonorchiasis and developed cat-
alytic curves for two study regions in Korea. Keiser and Utzinger [21]
used a random-effects model to determine relative risk calculations
for several studies of foodborne trematodiases, including C. sinensis, in
order to determine the effect of the proximity to freshwater bodies.
They showed that residents living near fresh water have a 2.15-fold
higher risk for infections compared to people living further from the
water. Qian et al. [22] used Monte Carlo simulations to determine
overall disability weights for C. sinensis infection. They showed that the
disability weights differed by sex and age and determined a correlation
between disability and infection intensity. Lai [23] developed Bayesian
geostatistical logistic regression models with location-specific random
effects to obtain spatially explicit C. sinensis risk estimates for China
in order to identify areas of high priority for control. Yuan et al. [17]
developed an SEIR model for humans, with susceptible and infected
snails and fish, along with C. sinensis eggs and cercariae, with predation
of fish. They found the reproduction number and used data from China
and a sensitivity analysis to show that drug treatment of humans alone
would not be enough to control C. sinensis. Gao et al. [24] developed
a model that assessed intervention techniques of snail control, health
education and chemotherapy in China. They found that strengthening
health education and improving faeces management would make mod-
erate gains, but the most important tool was snail control. Zhang et al.
[25] presented a model of clonorchiasis that included three time delays
and found that breaking the life cycle of Clonorchis sinensis would be
more effective than treating the disease.

Here, we introduce several mathematical models, which we develop
in order to consider possible biological scenarios. Our main purpose
is to investigate biological factors that influence and control invasion,
persistence and variability of the disease in natural ecosystems by
comparing their dynamics.

2. Model I: The baseline model

First, we consider fish 𝐹𝑖, humans 𝐻𝑖 and infected molluscs 𝑀 , with
the worms, eggs and parasites not explicitly incorporated in the model.
We assume that susceptible fish 𝐹𝑠 grow logistically, since the infection
is not passed vertically. Transmission between species is described by a
mass-action process, as we can assume there is no selectivity and that
populations are well-mixed.
2

Humans will consume both susceptible and infected fish, 𝐹𝑖, re-
ducing each of their populations, while we add in a linear death rate
to the infected classes. Susceptible humans can become infected upon
eating infected fish, while the recruitment rate of infected molluscs is
proportional to the number of infected humans. A schematic diagram
is provided by Fig. 1. Note that 𝛿 represents both the natural and the
disease-related mortality in humans.

𝑑𝐹𝑠
𝑑𝑡

= 𝑟1(𝐹𝑠 + 𝐹𝑖)
(

1 −
𝐹𝑠 + 𝐹𝑖
𝑘1

)

− 𝜃1𝐹𝑠(𝐻𝑠 +𝐻𝑖) − 𝛾𝐹𝑠𝑀, (2.1a)

𝑑𝐹𝑖
𝑑𝑡

= 𝛾𝐹𝑠𝑀 − 𝜃1𝐹𝑖(𝐻𝑠 +𝐻𝑖) − 𝜖𝐹𝑖, (2.1b)
𝑑𝐻𝑠
𝑑𝑡

= 𝑟2(𝐻𝑠 +𝐻𝑖) − 𝛼𝜃1𝐹𝑖𝐻𝑠, (2.1c)
𝑑𝐻𝑖
𝑑𝑡

= 𝛼𝜃1𝐹𝑖𝐻𝑠 − 𝛿𝐻𝑖, (2.1d)
𝑑𝑀
𝑑𝑡

= 𝛽𝐻𝑖 − 𝜇𝑀. (2.1e)

First, we examine the local stability of system (2.1). We write 𝐽 𝐼𝑘 = 𝐽
evaluated at 𝐸𝐼𝑘 , 𝑘 = 0, 1, 2. System (2.1) has three steady states: 𝐸0, 𝐸1
and 𝐸2, where

𝐸𝐼0 ∶ (𝑀,𝐹𝑖, 𝐹𝑠,𝐻𝑖,𝐻𝑠) = (0, 0, 0, 0, 0),

𝐸𝐼1 ∶ (𝑀,𝐹𝑖, 𝐹𝑠,𝐻𝑖,𝐻𝑠) =
(

0, 0, 𝑘1, 0, 0
)

,

𝐸𝐼2 ∶ (𝑀,𝐹𝑖, 𝐹𝑠,𝐻𝑖,𝐻𝑠) =
(

𝛽 𝑟2𝑅1
(𝛿 − 𝑟2)𝜇

,
𝛿 𝑟2

𝛼 𝜃1(𝛿 − 𝑟2)
,

𝛿 𝜇 (𝛿 𝑅1𝜃1 + 𝛿 𝜖 − 𝜖 𝑟2)
𝛼 𝛽 𝛾 𝑅1𝜃1(𝛿 − 𝑟2)

,
𝑟2𝑅1
𝛿 − 𝑟2

, 𝑅1

)

,

where 𝑅1 is a positive root of the equation ∑3
0 𝛶𝑖𝑍

𝑖 = 0, with 𝛶𝑖 given
by

𝛶3 = 𝛼 𝛽2𝛿 𝛾2𝑘1𝑟2𝜃1
2 + 𝛼 𝛽 𝛿2𝛾 𝜇 𝑘1𝜃13, (2.2a)

𝛶2 = (𝛼 𝛽2𝛿 𝜖 𝛾2𝑘1𝑟2𝜃1 − 𝛼 𝛽2𝛿 𝛾2𝑘1𝑟1𝑟2𝜃1 − 𝛼 𝛽2𝜖 𝛾2𝑘1𝑟22𝜃1
+ 𝛼 𝛽2𝛾2𝑘1𝑟1𝑟2

2𝜃1 + 𝛼 𝛽 𝛿2𝜖 𝛾 𝜇 𝑘1𝜃12 + 𝛼 𝛽 𝛿2𝛾 𝜇 𝜓 𝑘1𝜃12

− 𝛼 𝛽 𝛿2𝛾 𝜇 𝑘1𝑟1𝜃1
2 − 𝛼 𝛽 𝛿 𝜖 𝛾 𝜇 𝑘1𝑟2𝜃12,

− 𝛼 𝛽 𝛿 𝛾 𝜇 𝜓 𝑘1𝑟2𝜃1
2 + 𝛼 𝛽 𝛿 𝛾 𝜇 𝑘1𝑟1𝑟2𝜃12 + 𝛽2𝛿 𝛾2𝑟1𝑟22

+ 2 𝛽 𝛿2𝛾 𝜇 𝑟1𝑟2𝜃1 + 𝛿3𝜇2𝑟1𝜃12), (2.2b)
𝛶1 = (𝛼 𝛽 𝛿2𝜖 𝛾 𝜇 𝜓 𝑘1𝜃1 − 𝛼 𝛽 𝛿2𝜖 𝛾 𝜇 𝑘1𝑟1𝜃1 − 2 𝛼 𝛽 𝛿 𝜖 𝛾 𝜇 𝜓 𝑘1𝑟2𝜃1,

+ 2 𝛼 𝛽 𝛿 𝜖 𝛾 𝜇 𝑘1𝑟1𝑟2𝜃1 + 𝛼 𝛽 𝜖 𝛾 𝜇 𝜓 𝑘1𝑟22𝜃1 − 𝛼 𝛽 𝜖 𝛾 𝜇 𝑘1𝑟1𝑟22𝜃1,

+ 2 𝛽 𝛿2𝜖 𝛾 𝜇 𝑟1𝑟2 − 2 𝛽 𝛿 𝜖 𝛾 𝜇 𝑟1𝑟22 + 2 𝛿3𝜖 𝜇2𝑟1𝜃1 − 2 𝛿2𝜖 𝜇2𝑟1𝑟2𝜃1),
(2.2c)

𝛶0 = 𝛿3𝜖2𝜇2𝑟1 − 2 𝛿2𝜖2𝜇2𝑟1𝑟2 + 𝛿 𝜖2𝜇2𝑟1𝑟22. (2.2d)
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The equation ∑3
0 𝛶𝑖𝑍

𝑖 = 0 has exactly one real positive root if
2 + 4𝐻3 > 0, it has two equal roots if 𝐺2 + 4𝐻3 = 0, and it has three
istinct real roots if 𝐺2 + 4𝐻3 > 0, where 𝐺 = 𝛶12𝛶4 − 3𝛶1𝛶2𝛶3 + 2𝛶23,
= 𝛶1𝛶3 − 𝛶22. Using Cardan’s method, we obtain that the root is

1
𝛶1
(𝑞 − 𝐻

𝑞 − 𝛶2), where 𝑞 denotes one of the three values of [ 12 (−𝐺 +
√

𝐺2 + 4𝐻3)
1
3 ]. The condition 𝐺2+4𝐻3 = 0 yields two equal roots, and

2 + 4𝐻3 = 0 gives three distinct real roots; by Cardan’s method, we
an obtain the roots. In a subsequent section, we will obtain these roots
sing numerical simulations.

The general Jacobian matrix of system (2.1) is

𝐼 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑗11 𝑗12 −𝜃1𝐹𝑠 −𝜃1𝐹𝑠 −𝛾 𝐹𝑠
𝛾 𝑀 −𝜃1

(

𝐻𝑠 +𝐻𝑖
)

− 𝜖 −𝜃1𝐹𝑖 −𝜃1𝐹𝑖 𝛾 𝐹𝑠
0 −𝛼 𝜃1𝐻𝑠 𝑗331 𝑗34 0

0 𝛼 𝜃1𝐻𝑠 𝛼 𝜃1𝐹𝑖 −𝛿 0

0 0 0 𝛽 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where 𝑗11, 𝑗12, 𝑗33 and 𝑗34 are defined as follows:

11 = 𝑟1

(

1 −
𝐹𝑠 + 𝐹𝑖
𝑘1

)

−
𝑟1

(

𝐹𝑠 + 𝐹𝑖
)

𝑘1
− 𝜃1

(

𝐻𝑠 +𝐻𝑖
)

− 𝛾 𝑀,

𝑗12 = 𝑟1

(

1 −
𝐹𝑠 + 𝐹𝑖
𝑘1

)

−
𝑟1

(

𝐹𝑠 + 𝐹𝑖
)

𝑘1
,

𝑗33 = 𝑟2

(

1 −
𝐻𝑠 +𝐻𝑖
𝑘2

)

−
𝑟2

(

𝐻𝑠 +𝐻𝑖
)

𝑘2
− 𝛼 𝜃1𝐹𝑖,

𝑗34 = 𝑟2

(

1 −
𝐻𝑠 +𝐻𝑖
𝑘2

)

−
𝑟2

(

𝐻𝑠 +𝐻𝑖
)

𝑘2
.

The general Jacobian matrix of system (2.1) is

𝐽 𝐼 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑗11 𝑗12 −𝜃1𝐹𝑠 −𝜃1𝐹𝑠 −𝛾 𝐹𝑠
𝛾 𝑀 −𝜃1

(

𝐻𝑠 +𝐻𝑖
)

− 𝜖 −𝜃1𝐹𝑖 −𝜃1𝐹𝑖 𝛾 𝐹𝑠
0 −𝛼 𝜃1𝐻𝑠 𝑗331 𝑗34 0

0 𝛼 𝜃1𝐻𝑠 𝛼 𝜃1𝐹𝑖 −𝛿 0

0 0 0 𝛽 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where 𝑗11, 𝑗12, 𝑗33 and 𝑗34 are defined as follows:

11 = 𝑟1

(

1 −
𝐹𝑠 + 𝐹𝑖
𝑘1

)

−
𝑟1

(

𝐹𝑠 + 𝐹𝑖
)

𝑘1
− 𝜃1

(

𝐻𝑠 +𝐻𝑖
)

− 𝛾 𝑀,

𝑗12 = 𝑟1

(

1 −
𝐹𝑠 + 𝐹𝑖
𝑘1

)

−
𝑟1

(

𝐹𝑠 + 𝐹𝑖
)

𝑘1
,

𝑗33 = 𝑟2

(

1 −
𝐻𝑠 +𝐻𝑖
𝑘2

)

−
𝑟2

(

𝐻𝑠 +𝐻𝑖
)

𝑘2
− 𝛼 𝜃1𝐹𝑖,

𝑗34 = 𝑟2

(

1 −
𝐻𝑠 +𝐻𝑖
𝑘2

)

−
𝑟2

(

𝐻𝑠 +𝐻𝑖
)

𝑘2
.

The Jacobian matrix at 𝐸𝐼0 is given by

𝐽 𝐼0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝜓 + 𝑟1 𝑟1 0 0 0

0 −𝜖 0 0 0

0 0 𝑟2 𝑟2 0

0 0 0 −𝛿 0

0 0 0 𝛽 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The eigenvalues of 𝐽 𝐼0 are −𝜓 + 𝑟1, −𝜖, 𝑟2, −𝛿, −𝜇. Since 𝑟2 > 0, 𝐸0
is always unstable. The Jacobian matrix at 𝐸𝐼1 is given by

𝐽 𝐼1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝜓 − 𝑟1 2𝜓 − 𝑟1
𝜃1𝑘1(𝜓−𝑟1)

𝑟1

𝜃1𝑘1(𝜓−𝑟1)
𝑟1

𝛾 𝑘1(𝜓−𝑟1)
𝑟1

0 −𝜖 0 0 − 𝛾 𝑘1(𝜓−𝑟1)
𝑟1

0 0 𝑟2 𝑟2 0

0 0 0 −𝛿 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

.
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⎣
0 0 0 𝛽 −𝜇

⎦

The eigenvalues of 𝐽 𝐼1 are 𝜓−𝑟1, −𝜖, 𝑟2, −𝛿, −𝜇. 𝐸𝐼1 is unstable, since
𝑟2 > 0. Note that the stability of 𝐸𝐼2 can only be shown numerically.

Since 𝐸0 is always unstable, extinction of all species is impossible.
The details of the stability analysis shows that the extinction of all
species is impossible due to the positive human net birth rate 𝑟2. Finally,
the stability of 𝐸2 is conditional.

To illustrate our results, we ran several numerical simulations. Some
parameter values in Table 1 are taken from the ecology literature, and
some data are estimated. Fig. 2 shows the numerical solution of system
(2.1). Solutions oscillate before reaching a coexistence equilibrium.

3. Model II: Fish vaccination and linear human growth

Here, we modify model (2.1) by considering vaccination of fish. See
Fig. 3. Let 𝜓 be the rate of vaccination of susceptible fish and 𝐹𝑣 be the
vaccinated fish population.

With these assumptions, model (2.1) reduces to

𝑑𝐹𝑠
𝑑𝑡

= 𝑟1(𝐹𝑠 + 𝐹𝑖 + 𝐹𝑣)
(

1 −
𝐹𝑠 + 𝐹𝑖 + 𝐹𝑣

𝑘1

)

− 𝜃1𝐹𝑠(𝐻𝑠 +𝐻𝑖)

− 𝛾𝐹𝑠𝑀 − 𝜓𝐹𝑠, (3.1a)
𝑑𝐹𝑖
𝑑𝑡

= 𝛾𝐹𝑠𝑀 − 𝜃1𝐹𝑖(𝐻𝑠 +𝐻𝑖) − 𝜖𝐹𝑖, (3.1b)
𝑑𝐹𝑣
𝑑𝑡

= 𝜓𝐹𝑠 − 𝜃1𝐹𝑣(𝐻𝑠 +𝐻𝑖) − 𝜙𝐹𝑣, (3.1c)
𝑑𝐻𝑠
𝑑𝑡

= 𝑟2(𝐻𝑠 +𝐻𝑖) − 𝛼𝜃1𝐹𝑖𝐻𝑠 + 𝜔𝐻𝑖, (3.1d)
𝑑𝐻𝑖
𝑑𝑡

= 𝛼𝜃1𝐹𝑖𝐻𝑠 − 𝛿𝐻𝑖 − 𝜔𝐻𝑖, (3.1e)
𝑑𝑀
𝑑𝑡

= 𝛽𝐻𝑖 − 𝜇𝑀. (3.1f)

System (4.1) possesses the following equilibrium points:

𝐸𝐼𝐼0 ∶ (𝑀,𝐹𝑖, 𝐹𝑠, 𝐹𝑣,𝐻𝑖,𝐻𝑠) =

(

0, 0, 0, 0, 0, 0

)

,

𝐸𝐼𝐼1 ∶ (𝑀,𝐹𝑖, 𝐹𝑠, 𝐹𝑣,𝐻𝑖,𝐻𝑠) =

(

0, 0,
(−𝜓 𝜙 + 𝜙 𝑟1 + 𝜓 𝑟1)𝑘1𝜙
(𝜙2 + 2𝜓 𝜙 + 𝜓2)𝑟1

,

(−𝜓 𝜙 + 𝜙 𝑟1 + 𝜓 𝑟1)𝜓 𝑘1
(𝜙2 + 2𝜓 𝜙 + 𝜓2)𝑟1

, 0, 0

)

,

𝐼𝐼
2 ∶ (𝑀,𝐹𝑖, 𝐹𝑠, 𝐹𝑣,𝐻𝑖,𝐻𝑠)

=

(

𝛽 𝑟2𝑅2
(𝛿 − 𝑟2)𝜇

,
𝑟2(𝛿 + 𝜔)
𝛼 𝜃1(𝛿 − 𝑟2)

,

(𝑅2𝛿2𝜃1 + 𝑅2𝛿 𝜔 𝜃1 + 𝛿2𝜖 + 𝛿 𝜖 𝜔 − 𝛿 𝜖 𝑟2 − 𝜖 𝜔 𝑟2)𝜇
(𝛿 − 𝑟2)𝜃1𝑅2𝛾 𝛼 𝛽

,

𝜇 𝜓 (𝑅2𝛿2𝜃1 + 𝑅2𝛿 𝜔 𝜃1 + 𝛿2𝜖 + 𝛿 𝜖 𝜔 − 𝛿 𝜖 𝑟2 − 𝜖 𝜔 𝑟2)
(𝑅2𝛿 𝜃1 + 𝛿 𝜙 − 𝑟2𝜙)𝛾 𝛼 𝛽 𝑅2𝜃1

,

𝑟2𝑅2
𝛿 − 𝑟2

, 𝑅2

)

,

where 𝑅2 is a positive root of the equation ∑5
0 𝛶𝑖𝑍

𝑖 = 0, with 𝛶𝑖 as in
qs. (2.2).

The equilibrium point 𝐸𝐼𝐼0 always exists. However, the equilibrium
oint 𝐸𝐼𝐼1 exists if and only if 𝑟1 > 𝑟𝐼𝐼1 , where 𝑟𝐼𝐼1 = 𝜓𝜙

𝜓+𝜙 ; that is,
the birth rate of the fish population is greater than the threshold 𝑟𝐼𝐼1 .
Note that the threshold increases with 𝜓 , so fish vaccination is a valid

method of control.
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Table 1
Parameter values used in numerical simulations.
Parameter Description Value (unit) Reference

𝑟1 Intrinsic growth rate of fish 0.2 day−1 [4,26]
𝑟2 Intrinsic growth rate of humans 0.01 day−1 [4,27]
𝑘1 Carrying capacity of fish 1000 m−2 [17,26]
𝑘2 Carrying capacity of humans 500 km−2 [17,26]
𝛾 Infection rate of fish 0.0025 day−1 [28,29]
𝜃1 Consumption rate of fish by humans 0.025 humans−1 day−1 [29,30]
𝜓 Rate of vaccination 0.1 day−1 [31,32]
𝛼 Infection rate of humans due to consumption 0.005 day−1 [17,29]
𝛽 Growth rate of infective molluscs 0.5 day−1 [4,27]
𝜇 Mortality rate of molluscs 1 day−1 [33,34]
Fig. 2. Numerical solution of system (2.1) using the parameters given in Table 1. Note the different scales on the 𝑦-axes.
Fig. 3. Schematic diagram of model (3.1) of clonorchiasis with human treatment and fish vaccination versus snail control.
4
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𝑎

T
t
n
i

t
c

4

c
v

𝐸

𝐸

𝐸

(

The Jacobian matrix at 𝐸0 is given by

𝐽 𝐼𝐼 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 𝜓 𝑘1+2𝐹𝑣𝑟1−𝑘1𝑟1
𝑘1

− 𝑟1(2𝐹𝑣−𝑘1)
𝑘1

− 𝑟1(2𝐹𝑣−𝑘1)
𝑘1

0 0 0

0 −𝜖 0 0 0 0

𝜓 0 −𝜙 −𝜃1𝐹𝑣 −𝜃1𝐹𝑣 0

0 0 0 𝑟2 𝑟2 + 𝜔 0

0 0 0 0 −𝛿 − 𝜔 0

0 0 0 0 𝛽 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The eigenvalues of 𝐽 𝐼𝐼0 are

− 𝜖, 𝑟2,−𝛿 − 𝜔,−𝜇,±
𝜙𝑘1 + 𝜓 𝑘1 + 2 𝑟1𝐹𝑣 − 𝑟1𝑘1 +

√

𝛤2
2𝑘1

,

where

𝛤2 = 𝜙2𝑘1
2 − 2𝜙𝜓 𝑘12 − 4𝜙𝐹𝑣𝑘1𝑟1 + 2𝜙𝑘12𝑟1 + 𝜓2𝑘1

2 − 4𝜓 𝐹𝑣𝑘1𝑟1
+ 2𝜓 𝑘12𝑟1 + 4𝐹𝑣2𝑟12 − 4𝐹𝑣𝑘1𝑟12 + 𝑘12𝑟12.

The Jacobian matrix at 𝐸𝐼𝐼1 is given by

𝐽 𝐼𝐼1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 𝑎16
0 −𝜖 0 0 0 𝑎26
𝜓 0 −𝜙 𝑎34 𝑎35 0

0 0 0 𝑟2 𝑟2 + 𝜔 0

0 0 0 0 −𝛿 − 𝜔 0

0 0 0, 0 𝛽 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where

𝑎11 =
𝜙𝜓 − 𝜙 𝑟1 − 𝜓2 − 𝜓 𝑟1

𝜙 + 𝜓
, 𝑎12 =

2𝜙𝜓 − 𝜙 𝑟1 − 𝜓 𝑟1
𝜙 + 𝜓

,

13 =
2𝜙𝜓 − 𝜙 𝑟1 − 𝜓 𝑟1

𝜙 + 𝜓
, 𝑎14 =

𝜃1
(

𝜙𝜓 − 𝜙 𝑟1 − 𝜓 𝑟1
)

𝑘1𝜙
(

𝜙2 + 2𝜙𝜓 + 𝜓2
)

𝑟1
,

𝑎15 =
𝜃1

(

𝜙𝜓 − 𝜙 𝑟1 − 𝜓 𝑟1
)

𝑘1𝜙
(

𝜙2 + 2𝜙𝜓 + 𝜓2
)

𝑟1
, 𝑎16 =

𝛾
(

𝜙𝜓 − 𝜙 𝑟1 − 𝜓 𝑟1
)

𝑘1𝜙
(

𝜙2 + 2𝜙𝜓 + 𝜓2
)

𝑟1
,

𝑎26 = −
𝛾
(

𝜙𝜓 − 𝜙 𝑟1 − 𝜓 𝑟1
)

𝑘1𝜙
(

𝜙2 + 2𝜙𝜓 + 𝜓2
)

𝑟1
, 𝑎34 =

𝜃1
(

𝜙𝜓 − 𝜙 𝑟1 − 𝜓 𝑟1
)

𝜓 𝑘1
(

𝜙2 + 2𝜙𝜓 + 𝜓2
)

𝑟1
,

𝑎35 =
𝜃1

(

𝜙𝜓 − 𝜙 𝑟1 − 𝜓 𝑟1
)

𝜓 𝑘1
(

𝜙2 + 2𝜙𝜓 + 𝜓2
)

𝑟1
.

The eigenvalues of 𝐽 𝐼𝐼1 are

−𝜔,−𝜖, 𝑟2,−𝛿,−𝜇,
−𝜙2 − 𝜙 𝑟1 − 𝜓2 − 𝜓 𝑟1 +

√

𝛤1
2𝜙 + 2𝜓

,

where

𝛤1 = 𝜙4 + 4𝜙3𝜓 − 2𝜙3𝑟1 + 10𝜙2𝜓2 − 10𝜙2𝜓 𝑟1 + 𝜙2𝑟1
2 + 4𝜙𝜓3

− 10𝜙𝜓2𝑟1 + 2𝜙𝜓 𝑟12 + 𝜓4 − 2𝜓3𝑟1 + 𝜓2𝑟1
2.

herefore 𝐸𝐼𝐼0 and 𝐸𝐼𝐼1 is always unstable. This instability is due to
he human birth rate 𝑟2 > 0. The stability of 𝐸𝐼𝐼2 can only be shown
umerically. This means that human births save the molluscs and
nfected fish from extinction, along with the human species itself.

Fig. 4 illustrates the time-dependent solution of system (3.1). In
his case, there are damped oscillations, and the system approaches a
oexistence steady state.

. Model III: Logistic human growth without intervention

As a refinement of our baseline model, we assume that the sus-
eptible humans grow logistically. Since the infection is not passed
ertically, model (2.1) in this case becomes
𝑑𝐹𝑠 = 𝑟1(𝐹𝑠 + 𝐹𝑖)

(

1 −
𝐹𝑠 + 𝐹𝑖

)

− 𝜃1𝐹𝑠(𝐻𝑠 +𝐻𝑖) − 𝛾𝐹𝑠𝑀, (4.1a)
5

𝑑𝑡 𝑘1
𝑑𝐹𝑖
𝑑𝑡

= 𝛾𝐹𝑠𝑀 − 𝜃1𝐹𝑖(𝐻𝑠 +𝐻𝑖) − 𝜖𝐹𝑖, (4.1b)

𝑑𝐻𝑠
𝑑𝑡

= 𝑟2(𝐻𝑠 +𝐻𝑖)
(

1 −
𝐻𝑠 +𝐻𝑖
𝑘2

)

− 𝛼𝜃1𝐹𝑖𝐻𝑠, (4.1c)

𝑑𝐻𝑖
𝑑𝑡

= 𝛼𝜃1𝐹𝑖𝐻𝑠 − 𝛿𝐻𝑖, (4.1d)
𝑑𝑀
𝑑𝑡

= 𝛽𝐻𝑖 − 𝜇𝑀. (4.1e)

System (4.1) has four biologically feasible steady states when the
molluscs are eradicated:

𝐸𝐼𝐼𝐼0 ∶ (𝑀,𝐹𝑖, 𝐹𝑠,𝐻𝑖,𝐻𝑠) = (0, 0, 0, 0, 0),
𝐼𝐼𝐼
1 ∶ (𝑀,𝐹𝑖, 𝐹𝑠,𝐻𝑖,𝐻𝑠) = (0, 0, 𝑘1, 0, 0),
𝐼𝐼𝐼
2 ∶ (𝑀,𝐹𝑖, 𝐹𝑠,𝐻𝑖,𝐻𝑠) = (0, 0, 0, 0, 𝑘2),

𝐼𝐼𝐼
3 ∶ (𝑀,𝐹𝑖, 𝐹𝑠,𝐻𝑖,𝐻𝑠) = (0, 0,

𝑘1(𝑟1 − 𝑘2𝜃1)
𝑟1

, 0, 𝑘2).

Since 𝐸𝐼𝐼𝐼0 and 𝐸𝐼𝐼𝐼1 are always unstable, extinction of all species is
not possible for positive initial conditions. It is possible that susceptible
humans thrive while the remaining species become extinct if 𝜃1 >

𝑟1
𝑘2

or 𝑅𝐼𝐼𝐼0 < 1 where 𝑅𝐼𝐼𝐼0 = 𝑟1
𝜃1𝑘2

). Indeed, the latter is the condition for
which 𝐸𝐼𝐼𝐼2 is stable. If the fish consumption or the predation rate by
the human population is greater than a threshold, then all species go
extinct except for susceptible humans, and the epidemic is avoided.

Theorem 4.1. The disease-free equilibrium 𝐸𝐼𝐼𝐼3 is stable if and only if
𝑟1 − 𝑘2𝜃1 > 0 and

𝑅0 =
𝛾𝑘1𝑘2𝜃𝛽(𝑟1 − 𝑘2𝜃1)
𝑟1(𝑘2𝜃1 + 𝜖)𝑟2𝜇

< 1.

Proof. The Jacobian matrix at 𝐸𝐼𝐼𝐼3 is given by

𝐽 𝐼𝐼𝐼3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑘2𝜃1 − 𝑟1 2 𝑘2𝜃1 − 𝑟1
𝑘1𝜃1(𝑘2𝜃1−𝑟1)

𝑟1

𝑘1𝜃1(𝑘2𝜃1−𝑟1)
𝑟1

𝛾 𝑘1(𝑘2𝜃1−𝑟1)
𝑟1

0 −𝑘2𝜃1 − 𝜖 0 0 − 𝛾 𝑘1(𝑘2𝜃1−𝑟1)
𝑟1

0 −𝛼 𝑘2𝜃1 −𝑟2 −𝑟2 0

0 𝛼 𝑘2𝜃1 0 −𝛿 0

0 0 0 𝛽 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The two eigenvalues of 𝐽 𝐼𝐼𝐼3 are 𝑘2𝜃1 − 𝑟1 < 0, −𝑟2 < 0. The
remaining eigenvalues satisfy the following cubic:

𝜌3 + (𝛿 + 𝜇 + 𝑘2𝜃1 + 𝜖)𝜌2 + {(𝑟2 + 𝜇)(𝑘2𝜃1 + 𝜖) + 𝑟2𝜇}𝜌

+ 𝑟1(𝑘2𝜃1 + 𝜖)𝑟2𝜇 − 𝛾𝑘1𝑘2𝜃𝛽(𝑟1 − 𝑘2𝜃1) = 0. (4.3)

Since the coefficients of Eq. (4.3) satisfy (𝛿 + 𝜇 + 𝑘2𝜃1 + 𝜖) > 0,
(𝑟2 + 𝜇)(𝑘2𝜃1 + 𝜖) + 𝑟2𝜇 > 0, using Routh–Hurwitz criterion, all roots
of Eq. (4.3) will be negative or have negative real parts if and only if
the last coefficient is positive; i.e.,

𝑟1(𝑘2𝜃1 + 𝜖)𝑟2𝜇 − 𝛾𝑘1𝑘2𝜃𝛽(𝑟1 − 𝑘2𝜃1) > 0.

Fig. 5 describes the numerical simulation of system (4.1). In this
case, there are essentially no oscillations, and the system approaches a
coexistence equilibrium.

5. Model IV: Molluscicide and logistic human growth

We now build on the previous models to add molluscicide to control
the snail population, while including logistic growth for humans. The
model becomes
𝑑𝐹𝑠
𝑑𝑡

= 𝑟1(𝐹𝑠 + 𝐹𝑖 + 𝐹𝑣)
(

1 −
𝐹𝑠 + 𝐹𝑖 + 𝐹𝑣

𝑘1

)

− 𝜃1𝐹𝑠(𝐻𝑠 +𝐻𝑖)

− 𝛾𝐹𝑠𝑀 − 𝜓𝐹𝑠, (5.1a)
𝑑𝐹𝑖 = 𝛾𝐹 𝑀 − 𝜃 𝐹 (𝐻 +𝐻 ) − 𝜖𝐹 , (5.1b)

𝑑𝑡 𝑠 1 𝑖 𝑠 𝑖 𝑖
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Fig. 4. Numerical solution of the system (3.1) using the parameters given in Table 1.
Fig. 5. Numerical solution of system (4.1) using the parameters given in Table 1.
𝑑𝐹𝑣
𝑑𝑡

= 𝜓𝐹𝑠 − 𝜃1𝐹𝑣(𝐻𝑠 +𝐻𝑖) − 𝜙𝐹𝑣, (5.1c)

𝑑𝐻𝑠
𝑑𝑡

= 𝑟2(𝐻𝑠 +𝐻𝑖)
(

1 −
𝐻𝑠 +𝐻𝑖
𝑘2

)

− 𝛼𝜃1𝐹𝑖𝐻𝑠 + 𝜔𝐻𝑖, (5.1d)

𝑑𝐻𝑖
𝑑𝑡

= 𝛼𝜃1𝐹𝑖𝐻𝑠 − 𝛿𝐻𝑖 − 𝜔𝐻𝑖, (5.1e)
6

𝑑𝑀
𝑑𝑡

= 𝛽𝐻𝑖 − 𝜇𝑀. (5.1f)

For the analysis of the system (5.1), we need the following invariant
region:

 =
{

(𝐹 , 𝐹 , 𝐹 ,𝐻 ,𝐻 ,𝑀) ∈  ∶ 0 ≤ 𝐹 + 𝐹 + 𝐹 ≤ 𝑘 ,
𝑠 𝑖 𝑣 𝑠 𝑖 𝑠 𝑖 𝑣 1
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𝐽

w

𝑗

T

H
a

𝑀

a

𝑀

T
m
r
w

𝑀

T

𝑛

0 ≤ 𝐻𝑠 +𝐻𝑖 ≤ 𝑘2,𝐻𝑖 ≤
𝛼𝜃𝑘1𝑘2
𝛿 + 𝜔

, 0 ≤𝑀 ≤ 𝑚
}

, (5.2)

where

𝑚 =
𝛽𝛼𝜃𝑘1𝑘2
(𝛿 + 𝜔)𝜇

. (5.3)

The Jacobian matrix for the model (5.1) is given by

𝐼𝑉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑗11 𝑟1
(

1 − 2(𝐹𝑠+𝐹𝑖)
𝑘1

)

−𝜃1𝐹𝑠 −𝜃1𝐹𝑠 −𝛾 𝐹𝑠

𝛾 𝑀 −𝜃1𝐻𝑖 − 𝜃1𝐻𝑠 − 𝜖 −𝐹𝑖𝜃1 −𝐹𝑖𝜃1 𝛾 𝐹𝑠

0 −𝛼 𝜃1𝐻𝑠 𝑗33 𝑟2
(

1 − 2(𝐻𝑠+𝐻𝑖)
𝑘2

)

0

0 𝛼 𝜃1𝐻𝑠 𝛼 𝜃1𝐹𝑖 −𝛿 0

0 0 0 𝛽 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

here

11 = 𝑟1

(

1 −
2(𝐹𝑠 + 𝐹𝑖)

𝑘1

)

− 𝜃1𝐻𝑠 − 𝜃1𝐻𝑖 − 𝛾 𝑀,

𝑗33 = 𝑟2

(

1 −
2(𝐻𝑠 +𝐻𝑖)

𝑘2

)

− 𝛼 𝜃1𝐹𝑖.

The Jacobian matrix at 𝐸𝐼𝑉0 is given by

𝐽 𝐼𝑉0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟1 𝑟1 0 0 0

0 −𝜖 0 0 0

0 0 𝑟2 𝑟2 0

0 0 0 −𝛿 0

0 0 0 𝛽 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

he eigenvalues of 𝐽0 are 𝑟1, −𝜖, 𝑟2, −𝛿, −𝜇, so 𝐸𝐼𝑉0 is always unstable.
The Jacobian matrix at 𝐸𝐼𝑉1 is given by

𝐽 𝐼𝑉1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑟1 −𝑟1 −𝑘1𝜃1 −𝑘1𝜃1 −𝛾 𝑘1
0 −𝜖 0 0 𝛾 𝑘1
0 0 𝑟2 𝑟2 0

0 0 0 −𝛿 0

0 0 0 𝛽 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The eigenvalues of 𝐽1 are −𝑟1, −𝜖, 𝑟2, −𝛿, −𝜇, so 𝐸𝐼𝑉1 is always unstable.
The Jacobian matrix at 𝐸𝐼𝑉2 is given by

𝐽 𝐼𝑉2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑘2𝜃1 + 𝑟1 𝑟1 0 0 0

0 −𝑘2𝜃1 − 𝜖 0 0 0

0 −𝛼 𝑘2𝜃1 −𝑟2 −𝑟2 0

0 𝛼 𝑘2𝜃1 0 −𝛿 0

0 0 0 𝛽 −𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The eigenvalues of 𝐽 𝐼𝑉2 are 𝑟1−𝑘2𝜃1, −𝑘2𝜃1− 𝜖, −𝑟2, −𝛿, −𝜇. Therefore,
the system is stable if and only if 𝑟1 < 𝑘2𝜃1.

Fig. 6 illustrates the results from system (5.1). Small oscillations
appear initially before the system approaches a coexistence steady
state.

6. Model V: Molluscicide and logistic human growth with impul-
sive snail control

Snail control is conducted using molluscicide in fish ponds and
canals [35]. Molluscicides are most commonly applied at discrete
(rather than continuous) times, in order to avoid environmental tox-
icity. This can be modelled as an impulsive effect [36,37]. Suppose that
the molluscicide is applied at 𝑡𝑘 (𝑘 ∈ N), and the elimination rate of
snails at time 𝑡𝑘 is 𝑞. With these assumptions, model (5.1) reduces to

𝑑𝐹𝑠 = 𝑟1(𝐹𝑠 + 𝐹𝑖 + 𝐹𝑣)
(

1 −
𝐹𝑠 + 𝐹𝑖 + 𝐹𝑣

)

− 𝜃1𝐹𝑠(𝐻𝑠 +𝐻𝑖)
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𝑑𝑡 𝑘1
− 𝛾𝐹𝑠𝑀 − 𝜓𝐹𝑠, (6.1a)
𝑑𝐹𝑖
𝑑𝑡

= 𝛾𝐹𝑠𝑀 − 𝜃1𝐹𝑖(𝐻𝑠 +𝐻𝑖) − 𝜖𝐹𝑖, (6.1b)
𝑑𝐹𝑣
𝑑𝑡

= 𝜓𝐹𝑠 − 𝜃1𝐹𝑣(𝐻𝑠 +𝐻𝑖) − 𝜖𝐹𝑣, (6.1c)

𝑑𝐻𝑠
𝑑𝑡

= 𝑟2(𝐻𝑠 +𝐻𝑖)
(

1 −
𝐻𝑠 +𝐻𝑖
𝑘2

)

− 𝛼𝜃1𝐹𝑖𝐻𝑠 + 𝜔𝐻𝑖, (6.1d)

𝑑𝐻𝑖
𝑑𝑡

= 𝛼𝜃1𝐹𝑖𝐻𝑠 − 𝛿𝐻𝑖 − 𝜔𝐻𝑖, (6.1e)
𝑑𝑀
𝑑𝑡

= 𝛽𝐻𝑖 − 𝜇𝑀 𝑡 ≠ 𝑡𝑘, (6.1f)

𝛥𝑀 = − 𝑞𝑀 𝑡 = 𝑡𝑘. (6.1g)

Taking the maximal number of infected molluscs as an upper bound,
the one-dimensional impulsive differential equation takes the form:
𝑑𝑀
𝑑𝑡

= 𝑚 − 𝜇𝑀, for 𝑡 ≠ 𝑡𝑘

𝛥𝑀 = −𝑞𝑀, for 𝑡 = 𝑡𝑘 where 𝑘 = 1, 2, 3,… (6.2)

where 𝑚 is defined in (5.3).
For a single impulsive cycle 𝑡𝑘 ≤ 𝑡 ≤ 𝑡𝑘+1, the endpoints of Eq. (6.2)

satisfy

𝑀(𝑡−𝑘+1) =
𝑚
𝜇

[

1 − 𝑒−𝜇(𝑡𝑘+1−𝑡𝑘)
]

+𝑀(𝑡+𝑘 )𝑒
−𝜇(𝑡𝑘+1−𝑡𝑘).

ere, 𝑀(𝑡−𝑘 ) and 𝑀(𝑡+𝑘 ) represent number of infected molluscs immedi-
tely before and after the impulse therapy respectively.

Solving the recurrence relation, we have

(𝑡−𝑛 ) =
𝑚
𝜇

[

(1 − 𝑞)(𝑛−1)𝑒−𝜇(𝑡𝑛−𝑡1) + (1 − 𝑞)(𝑛−2)𝑒−𝜇(𝑡𝑛−𝑡2)

+⋯ + (1 − 𝑞)𝑒−𝜇(𝑡𝑛−𝑡𝑛−1)

+ 1 − (1 − 𝑞)(𝑛−2)𝑒−𝜇(𝑡𝑛−𝑡1) − (1 − 𝑞)(𝑛−3)𝑒−𝜇(𝑡𝑛−𝑡2)

−⋯ − 𝑒−𝜇(𝑡𝑛−𝑡𝑛−1)
]

(6.3)

nd

(𝑡+𝑛 ) =
𝑚
𝜇

[

(1 − 𝑞)𝑛𝑒−𝜇(𝑡𝑛−𝑡1) + (1 − 𝑞)(𝑛−1)𝑒−𝜇(𝑡𝑛−𝑡2)

+⋯ + (1 − 𝑞)2𝑒−𝜇(𝑡𝑛−𝑡𝑛−1)

− (1 − 𝑞)(𝑛−1)𝑒−𝜇(𝑡𝑛−𝑡1) − (1 − 𝑞)(𝑛−2)𝑒−𝜇(𝑡𝑛−𝑡2)

−⋯ − (1 − 𝑞)𝑒−𝜇(𝑡𝑛−𝑡𝑛−1)

+ (1 − 𝑞)
]

. (6.4)

he solutions given in (6.3) and (6.4) can help to predict the infected
olluscs present just before and after the 𝑛th impulse. However, these

equire the entire history of molluscicide application to be known,
hich is unlikely to be available.

If the time period 𝜏 = 𝑡𝑛+1 − 𝑡𝑛 is fixed, then we have

(𝑡−𝑛 ) =
𝑚
𝜇

[

1 + (1 − 𝑞)𝑒−𝜇𝜏 + (1 − 𝑞)2𝑒−2𝜇𝜏 + .... + (1 − 𝑞)𝑛−1𝑒−(𝑛−1)𝜇𝜏

− 𝑒−𝜇𝜏
(

1 + (1 − 𝑞)𝑒−𝜇𝜏 + .... + (1 − 𝑞)𝑛−2𝑒−(𝑛−2)𝜇𝜏
)]

,

= 𝑚
𝜇

[ 1 − (1 − 𝑞)𝑛𝑒−𝑛𝜇𝜏

1 − (1 − 𝑞)𝑒−𝜇𝜏
− 𝑒−𝜇𝜏

1 − (1 − 𝑞)𝑛−1𝑒−(𝑛−1)𝜇𝜏

1 − (1 − 𝑞)𝑒−𝜇𝜏
]

.

herefore,

lim
→∞

𝑀(𝑡−𝑛 ) =
𝑚
𝜇

[ 1
1 − (1 − 𝑞)𝑒−𝜇𝜏

− 𝑒−𝜇𝜏 1
1 − (1 − 𝑞)𝑒−𝜇𝜏

]

,

= 𝑚
𝜇

[ 1 − 𝑒−𝜇𝜏
1 − (1 − 𝑞)𝑒−𝜇𝜏

]

.

This is the maximum number of infected molluscs in the long term
before applying the molluscicide.

After applying the molluscicide, the number of the infected molluscs
is expressed by

lim 𝑀(𝑡+) = (1 − 𝑞) lim 𝑀(𝑡−),

𝑛→∞ 𝑛 𝑛→∞ 𝑛
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Fig. 6. Numerical solution of the system (5.1) using the parameters given in Table 1.
t
e

i
t
i
i
i

o
9
2

p
c
a
b
i
i
a
p
0

i
a
n
f
h

= (1 − 𝑞)𝑚
𝜇

[ 1 − 𝑒−𝜇𝜏
1 − (1 − 𝑞)𝑒−𝜇𝜏

]

.

This is the long-term minimum number of infected molluscs.
Suppose 𝑀̃ is the maximum acceptable level of infected molluscs.

After long-term molluscicide application, in order to keep the infected
molluscs below 𝑀̃ , we need the maximum time interval, 𝜏𝑚𝑎𝑥, between
two consecutive impulses to satisfy

(1 − 𝑞)𝑚
𝜇

[ 1 − 𝑒−𝜇𝜏
1 − (1 − 𝑞)𝑒−𝜇𝜏

]

< 𝑀̃.

ence

< 1
𝜇
ln
[

𝑀̃𝜇 − (1 − 𝑞)𝑚
(1 − 𝑞)(𝑚 − 𝑀̃𝜇)

]

= 𝜏𝑚𝑎𝑥. (6.5)

From (6.5), we have the maximum time interval of molluscicide appli-
cation that will keep the infected molluscs below any arbitrary level
𝑀̃ . However, we cannot clear the molluscs entirely without spraying
infinitely often, which is not feasible (and the impulsive assumptions
do not apply, in any case).

Fig. 7 illustrates system (6.1), showing the effect of applying impul-
sive control (in red). The impulsive molluscicides quickly control the
infection if applied frequently enough.

7. Model behaviour comparison

Comparing the coexistence equilibria of model (2.1) with model
(4.1), the susceptible human population is bounded. This is notable for
model (2.1), where the human growth rate is assumed to be of Malthus
type. However, the presence of the other populations keeps the possible
explosion of the humans in check.

The disease is endemic in both situations, with all populations
thriving. However, the presence of a carrying capacity 𝑘2 for humans
induces a slightly higher equilibrium level, mainly in the infected
human subpopulation, and consequently also in their cumulative num-
bers. The human carrying capacity entails a higher prevalence for the
logistic case; it is roughly 3∕(3 + 4) = 0.43, while for the Malthus case,
it reduces to 1∕(3+1) = 0.25. The mollusc population settles at a higher
8

p

level in the logistic case, from 10 to 30. The susceptible fish population
is significantly reduced, from 700 in the Malthusian formulation to
about 500 for the human logistic case. The prevalence in the two cases
is respectively 200∕(700 + 200) = 0.22 and 350∕(500 + 350) = 0.41. Thus
he introduction of the human logistic behaviour actually worsens the
pidemic situation for the fish.

Comparing instead (3.1) to (2.1), the susceptible human population
s also bounded, and the disease is endemic. However, the presence of
he fish vaccination induces a higher equilibrium level for the humans,
n both subpopulations of healthy and infected, and consequently also
n their cumulative numbers. However, with the human carrying capac-
ty, the disease attains a higher prevalence; it is roughly 3∕(3 + 7) = 0.3

in the latter case and 1∕(3 + 1) = 0.25 in the former. The mollusc
population is higher in the vaccination case, raising to a value around
17 from 10. The fish population benefits the most from the introduction
f the vaccination policy, which is not unexpected. It jumps from about
00 to 7000, with the prevalence exhibiting a moderate decrease, from
00∕900 = 0.22 to 1000∕7000 = 0.14.

We now compare models (4.1) and (5.1). Both contain the human
opulation dynamics formulated via a logistic model, but a mollusci-
ide is used in the second one. Molluscs are reduced from 30 to a value
round 15. For the human population, the changes are very small for
oth susceptible and infected individuals, entailing also little change
n the disease prevalence. For the healthy fish, there is a sixfold raise
f vaccination is applied, from 500 to 3000. Their overall population
lso experiences a large increase, from 900 to 7000. The fish disease
revalence drops dramatically from 400∕900 = 0.44 to 1000∕7000 =
.14.

We now consider models (3.1) and (5.1) where vaccination is used
n both, but the former has a Malthusian formulation for the humans,
nd the latter has a logistic formulation. The mollusc population does
ot show any significant change. The humans are at level 10 in the
ormer case, and about the same in the latter. This is true for both
ealthy and infected subpopulations, which implies that the disease

revalence does not change, remaining at level 3∕(3+7) = 0.3. Infected
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Fig. 7. Numerical solution of the system (6.1) using the parameters given in Table 1 and 𝑞 = 0.2, 𝜏 = 2. Blue curves denote the system without impulses and red curves denote
the system with impulsive control. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
fish are 1000 in the former case, with a prevalence of 1000∕7000 = 0.14,
and the situation does not seem to change much in the second case.

Finally, we take into consideration the model with impulsive snail
control, system (6.1). This policy allows us to keep all infected pop-
ulations in check. Essentially, the molluscs are controlled (albeit not
eradicated), and the infection is eliminated in humans. The enlarge-
ments of Fig. 7 show that there is indeed a small epidemic outbreak
in both humans and fish before the disease gets eradicated. However,
in comparison with the model without impulses (5.1), the peaks are re-
duced by a factor of 40 for the fish and somewhat reduced for the other
two populations. In all the populations, the disease is extinguished
quickly, in a smooth decreasing fashion.

8. Discussion

Clonorchiasis has been recognized as a neglected tropical disease
by the World Health Organization for decades and remains prevalent
worldwide. Clinical and epidemiological research into clonorchiasis
over the past 140 years has contributed to a deeper understanding
of the parasite, intermediate hosts and disease [38,39]. Most of the
clonorchiasis studies focus on the discovery of new diagnostic, drug
and vaccine targets, as well as the pathology and the biology of the
disease. Relatively few studies have used mathematical models to assess
strategies for large-scale control of clonorchiasis.

We studied the dynamics of clonorchiasis using four deterministic
mathematical models to describe the human-snail-fish transmission of
clonorchiasis. Our models examined the current control and prevention
policies and incorporated impulsive snail control strategy for reducing
the transmission of clonorchiasis. We also derived the reproduction
number for the general epidemic model. Using the theory of impulsive
differential equations, we found an extinction threshold for the disease,
along with the maximum interval of applying molluscicides. We also
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performed numerical simulations to examine multiple scenarios and
found that fish vaccination and snail control are both viable strategies.

Other possible intervention methods could include sanitary decon-
finement [40] or mimicking the control used for COVID-19 [41]. A po-
tential modelling direction is to develop a digital twin for clonorchiasis,
linking timescales of system time and slow time [42].

Due to the neglect and absence of systematic interventions,
clonorchiasis remains prevalent worldwide, although some chemother-
apy and control programmes have been implemented over several years
in a few endemic areas [18,43]. Further research is needed to increase
the number of models and to address the neglect of this disease in the
field.
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