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When zombies attack!

Mathematical modelling of an 
outbreak of zombie infection



Outline... of DOOM!

• A short history of zombie 
outbreaks

• The basic SZR model
• Including a latent class
• Intervention 1: Quarantine
• Intervention 2: Treatment
• Intervention 3: Impulsive 

attacks
• Implications.



• Zombie: a reanimated corpse that feeds on 
living flesh

• Origin: African-Carribean belief systems of 
voodoo

• Main organs and all bodily functions operate 
at minimal levels.

Definition



How to identify a zombie from far away

• Mindless monsters who do not feel pain
• They have an immense appetite for human 

flesh
• Their aim is to kill, eat or infect people 
• The ‘undead’ move in small, irregular steps, 

and show signs of 
physical decomposition, 
eg 
– rotting flesh
– discoloured eyes
– open wounds. 



Historical outbreaks

• Major outbreaks of zombies have been 
recorded since 1968

• Primarily in the US and the UK
• These largely involve zombies overwhelming 

isolated farmhouses, shopping malls, or 
British pubs.



• Possible causes include: 
– radiation emanating from a Venus space probe 
– a virus in chimpanzees

• Zombies defeated by:
– guns
– the army
– eventual starvation 
– Dire Straits records.

Dawn of the Night of the Living Dead



Using math to solve real problems

Biological 
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• Humans are infection by contact with a 
zombie

• Zombies are created either through 
converting a human, or by reanimating the 
dead

• Susceptibles can die 
of natural causes

• Zombies can be killed 
in an encounter with 
humans.

Modelling a zombie outbreak
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The efficacy of vaccination for the eradication of rage-virus mediated zombieism. 
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The movies 28 Days Later and its recent sequel 28 Weeks Later tell the story of a lab 

secretly engineering a virus (the rage virus) that will control the violent impulses of those 

that it infects. Naturally, the virus mutates into a dangerous form that does just the 

opposite. Those infected display zombie-like symptoms, and transmit the virus to others 

through excessively violent biting (Figure 1). Unfortunately, this virus was accidentally 

released into the population of Great Britain, with devastating effects. The recent 

recognition that some individuals are immune to the rage virus (see the movie 28 Weeks 

Later) has raised hopes for a vaccine, but here I use standard techniques from 

mathematical epidemiology to show that such vaccines are unlikely to provide a 

satisfactory means of eradicating this form of zombieism. 

 

 
Figure 1: Young man shortly after infection with rage virus. Photo credit: Mike Delorme 

 

 

To begin, we must estimate a quantity referred to as the basic reproduction number, 

! 

R
0
. 

This number represents the average number of new zombies created (through 

transmission of the rage virus) by a single zombie, when introduced into a wholly 

susceptible population. Standard results show that the basic reproduction number is given 



The SZR model

Figure 1: The basic model

This model is illustrated in Figure 1.
This model is slightly more complicated than the basic SIR models that

usually characterise infectious diseases [11], because this model has two mass-
action transmissions, which leads to having more than one nonlinear term in
the model. Mass-action incidence specifies that an average member of the pop-
ulation makes contact su⇤cient to transmit infection with ⇥N others per unit
time, where N is the total population without infection. In this case, the in-
fection is zombification. The probability that a random contact by a zombie is
made with a susceptible is S/N ; thus, the number of new zombies through this
transmission process in unit time per zombie is:

(⇥N)(S/N)Z = ⇥SZ .

We assume that a susceptible can avoid zombification through an altercation
with a zombie by defeating the zombie during their contact, and each susceptible
is capable of resisting infection (becoming a zombie) at a rate �. So using the
same idea as above with the probability Z/N of random contact of a susceptible
with a zombie (not the probability of a zombie attacking a susceptible), we
have the number of zombies destroyed through this process per unit time per
susceptible is:

(�N)(Z/N)S = �SZ .

The ODEs satisfy

S� + Z � + R� = �

and hence

S + Z + R � ⇥

as t � ⇥, if � ⇤= 0. Clearly S ⇤� ⇥, so this results in a ‘doomsday’ scenario:
an outbreak of zombies will lead to the collpase of civilisation, as large numbers
of people are either zombified or dead.

If we assume that the outbreak happens over a short timescale, then we can
ignore birth and background death rates. Thus, we set � = ⇤ = 0.
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The SZR model

• The basic model is thus

• Key factor: two mass-action terms
– one for infection
– one for attack

• We also keep track 
of the Removed 
(dead) class.

S� = �� ⇥SZ � ⇤S

Z � = ⇥SZ + ⌅R� �SZ

R� = ⇤S + �SZ � ⌅R



Demographics... of DESTINY!

• The ODEs satisfy

and hence

as t→∞, if Π ≠ 0
• Thus, we assume the outbreak 

happens over a short timescale 
and set Π = δ = 0.

S� + Z � + R� = �

S + Z + R�⇥

S=humans Z=zombies 
R=dead Π=birth rate 
δ=natural death rate



Analysis of the SZR model

• Two equilibria: the disease-free equilibrium

(no zombies)
and the doomsday equilibrium

(everyone is a zombie)
• We can prove: the disease-free equilibrium 

is unstable and the doomsday equilibrium is 
stable

• This is not good.

(S̄, Z̄, R̄) = (0, Z̄, 0)

(S̄, Z̄, R̄) = (N, 0, 0)

S=humans Z=zombies 
R=dead N=total population



Zombies take over, infecting everyone
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Figure 3: Basic model outbreak scenario. Susceptibles are quickly eradicated
and zombies take over, infecting everyone.

Figure 4: The SIZR model: the basic model with latent infection

As before, if � ⇥= 0, then the infection overwhelms the population. Conse-
quently, we shall again assume a short timescale and hence � = � = 0. Thus,
when we set the above equations to 0, we get either S = 0 or Z = 0 from the
first equation. This follows again from our basic model analysis that we get the
equilibria:

Z = 0 =� (S̄, Ī, Z̄, R̄) = (N, 0, 0, 0)
S = 0 =� (S̄, Ī, Z̄, R̄) = (0, 0, Z̄, 0)

Thus, coexistence between humans and zombies/infected is again not possible.

7



Model revision: adding a latent class

• There is a period of time between 
(approximately 24 hours) after the human 
susceptible gets bitten before they succumb 
to their wounds and become a zombie  

• We thus extend the basic model to include 
the possibility that a 
susceptible individual 
becomes infected before 
succumbing to zombification

• This is much more realistic.



The SIZR model
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Figure 3: Basic model outbreak scenario. Susceptibles are quickly eradicated
and zombies take over, infecting everyone.

Figure 4: The SIZR model: the basic model with latent infection

As before, if � ⇥= 0, then the infection overwhelms the population. Conse-
quently, we shall again assume a short timescale and hence � = � = 0. Thus,
when we set the above equations to 0, we get either S = 0 or Z = 0 from the
first equation. This follows again from our basic model analysis that we get the
equilibria:

Z = 0 =� (S̄, Ī, Z̄, R̄) = (N, 0, 0, 0)
S = 0 =� (S̄, Ī, Z̄, R̄) = (0, 0, Z̄, 0)

Thus, coexistence between humans and zombies/infected is again not possible.
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The SIZR model

• The model with latent infection is thus

• I=infected, not yet infectious 
• As before, we model a 

short outbreak and 
set Π = δ = 0
(or else S+I+Z+R → ∞).

S� = �� ⇥SZ � ⇤S

I � = ⇥SZ � ⇧I � ⇤I

Z � = ⇧I + ⌅R� �SZ

R� = ⇤S + ⇤I + �SZ � ⌅R



Analysis of the SIZR model

• Two equilibria: the disease-free equilibrium

(no zombies)
and the doomsday equilibrium

(everyone is a zombie)
• The disease-free equilibrium is unstable and 

the doomsday equilibrium is stable
• Thus, even with a latent class, zombies take 

over the population.

(S̄, Ī, Z̄, R̄) = (N, 0, 0, 0)

(S̄, Ī, Z̄, R̄) = (0, 0, Z̄, 0)

S=humans I=infected Z=zombies 
R=dead N=total population



Zombies again take over, destroying humanity

! " # $ % &!
!

'!

&!!

&'!

"!!

"'!

(!!

('!

#!!

#'!

'!!

)*+,

-
.
/
0
12
3*
.
4
56
2
10
,
7
58
&
!
!
!
97
:

;<=>5?.@,1!5>!5A5&5B*3C5<D5E5FGH
872+,5I210,75J.K5/2K2+,3,K7507,@5*45/K,I*.075J*L0K,:

5

5

;07M,/3*,7

=.+N*,7

Figure 5: An outbreak with latent infection.

• There is a chance some members will try to escape, but any that tried to
would be killed before finding their ‘freedom’ (parameter ⇤).

• These killed individuals enter the removed class and may later become
reanimated as ‘free’ zombies.

The model equations are:

S� = �� ⇥SZ � ⌅S

I � = ⇥SZ � ⌥I � ⌅I � ⌃I

Z � = ⌥I + ⇧R� �SZ � �Z

R� = ⌅S + ⌅I + �SZ � ⇧R + ⇤Q

Q� = ⌃I + �Z � ⇤Q .

The model is illustrated in Figure 6.
For a short outbreak (� = ⌅ = 0), we have two equilibria,

(S̄, Ī, Z̄, R̄, Q̄) = (N, 0, 0, 0, 0), (0, 0, Z̄, R̄, Q̄) .

In this case, in order to analyse stability, we determined the basic reproductive
ratio, R0 [12] using the next-generation method [13]. The basic reproductive
ratio has the property that if R0 > 1 then the outbreak will persist, whereas if
R0 < 1, then the outbreak will be eradicated.

If we were to determine the Jacobian and evaluate it at the disease-free
equilibrium, we would have to evaluate a nontrivial 5 by 5 system and a char-
acteristic polynomial of degree of at least 3. With the next-generation method,

9



Intervention 1: Quarantine

• To contain the outbreak, we 
modelled the effects of partial 
quarantine of zombies

• Quarantined individuals are 
removed from the population 
and cannot infect new humans
while they remain quarantined

• There is a chance some will 
try to escape, but any that 
tried to would be killed before 
finding their “freedom”.



The SIZRQ model
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Figure 6: Model Equations for the Quarantine model

we only need to consider the infective di�erential equations I ⇥, Z ⇥ and Q⇥. Here,
F is the matrix of new infections and V is the matrix of transfers between
compartments.

F =

�

⇤
0 ⇥N 0
0 0 0
0 0 0

⇥

⌅ , V =

�

⇤
⇧ + ⌅ 0 0
�⇧ �N + ⌃ 0
�⌅ �⌃ ⇤

⇥

⌅

V �1 =
1

⇤(⇧ + ⌅)(�N + ⌃)

�

⇤
⇤(�N + ⌃) 0 0

⇧⇤ ⇤(⇧ + ⌅) 0
⇧⌃ + ⌅(�N + ⌃) ⌃(⇧ + ⌅) (⇧ + ⌅)(�N + ⌃)

⇥

⌅

FV �1 =
1

⇤(⇧ + ⌅)(�N + ⌃)

�

⇤
⇥N⇧⇤ ⇥N⇤(⇧ + ⌅) 0

0 0 0
0 0 0

⇥

⌅ .

This gives us

R0 =
⇥N⇧

(⇧ + ⌅)(�N + ⌃)
.

It follows that the disease-free equilibrium is only stable if R0 < 1. This
can be achieved by increasing ⌅ or ⌃, the rates of quarantining infected and
zombified individuals, respectively. If the population is large, then

R0 ⇥ ⇥⇧

(⇧ + ⌅)�
.

If ⇥ > � (zombies infect humans faster than humans can kill them, which we
expect), then eradication depends critically on quarantining those in the primary
stages of infection. This may be particularly di⇤cult to do, if identifying such
individuals is not obvious [8].

10



The SIZRQ model

• The model with quarantine is thus

• We assume individuals who attempt to 
escape from quarantine are killed...
...whereupon they enter the removed class 
(and can of course later become zombified).

S� = �� ⇥SZ � ⌅S

I � = ⇥SZ � ⌥I � ⌅I � ⌃I

Z � = ⌥I + ⇧R� �SZ � �Z

R� = ⌅S + ⌅I + �SZ � ⇧R + ⇤Q

Q� = ⌃I + �Z � ⇤Q



Equilibria... of ANNIHILATION!

• For a short outbreak (Π = δ = 0), we have 
two equilibria: disease-free 

and coexistence

(but no humans).

(S̄, Ī, Z̄, R̄, Q̄) = (N, 0, 0, 0, 0)

(S̄, Ī, Z̄, R̄, Q̄) = (0, 0, Z̄, R̄, Q̄)

S=humans I=infected Z=zombies 
R=dead Q=quarantined 
Π=birth rate δ=natural death rate



Basic reproductive ratio

• Using the next-generation method, we 
determined

• If the population is large, then

• The disease-free equilibrium 
is stable if R0 < 1.

R0 =
⇥N⌅

(⌅ + ⇤)(�N + ⇧)

R0 �
⇥⌅

(⌅ + ⇤)�

β=infection rate N=total population 
ρ=activation rate α=attack rate 
κ=quarantine rate (infected) 
σ=quarantine rate (zombies)



Invasion of the living dead

• We can reduce R0 < 1 by increasing the 
quarantine rates κ or σ

• However, we expect that quarantining a 
large percentage of  infected individuals is 
unrealistic, due to infrastructure limitations

• Thus, we expect 
R0 > 1

• Hence, zombies 
can invade.

R0=basic reproductive ratio
κ=quarantine rate (infected) 
σ=quarantine rate (zombies)



Quarantine delays the inevitable (slighty)

However, we expect that quarantining a large percentage of infected indi-
viduals is unrealistic, due to infrastructure limitations. Thus, we do not expect
large values of ⇥ or ⇤, in practice. Consequently, we expect R0 > 1.

As before, we illustrate using Euler’s method. The parameters were the
same as those used in the previous models. We varied ⇥, ⇤, � to satisfy R0 > 1.
The results are illustrated in Figure 7. In this case, the e�ect of quarantine is
to slightly delay the time to eradication of humans.
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Figure 7: An outbreak with quarantine.

The fact that those individuals in Q were destroyed made little di�erence
overall to the analysis as our intervention (i.e. destroying the zombies) did not
have a major impact to the system (we were not using Q to eradicate zombies).
It should also be noted that we still expect only two outcomes: either zombies
are eradicated, or they take over completely.

Notice that, in Figure 7 at t = 10 there are fewer zombies than in the Figure
5 at t = 10. This is explained by the fact that the numerics assume that the
Quarantine class continues to exist, and there must still be zombies in that
class. The zombies measured by the curve in the figure are considered the ‘free’
zombies - the ones in the Z class and not in Q.

5 A model with treatment

Suppose we are able to quickly produce a cure for ‘zombie-ism’. Our treatment
would be able to allow the zombie individual to return to their human form
again. Once human, however, the new human would again be susceptible to
becoming a zombie; thus, our cure does not provide immunity. Those zombies

11



Intervention 2: Treatment

• Suppose we are able to quickly produce a 
cure for zombie-ism

• Our treatment would be able to allow the 
zombie individual to return to their human 
form again

• Since we have treatment, we no longer need 
the quarantine

• Treatment does not 
provide immunity.



The model with treatment
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who resurrected from the dead and who were given the cure were also able to
return to life and live again as they did before entering the R class.

Things that need to be considered now include:

• Since we have treatment, we no longer need the quarantine.

• The cure will allow zombies to return to their original human form regard-
less of how they became zombies in the first place.

• Any cured zombies become susceptible again; the cure does not provide
immunity.

Thus, the model with treatment is given by

S� = �� ⇥SZ � ⇤S + cZ

I � = ⇥SZ � ⇧I � ⇤I

Z � = ⇧I + ⌅R� �SZ � cZ

R� = ⇤S + ⇤I + �SZ � ⌅R .

The model is illustrated in Figure 8.

Figure 8: Model equations for the SIZR model with cure

As in all other models, if � ⇧= 0, then S + I + Z + R ⇤ ⌅, so we set
� = ⇤ = 0. When Z = 0, we get our usual disease-free equilibrium,

(S̄, Ī, Z̄, R̄) = (N, 0, 0, 0) .

However, because of the cZ term in the first equation, we now have the possi-
bility of an endemic equilibrium (S̄, Ī, Z̄, R̄) satisfying

�⇥S̄Z̄ + cZ̄ = 0
⇥S̄Z̄ � ⇧Ī = 0

⇧Ī + ⌅R̄� �S̄Z̄ � cZ̄ = 0
�S̄Z̄ � ⌅R̄ = 0 .
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The model with treatment

• The model with treatment is thus

• As before, we model a short 
outbreak and set Π = δ = 0
(or else S+I+Z+R → ∞).

S� = �� ⇥SZ � ⇤S + cZ

I � = ⇥SZ � ⇧I � ⇤I

Z � = ⇧I + ⌅R� �SZ � cZ

R� = ⇤S + ⇤I + �SZ � ⌅R



Analysis of the treatment model

• We have the usual disease-free equilibrium

• But now we have the possibility of 
coexistence

• We can prove that the DFE is unstable and 
the coexistence equilibrium is stable

• Thus, humans and zombies can live in 
(relative) harmony.

(S̄, Ī, Z̄, R̄) = (N, 0, 0, 0)

(S̄, Ī, Z̄, R̄) =
�

c

⇥
,
c

⌅
Z̄, Z̄,

�c

⇤⇥
Z̄

⇥

S=humans I=infected Z=zombies R=dead N=total 
population β=infection rate ρ=activation rate α=attack 
rate c=treatment rate ζ=reanimation rate



Humans are not eradicated, but exist only in low numbers
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Figure 9: The model with treatment, using the same parameter values as the
basic model

In Figure 10, we used k = 0.25 and the values of the remaining parameters
were (�, ⇥, ⌅, ⇤) = (0.0075, 0.0055, 0.09, 0.0001). Thus, after 2.5 days, 25% of
zombies are destroyed; after 5 days, 50% of zombies are destroyed; after 7.5
days, 75% of remaining zombies are destroyed; after 10 days, 100% of zombies
are destroyed.

7 Discussion

An outbreak of zombies infecting humans is likely to be disastrous, unless ex-
tremely aggressive tactics are employed against the undead. While aggressive
quarantine may eradicate the infection, this is unlikely to happen in practice. A
cure would only result in some humans surviving the outbreak, although they
will still coexist with zombies. Only ever-increasing attacks, with increasing
force, will result in eradication, assuming the available resources can be mus-
tered in time.

Furthermore, these results assumed that the timescale of the outbreak was
short, so that the natural birth and death rates could be ignored. If the timescale
of the outbreak increases, then the result is the doomsday scenario: an outbreak
of zombies will result in the collapse of civilisation, with every human infected,
or dead. This is because human births and deaths will provide the undead
with a limitless supply of new bodies to infect, resurrect and convert. Thus,
if zombies arrive, we must act quickly and decisively to eradicate them before
they eradicate us.

The key di�erence between the models presented here and other models
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Intervention 3: Impulsive attack

• Finally, we attempted to control the zombie 
population by strategically destroying them 
at such times that our resources permit 

• It was assumed that it would be difficult to 
have the resources and coordination, so we 
would need to attack 
more than once, and 
with each attack try and 
destroy more zombies

• This results in an 
impulsive effect.



Impulsive effect... of TERROR!

• According to impulsive theory, we can 
describe the nature of the impulse at time rk 
via the difference equation

Depends on the 
time of impulse
and the state
immediately 
beforehand.

Difference
equation



Impulsive differential equations

• Solutions are continuous for t ≠ rk

• Solutions undergo an instantaneous change 
in state when t = rk

• Such approximations are reasonable when 
the cycle time is sufficiently large, compared 
to the time being approximated

• The model thus consists of a 
system of ODEs together with 
a difference equation.

rk=impulse time



SZRΔZ model

• We return to the basic model and add in 
impulsive effect:

• k ∈ (0,1) is the kill ratio
• n = number of attacks required until kn > 1
• Thus, we hit zombies with ever-increasing 

force.

S� = ⇥� ⇥SZ � ⇤S t ⇥= tn
Z � = ⇥SZ + ⌅R� �SZ t ⇥= tn
R� = ⇤S + �SZ � ⌅R t ⇥= tn

�Z = �knZ t = tn



Only ever-more powerful attacks will stop the zombies
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Figure 10: Zombie eradication using impulsive atttacks.

of infectious disease is that the dead can come back to life. Clearly, this is an
unlikely scenario if taken literally, but possible real-life applications may include
alllegiance to political parties, or diseases with a dormant infection.

This is, perhaps unsurprisingly, the first mathematical analysis of an out-
break of zombie infection. While the scenarios considered are obviously not
realistic, it is nevertheless instructive to develop mathematical models for an
unusual outbreak. This demonstrates the flexibility of mathematical modelling
and shows how modelling can respond to a wide variety of challenges in ‘biology’.

In summary, a zombie outbreak is likely to lead to the collapse of civilisation,
unless it is dealt with quickly. While aggressive quarantine may contain the
epidemic, or a cure may lead to coexistence of humans and zombies, the most
e�ective way to contain the rise of the undead is to hit hard and hit often. As
seen in the movies, it is imperative that zombies are dealt with quickly, or else
we are all in a great deal of trouble.
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The movies 28 Days Later and its recent sequel 28 Weeks Later tell the story of a lab 

secretly engineering a virus (the rage virus) that will control the violent impulses of those 

that it infects. Naturally, the virus mutates into a dangerous form that does just the 

opposite. Those infected display zombie-like symptoms, and transmit the virus to others 

through excessively violent biting (Figure 1). Unfortunately, this virus was accidentally 

released into the population of Great Britain, with devastating effects. The recent 

recognition that some individuals are immune to the rage virus (see the movie 28 Weeks 

Later) has raised hopes for a vaccine, but here I use standard techniques from 

mathematical epidemiology to show that such vaccines are unlikely to provide a 

satisfactory means of eradicating this form of zombieism. 

 

 
Figure 1: Young man shortly after infection with rage virus. Photo credit: Mike Delorme 

 

 

To begin, we must estimate a quantity referred to as the basic reproduction number, 

! 

R
0
. 

This number represents the average number of new zombies created (through 

transmission of the rage virus) by a single zombie, when introduced into a wholly 

susceptible population. Standard results show that the basic reproduction number is given 



Summary... of DEATH!

• Extremely aggressive tactics are required
• Quarantine is unable to save us
• Treatment results in coexistence, but only at 

low levels for humans
• Only frequent attacks, 

with increasing force, 
result in eradication...
...assuming available 
resources can be 
mustered in time.



Limitations

• We only modelled a short timescale
• Otherwise, the result is the doomsday 

scenario: an outbreak of zombies will result 
in the collapse of civilisation, with every 
human infected, or dead

• Because human births and deaths will 
provide the undead with a limitless supply of 
new bodies to infect, resurrect and convert

• Thus, if zombies arrive, we must act quickly 
and decisively to eradicate them before they 
eradicate us.



Conclusions... of TERROR!

• A zombie outbreak is likely to lead to the 
collapse of civilisation, unless it is dealt with 
quickly

• While aggressive quarantine may contain 
the epidemic, or a cure may lead to 
coexistence of humans and zombies, the 
most effective way to contain the rise of the 
undead is to hit hard and hit often 

• It is imperative that zombies are dealt with 
quickly... 
...or else we are all in a great deal of trouble.
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• P. Munz, I. Hudea, J. Imad and R.J. Smith? When zombies 

attack!: Mathematical modelling of an outbreak of zombie 
infection (in: J.M. Tchuenche and C. Chiyaka, eds, Infectious 
Disease Modelling Research Progress 2009, pp133-150).
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