
# Is there a zombicidal maniac near you?

#### You'd better hope so!





### Creatures of terror

- They are pale, pasty emaciated soulless creatures of horror
- From behind sunken eyes, their slow, feeble minds struggle to process anything but the most basic of data
- Despite this, they are capable of devastation and terror on an overwhelming scale
- That's right: supermodels!
- No, wait: zombies.



# Individual-based modelling

- Also called agent-based modelling
- A simulation comprised of several entities or agents
- Each entity can be given a particular behaviour and act in a specific way
- This kind of modelling is useful for scenarios where behaviour plays a key role
- We can use it to examine the effects of introducing armed and trained zombie hunters as a control mechanism
- This is not recommended for most diseases.

# Why zombie hunters?

- Most data on zombie behaviour patterns exist merely as conjecture and speculation from people who have never even seen a zombie
- Let alone killed one
- Thus, there is a growing gap between the readiness of the general population and that of certain private individuals
- Unchecked, a small zombie infestation can consume a large city in a matter of days
- Thus, controls are urgently needed.

## Data collection

- Video games provide an excellent source of data
- Eg Half-Life 2
  - a first-person shooter video game
  - the player's presence affects everything around them
  - from the physical environment to the behaviours and even emotions of both friends and enemies
- The model is developed using Garry's Mod, using the Source game engine
  - www.garrysmod.com.

# The players

- There are three classes of individual
  - humans
  - zombies
  - zombie hunters
- Humans are unarmed and unable to resist a zombie attack
  - when confronted with a zombie they will either run for their lives or cower in fear
- Hunters are equipped with a combat Acme shotgun
  - capable of firing six rounds before reloading.





## Human behaviour

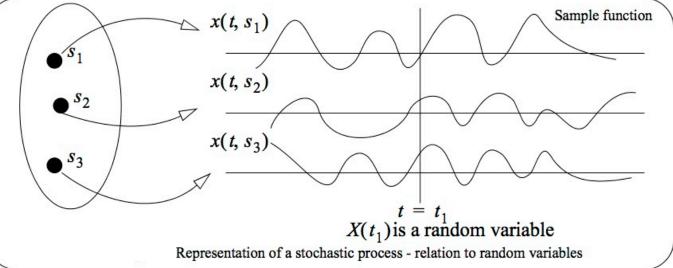
- When not faced with a zombie threat, unarmed humans will either wander randomly or stand idle
- Hunters will fire on a zombie if within range and only reload their weapons when there are no zombies nearby
- If they run out of ammo, they will attempt to run away to a safe distance before reloading
- When no zombies are present, they will wander randomly about the map.



# Zombie behaviour

- Without any humans in sensory range, the zombie will wander aimlessly, independent of other zombies around
- When a human enters their range, the zombie will chase them down
- We assume these are fast zombies that can outrun a human
- Zombies will always pursue the nearest human
- All humans run at the same speed
- Once caught, a human is converted.

## The code is available


- A sample simulation: http://tinyurl.com/gmodzombiemodel
- The code to replicate the experiments is freely available from the authors
  - nick.beeton@gmail.com
  - alexander.hoare@unsw.edu.au
  - brody.bear@gmail.com.

## Stochastic model

- We can use a stochastic model in order to compare the individual-based model
- A stochastic model is one in which variation or noise in the parameters is included
- Time may be continuous or discrete
- This approximates the inherent randomness in the real world.

## Random variables

- The random variables are defined on a given probability space
- A stochastic process assigns a sample function x(t,s) to each outcome s
- A sample function is the time function associated with an outcome s.  $x(t, s_1)$



# A simple infection model

The infection model is given by

$$\frac{dS}{dt} = -f(S, Z)$$
$$\frac{dZ}{dt} = f(S, Z)$$

where

- S represents susceptible humans
- Z represents zombies
- f(S,Z) is the transmission function
- The transmission function may take a number of forms, depending on the interactions.

# Conversion to stochasticity

- Differential equations are deterministic
- This means that, given an initial condition, the same outcome will always result
- To convert a deterministic ODE into a stochastic form, we assume strong mixing
- This results in an exponential distribution between reaction events
- The probability density function is then  $P(X \to X', \tau) = f(S, Z)e^{-f(S,Z)\tau}d\tau$ where X is the state (S,Z) and X' is the state (S-1,Z+1). S: susceptibles Z: zombies f(S,Z): transmission function r: time

# Our major question

- Is it feasible that the individual-based model has an underlying transmission function related to those found in the diseasemodelling literature?
- To determine this, we need a measure of how well our individual-based model fits a particular transmission function
- We also ned to measure how well the stochastic model fits
- Due to randomness, it will not be a perfect fit to any data.

# Transmission dynamics

- For the individual-based model, 10 runs each were made
- Each pitted one zombie against 24, 49, 74 and 99 humans
- The humans were placed randomly
- Simulations were run until the zombies completely overran the human population
- These simulations give diverse data about S, Z, N and dZ/dt in order to compare functions
- Linear regression, via R<sup>2</sup> values, was used to determine coefficients.
   S: susceptibles Z: zombies N: population t: time

## Comparison

- The stochastic model was run using the same initial conditions
- It was also sampled in the same way, for purposes of direct comparison
- Values for dZ/dt were then calculated from the sampled data, in the same way
- Agent-based modelling is a way of approximating situations where we do not have real data
- In this case, because collecting it is too dangerous.



# Four transmission functions

- Mass-action transmission
  - rate is directly proportional to the density of both susceptibles and infecteds
  - assumes population is well-mixed
- Frequency-dependent transmission
  - host contact is independent of population density
  - reasonable when populations are large
- Power relationship
  - generalises mass action to powers of S and Z
- Asymptotic contact function
  - contact can also depend on the population.



# AICc

- Akaike Information Criterion (with correction)
- A measure of the relative goodness of fit of a statistical model
- This measures the amount of information lost when a given model is used to describe reality
- Candidate models can be ranked by AIC values to determine which best fit the data
- However, it is only a way of comparing models, not an absolute measure of accuracy
- It cannot evaluate wholly different model types.

# **Determining AICc**

AICc = 
$$2k - 2\ln(L) + \frac{2k(k+1)}{n-k-1}$$

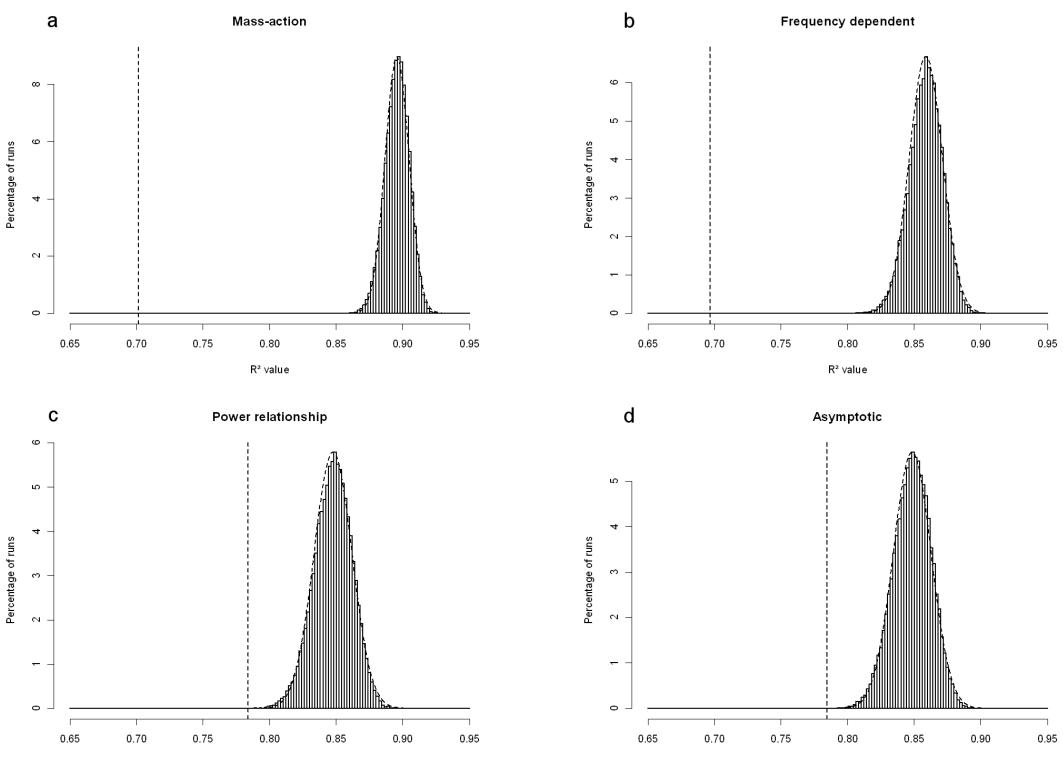
where

- k is the number of parameters
- L is the maximised value of the likelihood function for the estimated model
- n is the sample size
- The correction is a penalty for extra parameters
- The AICc value with the lowest score is the best fit to the data.

## Possible transmission functions

|                                   |                                               | $egin{array}{c} eta\ ({ m with}\ 95\%\ { m CI}) \end{array}$              | $p \pmod{p}$ (with 95% CI)                                     | $q \pmod{(\text{with 95\% CI})}$ | $\epsilon \pmod{(\text{with 95\% CI})}$                           | AICc     |
|-----------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|----------|
| Mass action                       | $\beta SZ$                                    | $\begin{array}{c} 0.000624 \\ (0.00601 \text{-} \\ 0.000646) \end{array}$ |                                                                |                                  |                                                                   | -5.333   |
| Frequency-<br>dependent           | $\frac{\beta SZ}{N}$                          | 0.0537<br>(0.0519-<br>0.0555)                                             |                                                                |                                  |                                                                   | -104.711 |
| Power<br>relationship             | $eta S^p Z^q$                                 | $\begin{array}{c} 0.0103 \\ (0.00772 - \\ 0.0129) \end{array}$            | $\begin{array}{c} 0.473 \\ (0.435 \text{-} 0.511) \end{array}$ | $0.762 \\ (0.719 - 0.806)$       |                                                                   | -291.142 |
| Asymptotic<br>contact<br>function | $\frac{\beta S^p Z^q}{1-\epsilon+\epsilon N}$ | $\begin{array}{c} 0.00962 \\ (0.00702 \text{-} \\ 0.01221) \end{array}$   | $\begin{array}{c} 0.499 \\ (0.446\text{-}0.552) \end{array}$   | 0.793<br>(0.730-0.855)           | $\begin{array}{c} 0.00168 \\ (-0.00092 - \\ 0.00428) \end{array}$ | -291.125 |

- Note that the parameters such as β are different in each function
- The power relationship function is the best choice.
- S: susceptibles Z: zombies
- N: total population
- β: transmissibility p,q: powers
- *ε*: population dependency

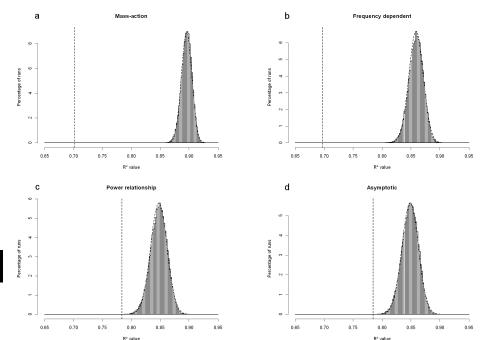

# Stochastic regression

- For the stochastic model, we performed linear regression of the sampled dZ/dt data against the transmission function f(S,Z)
- The R<sup>2</sup> of this regression is a measure of goodness-of-fit
- This is exactly what we want from the data
- We want to know how closely the rate of infection for any pairing of S and Z matches the theoretical transmission function
- ie how well dZ/dt matches f(S,Z).

S: susceptibles Z: zombies f(S,Z): transmission function t: time R<sup>2</sup>: regression coefficient

# Histograms of R<sup>2</sup> values

- The simulation was repeated 50,000 times for each function
- This gives a histogram of R<sup>2</sup> values
- Each histogram demonstrates a high correlation between each model's dZ/dt value and the respective transmission functions of around 0.8-0.9
- This is expected, as the only sources of error are from stochasticity and errors caused by the sampling process




R² value

R² value

#### Comparing the individual-based model

- Fits from the individual-based model are also shown (vertical lines)
- These look quite different, but how can we be sure?
- After all, there are variations in the simulations, errors in sampling and so forth
- To answer this, we can construct and test a null hypothesis.



# Null hypothesis

- If two models are identical, any measure of the output of one should lie within the distribution of the same measure in another
- Our goodness-of-fit value  $\mu$  is such a measure
- It's calculated in the same way for the individual-based model and the stochastic model
- Thus, our null hypothesis H<sub>0</sub> is that the individual-based model gives the same goodness-of-fit value as the stochastic model:

 $H_0: \mu_{\text{IBM}} = \mu_{\text{stoc}}.$ 

# Rejecting the null hypothesis

- If the null hypothesis is rejected, it means the stochastic model with a particular transmission function does not describe the data from the individual based model
- This suggests the individual-based model is not governed by the transmission function
- If it is not rejected, the stochastic model may describe this data
- Note that if the null hypothesis is not rejected, this is not a sufficient condition to accept a particular transmission function.

## p-values

| Transmission        | p-value estimate   | p-value estimate        |  |
|---------------------|--------------------|-------------------------|--|
| Function            | from $50,000$ runs | from normal curve       |  |
| Mass action         | 0                  | $4.49 \times 10^{-105}$ |  |
| Frequency dependent | 0                  | $7.30 \times 10^{-39}$  |  |
| Power relationship  | 0.00010            | $3.69 \times 10^{-6}$   |  |
| Asymptotic contact  | 0.00008            | $3.52 \times 10^{-6}$   |  |

- Estimates of the probability of the individualbased model being a better fit than any given run of the stochastic model
- Uses 50,000 runs of the stochastic model and a Gaussian estimate of the probability distribution of the R<sup>2</sup> value of the stochastic model.

## Power relationship is the winner

- The probability of the transmission function being mass action or frequency dependent is vanishingly small
- A power relationship is designed to fit less easily described transmission functions
- This is a better estimate, but the probability is still small
- However, adding an asymptotic contact function to it does nothing to improve its performance
- These confirm the AICc results from before.

# Complexity of models

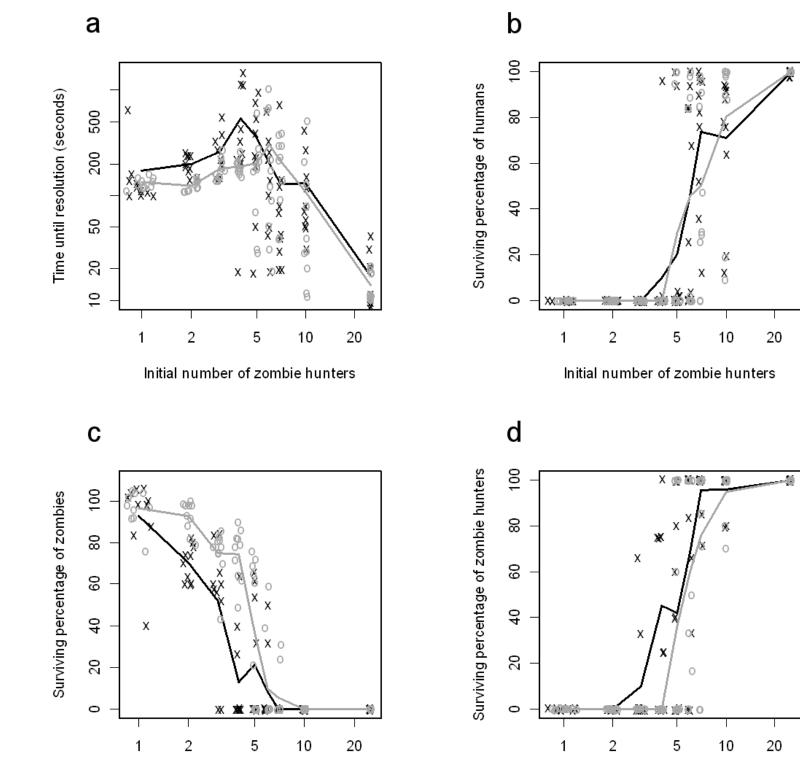
- Thus, due to the complex interactions between humans and zombies, both spatially and dynamically, their interactions are not easily explainable by a simple random-motion-based model
- Thus, more complex models such as individual-based models, are useful when studying zombie epidemics
- With some faith in the individual-based model, can we control epidemic using zombie hunters?

# Adding zombie hunters

- We added hunters to the simulation in different numbers
- We started with either 50 or 100 human agents
- The game map has an approximate area of 4000m<sup>2</sup>
- Thus, our two scenarios represent human density of 12,500 and 25,000 people per km<sup>2</sup>, respectively
- These model a sparse human population and a dense one.

## A spontaneous outbreak

- Humans and hunters were randomly distributed across the map
- To simulate a spontaneous outbreak, five zombies were randomly distributed among the population
- The simulation was run until there were either no humans or no zombies left.

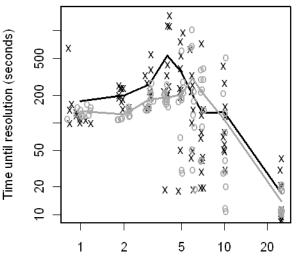

## Final outcomes of each run

|                      | 50 humans      |              |                | 100 humans |              |                |
|----------------------|----------------|--------------|----------------|------------|--------------|----------------|
| Number of<br>hunters | Zombies<br>win | Zombies lose |                | Zombies    | Zombies lose |                |
|                      |                | Hunters      | Hunters and    | win        | Hunters      | Hunters and    |
|                      |                | survive      | humans survive |            | survive      | humans survive |
| 1                    | 10             | 0            | 0              | 10         | 0            | 0              |
| 2                    | 10             | 0            | 0              | 10         | 0            | 0              |
| 3                    | 8              | 2            | 0              | 10         | 0            | 0              |
| 4                    | 3              | 5            | 2              | 10         | 0            | 0              |
| 5                    | 4              | 1            | 5              | 6          | 1            | 3              |
| 6                    | 2              | 1            | 7              | 2          | 2            | 6              |
| 7                    | 0              | 0            | 10             | 2          | 0            | 8              |
| 10                   | 0              | 0            | 10             | 0          | 0            | 10             |
| 25                   | 0              | 0            | 10             | 0          | 0            | 10             |

 Either zombies take over entirely, hunters survive without any humans or both humans and hunters manage to survive.

# Expanding the results

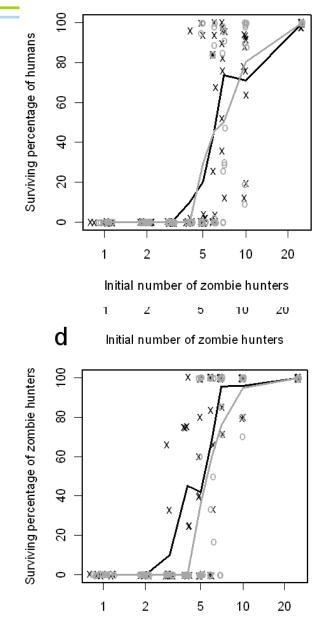
- As expected, as more hunters are introduced, more scenarios occur in which humans and/or hunters survive
- We can also look at the results in more detail
- Not just the final outcome, but the extent of survival of each population
- There is some noise, as we're only running 10 simulations, but the trends are clear




Initial number of zombie hunters

Initial number of zombie hunters

## Maximum resolution time


- The time taken for a zombie-human conflict to result itself has a maximum at around 4 zombie hunters for 50 humans and 6 hunters for 100 humans
- Less than this and the zombies quickly take over
- Much more and the hunters make short work of the zombie plague.



Initial number of zombie hunters

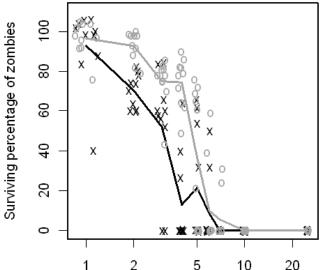
## Minimum number of zomhin hunter

- The number of surviving humans and proportion of surviving hunters increases with the number of hunters
- At least 4 or 5 hunters seem to be required for any human survival
- With 7 or more, we are very likely to keep at least some humans alive.



Initial number of zombie hunters

# **Emergent behaviour**


- The actual number of human survivors varies from run to run, even with 10 hunters
- Also, either only a few humans survive or nearly all of them do
- This is likely due to emergent behaviour in the agent-based model
  - either the zombies are eradicated quickly
  - or else they have a chance to establish themselves and cause massive casualties
- This is supported by the bimodal resolution time around the 5 hunter mark.

# Zombie survival

- Zombie survival decreases with an increasing number of hunters, unsurprisingly
- However, eradication cannot be guaranteed with any level of confidence until at least 7 hunters are present per 50 humans

(or 10 per 100 humans)

• Thus, a few hunters can make all the difference.



# Observations on behaviour

- An agent-based model is no substitute for a live experimental trial
- However, we can gain some insights into zombie incursions by merely observing the simulations
- Zombies require critical mass to take down a hunter
  - if each zombie begins near a hunter, the hunters quickly finish off the zombies
  - if zombies begin in an area free of hunters, they can infect enough humans to form a mob which may survive a hunter encounter.

# Zombie organisation

- Zombies require organisation to take down a hunter
  - even a large number of zombies who are wandering aimlessly can be picked off one by one
- The initial positioning of zombies, hunters and humans plays a vital role
  - if zombies are initially near hunters, they will be quickly destroyed
  - even if only one zombie survives, if it is near enough humans, it can start an epidemic on its own before detection by hunters.

# Summary

- An effective way to protect a population is to distribute trained shotgun-armed hunters among the population
- A spontaneous zombie outbreak can be quickly quelled before gaining a foothold
- In a sparsely populated community, a ratio of 7 hunters to 50 humans is needed
- When human density is doubled, the lower ratio of 10 hunters to 100 humans is sufficient
- Thus, the number of hunters is not directly proportional to the density of humans.

## An unexpected result

- A dense population does not necessarily accelerate the spread of zombie-ism
- This is because the dense setting forces more humans to stay within the "protection zones" of the hunters
- This enables each hunter to cover more humans, making them more efficient

# Authors

- Nick Beeton (University of Tasmania)
- Alex Hoare (University of New South Wales)
- Brody Walker (University of Tasmania)

N. Beeton, A. Hoare, B. Walker. Is there a zombicidal maniac near you? You'd better hope so! (In: R. Smith? (ed) Mathematical Modelling of Zombies, University of Ottawa Press, *in press*.)