
Is there a zombicidal 
maniac near you?

You’d better hope so!



Creatures of terror
• They are pale, pasty emaciated soulless 

creatures of horror
• From behind sunken eyes, their slow, feeble 

minds struggle to process anything but the 
most basic of data

• Despite this, they are capable of devastation 
and terror on an overwhelming 
scale

• That’s right: supermodels!
• No, wait: zombies.



Individual-based modelling
• Also called agent-based modelling
• A simulation comprised of several entities or 

agents
• Each entity can be given a particular 

behaviour and act in a specific way
• This kind of modelling is useful for scenarios 

where behaviour plays a key role
• We can use it to examine the effects of 

introducing armed and trained zombie 
hunters as a control mechanism

• This is not recommended for most diseases.



Why zombie hunters?
• Most data on zombie behaviour patterns 

exist merely as conjecture and speculation 
from people who have never even seen a 
zombie

• Let alone killed one
• Thus, there is a growing gap between the 

readiness of the general population and that 
of certain private individuals

• Unchecked, a small zombie infestation can 
consume a large city in a matter of days

• Thus, controls are urgently needed.



Data collection

• Video games provide an excellent source of 
data

• Eg Half-Life 2 
– a first-person shooter video game
– the player’s presence affects everything around 

them
– from the physical environment to the behaviours 

and even emotions of both friends and enemies
• The model is developed using Garry’s Mod, 

using the Source game engine
– www.garrysmod.com.



The players

• There are three classes of individual
– humans
– zombies
– zombie hunters

• Humans are unarmed and unable to resist a 
zombie attack
– when confronted with a zombie they will either 

run for their lives or cower in fear
• Hunters are equipped with a combat Acme 

shotgun
– capable of firing six rounds before reloading.





Human behaviour

• When not faced with a zombie threat, 
unarmed humans will either wander 
randomly or stand idle

• Hunters will fire on a zombie if within range 
and only reload their weapons when there 
are no zombies nearby

• If they run out of ammo, they will attempt to 
run away to a safe distance before reloading

• When no zombies are present, they will 
wander randomly about the map.





Zombie behaviour
• Without any humans in sensory range, the 

zombie will wander aimlessly, independent 
of other zombies around

• When a human enters their range, the 
zombie will chase them down

• We assume these are fast zombies that can 
outrun a human

• Zombies will always pursue the nearest 
human

• All humans run at the same speed
• Once caught, a human is converted.



The code is available

• A sample simulation:
http://tinyurl.com/gmodzombiemodel

• The code to replicate the experiments is 
freely available from the authors
– nick.beeton@gmail.com
– alexander.hoare@unsw.edu.au
– brody.bear@gmail.com.



Stochastic model

• We can use a stochastic model in order to 
compare the individual-based model

• A stochastic model is one in which variation 
or noise in the parameters is included

• Time may be continuous or discrete
• This approximates the inherent randomness 

in the real world.



Random variables

• The random variables are defined on a given 
probability space

• A stochastic process assigns a sample 
function x(t,s) to each outcome s

• A sample function is the time function 
associated 
with an 
outcome s.



A simple infection model

• The infection model is given by

where 
– S represents susceptible humans
– Z represents zombies
– f(S,Z) is the transmission function

• The transmission function may take a 
number of forms, depending on the 
interactions.

dS

dt
= �f(S,Z)

dZ

dt
= f(S,Z)



Conversion to stochasticity
• Differential equations are deterministic
• This means that, given an initial condition, 

the same outcome will always result
• To convert a deterministic ODE into a 

stochastic form, we assume strong mixing
• This results in an exponential distribution 

between reaction events
• The probability density function is then

where X is the state (S,Z) and X’ 
is the state (S-1,Z+1).

P (X ! X 0, ⌧) = f(S,Z)e�f(S,Z)⌧d⌧

S: susceptibles Z: zombies
f(S,Z): transmission function
τ: time



Our major question

• Is it feasible that the individual-based model 
has an underlying transmission function 
related to those found in the disease-
modelling literature?

• To determine this, we need a measure of 
how well our individual-based model fits a 
particular transmission function

• We also ned to measure how well the 
stochastic model fits

• Due to randomness, it will not be a perfect fit 
to any data.



S: susceptibles Z: zombies
N: population t: time

Transmission dynamics
• For the individual-based model, 10 runs each 

were made
• Each pitted one zombie against 24, 49, 74 

and 99 humans
• The humans were placed randomly
• Simulations were run until the zombies 

completely overran the human population
• These simulations give diverse data about S, 

Z, N and dZ/dt in order to compare functions
• Linear regression, via R2 values, was used to 

determine coefficients.



Comparison
• The stochastic model was run using the 

same initial conditions
• It was also sampled in the same way, for 

purposes of direct comparison
• Values for dZ/dt were then calculated from 

the sampled data, in the same way
• Agent-based modelling is a way of 

approximating situations where we do not 
have real data

• In this case, because collecting it is too 
dangerous. Z: zombies

t: time



S: susceptibles 
Z: zombies

Four transmission functions
• Mass-action transmission

– rate is directly proportional to the density of both 
susceptibles and infecteds

– assumes population is well-mixed
• Frequency-dependent transmission

– host contact is independent of population density
– reasonable when populations are large

• Power relationship
– generalises mass action to powers of S and Z

• Asymptotic contact function
– contact can also depend on the population.



AICc

• Akaike Information Criterion (with correction)
• A measure of the relative goodness of fit of a 

statistical model
• This measures the amount of information lost 

when a given model is used to describe reality
• Candidate models can be ranked by AIC 

values to determine which best fit the data
• However, it is only a way of comparing models, 

not an absolute measure of accuracy
• It cannot evaluate wholly different model types.



Determining AICc

where
– k is the number of parameters
– L is the maximised value of the likelihood 

function for the estimated model
– n is the sample size

• The correction is a penalty for extra 
parameters

• The AICc value with the lowest score is the 
best fit to the data.

AICc = 2k � 2 ln(L) +
2k(k + 1)

n� k � 1



Possible transmission functions

• Note that the parameters such as β are 
different in each function

• The power relationship function 
is the best choice.

� p q ✏
AICc

(with 95% CI) (with 95% CI) (with 95% CI) (with 95% CI)

Mass action �SZ
0.000624

�5.333(0.00601-

0.000646)

Frequency-

�SZ

N

0.0537

�104.711

dependent

(0.0519-

0.0555)

Power

�SpZq
0.0103

0.473 0.762 �291.142
relationship

(0.00772-

(0.435-0.511) (0.719-0.806)

0.0129)

Asymptotic �SpZq

1� ✏+ ✏N

0.00962

0.499 0.793

0.00168

�291.125contact (0.00702-

(0.446-0.552) (0.730-0.855)

(�0.00092-

function 0.01221) 0.00428)

Table 1: Some candidate transmission functions for the spread of a zombie
plague. The best AICc score is highlighted in bold.

Transmission p-value estimate p-value estimate
Function from 50,000 runs from normal curve

Mass action 0 4.49⇥ 10�105

Frequency dependent 0 7.30⇥ 10�39

Power relationship 0.00010 3.69⇥ 10�6

Asymptotic contact 0.00008 3.52⇥ 10�6

Table 2: Estimates of the probability of the individual-based model being a
better fit than any given run of the stochastic model using the 50,000 runs
of the stochastic model and using a Gaussian estimate of the probability
distribution of the R2 value of the stochastic model.

and we varied the number of hunters added to the population. The game
map (see Figure 2) has an approximate area of 4,000m2, so our two scenarios
represent human densities of 12,500 and 25,000 people per km2 respectively.
As a reference point, Manila in the Philippines is the world’s most densely
populated city at 43,079 people per km2 [29], so these numbers represent a
quite crowded area, as would be expected in a site vulnerable to zombie out-
break. The placement of the humans and hunters was randomly distributed
across the map. To simulate a spontaneous outbreak, five zombies were ran-
domly distributed among the population. The simulation is run until there
are either no humans or no zombies left. This simulation was repeated 10
times in each scenario. The results are summarised in Table 3.
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S: susceptibles Z: zombies 
N: total population
β: transmissibility p,q: powers 
ϵ: population dependency



Stochastic regression
• For the stochastic model, we performed 

linear regression of the sampled dZ/dt data 
against the transmission function f(S,Z)

• The R2 of this regression is a measure of 
goodness-of-fit

• This is exactly what we want from the data
• We want to know how closely the rate of 

infection for any pairing of S and Z matches 
the theoretical transmission function

• ie how well dZ/dt matches 
f(S,Z).

S: susceptibles Z: zombies
f(S,Z): transmission function
t: time R2: regression coefficient



Histograms of R2 values

• The simulation was repeated 50,000 times 
for each function

• This gives a histogram of R2 values
• Each histogram demonstrates a high 

correlation between each model’s dZ/dt 
value and the respective transmission 
functions of around 0.8-0.9

• This is expected, as the only sources of 
error are from stochasticity and errors 
caused by the sampling process

Z: zombies t: time 
R2: regression coefficient



Figure 3: For each transmission function, a histogram of results from the
stochastic model, a fitted normal curve to the histogram (dashed line), and
the value of R2 gained from the individual-based model (vertical dotted line).

contact function to it does nothing to improve its performance (a fact con-
firmed by the AICc results from Table 1). These results suggest that, due
to the complex interactions between humans and zombies, both spatially
and dynamically, their interactions are not easily explainable by a simple
random-motion-based model such as the stochastic model we have used, so
more complex models such as our individual-based model are useful when
studying zombie epidemics.

6 Zombie management

We attempt to estimate the impact of hunters on the infection process via
simulation. Each simulation was started either using 50 or 100 human agents,
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Comparing the individual-based model

• Fits from the individual-based model are 
also shown (vertical lines)

• These look quite different, but how can we 
be sure?

• After all, there are 
variations in the 
simulations, errors in 
sampling and so forth

• To answer this, we can 
construct and test a null 
hypothesis.

Figure 3: For each transmission function, a histogram of results from the
stochastic model, a fitted normal curve to the histogram (dashed line), and
the value of R2 gained from the individual-based model (vertical dotted line).

contact function to it does nothing to improve its performance (a fact con-
firmed by the AICc results from Table 1). These results suggest that, due
to the complex interactions between humans and zombies, both spatially
and dynamically, their interactions are not easily explainable by a simple
random-motion-based model such as the stochastic model we have used, so
more complex models such as our individual-based model are useful when
studying zombie epidemics.

6 Zombie management

We attempt to estimate the impact of hunters on the infection process via
simulation. Each simulation was started either using 50 or 100 human agents,
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Null hypothesis

• If two models are identical, any measure of 
the output of one should lie within the 
distribution of the same measure in another

• Our goodness-of-fit value µ is such a measure
• It’s calculated in the same way for the 

individual-based model and the stochastic 
model

• Thus, our null hypothesis H0 is that the 
individual-based model gives the same 
goodness-of-fit value as the stochastic model:

H
0

: µ
IBM

= µ
stoc

.



Rejecting the null hypothesis

• If the null hypothesis is rejected, it means 
the stochastic model with a particular 
transmission function does not describe the 
data from the individual based model

• This suggests the individual-based model is 
not governed by the transmission function

• If it is not rejected, the stochastic model may 
describe this data

• Note that if the null hypothesis is not 
rejected, this is not a sufficient condition to 
accept a particular transmission function.



p-values

• Estimates of the probability of the individual-
based model being a better fit than any given run 
of the stochastic model

• Uses 50,000 runs of the stochastic model and a 
Gaussian estimate of the probability distribution 
of the R2 value of the stochastic model.

as it is for fitting less easily described transmission functions, provides a
better estimate of transmission dynamics, and introducing an asymptotic
contact function to it does nothing to improve its performance (a fact con-
firmed by the AICc results from Table 1). These results suggest that, due
to the complex interactions between humans and zombies, both spatially
and dynamically, their interactions are not easily explainable by a simple
random-motion-based model such as the stochastic model we have used, so
more complex models such as our individual-based model are useful when
studying zombie epidemics.

Transmission p-value estimate p-value estimate
Function from 50,000 runs from normal curve

Mass action 0 4.49⇥ 10�105

Frequency dependent 0 7.30⇥ 10�39

Power relationship 0.00010 3.69⇥ 10�6

Asymptotic contact 0.00008 3.52⇥ 10�6

Table 2: Estimates of the probability of the individual-based model being a
better fit than any given run of the stochastic model using the 50,000 runs
of the stochastic model and using a Gaussian estimate of the probability
distribution of the R2 value of the stochastic model.

6 Zombie management

We attempt to estimate the impact of hunters on the infection process via
simulation. Each simulation was started either using 50 or 100 human agents,
and we varied the number of hunters added to the population. The game
map (see Figure 2) has an approximate area of 4,000m2, so our two scenarios
represent human densities of 12,500 and 25,000 people per km2 respectively.
As a reference point, Manila in the Philippines is the world’s most densely
populated city at 43,079 people per km2 [29], so these numbers represent a
quite crowded area, as would be expected in a site vulnerable to zombie out-
break. The placement of the humans and hunters was randomly distributed
across the map. To simulate a spontaneous outbreak, five zombies were ran-
domly distributed among the population. The simulation is run until there
are either no humans or no zombies left. This simulation was repeated 10
times in each scenario. The results are summarised in Table 3.
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R2: regression 
coefficient



Power relationship is the winner  
• The probability of the transmission function 

being mass action or frequency dependent 
is vanishingly small

• A power relationship is designed to fit less 
easily described transmission functions

• This is a better estimate, but the probability 
is still small

• However, adding an asymptotic contact 
function to it does nothing to improve its 
performance

• These confirm the AICc results from before.



Complexity of models

• Thus, due to the complex interactions 
between humans and zombies, both 
spatially and dynamically, their interactions 
are not easily explainable by a simple 
random-motion-based model

• Thus, more complex models such as 
individual-based models, are useful when 
studying zombie epidemics

• With some faith in the individual-based 
model, can we control epidemic using 
zombie hunters?



Adding zombie hunters
• We added hunters to the simulation in 

different numbers
• We started with either 50 or 100 human 

agents
• The game map has an approximate area of 

4000m2

• Thus, our two scenarios represent human 
density of 12,500 and 25,000 people per 
km2, respectively

• These model a sparse human population 
and a dense one.



A spontaneous outbreak

• Humans and hunters were randomly 
distributed across the map

• To simulate a spontaneous outbreak, five 
zombies were randomly distributed among 
the population

• The simulation was run until there were 
either no humans or no zombies left.



Final outcomes of each run

• Either zombies take over entirely, hunters 
survive without any humans or both humans 
and hunters manage to survive.

50 humans 100 humans

Number of Zombies
Zombies lose

Zombies
Zombies lose

hunters win
Hunters Hunters and

win
Hunters Hunters and

survive humans survive survive humans survive
1 10 0 0 10 0 0
2 10 0 0 10 0 0
3 8 2 0 10 0 0
4 3 5 2 10 0 0
5 4 1 5 6 1 3
6 2 1 7 2 2 6
7 0 0 10 2 0 8
10 0 0 10 0 0 10
25 0 0 10 0 0 10

Table 3: The tally, for each row, of the final outcomes of each run of 10
simulations, with varying initial numbers of hunters and humans in each
row. Three results are possible, as described in the columns: the zombies
take over entirely; some hunters manage to eradicate the zombies without any
regular humans surviving; or both humans and hunters manage to survive.

As we would expect, in both the 50 humans and 100 humans cases, as
more hunters are introduced, more scenarios occur in which some humans
and/or hunters survive. Figure 4 below shows a more detailed look at these
results, not only looking at the final outcome but the extent of survival of
either zombies or humans and hunters.

Some noise is seen in the results from Figure 4, which is expected as we
are only running 10 simulations for each number of hunters. The trends,
however, are quite clear.

The time taken for a zombie-human conflict to resolve itself has a max-
imum at around 4 zombie hunters for 50 humans, and 6 hunters for 100
humans (see Figure 4a). This makes sense, as much less than this and we
see the zombies quickly take over, whereas much more and the hunters make
short work of the zombie plague.

From Figure 4b and 4c, the number of surviving humans and proportion
of surviving hunters increases with the number of hunters; in either case, at
least 4 or 5 hunters seem to be required for any human survival at all; with 7
or more, we are very likely to keep at least some humans alive. Interestingly,
how many humans that might be varies greatly from run to run, even with 10
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Expanding the results

• As expected, as more hunters are 
introduced, more scenarios occur in which 
humans and/or hunters survive

• We can also look at the results in more 
detail

• Not just the final outcome, but the extent of 
survival of each population

• There is some noise, as we’re only running 
10 simulations, but the trends are clear



Figure 4: Graphs showing the e↵ect of the number of hunters in the popula-
tion on the amount of time the scenario took to resolve itself one way or the
other, and the numbers of humans, zombies and hunters respectively. For 50
humans, a black “x” represents the result of a single simulation and a solid
black line represents the mean of a set of 10 simulations. For 100 humans,
a grey “o” represents a single simulation and a grey solid line represents the
mean of each set.

hunters. Additionally, there is a tendency for either nearly all or only a few of
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Maximum resolution time

• The time taken for a zombie-human conflict 
to result itself has a maximum at around 4 
zombie hunters for 50 humans and 6 
hunters for 100 humans

• Less than this and the zombies quickly take 
over

• Much more and the hunters 
make short work of the zombie 
plague.



Minimum number of zombie hunters

• The number of surviving 
humans and proportion of 
surviving hunters 
increases with the number 
of hunters

• At least 4 or 5 hunters 
seem to be required for 
any human survival

• With 7 or more, we are 
very likely to keep at least 
some humans alive.

Figure 4: Graphs showing the e↵ect of the number of hunters in the popula-
tion on the amount of time the scenario took to resolve itself one way or the
other, and the numbers of humans, zombies and hunters respectively. For 50
humans, a black “x” represents the result of a single simulation and a solid
black line represents the mean of a set of 10 simulations. For 100 humans,
a grey “o” represents a single simulation and a grey solid line represents the
mean of each set.

Additionally, there is a tendency for either nearly all or only a few of the
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Emergent behaviour
• The actual number of human survivors 

varies from run to run, even with 10 hunters
• Also, either only a few humans survive or 

nearly all of them do
• This is likely due to emergent behaviour in 

the agent-based model
– either the zombies are eradicated quickly
– or else they have a chance to establish 

themselves and cause massive casualties
• This is supported by the bimodal resolution 

time around the 5 hunter mark.



Zombie survival

• Zombie survival decreases with an 
increasing number of hunters, unsurprisingly

• However, eradication cannot be guaranteed 
with any level of confidence until at least 7 
hunters are present per 50 
humans
(or 10 per 100 humans)

• Thus, a few hunters can make 
all the difference.



Observations on behaviour
• An agent-based model is no substitute for a 

live experimental trial
• However, we can gain some insights into 

zombie incursions by merely observing the 
simulations

• Zombies require critical mass to take down a 
hunter
– if each zombie begins near a hunter, the 

hunters quickly finish off the zombies
– if zombies begin in an area free of hunters, they 

can infect enough humans to form a mob which 
may survive a hunter encounter.



Zombie organisation
• Zombies require organisation to take down a 

hunter
– even a large number of zombies who are 

wandering aimlessly can be picked off one by 
one

• The initial positioning of zombies, hunters 
and humans plays a vital role
– if zombies are initially near hunters, they will be 

quickly destroyed
– even if only one zombie survives, if it is near 

enough humans, it can start an epidemic on its 
own before detection by hunters.



Summary
• An effective way to protect a population is to 

distribute trained shotgun-armed hunters 
among the population

• A spontaneous zombie outbreak can be 
quickly quelled before gaining a foothold

• In a sparsely populated community, a ratio of 
7 hunters to 50 humans is needed

• When human density is doubled, the lower 
ratio of 10 hunters to 100 humans is sufficient

• Thus, the number of hunters is not directly 
proportional to the density of humans.



An unexpected result

• A dense population does not necessarily 
accelerate the spread of zombie-ism

• This is because the dense setting forces 
more humans to stay within the “protection 
zones” of the hunters

• This enables each hunter to cover more 
humans, making them more efficient
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