
When humans strike 
back!

Adaptive strategies for zombie 
attacks



The victim becomes the aggressor
• Humans are usually portrayed as fairly 

passive victims of a zombie attack
• What if humans become the aggressor 

against the undead?
• An individual zombie is relatively vulnerable
• It has little agility or speed
• It is incapable of strategic action
• Thus, the average person should be easily 

able to dispatch a lone walking corpse
– provided they are equipped with the proper 

knowledge and minimal armaments.



The danger of many zombies

• The true danger of the zombie is when he is 
in the company of his peers

• They have a method of unwittingly attracting 
other zombies...
...their despair-inducing moan

• This happens when a zombie becomes 
aware of his next potential meal

• A human can easily become surrounded 
overwhelmed.



“Kill the brain and you kill the ghoul”

• Consider the scene at the house early in 
Night of the Living Dead

• Ben and the others are able to fend off 
attacks by single zombies and successfully 
kill them

• This is because the zombies of this 
particular strain are slow and uncoordinated

• Thus, in one-on-one encounters with alert 
and prepared susceptibles, the single 
zombie will generally be destroyed.



Safety in numbers

• Conversely, groups of two or more zombies 
can successfully attack and defeat all but the 
most well-armed human

• A human with a chain gun could survive a 
concerted attack by zombies

• However, a single individual with a 
screwdriver, as in Dawn of the Dead, would 
probably be killed in an attack by multiple 
zombies

• These empirical observations will allow us to 
build our first model.



An empirical model

• Let S denote susceptibles, Z denote 
zombies and ✶ denote a state outside the 
system

• Then the interactions are
?

a1�! S (human migration)

S
a2�! ? (natural human death)

S + Z
a3�! S (humans kill individual zombies)

S + 2Z
a4�! 3Z (two zombies convert a human)

Z
a5�! ? (zombie death).



A two-population model

• For simplicity, we assume killed humans are 
instantly transformed into zombies

• If (s,z) denotes the population of susceptible 
humans and zombies, respectively, then

where s0 is the number of people outside 
infested areas who can enter the 
region where the zombie outbreak 
has occurred.

ds

dt
= a1s0 � a2s� a4sz

2

dz

dt
= �a3sz + a4sz

2 � a5z

a1: human migration
a2: human death
a3: zombie kill rate
a4: zombie conversion
a5: zombie death



Dimensionless parameters
• A trick for reducing the number 

of parameters: make time 
dimensionless

• Divide the first equation by a2

• Let t=a2t be dimensionless time
• Also let s=SS and z=SZ, where S=a1s0/a2

• Then the model becomes

• Homework: Find a3, a4 and a5.

ds

dt
= a1s0 � a2s� a4sz

2

dz

dt
= �a3sz + a4sz

2 � a5z

dS

dt
= 1� S � a4SZ

2

dZ

dt
= �a3SZ � a5Z + a4SZ

2
s: susceptibles z: zombies
a1: human migration
a2: human death
a3: zombie kill rate
a4: zombie conversion
a5: zombie death



Proportional representation
• This model only has three 

parameters, not five
• For notational simplicity, we’ll 

drop the underscores
• The three rate constants (a3,a4,a5) can be 

expressed in terms of the rate of migration of 
fresh human meat and steady state levels of 
humans in the absence of attacks

• Eg (S,Z)=(0.25,0.75) means humans are 
reduced to 25% of the pre-attack population 

• Zombies are 75% of pre-attack humans.

dS

dt
= 1� S � a4SZ

2

dZ

dt
= �a3SZ � a5Z + a4SZ

2



Low-density attacks are survivable

• This model has up to three 
equilibria

• Two of these can be stable
• (S,Z)=(1,0) is always an equilibrium and it is 

always asymptotically stable
• Thus, for low-density zombie attacks, 

humans always survive.

dS

dt
= 1� S � a4SZ

2

dZ

dt
= �a3SZ � a5Z + a4SZ

2

S: susceptibles Z: zombies
a3: zombie kill rate
a4: zombie conversion
a5: zombie death



Three equilibria

• Add the equations together:
• 1-S-a3SZ-a5Z=0, so

• Substituting, we have Z(a3+a5-a4Z+a4a5Z2)=0
• Thus, Z=0 (as expected) and

• If the term inside the radical is positive, we 
have three positive equilibria.

dS

dt
= 1� S � a4SZ

2

dZ

dt
= �a3SZ � a5Z + a4SZ

2

S =
1� a5Z

1 + a3Z

Z =
a4 ±

p
a24 � 4a4a5(a3 + a5)

2a4a5

S: susceptibles Z: zombies
a3: zombie kill rate
a4: zombie conversion
a5: zombie death



Linearising
• If the natural death rate of 

zombies (a5) and the rate at 
which humans kill zombies (a3) are small, then 
the zombies will be able to mount an attack 
that overwhelms the humans

• We still need to show the equilibria are stable
• To do this, we’ll linearise about the equilibrium 

and examine the eigenvalues of the resulting 
Jacobian matrix

• If they all have negative real parts, 
it’s stable.

Z =
a4 ±

p
a24 � 4a4a5(a3 + a5)

2a4a5

Z: zombies
a3: zombie kill rate
a4: zombie conversion
a5: zombie death



Jacobian

• The Jacobian matrix is

• For Z=0, the trace is negative and the 
determinant positive

• This is equivalent to stability in a 2D matrix
• Homework: If a5 is small, show that the 

middle root is unstable and the large root is 
stable.

J =


�1� a4Z2 �2a4SZ

�a3Z + a4Z2 �a5 � a3S + 2a4SZ

�

S: susceptibles Z: zombies
a3: zombie kill rate
a4: zombie conversion
a5: zombie death



Bistable zombie model

• To understand the qualitative dynamics, we 
can sketch the phase plane

• We can also sketch the S′=0 and Z′=0 
nullclines

• Equilibria are at intersections of the nullclines
• Stable equilibria are marked with circles
• Unstable equilibria with square
• Stable manifolds are labelled SM
• Two sample trajectories (i) and (ii) 

illustrate the bistability in the model. S: susceptibles
Z: zombies



Phase plane

plane along with the nullclines dS/dt = 0 and dZ/dt = 0. Intersections show
the three equilibrium points: two stable (circles) and one unstable (square).
The unstable equilibrium is a saddle point and thus has a stable manifold
(labelled SM) (Strogatz, 1994). This means there is a pair of trajectories
which go into the saddle point as t ! 1. They form a separatrix between the
two stable equilibria: all initial conditions above the curve go to a persistent
high zombie state while all those below go to a zero zombie state. To see
this, we also show two trajectories starting at S = 1 and Z above (ii) and
below (i) the stable manifold. Thus, if Z(0) is less than about 1.75, then the
zombie population will collapse while if Z(0) is larger than 1.75, the zombie
population explodes and humans are nearly wiped out.
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Figure 1: Analysis of bistable zombie model. A: Phase plane of simple zombie
model. Z-nullclines (dZ/dt = 0) and S-nullclines (dS/dt = 0) are shown.
Stable equilibria are shown with filled circles (a3 = a4 = 0.25, a5 = 0.1).
The black square is a saddle point. B: Bifurcation diagram as a3 varies
showing the equilbrium value of Z (a4 = 0.25, a5 = 0.1). Solid lines are
stable and dashed are unstable. This and all other diagrams are computed
using XPPAUT (Ermentrout, 2002).

The key parameter that determines the threshold is a3. This is the ability
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Separatrix

• The unstable equilibrium is a saddle point
• This means there is a pair of trajectories 

which go to the saddle point as t→∞
• They form a separatrix between the two 

stable equilibria
• All initial conditions above 

the curve go to a persistent 
high zombie state

• Those below go to a zero 
zombie state.
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The key threshold parameter is a3

• This is the ability of a human to beat a 
zombie in a one-on-one interaction

• If humans are totally unprepared, then this 
term could even be negative

• In this case, we would adjust the equations 
by adding +min{a3SZ,0} to the S′ equation

• If a3<0 we subtract from the population
• If a4=0 and a3<0, we recover a simplified 

version of the original Munz model.
S: susceptibles 
Z: zombies
a3: zombie kill rate
a4: zombie conversion



One more alteration
• What if zombies migrate?
• Adding a small source term to the zombie 

equation and including group attacks by 
zombies, we have

• Finding equilibria is now much harder
• We compute them numerically as a3 varies
• We illustrate this in a bifurcation 

diagram.
dS

dt
= 1� S � a4SZ

2 +min(a3SZ, 0)

dZ

dt
= �a3SZ � a5(Z � Z0) + a4SZ

2

dS

dt
= 1� S � a4SZ

2 +min(a3SZ, 0)

dZ

dt
= �a3SZ � a5(Z � Z0) + a4SZ

2

S: susceptibles Z: zombies
a3: zombie kill rate
a4: zombie conversion
a5: zombie death



Bifurcation diagram

plane along with the nullclines dS/dt = 0 and dZ/dt = 0. Intersections show
the three equilibrium points: two stable (circles) and one unstable (square).
The unstable equilibrium is a saddle point and thus has a stable manifold
(labelled SM) (Strogatz, 1994). This means there is a pair of trajectories
which go into the saddle point as t ! 1. They form a separatrix between the
two stable equilibria: all initial conditions above the curve go to a persistent
high zombie state while all those below go to a zero zombie state. To see
this, we also show two trajectories starting at S = 1 and Z above (ii) and
below (i) the stable manifold. Thus, if Z(0) is less than about 1.75, then the
zombie population will collapse while if Z(0) is larger than 1.75, the zombie
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The key parameter that determines the threshold is a3. This is the ability

5

Z: Zombies
a3: zombie kill rate
a4: zombie conversion
a5: zombie death

• Solid curves are stable, dashed are unstable
• a4=0.25, a5=0.1.



Zombie migration

• Because of the small migration term, there is 
a positive number such that if a3 is smaller 
than this value, the lower equilibrium does 
not exist and the zombies rule

• If a3 is large, the zombies can never take hold 
and the population is largely zombie-free

• Thus, preparedness for zombie attacks can 
maintain a low or zero population of zombies

• However, if groups of them form, and there 
are enough, the zombies can overcome the 
defences and reign supreme. a3: zombie kill rate



Adaptive strategies for humans
• Being prepared for a zombie attack at all 

times is tough
• Carrying an ice pick or cricket bat whenever 

we go shopping is inconvenient
• Thus, if zombie attacks remain infrequent, a3 

might begin to fall, perhaps even below zero
• In this case, an isolated zombie could attack 

and kill and citizen
• Eg in Night of the Living Dead, Johnny is 

easily killed by a lone zombie, due to his 
naïve attitude towards the threat.



Changing the “readiness” parameter

• Eventually the attacks would become 
common as isolated attacks increase the 
zombie population

• This is then amplified by group attacks
• As more zombies are created, the populace 

will step up their readiness and thus 
increase a3

• Thus, we’ll examine the effects of adapting 
the “readiness” parameter a3 to the zombie 
population.

a3: zombie kill rate



The “readiness” variable
• To make “readiness” a dynamic variable, we 

give it a differential equation:

• How do we choose F?
• We want a3 to increase if the zombie 

population is large and decrease if it is small
• How small or large depends on our tolerance 

to the presence of zombies
• Some people may want zero zombies
• However, that comes at a cost 

– carrying ice picks about your person.

da3
dt

= F (Z, a3)

Z: zombies
a3: zombie kill rate



A linear ODE

• A simple linear equation will suffice:

• Z sets the level of zombies we are willing to 
tolerate

• c is the decay of a3 (and could be set to 0)
– a nonzero c means there is a natural decay of 

readiness to a neutral value of a3=0
• τ sets the timescale
• If humans are slow to react, τ is large
• If they react quickly, τ is small.

⌧
da3
dt

= Z � Z � ca3

Z: zombies
a3: zombie kill rate



Intersections with the bifurcation

• Equilibria satisfy Z=Z+ca3

• This is straight line
• Intersections of this line with the bifurcation 

diagram give us equilibrium values
(because a3 is now a dynamic variable)

• Eg if c=0, then the equilibrium values are 
found by drawing horizontal lines at Z=Z.

⌧
da3
dt

= Z � Z � ca3

Z: zombies τ: timescale
Z: zombie tolerance
a3: zombie kill rate
c: readiness decay



Acceptable zombie tolerance

(i) high tolerance
(ii) low tolerance
(iii) intermediate tolerance.
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Figure 2: Di↵erent levels of zombie tolerance: (i) high, (ii) low or (iii) inter-
mediate. Parameters as in Figure 1B.

then the equilibrium values are found by drawing horizontal lines at Z = Z̄.
Suppose you have a high tolerance of zombies such as line (i) in the figure.
Then you can choose a3 quite low. Of course you and most of your neighbors
will be nearly exterminated, but, hey, you didn’t spend any energy, so if you
are one of the lucky ones to survive, you can leave your icepick at home. On
the other hand, if you choose to tolerate very few zombies, then you might
want to set your tolerance to be very low, such as line (ii) in the figure. In
fact, if you want to avoid any zombie attacks at all, then set the line low
enough so that a3 is larger than about 0.6 in this particular example. In
that case, there can never be a dominant zombie presence. Suppose that
you hedge your bets and pick an intermediate tolerance of zombies, say, like
line (iii) in the figure. Then the intersection is on the “unstable” part of the
zombie equilibrium curve and, in reasonable circumstances, you can expect
to see periodic fluctuations in the zombie and human populations as well as
in the readiness parameter, a3.

Figure 3 shows an example simulation of such an oscillation. The zombie
population rises and wipes out a substantial fraction of the people. The
remainder arm themselves to the teeth and cut down the zombies to a low
level. They then become complacent allowing the zombie population to once
more rise. We can understand this oscillation by looking again at Figure
2. Suppose that ⌧ is very large so that the people adapt really slowly. At
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High and low zombie tolerance
• If we have a high tolerance of zombies (i), 

then we can choose a3 quite low
• Admittedly, we’ll all be nearly exterminated, 

but at least we can leave the icepick at home
• If we have a low tolerance of zombies (ii), 

then we should set a3 to be 
larger than about 0.6

• In this case, there will 
never be a dominant 
zombie presence.
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Z: zombies
a3: zombie kill rate



Intermediate zombie tolerance
• Suppose we hedge our bets and choose an 

intermediate tolerance (iii)
• Then the intersection is on the “unstable” 

part of the zombie equilibrium curve
• In reasonable circumstances, we expect to 

see periodic fluctuations in 
the zombie and human 
populations

• The readiness parameter 
a3 will also fluctuate.
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The rise and fall of zombies

• With intermediate tolerance, the system 
oscillates

• The zombie population rises and wipes out a 
substantial fraction of people (a3 is low)

• The remainder arm themselves to the teeth 
and cut down the zombies (a3 is high)

• They then become complacent, allowing the 
zombie population to rise once more (a3 
decreases).



Oscillations in the system

• There is a limit cycle in phase space
• The time series shows the cycling 

populations.
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Figure 3: Behaviour of the adaptive strategy model. (A) Solution in phase
space of a limit cycle behaviour (B) Time series over several cycles. Param-
eters are a4 = 2, a5 = 0.25, Z0 = 1, Z̄ = 1.1, c = 0.2, ⌧ = 2.

a high zombie population, since Z > Z̄, da3/dt is positive and a3 starts to
increase (dashed arrow on the top of Figure 2). This increase in weaponry
causes the zombie population to slowly decrease until the point marked with
(*) is reached. At this point, the zombie population crashes to the nearly
zero level. Since Z is now below Z̄, the tolerance level, a3 begins to decrease
(complacency sets in, shown by the dashed line at the bottom). The zombie
level rises slightly, but almost imperceptibly until the point (#) is reached
where there is a sudden explosion in the zombie attacks and the zombie
population rises to dominance once again.

If we treat tolerance as a parameter, we can numerically determine how
the dynamics of the model change with Z̄. Figure 4A shows the behaviour of
equations (9)-(11) as we change the tolerance from low to higher values (e.g.,
we move the dashed line (iii) in Figure 2). The equilbrium value of a3 is stable
for low tolerance, but, at a fairly low value, it loses stability (first arrow) as
a Hopf bifurcation (Strogatz, 1994). That is, the equilibrium switches from
having a damped oscillation to a growing oscillation. A periodic orbit emerges
as the only stable behaviour (the curve labelled SPO) and a3, Z, and S all
oscillate. The oscillation grows in amplitude until it is abruptly lost (at (*)
in the figure) and there is a return to a stable equilibrium point. Thus, if an
intermediate tolerance is chosen, then the zombie attacks wax and wane in
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Population crash and explosion
• Suppose τ is large so that people adapt slowly
• At a high zombie population, Z>Z so a3′(t)>0
• a3 increases the use of weaponry, causing the 

zombie population to slowly decrease until 
point ★ is reached

• The zombie population 
crashes to nearly zero

• Now Z<Z, so a3′(t)<0
• The zombie population rises 

slowly until #, when the 
zombie population explodes.
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Hopf bifurcation
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then the equilibrium values are found by drawing horizontal lines at Z = Z̄.
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you hedge your bets and pick an intermediate tolerance of zombies, say, like
line (iii) in the figure. Then the intersection is on the “unstable” part of the
zombie equilibrium curve and, in reasonable circumstances, you can expect
to see periodic fluctuations in the zombie and human populations as well as
in the readiness parameter, a3.

Figure 3 shows an example simulation of such an oscillation. The zombie
population rises and wipes out a substantial fraction of the people. The
remainder arm themselves to the teeth and cut down the zombies to a low
level. They then become complacent allowing the zombie population to once
more rise. We can understand this oscillation by looking again at Figure
2. Suppose that ⌧ is very large so that the people adapt really slowly. At
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• Suppose we vary the tolerance (iii) 
numerically

• The equilibrium value of a3 is stable for low 
tolerance, but quickly loses stability

• This will be in the form of a Hopf bifurcation
• The means that damped 

oscillations become 
growing oscillations

• A periodic orbit emerges as 
the only stable behaviour.

Z: zombies
a3: zombie kill rate



Bifurcations in the adaptive model

• SPO: Stable periodic orbit
• UPO: Unstable periodic orbit
• Arrows: Hopf bifurcations 
• ★: collision of stable and unstable orbits.
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Figure 4: Bifurcation diagrams for the adaptive zombie model. (A) Full
three-dimensional model. Arrows denote Hopf bifurcations and (*) denotes
the collision of unstable (UPO) with stable (SPO) periodic orbits. (B) Same
as (A) with the reduced model. Parameters as in Figure 3.

and wane in a rhythmic manner. Interestingly, there is a region of Z̄ where
there is both rhythmicity and stable equilibrium behaviour. We will explore
this shortly.

Three-dimensional dynamics are more di�cult to understand than two-
dimensions, so we might ask if there is a way to reduce our three variable
system to a simpler one. For a moment, consider Figure 1A, the (Z, S)-
model where a3 is fixed. Two trajectories are drawn (black arrows) and both
of them appear to move horizontally until they hit the S-nullcline where they
essentially follow it nearly perfectly to the equilibrium. This suggests that
the dynamics of S are much faster than Z; a reasonable assumption, given
that classic zombies are slow compared to humans. Thus, we could let S
reach its equilibrium value found by setting equation (9) to zero:

S = Seq(Z) ⌘
1

1 + a4Z2 �min(a3Z, 0)
.

If we make this substitution, then the three-dimensional model becomes a
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• The periodic orbit grows in amplitude until it is 
abruptly lost at ★

• Trajectories return to a stable equilibrium point
• Thus, if an intermediate tolerance is chosen, 

then the zombie attacks wax and wane in a 
rhythmic manner

• Note that there is a region 
where there is both 
rhythmicity and stable 
equilibrium behaviour.

Rhythmicity
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Simplifying the model
• Three-dimensional dynamics are difficult
• Could we reduce the system to a simpler one?
• Consider the original phase-plane diagram 

when a3 was fixed
• The two trajectories move 

horizontally until they hit the 
S-nullcline

• Then they follow it nearly 
perfectly to the equilibrium

• Thus, the dynamics of S are 
much faster than Z.

plane along with the nullclines dS/dt = 0 and dZ/dt = 0. Intersections show
the three equilibrium points: two stable (circles) and one unstable (square).
The unstable equilibrium is a saddle point and thus has a stable manifold
(labelled SM) (Strogatz, 1994). This means there is a pair of trajectories
which go into the saddle point as t ! 1. They form a separatrix between the
two stable equilibria: all initial conditions above the curve go to a persistent
high zombie state while all those below go to a zero zombie state. To see
this, we also show two trajectories starting at S = 1 and Z above (ii) and
below (i) the stable manifold. Thus, if Z(0) is less than about 1.75, then the
zombie population will collapse while if Z(0) is larger than 1.75, the zombie
population explodes and humans are nearly wiped out.
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Figure 1: Analysis of bistable zombie model. A: Phase plane of simple zombie
model. Z-nullclines (dZ/dt = 0) and S-nullclines (dS/dt = 0) are shown.
Stable equilibria are shown with filled circles (a3 = a4 = 0.25, a5 = 0.1).
The black square is a saddle point. B: Bifurcation diagram as a3 varies
showing the equilbrium value of Z (a4 = 0.25, a5 = 0.1). Solid lines are
stable and dashed are unstable. This and all other diagrams are computed
using XPPAUT (Ermentrout, 2002).

The key parameter that determines the threshold is a3. This is the ability

5

S: susceptibles Z: zombies
a3: zombie kill rate



Reducing the dimension

• It makes sense that S dynamics are faster 
than Z, since classic zombies are slow 
compared to humans

• Thus, we could let S reach its equilibrium:

• If we make this substitution, then the 3D 
model becomes a 2D model:

S = Seq(Z) ⌘ 1

1 + a4Z2 �min(a3Z, 0)

dZ

dt
= �a3Seq(Z)Z + a4Z

2Seq(Z)� a5Z

⌧
da3
dt

= Z̄ � Z � ca3.

S: susceptibles
Z: zombies τ: timescale
Z: zombie tolerance
a3: zombie kill rate
c: readiness decay 
a4: zombie conversion



Equilibrium approximation

• Little is lost by making this simplification
• The adaptive bifurcation diagram is almost 

unchanged
• This is a nice trick that saves a lot of trouble
• Letting fast dynamics go to their equilibria 

can often be enormously helpful in 
simplifying the analysis.



Bifurcation diagram in both models

A: 3D model
B: 2D model.
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Three-dimensional dynamics are more di�cult to understand than two-
dimensions, so we might ask if there is a way to reduce our three variable
system to a simpler one. For a moment, consider Figure 1A, the (Z, S)-
model where a3 is fixed. Two trajectories are drawn (black arrows) and both
of them appear to move horizontally until they hit the S-nullcline where they
essentially follow it nearly perfectly to the equilibrium. This suggests that
the dynamics of S are much faster than Z; a reasonable assumption, given
that classic zombies are slow compared to humans. Thus, we could let S
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Comparison

• We can now examine the phase plane and 
nullclines for the same parameter values as 
before

• Z-nullclines and a3-nullclines can easily be 
sketched

• The time series shows little difference from 
the 3D model.

Z: zombies
a3: zombie kill rate



Phase plane and time series for 2D model

• A: Phase plane with nullclines
• B: Time series.
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Figure 5: Reduced adaptive model where S = 1/(1 + a4Z2 � min(a3Z, 0).
(A) Phase plane showing the Z-nullclines and the a3-nullclines as well as the
limit cycle. The single equilibrium point is unstable. (B) Time series for the
cycle shown in (A). Parameters as in Figure 3.

two-dimensional model:

dZ

dt
= �a3Seq(Z)Z + a4Z

2Seq(Z)� a5Z (12)

⌧
da3
dt

= Z̄ � Z � ca3. (13)

Very little is lost in making this simplification. Indeed, Figure 4B is almost
identical both quantitatively and qualitatively to Figure 4A. Figure 5A shows
the phase plane and nullclines for the same parameters as Figure 3. Z- and
a3-nullclines are shown as well as the limit cycle. Comparing the time series
for Figure 5B to that of Figure 3B shows little di↵erence. As Z̄ changes, we
can get the a3-nullcline to intersect in di↵erent parts of the Z-nullcline and
thus vary the qualitative dynamics. Intersections away from the middle part
of the Z-nullcline will lead to stable equilibria and thus a stable adaptation
to zombie attacks.

We close our discussion of the adaptive model by returning to the region
in Figure 4 where there was both a stable equilibrium solution and a stable
limit cycle solution (the values of Z̄ between the right arrow and the asterisk.
Figure 6 shows the phase plane behaviour for the reduced (Z, a3) dynamics
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• As Z changes, we can get the a3-nullcline to 
intersect in different parts of the Z-nullcline

• This will vary the qualitative dynamics
• Intersections away from the middle part of 

the Z-nullcline will lead to stable equilibria
• This will be a stable 

adaptation to zombie 
attacks.

Varying the dynamics
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Orbits inside orbits

• Recall that there was a region where a 
stable equilibrium and stable limit cycle 
coexisted

• This is the region between the right arrow 
and the asterisk

• In this case, there is an 
unstable periodic orbit 
inside the stable one, 
surrounding a stable 
equilibrium.
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Figure 4: Bifurcation diagrams for the adaptive zombie model. (A) Full
three-dimensional model. Arrows denote Hopf bifurcations and (*) denotes
the collision of unstable (UPO) with stable (SPO) periodic orbits. (B) Same
as (A) with the reduced model. Parameters as in Figure 3.
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Three-dimensional dynamics are more di�cult to understand than two-
dimensions, so we might ask if there is a way to reduce our three variable
system to a simpler one. For a moment, consider Figure 1A, the (Z, S)-
model where a3 is fixed. Two trajectories are drawn (black arrows) and both
of them appear to move horizontally until they hit the S-nullcline where they
essentially follow it nearly perfectly to the equilibrium. This suggests that
the dynamics of S are much faster than Z; a reasonable assumption, given
that classic zombies are slow compared to humans. Thus, we could let S
reach its equilibrium value found by setting equation (9) to zero:

S = Seq(Z) ⌘
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1 + a4Z2 �min(a3Z, 0)
.

If we make this substitution, then the three-dimensional model becomes a
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Bistable region

• Reduced adaptive model 
• Z=1.4 in the bistable region.
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Figure 6: Reduced adaptive model with Z̄ = 1.4, in the bistable region. The
unstable periodic orbit is labelled UPO. Parameters as in Figure 3.

when Z̄ = 1.4. The closed circle (UPO) is an unstable periodic orbit and
divides the plane into two regions. Any initial values of a3, Z starting inside
the UPO are attracted to the stable equilibrium point at the intersection of
the nullclines. On the other hand, initial values outside the UPO will go
to the limit cycle where the zombie population oscillates. This suggests an
interesting phenomenon. Suppose that we are at the stable equilibrium. A
brief influx on new zombies could push the initial conditions to the right,
past the UPO and result in a massive decrease in zombies, subsequent com-
placency, and a rebound to an oscillation. Only a carefully timed culling of
the zombies could take you back to the stable equilibrium.

In conclusion, we see that having a zombie-dependent behaviour on readi-
ness to confront the undead hordes can lead to instabilities that result in
waxing and waning of the total zombie population. This is reminiscent of
many other disease and population cycles seen in nature (Hethcote and Levin,
1989).
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Disturbing the equilibrium

• Suppose we are at the stable equilibrium
• A brief influx of new zombies could push the 

initial conditions to the right, past the UPO
• This would result in a massive depletion of 

zombies, subsequent complacency and a 
rebound to oscillation

• Only a carefully timed culling of 
the zombies would take us back 
to the equilibrium.
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Waxing and waning

• Thus, having a zombie-dependent behaviour 
on readiness to confront the undead hordes 
can lead to instabilities

• These result in the waxing and waning of the 
total zombie population

• This occurs in nature
– eg population cycles
– lynx and hares
– also in many diseases.



Empirical observations

• The results here were based on some 
empirical observations from classic films

• Specifically, that low populations of zombies 
are easily overcome by suitably armed 
humans

• These defences can be overcome when 
zombies attack in groups
– we kept this to groups of two for simplicity

• It is well known that zombies like to 
congregate in groups.



Summary
• We considered two types of interactions:

– zombies lose at low density
– but win at high density

• The model system shows that there can be 
two qualitatively distinct outcomes for the 
same parameters:
– humans dominate or zombies dominate

• This winner-take-all behaviour is common in 
population models with competition

• Here, the prey can become the predators if 
they are well-armed.



Summary II
• We also introduced adaptive strategies for 

humans
• ie when zombie levels were low, alertness 

and readiness of humans became low
• This resulted in a massive amplification of 

zombie attacks and a near decimation of 
humans...

• ...until they slowly return to their vigilant and 
armed condition

• Then comes the inevitable return to 
complacency and the cycle begins anew.
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