
Is it safe to go out yet?

Statistical inference in a zombie 
outbreak model



Modelling

• Mathematical modelling describes how 
physical systems change over time

• These include laws of motion
– planetary orbits, ballistic missiles, elastic 

springs, chemical reactions, radioactive decay
• Modelling involves

– identifying the essential features of a physical 
system

– converting these into a descriptive 
mathematical framework

– making predictions.



Ordinary Differential Equations

• ODEs can be effective at characterising the 
main features of a system

• Even when there are a range of complicated 
objects interacting in ways that are 
impossible to pin down

• ODEs are the “gateway drug” between the 
real world and mathematics.



The power of models

• The aim is to
– explain the key mechanisms at work and how 

they interact
– predict the future state of the system
– theoretically and computationally investigate 

“what if” scenarios
• The latter may be out of reach of 

experimental scientists due to
– ethical considerations
– budgetary limitations
– technological feasibility.



A specific example
• Soldiers patrolling the are have reported daily 

observed zombie numbers for the past 5 days 
as 123, 127, 104, 92 and 74

• Is it safe to go out yet?
• If you meet a zombie, what is your chance of 

fighting it off?
• How many soldiers should be mobilise?

– how many of these will survive?
• What scale of quarantine would be worthwhile?
• How effective does a cure need to be?



Parameters

• Mathematical modelling can make 
predictions in the absence of data

• However, these predictions are often quite 
general

• To make the model really useful, we must 
calibrate any unknown parameters

• We do this using observed data
• We may also wish to choose the best model 

from among a choice of potential models
• This is known as model selection.



Incompatible rumours

• Suppose we hear incompatible rumours that
– zombies only attack alone
– zombies always attack in pairs

• These two scenarios correspond to different 
ODE models

• To investigate which rumour is more likely to 
be true, we could ask which of two models 
best explains the observed data

• This requires us to simultaneously calibrate 
and compare two or more ODE models.



A simple model

• Let S(t) and Z(t) denote the concentration 
levels of humans and zombies at time t
– they will take real values, so they aren’t 

necessarily whole numbers
• The only event that can cause a change in 

these levels is a successful zombie attack
• We introduce a rate constant β that 

characterises the ability of zombies to find 
and infect humans

• The larger β, the more virulent the zombies
• This is called mass-action transmission.



Simple model equations

• The simple model is then

• Adding the two equations together gives 
(S(t)+Z(t))′=0

• Thus, the total population remains constant
– this is not true in general

• Thus, we have S′(t)=-βS(t)(K-S(t)), so

S0(t) = ��S(t)Z(t)

Z 0(t) = �S(t)Z(t)

S(t) =
S(0)K

S(0) + (K � S(0)) e�Kt
.

S: humans Z: zombies
β: transmissibility



Known and unknown parameters

• Suppose that the size of the population K is 
known

• And the initial number of humans S(0) is 
also known

• Then β is the only unknown parameter.
• This can be interpreted as the rate at which 

humans are converted into zombies
• Units are “per zombie per day”.

S: humans K: population
β: transmissibility



Determining β

• If there are 1000 humans, then a rate of 
β=0.001 initially corresponds to

• S(0)×β=1000×0.001=1 human being 
converted by each zombie per day

• The number of humans being converted 
depends on both the number of humans and 
the number of zombies at any particular time

• By solving the ODEs, we see how these two 
populations evolve relative to one another.

S: humans
β: transmissibility



Who will win in the human-zombie war?



The ten day war

• Thus, a population of 1000 humans 
diminishes to less than 10% after 10 days

• Based on a single zombie initially attacking 
and converting humans at a rate of one 
human per zombie per day

• This was for 
β=0.001

• What if we 
doubled β?

β: transmissibility



A faster infection rate



Quantitative differences

• In this case, the 
population dwindles to 
less than 10% after just 
5 days

• By the seventh day, the 
humans have effectively 
died out

• The qualitative 
behaviour is the same, 
but the quantitative 
implications are different.



A reversal

• These predictions were made under the 
assumption that we know the exact rate at 
which zombies attack and convert humans

• More realistically, we would not know β, but 
instead have (inaccurate) observations of 
how the population changes over time

• The goal in this case is then reversed:
• Given some observations regarding the 

population at certain time points, we want to 
estimate β such that our model best 
describes the situation as we see it. β: transmissibility



Inverse problem

• Estimating rate constants from observation 
is very challenging

• This is known as the inverse problem
• However, it does come with benefits
• Once we have inferred β, we may then 

quantify the likelihood of future scenarios, 
based on the knowledge that our model 
adequately describes the past.

β: transmissibility



A caveat
• The model is based on simplifying 

assumptions
• It does not capture every detail of the 

physical system
• There will also be measurement errors and 

uncertainty in the data
• In a zombie attack, humans in hiding may go 

unrecorded and zombies may lurk unnoticed 
in dark corners

• Thus, there is no single “true” value 
of β. β: transmissibility



Most likely values

• There may be many values of β that are 
approximately as good as each other at 
describing the data

• It makes sense then to determine the 
probability distribution over the most likely 
values for β

• As opposed to a single “best” value
• Statistical inference, particularly Bayes’ 

theorem, gives us a mathematical framework 
in which to carry out these calculations in 
terms of probability distributions. β: transmissibility



The first level of inference

• Determining parameters with which the 
model plausibly describes the data

• This is the probability of the free parameters 
θ=[θ1,..., θn] given some data Y and a 
particular model M

• We write this as P(θ|Y,M)
• In our example: 

– θ=β
– Y is a vector of observations at a number of 

time points.
β: transmissibility



The second and third levels of inference

• The second sheds light on the uncertainty 
associated with the choice of model

• The probability of a particular model M given 
the data Y

• We write this as P(M|Y)
• The third describes the probability of a 

prediction, given the data
• This prediction may be based on multiple 

plausible models which are weighted 
according to their relative 
probabilities. M: particular model 

Y: vector of observations



Bayes’ theorem

• In order to estimate these probability 
distributions, we can use Bayes’ theorem

• This gives us a method of combining prior 
knowledge and newly obtained data

• Key to the Bayesian approach is the idea 
that observations are inherently uncertain

• Thus, a single data point is assumed to be 
just one sample from some underlying 
probability distribution.



The prior

• This uncertainty is represented as the 
likelihood of the data given a model and its 
current set of parameters

• This is written as P(Y|θ,M)
• The prior distribution P(θ|M) characterises 

our initial knowledge or belief regarding 
plausible values of the parameters

• This is often simply referred to as “the prior”.

M: particular model 
θ: free parameters
Y: vector of observations



Applying this to our zombie outbreak

• A prior can be constructed by considering a 
reasonable timescale for the process

• eg all the action will not be over in one day
• Thus β has an upper bound of 1
• With this value, S(0)×β=S(0)

– ie all S(0) humans could be converted by one 
zombie on the very first day

• Likewise, a lower bound on β is zero
– in this case, zombies never convert humans

S: humans
β: transmissibility



Uniform distribution

• In the absence of further information, we 
could decide that any value of β between 0 
and 1 is equally likely

• So we may choose our prior on β to have a 
uniform distribution over this range

• Thus, we already have some (limited) 
information on our key rate constant before 
we gather any data.

β: transmissibility



The likelihood

• A measure of the goodness of fit between 
the data and the output of the model

• The choice of which probability distribution 
to employ depends on the problem context

• A Poisson distribution may be appropriate
– eg if the observed data is the number of counts 

occurring within a particular time interval.



Gaussian distribution?

• Alternatively, the observed data may be 
obtained from estimates which may be 
affected by a large number of small but 
unknown random factors

• Then, due to the Central Limit Theorem, the 
associated error may be well approximated 
by a Gaussian distribution.



Independent errors

• For our zombie attack, we assume that the 
estimated population levels are subject to 
small, unknown errors

• The final estimates will combine local 
intelligence, large numbers of individual 
sightings etc

• We also assume that errors at different 
observation times are independent.



The likelihood function
• We define it to be a quantitative measure of 

the agreement between the model output 
and the observed data over all time points:

– P(Y|θ,M) represents the probability of an 
observation given a model M with parameters θ

– Y(t) is the observation at time t
– S(t) is the output of the model at time t, given 

parameters θ; and

is the density for a Gaussian with 
mean µ and variance σ2.
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M: particular model 
θ: free parameters
Y: vector of observations
S: humans



Variance

• The variance σ2  is the inherent level of 
uncertainty in the data

• It could be estimated and fixed in advance
• Or inferred along with other parameters.



In summary

• Thus, for a particular combination of model 
parameters and initial conditions, given an 
observation of the number of surviving 
humans at a known point in time, we 
compute the likelihood by taking a Gaussian 
density centred on the model prediction

• We then find the value of the density 
function at the observed value

• We repeat this for each data point and 
multiple the answers together.



Updating our initial beliefs

• Bayes’ theorem allows us to update our 
initial belief about the parameter values, as 
defined by the prior, by taking the data into 
account

• Our updated knowledge is then quantified by 
the posterior distribution P(θ|Y,M) by 
combining the prior distribution with the 
likelihood function:

P (✓|Y,M) =
P (Y|✓,M)P (✓|M)

P (Y|M)

/ P (Y|✓,M)P (✓|M).
M: particular model 
θ: free parameters
Y: vector of observations



Marginal likelihood

• The marginal likelihood P(Y|M) is constant 
for a particular model M

• Thus, it may be calculated as the integral of 
the likelihood times the prior over all 
parameter values:

P (Y|M) =

Z
. . .

Z
P (Y,✓|M)d✓1 . . . ✓n

=

Z
P (Y|✓,M)P (✓|M)d✓.

M: particular model 
θ: free parameters
Y: vector of observations



The challenge of inference

• This integral is generally 
analytically intractable and
high dimensional

• This makes the second and third levels of 
statistical inference over ODE models 
challenging

• Recently though it has been shown that this 
integral may be efficiently and accurately 
estimated using a technique called 
thermodynamic integration

• We’ll come back to this.

P (Y|M) =

Z
. . .

Z
P (Y,✓|M)d✓1 . . . ✓n

=

Z
P (Y|✓,M)P (✓|M)d✓.

M: particular model 
θ: free parameters
Y: vector of observations



Metropolis-Hastings
• Finally, we need a method of sampling from 

the posterior distribution
• In our case, this is analytically intractable 
• We can’t calculate the marginal likelihood for 

our models based on nonlinear ODEs
• Instead, we can employ the Metropolis-

Hastings algorithm:
– a Markov chain Monte Carlo method
– draws a series of random samples from an 

approximation of the posterior
– feasible thanks to the power of modern computing.



Sampling

• In Bayesian statistics, Metropolis-Hastings 
allows us to draw accurate samples from the 
posterior distribution even if the marginal 
likelihood P(Y|M) is not known

• Let βc be a current value of our parameter
• We randomly generate a new state βn from a 

proposal distribution Q(βn|βc) which depends 
only on the current state

• This should be as similar as 
possible to the target distribution 
you wish to sample from.

M: particular model 
θ: free parameters
Y: vector of observations
β: transmissibility



Determining a new state
• We have little advance information about the 

posterior distribution
• It suffices to employ a Gaussian distribution 

with mean βc and some variance chosen to 
give an acceptance rate of 20-40%

• This new state is accepted with probability

where P(β) is the probability distribution we 
wish to sample from

• This is the posterior P(β|Y,M).

min

⇢
P (�n)Q(�c|�n)

P (�c)Q(�n|�c)
, 1

�

M: particular model 
Y: vector of observations
Q: proposal distribution
β: transmissibility



Hot spots

• This technique allows us to search through 
the set of possible parameter values

• We spend most of our time in the “hot spots” 
where parameter values are most promising

• We are now ready to infer a posterior 
distribution over the parameter values, given 
some data

• We’ll do this using “artificial” data 
• This way, we can judge the performance of 

the algorithm under controlled circumstances.



Generating data sets

• We’ll evaluate the solution of the ODEs for a 
chosen value of β at a number of time points

• We’ll then add some Gaussian-distributed 
noise with known variance to the solution

• This will generate some experimental data
• We generated four data sets this way.

β: transmissibility



Four data sets

• Data sets generated from the simple zombie 
model over 10 days

• β=0.001
• Gaussian-distributed noise with a standard 

deviation of 50.
β: transmissibility



Quality of inference

• We then treat this data as though it came 
from the model with an unknown value of β

• Now we want to see what quality of 
inference is possible.

β: transmissibility



Posterior peaks

• Posterior output from the simple zombie model
• β=0.001 and ten data points
• As the standard deviation of the added noise 

decreases, the posterior becomes more 
sharply peaked around the true value of β.

β: transmissibility



Noise-induced bias

• Noise induces a noticeable bias 
when using just 3 data points
– although the posterior is reasonably 

large at the true value of 0.001
• However, if we add less noise, the 

posterior distribution becomes less diffuse
• This indicates a greater confidence in the 

range of values for which the model could 
plausibly describe the data.



Decreasing noise

• Ten data points generated from the zombie 
model

• β=0.001
• Gaussian-distributed noise with standard 

deviation of 50, 20, 10 and 2.
β: transmissibility



Sharper peaks

• Posterior output from the simple zombie 
model

• As the standard deviation of the added noise 
decreases, the posterior becomes more 
sharply peaked around the true value of β.

β: transmissibility



What if we change the prior?

• Changing the prior to uniform over [0,0.01] 
has little effect on the posterior of β

• If we badly mis-specified the prior, we 
observe a biased and skewed posterior 
distribution
– this type of mis-specified prior can be diagnosed 

by comparing the prior and posterior. β: transmissibility



More realistic model

• We’ve thus shown how Bayesian inference 
can be applied in a very simple ODE setting

• We next move to a more realistic model 
where:
– there is more than one unknown parameter
– the ODE solution cannot be written down 

explicitly
• In particular we now allow for the possibility 

that a human can survive a zombie attack
• In this case, the human is unscathed and the 

zombie joins the removed class.



The removed class

• The zombies are removed, rather than dead
• They can later resurrect and join the ranks of 

the undead
• The kill rate is α (humans and zombies fight)
• The resurrection rate is ζ
• Thus, the more realistic model is

• This is the model from Munz et al.

S0 = ��SZ

Z 0 = �SZ + ⇣R� ↵SZ

R0 = ↵SZ � ⇣R
S: humans Z: zombies
β: transmissibility



Attacking a small town

• Suppose zombies attack a small town 
– eg Wakefield
– 40,000 humans living in the town
– 10,000 zombies attacking from Ottawa

• We take daily observations over a period of 
3, 5, 7 and 9 days

• We want the predictive model output
• ie two standard errors or 95% confidence for 

the output of the ODE at each time point 
after the first zombie attack.





Posterior distributions of inferred initial conditions



Decreasing uncertainty

• The initial conditions are relatively 
insensitive to the number of data points 
observed

• As the number of data points increases, the 
uncertainty in the predictive model 
decreases

• Consider the predictive posterior model 
output for day 15, given observations over 3, 
5, 7 and 9 days.



Predicted levels on day 15



Increasing confidence

• With data for just 3 days, we learn very little
• Given additional observations, we can 

predict with much greater certainty that the 
number of surviving humans is between 
10,000 and 25,000

• As we collect more 
data, our predictions 
become more 
confident.



“True” values

• The predicted ranges are tending towards 
the “true” number of humans

• Determined by the system of ODEs to be 
14,790

• Likewise, the predicted number of zombies 
tends towards the “true” value of 10,426

• Removed individuals tends towards 24,784.



Model selection
• We now consider a second level of inference
• With uncertainty not only in the parameters, 

but also in the specified model
• Suppose during the attack on Wakefield that 

there are rumours that the zombies will only 
attack in pairs

• To simplify things, we can assume that a 
single zombie who meets a human will 
always try to flee

• Similarly with a single human who meets a 
pair of zombies.



The pair-attack model

• When a single zombie encounters a 
susceptible, either both remain unscathed or 
the zombie becomes removed

• When a pair of zombies encounters a 
susceptible, either all remain unscathed or 
the susceptible succumbs to zombification

• Thus, the pair-attack model is
S0 = ��SZ2

Z 0 = �SZ2 + ⇣R� ↵SZ

R0 = ↵SZ � ⇣R.

S: humans Z: zombies
R: removed
β: transmissibility
α: attack rate
ζ: resurrection rate



Generating observations

• We can generate observations over nine 
days by
– simulating from Model 1
– adding Gaussian-distributed noise with 

standard deviation 500, 1000 or 2000
• We have no information about the 

parameters
• Will an inference algorithm allow us to 

conclude that Model 1 describes the data 
better than Model 2?



Posterior output, SD=500



Posterior output, SD=1000



Posterior output, SD=2000



Bayes factors

• Visually assessing which is the better model 
is difficult

• The posterior output covers most of the data 
points for both models

• Instead, we can calculate Bayes factors
• B12 represents the weight of statistical 

evidence in favour of Model 1 over Model 2
• Computed as the ratio of the marginal 

likelihoods for the two competing models
B12 =

P (Y|M1)

P (Y|M2)
.Mj: particular model 

Y: vector of observations



Thermodynamic integration
• Calculating the marginal likelihood involves 

estimating the integral of the likelihood times 
the prior over all values of the parameters

• This is an extremely challenging task
• This is where we employ the technique of 

thermodynamic integration 
• It has recently been shown to provide 

accurate, low variance estimates of this 
quantity

• Other, seemingly similar methods may fail to 
produce usable results.



Interpretation of Bayes factor

B12
Evidence against 
alternative

1 to 3 Slight

3 to 10 Substantial

10 to 100 Strong

>100 Decisive.

B12: Bayes factor



Marginal likelihoods for each model

Model

SD of 
Gaussian-
distributed  

noise

Marginal log-likelihood
(± Standard error)

Log(Bayes Factor)
Log(B12)

Model 1
Model 2 500

-152.7 (±0.1)
-184.2 (±1.7)

31.5 (±1.8)

Model 1
Model 2 1000

-158.5 (±0.1)
-175.4 (±1.0)

16.9 (±1.1)

Model 1
Model 2 2000

-167.1 (±0.1)
-177.0 (±3.4)

9.9 (±3.5)



Model 1, you are a winner!

• In each case, the log Bayes factors correctly 
identify that Model 1 was used to produce 
the data

• As the noise increases, the weight of 
evidence as indicated by the log Bayes 
factor decreases

• However, the evidence remains substantially 
in favour of the correct model.



Is it safe to go out yet?

• We now return to the original question
• Soldiers patrolling the are have reported 

daily observed zombie numbers for the past 
5 days as 123, 127, 104, 92 and 74

• We are holed up in a shopping mall with 
enough supplies to survive for 50 days

• Is it safe to go out yet?



Using Model 1

• We shall assume Model 1 to be a fair 
representation of the interaction between 
zombies, humans and the removed

• (If we had multiple plausible models, we 
could once again do a full model comparison 
by calculating Bayes factors)

• We perform parameter inference over the 
model given our data of daily observations

• Then plot the predictive model output.



Observations of zombies only

• The 95% confidence 
output includes a wide 
variety of outcomes

• Uncertainty in the 
estimate increases with 
time

• Possibilities include
– there is relatively little 

impact on humans
– zombies take over 

completely in a month.



Effect of uncertainty

• Since the zombie population initially 
decreases, it might be worth making an early 
exit

• After that, there is much more uncertainty in 
the number of zombies

• What if we had more information?
• Eg the human population
• We can again perform parameter inference 

over our model to include data for both 
humans and zombies.



Predictive model output from 3 parameter model



• We can now say with much 
more certainty that the 
number of zombies will 
remain low for a longer 
period of time

• Thus, it is less urgent to 
escape immediately

• In this case, it’s best to sit 
tight before gathering 
supplies and attempting 
an escape.

Effect of additional information



Summary

• Any mathematical model represents an 
abstracted summary that doesn’t capture all 
characteristics of interest

• Modelling involves compromises and 
generates an inherent level of uncertainty

• Identifying unknown or unmeasured model 
parameters introduces further uncertainty

• If model predictions are used to guide policy, 
a systematic and consistent treatment of all 
levels of uncertainty is vital.



An outstanding challenge

• An outstanding challenge is the calibration of 
models with a large number of unknown 
parameters

• Requires efficient sampling in high dimensions
• Added complications arise when parameters 

are highly correlated.



MCMC methodologies

• It is important to solve ODEs quickly, since 
large numbers of solves may be required

• Highly accurate solutions are not required
• The ODE may be solved repeatedly for 

similar parameter values
• Another key issue is the development and 

analysis of new Markov Chain Monte Carlo 
methodologies to provide unbiased and low 
variance estimates of the quantities required 
for model comparison.



Conclusion
• Bayesian theory brings together ideas from 

– applied mathematics
– statistics
– computer science

• Understanding how to deal with parameters 
is one of the most fundamental issues in 
applied mathematics

• Knowing this can be the difference between 
safely holing up in the mall...
...and being eaten by a zombie because we 
thought it was safe to go out.
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