Is it safe to go out yet!

Statistical inference in a zombie
outbreak model

""""""




Modelling

« Mathematical modelling describes how
physical systems change over time

« These include laws of motion

— planetary orbits, ballistic missiles, elastic
springs, chemical reactions, radioactive decay

* Modelling involves

— identifying the essential features of a physical
system

— converting these into a descriptive
mathematical framework

— making predictions.



Ordinary Differential Equations

* ODEs can be effective at characterising the
main features of a system

* Even when there are a range of complicated
objects interacting in ways that are
Impossible to pin down

* ODEs are the “gateway drug” between the
real world and mathematics.



The power of models

e The aimis to

— explain the key mechanisms at work and how
they interact

— predict the future state of the system

— theoretically and computationally investigate
“‘what if” scenarios

* The latter may be out of reach of
experimental scientists due to
— ethical considerations
— budgetary limitations
— technological feasibility.



A specific example

Soldiers patrolling the are have reported daily
observed zombie numbers for the past 5 days
as 123, 127, 104, 92 and 74

Is it safe to go out yet?

If you meet a zombie, what is your chance of
fighting it off?

How many soldiers should be mobilise?

— how many of these will survive?

What scale of quarantine would be worthwhile?

How effective does a cure need to be?



Parameters

Mathematical modelling can make
predictions in the absence of data

However, these predictions are often quite
general

To make the model really useful, we must
calibrate any unknown parameters

We do this using observed data

We may also wish to choose the best model
from among a choice of potential models

This iIs known as model selection.



Incompatible rumours

Suppose we hear incompatible rumours that
— zombies only attack alone
— zombies always attack in pairs

These two scenarios correspond to different
ODE models

To investigate which rumour is more likely to
be true, we could ask which of two models
best explains the observed data

This requires us to simultaneously calibrate
and compare two or more ODE models.



A simple model

Let S(t) and Z(t) denote the concentration
levels of humans and zombies at time t

— they will take real values, so they aren't
necessarily whole numbers

The only event that can cause a change in
these levels is a successful zombie attack

We introduce a rate constant 3 that
characterises the ability of zombies to find
and infect humans

The larger 3, the more virulent the zombies
This Is called mass-action transmission.



Simple model equations

* The simple model is then
S'(t) = =BS(t)Z(t)
Z'(t) = BS(t)Z(t)
* Adding the two equations together gives
(S(H)+<£(t))=0
* Thus, the total population remains constant
— this is not true in general

+ Thus, we have S'(t)=-BS(t)(K-S(t)), so

5t — S(0)K

S: humans Z: zombies
B: transmissibility

S(0) + (K — S(0)) eBEt




Known and unknown parameters

Suppose that the size of the population K is
Known

And the initial number of humans S(0) is
also known

Then [3 is the only unknown parameter.

This can be interpreted as the rate at which
humans are converted into zombies

Units are “per zombie per day”.




Determining 3

* |f there are 1000 humans, then a rate of
3=0.001 initially corresponds to

* S5(0)xB=1000%0.001=1 human being
converted by each zombie per day

* The number of humans being converted
depends on both the number of humans and
the number of zombies at any particular time

* By solving the ODEs, we see how these two
populations evolve relative to one another.




Who will win in the human-zombie war?
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The ten day war

* Thus, a population of 1000 humans
diminishes to less than 10% after 10 days

« Based on a single zombie initially attacking
and converting humans at a rate of one
human per zombie per day

 This was for
3=0.001

 What if we
doubled 37

Population

B: transmissibility Days
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Quantitative differences

* |n this case, the
population dwindles to
less than 10% after just
5 days

* By the seventh day, the
humans have effectively
died out

 The qualitative
behaviour is the same, :°
but the quantitative 4o N
implications are different. =~ =

Population




A reversal

These predictions were made under the
assumption that we know the exact rate at
which zombies attack and convert humans

More realistically, we would not know 3, but
instead have (inaccurate) observations of
how the population changes over time

The goal In this case is then reversed:

Given some observations regarding the
population at certain time points, we want to
estimate [3 such that our model best

describes the situation as we see it.  LZreemebiy




Inverse problem

» Estimating rate constants from observation
IS very challenging

* This is known as the inverse problem
* However, it does come with benefits

* Once we have inferred (3, we may then
quantify the likelihood of future scenarios,
based on the knowledge that our model
adequately describes the past.

B: transmissibility




A caveat

The model is based on simplifying
assumptions

It does not capture every detall of the
physical system

There will also be measurement errors and
uncertainty in the data

In @ zombie attack, humans in hiding may go
unrecorded and zombies may lurk unnoticed
in dark corners

Thus, there is no single “true” value

Of B B: transmissibility




Most likely values

There may be many values of (3 that are
approximately as good as each other at
describing the data

It makes sense then to determine the
probability distribution over the most likely
values for 3

As opposed to a single “best” value

Statistical inference, particularly Bayes’
theorem, gives us a mathematical framework
in which to carry out these calculations in

terms of probability distributions. p: wansmissibiy




The first level of inference

Determining parameters with which the
model plausibly describes the data

This is the probability of the free parameters

0=[01,..., Bn] given some data Y and a
particular model M

We write this as P(0|Y,M)

In our example:
_ e=B

— Y is a vector of observations at a number of

time points.

B: transmissibility




The second and third levels of inference

* The second sheds light on the uncertainty
associated with the choice of model

* The probability of a particular model M given
the data Y

* We write this as P(M|Y)

* The third describes the probability of a
prediction, given the data

* This prediction may be based on multiple
plausible models which are weighted

according to their relative
ngugs M: particular model
p rO ba b | I |t| eS . Y: vector of observations




Bayes’' theorem

In order to estimate these probability
distributions, we can use Bayes' theorem

This gives us a method of combining prior
knowledge and newly obtained data

Key to the Bayesian approach is the idea
that observations are inherently uncertain

Thus, a single data point is assumed to be
just one sample from some underlying
probability distribution.



The prior

* This uncertainty is represented as the
likelihood of the data given a model and its
current set of parameters

* This is written as P(Y|0,M)

* The prior distribution P(6|M) characterises
our initial knowledge or belief regarding
plausible values of the parameters

* This is often simply referred to as “the prior”.

M: particular model
6. free parameters
Y: vector of observations




Applying this to our zombie outbreak

* A prior can be constructed by considering a
reasonable timescale for the process

» eg all the action will not be over in one day
* Thus 3 has an upper bound of 1
* With this value, S(0)x3=S(0)

— ie all S(0) humans could be converted by one
zombie on the very first day

» Likewise, a lower bound on 3 is zero
— In this case, zombies never convert humans

S: humans
B: transmissibility




Uniform distribution

* |n the absence of further information, we
could decide that any value of 3 between O
and 1 is equally likely

* SO we may choose our prior on 3 to have a
uniform distribution over this range

* Thus, we already have some (limited)
information on our key rate constant before

we gather any data.

B: transmissibility




The likelihood

* A measure of the goodness of fit between
the data and the output of the model

* The choice of which probability distribution
to employ depends on the problem context
* A Poisson distribution may be appropriate

— eg If the observed data is the number of counts
occurring within a particular time interval.



Gaussian distribution?

« Alternatively, the observed data may be
obtained from estimates which may be
affected by a large number of small but
unknown random factors

* Then, due to the Central Limit Theorem, the
associated error may be well approximated
by a Gaussian distribution.



Independent errors

 For our zombie attack, we assume that the
estimated population levels are subject to
small, unknown errors

* The final estimates will combine local
intelligence, large numbers of individual

sightings etc
 \We also assume that errors at different
observation times are independent.



The likelihood function

* We define it to be a quantitative measure of
the agreement between the model output

and the observed data over all time points:
L=P(Y|0,M) HNy(t)
— P(Y|6,M) represents the probablllty of an
observation given a model M with parameters 6
— Y(t) is the observation at time t

— 3S(t) is the output of the model at time t, given

paramet]?fi?ue;Z?ldexp(—(m — /L)2/(20'2))

. . _27‘-0- ? . M: particular model
IS the density for a Gaussian with 6 froe parameters
mean u and variance o<. S: humans




Variance

 The variance o2 is the inherent level of
uncertainty in the data

* |t could be estimated and fixed in advance
* Orinferred along with other parameters.



In summary

* Thus, for a particular combination of model
parameters and initial conditions, given an
observation of the number of surviving
humans at a known point in time, we
compute the likelihood by taking a Gaussian
density centred on the model prediction

* We then find the value of the density
function at the observed value

* We repeat this for each data point and
multiple the answers together.



Updating our initial beliefs

» Bayes’' theorem allows us to update our
initial belief about the parameter values, as
defined by the prior, by taking the data into
account

* Our updated knowledge is then quantified by
the posterior distribution P(6]Y,M) by
combining the prior distribution with the
likelihood function:

P(Y|6, M)P(6|M)

PO]Y, M) =

. P(Y|M)
M: particular model
O: free parameters X P(Y‘H7 M)P(H‘M)

Y: vector of observations




Marginal likelihood

* The marginal likelihood P(Y|M) is constant
for a particular model M

* Thus, it may be calculated as the integral of
the likelihood times the prior over all
parameter values:

P(Y|M) = / / (Y, 0|M)db ..

/ (Y |0, M)P(60|M)d6

M: particular model
6. free parameters
Y: vector of observations




The challenge of inference

. . P(Y M) = iPY,HMdel...en
This integral is generally D / / oD

analytically intractable and - [ PrYio.anp@an.
high dimensional

This makes the second and third levels of
statistical inference over ODE models
challenging

Recently though it has been shown that this
integral may be efficiently and accurately
estimated using a technique called
thermodynamic integration P —

We, ” Come baCk to th |S Y: vector of observations




Metropolis-Hastings

Finally, we need a method of sampling from
the posterior distribution

In our case, this is analytically intractable

We can’t calculate the marginal likelihood for
our models based on nonlinear ODEs

Instead, we can employ the Metropolis-
Hastings algorithm:

— a Markov chain Monte Carlo method

— draws a series of random samples from an
approximation of the posterior

— feasible thanks to the power of modern computing.



Sampling

In Bayesian statistics, Metropolis-Hastings
allows us to draw accurate samples from the
posterior distribution even if the marginal
likelihood P(Y|M) is not known

Let B¢ be a current value of our parameter

We randomly generate a new state 3nfrom a
proposal distribution Q(pBn|Bc) which depends
only on the current state

This should be as similar as
. . . . M: particular model
possible to the target distribution | reeperamerers

Y: vector of observations

yo u Wl S h to Sam p I e fro m. B: transmissibility




Determining a new state

We have little advance information about the
posterior distribution

It suffices to employ a Gaussian distribution
with mean 3c and some variance chosen to
give an acceptance rate of 20-40%

This new state is accepted with probability

mm{P(ﬁn)Q(ﬁc Bn) 1}
P(B:)Q(BnlBe)
where P() is the probability distribution we

wish to sample from M: particular model

This is the posterior P(B|Y,M). 5. hanamissiiity

Y: vector of observations




Hot spots

This technique allows us to search through
the set of possible parameter values

We spend most of our time in the “hot spots”
where parameter values are most promising

We are now ready to infer a posterior
distribution over the parameter values, given
some data

We’'ll do this using “artificial” data

This way, we can judge the performance of
the algorithm under controlled circumstances.



Generating data sets

« We’ll evaluate the solution of the ODEs for a
chosen value of 3 at a number of time points

o \We’'ll then add some Gaussian-distributed
noise with known variance to the solution

* This will generate some experimental data
* We generated four data sets this way.

B: transmissibility
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» Data sets generated from the simple zombie

model over 10 days

+ 3=0.001

 Gaussian-distributed noise with a standard
deviation of 50.

B: transmissibility




Quality of inference

* We then treat this data as though it came
from the model with an unknown value of 3

 Now we want to see what quality of
inference is possible.

B: transmissibility
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Posterior peaks

3 Data Points 5 Data Points 10 Data Points 50 Data Points

H

Al
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» Posterior output from the simple zombie model

* 3=0.001 and ten data points

» As the standard deviation of the added noise
decreases, the posterior becomes more
sharply peaked around the true value of 3.

B: transmissibility




Noise-induced bias

3 Data Points

 Noise induces a noticeable bias
when using just 3 data points

— although the posterior is reasonably
large at the true value of 0.001

 However, if we add less noise, the
posterior distribution becomes less diffuse

* This indicates a greater confidence in the
range of values for which the model could
plausibly describe the data.

08 09 1 1.1 1.2



Decreasing noise

SD =50 SD =20 SD=10 SD=2
1200 1200 1200 1200
10004— o 10004—* 1000 1000
800 800 } 800} 800
600 600 } 600 600
400 400} 400} 400
200 ’ 200} 200} 200
% B 10 % 5 1.0 % 5 10 % B 10

* Ten data points generated from the zombie
model

» 3=0.001

o Gaussian-distributed noise with standard
deviation of 50, 20, 10 and 2.

B: transmissibility




Sharper peaks

SD=50 SD =20 SD=10 SD=2

(\ ﬂ
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0.9 1 1.1 0.9 1 1.1 09 1 1.1 0.9 1 1.1

» Posterior output from the simple zombie
model
* As the standard deviation of the added noise

decreases, the posterior becomes more
sharply peaked around the true value of 3.

B: transmissibility




What if we change the prior?

Uniform [0,1] Uniform [0,0.01] Gaussian (0.003, 0.0001)

08 059 1 11 12 13 08 08 1 11 12 13 08 08 1 1.1

1.2 13

» Changing thg prior to unifoF;n over [0,0.01x]w

has little effect on the posterior of 3

* If we badly mis-specified the prior, we
observe a biased and skewed posterior
distribution

— this type of mis-specified prior can be diagnosed

by comparing the prior and posterior.

B: transmissibility




More realistic model

We've thus shown how Bayesian inference
can be applied in a very simple ODE setting

We next move to a more realistic model

where:

— there is more than one unknown parameter

— the ODE solution cannot be written down
explicitly

In particular we now allow for the possibility

that a human can survive a zombie attack

In this case, the human is unscathed and the
zombie joins the removed class.



The removed class

The zombies are removed, rather than dead
They can later resurrect and join the ranks of

the undead

The Kkill rate is a (humans and zombies fight)

The resurrection rate is
Thus, the more realistic model is

S' = _B3SZ
7' — BS7 + (R — aSZ
R' =aSZ — (R

This is the model from Munz et al.

S: humans Z: zombies
B: transmissibility




Attacking a small town

Suppose zombies attack a small town
— eg Wakefield

— 40,000 humans living in the town

— 10,000 zombies attacking from Ottawa

We take daily observations over a period of
3, 9, 7 and 9 days
We want the predictive model output

le two standard errors or 95% confidence for
the output of the ODE at each time point
after the first zombie attack.
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Posterior distributions of inferred initial conditions
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Decreasing uncertainty

* The initial conditions are relatively
insensitive to the number of data points
observed

* As the number of data points increases, the
uncertainty in the predictive model
decreases

* Consider the predictive posterior model

output for day 15, given observations over 3,
5, 7 and 9 days.



Predicted levels on day 15
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Increasing confidence

» With data for just 3 days, we learn very little

* Given additional observations, we can
predict with much greater certainty that the

number of surviving humans is between
10,000 and 25,000

» As we collect more RPN
data, our predictions
become more
. - / J\
CO n fl d e n t . 0 20000 40000 0 20000 40000 0 20000 40000 0O 20,000 40,000




“True” values

The predicted ranges are tending towards
the “true” number of humans

Determined by the system of ODEs to be
14,790

Likewise, the predicted number of zombies
tends towards the “true” value of 10,426

Removed individuals tends towards 24,784.



Model selection

We now consider a second level of inference

With uncertainty not only in the parameters,
but also in the specified model

Suppose during the attack on Wakefield that
there are rumours that the zombies will only
attack in pairs

To simplify things, we can assume that a
single zombie who meets a human will
always try to flee

Similarly with a single human who meets a
pair of zombies.



The pair-attack model

* When a single zombie encounters a
susceptible, either both remain unscathed or
the zombie becomes removed

 When a pair of zombies encounters a
susceptible, either all remain unscathed or
the susceptible succumbs to zombification

* Thus, the pair-attack model is
S' = 38277

/ , _ .
Z'=pSZ° +(R—aSZ |l =
B: transmissibility

R/ — OCSZ . CR a: attack rate

{: resurrection rate




Generating observations

* \WWe can generate observations over nine
days by
— simulating from Model 1
— adding Gaussian-distributed noise with
standard deviation 500, 1000 or 2000

 \We have no information about the
parameters

* Will an inference algorithm allow us to
conclude that Model 1 describes the data
better than Model 27



Posterior output, SD=500
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Posterior output, SD=1000
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Posterior output, SD=2000
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Bayes factors

Visually assessing which is the better model
is difficult

The posterior output covers most of the data
points for both models

Instead, we can calculate Bayes factors

B12 represents the weight of statistical
evidence in favour of Model 1 over Model 2

Computed as the ratio of the marginal

likelihoods for the two competing models
P(Y|M,)

M;: pa
Y: ve

rticular model —
ctor of observations 12

~ P(Y|My)




Thermodynamic integration

Calculating the marginal likelihood involves
estimating the integral of the likelihood times
the prior over all values of the parameters

This Is an extremely challenging task

This is where we employ the technique of
thermodynamic integration

It has recently been shown to provide
accurate, low variance estimates of this
quantity

Other, seemingly similar methods may fail to
produce usable results.



Interpretation of Bayes factor

1103 Slight
3to 10 Substantial
10 to 100 Strong

>100 Decisive.

B12: Bayes factor




Marginal likelihoods for each model

Model 1 -152.7 (£0.1)
1.5 (1.

Model2 | >0 184.2 (+1.7) 515 (1.8)
Model 1 -158.5 (+0.1)

1000 16.9 (+1.1
Model 2 -175.4 (+1.0) (+1.1)
Model 1 -167.1 (£0.1)

2000 9.9 (+3.5
Model 2 A77.0 (£3.4) (£3.5)




Model 1, you are a winner!

* |In each case, the log Bayes factors correctly
identify that Model 1 was used to produce

the data

* As the noise increases, the weight of
evidence as indicated by the log Bayes
factor decreases

* However, the evidence remains substantially
in favour of the correct model.



Is it safe to go out yet?

We now return to the original question

Soldiers patrolling the are have reported
daily observed zombie numbers for the past
5 days as 123, 127, 104, 92 and 74

We are holed up in a shopping mall with
enough supplies to survive for 50 days

Is it safe to go out yet?



Using Model 1

We shall assume Model 1 to be a fair
representation of the interaction between
zombies, humans and the removed

(If we had multiple plausible models, we
could once again do a full model comparison
by calculating Bayes factors)

We perform parameter inference over the
model given our data of daily observations

Then plot the predictive model output.



Observations of zombies only

* The 95% confidence
output includes a wide
variety of outcomes

* Uncertainty in the
estimate increases with
time

 Possibilities include

— there is relatively little
impact on humans

— zombies take over
completely in a month.
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Effect of uncertainty

Since the zombie population initially
decreases, it might be worth making an early
exit

After that, there is much more uncertainty in
the number of zombies

What if we had more information?

Eg the human population

We can again perform parameter inference
over our model to include data for both
humans and zombies.



Predictive model output from 3 parameter model
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Effect of additional information

* We can now say with much ~ ~ “embieandHumanbatz
more certainty that the
number of zombies will
remain low for a longer
period of time

* Thus, it is less urgent to
escape immediately

* |n this case, it's best to sit R
tight before gathering
supplies and attempting
an escape.
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Summary

Any mathematical model represents an
abstracted summary that doesn’t capture all
characteristics of interest

Modelling involves compromises and
generates an inherent level of uncertainty

ldentifying unknown or unmeasured model
parameters introduces further uncertainty

If model predictions are used to guide policy,
a systematic and consistent treatment of all
levels of uncertainty is vital.



An outstanding challenge

* An outstanding challenge is the calibration of

models with a large number of unknown
parameters

* Requires efficient sampling in high dimensions

» Added complications arise when parameters
are highly correlated.



MCMC methodologies

It is important to solve ODEs quickly, since
large numbers of solves may be required

Highly accurate solutions are not required

The ODE may be solved repeatedly for
similar parameter values

Another key issue is the development and
analysis of new Markov Chain Monte Carlo
methodologies to provide unbiased and low
variance estimates of the quantities required
for model comparison.



Conclusion

» Bayesian theory brings together ideas from
— applied mathematics
— statistics
— computer science

* Understanding how to deal with parameters

IS one of the most fundamental issues in
applied mathematics

* Knowing this can be the difference between
safely holing up in the mall...

...and being eaten by a zombie because we
thought it was safe to go out.
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