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Abstract

This chapter uses the case study of a popular media story—the 2009 coverage of
a mathematical model of zombies—to examine the viral-like properties of a story’s
propagation through the media. The coverage of the zombie story is examined and
then a model for the spread of a media story is developed. Stability conditions
are derived and the model is refined to include multiple secondary hooks, a series
of additional pieces of information that may reignite an existing story. Sample
scenarios are investigated, under a variety of suboptimal provisions. Conditions
under which a story goes viral include initial newsworthiness, the natural lifespan
of the story, durability after the fact and at least one secondary hook that occurs
early in the story’s lifespan.

1.1 Introduction

1.1.1 A Media Invasion of Zombies

Like any huge event, it started small. In August 2009, an online blog for a
newspaper [1] and an article in National Geographic [2] triggered a tidal wave

of reports: a group of Canadian researchers had created a mathematical model of
zombies [3]. The story was reported in Wired [4], which acted as a hub for spreading
it significantly further afield. It was picked up in Canada’s Globe and Mail [5] and
then spread to The Toronto Star [6], The Wall Street Journal [7] and BBC News
[8], where it was the number one story in the world for 24 hours. Twitter was
a-flutter, blogs went into overdrive and searches in Google spiked.

The story gathered even more steam when it was discovered that the lead
researcher had a question mark in his name [9]. From here it spread worldwide:
The Daily Mail [10], The Melbourne Herald Sun [11], Finnish news [12]. The au-
thors made appearances on National Public Radio [13] and participated in episodes
of TV programs devoted entirely to the subject [14].
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Upon reaching Australia, the story gathered another boost: the senior author
was Australian, so the Australian media became particularly interested in covering
it, thus extending the lifespan of the story even further [11]. Agents came calling.
Book deals were o↵ered [15]. The Hollywood Science and Entertainment exchange
arranged a panel at the Director’s Guild of America, putting the senior author in a
discussion with George Romero and Max Brooks [16].

In every sense of the word, this story went viral.

August 2009 was a slow news month, with no natural disasters or political
scandals. It also fell in the northern summer, which is usually the period where
lighter stories can gain traction. Hallowe’en occurred a few months later, resulting in
a brief reinterest in the story and it was discussed at the year’s end in the summary
of stories for the year (and decade). Occasional reports surfaced intermittently
thereafter and quotes continue to be solicited to this day.

The story’s timeline is shown in Figure 1.1. This is an underestimation of the
true number of stories but illustrates repeated spikes in interest that have continued
since. Figure 1.2 shows the Google trends for the word “Smith?” in 2009, illustrating
the relative spike in searches that occurred in mid-August. The figure also shows
Google Trends “zombies” in 2009, indicating their consistent popularity. Note that
searching for the word “Smith” produces di↵erent results than searches for the
word “Smith?” (such as many reports of the death of celebrity Anna Nicole Smith
earlier that year).
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Figure 1.1: A: Timeline of stories in Google News archives featuring keywords “zombies” and
“mathematics” since July 2009. B: Number of stories per day in Google News archives featuring
keywords “zombies” and “mathematics” throughout the latter part of 2009.



Robert Smith? 3

A

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

Ja
n"4

"20
09
"

Ja
n"1

8"2
00
9"

Fe
b"1

"20
09
"

Fe
b"1

5"2
00
9"

M
ar
"1"
20
09
"

M
ar
"15

"20
09
"

M
ar
"29

"20
09
"

Ap
r"1
2"2

00
9"

Ap
r"2
6"2

00
9"

M
ay
"10

"20
09
"

M
ay
"24

"20
09
"

Ju
n"7

"20
09
"

Ju
n"2

1"2
00
9"

Ju
l"5
"20

09
"

Ju
l"1
9"2

00
9"

Au
g"2
"20

09
"

Au
g"1
6"2

00
9"

Au
g"3
0"2

00
9"

Se
p"1

3"2
00
9"

Se
p"2

7"2
00
9"

Oc
t"1
1"2

00
9"

Oc
t"2
5"2

00
9"

No
v"8
"20

09
"

No
v"2
2"2

00
9"

De
c"6
"20

09
"

De
c"2
0"2

00
9"

Re
la
Cv
e"
se
ar
ch
ab
ili
ty
"

B

0"

1"

2"

3"

4"

5"

6"

7"

8"

Ja
n"4

"20
09
"

Ja
n"1

8"2
00
9"

Fe
b"1

"20
09
"

Fe
b"1

5"2
00
9"

M
ar
"1"
20
09
"

M
ar
"15

"20
09
"

M
ar
"29

"20
09
"

Ap
r"1
2"2

00
9"

Ap
r"2
6"2

00
9"

M
ay
"10

"20
09
"

M
ay
"24

"20
09
"

Ju
n"7

"20
09
"

Ju
n"2

1"2
00
9"

Ju
l"5
"20

09
"

Ju
l"1
9"2

00
9"

Au
g"2
"20

09
"

Au
g"1
6"2

00
9"

Au
g"3
0"2

00
9"

Se
p"1

3"2
00
9"

Se
p"2

7"2
00
9"

Oc
t"1
1"2

00
9"

Oc
t"2
5"2

00
9"

No
v"8
"20

09
"

No
v"2
2"2

00
9"

De
c"6
"20

09
"

De
c"2
0"2

00
9"

Re
la
Cv
e"
se
ar
ch
ab
ili
ty
"

Figure 1.2: A: Google trends for the word “Smith?” in 2009. B: Google trends for the word
“zombies” in 2009, as a comparison. Note that searches for “Smith?” produced di↵erent results
than searches for “Smith.”

Since the tail of Figure 1.1 is nonzero, it appears that the original zombie
paper—or, specifically, its meme—may now have become endemic. This is fed
by a constant recruitment of susceptible individuals who have not heard of the
story because they were too young to be media savvy (or not born) at the time of
the original outbreak. For example, there was a 2013 outbreak in the (relatively
isolated) Canadian city of Kelowna, BC. The steady state prevalence will thus be
nonzero, if low. As Andrew Cartmel said in the introduction to this book, zombies
have invaded mathematics and appear to be here to stay.

1.1.2 The E↵ects of Media

The media influences individual behaviour, formation and implementation of public
policy and perception of risk [17]. Media reporting plays a key role in the perception,
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management and even creation of crisis [18]. Since media reports are retrievable and
because the messages are widely distributed, they gain authority as an intersubjec-
tive anchorage for personal recollection [19]. At times of crisis, non-state-controlled
media thrive, while state-controlled media are usually rewarded for creating an illus-
ion of normalcy [18]. Media exposure and attention partially mediate the e↵ects of
variables such as demographics and personal experience on risk judgments [20].

The original interpretation of media e↵ects in communication theory was a “hy-
podermic needle” or “magic bullet” theory of the mass media. Early communication
theorists [21, 22] imagined that a particular media message would be directly in-
jected into the minds of media spectators. This theory of media e↵ects, in which
the mass media has a direct and rapid influence on everyday understanding, has
been substantially revised. Contemporary media studies analyzes how media con-
sumers might only partially accept a particular media message [23], how the media
is shaped by dominant cultural norms [24, 25] and how media consumers resist
dominant media messages [26, 27].

The choice of which stories receive coverage, and to what degree that coverage
is emphasized, is a complex one, involving local, national and international con-
cerns, perceptions of relevance and cultural e↵ects embedded within the hierarchy
of reporting. The adage “if it bleeds, it leads” is a journalistic shorthand for raising
sensationalist stories (such as crime, accidents and disasters) to the top [28, 29]. A
political story that does not dominate the day’s news or fails to be the leading story
from the capital has a diminished chance of reaching the public farther afield [30].

Journalistic practice includes the role of gatekeepers, who make decisions about
which stories to cover, as well as which stories are worthy of the lead slot [31]. Access
to media is access to influence [32], with the mass media serving the economic, social
and political interests of the elite [33]. This involves persistent patterns of cognition,
interpretation and presentation of selection, emphasis and exclusion through which
symbol-handlers organize discourse [34]. For example, Canadian newspapers were
three times as likely to have climate change or global warming stories as American
ones [35]. Media coverage frequently conforms to cultural stereotypes involving
gender and race [31, 29].

A handful of mathematical models have described the impact of media coverage
on the transmission dynamics of infectious diseases. Cui et al. [36] showed that
when the media impact is su�ciently strong, their model exhibits multiple positive
equilibria. This poses a challenge to the prediction and control of the outbreaks of
infectious diseases. Liu et al. [17] examined the potential for multiple outbreaks
and sustained oscillations of emerging infectious diseases due to the psychological
impact from reported numbers of infectious and hospitalized individuals. Liu and
Cui [37] analyzed a compartment model that described the spread and control of an
infectious disease under the influence of media coverage. Li and Cui [38] incorpo-
rated constant and pulse vaccination in SIS epidemic models with media coverage.
Tchuenche et al. [39] examined the media impact on an influenza pandemic and
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showed that media overreactions could trigger a vaccinating panic and result in a
significantly worse outcome than would occur without the media.

To examine the question of what makes a story go viral, this chapter will use
the story of a mathematical model of zombies as a case study to determine the
constituent elements of a media sensation. Although a story going viral is not a
disease, it has the hallmarks of one and thus mathematical models for disease spread
can be adapted to account for a story which is ‘infecting’ a variety of media outlets.
The components of a media story (newsworthiness, durability, natural lifespan and
hooks) are identified, in order to examine which aspects are most conducive to
a story going viral and what the long-term outcome will be under a variety of
suboptimal scenarios.

And, naturally, should you be a reporter reading this fine volume and discover
that this meta-article on the spread of articles is itself so worthy of praise that
it needs to be reported at once (perhaps under the headline, “Academic writes
most egotistical article ever!!!”), then I welcome the chance to pen a future article
discussing the spread of articles that discuss how other articles spread that you in
turn can report on. If we do this right, we’ll be on the gravy train for life...

1.2 The Model

A story that’s currently running can be considered ‘infectious,’ in the sense that
other media outlets may pick it up and run their own version. Stories that have
recently run may also ‘infect’ susceptible media outlets, but this e↵ect will lessen
the more time passes. That is, unlike most diseases (with the possible exception
of zombies!), susceptible media outlets can be infected by those who have already
recovered from the infection. This is because journalists very often decide what to
write about based on what their competitors have recently written about: not just
what is hot right now, but what was recently hot.

Let S represent susceptible media, I represent media outlets that are currently
running the story and R represent media outlets that have run the story. We
define susceptible media to be those outlets (newspapers, television programs, radio
programs, etc.) that have not yet run the story, but that have the potential to at
some future time. Note that our active variables are media outlets, not news stories.

� measures how newsworthy the story is in the first place (based on the various
criteria by which media outlets decide how ‘interesting’ a story is), ↵ measures the
durability of the story (driven in part by how good the interview subject was once
the interview has run) and ⌫ measures how quickly the story becomes old (so 1/⌫
measures how long the story is news, or the story’s natural lifespan). To capture
the e↵ect of distance from the story, ↵ is time-dependent and eventually decreases
to zero. We also assume that � could be time-dependent, although without the
requirement that it necessarily approach zero.
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β(t) ν
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Figure 1.3: The model. Media outlets can be susceptible (S), can be currently running the story
(I) or have run the story (R). The measure of a story’s newsworthiness is �, the rate at which the
story becomes old is ⌫ (so that 1/⌫ is the story’s natural lifespan) and the story’s durability is ↵.

The model is given by

S0 = ��(t)SI � ↵(t)SR

I 0 = �(t)SI + ↵(t)SR � ⌫I

R0 = ⌫I.

Mass-action transmission is assumed, since stories are easily accessible, thanks to
the internet. The model is illustrated in Figure 1.3.

We say that a story goes viral if the infection rate initially rises, a classic
epidemic wave appears and a majority of susceptible media outlets are infected.

1.2.1 The Durability of a Media Story

One technique for examining the dynamics of a model is the use of nullclines. These
are places where one derivative is zero, but the others may not be (and usually
aren’t). In a two-dimensional phase plane representation, these would correspond
to any time the tangent is either horizontal (the y derivative is zero at that moment)
or vertical (the x derivative is zero at that moment). When the nullclines meet, we
have an equilibrium.

The following conditions on the durability ↵(t) were assumed.

1. ↵(0) = 0.

2. lim
t!1

↵(t) = 0.

3. ↵ is not uniformly zero.

If ↵ ⌘ 0, then the S-nullclines are S = 0 and I = 0. The I-nullclines are I = 0
and S = ⌫

�(t) . This suggests that, in the absence of a good interview subject, the

story’s peak would occur at S = ⌫
�(t) and then decrease until I = 0. See Figure 1.4.

A reasonable form for ↵(t) might be

↵(t) =

8

<

:

0 0 < t < t
0

↵̄ t
0

< t < tf
0 t > tf ,
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Figure 1.4: Nullclines and trajectories in the case ↵ = 0. Other parameters were � = 0.01, ⌫ = 1/7,
N = 20, S(0) = 19 and I(0) = 1. In this case, the story has an initial rise, but does not go viral,
since there is no significant epidemic wave.

where the interval [t
0

, tf ] is the time during which the interviewee provides added
value to the story. That is, when the story breaks, a good interviewee initially adds
no e↵ect. However, at time t

0

, the time of the first interview, the interviewee’s skills
are discovered. The interviewee remains a ‘hot property’ until time tf , after which
their interview skills are irrelevant. This is of course not the only form that such a
function can take, but it’s the example we’ll consider.

In this case, the story receives an extra boost, as media outlets that have already
run the story become infectious, since the interview subject has demonstrated a flair
for interviews. As a result, more outlets run the story and the peak number of stories
is higher. See Figure 1.5.
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Figure 1.5: Nullclines and trajectories in the case ↵ 6= 0. Here, ↵ = 0.1 for 3 < t < 6; otherwise,
↵ = 0. All other parameters are as in Figure 1.4. The dashed curve is the nullcline for ↵ 6= 0, which
only applies in the region S(tf ) < S(t) < S(t

0

). The line S = ⌫
�
is not a nullcline in this case, but

is included for comparison. Having an interview subject who is ‘hot’ can significantly increase the
number of media outlets that run the story. In this case, there is an initial rise and the majority
of susceptible outlets are infected, but the epidemic wave is not significant so the story does not
go viral.

1.2.2 The Newsworthiness of a Media Story

The following conditions on the newsworthiness �(t) were assumed.

1. �(0) > 0.

2. lim
t!1

�(t) = �̄ � 0.
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Unlike durability, newsworthiness starts at t = 0 (whereas ↵(t) = 0 for 0  t < t
0

),
so �(0) > 0. As we shall see, the form of � is less important as time varies, since
� is primarily a parameter that applies at the start of an epidemic. Thus �(t) = �̄
(i.e., � is constant) may be a reasonable form. This simply suggests that a story is
newsworthy if anyone is currently reporting it.

1.2.3 The Natural Lifespan of a Media Story

Our third parameter is ⌫, a measure of how quickly a story becomes old, which we
assume to be time-independent. The inverse, 1/⌫, measures the natural lifespan of
a story. This takes into account other news stories that may compete for a finite
number of susceptible media outlets. For example, a sports story that would have
been quite popular may have a significantly shorter lifespan if a tsunami has hit.

1.3 Analysis

1.3.1 Final Size Populations

One important concept in disease modelling is determining the final size of an
epidemic: the number of noninfected outlets who are left when the disease has
passed and the infection has done its damage.

First we demonstrate that solutions are bounded for large time. Define S1, I1
and R1 to be the final size populations of the susceptible, infected and removed
outlets, respectively.

Suppose t > tf . Then the model becomes

S0 = ��(t)SI

I 0 = �(t)SI � ⌫I

R0 = ⌫I.

Note that I = 0 is an equilibrium. Let ⌃ = S + I + R. Then ⌃0 = 0, so ⌃ is
constant. In particular, since R0 = ⌫I, it is important to establish that R cannot
blow up to infinity.

Next, notice that the R equation decouples from the system, so we can analyze
the two-dimensional system in S and I. Since S0  0, there are no limit cycles. If
S1 > 0, then I1 = 0 and hence R1 = ⌃ � S1 is finite.

Now consider the case when S1 = 0. In this case, every susceptible media
outlet has run the story. Suppose I(t) 6= 0 for any t. Then the second equation can
be divided by the first to derive

dI

dS
= �1 +

⌫

�(t)S
.
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Since we are interested in long-term dynamics, let �(t) = �̄. Then, integrating, we
have, for t large,

I(t) = I(0) + S(0) � S(t) +
⌫

�̄
ln

✓

S

S(0)

◆

I1 = I(0) + S(0) � S1 +
⌫

�̄
ln

✓

S1
S(0)

◆

.

Since S1 = 0, this implies that I1 = �1. However, since I(0) > 0, there must
exist a finite time ta such that I(ta) = 0, which is a contradiction. It follows
that the assumption that I(t) 6= 0 is incorrect and hence I1 = 0 (since I = 0
is an equilibrium).

Thus, whether all media outlets run the story or not, the eventual outcome is
that I reaches zero in finite time. Hence R cannot blow up.

1.3.2 Stability

Stability is an enormously useful concept in disease modelling (and beyond). If an
equilibrium is stable, it means that small perturbations away from that equilibrium
will return to it, or at least not stray far away. And equilibrium is unstable if
small perturbations move away from it. So if you’re sitting in a classroom with no
zombies, you’re at a disease-free equilibrium. If a single zombie enters the room
and starts an epidemic, then that equilibrium is unstable. If, however, you and
your classmates manage to hack the zombie to death before it infects anyone, then
congratulations: not only have you saved your fellow students from becoming the
living dead, you’ve also experienced a stable equilibrium.

Equilibria are of the form (S, I, R) = (Ŝ, 0, R̂). The Jacobian matrix is

J(S, I, R) =

2

4

��(t)I � ↵(t)R ��(t)S �↵(t)S
�(t)I + ↵(t)R �(t)S � ⌫ ↵(t)S

0 ⌫ 0

3

5 .

We are interested in the stability of the disease-free equilibrium, where pertur-
bations are applied at t = 0. Thus the Jacobian matrix is evaluated at ↵(0) = 0
and �(0). We thus have

det(J(Ŝ, 0, R̂) � �I) = det

2

4

�� ��(0)S 0
0 �(0)S � ⌫ � � 0
0 ⌫ ��

3

5

= �2(�(0)Ŝ � ⌫ � �) = 0.

It follows that equilibria with Ŝ > ⌫
�(0)

will be unstable. That is, stories that are

particularly newsworthy (high �(0)) or which have the potential to run for a long
time (low ⌫) have the potential to go viral, since this condition predicts an initial
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rise in infections, which is a necessary (but not su�cient) characteristic of the viral
spread of a story.

Stories with Ŝ > ⌫
�(0)

will have an initial rise in the number of infections,
although it remains to be seen whether they will display the classic infection wave
or whether a majority of susceptible media outlets can be infected. However, we
can conclude that stories with Ŝ < ⌫

�(0)

cannot go viral.
Note in particular that this threshold only depends on the initial value of �. We

could thus assume �(t) = �̄ (as we will in numerical simulations).

1.3.3 A Competing Story

Next, we examine the case where two stories may compete for the resource of
susceptible media outlets. Consider the example posed earlier, of a sports story
versus a tsunami. For simplicity, suppose ↵ = 0 since we are only interested in the
initial viral properties of the story.

The model thus becomes

S0 = ��
1

(t)SI
1

� �
2

(t)SI
2

I 0
1

= �
1

(t)SI
1

� ⌫
1

I
1

I
2

= �
2

(t)SI
2

� ⌫
2

I
2

.

The Jacobian is

J(S, I, R) =

2

4

��
1

(t)I � �
2

I ��
1

(t)S ��
2

(t)S
�

1

(t)I �
1

(t)S � ⌫
1

0
�

2

(t)I 0 �
2

(t)S � ⌫
2

3

5 .

At equilibrium, we have

J(Ŝ, 0, 0) =

2

4

0 ��
1

(0)Ŝ ��
2

(0)Ŝ
0 �

1

(0)Ŝ � ⌫
1

0
0 0 �

2

(0)Ŝ � ⌫
2

3

5 .

Thus eigenvalues are � = 0, �
1

(0)Ŝ�⌫
1

and �
2

(0)Ŝ�⌫
2

. The disease-free equilibrium
is unstable if max{�

1

(0)Ŝ � ⌫
1

, �
2

(0)Ŝ � ⌫
2

} > 0.
Suppose that, independently, both stories are equally newsworthy. That is, the

media is interested in each story. However, where they will di↵er is in their natural
lifespan. Thus we assume �

1

(0) = �
2

(0) = �̄ but ⌫
1

> ⌫
2

(so that Story 2, the
tsunami, has a longer natural lifespan). It follows that �̄Ŝ � ⌫

1

< �̄Ŝ � ⌫
2

.
In this case, if Ŝ > ⌫

2

/�̄ but Ŝ < ⌫
1

/�̄, then Story 2 can go viral, but Story 1
cannot. Thus Story 2 (the tsunami) would eat up the oxygen that might otherwise
allow Story 1 (the sports game) to go viral.
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1.4 The Power of a Right Hook

When a subsequent ‘hook’ appears (more information that makes the story more
appealing), the e↵ect is a near-instantaneous transformation in the number of sus-
ceptible media outlets: those that may not have thought the story newsworthy
before, and were thus impervious to infection, may suddenly decide the story is
newsworthy with the presence of the further hook. Alternatively, media outlets
that ran the original story now have a new story to run. This may happen a num-
ber of times throughout the life of a story.

Such near-instantaneous changes to the system can be described using impulsive
di↵erential equations. These are equations that allow a rapid change to be approx-
imated by an instantaneous one at certain impulse times. Applications include the
rapid infusion of drugs in the body after taking a pill [40], the e↵ect of spraying
pesticides [41] or a pulsed vaccination strategy [42]. The interested reader is referred
to [43, 44, 45, 46] for more details on the theory of impulsive di↵erential equations.

The model then becomes

S0 = ��(t)SI � ↵(t)SR t 6= tk

I 0 = �(t)SI + ↵(t)SR � ⌫I t 6= tk

R0 = ⌫I t 6= tk

�S = Sk t = tk,

where tk (k = 1, 2, . . . , n) are the times at which the hooks occur and Sk is the
strength of the kth hook. We assume there are only finitely many hooks. In
particular, note that we do not assume the tk’s are fixed, nor that each Sk is equal
for di↵erent k’s.

Although a hook may increase a story’s attractiveness, the net e↵ect is that the
initial conditions are reset. Since all trajectories are attracted to an equilibrium
with I = 0, the result is that the story will still once again begin to die out. How-
ever, a series of hooks may prolong the story’s lifespan and result in a significantly
larger number of media outlets covering it than would otherwise be the case. Com-
pare Figure 1.6 to Figure 1.7. Note that we chose fixed times for illustration, but
that this is not required. We also chose the first hook to be significantly stronger
than subsequent hooks.

1.5 Sample Scenarios

The model can now be used to examine a number of potential scenarios. News
stories do not occur in isolation; they exist in the context of other stories happening
at the same time, they have a degree of newsworthiness that media outlets deter-
mine and additional information may surface. While a combination of factors is
clearly favourable to the viral spread of a story, cases where one or more factor is
limited are examined.
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Figure 1.6: Behaviour of media outlets in the absence of a secondary hook. The story proceeds
through its natural cycle in an orderly fashion. A: The phase plane (a representation where time is
implicit) illustrating the tradeo↵ between media outlets that have run (or are currently running) the
story versus those that have not. B: The time course of the story through the media. Parameters
were as in Figure 1.4, except that S(0) = 100. This story does not go viral.

1. Non-newsworthy story, good interview subject

In this case, the story never gets o↵ the ground, regardless of the skills of
the interviewee. This illustrates the power of the media to shape the cultural
narrative, by determining what is or is not newsworthy. See Figure 1.8.

2. Slow news week

In this case, the story remains in the infectious class for significantly longer
than it otherwise would, allowing it to be sustained. The story can reap close
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Figure 1.7: Behaviour of media outlets in the presence of multiple hooks. The story can be kept
alive for significantly longer and be picked up by many more media outlets when successive hooks
revive interest. A: The phase plane illustrating the trade-o↵ between media outlets that have run
(or are currently running) the story versus those that have not. B: The time course of the story
through the media. Parameters were as in Figure 1.6, except that hooks of decreasing strength
were added at regular intervals. In this case, there is a classic epidemic wave (double-peaked due
to the impulses) and the majority of susceptible media outlets are infected, meaning that the story
has gone viral.

to its maximum potential, with almost all susceptible media outlets running
the story. See Figure 1.9.
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Figure 1.8: A good interviewee cannot compensate for a story not deemed newsworthy, resulting in
the story barely registering in the media. Parameters were as in Figure 1.5 except that � = 0.005.

3. Good topic, bad interview subject

If the the story has su�cient initial interest, then it can reap close to its
maximum potential, with almost all susceptible media outlets running the
story, even if it has no durability. See Figure 1.10.

4. Secondary hooks, bad interview subject

In this case, secondary hooks mean that a story on its way out can receive
new life. If a hook occurs early enough, this may result in a significant revival
of the story, even in the absence of any long-term durability. See Figure 1.11.

It follows that a story can reap its original potential if the topic is su�ciently
newsworthy or the story occurs during a slow news week. A good interview subject
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Figure 1.9: A slow news week can sustain a story, even in the absence of good interview subject.
Parameters were as in Figure 1.4 except that 1

⌫
was doubled.

can increase the power of a story. However, a series of secondary hooks, occur-
ring at discrete times, can significantly expand a story’s appeal beyond its original
potential. This is especially true if the hooks occur early in the story’s life.

1.6 Discussion

Just like zombies themselves, articles about zombies are the gifts that keep on giving:
every time you think they’re finally dead, they seem to come back to life.

Ultimately, the story of a mathematical model of zombies going viral was a
confluence of circumstances: a diverting topic that happened to occur in a slow news
week, which came with media-savvy interview subjects and had a major secondary
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Figure 1.10: A fascinating topic can overcome a poor or nonexistent interview subject. Parameters
were as in Figure 1.4 except that � was increased by 50%.

hook that occurred early in the story’s lifespan. Furthermore, since it was a fairly
self-contained phenomenon, it forms a useful case study for the e↵ects of media.

For a story to go viral, it needs to be newsworthy and needs to have a long
natural lifespan. Once a story is under way, a good interview subject can extend
the lifespan of a story. However, a series of further hooks that increase a story’s
appeal have the potential to breathe new life into the story by creating new outlets
for it to appear in. The e↵ect is particularly significant if such a hook appears
early in the news cycle. These hooks may occur randomly and may have di↵erent
strengths when they do occur.

As an example of a story that did not go viral, but was studied intensely, con-
sider Jensen’s 1977 account of the lack of focus on lead in the blood of children living
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Figure 1.11: A series of hooks can sustain the story beyond its original lifespan, even in the absence
of a good interview subject. However, hooks that occur early in the story’s lifespan can breathe
significant new life into the story, whereas those that occur late will not. Parameters were as in
Figure 1.4 except that two hooks were added. Note that, despite an initial rise and the majority of
susceptible media outlets being infected, there is no significant epidemic wave, despite the presence
of secondary hooks. Thus this story does not go viral.

near a lead and zinc smelter in Kellogg, Idaho [47]. This story was featured briefly
on national television, but thereafter had no national followup. A reporter for an
independent local newspaper, Cassandra Tate, followed the story for two years, writ-
ing 175 articles on the subject. However, the story never received much attention
beyond her direct employer, despite the presence of several hooks: the lead poison-
ing was not limited to Idaho and lead was later found in the newspaper-publishing
industry. Jensen concluded with a general summary he called Cassandra’s Law: the
odds against comprehensive coverage of an environmental story are high, and are
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increased by complexity, proximity and distance. These e↵ects are aggravated by
the more recent dominance of corporate media.

In the context of our model, this story was somewhat newsworthy to begin with,
but had no durability, further hooks failed to take hold and it was swamped by cov-
erage of Evel Knievel’s September 1974 motorcycle leap across Snake River Canyon,
which was covered by hundreds of reporters. Thus, although � was relatively high,
↵ was low (or zero), 1

⌫ was low and there were no substantial secondary hooks.

A major di↵erence that arises in this model, as compared to other epidemic
models, is a counterpoint to cross-immunity. Many diseases provide some immunity
to further infection, but in this model previous infection actually primes some media
outlets for secondary outbreaks. Thus ‘removed’ media outlets are still infectious.
However, since this form of infection decreases with time, the results are highly
dependent on the speed of the epidemic. That is, if a story isn’t going to go viral
immediately, then it is much harder for it to take o↵ later.

The model has several limitations, which should be acknowledged. Media ‘infect-
ion’ may focus more on an outlet’s specific competitors than general reports, mak-
ing the mass-action transmission factors less accurate. It would be instructive to
generalize the model to include more details about the factors that determine ‘news-
worthiness,’ in all its complication. Furthermore, the negative e↵ects of media were
not considered; if an interview subject was particularly o↵-putting, so that ↵̄ < 0,
then this could stop even a potentially fascinating story in its tracks.

Other e↵ects that could be considered include the e↵ects of uno�cial media, such
as blogs or Twitter (which were a factor in gaining initial attention in the zombie
story and then sustaining a ‘buzz’ for it throughout its intense phase). However,
while these may sustain a story that is under way, they do not, as yet, have the
sheer reach that o�cial media has and lack some of the factors that have been
identified here, such as an interview subject. Furthermore, the lifespan of stories in
these incarnations is significantly shorter, suggesting that stories would pass through
their natural life cycle at an accelerated rate in the absence of traditional media.

It should also be noted that the factors a↵ecting a story’s newsworthiness, dura-
bility and natural lifespan are culturally specific. Thus what makes a story news-
worthy in one media market may not in another. Media may also be limited in
some places by government restrictions, the need to sell ads, etc.

This media model was informed by the news story of the zombie model going
viral. Data from that story was used to inform and parameterize the media model
and also to compare this news story with other news stories that did not go viral.
Thus the zombie news story gives insights into how the media works, while also
quantifying several factors.

In summary, a story can go viral, but it needs a perfect storm of events to do
so. It must be deemed newsworthy in the first place and it needs room to breathe,
a good interview subject and at least one hook. Given an arbitrary topic, the only
factors external to the media itself that are potentially controllable are the skills of
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the interviewee (through media training) and perhaps the timed release of further
information that acts as a secondary hook. Otherwise, the viral nature of a story
is at the mercy of the randomness inherent in the media.
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B Glossary

Durability. The essence of a media story’s staying power, largely driven by how
fascinating and insightful the interview subject is. For anyone wishing to
interview me in greater, but entertaining, depth about this topic, I am eas-
ily contactable at rsmith43@uottawa.ca or by telephone after a quick google
search of my now-quickly-identifiable name.

Epidemic wave. A steep rise in infections that reaches a peak and then starts
to dissipate, eradicating the epidemic but leaving a trail of devastation and
horror in its wake. A bit similar to the emotions you’d feel if you walked in
on your parents in the act.

Equilibria. A state where all dynamic forces are balanced so that the net e↵ect is
no change in the system. A bit like being high, really.

Final size. The number of survivors of an epidemic. Finally, a mathematical def-
inition that sounds suitably zombie-like!

Hook. Further information that increases a story’s appeal, either to media outlets
that were not previously interested or that causes those that have already run
the story to run it again. They also use these things to catch fish, you know.

Impulsive di↵erential equations. A fairly new type of mathematical model that
contains continuous solutions punctuated by short, sharp shocks. These reset
the system so that it starts again at new initial conditions that are related to
the final conditions from the previous cycle. You know, before I was the first
person to apply this theory to infectious diseases, I used it to examine sewage
treatment for my Ph.D. That’s right, my thesis was shit.
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Infectious. A media outlet is infectious if it is currently running the viral story
and has the potential to infect other media outlets by virtue of its cutting-edge
insights, sheer depth of coverage and fascinating reporting. So Fox News is
quite safe, then.

Jacobian. Just about the most massively useful thing that mathematics has ever
invented. It combines multivariable calculus with linear algebra to create a
matrix of partial derivatives whose eigenvalues almost completely determine
the stability properties of an equilibrium. Okay, I realize this doesn’t tell you
what the Jacobian actually is, but some things defy a pithy one-paragraph
summary, you know.

Mass-action transmission. A form of infection modelling that assumes every
infected media outlet has equal chance of infecting every susceptible outlet.
Mass action means that your cohort has to be either small or very well con-
nected. So if you’re modelling a serious disease in Africa, you’d have to restrict
yourself to a small village where—Oh, I’m sorry, was I boring you? Oh look,
here are some imaginary zombies!

Media. The collective apparatus for reporting the news. Mainstream media consist
of newspapers, television, radio, etc., while other media include blogs, Twitter,
tumblr and so forth. Between the writing and publication of this article, six
entirely new media propagation vehicles have undoubtedly been invented.

Natural lifespan. The length of time that a story remains newsworthy, in the
absence of further disturbances. Thus the inverse of this parameter is the rate
at which a story becomes old. See also: Grandpa, and the precise point at
which he stopped being sexy.

Newsworthiness. That mystical and capricious property that assigns some media
stories value over others, seemingly at random, to the complete ba✏ement of
anyone who has ever thought about it. Rupert Murdoch, you have a lot to
answer for.

Nullcline. The place where just one variable is constant, although the others can
usually change. Why my first-year calculus class can never grasp this simple
concept, I’ll never know.

Perturbations. Small changes to a system that might destabilize it. Either that
or kinky sexual practices, I forget which.

Removed. A media outlet is removed/recovered if it has already run the story
but may be capable of still infecting susceptible outlets. Any resemblance to
zombies is purely coincidental.
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Slow news week. Those rare times when nothing is taking the editor-in-chief’s
fancy. There you are, in the whiskey-filled back room, chain-smoking your
way through packs of cigarettes, while the typewriters lie idle and your fedora
with the word “press” stuck in it hangs sullenly on the hatstand. I think you
know what I’m talking about.

Stable. A place where you keep a horse. No, wait, that’s not right. It’s when
small perturbations away from an equilibrium return you to that equilibrium.
Nothing to do with horses. Except for that one type of equilibrium that’s
called a saddle. But that type of equilibrium is never stable, so I really don’t
know why I brought it up.

Susceptible. A media outlet is susceptible if it is not infected but has the poten-
tial to be at some point in the future, regardless of whether that eventually
happens. Also, one that is prone to jumping on the bandwagon of whatever
the cool kids are doing. I’d tell you to see CNN, but I’m not that cruel.

Threshold. A definitive line between one thing and another. Not just the airy-
fairy sense that today you’re in the mood for wa✏es when yesterday you liked
pancakes, but a real, honest-to-goodness change, like losing an arm and not
being able to play the guitar any more. Don’t mix these things up, because
mathematicians take them very seriously indeed. Indeed, somebody once took
something that wasn’t a threshold and called it “the reinfection threshold.”
Much merriment was had in academia as a result.

Viral. A media story is viral if it is able to expand its reach significantly, with a
virtual explosion of reports across multiple media outlets and types. Unless
it uses a condom, of course.

Zombies. Hideous inhuman creatures who exist in a state of half-existence, sham-
bling from location to location with outstretched hands and moaning audible
pain, despite not feeling any. Or do I mean politicians?
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