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Preparation
Your academic talk is the showcase of 
your work
People are more likely to be exposed to 
your talk than to read your paper
It also showcases your professionalism
- your reputation will matter in the 

future
Think of it as the big-budget movie version 
of your paper
- educate, enlighten and entertain.



Creation
Do not create your talk at the last minute
NEVER make it during the conference
- it’s rude
- pay attention to other talks as you 

would want others to pay attention to 
yours

- you will also not know the timing or if 
some constructions don’t work.



Spacing
Do not clutter your slides
- do not use fancy colours or backgrounds
- simpler is better
If you have too much to say on a page, 
make it two pages
Keep points crisp and short
- no bullet should be more than three lines
Pictures, pictures, pictures
- avoid “reading out” as much as possible.



Biological introduction
Be sure to start with something accessible
Spend time on the biology
- a lot of time
Explain the background and issues
- what is the disease?
- what intervention are you considering?
- what are the complications?
A non-math expert should still understand 
what problem you are trying to solve.



The Model
Introduce the model with a flow diagram
Explain everything visually
Then write down the equations
All parameters should be explained on 
every page
State assumptions clearly
The model is the major thing you are 
creating
- it needs to be set up carefully.



Analysis
Only write down the key results
Generally, don’t include the details
- unless you need them elsewhere in the 

talk
Pictures whenever possible
Use LaTeXiT to import equations
- beware of copy and paste signifiers.



Numerical simulations
Your pictures tell the story
You want a narrative
Label everything clearly
You can use the slide transition to convey 
information
Use colour
Summarise key results in words.



Summary

Be concise
Identify what we have learned that we 
didn’t know
List your limitations
Don’t introduce new results
No equations here, only words.



Conclusion
One page only
- What did we study?
- Why?
- What did we learn?
- What are the recommendations?
The audience will see many talks and 
remember very little
You only get to have a few takeaways
- make them count.



Final page
Include a reference to your paper
Collaborators can be thanked verbally
Include a link to your website with all your 
publications as free pdfs
- you have the right to host your work
- should be accessible to people in 

developing countries
The more easily people can find your work, 
the more they’re likely to read it
- and cite it.



Worked example
RSV vaccination talk
Built from the paper
But focused on being a talk
The talk is visually rich and not 
exhaustive
- if they wanted to read the paper, they 

would
Key points highlighted

(not every slide is included).



Respiratory Syncytial Virus (RSV)

• The main cause of acute 
lower respiratory infections in 
adults and young children

• Almost all children have 
been infected by age 2

• About 0.5–2% of infants 
require hospitalisation 
due to infection

• In 2005, 33.8 million new 
episodes of RSV occurred in 
children under 5 worldwide.

Etiology of acute 
respiratory infections in 

children.

Animation keeps 

the audience awake

A period shows my 

last slide on each page.



Symptoms
• Mild symptoms:

– cough
– runny nose
– sore throat
– earache
– fever

• Major symptoms:
– difficulty 

breathing
– blue skin due to 

lack of oxygen
– bronchiolitis
– pneumonia.

Pictures add 
flavour...

...but they 
shouldn’t distract.

Express information 
consisely



Burden of RSV

• Highest number of observed cases occurs in 
children aged six weeks to six months

• Morbidity occurs in <0.1% of cases
• Immunity is short-lasting
• Reinfection is common
• Hospitalisation costs are substantial
• Infection can occur throughout adult life

– often a cause of mortality in the elderly
• RSV is a significant economic and 

healthcare system burden.

Sub-points add extra 

info, break up the text.



Seasonal patterns

• In temperate climates, RSV epidemics 
exhibit consistent seasonal patterns

• Most infections occur during winter 
months, whether wet or dry

• Outbreaks typically last 2–5 months
• In tropical climates, RSV is detected 

throughout the year, with less 
pronounced seasonal peaks

• The onset of RSV is typically 
associated with the rainy season.

Seasonality informs 
the model.



Prophylaxis

• Immunoprophylaxis with the monoclonal 
antibody Palivizumab has proven effective in 
reducing the severity of symptoms

• However, it cannot prevent the onset of 
infection
– very expensive 
– $1416.48 for a 100mg vial
– generally only administered to 

high-risk children.

Treatment exists but is 

not a viable option.



Vaccination

• Recent research has focused on the 
development of particle-based, subunit and 
vectored vaccines

• Several such vaccines are 
being evaluated in clinical trials

• Other vaccines are in 
pre-clinical development

• Live attenuated vaccines are 
also undergoing Phase I trials.

Vaccination is most 
promising.



Model 1
• We extend an existing RSV model for a single 

age cohort to include vaccination
• We first assume a fixed proportion of 

individuals entering the model are 
temporarily immune to infection

• This reflects the situation where pregnant 
women are vaccinated in their third trimester

• Protective maternal antibodies are transferred 
placentally to the unborn infant

• This confers protection for the first few 
months of life.

Model assumptions.
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• The basic model with vaccination is

with β(t)= β0(1+β1cos(2πt+φ))
and βV(t)=(1-α)β(t)
(α may possibly be negative).

The continuous model

S0 = µ(1� ✏p)� µS � �(t)S(I + IV ) + �R+ !V

I 0 = �(t)S(I + IV )� ⌫I � µI + !IV

R0 = ⌫I � µR� �R+ !RV

V 0 = ✏pµ� µV � �V (t)V (I + IV ) + �V RV � !V

I 0V = �V (t)V (I + IV )� ⌫V IV � µIV � !IV

R0
V = ⌫V IV � µRV � �V RV � !RV ,

S=susceptible I,IV=infected 
R,RV=recovered V=vaccinated 
µ=background death ε=efficacy 
p=coverage ω=waning 
β,βV=transmissibility 
ν,νV=recovery γ,γV=loss of 
immunity 

Indicat
es an

other 

model to
 come

Parameters are 

footnoted every time.



Key assumptions

• We assume 
– the leaving rate is unchanged across all classes
– no disease-specific death
– entry and leaving rates are scaled so 

the population is constant
– transmissibility 

oscillates seasonally.

Ethically,
 we need to 

state
 the assu

mptions.



Constant transmission

• There is a DFE satisfying

• We can prove that this equilibrium is stable if

has roots with negative real part, where

(S̄, Ī, R̄, V̄ , ĪV , R̄V ) =

✓
(1� ✏p)µ+ !

µ+ !
, 0, 0,

✏pµ

µ+ !
, 0, 0

◆

�2 + b1�+ c1 = 0

b1 = ��S̄ + µ+ ⌫ � �V V̄ + ⌫V + µ+ !

c1 = (�S̄ � µ� ⌫)(�V V̄ � ⌫V � µ� !)� �V V̄ (�S̄ + !)

= �S̄(�⌫V � µ� !)� (µ+ ⌫)(�V V̄ � ⌫V � µ� !)� �V V̄ !.

S=susceptible I=infected R=recovered 
V=vaccinated susceptible 
IV=vaccinated infected RV=vaccinated 
recovered µ=background death 
ε=efficacy p=coverage ω=waning

Results are stated, 
details omitted

Audience won’t remember 

definitions from earlier pages.
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Introduces the key 
point visually.



Basic reproduction number

• Rearranging the constant term leads to

• If c1=0 and b1>0, then we have a bifurcation 
with the property that the DFE is stable if 
R0<1 and unstable if R0>1 
(as desired)

• However, it possible that when c1=0, b1<0
• In this case, R0 is not a threshold, and the 

disease can persist if R0<1.

R0 =
�S̄(⌫V + µ+ !) + �V V̄ (µ+ ⌫ + !)

(µ+ ⌫)(µ+ ⌫V + !)

S=susceptible V=vaccinated 
µ=background death ω=waning 
β,βV=transmissibility 
ν,νV=recovery

Standard result, to 
contrast with...

...non-standard result.



Positive vertex

• When c1=0, we have

• Note that if 𝜈=𝜈V (i.e., vaccination does not 
affect recovery) then b1>0

• However, we expect that vaccinated 
individuals will recover faster than 
unvaccinated individuals

• Thus 𝜈V>𝜈
• It follows that b1 could be negative.

b1

����
c1=0

=
1

⌫V + µ+ !

⇥
�V V̄ (⌫ � ⌫V ) + (⌫V + µ+ !)2

⇤

V=vaccinated b1=vertex 
c1=intercept 
µ=background death 
ω=waning 
βV=transmissibility 
ν,νV=recovery

Details included only 

for original material

Not for th
eir own 

sake
; we will use this.



• If 𝜈V→∞, this is equivalent to vaccinated 
individuals recovering instantaneously

• In this case,

• Defining

we have f(𝜈)>0 and f(∞)>0
• Does f have a local minimum?
• If so, could it be negative?

lim
⌫V !1

b1 = lim
⌫V !1

�V V̄ (⌫ � ⌫V )

! + µ+ ⌫V
+ ! + µ+ ⌫V

= ��V V̄ +1 > 0

A possible turning point?

f(⌫V ) =
�V V̄ (⌫ � ⌫V ) + (! + µ+ ⌫V )2

! + µ+ ⌫V
,

V=vaccinated b1=vertex  
µ=background death 
ω=waning 
βV=transmissibility 
ν,νV=recovery

The issue boils 
down to this.

Shows that the result 

doesn’t always happen



Potential form of f(𝜈V)

f(νV)

νV* νV→ ∞νV=ν

• We can prove that the turning point is a local 
minimum whenever it exists.

f=vertex
v,νV=recovery

Illustration of 
key issue

What we know.



Regular vaccinations
• We now refine the continuous model
• Vaccination may not occur before birth
• It may also be administered at regular times

– eg in schools or daycare centres
• We model a vaccine that 

reduces the susceptible 
population by a fixed 
proportion r

• This is described by a 
series of non-autonomous impulsive 
differential equations. r=coverage

Switch to 
second model.



The impulsive model
S0 = µ� µS � �(t)S(I + IV ) + �R+ !V t 6= tk

I 0 = �(t)S(I + IV )� ⌫I � µI + !IV t 6= tk

R0 = ⌫I � µR� �R+ !RV t 6= tk

V 0 = �µV � �V (t)V (I + IV ) + �V RV � !V t 6= tk

I 0V = �V V (I + IV )� ⌫V IV � µIV � !IV t 6= tk

R0
V = ⌫V IV � µRV � �V RV � !RV t 6= tk

�S = �rS t = tk

�V = rS t = tk,

S=susceptible I,IV=infected 
R,RV=recovered V=vaccinated 
µ=background death ω=waning 
β,βV=transmissibility 
ν,νV=recovery γ,γV=loss of 
immunity 

where r is the coverage
and tk are the vaccination times.

Fundamentally different 

kind of model.



Susceptible individuals

• Assuming transmission is constant, we can 
prove that solutions are bounded below by a 
stable impulsive periodic orbit with endpoints

• These correspond to the local maximum and 
minimum values for the unvaccinated 
susceptibles after a long time

• Note in particular that 

S�
1 =

µ
�
1� e�(µ+�)⌧

�

(µ+ �)
�
1� (1� r)e�(µ+�)⌧

�

S+
1 =

µ(1� r)
�
1� e�(µ+�)⌧

�

(µ+ �)
�
1� (1� r)e�(µ+�)⌧

�

lim
⌧!0

S�
1 = 0.

S=susceptible µ=background 
death β=transmissibility 
r=coverage τ=period

Outline of proof, 
results only.



Infected individuals

• Assuming infected vaccinated individuals 
are negligible, we can prove that

• We thus define a new quantity, the impulsive 
reproduction number

which has the condition that the disease will 
be controlled if T0<1.

I 0 
�µ

�
1� e�(µ+�)⌧

�

(µ+ �)
�
1� (1� r)e�(µ+�)⌧

�I � ⌫I � µI

T0 =
�µ

�
1� e�(µ+�)⌧

�

(⌫ + µ)(µ+ �)
�
1� (1� r)e�(µ+�)⌧

� ,

I=infected µ=background death 
β=transmissibility ν=recovery 
r=coverage τ=period

Defining a useful new 
concept.



• From the condition T0=1, we can define the 
maximal period as

• This is defined only if

• We can show that T0 is decreasing as r 
increases, for r<r*
– the disease can then be controlled if 

• For r>r*, T0<1 and the disease 
is always controlled.

⌧ < ⌧̂

Impulsive reproduction number

⌧̂ =
1

µ+ �
ln

(1� r)(⌫ + µ)(µ+ �)� �µ

(⌫ + µ)(µ+ �)� �µ

r < r⇤ ⌘ 1� �µ

(⌫ + µ)(µ+ �)

T0=impulsive reproduction # 
µ=background death 
β=transmissibility ν=recovery 
r=coverage τ=period

Determining optimal 
period

Second case.



Summary of theoretical results

• High coverage can thus control the disease
• If coverage is limited, then sufficiently 

frequent vaccinations can also achieve 
control

• Note that the 
impulsive 
reproduction 
number is 
conditional.

Summarise math results 

in practical terms.



µ=1/70, ω=0.1, b0=60, b1=0.16, φ=0.15, 
βV=0.5β, 𝜈=36, 𝜈V=1.2𝜈, 𝛾=1.8, 𝛾V=0.8𝛾, 
r=0.

Impulsive model, no vaccine
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µ=background death ω=waning 
b0=average transmissibility 
b1=seasonal amplitude φ=phase 
βV=transmissibility ν,νV=recovery 
γ,γV=loss of immunity, r=coverage 

Illustrate key results 

with pictures.
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Impulsive model, 10% vaccination

µ=1/70, ω=0.1, b0=60, b1=0.16, φ=0.15, 
βV=0.5β, 𝜈=36, 𝜈V=1.2𝜈, 𝛾=1.8, 𝛾V=0.8𝛾, 
r=0.1. µ=background death ω=waning 

b0=average transmissibility 
b1=seasonal amplitude φ=phase 
βV=transmissibility ν,νV=recovery 
γ,γV=loss of immunity, r=coverage 

The slide transition 

helps make the point.
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Impulsive model, 25% vaccination

µ=1/70, ω=0.1, b0=60, b1=0.16, φ=0.15, 
βV=0.5β, 𝜈=36, 𝜈V=1.2𝜈, 𝛾=1.8, 𝛾V=0.8𝛾, 
r=0.25. µ=background death ω=waning 

b0=average transmissibility 
b1=seasonal amplitude φ=phase 
βV=transmissibility ν,νV=recovery 
γ,γV=loss of immunity, r=coverage 

Final transition shows 
eradication.
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• 10% vaccination
• Note the low-level oscillations in both 

infected classes.

Colour is helpful

Label figures cl
early

.



Extreme parameters, no vaccine

µ=1/70, ω=0.1, β=0.03, βV=300, 𝜈=36, 𝜈V=177, 
𝛾=1.8, 𝛾V=0.8𝛾, r=0.
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µ=background death ω=waning 
b0=average transmissibility 
b1=seasonal amplitude φ=phase 
βV=transmissibility ν,νV=recovery 
γ,γV=loss of immunity, r=coverage 

Setup for an 
interesting case.
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Extreme parameters, 100% vaccination

µ=1/70, ω=0.1, β=0.03, βV=300, 𝜈=36, 𝜈V=177, 
𝛾=1.8, 𝛾V=0.8𝛾, r=1.

µ=background death ω=waning 
b0=average transmissibility 
b1=seasonal amplitude φ=phase 
βV=transmissibility ν,νV=recovery 
γ,γV=loss of immunity, r=coverage 

Transition shows 

unexpected results.



Unexpected infection spikes

• We used extreme vaccination parameters
• Transmission due to vaccinated individuals 

was extremely high
• But recovery was fast
• This allowed low-level 

infection spikes to 
occur in infected 
populations

• Note that this is not a backward bifurcation
• Rather, it is a destabilisation of the DFE.

Eliminate conclusion 

most people will make.



Summary

• We considered two forms of vaccination:
– single administration before infection 

• e.g., a maternal vaccine
– periodic vaccination

• Using impulsive differential equations, we 
were able to formulate 
conditions on the 
period and strength of 
vaccination to allow 
for disease control.

Summary is concise.



Impulsive reproduction number

• We also defined a new quantity, the 
impulsive reproduction number T0

• This is a sufficient (but not 
necessary) condition that 
ensures eradication if T0<1

• In this case, the infected population is 
contracting within each impulsive cycle

• The result is eventual eradication of the 
infection.

T0=impulsive reproduction number

Highlights the 
new quantity.



Infection spikes

• The infection spikes occur when vaccine-
induced transmission is extremely high but 
recovery is extremely fast

• They occur even when the transmission 
function is not oscillating

• They are unlikely to occur in reality 
with the parameters we chose

• Nevertheless, we have shown 
proof-of-concept that such 
an outcome is possible.

Notes the unexpected 

numerical result.



Limitations

We assumed: 
• The time to administer the vaccine was 

significantly shorter than the time between 
vaccinations

• A well-mixed population
• A single age cohort
• A population of fixed size
• Constant birth and death
• Maternal vaccination in the first model.

Always l
ist y

our 

limitatio
ns.



Conclusions

• A vaccine that targets RSV infection has the 
potential to significantly reduce the overall 
prevalence of the disease

• Long-term, periodic vaccination can 
theoretically control the disease, but 
coverage needs to be high or administration 
sufficiently frequent

• Extreme parameters have the potential to 
induce unexpected infection spikes

• Care should be taken to understand long-
term effects when introducing new vaccines.

Only o
ne p

age
 for th

e 

conclu
sio

n.

What does this mean 

for the real world?

One audience 
takeaway

Reminder of what we 
studied

Second audience 
takeaway



Key reference
• R.J. Smith?, A.B. Hogan, G.N. Mercer Unexpected 

infection spikes in a model of Respiratory Syncytial Virus 
vaccination (Vaccines, 2017, 5:12).

http://mysite.science.uottawa.ca/rsmith43

Have
 a 

web
site

 w
he

re 
pe

ople
 

can
 fin

d y
ou a

nd
 yo

ur 
work.

Acknowledge 

collaborators verbally

http://www.mathstat.uottawa.ca/~rsmith
http://www.mathstat.uottawa.ca/~rsmith


Summary
You should be telling a story
It should have a beginning, middle and end
Make it appealling to an audience who 
will be both reading and listening
- needs to work on both levels
- they should not be the same
- try not to “read out” your slides
Talks should have pizzazz.



Practice, practice, practice
Practice every talk three times
- once for saying the words
- once for timing
- once for a polish
The talk is the major way you will get 
other people interested in your work
It needs to be deep, dramatic and digestible
Do not go over time
- leave time for questions.



The take-home message
If you’re junior, bring hard copies of your papers 
to hand out to interested parties
- people are more likely to read a hard copy at 

a conference or on the train
This is your moment in the sun
Don’t waste it through poor preparation
The audience will take away 1–2 points from 
your talk, no more
- make sure they’re the points you want them 

to remember.



Final page
People will be looking at this page  a lot
- far longer than any other in your talk
Make sure they have something to look at.

mysite.science.uottawa.ca/rsmith43/TalkGiving.pdf


