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Interventions such as vaccinations, treatment et cetera are usually the gold standard of disease control, as mea-
sured by reducing the reproduction number below unity. However, in practice, few diseases are reduced below
this eradication threshold and instead persist despite active intervention campaigns. We propose an epidemic
model of rabies with a saturated incidence rate that represents “soft” interventions such as public-awareness
campaigns, animal curfews, fences etc. We prove local and global stability results based on the reproduction
number. However, numerical simulations suggest that eradication is unlikely to occur using current practices.

We thus investigate the effect of altering the saturated incidence term using “soft” interventions and show that
near-eradication can be achieved even when the reproduction number exceeds unity. Soft interventions such as
public-awareness campaigns, reducing contacts, animal curfews and fences can have a greater effect on eradi-
cating rabies than current vaccination programs.

1. Introduction

Disease modelling usually focuses on “hard” interventions, such as
vaccines, drugs, insecticide spraying, etc. Mathematical models often
pay less attention to “soft” interventions, such as public-awareness cam-
paigns, education, health promotion etc. Generally, this is because the
former are easier to quantify [1]. However, the latter are also a key plank
of disease management [2]. Recent epidemics such as Ebola in West
Africa and COVID-19 have reinforced the importance of developing
infectious-disease models that better integrate social and behavioural
dynamics and theories [3]. Here we use modelling to compare the ef-
fects of vaccination with “soft” interventions for rabies virus (RABV) in
dogs and humans.

Rabies

For nearly 4000 years, the rabies virus has been one of the most im-
portant global health threats [4,5], as it is an ancient deadly infectious
disease that affects both canines and humans once symptoms develop
[4,5]. It is one of the lethal zoonotic illnesses caused by a neurotropic
virus of the genus lyssavirus, which belongs to the Rhabdoviridae family
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[4-8]. It is also one of the vaccine-preventable viral infections that af-
fect both warm-blooded animals and humans [9]. RABV is transmitted
to a susceptible host mainly via the bite of an infected host, due to viral-
loaded saliva or scratches [4,7-9]. Most rabies cases in humans and dogs
have an incubation period of 20 days to 3 months; however, it can range
from less than a week to over a year. This variation depends on the in-
vidual’s age, the location of exposure in relation to brain, intensity of ex-
posure and the species of the animal involved [9,10]. During this period,
it infects the host’s central nervous system and causes gradual and lethal
inflammation of the brain and spinal cord (encephalomyelitis) [4,7,9].
The inflammation will eventually lead to seizures, respiratory and cir-
culating failure, paralysis or coma, personality changes and death. Signs
of apprehension or nervousness, irritability, sudden anorexia, hyperex-
citability and aggressiveness are practically certain if the disease is not
treated immediately [9,11,12]. Only 14 people have been documented
to have survived rabies after symptoms appear [13].

A vast spectrum of mammals functions as reservoirs or carriers for
RABYV, including dogs, cats, coyotes, gray foxes, raccoons, skunks and
bats [14-17]. Dogs are the primary reservoir for more than 90 % of
rabies infections in the human population, mostly in Africa and Asia
[5-9]. Despite the fact that rabies is preventable, thanks to effective
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\begin {align*}\frac {d}{d t}\left [V e^{\left (\mu +\omega +\gamma \right ) t}\right ] & \le \frac {\Lambda \gamma }{\mu } e^{\left (\mu +\omega +\gamma \right ) t} \\ V(t) e^{\left (\mu +\omega +\gamma \right ) t} &\le V (0) + \cfrac {\Lambda \gamma }{\mu \left (\mu +\omega +\gamma \right )} \left [e^{\left (\mu +\omega +\gamma \right ) t}-1\right ]\\ V(t)&\le V_{0}+V(0) e^{-\left (\mu +\omega +\gamma \right ) t}, \quad \text {where} \quad V_{0}= \cfrac {\Lambda \gamma }{\mu \left (\mu +\omega +\gamma \right )}.\end {align*}


$\varepsilon _2=\frac {(\mu +\gamma ) \varepsilon _3}{\omega }$


$\varepsilon _2>0$


$t_3>0$


$V \le V_0+\varepsilon _2$


$t>t_3$


$\forall t>t_3$


\begin {align}\label {3.21} \frac {d S}{d t} & =\Lambda +\omega V-\frac {\beta S I_d}{1+\alpha I_d}-(\mu +\gamma ) S\nonumber \\ & \le \Lambda +\omega \left (V_0+\varepsilon _2\right )-(\mu +\gamma ) S,\end {align}


$V\le V_0+\varepsilon _2$


\begin {align*}\frac {d}{d t}\left [S e^{(\mu +\gamma ) t}\right ] &\leqslant \left [\Lambda +\omega \left (\frac {\Lambda }{\mu }-S_0\right )+\omega \varepsilon _2\right ] e^{(\mu +\gamma ) t}, \quad \text {where}\\ S_0&=\frac {\Lambda (\mu +\omega )}{\mu (\mu +\omega +\gamma )} \\ S(t) e^{(\mu +\gamma ) t} &\leqslant S(0)+\frac {\Lambda (\mu +\omega )-\mu \omega S_0+\mu \omega \varepsilon _2}{\mu (\mu +\gamma )}\left [e^{(\mu +\gamma ) t}-1\right ] \\ S(t) &\leqslant S_0+\frac {\omega \varepsilon _2}{\mu +\gamma }+S(0) e^{-(\mu +\gamma ) t}.\\\end {align*}


$\varepsilon _3=\frac {\omega \varepsilon _2}{\mu +\gamma }$


$\varepsilon _3>0$


$t_4>0$


$S \leqslant S_0+\varepsilon _3$


$t>t_4>t_3$


$E, I \rightarrow 0$


$t \rightarrow \infty $


$I_d \rightarrow 0$


$t \rightarrow \infty $


$V \rightarrow V_0$


$S \rightarrow S_0$


$t \rightarrow \infty $


$E_1$


$R_0<1$


$\eta _d \leqslant \gamma _d$


$\eta \leqslant \gamma $


$E_*$


$\tilde {\Omega }$


$\Omega $


$E_* \in \tilde {\Omega }$


$R_0 >1$


$x \mapsto f(x) \in \mathbb {R}^{n}$


$C^1$


$x$


$D \subset \mathbb {R}^{n}$


$x^*$


$x_0$


$x(t,x_0)$


$x(0,x_0)=x_0$


$D$


$\tilde {D} \subset D$


$x^*$


$D$


$P(x)$


$\binom {n}{2} \times \binom {n}{2}$


$C^1$


$D$


$P^{-1}(x)$


$\tilde {D} \subset D$


$\tilde {\sigma }(B)$


$B$


$\|\cdot \|$


$\mathbb {R}^{\binom {n}{2}}$


\begin {equation*}\tilde {\sigma }(B) = \lim _{h \to 0^+} \frac {\|I + hB\| - 1}{h},\end {equation*}


$I$


$B$


\begin {equation*}B = P_f P^{-1} + P J^{[2]} P^{-1}.\end {equation*}


$P_f$


$P$


$f$


$J^{[2]}$


$J(x)$


$I + hB$


$h \to 0^+$


$q$


\begin {equation*}q = \lim _{t \to \infty } \sup _{x_0 \in \tilde {D}} \frac {1}{t} \int _0^t \tilde {\sigma }(B(x(0, x_0))) \, d\theta ,\end {equation*}


$x(0, x_0)$


$x_0$


$B$


$C^1$


$f$


$x^*$


$D$


$E_*$


$R_0 > 1, \quad \sigma _d +\eta _d \ge \gamma _d , \quad \sigma +\eta \ge \gamma , \quad $


$\gamma _d > \max \Bigg \{\cfrac {\Lambda _d \beta _d}{\mu _d} - \left ( 2\mu _d+\sigma _d+\eta _d \right ) , \quad \sigma _d - (2\mu _d+\xi _d+\omega _d) \Bigg \} \quad \text {and} \quad \gamma >\max \Bigg \{-(2 \mu +\sigma +\eta ),\quad \sigma -(2 \mu +\xi +\omega ) \Bigg \}.$


$\Omega =\Bigg \{(S_d,E_d,V_d,I_d,S,E,V,I) \in \mathbb {R}_+^8| \quad 0 < S_d + E_d + V_d + I_d\le \cfrac {\Lambda _d}{\mu _d}$


$0 < S + E + V+ I \le \cfrac {\Lambda }{\mu }\Bigg \}$


$\mathbb {R}_+^{8}$


$E_*$


$\tilde {\Omega },$


$\Omega $


$R_0 >1$


$E_1$


$R_0>1$


$\Omega $


$\tilde {\Omega }$


$\Omega $


$S_d + E_d + V_d + I_d \rightarrow \cfrac {\Lambda _d}{\mu _d}$


$t \rightarrow \infty $


\begin {align}\label {3.24} S'_d(t)&=\Lambda _d(1-\nu _d)+ \omega _d \left (\cfrac {\Lambda _d}{\mu _d} - S_d - E_d - I_d \right ) - \cfrac {\beta _d S_d I_d}{1+\alpha I_d}- (\mu _d+\gamma _d) S_d , \nonumber \\ E'_d(t)&=\cfrac {\beta _d S_d I_d}{1+\alpha I_d}-(\sigma _d+\eta _d+\mu _d) E_d,\nonumber \\ I'_d(t)&=\sigma _d E_d - (\mu _d+\xi _d)I_d.\end {align}


\begin {equation*}\fontsize {7}{9}\selectfont {\hat {J}= \begin {bmatrix} -\left (\cfrac {\beta _d I_d}{1+\alpha I_d} +\mu _d +\gamma _d+ \omega _d \right ) & -\omega _d & - \left (\cfrac {\beta _d S_d}{(1+\alpha I_d)^2} +\omega _d\right ) \\ \cfrac {\beta _d I_d}{1+\alpha I_d} & - \left (\sigma _d + \eta _d + \mu _d \right )& \cfrac {\beta _d S_d}{(1+\alpha I_d)^2} \\ 0 & \sigma _d & - \left (\mu _d+\xi _d \right ) \end {bmatrix},}\end {equation*}


\begin {equation*}\hat {J}^{[2]}= \begin {bmatrix} \hat {J}_{11}+\hat {J}_{22} & \hat {J}_{23} & - \hat {J}_{13} \\ \hat {J}_{32} & \hat {J}_{11}+\hat {J}_{33} & \hat {J}_{12} \\ - \hat {J}_{31}& \hat {J}_{21} & \hat {J}_{22}+\hat {J}_{33} \end {bmatrix},\end {equation*}


\begin {align*}\hat {J}_{11}+\hat {J}_{22}& = -\left [ \cfrac {\beta _d I_d}{1+\alpha I_d} + (\mu _d +\gamma _d+ \omega _d)+ \left (\sigma _d + \eta _d + \mu _d \right ) \right ] ,\\ \hat {J}_{23}& = \cfrac {\beta _d S_d}{(1+\alpha I_d)^2},\\ - \hat {J}_{13}&= \cfrac {\beta _d S_d}{(1+\alpha I_d)^2} +\omega _d , \hat {J}_{32} = \sigma _d, \\ \hat {J}_{11}+\hat {J}_{33}&= -\left [ \cfrac {\beta _d I_d}{1+\alpha I_d} + (\mu _d +\gamma _d+ \omega _d)+ \left ( \mu _d +\xi _d\right ) \right ], \hat {J}_{12}= - \omega _d\\ - \hat {J}_{31}&=0 , \quad \hat {J}_{21}= \cfrac {\beta _d I_d}{1+\alpha I_d} \hat {J}_{22}+\hat {J}_{33}= -\left [\left (\sigma _d + \eta _d + \mu _d \right )+ \left ( \mu _d +\xi _d\right ) \right ].\end {align*}


$P=\text {diag}\Bigg \{\cfrac {I_d}{E_d}, \cfrac {I_d}{E_d}, \cfrac {I_d}{E_d} \Bigg \}$


$P^{-1}=\text {diag}\Bigg \{\cfrac {E_d}{I_d}, \cfrac {E_d}{I_d}, \cfrac {E_d}{I_d} \Bigg \}$


$P_f=\text {diag}\Bigg \{\cfrac {I_d}{E_d} \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ),\cfrac {I_d}{E_d} \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ), \cfrac {I_d}{E_d} \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right )\Bigg \}$


$P_fP^{-1}=\text {diag}\Bigg \{\left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ), \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ), \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right )\Bigg \}$


$B= P_fP^{-1} + PJ^{\left [2\right ]}P^{-1}$


\begin {equation*}B = \begin {pmatrix} b_{1,1} & \cfrac {\beta _d S_d}{(1+\alpha I_d)^2} & {\beta _d S_d}{(1+\alpha I_d)^2} +\omega _d \\ \sigma _d & b_{2,2} & - \omega _d \\ 0 & \cfrac {\beta _d I_d}{1+\alpha I_d} & b_{3,3} \end {pmatrix},\end {equation*}


\begin {align*}\text {where} \quad b_{1,1}&= \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ) -\left [ \hat {J}_{11}+\hat {J}_{22} \right ],\\ b_{2,2}&= \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ) -\left [ \hat {J}_{11}+\hat {J}_{33} \right ] \quad \text {and} \\ b_{3,3}&= \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ) - \left [\hat {J}_{22}+\hat {J}_{33} \right ].\end {align*}


$z = \left ( z_1, z_2, z_3\right )$


$\mathbb {R}^{3} \cong \mathbb {R}^{\binom {n}{2}}$


$\mathbb {R}^{3}$


\begin {equation*}\left | (z_1, z_2, z_3)\right |= \max \Bigg \{\left | z_1 \right |, \left | z_2 \right |+ \left | z_3 \right | \Bigg \}.\end {equation*}


$\tilde {\sigma } (B)$


\begin {equation*}\tilde {\sigma } (B) \le \max \{g_1, g_2 \},\end {equation*}


\begin {align*}g_1=\tilde {\sigma }_1\left (b_{1,1}\right )+\left |b_{1,2}\right |, \quad g_2=\tilde {\sigma }_1\left (b_{2,2}\right )+\left |b_{2,1}\right |,\end {align*}


$\left |b_{1,2}\right |,\left |b_{2,1}\right |$


$l_1$


\begin {align*}\tilde {\sigma }_1\left (b_{1,1}\right ) & =\cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} -\left [ \hat {J}_{11}+\hat {J}_{22} \right ], \\ \left |b_{1,2}\right | & =\max \Bigg \{\cfrac {\beta _d S_d}{(1+\alpha I_d)^2} , \quad \left (\cfrac {\beta _d S_d}{(1+\alpha I_d)^2} +\omega _d\right ) \Bigg \} \\ & =\cfrac {\beta _d S_d}{(1+\alpha I_d)^2} +\omega _d , \\ \left |b_{2,1}\right | & =\sigma _d .\\ \tilde {\sigma }_1\left (b_{2,2}\right )= & \max \Bigg \{\cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} -\left [ (\mu _d +\gamma _d+ \omega _d)+ \left ( \mu _d +\xi _d\right ) \right ] ,\\&\quad \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \left [\left (\sigma _d + \eta _d + \mu _d \right )+ \left ( \mu _d +\xi _d\right ) \right ] - \omega _d \Bigg \} \\ = & \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \left ( 2\mu _d +\xi _d +\omega _d\right ) +\max \{-\gamma _d,-(\sigma _d + \eta _d)\}. \\\end {align*}


\begin {align*}g_1&=\tilde {\sigma }_1\left (b_{1,1}\right )+\left |b_{1,2}\right |\\ &=\cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} -\left [ \cfrac {\beta _d I_d}{1+\alpha I_d} + (\mu _d +\gamma _d)+ \left (\sigma _d + \eta _d + \mu _d \right )\right ]+ \cfrac {\beta _d S_d}{(1+\alpha I_d)^2} \\ &\le \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \left (2\mu _d + \sigma _d + \eta _d +\gamma _d \right ) + \cfrac {\Lambda _d \beta _d}{\mu _d}, \\\end {align*}


$1+\alpha I_d \geq 1 , S_d \leq N_d \leq \frac {\Lambda _d}{\mu _d}$


\begin {align*}g_2&=\tilde {\sigma }_1\left (b_{2,2}\right )+\left |b_{2,1}\right | \\ &= \sigma _d + \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \left ( 2\mu _d +\xi _d +\omega _d\right ) +\max \{-\gamma _d,-(\sigma _d + \eta _d)\} + \sigma _d \\ &=\cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \left ( 2\mu _d +\xi _d +\omega _d + \gamma _d\right ) +\sigma _d \quad \text {if}\quad \sigma _d + \eta _d \ge \gamma _d.\end {align*}


$\tilde {a}= \min \Bigg \{2\mu _d + \sigma _d + \eta _d +\gamma _d - \cfrac {\Lambda _d \beta _d}{\mu _d}, \quad 2\mu _d +\xi _d +\omega _d + \gamma _d - \sigma _d \Bigg \}$


$\gamma _d > \max \Bigg \{\cfrac {\Lambda _d \beta _d}{\mu _d} - (2\mu _d + \sigma _d + \eta _d ), \quad \sigma _d - (2\mu _d +\xi _d +\omega _d ) \Bigg \}$


$\tilde {a} > 0$


\begin {align*}g_1&\le \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \tilde {a},\\ g_2&\le \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \tilde {a} \quad \text {if}\quad \sigma _d + \eta _d \ge \gamma _d.\end {align*}


$\Bigl ( S_d(t), E_d(t), I_d(t)\Bigr )$


$x_0 = \Bigl ( S_d(0), E_d(0), I_d(0)\Bigr )$


$\tilde {\Omega }$


\begin {equation*}\cfrac {1}{t}\int _{0}^{t} g_1 \,d\theta , \quad \cfrac {1}{t}\int _{0}^{t} g_2 \,d\theta \le - \tilde {a} + \cfrac {1}{t} \Bigg \{\ln \left [\cfrac {I_d(t)}{I_d(0)}\right ] - \ln \left [\cfrac {E_d(t)}{E_d(0)}\right ] \Bigg \}.\end {equation*}


\begin {equation*}\begin {aligned} \cfrac {1}{t}\int _{0}^{t} \tilde {\sigma } (B) \,d\theta \le &\max \Bigg \{- \tilde {a} + \cfrac {1}{t} \left ( \ln \left [\cfrac {I_d(t)}{I_d(0)}\right ] - \ln \left [\cfrac {E_d(t)}{E_d(0)}\right ]\right ) \Bigg \}. \end {aligned}\end {equation*}


\begin {equation*}\limsup \limits _{t \to \infty }\sup _{x_0 \in \tilde {\Omega }} \quad \cfrac {1}{t}\int _{0}^{t} \tilde {\sigma }(B) \,d\theta \le - \tilde {a} < 0 \quad \text {since} \quad \tilde {a}> 0.\end {equation*}


$\left (S_d, E_d, I_d, V_d\right ) \rightarrow \left (S_d^*, E_d^*, I_d^*, V_d^*\right )$


$S+E+I+V \rightarrow \cfrac {\Lambda }{\mu }$


$t \rightarrow \infty $


\begin {align}\label {3.25} S'(t)&=\Lambda + \omega \left (\cfrac {\Lambda }{\mu } - S -E-I \right ) - \cfrac {\beta S I_d}{1+\alpha I_d}- (\mu +\gamma ) S, \nonumber \\ E'(t)&=\cfrac {\beta S I_d}{1+\alpha I_d}-(\sigma +\eta +\mu ) E,\nonumber \\ I'(t)&=\sigma E - (\mu +\xi )I.\end {align}


\begin {equation*}J_h= \left [\begin {array}{ccc} -\left (\cfrac {\beta I_d^*}{1+\alpha I_d{}^*}+\omega +\mu +\gamma \right ) & -\omega & -\omega \\ \cfrac {\beta I_d^*}{1+\alpha I_d^*} & -(\sigma +\eta +\mu ) & 0 \\ 0 & \sigma & -(\mu +\xi ) \end {array}\right ].\end {equation*}


$J_h$


\begin {equation*}\fontsize {5}{7}\selectfont { J_h^{[2]}= \begin {bmatrix} -\left [\cfrac {\beta I_d^*}{1+\alpha I_d^*}+(2\mu +\omega +\gamma +\sigma +\eta )\right ] & 0 & \omega \\ \sigma & -\left [\cfrac {\beta I_d^*}{1+\alpha I_d^*}+(\omega +2\mu +\gamma +\xi )\right ] & -\omega \\ 0 & \cfrac {\beta I_d^*}{1+\alpha I_d^*} & -(2\mu +\xi +\sigma +\eta ) \end {bmatrix}.}\end {equation*}


\begin {align*}\hat {P}&=\operatorname {diag}\left \{\frac {I}{E}, \frac {I}{E}, \frac {1}{E}\right \} ,\\ \hat {P}_f&=\operatorname {diag}\left \{\frac {I}{E}\left (\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}\right ), \frac {I}{E}\left (\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}\right ), \frac {I}{E}\left (\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}\right )\right \}, \\ \hat {P}^{-1}&=\operatorname {diag}\left \{\frac {E}{I}, \frac {E}{I}, \frac {E}{I}\right \} \\ \hat {P}_f \hat {P}^{-1}&=\operatorname {diag}\left \{\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}, \frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}, \frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}\right \},\end {align*}


$\hat {P}_f$


$\hat {P}$


$f$


$\hat {B}= \hat {P}_f\hat {P}^{-1} + \hat {P}J_h^{[2]}\hat {P}^{-1}$


\begin {equation*}\hat {B} = \begin {pmatrix} \hat {b}_{1,1} & 0 & \omega \\ \sigma & \hat {b}_{2,2} & -\omega \\ 0 & \cfrac {\beta I_d^*}{1+\alpha I_d^*} & \hat {b}_{3,3} \end {pmatrix},\quad \end {equation*}


\begin {align*}\hat {b}_{1,1}&= \cfrac {I'}{I} - \cfrac {E'}{E} -\left [\cfrac {\beta I_d^*}{1+\alpha I_d^*}+(2\mu +\omega ++\gamma +\sigma +\eta )\right ], \\ \hat {b}_{2,2}&= \cfrac {I'}{I} - \cfrac {E'}{E} -\left [ \cfrac {\beta I_d^*}{1+\alpha I_d^*} + (2\mu +\gamma + \omega +\xi ) \right ] \\ \hat {b}_{3,3}&= \cfrac {I'}{I} - \cfrac {E'}{E} - \left ( 2\mu +\xi +\sigma + \eta \right ).\end {align*}


\begin {align*}\hat {\sigma }_1(\hat {b}_{11})&= \cfrac {I'}{I} - \cfrac {E'}{E} -\left [\cfrac {\beta I_d^*}{1+\alpha I_d^*}+(2\mu +\omega ++\gamma +\sigma +\eta )\right ]\\ \left |\hat {b}_{12}\right |&=\omega \\ \hat {g}_1 & =\hat {\sigma }_1(\hat {b}_{11})+\left |\hat {b}_{12}\right |\\ \hat {g}_1 & =\cfrac {I'}{I} - \cfrac {E'}{E} -\left [\cfrac {\beta I_d^*}{1+\alpha I_d^*}+(2\mu +\omega ++\gamma +\sigma +\eta )\right ]+\omega \\ & \leq \frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}-[2\mu +\sigma +\gamma +\eta ],\end {align*}


\begin {align*}\left |\hat {b}_{21}\right |&=\sigma \\ \hat {\sigma }_1(\hat {b}_{22})&=\max \Bigg \{\cfrac {I'}{I} - \cfrac {E'}{E}-(2\mu +\gamma + \omega +\xi ),\\& \qquad \cfrac {I'}{I} - \cfrac {E'}{E}- \left ( 2\mu +\xi +\sigma + \eta \right )-\omega \Bigg \} \\ &= \cfrac {I'}{I} - \cfrac {E'}{E} - \left ( 2\mu +\xi +\omega \right )+\max \{-\gamma , -(\sigma +\eta ) \}\\ \hat {g}_2&=\left |\hat {b}_{21}\right |+\hat {\sigma }_1(\hat {b}_{22})\\ \hat {g}_2&=\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}-(2 \mu +\xi +\omega +\gamma )+\sigma \quad \text {if} \sigma +\eta \geqslant \gamma .\end {align*}


$\hat {a}=\min \bigg \{2\mu +\sigma +\gamma +\eta , \quad 2 \mu +\xi +\omega +\gamma -\sigma \bigg \}$


$\gamma >\max \bigg \{-(2 \mu +\sigma +\eta ),\quad \sigma -(2 \mu +\xi +\omega )\bigg \}$


$\hat {a}>0$


\begin {align*}& \hat {g}_1 \leqslant \frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}-\hat {a},\\ & \hat {g}_2=\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}-\hat {a} \quad \text {if} \quad \sigma +\eta \ge \gamma .\end {align*}


$(S(t), E(t), I(t))$


$\hat {x}_0 = \Bigl ( S(0), E(0), I(0)\Bigr )$


$\tilde {\Omega }$


\begin {equation*}\cfrac {1}{t}\int _{0}^{t} g_1 \,d\theta , \quad \cfrac {1}{t}\int _{0}^{t} g_2 \,d\theta \le - \tilde {a} + \cfrac {1}{t} \Bigg \{\ln \left [\cfrac {I(t)}{I(0)}\right ] - \ln \left [\cfrac {E(t)}{E(0)}\right ] \Bigg \}.\end {equation*}


\begin {equation*}\cfrac {1}{t}\int _{0}^{t} \tilde {\sigma } (B) \,d\theta \le \max \Bigg \{- \tilde {a} + \cfrac {1}{t} \left ( \ln \left [\cfrac {I(t)}{I(0)}\right ] - \ln \left [\cfrac {E(t)}{E(0)}\right ]\right ) \Bigg \},\end {equation*}


\begin {equation*}\limsup \limits _{t \to \infty }\sup _{\hat {x}_0 \in \tilde {\Omega }} \quad \cfrac {1}{t}\int _{0}^{t} \tilde {\sigma }(B) \,d\theta \le - \tilde {a} < 0 \quad \text {since} \quad \tilde {a}> 0.\end {equation*}


$R_0 > 1$


$\sigma _d +\eta _d \ge \gamma _d$


$\sigma +\eta \ge \gamma $


$E_1$


$R_0<1$


$\eta _d \le \gamma _d$


$\eta \le \gamma $


$E_1$


$t \rightarrow \infty $


$R_0 < 1$


$\eta _d \le \gamma _d$


$\eta \le \gamma $


$E_*$


$R_0>1$


$E_*$


$t \rightarrow \infty $


$R_0 >1$


$R_0$


$x_i$


$i=1, 2, \ldots , k$


$n$


$\frac {1}{n}$


$n$


$R_0$


$R_0$


$R_0$


$\Lambda _d, \beta _d$


$\mu _d$


$R_0$


$\Lambda _d$


$\beta _d$


$\mu _d$


$R_0$


$\Lambda _d$


$\beta _d$


$\mu _d$


$R_0$


$\Lambda _d$


$\beta _d$


$\mu _d$


$R_0=1$


$R_0=1$


$\Lambda _d$


$\beta _d$


$\mu _d$


$R_0$


$\Lambda _d$


$\beta _d$


$R_0<1$


$R_0$


$R_0>1$


$\alpha $


$R_0$


$\alpha $


$R_0$


$R_0$


$\alpha $


$\alpha $


$R_0>1$


$\alpha $


$R_0>1$


$\alpha $


$\cfrac {\beta _d}{\alpha }$


$\cfrac {\beta }{\alpha }$


$t \rightarrow \infty $


$I_d^*$


$I^*$


$\alpha $


$R_0>1$


$\alpha $


$\alpha =0.8$


$I_d \rightarrow 1.0201$


$I \rightarrow 5.8277$


$t \rightarrow \infty $


$\alpha =0.7$


$I^* \rightarrow 8.8705$


$I_d^* \rightarrow 1.1643$


$\alpha =1$


$I^* \rightarrow 6.2602$


$I_d^* \rightarrow 0.8173$


$R_0>1$


$R_0<1$


$\alpha $


$R_0<1$


$\alpha $


$\alpha $


$\gamma _d, \eta _d, \gamma $


$\eta $


$\alpha $


$R_0>1$


$\alpha $


$R_0>1$


$\alpha $


$R_0>1$


$E_1$


$R_0 < 1$


$\eta _d \le \gamma _d$


$\eta \le \gamma $


$E_*$


$R_0 >1$


$\Lambda _d$


$\beta _d$


$\mu _d$


$\Lambda _d=400$


$\Lambda _d$


$R_0$


$R_0$


$R_0>1$


$\nu _d$


$\alpha $


$R_0>1$


$a_4, a_5, a_6, a_7 >0$


$R_0 >1$


$a_6(a_4 a_5- a_6)- a_4^2 a_7$


\begin {align*}&a_6(a_4 a_5 - a_6)-a_4^2 a_7 \nonumber \\ ={}&\mu _d(\mu _d+\gamma _d+\omega _d)(2\mu _d+\xi _d+\sigma _d+\eta _d)(3\mu _d+\xi _d+\sigma _d+\eta _d)W_1 \nonumber \\ &+\mu _d(2\mu _d+\xi _d+\sigma _d+\eta _d)\Biggl \{(\mu _d+\gamma _d+\omega _d)W_2+(3\mu _d+\xi _d+\sigma _d+\eta _d)\nonumber \\&\quad \Bigl [W_3+(\mu _d+\xi _d)(\mu _d+\omega _d)\Bigr ] \Biggr \}\cfrac {\beta _d I_d^*}{1+\alpha I_d^*} \nonumber \\ &+(4\mu _d+\xi _d+\sigma _d+\eta _d+\gamma _d+\omega _d)\Bigl [(\mu _d+\gamma _d+\omega _d)W_4+\gamma _d(\mu _d+\xi _d)\nonumber \\&\quad (\sigma _d+\mu _d)(3\mu _d+\xi _d+\sigma _d+\eta _d)\Bigr ]\cfrac {\beta _d I_d^*}{1+\alpha I_d^*} \nonumber \\ &+(\mu _d+\xi _d)(\sigma _d+\eta _d+\mu _d)W_9\left (\cfrac {\beta _d I_d^*}{1+\alpha I_d^*}\right )\left (\cfrac {\alpha I_d^*}{1+\alpha I_d^*}\right )\nonumber \\ &+(\mu _d+\xi _d)(\sigma _d+\eta _d+\mu _d)\Bigl [W_3+W_5+(\mu _d+\xi _d)(2\mu _d+\omega _d)+(2\mu _d+\xi _d)\nonumber \\&\quad (\mu _d+\gamma _d+\omega _d) \Bigr ]\cfrac {\alpha I_d^*}{1+\alpha I_d^*}\left (\cfrac {\beta _d I_d^*}{1+\alpha I_d^*}\right )^2 \nonumber \\ &+(2\mu _d+\gamma _d+\omega _d)(\mu _d+\xi _d)^2(\sigma _d+\eta _d+\mu _d)^2\nonumber \\&\quad \left (\cfrac {\beta _d I_d^*}{1+\alpha I_d^*}+2\mu _d+\xi _d+\sigma _d+\eta _d\right ) \left (\cfrac {\alpha I_d^*}{1+\alpha I_d^*} \right )^2 \nonumber \\ &+(\mu _d+\xi _d)(\sigma _d+\eta _d+\mu _d)(2\mu _d+\gamma _d+\omega _d)(2\mu _d+\xi _d+\sigma _d+\eta _d)\nonumber \\&\quad W_6 \left (\cfrac {\alpha I_d^*}{1+\alpha I_d^*}\right ) \\ &+W_{10}\left (\cfrac {\beta _d I_d^*}{1+\alpha I_d^*}\right )^2 + \Bigl [(\mu _d+\xi _d)W_8+(3\mu _d+\xi _d+\sigma _d+\eta _d+\omega _d)W_3\Bigr ]\nonumber \\&\quad \left (\cfrac {\beta _d I_d^*}{1+\alpha I_d^*}\right )^3 >0 \quad \text {if }R_0>1 ,\end {align*}


\begin {align*}W_1={}&(\mu _d+\gamma _d+\omega _d)(4\mu _d+\xi _d+\sigma _d+\eta _d+\gamma _d+\omega _d)\\&\quad +\mu _d(2\mu _d+\xi _d+\sigma _d+\eta _d) , \\ W_2={}&(\mu _d+\gamma _d)(3\mu _d+\xi _d+\sigma _d+\eta _d)+(\mu _d+\xi _d)(3\mu _d+\xi _d+\gamma _d+\omega _d)\\&\quad +\omega _d(\mu _d+\eta _d) , \\ W_3={}&\omega _d(\sigma _d+\mu _d)+(2\mu _d+\xi _d)(\sigma _d+\eta _d+\mu _d) , \\ W_4={}&\omega _d(\mu _d+\xi _d)(3\mu _d+\xi _d+\eta _d)+(3\mu _d+\xi _d+\sigma _d+\eta _d)\Bigl [(\mu _d+\omega _d)\\&\quad (\sigma _d+\mu _d)+\mu _d(\mu _d+\xi _d+\eta _d)\Bigr ]+\mu _d^2(\mu _d+\xi _d)+\mu _d(\sigma _d+\eta _d+\mu _d)\\&\quad (2\mu _d+\sigma _d+\eta _d+\omega _d) , \\ W_5={}&2\mu _d^2+(\sigma _d+\eta _d+\omega _d)(2\mu _d+\gamma _d+\omega _d) , \\ W_6={}&(\mu _d+\gamma _d+\omega _d)(2\mu _d+\xi _d+\sigma _d+\eta _d+\gamma _d+\omega _d)\\&\quad +\mu _d(3\mu _d+\xi _d+\sigma _d+\eta _d) , \\ W_7={}&\mu _d \Bigl [(2\sigma _d+2\eta _d+\mu _d+\omega _d)(2\mu _d+\sigma _d+\eta _d+\omega _d)+(\mu _d+\xi _d)\\&\quad (2\mu _d+\omega _d) \Bigr ] +\omega _d \Bigl [\sigma _d^2+\xi _d \eta _d +(\mu _d+\eta _d+\omega _d)(\mu _d+\xi _d+\sigma _d) \Bigr ]\\&\quad +\xi _d(\sigma _d+\eta _d)(2\mu _d+\sigma _d+\eta _d), \\ W_8={}&\mu _d(2\mu _d+\xi _d+\omega _d)+\omega _d(2\mu _d+\xi _d+\eta _d+\omega _d) , \\ W_9={}&(2\mu _d+\xi _d+\sigma _d+\eta _d)\Bigl [W_3+\mu _d\gamma _d+(\mu _d+\omega _d)(2\mu _d+\xi _d) \Bigr ]\\&\quad +(2\mu _d+\gamma _d+\omega _d)W_2 +(4\mu _d+\xi _d+\sigma _d+\eta _d+\gamma _d+\omega _d)W_5 \quad \text {and} \\ W_{10}={}&\mu _d(\mu _d+\gamma _d+\omega _d)(2\mu _d+\xi _d+\sigma _d+\eta _d)(3\mu _d+\xi _d+\sigma _d+\eta _d+\omega _d)\\&\quad \Bigl [W_3+(\mu _d+\xi _d)(\mu _d+\omega _d)\Bigr ]W_2 \\ &+(4\mu _d+\xi _d+\sigma _d+\eta _d+\gamma _d+\omega _d)W_7 . \\\end {align*}
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vaccines, the morbidity and mortality rates of this disease are still high
due to limited resources, high costs of vaccination and medical treat-
ment, cultural hostility and lack of strategic coordination [9,10]. Rabies
is one of the neglected tropical diseases that kills approximately 59,000
people each year in more than 150 countries, with up to 95 % of cases
occurring in Africa and Asia, 40 % of whom are children under the age
of 15 [4,6-10].

The rabies vaccine, invented by Louis Pasteur, was the second vac-
cine developed, after smallpox [18]. There are two types of rabies vac-
cines: pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis
(PEP). The PrEP vaccine is given before exposure occurs, whereas PEP
is given right after exposure but before symptoms begin [19]. Accord-
ing to the World Health Organization (WHO) [9], rabies affects approx-
imately 80% of the poor and unprotected populations who live in se-
cluded rural areas, and children are the major victims of this disease.
This is mainly due to lack of access to proper medication or treatment,
lack of awareness and negligence towards the disease. The WHO and
its partners have launched a global campaign to achieve zero human
deaths from dog-mediated rabies by 2030 [20-22]. The campaign will
focus on improving awareness of RABV, enhancing access to PEP for the
poor and vulnerable populations who live in remote rural areas, mass
dog vaccination, rabies surveillance with veterinary services, expand-
ing oral vaccination of wildlife, which can reduce rabies infection in
reservoir populations, dog registration and education campaigns to the
communities [5,9,20,21].

A number of mathematical models have been introduced to gain
some insights into the effectiveness of rabies-control measures such as
dog vaccination, the interactions and movements among different sub-
populations of animals and rabies reaction-diffusion analysis in order to
examine the spread of rabies in geographic regions and how different
factors such as population density, habitat fragmentation and wildlife
reservoirs affect the disease transmission. Multi-host zoonotic models
can be used to understand how different host species contribute to the
transmission of rabies and how interventions targeting one species can
affect transmission in other species. Multi-patch models describe the
spread of rabies across different geographic locations and illustrate how
movement between patches can affect transmission. Seasonal models of
rabies can demonstrate how factors such as host behaviour and climate
variability can influence transmission patterns. For instance, to assess
the effectiveness of vaccination in controlling the spreading of rabies,
Asamoah et al. [23] developed an SEIR (Susceptible-Exposed-Infected-
Recovered) model to study rabies transmission in both dog and human
populations in order to identify the most effective strategies to control
the disease spread. They discovered that the recruitment rate, loss of
immunity and transmission rate of the dog population have the greatest
effect on R,. In addition, they observed that, by reducing the additional
death rate of dogs and implementing PrEP and PEP vaccination in both
dog and human populations, we could effectively control the spread of
rabies. Nevertheless, there will be a high prevalence of rabies in the hu-
man population if there is no intervention for the dog population and
only PEP and PrEP are considered for the human population. They found
that the best way to reduce infection rates is by implementing prophy-
laxis in both dog and human populations. If there are limited funds to
control the rabies outbreak, prioritizing the vaccine-control strategy for
dogs is the key to disease eradication.

Laager et al. [24] developed a combination of field data and an
SEIV (Susceptible-Exposed-Infected-Vaccinated) metapopulation model
to stimulate rabies transmission in the dog population in N’Djamena,
Chad. The model accounted for factors such as the movement of dogs
between populations, vaccination coverage and the effectiveness of vac-
cination. This model was fit to the weekly rabies incidence data for four
years and a sensitivity analysis conducted in order to evaluate the effect
of underreporting on the transmission rates. The results of the study
showed that vaccination campaigns targeting specific dog populations
are more effective in reducing the incidence of rabies than campaigns
that target the entire dog population. They also found that increasing
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vaccination coverage was crucial for reducing the incidence of the dis-
ease and that even small increases in vaccination coverage could have
a significant impact on the spread of rabies. The model was able to pre-
dict the incidence of rabies in the dog population over time and provide
insights into the dynamics of the disease transmission. The study high-
lights the importance of targeted vaccination campaigns in controlling
the spread of dog rabies, especially in high-risk areas. Hailemicheal et al.
[25] constructed an epidemic model to examine transmission between
stray dogs and domestic dog populations. They applied vaccination and
culling as the control strategies in their model. They assumed that ra-
bies could be transmitted from stray dogs to domestic dogs, but not vice
versa. They discovered that the transmission rates of stray dogs and the
annual stray dog birth rate were the most sensitive parameters. Based on
their simulation results, the most effective method to control the spread
of rabies is a combination of vaccination and culling of infected dogs.
Additionally, the yearly birth rate of dogs has a significant impact on
the frequency of rabies cases.

In addition, some studies have been carried out to investigate the ef-
fect of seasonal or periodic variation in the occurrence of rabies [26-28].
Zhang et al. [26] examined the spread of rabies in both dog and human
populations by considering periodic transmission rates. They discovered
that to prevent the spread of human rabies in China, several measures
are required: raising awareness about the disease; decreasing the birth
rate of dogs; improving measures to prevent children from being bitten
by dogs, particularly during the summer; and increasing the vaccination
rate of dogs. Moreover, providing prompt medical treatment after dog
bites is particularly important. Ruan et al. [27] examined the effects of
seasonality, diffusion and dog movement in spreading the disease. They
found that there are more human rabies cases in the summer and au-
tumn seasons; hence, more efforts and control strategies are needed in
the summer months to reduce the prevalence. In addition, by control-
ling the movement of exposed and infected dogs, the transmission of
rabies can be reduced. Huang et al. [28] employed a multi-host zoonotic
model to study the spreading dynamics of rabies among dogs, Chinese
ferret-badgers (CFBs) and human populations. This model was applied
to human rabies data reported in Zhejiang Province from 2004 to 2017.
They found that the transmission rate between CFB and dog popula-
tions, the number of infected dogs and the vaccination rate of dogs are
the most influential parameters in controlling the disease transmission.
They suggested that control is favoured by enhancing rabies awareness,
increasing the vaccination rate of dogs, preventing bites from CFBs and
reducing contact between CFBs and dogs.

In order to achieve the WHO goal to end human deaths from dog-
mediated rabies by 2030 [9,21,22], mathematical modelling can pro-
vide us with some insights about the disease-transmission dynamics,
cost-effectiveness in controlling the disease, estimation of the proba-
ble outbreak duration and size, and assess the impact of control mea-
sures in curbing disease transmission [29-32]. We employ a mathemat-
ical model with a saturated incidence rate to study the transmission
dynamics of rabies in both dog and human populations. We aim to iden-
tify under which conditions disease eradication is likely to happen and
why the disease remains in an endemic state. To be more prepared and
strengthen rabies-outbreak management, we identify the conditions of
disease persistence. Moreover, sensitivity analysis of the model will be
performed to find out which parameters have the greatest influence in
controlling the disease.

Incidence functions

Analysis of disease persistence or eradication tends to focus only on
stability of the equilibria, usually the disease-free equilibrium. While de-
termining conditions for eradication — especially global stability — is
useful, it is not the only factor involved in managing an endemic disease,
something many modelling papers overlook. Here, we model rabies us-
ing an incidence function, which describes the long-term dynamics of
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the disease but plays no role in the stability of the disease-free equilib-
rium.

We consider the inhibition effect; i.e., the “psychological” effect and
behavioural change of the susceptible population when the number of
infected dogs is increasing. Susceptible individuals may change their
behaviour when the number of infected individuals increases, such as
avoiding contacts. The rate of infection will slow down if many indi-
viduals are unable to be infected, since finding true susceptibles may
be difficult. We can describe this mathematically by changing the trans-
mission function.

The choice of an appropriate incidence function in a mathematical
model holds significant importance, as it determines the dynamics of the
epidemic [33,34]. The three most commonly employed incidence func-
tions in deterministic mathematical models are the bilinear incidence
rate, the standard incidence rate and the saturated incidence rate. Each
of these functions has its implications for the generation of new infec-
tion cases. The bilinear incidence rate, known as mass-action incidence,
is given by pS1, where g represents the transmission rate, .S represents
susceptible individuals and I denotes infected individuals [33]. Mass-
action incidence is considered density-dependent, which means that the
rate of contact per infective is proportional to the density of the infec-
tious host population. It is suitable for modelling communicable diseases
like influenza, but it may not be suitable for sexually transmitted dis-
eases. This is because it would imply that the number of susceptible
individuals contacting infectives is unbounded, which is not a plausible
assumption. In the case of sexually transmitted diseases, it has been sug-
gested that the standard incidence rate could be a better approximation
[33,34].

BSI
The standard incidence rate, - where N is the total population

size, assumes a constant number of contacts per infective in unit time,
which is applicable to dynamics of disease transmission in large popu-
lations. It provides a more realistic representation of how new cases of
infection occur and allows for a better understanding of the spread of
diseases in human populations. In reality, the probability of infection
per contact is likely influenced by the number of infective individuals
present, as a higher number of infective individuals can increase the
overall infection risk [33,34]. However, the standard-incidence rate may
encounter some difficulties and challenges when it is used to illustrate
the proportion of effective contacts between susceptible and infectious
populations, which may reach a saturated level due to various factors
such as overcrowding of infected populations or implementation of pro-
tective measures by the susceptible individual [33,34].
If a population is crowded or saturated with infectives, then satu-
rated incidence is a better option [35,36]. The saturation incidence rate
BST

1+al
where ST measures the infection force of the disease, « measures the

p
[33] tends to a saturated level, —, when [ is sufficiently large,
14

inhibitory effect and represents the measure of psychological or

14+al
inhibitory effect from the behaviour change of susceptible individuals

when the number of infected individuals increases or due to a crowding
effect. This may occur due to humans avoiding contacts in high-endemic
situations or dog-control methods such as fences, animal curfews, etc.
The net effect is to slow the rate of transmission as the infected popu-
lation gets large. The parameter «a is our proxy for soft interventions. If
a = 0, the saturated-incidence rate becomes a bilinear incidence rate
[42]. Capasso and Serio [43] stated that the bilinear incidence rate
might be suitable for a small number of infected individuals but is un-
realistic for a large infected population. This type of incidence function
may occur when a population has achieved herd immunity against a
certain disease, meaning that the majority of people in the population
have been exposed to the disease and are now resistant to it [33]. Even
though this incidence rate is more challenging to cope with, it encom-
passes both behavioural changes and effects of crowding on the contact
rate [34]. Saturated incidence is not the only way to model “soft” inter-
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Fig. 1. The flow chart of model (2.1).

ventions when it comes to infectious diseases; a number of alternatives
have been proposed, such as representing the crowding effect using a
probability density function [37], using adaptive dynamics to model
learning [38] or agent-based models to describe social processes [39].

2. Mathematical model

We consider both dog-to-dog transmission and dog-to-human trans-
mission. Both species can be vaccinated, but the vaccine also wanes.
Once the vaccine wanes, there is no protection. Some dogs can be vac-
cinated at birth. There is no natural immunity against rabies in either
species.

We propose a deterministic model with a saturated incidence rate
to examine the transmission dynamics of rabies in both dog and hu-
man populations. Both the dog and human populations are classi-
fied into four subclasses: susceptible, exposed, vaccinated and infected,
with the dog population denoted by S,(t), E,; (1), V,(t) and I,(¢), and
the human population denoted by S(r), E(¢), V(r) and I(¢), at time ¢,
respectively. Thus, our proposed rabies mathematical model is gov-
erned by a set of nonlinear ordinary differential equations defined as
follows:

, BiSaly
S, =AA=vp)+o,V;— T+al, = (g +74)Sy
BaSaly
E\n = T+al, (o4 + 14 +H)Ey

V@) =Agvg+v4Sq+naE; — (ug + 0 )V,
I‘;(t) =o0,E; —(ug +&)1,

s’ =A V fa +7)S
t — _
® to 1+al, Chd
pSI,
E'® = —(c+n+nE
® 1+al, (c+n+u
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Table 1

Description of associated parameters in model (2.1), and the values for numerical simulations of the disease-free equilibrium (E,) and the endemic

equilibrium (E,).
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Parameter  Description Unit Parameter value for E, (Source)  Parameter value for E, (Source)
individuals

Ay Recruitment rate of dogs - 325 ([40D) 325 ([40D)

By Disease transmission rate from an infected to a susceptible dog yea};f‘ 5.2x 107* (Assumed) 0.00092 (Assumed)

Hy Natural death rate of dogs year™! 0.0833 ([41]) 0.0833 ([41])

oy The progression rate from exposure to an infected dog year™! 6 ([27]) 2.8 ([27D

& Disease-related death rate of dogs year™! 1([27D 1([27D)

v, Fraction of newly recruited vaccinated dogs unitless 0.9 (Assumed) 0.5 (Assumed)

Wy The rate at which vaccinated dogs lose vaccine-based immunity year™! 0.5 ([28]) 1 ([28])

Ya The vaccinated rate of susceptible dogs year™! 0.5 ([44]) 0.7 ([44])

o The vaccination rate of exposed dogs year™! 0.5 ([27]) 0.09 ([27])
individuals

A Recruitment rate of humans o 411 (Assumed) 411 (Assumed)

p Rate at which humans contract rabies yeayr“ 3.8 x 1071° (Assumed) 1.29 x 1073 (Assumed)

u Natural death rate of humans year™! 0.0137 ([45]) 0.0137 ([45])

4 The progression rate from exposed to infected humans year™! 6 ([27D) 2.5 ([27])

& Disease-related death rate of humans year™! 1([27D) 1([27])

a Inhibition effect individuals™’ (Varied) (Varied)

w The rate at which vaccinated humans lose immunity year™! 127D 1([27])

y The vaccination rate of susceptible humans year™! 0.54 ([27]) 0.54 ([27])

n The vaccination rate of exposed humans year™! 0.328 ([28]) 0.9 ([44D)

V'#t) =yS+3nE—(u+ o)V
I'(ty =cE—(u+8I, 2.1)

where 0 < v; < 1. The total population of dogs and humans at time ¢
is given by N, (1) = S;(1) + E;(t) + V(1) + I;() and N(t) = S(t) + E(t) +
V (t) + 1(1), respectively. The flow chart of model (2.1) is shown in Fig. 1.
The descriptions of associated parameters are listed in Table 1.

There are several assumptions in our model:

(a) Dogs are the only source of transmission in this study.

(b) The recruitment rates of susceptible dogs and humans are constant.

(c) Only a fraction v, of newly recruited dogs are vaccinated.

(d) Both dog and human populations will become susceptible whenever
immunity wanes.

(e) The inhibitory effect, a, for dog and human populations are similar.

3. Theoretical analysis
3.1. Invariant region

First, we would like to identify the domain wherein the solutions
of model (2.1) are both biologically and mathematically relevant: that
is, by determining the region Q where model (2.1) remains posi-
tively invariant and attracting for all ¢ > 0. Particularly, all the so-
lutions of model (2.1) are bounded and remain in Q for sufficiently
large 1.

Lemma 1. The set Q= {(Sd,Ed,Vd,Id,S,E,V,I)eR8+| 0<S,+

Ay A

Ej+Vy+1,<—2and0< S+E+V +1< —}
Hd H

is a positively invariant and attracting region for model (2.1).

Proof. Let N,(t) = S,;(t) + E;(0) + V() + I;,(r) and N(r) = S(t) + E(t) +
V(t) + I1(r) be the total populations of dogs and humans, respectively.
Then we obtain

Ny = Si0) + E{0) + V(0 + 1,0 < Ay — pg Ny (). (3.2)

Using an integrating factor, we have

td '
/—(Nde”d”)das/ (Age"4®) da
o da 0

Ay Ay
Ny < | NyO0) — —[e #d" + —. (3.3)
Ha Ha

A
From (3.3), we obtain N,(t) < - if Nyj(0) < —.
Hq

Ay
Next, to show that Q is an attracting region, if we have N,(r) > —,
U

then

Ni(@0) <Ay — ugNy@) <0.

A
We deduce that the total population of dogs is bounded by - By ap-
H

plying a similar approach, we find that the total human population is

A A
bounded by —; i.e., N < —. Hence the solution of model (2.1) with ar-
U

bitrary initial conditions will either remain in or approach Q as t — 0.
This shows that the w-limit sets of model (2.1) are contained in Q. O

3.2. Stability analysis

Ay
Ha

Here, we perform a standard local stability analysis. We will prove
global stability of the DFE when R, < 1 and some additional conditions
apply. We will prove global stability of the endemic equilibrium when
Ry > 1 and some additional conditions apply. It follows that R is a
threshold of eradication. Is this enough to control rabies?

Two equilibria exist in model (2.1): the disease-free equilibrium
(DFE) and the endemic equilibrium (EE). The DFE of model (2.1) is
E; = (S40- Eg0> Vao- Lao» So» Egs Vo 1), where

Aglpg(1 = vy) + 4] AgVahg +va)

Sjp=—F7—""""""""""—, 0= T v
(g + 74 +@4) (g + 74 +@4)
s Ay + w) Ay
T wutr+o) 0 uuty+o)

Ejo=14=Ey=1,=0,

whereas the EE of model (2.1) is E, = (S*,E;,V;,I;,S*,E*,V*,I*) s
where

. (kg +E)(0g +ng + ug)(1 +aly)

" (Badoy
_ Agvaoaba + (g +E)lva(og +mg + ug)( +al ) + Byng ;]
B Baoakg + @)
o Na0aPalug(l=vy) + @] = py(pg +E) g +vq + @) oy + 1y + Hy)
4 (g + EDma(0q + g + u)By + alpg + vy + 0] + awg(og + uy)}
o +n+md+alDI” B n+or

> >

cpI; o

. (Ha S}

> d Tv

Vi

>
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e _ O+ 1+ ad) 4 npIII
of(u +a))I;,‘
Ao p(u +a))I;<
Tt O1Polo + W, + uo +n+ wIBL, + (u+y + @)1 +al)])

By applying the next-generation matrix approach [46,47], the basic
reproduction number of model (2.1) is given as follows:

R - AgoaBalng (1= vy) + w4l
0 tag(g + ENg + 74 +@)(04 + 14+ 1g)

3.4

Theorem 2. An endemic equilibrium of model (2.1), E,, exists if and only
if Ry > 1.

Proof. Assume R, > 1. To prove the existence of E,, we need to
show sy, Ej Vi, SY, EY, VF and I*>0. Since R, > 1 implies
Ad‘fdﬂd[ﬂd(l - Vd) +wgl > py(pg +E) g + 714 +05)0og + 14+ pg), we
obtain

o DaoaBalpa(l=vy) + @yl = pg(ug + EDWa + 7y + @y)04 + 1y + Hy)

CT (g + ED) a0 +1g + u)By + aliy + vq + 0)] + Byg(oy + 1g)}
>0,

where all associated parameters are positive. Since I > 0, this implies
S¥, EX, Vi, S*, E*, V* and I* > 0.

Assume E, exists; i.e., S;, E;, Vd*, I:, S*, E*, V* and I'* > 0. Since
I7>0,it follows that S EL V), ST ENL VT and I* > 0, we get

AgogBalua(l —vy) + 4]
Ha(ttg +E) (g +vq + @0 )04 + 1y + piy)
O

>1=Ry> 1.

Next, we investigate the local stability of both disease-free and en-
demic equilibria of model (2.1) using a linearization approach.

Theorem 3. The DFE, E,, of model (2.1) achieves local asymptotic stability
if Ry < L.

Proof. The Jacobian matrix of model (2.1) at E, is defined as follows:

~(ug +74) 0 wg ~BaSq0 0 0 0 0
0 ~(6g +1q +Hg) 0 BaSao 0 0 0 0
d g ~(ug +0g) 0 0 0 0 0
_ 0 o4 0 (g +&) 0 0 0 0
J(El) - 0 0 0 -BSy  ~(u+n 0 ® 0
0 0 0 £Soy 0 —@+n+mw 0 0
0 0 0 0 7 n —(u+w) 0
0 0 0 0 0 o 0 —(uto

Let A be the eigenvalue and I be the 8 x 8 identity matrix. The char-
acteristic equation, |J(E;) — 4| = 0, is defined as follows:

U+ E+ D0+t + Dy + Dy +og + 74+ D+ )X @5
U+ o+7+ D04+ 1y + Hg + Vg +Eg+ D) = 6484S40] = 0. ’

Since all associated parameters are positive, the nontrivial eigenval-
ues of (3.5) satisfy

Pt (og+ng+20g + &) A+ [(1a +&4) (04 + 14+ 1a) — 04BsSa0] =0.

Denote A=1,B=0,+n;+2u;+&and C = (uy +&;)(og + 14 + 4y) -
64B4S,40- By applying the quadratic formula,

B2 —4AC = B2 +4(pug +&;) (04 + g+ 1) (Ry—1) < B> if Ry<1.
The lower bound is given by
B2 —4AC = [0y + g + 200 + &) =4[ (g + &0) (00 + 1 + )
—64B4S40]

= (og +1y +Md>2 —2(ug+ &) (0q + 14+ 1a) + (14 +§d)2
+40,0,S40

> (o4 + nd)z, since Sy, > 0.
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It follows that the roots are real. Since V B2 —4AC < B, we get 1, =

- B+VB2-44C

< 0. Next,
2A
VB2 —4AC > 6, + 1.
- B-VB2-4AC

Thus, A_ = < —(ug +£&4/2) <0.

Since all eigenvalues of model (2.1) are negative whenever R, < 1,
E, achieves local asymptotic stability. O

We now address the local stability of endemic equilibrium, E,, of
model (2.1).
Theorem 4. The endemic equilibrium, E,, of model (2.1) achieves local
asymptotic stability if Ry > 1.
Proof. By employing a similar approach as in Theorem 3, the charac-
teristic equation of model (2.1) at E, is given as follows:
U+E+ D2 +a 2+ ayd+a3) (2 + a2 + asA® + agA + a7) = 0, (3.6)
where 1 denotes the eigenvalue of model (2.1) and

By

l+al ;

a; = +o+n+3u+y+o,

b1
‘12=M(U+VI+M)+(U+'1+2M)[W+M+V
d
BI;
+o| ——+o+n+2ul

L+al}

%

d d
a; = (o +n ”)[1+a1; Hty w] (o ;4)1+a1;

s

Baly
L+alj
mdﬂdI;

l+al;

a, = +a4pu, tygto,to,+n,+&,

as = + 1y pg + &4 + 04 +11g)

Baly
+ 1+aI;+”d+7d+wd Gug + &4+ 04 +14)

J
+ + + + —_—
(g +E)04 + 1y + 1g) T+l

Bal}

ag = ——_
¢ T+al}

|:wd(2;4d +& o)+ uy(puy +&)+ Qug + &0+ + lld):|

+ gy + vy +0)2uy + &4+ 04 +ny)+ (g +E) 0y + 1y + 1y)
aly d
2y +74 +0y)———— an
Qug +v4 ’1)1+a1;‘

Baly
a; = (uy +"Sd){ H—T Hq(0q + N + pg) + 04(04 + Hg)
d

al’;
d
L+al} [

We employ the Routh-Hurwitz Criterion [48-50] to find the non-
trivial eigenvalues of (3.6). For 43 +a; A% + a4 + a3 = 0, we find that
ay,ay,a3 > 0if Ry > 1, and

* * *
d P “Ply
alaz—a3=m(o‘+n+2/4) m'ﬁ‘ﬂ'i‘)/ +m+/d+}’
d d d

+ Ha(ug +7vq + 0g) o + 15 + py)

++n+3u+r+o)|c+n+2m| —E=+u+y
1+al;‘

BI; 5
+w 1+a1{j+6+"+ U

+u(c+n+uoc+n+2p)
>0 if Ry> 1.
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Hence, by the Routh-Hurwitz Criterion, the eigenvalues of 4> + a; 4> +
a, A+ a3 = 0 are negative or have negative real parts.

Next, we would like to solve A* + a, 43 + as4” + agA + a; = 0 for 1. By
applying a similar approach as above, we find that a,, as, ag, a; > 0 and
aglagas — ag) — “421“7 > 0if R, > 1. See Appendix 1 for more details. Thus,
all eigenvalues are negative or have negative real parts. Therefore, E,
achieves local asymptotic stability if Ry > 1. O

The global stability of the disease-free and endemic equilibria is in-
vestigated using different approaches, under some additional restric-
tions. We prove the global stability of the DFE, E,, by applying the
comparison principle [51] and the theory of asymptotic autonomous
systems [52], whereas we prove the global stability of the EE, E,,
by using the geometric approach proposed by Li and Muldowney
[531.

Theorem 5. E; of model (2.1) is globally asymptotically stable if R, <
Lng<ygandn<y.

Proof. First, we consider the dog-only population of model (2.1); i.e.,
the first four equations of model (2.1), since it is independent of the

human-only variables of model (2.1). From model (2.1), the third equa-
tion is given as follows if n, < y,:
dv,
- S A+ 74 (Sq+ Ey) = (ng + o)y 3.7)
. Ay . )
Since S; + E; +V,;+1; - — as t - o, Eq. (3.7) is an asymptoti-
Ha
cally autonomous differential equation with the limit equation as fol-
lows:

dvy Ay
=7 Shavatral 1=V = (Ha +04)Vy
t Hy

Ag(Hava +74)
S——— — (g + o4 +74)Vy (3.8)
Ha
since I; > 0 and all associated parameters are positive. By using an
integrating factor, we obtain

Ag(Hava +74)

Ha

Ny (Hava +74)

#a(Ha + @4 +74)

V,(8) < Vo + V()™ (Ha+@atra)t - where

%[Vde(”d“’”’d“'yd)f:l < elHatoytyg)t

V,elkateatra)t < v, 0) + [e(ﬂd+wd+7d)' — 1]

ANy(pgvy +7,
Vo = M, (3.9)
Ha(Ha + @4 +74)

(Hatra)€r
,

Lete = . For every ¢ > 0, there exists a r; > 0 such that V; <

d
Vyo + ¢ forall t > t,. Then, for all t > 1,

s, B, I
24 A (v gV, — =2

R T
d Trar, HatTa)5

SN =v)+w,(Vyg+€) = (g +7,)S; since V, < Vo +e,

and all associated variables and parameters are positive
A [#a (1= vy) + @4] = g4 Sqy + Hawqe
Ha
W [[ld(l - Vd) +wd]

— (#a+714)Sas

where S;, = (3.10)
Ha(Ha +@g +74)
By using an integrating factor,
d [Sde("4+7d)’] - Ay [yd(l - vd) + a)d] = Hq®4Sy4, + Hdwds»(ﬂﬁm)’
dt - Ha
S, (Nelratra)t < §,(0) + W [e(ﬂdﬂd)' - 1],
HatYa
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W €
Hatra ) X
Sy, + ¢y forallt >t > ). Thus, forall 1 > 1, > 1, the basic reproduction

number of model (2.1) is defined as
B 64PaSq 64B4(Sq, +€1)
B (Mg +Ei)og +ng+ug) ~ (g +E)04 + 1y + pg)
o, P, €
— R+ dPa€1 .
(Mg + &) og + 1y + 1g)
Next, we consider the following dog-only system

Lete, =

. For every ¢, > 0, there exists a t, > 0 such that S, <

0

dE,

TER Ba(Sao+€1) 1y = (04 +ny + Ha) Eq,

dl,

- =0,E;— (g +&5)1,. (3.11)
The corresponding linear system of (3.11) is given as follows:

dE, . .

ke Ba(Sao+€1)1a = (04 + py + pa) Eq-

df . R

= =0aba = (g + &)l (3.12)

Let 1 denote the eigenvalue, with the characteristic equation of
(3.12) defined as
A2+ Bi+C =0,
where A=1, B=(o,+ny+uy)+uy+&) and C = (uy + &) (o, +
Mg + Ha) = 04Pa(Sao +€1)-
B —4AC = B? +4[odﬁd(Sd0 + sl) = (ug + fd)(od +n,+ lld)]
04Ba€)

<B? if Ry+
0 (Md+5d)("d+ﬂd+ﬂd)

<1

B2 —4AC < B. (3.13)
By using the quadratic formula, we get
. —B+ VB _4AC
A+ =—< 0.
2A
In addition, we have
B* —4AC = (og+n4 - fd)z +40,46, (Sd(J +61>
2
> (04 + 14— &4)
VB2~ 446 > 6, + 1y - &, (3.14)
and
A —B—VB2-4AC
A= —B-VE —dAc < —(O'd+l’]d +l‘d) <0.

24
Thus, the general solution for (3.12) is

x() = cyup eV + cyupe,

where x(1) = [E,(t), fd(t)]T, ¢, and ¢, are arbitrary constants, and u; and
u, are the corresponding eigenvectors of eigenvalues 4, and 4_, respec-
tively. Furthermore, x(f) > 0 as7 — . By applying the comparison prin-
ciple [52], E;, I; — 0 as t - 0. Consequently, by the theory of asymp-
totic autonomous systems [51], we obtain V, — V,, and S; — S}, as
t — oo from (3.7) and (3.10), respectively.

We now consider the (humans only) final four equations of model
(2.1). By looking at the equation

v =yS+nE—-u+owV,
dt

we have

dv

o <y S+E)-(u+w)V if n<y. (3.15)

Since S+ E+V +1 > % as t — oo, Eq. (3.15) is an asymptotically
autonomous differential equation with the following limit equation:
v 5},(&_1/_1) —(u+o)V if n<y

dt U
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Ay
< 7—(u+w+y), (3.16)

since all the associated variables and parameters are positive. By
using an integrating factor,

d [Ve(y+w+y)t] < ﬂe(u+w+y)r

dt u
V(I)e(ll+w+r)i <V(0)+ —y[e(lﬁ-w‘*?)f _ 1]
up+o+y)
Ay
V(t) < Vo + V(0)e Wrot’  where Vy= ————.
uu+w+y)
Lete, = % For every ¢, > 0, there exists a 7; > 0 such that V' <

Vy + €, for all ¢ > t5. Thus, Vt > 13,
ds pS1y
— =A+owV - —(u+y)S
dr oV Trar, WD

<A+w(Vy+e)—(u+7)S, (3.17)

since V' <V, +¢, and all associated variables and parameters are
positive. Next, we have

% [Se(‘“'y)’] < [A+ co(A - S0> + wez] M where
u
__Ap+tw)
07w+ o+y)
Al + o) — poSy + pwe,

S < S0) +

) [e(u+y)t _ 1]
MU

P2 4 S,

S < Sy +
® < Sy P

Letes = % For every £5 > 0, there existsaz, > O such that S < .5 +
€5 forallt > 1, > 15. By applying the comparison principle [52], E, I — 0
as t - oo since I; — 0 as 1 - . By applying the theory of asymptotic
autonomous systems [51], from (3.16) and (3.17), we have V' — ¥}, and
S — S, ast — oo, respectively. Therefore, E, is globally asymptotically
stableif Ry < 1,n; <yzandn<y. O

Next, we would like to discuss the global stability of the EE, E,, of
model (2.1) by using the geometric approach proposed by Li and Mul-
downey [53]. This approach has been commonly applied to three- or
four-dimensional systems [53-58]. However, we aim to expand its appli-
cation to an eight-dimensional model (2.1). We briefly present some pre-
liminaries on the geometric approach developed by Li and Muldowney
[53] in proving global stability. These preliminaries are summarized
from [53]. Otherwise, we will specify it.

Let Q denote the interior of Q and E, € Q if R, > 1. Consider the
autonomous ordinary differential equation

dx

= , 3.18
i fx) ( )
where x — f(x) € R” is a C! function for x in an open set D C R". Let
x*, xo and x(t, x,) respectively denote an equilibrium point, initial point
and solution of (3.18) such that x(0, x,) = x, is satisfied.

Assume that the following hypotheses hold:

(H1) D is simply connected;
(H2) There exists a compact absorbing set D c D;
(H3) Eq. (3.18) has a unique equilibrium x* in D.

P(x)isa (g) X (;) C! matrix-valued function defined on a domain D.
P~!(x) exists and is continuous on a subset D C D.
The Lozinskil measure &(B) of a matrix B with respect to a vector

norm || - || in R® is defined as:
_ . I +hB|| -1

B)= lim ——
(B) hi»%l*' h
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where [ is the identity matrix and matrix B is given by
B=p Pt +pPjp

Here P, is the matrix obtained by taking the derivative of each entry
of P along the direction of a vector field f and J!?! represents the second
additive compound matrix associated with the Jacobian matrix J(x).
This measure is used to quantify the growth rate of the norm of 7 + hB
ash — 0*.

The quantity ¢ is defined as:

1

g = lim sup 1 / 6(B(x(0,x)))do,
fmoo xo€D 0

where x(0, x,) represents the solution of a dynamical system starting

from an initial condition x. This quantity captures the asymptotic supre-

mum of the average Lozinskii measure of B along trajectories.

Lemma 6 ([53]). Assume that hypotheses (H1)-(H3) hold and (3.18) sat-
isfies a Bendixson criterion that is robust under C' local perturbations of f
at all non-equilibrium non-wandering points of (3.18). Then x* is globally
asymptotically stable with respect to D provided it is stable.

Theorem 7. The endemic equilibrium, E,, of model (2.1) is
globally asymptotically stable in the interior if Ry >1, o,+n; >

AgPa
Yo, ot+nzy, Y4 > max M__(Z”d+°'d+’7d), oq— Qg +
d

§d+cod)} and y>max{—(2/4+6+r]), 6—(2y+§+w)}.

Proof. Q = {(Sd,Ed,Vd,Id,S, EV.DERY| 0<S;+E;+V;+

A A
I, < —L and 0<S+E+V+1< —} is simply connected in R3.
Ha H

By Theorems 2 and 4, E, is a unique endemic equilibrium of model
(2.1) that exists in Q, the interior of Q, and it is locally asymptotically
stable if R, > 1. However, the disease-free equilibrium, E,, is unstable
whenever R, > 1. The uniform persistence of model (2.1) and the
boundedness of Q imply the existence of a compact absorbing set Q in
Q [24,53,59]. Hence model (2.1) satisfies the assumptions (H1)-(H3).

A
Since Sy + E,; +V, + 1, — Last— oo, the dog-only population of

d
model (2.1) is a three-dimensional asymptotically autonomous differen-
tial system with limit system

ST =A,,(1-v)) +o ﬁ—S—E—l —ﬂdS—d[d—( +7,)S,
a\P) = g d d i d d d 1 +al, Ha TYa)od,
BaSaly
Ej (1) = 1+a1d—(0d +1g + g Egs
() =04E; — (ug + EDI . (3.19)
The Jacobian matrix of (3.19) is
(Lt gy + - - ﬂ+
A Ttal, HdFVaT @ @d A +alpy: ¥
J = Baly _(6 ot ) PySy 5
1 +al, d T g T Hy —(1+ald)2
0 Oy ~(na +&4)

whereas the second additive compound matrix [53-55] of model (3.19)
is defined as

. jllj‘-izz . j23A —f13
JR= gy, Ji+J3 Jo )
—J3 I Jn+J33
where
. R Baly
Jy+Jp=— +(Md+7d+a)d)+(0'd+nd+;4d) ,

1+al,
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s PaSa
BT A +al)?
. BiSa ton f
—J3=———=+w;Jyp =0,
3= (g arp "l =0
R R Baly R
Jutdy=- T+(”d+yd+wd)+(”d+§d) =y
al,
R R Bala . R
=J3 =0, le=1+ [Jzz+J33:—[(Gd""ld"'#d)"'(ﬂd"'fd)]-
aly
I, 1, I E, E, E
Let P = diag{ — - —£ 4 Then P! = diag{ —<, -2, -2 =

E; E; Eg TP Ak
1 I E’ I I E' 1 I E’

ding] 2¢(fa_La) Lafla Fa) Lofls B\ g popei o
E;\1; E;) E;\1; E;) Egj\1; E,;
I E’ I E’ I E’

diagd (Lo Ea) (Lo Ea) (fa_ Ea) |
I, E; I; Ey I; Ey

The matrix B = P;P~! + PJ?IP~! can be written in the following
form:

b _PaSa 8,5,(1 +al)? +w
M Gvary e d d
B = oy b2’2 —wy s
Baly
b33
I+aly,

Let z = (zy, 2, z3) be the vector in R? R®). We choose a norm in

R3 to be
Nzl + |23|}~

Let &(B) be the Lozinskii measure with respect to this norm. Then,
by applying the logarithmic norm method [54], we have

|(z1, 25, 23)| = max { |21

6(B) < max{g;, g},

where

81 =61(bi1) +bia] 8 =61(b22) + b2yl

with |b; 5|, |b,| the matrix norms with respect to the /; vector norm.
More specifically,

!

!
&1(biy) = ﬁ_ E_Z_ [jll +j22]7

|6y 2| = max PaSa PaSq + o,
b2 (U+al)?” \(d+ar)? ¢

ﬂde
=———+o
(1 + aly)?

d>

|by1] = 04
! !

&1(bys) =max{1—d— E—d— (g + 74 + 00) + (1g +&4)].
a E4

I; E;
-t (6g+ng+1a) + (pg +'fd)] — @y
d d

L K

7= 5 (e + &g+ @g) + max{=yy, (o + 1))
d d
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Therefore, we have

g1 =6(b1) +|bi2]

—I:’—E:"— Pula + (g +r)+ (og+ng+ug) | + PuSa
1,7 B, |Twar, T HaTIOT 0T T Ra) | ¥ T
I E AB
d d dPa
<L ugtogtng+yg) + .
I, Eg (2u4 + 04 14 +14) Ha
where 1+al; >1,5;, <N, < % and all associated parameters and
d
variables are positive.
82 =6 (bya) + |b21]
! !
d d
=O'd+I——E——(2/4d+§d+a)d)+max{—yd,—(0'd+r]d)}+ad
d d
! !
fa_Eq_

=7 % (Qug+ & +wg+v4) +og if o4+ 27,
« Eq

. . NgBy
Let da=min< 2u;+o,+n,+yv,— —— 2u;+é;+ws+v,—
Ha
oy } Suppose
74 > max

Adﬁd
ll__ Quyg+oy+ny), o4—Qug+&;+wy) p.
d

Thus we have a > 0. Then

I E’
gls_d__d_g’
I, E4
! !
<Id—Ed—~ if +ny >
gz—E E_d a 1 og5+ng 2y,

Along each solution (Sd(t),Ed(t),Id(t)> of model (2.1) with

arbitrary initial condition x,= (Sd(O), E,(0), Id(0)> in Q, we
have

1 gt 1 gt o1 1,0 E,(
?/0 g, do, ?/0 gzdﬁs—a+? In _ld(O) —1In _Ed(O) .

Hence
1 gt 1 1,00 E,(0)
—/ 6(B)d0 <max<{ —d+—-|In|——| —-In | —= .
t Jo t 1,(0) E4(0)
Therefore,
1 t
limsup sup —/ 6(B)df < —a<0 since a>0.
=00 xoefl ! 0

A
Since (Sy, Eg, I Vy) = (S5, E5.13,Vy) and S+ E+T+V — — as
U
t — oo, the humans-only model (final four equations of model (2.1)) is a
three-dimensional asymptotically autonomous differential system with
limit system

, A pSI,
S'tH=A+w ;—S—E—I 1T al —(u+7y)S,
d

BS1,
I+al,
I't)=cE—-(u+&I.

E'@®)=

—(c+n+wE,

(3.20)
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Fig. 2. All trajectories converge to the disease-free equilibrium (E,) whenever R, < 1,5, <y, and  <y.

The Jacobian matrix of (3.20) is given as follows:

i +o+u+
- ——+o - -
1+ al,” urr
= a ) 0
T+al (tn+u
0 o -+
The second additive compound matrix of J, is defined as
[ |
- — 5+ Quto+r+otn 0 ®
l+ald
pI;
J}[lzl = - —[ﬁ+(w+2u+y+:):| -
oy
0 1+a1; -Qu+é+o+n
Let
P:diag{i,l,l},
E E E
. I(1 FE I(I' E\I1(I' F
Pr=diagy =\ >—-= ) =l>-=)=l-=)
E\ 1T E ) E\I E) E\1 E
P l=diag{£,£,£}
1 11

where Pf is the matrix obtained by taking the derivative of each entry
of P along the direction of a vector field f.

The matrix B = P, P~ + PJ }[12] P~! can be written in the following
form:

51,1 0 (2]
. c by, -
B = I 5
BI; N
0 = b33
1+ald o
where
5 I E pI: )
l‘l_T_E_ W+(M+UJ++}’+O’+I’I) s
R (N o .
byy=———- | —=+Qu+yr+o+
22T TTal? Qu+tr+tw+d)
I FE
byz=———=—Qu+&+o+n).
BT Qu+é+o+n)

By using the same approach as in the dog population, we obtain

o I E pI

Ul(bll):T_F_ ]+al*+(2/4+w++y+a+n)
d

|bis| =@

& =31(i’11)+‘i’12‘

I E pI
T E |1+al}

09>
Il

+(2,u+w++y+6+r])] +o
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Fig. 3. All trajectories converge to the endemic equilibrium (E,) whenever R, > 1 and all conditions as in Theorem 7 are satisfied.
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Partial rank correlation coefficients

Fig. 4. Tornado plot illustrating the partial rank correlation coefficients (PRCCs) with R, as the output variable. The three parameters with the greatest impact on
the reproduction number are the birth, death and transmission rates of dogs.
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Fig. 5. Monte Carlo simulations illustrating sensitivity of R, to the three parameters (A,, f, and u,) that have the greatest influence on the disease.

N N Disease persistence

Disease eradication

N
0.5
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0.7
My

0.6

0s 08 03
Fig. 6. The surface R, =1 and the influence of the three most influential pa-
rameters (A,, B, and yu,). Disease eradication is possible for parameter values
below the surface, whereas the disease persists for parameter values above the
surface.

I E
<——=-—Ru+oc+y+nl
£T-F 2u+o+y+nl

since all associated parameters are positive. Next, we have

|t =
! !
G1(by) =maxq &= —=Qutr+o+d)
! E/

T—E—(Z,u+§+6+n)—a)

11

I' FE
=—-—=-Q2u+&é+ow)+max{-y,—(c +n)}
1 E
8= )1321| +61(by)
I' E' .
8 = T—F—(2u+§+w+y)+o ife+n>y.

Let ﬁ:min{2ﬂ+o+y+n, 2;4+.§+co+y—a}. Suppose y >

max{ -Qu+o+n), 6—(2;4+§+a))}. Thus we have 4 > 0. Then

s ' E
BSTTEC

! !
g2=IT—EE—ﬁ if o+n>y.

Along each solution (S(7), E(7), I(t)) of model (3.20) with arbitrary
initial condition
% = ( S(0), EQ0), 1(0)) in &, we have

1 gt 20 1 gt 0 1 | 1() E(@)
_ 5 _ S —a+ - —_— —_—

1 /0 & : /O & “TN " To E©0)

Hence
1 rt B)do 1 | I(1) E(1)
- & < — a4+ — — | - -
t/o 6(B)df < max a+ ; n 70 E0) s
and
1 t

limsup sup —/ 6(B)do < —a<0 since a>0.

Und R SY=0) 1Jo

Therefore, the endemic equilibrium of model (2.1) is globally asymp-
totically stable if Ry > 1,0, +n; >y, ando+n>y. O
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4. Numerical simulations
4.1. Stability of equilibria

We conduct numerical simulations of model (2.1) depicting the
transmission dynamics of rabies in the dog and human populations in or-
der to validate our results using the parameter values in Table 1. We rep-
resent the initial conditions using the symbol B and equilibrium points
by @. Parameters are given in Table 1.

From Fig. 2, we observe that all trajectories with arbitrary initial con-
ditions are converging to E; as t — oo whenever the conditions R, < 1,
ng <74 and n <y are satisfied. Fig. 3 shows that all trajectories con-
verge to E, as t —» oo if R, > 1 and all conditions stated in Theorem 7
are satisfied.

4.2. Sensitivity analysis

We used Latin Hypercube Sampling (LHS) and partial rank correla-
tion coefficients (PRCCs) to conduct a sensitivity analysis. LHS selects
parameter values from a random grid without replacement, ensuring
each row and column is used only once. Since there is limited or no
empirical data available for the associated parameters of the basic re-
production number, R, but their feasible ranges are known, we default
to assuming uniform distributions [60,61]. Suppose the range of each of
the input variables x; (i = 1,2, ..., k) is divided into n non-overlapping
intervals of equal probability i From each interval, one value is sam-
pled uniformly at random. The sampled values for each variable are
then independently shuffled to eliminate any correlation between vari-
ables. To ensure uniqueness, n distinct sample points are constructed by
combining the shuffled values across all variables. (For more details, see
[60-641.)

PRCCs are then used to assess the sensitivity of R, to each param-
eter by ranking their effects while holding all other parameters at me-
dian values. This approach has been widely applied in epidemiological
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modelling to determine the parameters that most significantly influence
disease transmission and control [65-70].

In this study, we perform LHS with 2000 simulations per run
to ensure conclusive results and allow us to observe distinct pat-
terns. The ranges of the associated parameters that are used in
performing the simulation are given in Table 2 unless otherwise
stated.

Fig. 4 shows that there are three parameters out of nine that have
the greatest effect in controlling disease transmission: A, f; and u,. R,
increases as A; and g, increase and decreases as u, increases. Fig. 5
illustrates the sensitivity analysis of R, to these three parameters. From
this figure, it is more promising to control the spreading of rabies by
reducing A, and g, values. However, we are unlikely to achieve disease
extinction by increasing .

By setting R, = 1 and fixing all associated parameters at their sam-
ple values as stated in Table 2, we would like to further examine these
three important parameters. The resulting surface is shown in Fig. 6.
The combination of three parameters above the surface will lead to dis-
ease persistence, whereas the disease is likely to die off for parameter
values below the surface. In addition, the R, value is directly propor-
tional to A; and ;. Hence, if we could control the recruitment rate of
dogs and the disease transmission rate from infected dogs to suscepti-
ble dogs, then R, < 1. However, such control is difficult to achieve in
practice, and the actual R, values in the field may be higher than previ-
ously thought [71]. We thus turn to investigating other possibilities for
control when R, > 1.

4.3. Including incidence

It follows from Fig. 5 that we can only achieve disease control if the
transmission rate is very small or the recruitment rate is tiny. Culling
dogs does not even cross the threshold. A larger issue is that the majority
of Monte Carlo simulations in Fig. 5 are above the threshold, suggesting
that actually eradicating rabies is unlikely except with extreme control
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Table 2
Sample values and ranges of associated parameters in performing
sensitivity analysis of R,.

Parameter ~ Value Unit Source Range

Ay 325 dye:“‘ [40] [10, 600]
By 52x107* year™! Estimation [0.0001, 1]
Hy 0.0833 year™! [41] [0.001, 1]
7 6 year™! [271 [0.01, 15]
& 1 year™! [27] [0.01, 10]
vy 0.9 unitless Estimation [0.01, 1]
@, 0.5 year™! [28] [0.01, 10]
7 0.5 year™! [44] [0.01, 10]
y 0.09 year™! [271 [0.001, 5]

measures. Furthermore, we know that the disease persists in reality, so
eradication is unlikely. Instead, we examine disease management in the
case of viral persistence.

A next-level approach is to examine the effect of changing « on the
outcome. It should be noted that R, does not depend on the form of
the incidence function or the parameter a. This is because R, is derived
from a linearisation of the model around equilibria; nonlinear terms in
the model, such as those describing saturated incidence, play no part in
the calculation of R,. The parameter « corresponds to either changing
behaviour among susceptible humans as they avoid contacts due to ris-
ing infections or reducing dog contacts through targeted interventions.

Fig. 7 shows that changes in the inhibitory effect, a, significantly
affect the number of infected dogs and humans when R, > 1. We can see

B,
that by increasing the a value, the saturated levels of model (2.1), k and
a

B . .
—, are decreasing; hence, the number of infected dogs and humans are
o

converging to a smaller steady state as ¢ — oo. This is illustrated in more
detail in Fig. 8, showing the reduction in the endemic equilibrium as «
increased. In Fig. 7, for « = 0.8, we observe that 7, — 1.0201 and I —
5.8277 as t — co. Furthermore, Fig. 8 shows that, for instance, when a =
0.7, I'* — 8.8705 and 1; — 1.1643, while fora = 1, I* — 6.2602 and l;‘ -
0.8173. These values do not approach zero when R, > 1 and hence do not
contradict Theorem 7 or Fig. 3. However, in practice, if the value of the
endemic equilibrium can be sufficiently lowered, then it is functionally
indistinguishable from eradication.

Conversely, when R, < 1, Fig. 9 shows that varying the a values
only results in a small difference in the number of infected dogs and
humans, slightly accelerating disease elimination. By fixing the value
of a and varying the vaccination rates (y,,#,,y and #), Fig. 10 illus-
trates that the impact of vaccination becomes negligible when « is
sufficiently large and R, > 1. However, when « is small, vaccination
proves to be effective: higher vaccination rates can reduce both the
peak and the final size of the number of infected dogs and humans.
It follows that inhibiting infection due to crowding is critical, even
when R, > 1. This can be achieved in dogs through surveillance and
control in humans through education, awareness and prevention pro-
grams. The inhibitory effect thus plays a crucial role when rabies is en-
demic, with the potential to eliminate the disease even when vaccination
cannot.

5. Discussion

We proposed a rabies mathematical model with saturated incidence
rate, governed by a set of nonlinear ordinary differential equations
describing dog and human populations. By applying the comparison
principle [51] and the theory of asymptotic autonomous systems [52],
we proved global stability of the disease-free equilibrium (E,) when-
ever R, < 1 and under the additional parameter restrictions n,; < y, and
n <y. A geometric approach [53] was used to prove that the endemic
equilibrium (E, ) achieves global stability whenever R, > 1. A sensitivity
analysis determined the three parameters that play the most significant
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effect in controlling the outbreak: A,, g, and p,. This suggests that in-
creasing vaccination programmes, public-awareness campaigns and dog
surveillance and monitoring will reduce the prevalence of the disease.
Rabies in dogs has been eliminated in countries such as the United King-
dom, Austria, Australia and Belgium [72], largely through successful
vaccination efforts [73]. However, global eradication has not yet been
achieved, despite robust and active intervention and control programs
in countries like Mexico and Nicaragua [72].

However, it should be noted from Figs. 5 and 6 that the vast majority
of parameter combinations lead to disease persistence. We capped Fig. 6
at A, = 400 for ease of illustration, but the graph is mostly flat at zero for
the range of A, values included in Table 2. It follows that disease eradi-
cation is unlikely in practice, unless the birth rate of dogs is significantly
reduced. However, eradication is not the only goal of rabies control; re-
ducing R, will improve the outcome, even if the value of R, in practice
does not cross the threshold. Even with R, > 1, increasing the inhibitory
effect has a noticeable impact on disease control. It follows that rabies
can be controlled with soft interventions, such as public-awareness cam-
paigns, reduced contacts, animal curfews and fences. These interven-
tions can control rabies better than current vaccination programs; see
Fig. 10. The importance of “soft” interventions — such as raising public
or community awareness and enhancing educational campaigns — has
been qualitatively shown to be more effective in combating rabies than
the implementation of mass rabies vaccination in dogs in some locales
[74-76].

Our model has several limitations, which should be acknowledged.
We considered dogs to be the only primary source of rabies transmission
in our model (2.1), and both dog and human populations will become
susceptible if the loss of immunity occurs. Moreover, we assumed that
the recruitment rates of dog and human populations were constant and
that a constant fraction v, of newly recruited dogs is vaccinated. We did
not include human-to-human transmission in our model; such transmis-
sion, via saliva or bite, is theoretically feasible, but it has never been
proven [22]. Our sensitivity analysis is robust within the range of pa-
rameter values chosen, but we did not explore values outside of these
(plausible) ranges, which could potentially lead to some outlier results.

For future work, we suggest integrating spatial and temporal dynam-
ics (spatially, the disease can spread through different geographical re-
gions or within communities; temporally, the disease can have seasonal
fluctuations), incorporation of vaccination hesitancy (despite the effec-
tiveness of vaccination programs, vaccine hesitancy can be a significant
barrier to achieve high vaccination coverage in the populations) and/or
environmental factors (environmental factors such as temperature, hu-
midity and habitat fragmentation can influence the spread of the dis-
ease).

Despite the availability of a vaccine and dog-culling programs, ra-
bies is a difficult disease to eradicate. Birth, death and transmission rates
among dogs are driving factors, while increasing the inhibitory effect a
(a measure of psychological or inhibitory effect from behaviour changes
or crowding) can result in a decrease in infections. This may produce a
counter-intuitive result: as rabies-control programs reduce the number
of infected dogs, the crowding effect may lighten, hampering these ef-
forts. It follows that intervention methods may require careful monitor-
ing for confounding effects.

Although we can prove local and global stability results for the erad-
ication threshold, this is not very useful in practice. Instead, includ-
ing saturated incidence in our model shows that the soft interventions
matter: they have a tangible effect on disease control, even when R, > 1.
It follows that integrating soft interventions into mathematical models
is a crucial element of disease management.
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Appendix A. Local stability of the endemic equilibrium
We find that a4, a5, ag,a; > 0 if Ry > 1. For ag(asas — ag) — aia7, we
have
ag(azas — ag) — aia7
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where

>0 ifRy>1,

Wi =g +va+wg)Guy+&5+o05+n,+7,+0y)
+ g ug + &4+ 04 +ny),
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Wy = (g +v)Bug + &5 +04 +ny)+ (uy +E)CBuy + &4 +v, +0y)
+ o, (g +1y),

Wi =wy(oy + ug) + Qug +E5)0, +ny4 + py)s

Wi = 0y + )by + &y + 1) + Gitg + & + 04 + 1) (g + @)
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