
Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Original research article

Do “soft” interventions matter more than vaccination? Rabies as an 

example

Nyuk Sian Chong a, Thanisha Kaliapan a, Can Chen b, Kok Choon Cheah c, 
Stacey R. Smith? d,∗

a Faculty of Computer Science and Mathematics, University Malaysia Terengganu, 21030, Kuala, Terengganu, Malaysia
b School of Mathematics, Zhengzhou University of Aeronautics, 450046, Zhengzhou, China
cHospital Sarikei, Jalan Rentap, 96100, Sarikei, Sarawak, Malaysia
dDepartment of Mathematics and Faculty of Medicine, The University of Ottawa, 150 Louis-Pasteur Pvt, K1N 6N5, Ottawa, ON, Canada

a r t i c l e  i n f o

Keywords:
Rabies
Ordinary differential equation
Saturated incidence
Steady states
Stability analysis
Numerical simulation

 a b s t r a c t

Interventions such as vaccinations, treatment et cetera are usually the gold standard of disease control, as mea-
sured by reducing the reproduction number below unity. However, in practice, few diseases are reduced below 
this eradication threshold and instead persist despite active intervention campaigns. We propose an epidemic 
model of rabies with a saturated incidence rate that represents “soft” interventions such as public-awareness 
campaigns, animal curfews, fences etc. We prove local and global stability results based on the reproduction 
number. However, numerical simulations suggest that eradication is unlikely to occur using current practices. 
We thus investigate the effect of altering the saturated incidence term using “soft” interventions and show that 
near-eradication can be achieved even when the reproduction number exceeds unity. Soft interventions such as 
public-awareness campaigns, reducing contacts, animal curfews and fences can have a greater effect on eradi-
cating rabies than current vaccination programs.

1.  Introduction

Disease modelling usually focuses on “hard” interventions, such as 
vaccines, drugs, insecticide spraying, etc. Mathematical models often 
pay less attention to “soft” interventions, such as public-awareness cam-
paigns, education, health promotion etc. Generally, this is because the 
former are easier to quantify [1]. However, the latter are also a key plank 
of disease management [2]. Recent epidemics such as Ebola in West 
Africa and COVID-19 have reinforced the importance of developing 
infectious-disease models that better integrate social and behavioural 
dynamics and theories [3]. Here we use modelling to compare the ef-
fects of vaccination with “soft” interventions for rabies virus (RABV) in 
dogs and humans.

Rabies

For nearly 4000 years, the rabies virus has been one of the most im-
portant global health threats [4,5], as it is an ancient deadly infectious 
disease that affects both canines and humans once symptoms develop 
[4,5]. It is one of the lethal zoonotic illnesses caused by a neurotropic 
virus of the genus lyssavirus, which belongs to the Rhabdoviridae family 
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[4–8]. It is also one of the vaccine-preventable viral infections that af-
fect both warm-blooded animals and humans [9]. RABV is transmitted 
to a susceptible host mainly via the bite of an infected host, due to viral-
loaded saliva or scratches [4,7–9]. Most rabies cases in humans and dogs 
have an incubation period of 20 days to 3 months; however, it can range 
from less than a week to over a year. This variation depends on the in-
vidual’s age, the location of exposure in relation to brain, intensity of ex-
posure and the species of the animal involved [9,10]. During this period, 
it infects the host’s central nervous system and causes gradual and lethal 
inflammation of the brain and spinal cord (encephalomyelitis) [4,7,9]. 
The inflammation will eventually lead to seizures, respiratory and cir-
culating failure, paralysis or coma, personality changes and death. Signs 
of apprehension or nervousness, irritability, sudden anorexia, hyperex-
citability and aggressiveness are practically certain if the disease is not 
treated immediately [9,11,12]. Only 14 people have been documented 
to have survived rabies after symptoms appear [13].

A vast spectrum of mammals functions as reservoirs or carriers for 
RABV, including dogs, cats, coyotes, gray foxes, raccoons, skunks and 
bats [14–17]. Dogs are the primary reservoir for more than 90% of 
rabies infections in the human population, mostly in Africa and Asia 
[5–9]. Despite the fact that rabies is preventable, thanks to effective
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\begin {align}\label {3.19} \frac {d V}{d t} &\le \gamma \left (\frac {\Lambda }{\mu }-V-I\right )-(\mu +\omega ) V \quad \text {if} \quad \eta \leqslant \gamma \nonumber \\ &\le \cfrac {\Lambda \gamma }{\mu } - \left (\mu +\omega +\gamma \right ),\end {align}


\begin {align*}\frac {d}{d t}\left [V e^{\left (\mu +\omega +\gamma \right ) t}\right ] & \le \frac {\Lambda \gamma }{\mu } e^{\left (\mu +\omega +\gamma \right ) t} \\ V(t) e^{\left (\mu +\omega +\gamma \right ) t} &\le V (0) + \cfrac {\Lambda \gamma }{\mu \left (\mu +\omega +\gamma \right )} \left [e^{\left (\mu +\omega +\gamma \right ) t}-1\right ]\\ V(t)&\le V_{0}+V(0) e^{-\left (\mu +\omega +\gamma \right ) t}, \quad \text {where} \quad V_{0}= \cfrac {\Lambda \gamma }{\mu \left (\mu +\omega +\gamma \right )}.\end {align*}


$\varepsilon _2=\frac {(\mu +\gamma ) \varepsilon _3}{\omega }$


$\varepsilon _2>0$


$t_3>0$


$V \le V_0+\varepsilon _2$


$t>t_3$


$\forall t>t_3$


\begin {align}\label {3.21} \frac {d S}{d t} & =\Lambda +\omega V-\frac {\beta S I_d}{1+\alpha I_d}-(\mu +\gamma ) S\nonumber \\ & \le \Lambda +\omega \left (V_0+\varepsilon _2\right )-(\mu +\gamma ) S,\end {align}


$V\le V_0+\varepsilon _2$


\begin {align*}\frac {d}{d t}\left [S e^{(\mu +\gamma ) t}\right ] &\leqslant \left [\Lambda +\omega \left (\frac {\Lambda }{\mu }-S_0\right )+\omega \varepsilon _2\right ] e^{(\mu +\gamma ) t}, \quad \text {where}\\ S_0&=\frac {\Lambda (\mu +\omega )}{\mu (\mu +\omega +\gamma )} \\ S(t) e^{(\mu +\gamma ) t} &\leqslant S(0)+\frac {\Lambda (\mu +\omega )-\mu \omega S_0+\mu \omega \varepsilon _2}{\mu (\mu +\gamma )}\left [e^{(\mu +\gamma ) t}-1\right ] \\ S(t) &\leqslant S_0+\frac {\omega \varepsilon _2}{\mu +\gamma }+S(0) e^{-(\mu +\gamma ) t}.\\\end {align*}


$\varepsilon _3=\frac {\omega \varepsilon _2}{\mu +\gamma }$


$\varepsilon _3>0$


$t_4>0$


$S \leqslant S_0+\varepsilon _3$


$t>t_4>t_3$


$E, I \rightarrow 0$


$t \rightarrow \infty $


$I_d \rightarrow 0$


$t \rightarrow \infty $


$V \rightarrow V_0$


$S \rightarrow S_0$


$t \rightarrow \infty $


$E_1$


$R_0<1$


$\eta _d \leqslant \gamma _d$


$\eta \leqslant \gamma $


$E_*$


$\tilde {\Omega }$


$\Omega $


$E_* \in \tilde {\Omega }$


$R_0 >1$


$x \mapsto f(x) \in \mathbb {R}^{n}$


$C^1$


$x$


$D \subset \mathbb {R}^{n}$


$x^*$


$x_0$


$x(t,x_0)$


$x(0,x_0)=x_0$


$D$


$\tilde {D} \subset D$


$x^*$


$D$


$P(x)$


$\binom {n}{2} \times \binom {n}{2}$


$C^1$


$D$


$P^{-1}(x)$


$\tilde {D} \subset D$


$\tilde {\sigma }(B)$


$B$


$\|\cdot \|$


$\mathbb {R}^{\binom {n}{2}}$


\begin {equation*}\tilde {\sigma }(B) = \lim _{h \to 0^+} \frac {\|I + hB\| - 1}{h},\end {equation*}


$I$


$B$


\begin {equation*}B = P_f P^{-1} + P J^{[2]} P^{-1}.\end {equation*}


$P_f$


$P$


$f$


$J^{[2]}$


$J(x)$


$I + hB$


$h \to 0^+$


$q$


\begin {equation*}q = \lim _{t \to \infty } \sup _{x_0 \in \tilde {D}} \frac {1}{t} \int _0^t \tilde {\sigma }(B(x(0, x_0))) \, d\theta ,\end {equation*}


$x(0, x_0)$


$x_0$


$B$


$C^1$


$f$


$x^*$


$D$


$E_*$


$R_0 > 1, \quad \sigma _d +\eta _d \ge \gamma _d , \quad \sigma +\eta \ge \gamma , \quad $


$\gamma _d > \max \Bigg \{\cfrac {\Lambda _d \beta _d}{\mu _d} - \left ( 2\mu _d+\sigma _d+\eta _d \right ) , \quad \sigma _d - (2\mu _d+\xi _d+\omega _d) \Bigg \} \quad \text {and} \quad \gamma >\max \Bigg \{-(2 \mu +\sigma +\eta ),\quad \sigma -(2 \mu +\xi +\omega ) \Bigg \}.$


$\Omega =\Bigg \{(S_d,E_d,V_d,I_d,S,E,V,I) \in \mathbb {R}_+^8| \quad 0 < S_d + E_d + V_d + I_d\le \cfrac {\Lambda _d}{\mu _d}$


$0 < S + E + V+ I \le \cfrac {\Lambda }{\mu }\Bigg \}$


$\mathbb {R}_+^{8}$


$E_*$


$\tilde {\Omega },$


$\Omega $


$R_0 >1$


$E_1$


$R_0>1$


$\Omega $


$\tilde {\Omega }$


$\Omega $


$S_d + E_d + V_d + I_d \rightarrow \cfrac {\Lambda _d}{\mu _d}$


$t \rightarrow \infty $


\begin {align}\label {3.24} S'_d(t)&=\Lambda _d(1-\nu _d)+ \omega _d \left (\cfrac {\Lambda _d}{\mu _d} - S_d - E_d - I_d \right ) - \cfrac {\beta _d S_d I_d}{1+\alpha I_d}- (\mu _d+\gamma _d) S_d , \nonumber \\ E'_d(t)&=\cfrac {\beta _d S_d I_d}{1+\alpha I_d}-(\sigma _d+\eta _d+\mu _d) E_d,\nonumber \\ I'_d(t)&=\sigma _d E_d - (\mu _d+\xi _d)I_d.\end {align}


\begin {equation*}\fontsize {7}{9}\selectfont {\hat {J}= \begin {bmatrix} -\left (\cfrac {\beta _d I_d}{1+\alpha I_d} +\mu _d +\gamma _d+ \omega _d \right ) & -\omega _d & - \left (\cfrac {\beta _d S_d}{(1+\alpha I_d)^2} +\omega _d\right ) \\ \cfrac {\beta _d I_d}{1+\alpha I_d} & - \left (\sigma _d + \eta _d + \mu _d \right )& \cfrac {\beta _d S_d}{(1+\alpha I_d)^2} \\ 0 & \sigma _d & - \left (\mu _d+\xi _d \right ) \end {bmatrix},}\end {equation*}


\begin {equation*}\hat {J}^{[2]}= \begin {bmatrix} \hat {J}_{11}+\hat {J}_{22} & \hat {J}_{23} & - \hat {J}_{13} \\ \hat {J}_{32} & \hat {J}_{11}+\hat {J}_{33} & \hat {J}_{12} \\ - \hat {J}_{31}& \hat {J}_{21} & \hat {J}_{22}+\hat {J}_{33} \end {bmatrix},\end {equation*}


\begin {align*}\hat {J}_{11}+\hat {J}_{22}& = -\left [ \cfrac {\beta _d I_d}{1+\alpha I_d} + (\mu _d +\gamma _d+ \omega _d)+ \left (\sigma _d + \eta _d + \mu _d \right ) \right ] ,\\ \hat {J}_{23}& = \cfrac {\beta _d S_d}{(1+\alpha I_d)^2},\\ - \hat {J}_{13}&= \cfrac {\beta _d S_d}{(1+\alpha I_d)^2} +\omega _d , \hat {J}_{32} = \sigma _d, \\ \hat {J}_{11}+\hat {J}_{33}&= -\left [ \cfrac {\beta _d I_d}{1+\alpha I_d} + (\mu _d +\gamma _d+ \omega _d)+ \left ( \mu _d +\xi _d\right ) \right ], \hat {J}_{12}= - \omega _d\\ - \hat {J}_{31}&=0 , \quad \hat {J}_{21}= \cfrac {\beta _d I_d}{1+\alpha I_d} \hat {J}_{22}+\hat {J}_{33}= -\left [\left (\sigma _d + \eta _d + \mu _d \right )+ \left ( \mu _d +\xi _d\right ) \right ].\end {align*}


$P=\text {diag}\Bigg \{\cfrac {I_d}{E_d}, \cfrac {I_d}{E_d}, \cfrac {I_d}{E_d} \Bigg \}$


$P^{-1}=\text {diag}\Bigg \{\cfrac {E_d}{I_d}, \cfrac {E_d}{I_d}, \cfrac {E_d}{I_d} \Bigg \}$


$P_f=\text {diag}\Bigg \{\cfrac {I_d}{E_d} \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ),\cfrac {I_d}{E_d} \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ), \cfrac {I_d}{E_d} \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right )\Bigg \}$


$P_fP^{-1}=\text {diag}\Bigg \{\left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ), \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ), \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right )\Bigg \}$


$B= P_fP^{-1} + PJ^{\left [2\right ]}P^{-1}$


\begin {equation*}B = \begin {pmatrix} b_{1,1} & \cfrac {\beta _d S_d}{(1+\alpha I_d)^2} & {\beta _d S_d}{(1+\alpha I_d)^2} +\omega _d \\ \sigma _d & b_{2,2} & - \omega _d \\ 0 & \cfrac {\beta _d I_d}{1+\alpha I_d} & b_{3,3} \end {pmatrix},\end {equation*}


\begin {align*}\text {where} \quad b_{1,1}&= \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ) -\left [ \hat {J}_{11}+\hat {J}_{22} \right ],\\ b_{2,2}&= \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ) -\left [ \hat {J}_{11}+\hat {J}_{33} \right ] \quad \text {and} \\ b_{3,3}&= \left ( \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} \right ) - \left [\hat {J}_{22}+\hat {J}_{33} \right ].\end {align*}


$z = \left ( z_1, z_2, z_3\right )$


$\mathbb {R}^{3} \cong \mathbb {R}^{\binom {n}{2}}$


$\mathbb {R}^{3}$


\begin {equation*}\left | (z_1, z_2, z_3)\right |= \max \Bigg \{\left | z_1 \right |, \left | z_2 \right |+ \left | z_3 \right | \Bigg \}.\end {equation*}


$\tilde {\sigma } (B)$


\begin {equation*}\tilde {\sigma } (B) \le \max \{g_1, g_2 \},\end {equation*}


\begin {align*}g_1=\tilde {\sigma }_1\left (b_{1,1}\right )+\left |b_{1,2}\right |, \quad g_2=\tilde {\sigma }_1\left (b_{2,2}\right )+\left |b_{2,1}\right |,\end {align*}


$\left |b_{1,2}\right |,\left |b_{2,1}\right |$


$l_1$


\begin {align*}\tilde {\sigma }_1\left (b_{1,1}\right ) & =\cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} -\left [ \hat {J}_{11}+\hat {J}_{22} \right ], \\ \left |b_{1,2}\right | & =\max \Bigg \{\cfrac {\beta _d S_d}{(1+\alpha I_d)^2} , \quad \left (\cfrac {\beta _d S_d}{(1+\alpha I_d)^2} +\omega _d\right ) \Bigg \} \\ & =\cfrac {\beta _d S_d}{(1+\alpha I_d)^2} +\omega _d , \\ \left |b_{2,1}\right | & =\sigma _d .\\ \tilde {\sigma }_1\left (b_{2,2}\right )= & \max \Bigg \{\cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} -\left [ (\mu _d +\gamma _d+ \omega _d)+ \left ( \mu _d +\xi _d\right ) \right ] ,\\&\quad \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \left [\left (\sigma _d + \eta _d + \mu _d \right )+ \left ( \mu _d +\xi _d\right ) \right ] - \omega _d \Bigg \} \\ = & \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \left ( 2\mu _d +\xi _d +\omega _d\right ) +\max \{-\gamma _d,-(\sigma _d + \eta _d)\}. \\\end {align*}


\begin {align*}g_1&=\tilde {\sigma }_1\left (b_{1,1}\right )+\left |b_{1,2}\right |\\ &=\cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} -\left [ \cfrac {\beta _d I_d}{1+\alpha I_d} + (\mu _d +\gamma _d)+ \left (\sigma _d + \eta _d + \mu _d \right )\right ]+ \cfrac {\beta _d S_d}{(1+\alpha I_d)^2} \\ &\le \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \left (2\mu _d + \sigma _d + \eta _d +\gamma _d \right ) + \cfrac {\Lambda _d \beta _d}{\mu _d}, \\\end {align*}


$1+\alpha I_d \geq 1 , S_d \leq N_d \leq \frac {\Lambda _d}{\mu _d}$


\begin {align*}g_2&=\tilde {\sigma }_1\left (b_{2,2}\right )+\left |b_{2,1}\right | \\ &= \sigma _d + \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \left ( 2\mu _d +\xi _d +\omega _d\right ) +\max \{-\gamma _d,-(\sigma _d + \eta _d)\} + \sigma _d \\ &=\cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \left ( 2\mu _d +\xi _d +\omega _d + \gamma _d\right ) +\sigma _d \quad \text {if}\quad \sigma _d + \eta _d \ge \gamma _d.\end {align*}


$\tilde {a}= \min \Bigg \{2\mu _d + \sigma _d + \eta _d +\gamma _d - \cfrac {\Lambda _d \beta _d}{\mu _d}, \quad 2\mu _d +\xi _d +\omega _d + \gamma _d - \sigma _d \Bigg \}$


$\gamma _d > \max \Bigg \{\cfrac {\Lambda _d \beta _d}{\mu _d} - (2\mu _d + \sigma _d + \eta _d ), \quad \sigma _d - (2\mu _d +\xi _d +\omega _d ) \Bigg \}$


$\tilde {a} > 0$


\begin {align*}g_1&\le \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \tilde {a},\\ g_2&\le \cfrac {I'_d}{I_d} - \cfrac {E'_d}{E_d} - \tilde {a} \quad \text {if}\quad \sigma _d + \eta _d \ge \gamma _d.\end {align*}


$\Bigl ( S_d(t), E_d(t), I_d(t)\Bigr )$


$x_0 = \Bigl ( S_d(0), E_d(0), I_d(0)\Bigr )$


$\tilde {\Omega }$


\begin {equation*}\cfrac {1}{t}\int _{0}^{t} g_1 \,d\theta , \quad \cfrac {1}{t}\int _{0}^{t} g_2 \,d\theta \le - \tilde {a} + \cfrac {1}{t} \Bigg \{\ln \left [\cfrac {I_d(t)}{I_d(0)}\right ] - \ln \left [\cfrac {E_d(t)}{E_d(0)}\right ] \Bigg \}.\end {equation*}


\begin {equation*}\begin {aligned} \cfrac {1}{t}\int _{0}^{t} \tilde {\sigma } (B) \,d\theta \le &\max \Bigg \{- \tilde {a} + \cfrac {1}{t} \left ( \ln \left [\cfrac {I_d(t)}{I_d(0)}\right ] - \ln \left [\cfrac {E_d(t)}{E_d(0)}\right ]\right ) \Bigg \}. \end {aligned}\end {equation*}


\begin {equation*}\limsup \limits _{t \to \infty }\sup _{x_0 \in \tilde {\Omega }} \quad \cfrac {1}{t}\int _{0}^{t} \tilde {\sigma }(B) \,d\theta \le - \tilde {a} < 0 \quad \text {since} \quad \tilde {a}> 0.\end {equation*}


$\left (S_d, E_d, I_d, V_d\right ) \rightarrow \left (S_d^*, E_d^*, I_d^*, V_d^*\right )$


$S+E+I+V \rightarrow \cfrac {\Lambda }{\mu }$


$t \rightarrow \infty $


\begin {align}\label {3.25} S'(t)&=\Lambda + \omega \left (\cfrac {\Lambda }{\mu } - S -E-I \right ) - \cfrac {\beta S I_d}{1+\alpha I_d}- (\mu +\gamma ) S, \nonumber \\ E'(t)&=\cfrac {\beta S I_d}{1+\alpha I_d}-(\sigma +\eta +\mu ) E,\nonumber \\ I'(t)&=\sigma E - (\mu +\xi )I.\end {align}


\begin {equation*}J_h= \left [\begin {array}{ccc} -\left (\cfrac {\beta I_d^*}{1+\alpha I_d{}^*}+\omega +\mu +\gamma \right ) & -\omega & -\omega \\ \cfrac {\beta I_d^*}{1+\alpha I_d^*} & -(\sigma +\eta +\mu ) & 0 \\ 0 & \sigma & -(\mu +\xi ) \end {array}\right ].\end {equation*}


$J_h$


\begin {equation*}\fontsize {5}{7}\selectfont { J_h^{[2]}= \begin {bmatrix} -\left [\cfrac {\beta I_d^*}{1+\alpha I_d^*}+(2\mu +\omega +\gamma +\sigma +\eta )\right ] & 0 & \omega \\ \sigma & -\left [\cfrac {\beta I_d^*}{1+\alpha I_d^*}+(\omega +2\mu +\gamma +\xi )\right ] & -\omega \\ 0 & \cfrac {\beta I_d^*}{1+\alpha I_d^*} & -(2\mu +\xi +\sigma +\eta ) \end {bmatrix}.}\end {equation*}


\begin {align*}\hat {P}&=\operatorname {diag}\left \{\frac {I}{E}, \frac {I}{E}, \frac {1}{E}\right \} ,\\ \hat {P}_f&=\operatorname {diag}\left \{\frac {I}{E}\left (\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}\right ), \frac {I}{E}\left (\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}\right ), \frac {I}{E}\left (\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}\right )\right \}, \\ \hat {P}^{-1}&=\operatorname {diag}\left \{\frac {E}{I}, \frac {E}{I}, \frac {E}{I}\right \} \\ \hat {P}_f \hat {P}^{-1}&=\operatorname {diag}\left \{\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}, \frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}, \frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}\right \},\end {align*}


$\hat {P}_f$


$\hat {P}$


$f$


$\hat {B}= \hat {P}_f\hat {P}^{-1} + \hat {P}J_h^{[2]}\hat {P}^{-1}$


\begin {equation*}\hat {B} = \begin {pmatrix} \hat {b}_{1,1} & 0 & \omega \\ \sigma & \hat {b}_{2,2} & -\omega \\ 0 & \cfrac {\beta I_d^*}{1+\alpha I_d^*} & \hat {b}_{3,3} \end {pmatrix},\quad \end {equation*}


\begin {align*}\hat {b}_{1,1}&= \cfrac {I'}{I} - \cfrac {E'}{E} -\left [\cfrac {\beta I_d^*}{1+\alpha I_d^*}+(2\mu +\omega ++\gamma +\sigma +\eta )\right ], \\ \hat {b}_{2,2}&= \cfrac {I'}{I} - \cfrac {E'}{E} -\left [ \cfrac {\beta I_d^*}{1+\alpha I_d^*} + (2\mu +\gamma + \omega +\xi ) \right ] \\ \hat {b}_{3,3}&= \cfrac {I'}{I} - \cfrac {E'}{E} - \left ( 2\mu +\xi +\sigma + \eta \right ).\end {align*}


\begin {align*}\hat {\sigma }_1(\hat {b}_{11})&= \cfrac {I'}{I} - \cfrac {E'}{E} -\left [\cfrac {\beta I_d^*}{1+\alpha I_d^*}+(2\mu +\omega ++\gamma +\sigma +\eta )\right ]\\ \left |\hat {b}_{12}\right |&=\omega \\ \hat {g}_1 & =\hat {\sigma }_1(\hat {b}_{11})+\left |\hat {b}_{12}\right |\\ \hat {g}_1 & =\cfrac {I'}{I} - \cfrac {E'}{E} -\left [\cfrac {\beta I_d^*}{1+\alpha I_d^*}+(2\mu +\omega ++\gamma +\sigma +\eta )\right ]+\omega \\ & \leq \frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}-[2\mu +\sigma +\gamma +\eta ],\end {align*}


\begin {align*}\left |\hat {b}_{21}\right |&=\sigma \\ \hat {\sigma }_1(\hat {b}_{22})&=\max \Bigg \{\cfrac {I'}{I} - \cfrac {E'}{E}-(2\mu +\gamma + \omega +\xi ),\\& \qquad \cfrac {I'}{I} - \cfrac {E'}{E}- \left ( 2\mu +\xi +\sigma + \eta \right )-\omega \Bigg \} \\ &= \cfrac {I'}{I} - \cfrac {E'}{E} - \left ( 2\mu +\xi +\omega \right )+\max \{-\gamma , -(\sigma +\eta ) \}\\ \hat {g}_2&=\left |\hat {b}_{21}\right |+\hat {\sigma }_1(\hat {b}_{22})\\ \hat {g}_2&=\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}-(2 \mu +\xi +\omega +\gamma )+\sigma \quad \text {if} \sigma +\eta \geqslant \gamma .\end {align*}


$\hat {a}=\min \bigg \{2\mu +\sigma +\gamma +\eta , \quad 2 \mu +\xi +\omega +\gamma -\sigma \bigg \}$


$\gamma >\max \bigg \{-(2 \mu +\sigma +\eta ),\quad \sigma -(2 \mu +\xi +\omega )\bigg \}$


$\hat {a}>0$


\begin {align*}& \hat {g}_1 \leqslant \frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}-\hat {a},\\ & \hat {g}_2=\frac {I^{\prime }}{I}-\frac {E^{\prime }}{E}-\hat {a} \quad \text {if} \quad \sigma +\eta \ge \gamma .\end {align*}


$(S(t), E(t), I(t))$


$\hat {x}_0 = \Bigl ( S(0), E(0), I(0)\Bigr )$


$\tilde {\Omega }$


\begin {equation*}\cfrac {1}{t}\int _{0}^{t} g_1 \,d\theta , \quad \cfrac {1}{t}\int _{0}^{t} g_2 \,d\theta \le - \tilde {a} + \cfrac {1}{t} \Bigg \{\ln \left [\cfrac {I(t)}{I(0)}\right ] - \ln \left [\cfrac {E(t)}{E(0)}\right ] \Bigg \}.\end {equation*}


\begin {equation*}\cfrac {1}{t}\int _{0}^{t} \tilde {\sigma } (B) \,d\theta \le \max \Bigg \{- \tilde {a} + \cfrac {1}{t} \left ( \ln \left [\cfrac {I(t)}{I(0)}\right ] - \ln \left [\cfrac {E(t)}{E(0)}\right ]\right ) \Bigg \},\end {equation*}


\begin {equation*}\limsup \limits _{t \to \infty }\sup _{\hat {x}_0 \in \tilde {\Omega }} \quad \cfrac {1}{t}\int _{0}^{t} \tilde {\sigma }(B) \,d\theta \le - \tilde {a} < 0 \quad \text {since} \quad \tilde {a}> 0.\end {equation*}


$R_0 > 1$


$\sigma _d +\eta _d \ge \gamma _d$


$\sigma +\eta \ge \gamma $


$E_1$


$R_0<1$


$\eta _d \le \gamma _d$


$\eta \le \gamma $


$E_1$


$t \rightarrow \infty $


$R_0 < 1$


$\eta _d \le \gamma _d$


$\eta \le \gamma $


$E_*$


$R_0>1$


$E_*$


$t \rightarrow \infty $


$R_0 >1$


$R_0$


$x_i$


$i=1, 2, \ldots , k$


$n$


$\frac {1}{n}$


$n$


$R_0$


$R_0$


$R_0$


$\Lambda _d, \beta _d$


$\mu _d$


$R_0$


$\Lambda _d$


$\beta _d$


$\mu _d$


$R_0$


$\Lambda _d$


$\beta _d$


$\mu _d$


$R_0$


$\Lambda _d$


$\beta _d$


$\mu _d$


$R_0=1$


$R_0=1$


$\Lambda _d$


$\beta _d$


$\mu _d$


$R_0$


$\Lambda _d$


$\beta _d$


$R_0<1$


$R_0$


$R_0>1$


$\alpha $


$R_0$


$\alpha $


$R_0$


$R_0$


$\alpha $


$\alpha $


$R_0>1$


$\alpha $


$R_0>1$


$\alpha $


$\cfrac {\beta _d}{\alpha }$


$\cfrac {\beta }{\alpha }$


$t \rightarrow \infty $


$I_d^*$


$I^*$


$\alpha $


$R_0>1$


$\alpha $


$\alpha =0.8$


$I_d \rightarrow 1.0201$


$I \rightarrow 5.8277$


$t \rightarrow \infty $


$\alpha =0.7$


$I^* \rightarrow 8.8705$


$I_d^* \rightarrow 1.1643$


$\alpha =1$


$I^* \rightarrow 6.2602$


$I_d^* \rightarrow 0.8173$


$R_0>1$


$R_0<1$


$\alpha $


$R_0<1$


$\alpha $


$\alpha $


$\gamma _d, \eta _d, \gamma $


$\eta $


$\alpha $


$R_0>1$


$\alpha $


$R_0>1$


$\alpha $


$R_0>1$


$E_1$


$R_0 < 1$


$\eta _d \le \gamma _d$


$\eta \le \gamma $


$E_*$


$R_0 >1$


$\Lambda _d$


$\beta _d$


$\mu _d$


$\Lambda _d=400$


$\Lambda _d$


$R_0$


$R_0$


$R_0>1$


$\nu _d$


$\alpha $


$R_0>1$


$a_4, a_5, a_6, a_7 >0$


$R_0 >1$


$a_6(a_4 a_5- a_6)- a_4^2 a_7$


\begin {align*}&a_6(a_4 a_5 - a_6)-a_4^2 a_7 \nonumber \\ ={}&\mu _d(\mu _d+\gamma _d+\omega _d)(2\mu _d+\xi _d+\sigma _d+\eta _d)(3\mu _d+\xi _d+\sigma _d+\eta _d)W_1 \nonumber \\ &+\mu _d(2\mu _d+\xi _d+\sigma _d+\eta _d)\Biggl \{(\mu _d+\gamma _d+\omega _d)W_2+(3\mu _d+\xi _d+\sigma _d+\eta _d)\nonumber \\&\quad \Bigl [W_3+(\mu _d+\xi _d)(\mu _d+\omega _d)\Bigr ] \Biggr \}\cfrac {\beta _d I_d^*}{1+\alpha I_d^*} \nonumber \\ &+(4\mu _d+\xi _d+\sigma _d+\eta _d+\gamma _d+\omega _d)\Bigl [(\mu _d+\gamma _d+\omega _d)W_4+\gamma _d(\mu _d+\xi _d)\nonumber \\&\quad (\sigma _d+\mu _d)(3\mu _d+\xi _d+\sigma _d+\eta _d)\Bigr ]\cfrac {\beta _d I_d^*}{1+\alpha I_d^*} \nonumber \\ &+(\mu _d+\xi _d)(\sigma _d+\eta _d+\mu _d)W_9\left (\cfrac {\beta _d I_d^*}{1+\alpha I_d^*}\right )\left (\cfrac {\alpha I_d^*}{1+\alpha I_d^*}\right )\nonumber \\ &+(\mu _d+\xi _d)(\sigma _d+\eta _d+\mu _d)\Bigl [W_3+W_5+(\mu _d+\xi _d)(2\mu _d+\omega _d)+(2\mu _d+\xi _d)\nonumber \\&\quad (\mu _d+\gamma _d+\omega _d) \Bigr ]\cfrac {\alpha I_d^*}{1+\alpha I_d^*}\left (\cfrac {\beta _d I_d^*}{1+\alpha I_d^*}\right )^2 \nonumber \\ &+(2\mu _d+\gamma _d+\omega _d)(\mu _d+\xi _d)^2(\sigma _d+\eta _d+\mu _d)^2\nonumber \\&\quad \left (\cfrac {\beta _d I_d^*}{1+\alpha I_d^*}+2\mu _d+\xi _d+\sigma _d+\eta _d\right ) \left (\cfrac {\alpha I_d^*}{1+\alpha I_d^*} \right )^2 \nonumber \\ &+(\mu _d+\xi _d)(\sigma _d+\eta _d+\mu _d)(2\mu _d+\gamma _d+\omega _d)(2\mu _d+\xi _d+\sigma _d+\eta _d)\nonumber \\&\quad W_6 \left (\cfrac {\alpha I_d^*}{1+\alpha I_d^*}\right ) \\ &+W_{10}\left (\cfrac {\beta _d I_d^*}{1+\alpha I_d^*}\right )^2 + \Bigl [(\mu _d+\xi _d)W_8+(3\mu _d+\xi _d+\sigma _d+\eta _d+\omega _d)W_3\Bigr ]\nonumber \\&\quad \left (\cfrac {\beta _d I_d^*}{1+\alpha I_d^*}\right )^3 >0 \quad \text {if }R_0>1 ,\end {align*}


\begin {align*}W_1={}&(\mu _d+\gamma _d+\omega _d)(4\mu _d+\xi _d+\sigma _d+\eta _d+\gamma _d+\omega _d)\\&\quad +\mu _d(2\mu _d+\xi _d+\sigma _d+\eta _d) , \\ W_2={}&(\mu _d+\gamma _d)(3\mu _d+\xi _d+\sigma _d+\eta _d)+(\mu _d+\xi _d)(3\mu _d+\xi _d+\gamma _d+\omega _d)\\&\quad +\omega _d(\mu _d+\eta _d) , \\ W_3={}&\omega _d(\sigma _d+\mu _d)+(2\mu _d+\xi _d)(\sigma _d+\eta _d+\mu _d) , \\ W_4={}&\omega _d(\mu _d+\xi _d)(3\mu _d+\xi _d+\eta _d)+(3\mu _d+\xi _d+\sigma _d+\eta _d)\Bigl [(\mu _d+\omega _d)\\&\quad (\sigma _d+\mu _d)+\mu _d(\mu _d+\xi _d+\eta _d)\Bigr ]+\mu _d^2(\mu _d+\xi _d)+\mu _d(\sigma _d+\eta _d+\mu _d)\\&\quad (2\mu _d+\sigma _d+\eta _d+\omega _d) , \\ W_5={}&2\mu _d^2+(\sigma _d+\eta _d+\omega _d)(2\mu _d+\gamma _d+\omega _d) , \\ W_6={}&(\mu _d+\gamma _d+\omega _d)(2\mu _d+\xi _d+\sigma _d+\eta _d+\gamma _d+\omega _d)\\&\quad +\mu _d(3\mu _d+\xi _d+\sigma _d+\eta _d) , \\ W_7={}&\mu _d \Bigl [(2\sigma _d+2\eta _d+\mu _d+\omega _d)(2\mu _d+\sigma _d+\eta _d+\omega _d)+(\mu _d+\xi _d)\\&\quad (2\mu _d+\omega _d) \Bigr ] +\omega _d \Bigl [\sigma _d^2+\xi _d \eta _d +(\mu _d+\eta _d+\omega _d)(\mu _d+\xi _d+\sigma _d) \Bigr ]\\&\quad +\xi _d(\sigma _d+\eta _d)(2\mu _d+\sigma _d+\eta _d), \\ W_8={}&\mu _d(2\mu _d+\xi _d+\omega _d)+\omega _d(2\mu _d+\xi _d+\eta _d+\omega _d) , \\ W_9={}&(2\mu _d+\xi _d+\sigma _d+\eta _d)\Bigl [W_3+\mu _d\gamma _d+(\mu _d+\omega _d)(2\mu _d+\xi _d) \Bigr ]\\&\quad +(2\mu _d+\gamma _d+\omega _d)W_2 +(4\mu _d+\xi _d+\sigma _d+\eta _d+\gamma _d+\omega _d)W_5 \quad \text {and} \\ W_{10}={}&\mu _d(\mu _d+\gamma _d+\omega _d)(2\mu _d+\xi _d+\sigma _d+\eta _d)(3\mu _d+\xi _d+\sigma _d+\eta _d+\omega _d)\\&\quad \Bigl [W_3+(\mu _d+\xi _d)(\mu _d+\omega _d)\Bigr ]W_2 \\ &+(4\mu _d+\xi _d+\sigma _d+\eta _d+\gamma _d+\omega _d)W_7 . \\\end {align*}
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vaccines, the morbidity and mortality rates of this disease are still high 
due to limited resources, high costs of vaccination and medical treat-
ment, cultural hostility and lack of strategic coordination [9,10]. Rabies 
is one of the neglected tropical diseases that kills approximately 59,000 
people each year in more than 150 countries, with up to 95% of cases 
occurring in Africa and Asia, 40% of whom are children under the age 
of 15 [4,6–10].

The rabies vaccine, invented by Louis Pasteur, was the second vac-
cine developed, after smallpox [18]. There are two types of rabies vac-
cines: pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis 
(PEP). The PrEP vaccine is given before exposure occurs, whereas PEP 
is given right after exposure but before symptoms begin [19]. Accord-
ing to the World Health Organization (WHO) [9], rabies affects approx-
imately 80% of the poor and unprotected populations who live in se-
cluded rural areas, and children are the major victims of this disease. 
This is mainly due to lack of access to proper medication or treatment, 
lack of awareness and negligence towards the disease. The WHO and 
its partners have launched a global campaign to achieve zero human 
deaths from dog-mediated rabies by 2030 [20–22]. The campaign will 
focus on improving awareness of RABV, enhancing access to PEP for the 
poor and vulnerable populations who live in remote rural areas, mass 
dog vaccination, rabies surveillance with veterinary services, expand-
ing oral vaccination of wildlife, which can reduce rabies infection in 
reservoir populations, dog registration and education campaigns to the 
communities [5,9,20,21].

A number of mathematical models have been introduced to gain 
some insights into the effectiveness of rabies-control measures such as 
dog vaccination, the interactions and movements among different sub-
populations of animals and rabies reaction-diffusion analysis in order to 
examine the spread of rabies in geographic regions and how different 
factors such as population density, habitat fragmentation and wildlife 
reservoirs affect the disease transmission. Multi-host zoonotic models 
can be used to understand how different host species contribute to the 
transmission of rabies and how interventions targeting one species can 
affect transmission in other species. Multi-patch models describe the 
spread of rabies across different geographic locations and illustrate how 
movement between patches can affect transmission. Seasonal models of 
rabies can demonstrate how factors such as host behaviour and climate 
variability can influence transmission patterns. For instance, to assess 
the effectiveness of vaccination in controlling the spreading of rabies, 
Asamoah et al. [23] developed an SEIR (Susceptible-Exposed-Infected-
Recovered) model to study rabies transmission in both dog and human 
populations in order to identify the most effective strategies to control 
the disease spread. They discovered that the recruitment rate, loss of 
immunity and transmission rate of the dog population have the greatest 
effect on 𝑅0. In addition, they observed that, by reducing the additional 
death rate of dogs and implementing PrEP and PEP vaccination in both 
dog and human populations, we could effectively control the spread of 
rabies. Nevertheless, there will be a high prevalence of rabies in the hu-
man population if there is no intervention for the dog population and 
only PEP and PrEP are considered for the human population. They found 
that the best way to reduce infection rates is by implementing prophy-
laxis in both dog and human populations. If there are limited funds to 
control the rabies outbreak, prioritizing the vaccine-control strategy for 
dogs is the key to disease eradication.

Laager et al. [24] developed a combination of field data and an 
SEIV (Susceptible-Exposed-Infected-Vaccinated) metapopulation model 
to stimulate rabies transmission in the dog population in N’Djamena, 
Chad. The model accounted for factors such as the movement of dogs 
between populations, vaccination coverage and the effectiveness of vac-
cination. This model was fit to the weekly rabies incidence data for four 
years and a sensitivity analysis conducted in order to evaluate the effect 
of underreporting on the transmission rates. The results of the study 
showed that vaccination campaigns targeting specific dog populations 
are more effective in reducing the incidence of rabies than campaigns 
that target the entire dog population. They also found that increasing 

vaccination coverage was crucial for reducing the incidence of the dis-
ease and that even small increases in vaccination coverage could have 
a significant impact on the spread of rabies. The model was able to pre-
dict the incidence of rabies in the dog population over time and provide 
insights into the dynamics of the disease transmission. The study high-
lights the importance of targeted vaccination campaigns in controlling 
the spread of dog rabies, especially in high-risk areas. Hailemicheal et al.
[25] constructed an epidemic model to examine transmission between 
stray dogs and domestic dog populations. They applied vaccination and 
culling as the control strategies in their model. They assumed that ra-
bies could be transmitted from stray dogs to domestic dogs, but not vice 
versa. They discovered that the transmission rates of stray dogs and the 
annual stray dog birth rate were the most sensitive parameters. Based on 
their simulation results, the most effective method to control the spread 
of rabies is a combination of vaccination and culling of infected dogs. 
Additionally, the yearly birth rate of dogs has a significant impact on 
the frequency of rabies cases.

In addition, some studies have been carried out to investigate the ef-
fect of seasonal or periodic variation in the occurrence of rabies [26–28]. 
Zhang et al. [26] examined the spread of rabies in both dog and human 
populations by considering periodic transmission rates. They discovered 
that to prevent the spread of human rabies in China, several measures 
are required: raising awareness about the disease; decreasing the birth 
rate of dogs; improving measures to prevent children from being bitten 
by dogs, particularly during the summer; and increasing the vaccination 
rate of dogs. Moreover, providing prompt medical treatment after dog 
bites is particularly important. Ruan et al. [27] examined the effects of 
seasonality, diffusion and dog movement in spreading the disease. They 
found that there are more human rabies cases in the summer and au-
tumn seasons; hence, more efforts and control strategies are needed in 
the summer months to reduce the prevalence. In addition, by control-
ling the movement of exposed and infected dogs, the transmission of 
rabies can be reduced. Huang et al. [28] employed a multi-host zoonotic 
model to study the spreading dynamics of rabies among dogs, Chinese 
ferret-badgers (CFBs) and human populations. This model was applied 
to human rabies data reported in Zhejiang Province from 2004 to 2017. 
They found that the transmission rate between CFB and dog popula-
tions, the number of infected dogs and the vaccination rate of dogs are 
the most influential parameters in controlling the disease transmission. 
They suggested that control is favoured by enhancing rabies awareness, 
increasing the vaccination rate of dogs, preventing bites from CFBs and 
reducing contact between CFBs and dogs.

In order to achieve the WHO goal to end human deaths from dog-
mediated rabies by 2030 [9,21,22], mathematical modelling can pro-
vide us with some insights about the disease-transmission dynamics, 
cost-effectiveness in controlling the disease, estimation of the proba-
ble outbreak duration and size, and assess the impact of control mea-
sures in curbing disease transmission [29–32]. We employ a mathemat-
ical model with a saturated incidence rate to study the transmission 
dynamics of rabies in both dog and human populations. We aim to iden-
tify under which conditions disease eradication is likely to happen and 
why the disease remains in an endemic state. To be more prepared and 
strengthen rabies-outbreak management, we identify the conditions of 
disease persistence. Moreover, sensitivity analysis of the model will be 
performed to find out which parameters have the greatest influence in 
controlling the disease.

Incidence functions

Analysis of disease persistence or eradication tends to focus only on 
stability of the equilibria, usually the disease-free equilibrium. While de-
termining conditions for eradication — especially global stability — is 
useful, it is not the only factor involved in managing an endemic disease, 
something many modelling papers overlook. Here, we model rabies us-
ing an incidence function, which describes the long-term dynamics of 
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the disease but plays no role in the stability of the disease-free equilib-
rium.

We consider the inhibition effect; i.e., the “psychological” effect and 
behavioural change of the susceptible population when the number of 
infected dogs is increasing. Susceptible individuals may change their 
behaviour when the number of infected individuals increases, such as 
avoiding contacts. The rate of infection will slow down if many indi-
viduals are unable to be infected, since finding true susceptibles may 
be difficult. We can describe this mathematically by changing the trans-
mission function.

The choice of an appropriate incidence function in a mathematical 
model holds significant importance, as it determines the dynamics of the 
epidemic [33,34]. The three most commonly employed incidence func-
tions in deterministic mathematical models are the bilinear incidence 
rate, the standard incidence rate and the saturated incidence rate. Each 
of these functions has its implications for the generation of new infec-
tion cases. The bilinear incidence rate, known as mass-action incidence, 
is given by 𝛽𝑆𝐼 , where 𝛽 represents the transmission rate, 𝑆 represents 
susceptible individuals and 𝐼 denotes infected individuals [33]. Mass-
action incidence is considered density-dependent, which means that the 
rate of contact per infective is proportional to the density of the infec-
tious host population. It is suitable for modelling communicable diseases 
like influenza, but it may not be suitable for sexually transmitted dis-
eases. This is because it would imply that the number of susceptible 
individuals contacting infectives is unbounded, which is not a plausible 
assumption. In the case of sexually transmitted diseases, it has been sug-
gested that the standard incidence rate could be a better approximation
[33,34].

The standard incidence rate, 
𝛽𝑆𝐼
𝑁

, where 𝑁 is the total population 
size, assumes a constant number of contacts per infective in unit time, 
which is applicable to dynamics of disease transmission in large popu-
lations. It provides a more realistic representation of how new cases of 
infection occur and allows for a better understanding of the spread of 
diseases in human populations. In reality, the probability of infection 
per contact is likely influenced by the number of infective individuals 
present, as a higher number of infective individuals can increase the 
overall infection risk [33,34]. However, the standard-incidence rate may 
encounter some difficulties and challenges when it is used to illustrate 
the proportion of effective contacts between susceptible and infectious 
populations, which may reach a saturated level due to various factors 
such as overcrowding of infected populations or implementation of pro-
tective measures by the susceptible individual [33,34].

If a population is crowded or saturated with infectives, then satu-
rated incidence is a better option [35,36]. The saturation incidence rate 
𝛽𝑆𝐼
1 + 𝛼𝐼

 [33] tends to a saturated level, 
𝛽
𝛼
, when 𝐼 is sufficiently large, 

where 𝛽𝑆𝐼 measures the infection force of the disease, 𝛼 measures the 
inhibitory effect and 

1
1 + 𝛼𝐼

 represents the measure of psychological or 
inhibitory effect from the behaviour change of susceptible individuals 
when the number of infected individuals increases or due to a crowding 
effect. This may occur due to humans avoiding contacts in high-endemic 
situations or dog-control methods such as fences, animal curfews, etc. 
The net effect is to slow the rate of transmission as the infected popu-
lation gets large. The parameter 𝛼 is our proxy for soft interventions. If 
𝛼 = 0, the saturated-incidence rate becomes a bilinear incidence rate 
[42]. Capasso and Serio [43] stated that the bilinear incidence rate 
might be suitable for a small number of infected individuals but is un-
realistic for a large infected population. This type of incidence function 
may occur when a population has achieved herd immunity against a 
certain disease, meaning that the majority of people in the population 
have been exposed to the disease and are now resistant to it [33]. Even 
though this incidence rate is more challenging to cope with, it encom-
passes both behavioural changes and effects of crowding on the contact 
rate [34]. Saturated incidence is not the only way to model “soft” inter-

Fig. 1. The flow chart of model (2.1).

ventions when it comes to infectious diseases; a number of alternatives 
have been proposed, such as representing the crowding effect using a 
probability density function [37], using adaptive dynamics to model 
learning [38] or agent-based models to describe social processes [39].

2.  Mathematical model

We consider both dog-to-dog transmission and dog-to-human trans-
mission. Both species can be vaccinated, but the vaccine also wanes. 
Once the vaccine wanes, there is no protection. Some dogs can be vac-
cinated at birth. There is no natural immunity against rabies in either 
species.

We propose a deterministic model with a saturated incidence rate 
to examine the transmission dynamics of rabies in both dog and hu-
man populations. Both the dog and human populations are classi-
fied into four subclasses: susceptible, exposed, vaccinated and infected, 
with the dog population denoted by 𝑆𝑑 (𝑡), 𝐸𝑑 (𝑡), 𝑉𝑑 (𝑡) and 𝐼𝑑 (𝑡), and 
the human population denoted by 𝑆(𝑡), 𝐸(𝑡), 𝑉 (𝑡) and 𝐼(𝑡), at time 𝑡, 
respectively. Thus, our proposed rabies mathematical model is gov-
erned by a set of nonlinear ordinary differential equations defined as
follows:

𝑆′
𝑑 (𝑡) = Λ𝑑 (1 − 𝜈𝑑 ) + 𝜔𝑑𝑉𝑑 −

𝛽𝑑𝑆𝑑𝐼𝑑
1 + 𝛼𝐼𝑑

− (𝜇𝑑 + 𝛾𝑑 )𝑆𝑑

𝐸′
𝑑 (𝑡) =

𝛽𝑑𝑆𝑑𝐼𝑑
1 + 𝛼𝐼𝑑

− (𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )𝐸𝑑

𝑉 ′
𝑑 (𝑡) = Λ𝑑𝜈𝑑 + 𝛾𝑑𝑆𝑑 + 𝜂𝑑𝐸𝑑 − (𝜇𝑑 + 𝜔𝑑 )𝑉𝑑
𝐼 ′𝑑 (𝑡) = 𝜎𝑑𝐸𝑑 − (𝜇𝑑 + 𝜉𝑑 )𝐼𝑑

𝑆′(𝑡) = Λ + 𝜔𝑉 −
𝛽𝑆𝐼𝑑
1 + 𝛼𝐼𝑑

− (𝜇 + 𝛾)𝑆

𝐸′(𝑡) =
𝛽𝑆𝐼𝑑
1 + 𝛼𝐼𝑑

− (𝜎 + 𝜂 + 𝜇)𝐸
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Table 1 
Description of associated parameters in model (2.1), and the values for numerical simulations of the disease-free equilibrium (𝐸1) and the endemic 
equilibrium (𝐸∗).

 Parameter  Description  Unit  Parameter value for 𝐸1 (Source)  Parameter value for 𝐸∗ (Source)

Λ𝑑  Recruitment rate of dogs individuals

year
 325 ([40])  325 ([40])

𝛽𝑑  Disease transmission rate from an infected to a susceptible dog year−1 5.2 × 10−4 (Assumed) 0.00092 (Assumed)
𝜇𝑑  Natural death rate of dogs year−1  0.0833 ([41])  0.0833 ([41])
𝜎𝑑  The progression rate from exposure to an infected dog year−1  6 ([27])  2.8 ([27])
𝜉𝑑  Disease-related death rate of dogs year−1  1 ([27])  1 ([27])
𝜈𝑑  Fraction of newly recruited vaccinated dogs  unitless  0.9 (Assumed)  0.5 (Assumed)
𝜔𝑑  The rate at which vaccinated dogs lose vaccine-based immunity year−1  0.5 ([28])  1 ([28])
𝛾𝑑  The vaccinated rate of susceptible dogs year−1  0.5 ([44])  0.7 ([44])
𝜂𝑑  The vaccination rate of exposed dogs year−1  0.5 ([27])  0.09 ([27])
Λ  Recruitment rate of humans individuals

year
 411 (Assumed)  411 (Assumed)

𝛽  Rate at which humans contract rabies year−1 3.8 × 10−10 (Assumed) 1.29 × 10−3 (Assumed)
𝜇  Natural death rate of humans year−1  0.0137 ([45])  0.0137 ([45])
𝜎  The progression rate from exposed to infected humans year−1  6 ([27])  2.5 ([27])
𝜉  Disease-related death rate of humans year−1  1 ([27])  1 ([27])
𝛼  Inhibition effect individuals−1  (Varied)  (Varied)
𝜔  The rate at which vaccinated humans lose immunity year−1  1 ([27])  1 ([27])
𝛾  The vaccination rate of susceptible humans year−1  0.54 ([27])  0.54 ([27])
𝜂  The vaccination rate of exposed humans year−1  0.328 ([28])  0.9 ([44])

𝑉 ′(𝑡) = 𝛾𝑆 + 𝜂𝐸 − (𝜇 + 𝜔)𝑉

𝐼 ′(𝑡) = 𝜎𝐸 − (𝜇 + 𝜉)𝐼, (2.1)

where 0 < 𝜈𝑑 < 1. The total population of dogs and humans at time 𝑡
is given by 𝑁𝑑 (𝑡) = 𝑆𝑑 (𝑡) + 𝐸𝑑 (𝑡) + 𝑉𝑑 (𝑡) + 𝐼𝑑 (𝑡) and 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) +
𝑉 (𝑡) + 𝐼(𝑡), respectively. The flow chart of model (2.1) is shown in Fig. 1. 
The descriptions of associated parameters are listed in Table 1.

There are several assumptions in our model:

(a) Dogs are the only source of transmission in this study.
(b) The recruitment rates of susceptible dogs and humans are constant.
(c) Only a fraction 𝜈𝑑 of newly recruited dogs are vaccinated.
(d) Both dog and human populations will become susceptible whenever 

immunity wanes.
(e) The inhibitory effect, 𝛼, for dog and human populations are similar.

3.  Theoretical analysis

3.1.  Invariant region

First, we would like to identify the domain wherein the solutions 
of model (2.1) are both biologically and mathematically relevant: that 
is, by determining the region Ω where model (2.1) remains posi-
tively invariant and attracting for all 𝑡 ≥ 0. Particularly, all the so-
lutions of model (2.1) are bounded and remain in Ω for sufficiently
large 𝑡.

Lemma 1. The set Ω ≡
{

(𝑆𝑑 , 𝐸𝑑 , 𝑉𝑑 , 𝐼𝑑 , 𝑆, 𝐸, 𝑉 , 𝐼) ∈ ℝ8
+| 0 < 𝑆𝑑 +

𝐸𝑑 + 𝑉𝑑 + 𝐼𝑑 ≤
Λ𝑑

𝜇𝑑
 and 0 < 𝑆 + 𝐸 + 𝑉 + 𝐼 ≤

Λ
𝜇

}

is a positively invariant and attracting region for model (2.1).
Proof.  Let 𝑁𝑑 (𝑡) = 𝑆𝑑 (𝑡) + 𝐸𝑑 (𝑡) + 𝑉𝑑 (𝑡) + 𝐼𝑑 (𝑡) and 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) +
𝑉 (𝑡) + 𝐼(𝑡) be the total populations of dogs and humans, respectively. 
Then we obtain 
𝑁 ′

𝑑 (𝑡) = 𝑆′
𝑑 (𝑡) + 𝐸′

𝑑 (𝑡) + 𝑉 ′
𝑑 (𝑡) + 𝐼 ′𝑑 (𝑡) ≤ Λ𝑑 − 𝜇𝑑𝑁𝑑 (𝑡). (3.2)

Using an integrating factor, we have

∫

𝑡

0

𝑑
𝑑𝑎

(

𝑁𝑑𝑒
𝜇𝑑𝑎

)

𝑑𝑎 ≤ ∫

𝑡

0

(

Λ𝑑𝑒
𝜇𝑑𝑎

)

𝑑𝑎

𝑁𝑑 (𝑡) ≤

[

𝑁𝑑 (0) −
Λ𝑑

𝜇𝑑

]

𝑒−𝜇𝑑 𝑡 +
Λ𝑑

𝜇𝑑
. (3.3)

From (3.3), we obtain 𝑁𝑑 (𝑡) ≤
Λ𝑑

𝜇𝑑
 if 𝑁𝑑 (0) ≤

Λ𝑑

𝜇𝑑
 .

Next, to show that Ω is an attracting region, if we have 𝑁𝑑 (𝑡) >
Λ𝑑

𝜇𝑑
, 

then

𝑁 ′
𝑑 (𝑡) ≤ Λ𝑑 − 𝜇𝑑𝑁𝑑 (𝑡) < 0.

We deduce that the total population of dogs is bounded by 
Λ𝑑

𝜇𝑑
. By ap-

plying a similar approach, we find that the total human population is 

bounded by 
Λ
𝜇
; i.e., 𝑁 ≤

Λ
𝜇
. Hence the solution of model (2.1) with ar-

bitrary initial conditions will either remain in or approach Ω as 𝑡 → ∞. 
This shows that the 𝜔-limit sets of model (2.1) are contained in Ω. ∎

3.2.  Stability analysis

Here, we perform a standard local stability analysis. We will prove 
global stability of the DFE when 𝑅0 < 1 and some additional conditions 
apply. We will prove global stability of the endemic equilibrium when 
𝑅0 > 1 and some additional conditions apply. It follows that 𝑅0 is a 
threshold of eradication. Is this enough to control rabies?

Two equilibria exist in model (2.1): the disease-free equilibrium 
(DFE) and the endemic equilibrium (EE). The DFE of model (2.1) is 
𝐸1 = (𝑆𝑑0, 𝐸𝑑0, 𝑉𝑑0, 𝐼𝑑0, 𝑆0, 𝐸0, 𝑉0, 𝐼0), where

𝑆𝑑0 =
Λ𝑑 [𝜇𝑑 (1 − 𝜈𝑑 ) + 𝜔𝑑 ]
𝜇𝑑 (𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )

, 𝑉𝑑0 =
Λ𝑑 (𝜈𝑑𝜇𝑑 + 𝛾𝑑 )

𝜇𝑑 (𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )
,

𝑆0 =
Λ(𝜇 + 𝜔)

𝜇(𝜇 + 𝛾 + 𝜔)
𝑉0 =

Λ𝛾
𝜇(𝜇 + 𝛾 + 𝜔)

,

𝐸𝑑0 = 𝐼𝑑0 = 𝐸0 = 𝐼0 = 0,

whereas the EE of model (2.1) is 𝐸∗ = (𝑆∗
𝑑 , 𝐸

∗
𝑑 , 𝑉

∗
𝑑 , 𝐼

∗
𝑑 , 𝑆

∗, 𝐸∗, 𝑉 ∗, 𝐼∗) , 
where

𝑆∗
𝑑 =

(𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )(1 + 𝛼𝐼∗𝑑 )
(𝛽𝑑 )𝜎𝑑

, 𝐸∗
𝑑 =

(𝜇𝑑 + 𝜉𝑑 )𝐼∗𝑑
𝜎𝑑

,

𝑉 ∗
𝑑 =

Λ𝑑𝜈𝑑𝜎𝑑𝛽𝑑 + (𝜇𝑑 + 𝜉𝑑 )[𝛾𝑑 (𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )(1 + 𝛼𝐼∗𝑑 ) + 𝛽𝑑𝜂𝑑𝐼∗𝑑 ]
𝛽𝑑𝜎𝑑 (𝜇𝑑 + 𝜔𝑑 )

,

𝐼∗𝑑 =
Λ𝑑𝜎𝑑𝛽𝑑 [𝜇𝑑 (1 − 𝜈𝑑 ) + 𝜔𝑑 ] − 𝜇𝑑 (𝜇𝑑 + 𝜉𝑑 )(𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )
(𝜇𝑑 + 𝜉𝑑 ){𝜇𝑑 (𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )[𝛽𝑑 + 𝛼(𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )] + 𝛽𝑑𝜔𝑑 (𝜎𝑑 + 𝜇𝑑 )}

,

𝑆∗ =
(𝜇 + 𝜉)(𝜎 + 𝜂 + 𝜇)(1 + 𝛼𝐼∗𝑑 )𝐼

∗

𝜎𝛽𝐼∗𝑑
, 𝐸∗ =

(𝜇 + 𝜉)𝐼∗

𝜎
,
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𝑉 ∗ =
(𝜇 + 𝜉)[𝛾(𝜎 + 𝜂 + 𝜇)(1 + 𝛼𝐼∗𝑑 ) + 𝜂𝛽𝐼∗]𝐼∗

𝜎𝛽(𝜇 + 𝜔)𝐼∗𝑑

𝐼∗ =
Λ𝜎𝛽(𝜇 + 𝜔)𝐼∗𝑑

(𝜇 + 𝜉){𝛽𝜔(𝜎 + 𝜇)𝐼∗𝑑 + 𝜇(𝜎 + 𝜂 + 𝜇)[𝛽𝐼∗𝑑 + (𝜇 + 𝛾 + 𝜔)(1 + 𝛼𝐼∗𝑑 )]}
.

By applying the next-generation matrix approach [46,47], the basic 
reproduction number of model (2.1) is given as follows:

𝑅0 =
Λ𝑑𝜎𝑑𝛽𝑑 [𝜇𝑑

(

1 − 𝜈𝑑
)

+ 𝜔𝑑 ]
𝜇𝑑 (𝜇𝑑 + 𝜉𝑑 )(𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )

. (3.4)

Theorem 2. An endemic equilibrium of model (2.1), 𝐸∗, exists if and only 
if 𝑅0 > 1.

Proof.  Assume 𝑅0 > 1. To prove the existence of 𝐸∗, we need to 
show 𝑆∗

𝑑 , 𝐸∗
𝑑 , 𝑉 ∗

𝑑 , 𝑆∗, 𝐸∗, 𝑉 ∗ and 𝐼∗ > 0. Since 𝑅0 > 1 implies 
Λ𝑑𝜎𝑑𝛽𝑑 [𝜇𝑑

(

1 − 𝜈𝑑
)

+ 𝜔𝑑 ] > 𝜇𝑑 (𝜇𝑑 + 𝜉𝑑 )(𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 ), we 
obtain

𝐼∗𝑑 =
Λ𝑑𝜎𝑑𝛽𝑑 [𝜇𝑑 (1 − 𝜈𝑑 ) + 𝜔𝑑 ] − 𝜇𝑑 (𝜇𝑑 + 𝜉𝑑 )(𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )
(𝜇𝑑 + 𝜉𝑑 ){𝜇𝑑 (𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )[𝛽𝑑 + 𝛼(𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )] + 𝛽𝑑𝜔𝑑 (𝜎𝑑 + 𝜇𝑑 )}

> 0,

where all associated parameters are positive. Since 𝐼∗𝑑 > 0, this implies 
𝑆∗
𝑑 , 𝐸∗

𝑑 , 𝑉 ∗
𝑑 , 𝑆∗, 𝐸∗, 𝑉 ∗ and 𝐼∗ > 0.

Assume 𝐸∗ exists; i.e., 𝑆∗
𝑑 , 𝐸∗

𝑑 , 𝑉 ∗
𝑑 , 𝐼∗𝑑 , 𝑆∗, 𝐸∗, 𝑉 ∗ and 𝐼∗ > 0. Since 

𝐼∗𝑑 > 0, it follows that 𝑆∗
𝑑 , 𝐸∗

𝑑 , 𝑉 ∗
𝑑 , 𝑆∗, 𝐸∗, 𝑉 ∗ and 𝐼∗ > 0, we get

Λ𝑑𝜎𝑑𝛽𝑑 [𝜇𝑑 (1 − 𝜈𝑑 ) + 𝜔𝑑 ]
𝜇𝑑 (𝜇𝑑 + 𝜉𝑑 )(𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )

> 1 ≡ 𝑅0 > 1.

 ∎
Next, we investigate the local stability of both disease-free and en-

demic equilibria of model (2.1) using a linearization approach.

Theorem 3. The DFE, 𝐸1, of model (2.1) achieves local asymptotic stability 
if 𝑅0 < 1.

Proof.  The Jacobian matrix of model (2.1) at 𝐸1 is defined as follows:

𝐽
(

𝐸1
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
(

𝜇𝑑 + 𝛾𝑑
)

0 𝜔𝑑 −𝛽𝑑𝑆𝑑0 0 0 0 0
0 −(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 ) 0 𝛽𝑑𝑆𝑑0 0 0 0 0
𝛾𝑑 𝜂𝑑 −(𝜇𝑑 + 𝜔𝑑 ) 0 0 0 0 0
0 𝜎𝑑 0 −(𝜇𝑑 + 𝜉𝑑 ) 0 0 0 0
0 0 0 −𝛽𝑆0 −(𝜇 + 𝛾) 0 𝜔 0
0 0 0 𝛽𝑆0 0 −(𝜎 + 𝜂 + 𝜇) 0 0
0 0 0 0 𝛾 𝜂 −(𝜇 + 𝜔) 0
0 0 0 0 0 𝜎 0 −(𝜇 + 𝜉)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Let 𝜆 be the eigenvalue and 𝐼 be the 8×8 identity matrix. The char-
acteristic equation, |

|

𝐽 (𝐸1) − 𝜆𝐼|
|

= 0, is defined as follows: 

(𝜇 + 𝜉 + 𝜆)(𝜎 + 𝜇 + 𝜆)(𝜇𝑑 + 𝜆)(𝜇𝑑 + 𝜔𝑑 + 𝛾𝑑 + 𝜆)(𝜇 + 𝜆) ×

(𝜇 + 𝜔 + 𝛾 + 𝜆)
[

(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 + 𝜆)(𝜇𝑑 + 𝜉𝑑 + 𝜆) − 𝜎𝑑𝛽𝑑𝑆𝑑0
]

= 0.
(3.5)

Since all associated parameters are positive, the nontrivial eigenval-
ues of (3.5) satisfy
𝜆2 +

(

𝜎𝑑 + 𝜂𝑑 + 2𝜇𝑑 + 𝜉𝑑
)

𝜆 +
[(

𝜇𝑑 + 𝜉𝑑
)(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)

− 𝜎𝑑𝛽𝑑𝑆𝑑0
]

= 0.

Denote 𝐴 = 1, 𝐵 = 𝜎𝑑 + 𝜂𝑑 + 2𝜇𝑑 + 𝜉𝑑 and 𝐶 =
(

𝜇𝑑 + 𝜉𝑑
)(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)

−
𝜎𝑑𝛽𝑑𝑆𝑑0. By applying the quadratic formula,
𝐵2 − 4𝐴𝐶 = 𝐵2 + 4

(

𝜇𝑑 + 𝜉𝑑
)(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)(

𝑅0 − 1
)

< 𝐵2 if 𝑅0 < 1.

The lower bound is given by

𝐵2 − 4𝐴𝐶 =
[

𝜎𝑑 + 𝜂𝑑 + 2𝜇𝑑 + 𝜉𝑑
]2 − 4

[(

𝜇𝑑 + 𝜉𝑑
)(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)

−𝜎𝑑𝛽𝑑𝑆𝑑0
]

=
(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)2 − 2

(

𝜇𝑑 + 𝜉𝑑
)(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)

+
(

𝜇𝑑 + 𝜉𝑑
)2

+ 4𝜎𝑑𝛽𝑑𝑆𝑑0

>
(

𝜎𝑑 + 𝜂𝑑
)2, since 𝑆𝑑0 > 0.

It follows that the roots are real. Since 
√

𝐵2 − 4𝐴𝐶 < 𝐵, we get 𝜆+ =
− 𝐵 +

√

𝐵2 − 4𝐴𝐶
2𝐴

< 0. Next,
√

𝐵2 − 4𝐴𝐶 > 𝜎𝑑 + 𝜂𝑑 .

Thus, 𝜆− =
− 𝐵 −

√

𝐵2 − 4𝐴𝐶
2𝐴

< −
(

𝜇𝑑 + 𝜉𝑑∕2
)

< 0.
Since all eigenvalues of model (2.1) are negative whenever 𝑅0 < 1, 

𝐸1 achieves local asymptotic stability. ∎
We now address the local stability of endemic equilibrium, 𝐸∗, of 

model (2.1).
Theorem 4. The endemic equilibrium, 𝐸∗, of model (2.1) achieves local 
asymptotic stability if 𝑅0 > 1.

Proof.  By employing a similar approach as in Theorem 3, the charac-
teristic equation of model (2.1) at 𝐸∗ is given as follows: 
(𝜇 + 𝜉 + 𝜆)

(

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3

)(

𝜆4 + 𝑎4𝜆
3 + 𝑎5𝜆

2 + 𝑎6𝜆 + 𝑎7
)

= 0, (3.6)

where 𝜆 denotes the eigenvalue of model (2.1) and 

𝑎1 =
𝛽𝐼∗𝑑

1 + 𝛼𝐼∗𝑑
+ 𝜎 + 𝜂 + 3𝜇 + 𝛾 + 𝜔,

𝑎2 = 𝜇(𝜎 + 𝜂 + 𝜇) + (𝜎 + 𝜂 + 2𝜇)
⎛

⎜

⎜

⎝

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ 𝜇 + 𝛾
⎞

⎟

⎟

⎠

+ 𝜔
⎛

⎜

⎜

⎝

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ 𝜎 + 𝜂 + 2𝜇
⎞

⎟

⎟

⎠

,

𝑎3 = 𝜇(𝜎 + 𝜂 + 𝜇)
⎛

⎜

⎜

⎝

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ 𝜇 + 𝛾 + 𝜔
⎞

⎟

⎟

⎠

+ 𝜔(𝜎 + 𝜇)
𝛽𝐼∗𝑑

1 + 𝛼𝐼∗𝑑
,

𝑎4 =
𝛽𝑑𝐼∗𝑑

1 + 𝛼𝐼∗𝑑
+ 4𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝜉𝑑 ,

𝑎5 =
𝜔𝑑𝛽𝑑𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ 𝜇𝑑 (2𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 )

+
⎛

⎜

⎜

⎝

𝛽𝑑𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ 𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑

⎞

⎟

⎟

⎠

(3𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 )

+ (𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )
𝛼𝐼∗𝑑

1 + 𝛼𝐼∗𝑑
,

𝑎6 =
𝛽𝑑𝐼∗𝑑

1 + 𝛼𝐼∗𝑑

[

𝜔𝑑 (2𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 ) + 𝜇𝑑 (𝜇𝑑 + 𝜉𝑑 ) + (2𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )

]

+ 𝜇𝑑 (𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(2𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 ) + (𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )

(2𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )
𝛼𝐼∗𝑑

1 + 𝛼𝐼∗𝑑
and

𝑎7 = (𝜇𝑑 + 𝜉𝑑 )

{

𝛽𝑑𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

[

𝜇𝑑 (𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 ) + 𝜔𝑑 (𝜎𝑑 + 𝜇𝑑 )

]

+ 𝜇𝑑 (𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )
𝛼𝐼∗𝑑

1 + 𝛼𝐼∗𝑑

}

.

We employ the Routh–Hurwitz Criterion [48–50] to find the non-
trivial eigenvalues of (3.6). For 𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3 = 0, we find that 
𝑎1, 𝑎2, 𝑎3 > 0 if 𝑅0 > 1, and

𝑎1𝑎2 − 𝑎3 =
𝛽𝐼∗𝑑

1 + 𝛼𝐼∗𝑑

[

(𝜎 + 𝜂 + 2𝜇)

(

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ 𝜇 + 𝛾

)

+
𝜔𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ 𝜇 + 𝛾

]

+ (𝜎 + 𝜂 + 3𝜇 + 𝛾 + 𝜔)

[

(𝜎 + 𝜂 + 2𝜇)

(

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ 𝜇 + 𝛾

)

+𝜔

(

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ 𝜎 + 𝜂 + 2𝜇

)]

+ 𝜇(𝜎 + 𝜂 + 𝜇)(𝜎 + 𝜂 + 2𝜇)

> 0 if 𝑅0 > 1.
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Hence, by the Routh–Hurwitz Criterion, the eigenvalues of 𝜆3 + 𝑎1𝜆2 +
𝑎2𝜆 + 𝑎3 = 0 are negative or have negative real parts.

Next, we would like to solve 𝜆4 + 𝑎4𝜆3 + 𝑎5𝜆2 + 𝑎6𝜆 + 𝑎7 = 0 for 𝜆. By 
applying a similar approach as above, we find that 𝑎4, 𝑎5, 𝑎6, 𝑎7 > 0 and 
𝑎6(𝑎4𝑎5 − 𝑎6) − 𝑎24𝑎7 > 0 if 𝑅0 > 1. See Appendix 1 for more details. Thus, 
all eigenvalues are negative or have negative real parts. Therefore, 𝐸∗
achieves local asymptotic stability if 𝑅0 > 1. ∎

The global stability of the disease-free and endemic equilibria is in-
vestigated using different approaches, under some additional restric-
tions. We prove the global stability of the DFE, 𝐸1, by applying the 
comparison principle [51] and the theory of asymptotic autonomous 
systems [52], whereas we prove the global stability of the EE, 𝐸∗, 
by using the geometric approach proposed by Li and Muldowney
[53].

Theorem 5. 𝐸1 of model (2.1) is globally asymptotically stable if 𝑅0 <
1, 𝜂𝑑 ⩽ 𝛾𝑑 and 𝜂 ⩽ 𝛾.

Proof.  First, we consider the dog-only population of model (2.1); i.e., 
the first four equations of model (2.1), since it is independent of the 
human-only variables of model (2.1). From model (2.1), the third equa-
tion is given as follows if 𝜂𝑑 ⩽ 𝛾𝑑 : 
𝑑𝑉𝑑
𝑑𝑡

≤ Λ𝑑𝜈𝑑 + 𝛾𝑑
(

𝑆𝑑 + 𝐸𝑑
)

−
(

𝜇𝑑 + 𝜔𝑑
)

𝑉𝑑 . (3.7)

Since 𝑆𝑑 + 𝐸𝑑 + 𝑉𝑑 + 𝐼𝑑 →
Λ𝑑

𝜇𝑑
 as 𝑡 → ∞, Eq. (3.7) is an asymptoti-

cally autonomous differential equation with the limit equation as fol-
lows:
𝑑𝑉𝑑
𝑑𝑡

≤ Λ𝑑𝜈𝑑 + 𝛾𝑑

(

Λ𝑑

𝜇𝑑
− 𝐼𝑑 − 𝑉𝑑

)

−
(

𝜇𝑑 + 𝜔𝑑
)

𝑉𝑑

≤
Λ𝑑

(

𝜇𝑑𝜈𝑑 + 𝛾𝑑
)

𝜇𝑑
−
(

𝜇𝑑 + 𝜔𝑑 + 𝛾𝑑
)

𝑉𝑑 (3.8)

since 𝐼𝑑 ≥ 0 and all associated parameters are positive. By using an 
integrating factor, we obtain
𝑑
𝑑𝑡

[

𝑉𝑑𝑒
(

𝜇𝑑+𝜔𝑑+𝛾𝑑
)

𝑡
]

≤
Λ𝑑

(

𝜇𝑑𝜈𝑑 + 𝛾𝑑
)

𝜇𝑑
𝑒
(

𝜇𝑑+𝜔𝑑+𝛾𝑑
)

𝑡

𝑉𝑑𝑒
(

𝜇𝑑+𝜔𝑑+𝛾𝑑
)

𝑡 ≤ 𝑉𝑑 (0) +
Λ𝑑

(

𝜇𝑑𝜈𝑑 + 𝛾𝑑
)

𝜇𝑑
(

𝜇𝑑 + 𝜔𝑑 + 𝛾𝑑
)

[

𝑒
(

𝜇𝑑+𝜔𝑑+𝛾𝑑
)

𝑡 − 1
]

𝑉𝑑 (𝑡) ≤ 𝑉𝑑0 + 𝑉𝑑 (0)𝑒−
(

𝜇𝑑+𝜔𝑑+𝛾𝑑
)

𝑡, where

𝑉𝑑0 =
Λ𝑑

(

𝜇𝑑𝜈𝑑 + 𝛾𝑑
)

𝜇𝑑
(

𝜇𝑑 + 𝜔𝑑 + 𝛾𝑑
). (3.9)

Let 𝜀 =
(

𝜇𝑑+𝛾𝑑
)

𝜀1
𝜔𝑑

. For every 𝜀 > 0, there exists a 𝑡1 > 0 such that 𝑉𝑑 ⩽
𝑉𝑑0 + 𝜀 for all 𝑡 > 𝑡1. Then, for all 𝑡 > 𝑡1,

𝑑𝑆𝑑
𝑑𝑡

= Λ𝑑 (1 − 𝜈𝑑 ) + 𝜔𝑑𝑉𝑑 −
𝛽𝑑𝑆𝑑𝐼𝑑
1 + 𝛼𝐼𝑑

− (𝜇𝑑 + 𝛾𝑑 )𝑆𝑑

≤ Λ𝑑 (1 − 𝜈𝑑 ) + 𝜔𝑑 (𝑉𝑑0 + 𝜀) − (𝜇𝑑 + 𝛾𝑑 )𝑆𝑑 since 𝑉𝑑 ⩽ 𝑉𝑑0 + 𝜀,

and all associated variables and parameters are positive

=
Λ𝑑

[

𝜇𝑑
(

1 − 𝜈𝑑
)

+ 𝜔𝑑
]

− 𝜇𝑑𝜔𝑑𝑆𝑑0 + 𝜇𝑑𝜔𝑑𝜀

𝜇𝑑
−
(

𝜇𝑑 + 𝛾𝑑
)

𝑆𝑑 ,

where 𝑆𝑑0 =
Λ𝑑

[

𝜇𝑑
(

1 − 𝜈𝑑
)

+ 𝜔𝑑
]

𝜇𝑑
(

𝜇𝑑 + 𝜔𝑑 + 𝛾𝑑
) . (3.10)

By using an integrating factor,

𝑑
𝑑𝑡

[

𝑆𝑑𝑒
(

𝜇4+𝛾𝑑
)

𝑡
]

≤
Λ𝑑

[

𝜇𝑑
(

1 − 𝜈𝑑
)

+ 𝜔𝑑
]

− 𝜇𝑑𝜔𝑑𝑆𝑑0 + 𝜇𝑑𝜔𝑑𝜀

𝜇𝑑
𝑒
(

𝜇𝑑+𝛾𝑑
)

𝑡

𝑆𝑑 (𝑡)𝑒
(

𝜇𝑑+𝛾𝑑
)

𝑡 ≤ 𝑆𝑑 (0) +

(

𝜇𝑑 + 𝛾𝑑
)

𝑆𝑑0 + 𝜔𝑑𝜀
𝜇𝑑 + 𝛾𝑑

[

𝑒
(

𝜇𝑑+𝛾𝑑
)

𝑡 − 1
]

.

Let 𝜀1 = 𝜔𝑑𝜀
𝜇𝑑+𝛾𝑑

. For every 𝜀1 > 0, there exists a 𝑡2 > 0 such that 𝑆𝑑 ⩽
𝑆𝑑0 + 𝜀1 for all 𝑡 > 𝑡2 > 𝑡1. Thus, for all 𝑡 > 𝑡2 > 𝑡1, the basic reproduction 
number of model (2.1) is defined as

𝑅0 =
𝜎𝑑𝛽𝑑𝑆𝑑

(𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )
≤

𝜎𝑑𝛽𝑑 (𝑆𝑑0 + 𝜀1)
(𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )

= 𝑅0 +
𝜎𝑑𝛽𝑑𝜀1

(𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )
.

Next, we consider the following dog-only system
𝑑𝐸𝑑
𝑑𝑡

⩽ 𝛽𝑑
(

𝑆𝑑0 + 𝜀1
)

𝐼𝑑 −
(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)

𝐸𝑑 ,

𝑑𝐼𝑑
𝑑𝑡

= 𝜎𝑑𝐸𝑑 −
(

𝜇𝑑 + 𝜉𝑑
)

𝐼𝑑 . (3.11)

The corresponding linear system of (3.11) is given as follows:
𝑑𝐸̂𝑑
𝑑𝑡

= 𝛽𝑑
(

𝑆𝑑0 + 𝜀1
)

𝐼𝑑 −
(

𝜎𝑑 + 𝜇𝑑 + 𝜇𝑑
)

𝐸̂𝑑 ,

𝑑𝐼𝑑
𝑑𝑡

= 𝜎𝑑 𝐸̂𝑑 −
(

𝜇𝑑 + 𝜉𝑑
)

𝐼𝑑 . (3.12)

Let 𝜆̂ denote the eigenvalue, with the characteristic equation of
(3.12) defined as
𝐴̂𝜆̂2 + 𝐵̂𝜆̂ + 𝐶̂ = 0,

where 𝐴̂ = 1, 𝐵̂ = (𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 ) + (𝜇𝑑 + 𝜉𝑑 ) and 𝐶̂ = (𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 +
𝜂𝑑 + 𝜇𝑑 ) − 𝜎𝑑𝛽𝑑

(

𝑆𝑑0 + 𝜀1
)

.

𝐵̂2 − 4𝐴̂𝐶̂ = 𝐵̂2 + 4
[

𝜎𝑑𝛽𝑑
(

𝑆𝑑0 + 𝜀1
)

−
(

𝜇𝑑 + 𝜉𝑑
)(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)]

< 𝐵̂2 if 𝑅0 +
𝜎𝑑𝛽𝑑𝜀1

(

𝜇𝑑 + 𝜉𝑑
)(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
) < 1

√

𝐵̂2 − 4𝐴̂𝐶̂ < 𝐵̂. (3.13)

By using the quadratic formula, we get

𝜆̂+ = −𝐵̂ +
√

𝐵̂2 − 4𝐴̂𝐶̂
2𝐴̂

< 0.

In addition, we have
𝐵̂2 − 4𝐴̂𝐶̂ =

(

𝜎𝑑 + 𝜂𝑑 − 𝜉𝑑
)2 + 4𝜎𝑑𝛽𝑑

(

𝑆𝑑0 + 𝜀1
)

>
(

𝜎𝑑 + 𝜂𝑑 − 𝜉𝑑
)2

√

𝐵̂2 − 4𝐴̂𝐶̂ > 𝜎𝑑 + 𝜂𝑑 − 𝜉𝑑 (3.14)

and

𝜆̂− = −𝐵̂ −
√

𝐵̂2 − 4𝐴̂𝐶̂
2𝐴̂

< −
(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)

< 0.

Thus, the general solution for (3.12) is
𝑥(𝑡) = 𝑐1𝑢1𝑒

𝑥̂1𝑡 + 𝑐2𝑢2𝑒
𝜆̂−𝑡,

where 𝑥(𝑡) = [

𝐸̂𝑑 (𝑡), 𝐼𝑑 (𝑡)
]⊤, 𝑐1 and 𝑐2 are arbitrary constants, and 𝑢1 and 

𝑢2 are the corresponding eigenvectors of eigenvalues 𝜆̂+ and 𝜆̂−, respec-
tively. Furthermore, 𝑥(𝑡) → 0 as 𝑡 → ∞. By applying the comparison prin-
ciple [52], 𝐸𝑑 , 𝐼𝑑 → 0 as 𝑡 → ∞. Consequently, by the theory of asymp-
totic autonomous systems [51], we obtain 𝑉𝑑 → 𝑉𝑑0 and 𝑆𝑑 → 𝑆10 as 
𝑡 → ∞ from (3.7) and (3.10), respectively.

We now consider the (humans only) final four equations of model
(2.1). By looking at the equation
𝑑𝑉
𝑑𝑡

= 𝛾𝑆 + 𝜂𝐸 − (𝑢 + 𝜔)𝑉 ,

we have 
𝑑𝑉
𝑑𝑡

≤ 𝛾(𝑆 + 𝐸) − (𝜇 + 𝜔)𝑉 if 𝜂 ⩽ 𝛾. (3.15)

Since 𝑆 + 𝐸 + 𝑉 + 𝐼 → Λ
𝜇  as 𝑡 → ∞, Eq. (3.15) is an asymptotically 

autonomous differential equation with the following limit equation:
𝑑𝑉
𝑑𝑡

≤ 𝛾
(

Λ
𝜇

− 𝑉 − 𝐼
)

− (𝜇 + 𝜔)𝑉 if 𝜂 ⩽ 𝛾
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≤
Λ𝛾
𝜇

− (𝜇 + 𝜔 + 𝛾), (3.16)

since all the associated variables and parameters are positive. By 
using an integrating factor,
𝑑
𝑑𝑡

[

𝑉 𝑒(𝜇+𝜔+𝛾)𝑡
]

≤ Λ𝛾
𝜇

𝑒(𝜇+𝜔+𝛾)𝑡

𝑉 (𝑡)𝑒(𝜇+𝜔+𝛾)𝑡 ≤ 𝑉 (0) +
Λ𝛾

𝜇(𝜇 + 𝜔 + 𝛾)
[

𝑒(𝜇+𝜔+𝛾)𝑡 − 1
]

𝑉 (𝑡) ≤ 𝑉0 + 𝑉 (0)𝑒−(𝜇+𝜔+𝛾)𝑡, where 𝑉0 =
Λ𝛾

𝜇(𝜇 + 𝜔 + 𝛾)
.

Let 𝜀2 = (𝜇+𝛾)𝜀3
𝜔 . For every 𝜀2 > 0, there exists a 𝑡3 > 0 such that 𝑉 ≤

𝑉0 + 𝜀2 for all 𝑡 > 𝑡3. Thus, ∀𝑡 > 𝑡3,

𝑑𝑆
𝑑𝑡

= Λ + 𝜔𝑉 −
𝛽𝑆𝐼𝑑
1 + 𝛼𝐼𝑑

− (𝜇 + 𝛾)𝑆

≤ Λ + 𝜔
(

𝑉0 + 𝜀2
)

− (𝜇 + 𝛾)𝑆, (3.17)

since 𝑉 ≤ 𝑉0 + 𝜀2 and all associated variables and parameters are 
positive. Next, we have
𝑑
𝑑𝑡

[

𝑆𝑒(𝜇+𝛾)𝑡
]

⩽
[

Λ + 𝜔
(

Λ
𝜇

− 𝑆0

)

+ 𝜔𝜀2

]

𝑒(𝜇+𝛾)𝑡, where

𝑆0 =
Λ(𝜇 + 𝜔)

𝜇(𝜇 + 𝜔 + 𝛾)

𝑆(𝑡)𝑒(𝜇+𝛾)𝑡 ⩽ 𝑆(0) +
Λ(𝜇 + 𝜔) − 𝜇𝜔𝑆0 + 𝜇𝜔𝜀2

𝜇(𝜇 + 𝛾)
[

𝑒(𝜇+𝛾)𝑡 − 1
]

𝑆(𝑡) ⩽ 𝑆0 +
𝜔𝜀2
𝜇 + 𝛾

+ 𝑆(0)𝑒−(𝜇+𝛾)𝑡.

Let 𝜀3 = 𝜔𝜀2
𝜇+𝛾 . For every 𝜀3 > 0, there exists a 𝑡4 > 0 such that 𝑆 ⩽ 𝑆0 +

𝜀3 for all 𝑡 > 𝑡4 > 𝑡3. By applying the comparison principle [52], 𝐸, 𝐼 → 0
as 𝑡 → ∞ since 𝐼𝑑 → 0 as 𝑡 → ∞. By applying the theory of asymptotic 
autonomous systems [51], from (3.16) and (3.17), we have 𝑉 → 𝑉0 and 
𝑆 → 𝑆0 as 𝑡 → ∞, respectively. Therefore, 𝐸1 is globally asymptotically 
stable if 𝑅0 < 1, 𝜂𝑑 ⩽ 𝛾𝑑 and 𝜂 ⩽ 𝛾. ∎

Next, we would like to discuss the global stability of the EE, 𝐸∗, of 
model (2.1) by using the geometric approach proposed by Li and Mul-
downey [53]. This approach has been commonly applied to three- or 
four-dimensional systems [53–58]. However, we aim to expand its appli-
cation to an eight-dimensional model (2.1). We briefly present some pre-
liminaries on the geometric approach developed by Li and Muldowney 
[53] in proving global stability. These preliminaries are summarized 
from [53]. Otherwise, we will specify it.

Let Ω̃ denote the interior of Ω and 𝐸∗ ∈ Ω̃ if 𝑅0 > 1. Consider the 
autonomous ordinary differential equation 
𝑑𝑥
𝑑𝑡

= 𝑓 (𝑥), (3.18)

where 𝑥 ↦ 𝑓 (𝑥) ∈ ℝ𝑛 is a 𝐶1 function for 𝑥 in an open set 𝐷 ⊂ ℝ𝑛. Let 
𝑥∗, 𝑥0 and 𝑥(𝑡, 𝑥0) respectively denote an equilibrium point, initial point 
and solution of (3.18) such that 𝑥(0, 𝑥0) = 𝑥0 is satisfied.

Assume that the following hypotheses hold:

(H1) 𝐷 is simply connected;
(H2) There exists a compact absorbing set 𝐷̃ ⊂ 𝐷;
(H3) Eq. (3.18) has a unique equilibrium 𝑥∗ in 𝐷.

𝑃 (𝑥) is a (𝑛2
)

×
(𝑛
2

)

𝐶1 matrix-valued function defined on a domain 𝐷. 
𝑃−1(𝑥) exists and is continuous on a subset 𝐷̃ ⊂ 𝐷.

The Lozinskiĭ measure 𝜎̃(𝐵) of a matrix 𝐵 with respect to a vector 
norm ‖ ⋅ ‖ in ℝ(𝑛2) is defined as:

𝜎̃(𝐵) = lim
ℎ→0+

‖𝐼 + ℎ𝐵‖ − 1
ℎ

,

where 𝐼 is the identity matrix and matrix 𝐵 is given by
𝐵 = 𝑃𝑓𝑃

−1 + 𝑃𝐽 [2]𝑃−1.

Here 𝑃𝑓  is the matrix obtained by taking the derivative of each entry 
of 𝑃  along the direction of a vector field 𝑓 and 𝐽 [2] represents the second 
additive compound matrix associated with the Jacobian matrix 𝐽 (𝑥). 
This measure is used to quantify the growth rate of the norm of 𝐼 + ℎ𝐵
as ℎ → 0+.

The quantity 𝑞 is defined as:

𝑞 = lim
𝑡→∞

sup
𝑥0∈𝐷̃

1
𝑡 ∫

𝑡

0
𝜎̃(𝐵(𝑥(0, 𝑥0))) 𝑑𝜃,

where 𝑥(0, 𝑥0) represents the solution of a dynamical system starting 
from an initial condition 𝑥0. This quantity captures the asymptotic supre-
mum of the average Lozinskiĭ measure of 𝐵 along trajectories.
Lemma 6  ([53]). Assume that hypotheses (H1)–(H3) hold and (3.18) sat-
isfies a Bendixson criterion that is robust under 𝐶1 local perturbations of 𝑓
at all non-equilibrium non-wandering points of (3.18). Then 𝑥∗ is globally 
asymptotically stable with respect to 𝐷 provided it is stable.
Theorem 7. The endemic equilibrium, 𝐸∗, of model (2.1) is 
globally asymptotically stable in the interior if 𝑅0 > 1, 𝜎𝑑 + 𝜂𝑑 ≥

𝛾𝑑 , 𝜎 + 𝜂 ≥ 𝛾, 𝛾𝑑 > max

{

Λ𝑑𝛽𝑑
𝜇𝑑

−
(

2𝜇𝑑 + 𝜎𝑑 + 𝜂𝑑
)

, 𝜎𝑑 − (2𝜇𝑑 +

𝜉𝑑 + 𝜔𝑑 )

}

and 𝛾 > max

{

− (2𝜇 + 𝜎 + 𝜂), 𝜎 − (2𝜇 + 𝜉 + 𝜔)

}

.

Proof. Ω =

{

(𝑆𝑑 , 𝐸𝑑 , 𝑉𝑑 , 𝐼𝑑 , 𝑆, 𝐸, 𝑉 , 𝐼) ∈ ℝ8
+| 0 < 𝑆𝑑 + 𝐸𝑑 + 𝑉𝑑 +

𝐼𝑑 ≤
Λ𝑑

𝜇𝑑
 and 0 < 𝑆 + 𝐸 + 𝑉 + 𝐼 ≤

Λ
𝜇

}

 is simply connected in ℝ8
+. 

By Theorems 2 and 4, 𝐸∗ is a unique endemic equilibrium of model
(2.1) that exists in Ω̃, the interior of Ω, and it is locally asymptotically 
stable if 𝑅0 > 1. However, the disease-free equilibrium, 𝐸1, is unstable 
whenever 𝑅0 > 1. The uniform persistence of model (2.1) and the 
boundedness of Ω imply the existence of a compact absorbing set Ω̃ in 
Ω [24,53,59]. Hence model (2.1) satisfies the assumptions (H1)–(H3).

Since 𝑆𝑑 + 𝐸𝑑 + 𝑉𝑑 + 𝐼𝑑 →
Λ𝑑

𝜇𝑑
 as 𝑡 → ∞, the dog-only population of 

model (2.1) is a three-dimensional asymptotically autonomous differen-
tial system with limit system

𝑆′
𝑑 (𝑡) = Λ𝑑 (1 − 𝜈𝑑 ) + 𝜔𝑑

(

Λ𝑑

𝜇𝑑
− 𝑆𝑑 − 𝐸𝑑 − 𝐼𝑑

)

−
𝛽𝑑𝑆𝑑𝐼𝑑
1 + 𝛼𝐼𝑑

− (𝜇𝑑 + 𝛾𝑑 )𝑆𝑑 ,

𝐸′
𝑑 (𝑡) =

𝛽𝑑𝑆𝑑𝐼𝑑
1 + 𝛼𝐼𝑑

− (𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )𝐸𝑑 ,

𝐼 ′𝑑 (𝑡) = 𝜎𝑑𝐸𝑑 − (𝜇𝑑 + 𝜉𝑑 )𝐼𝑑 . (3.19)

The Jacobian matrix of (3.19) is

𝐽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−

(

𝛽𝑑𝐼𝑑
1 + 𝛼𝐼𝑑

+ 𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑

)

−𝜔𝑑 −

(

𝛽𝑑𝑆𝑑

(1 + 𝛼𝐼𝑑 )2
+ 𝜔𝑑

)

𝛽𝑑𝐼𝑑
1 + 𝛼𝐼𝑑

−
(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)

𝛽𝑑𝑆𝑑

(1 + 𝛼𝐼𝑑 )2
0 𝜎𝑑 −

(

𝜇𝑑 + 𝜉𝑑
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

whereas the second additive compound matrix [53–55] of model (3.19) 
is defined as

𝐽 [2] =
⎡

⎢

⎢

⎣

𝐽11 + 𝐽22 𝐽23 −𝐽13
𝐽32 𝐽11 + 𝐽33 𝐽12
−𝐽31 𝐽21 𝐽22 + 𝐽33

⎤

⎥

⎥

⎦

,

where

𝐽11 + 𝐽22 = −

[

𝛽𝑑𝐼𝑑
1 + 𝛼𝐼𝑑

+ (𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 ) +
(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)

]

,
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𝐽23 =
𝛽𝑑𝑆𝑑

(1 + 𝛼𝐼𝑑 )2
,

−𝐽13 =
𝛽𝑑𝑆𝑑

(1 + 𝛼𝐼𝑑 )2
+ 𝜔𝑑 , 𝐽32 = 𝜎𝑑 ,

𝐽11 + 𝐽33 = −

[

𝛽𝑑𝐼𝑑
1 + 𝛼𝐼𝑑

+ (𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 ) +
(

𝜇𝑑 + 𝜉𝑑
)

]

, 𝐽12 = −𝜔𝑑

−𝐽31 = 0, 𝐽21 =
𝛽𝑑𝐼𝑑

1 + 𝛼𝐼𝑑
𝐽22 + 𝐽33 = −

[(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)

+
(

𝜇𝑑 + 𝜉𝑑
)]

.

Let 𝑃 = diag

{

𝐼𝑑
𝐸𝑑

,
𝐼𝑑
𝐸𝑑

,
𝐼𝑑
𝐸𝑑

}

. Then 𝑃−1 = diag

{

𝐸𝑑

𝐼𝑑
,
𝐸𝑑

𝐼𝑑
,
𝐸𝑑

𝐼𝑑

}

, 𝑃𝑓 =

diag

{

𝐼𝑑
𝐸𝑑

(

𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑

)

,
𝐼𝑑
𝐸𝑑

(

𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑

)

,
𝐼𝑑
𝐸𝑑

(

𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑

)}

, and 𝑃𝑓𝑃−1 =

diag

{(

𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑

)

,

(

𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑

)

,

(

𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑

)}

.

The matrix 𝐵 = 𝑃𝑓𝑃−1 + 𝑃𝐽 [2]𝑃−1 can be written in the following 
form:

𝐵 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑏1,1
𝛽𝑑𝑆𝑑

(1 + 𝛼𝐼𝑑 )2
𝛽𝑑𝑆𝑑 (1 + 𝛼𝐼𝑑 )2 + 𝜔𝑑

𝜎𝑑 𝑏2,2 −𝜔𝑑

0
𝛽𝑑𝐼𝑑

1 + 𝛼𝐼𝑑
𝑏3,3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where 𝑏1,1 =

(

𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑

)

−
[

𝐽11 + 𝐽22
]

,

𝑏2,2 =

(

𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑

)

−
[

𝐽11 + 𝐽33
]

and

𝑏3,3 =

(

𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑

)

−
[

𝐽22 + 𝐽33
]

.

Let 𝑧 =
(

𝑧1, 𝑧2, 𝑧3
) be the vector in ℝ3 ≅ ℝ(

𝑛
2). We choose a norm in 

ℝ3 to be

|

|

(𝑧1, 𝑧2, 𝑧3)|| = max

{

|

|

𝑧1||, ||𝑧2|| + |

|

𝑧3||

}

.

Let 𝜎̃(𝐵) be the Lozinskiĭ measure with respect to this norm. Then, 
by applying the logarithmic norm method [54], we have
𝜎̃(𝐵) ≤ max{𝑔1, 𝑔2},

where 
𝑔1 = 𝜎̃1

(

𝑏1,1
)

+ |

|

𝑏1,2||, 𝑔2 = 𝜎̃1
(

𝑏2,2
)

+ |

|

𝑏2,1||,

with |
|

𝑏1,2||, ||𝑏2,1|| the matrix norms with respect to the 𝑙1 vector norm. 
More specifically,

𝜎̃1
(

𝑏1,1
)

=
𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑
−
[

𝐽11 + 𝐽22
]

,

|

|

𝑏1,2|| = max

{

𝛽𝑑𝑆𝑑

(1 + 𝛼𝐼𝑑 )2
,

(

𝛽𝑑𝑆𝑑

(1 + 𝛼𝐼𝑑 )2
+ 𝜔𝑑

)}

=
𝛽𝑑𝑆𝑑

(1 + 𝛼𝐼𝑑 )2
+ 𝜔𝑑 ,

|

|

𝑏2,1|| = 𝜎𝑑 .

𝜎̃1
(

𝑏2,2
)

=max

{

𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑
−
[

(𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 ) +
(

𝜇𝑑 + 𝜉𝑑
)]

,

𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑
−
[(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)

+
(

𝜇𝑑 + 𝜉𝑑
)]

− 𝜔𝑑

}

=
𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑
−
(

2𝜇𝑑 + 𝜉𝑑 + 𝜔𝑑
)

+ max{−𝛾𝑑 ,−(𝜎𝑑 + 𝜂𝑑 )}.

Therefore, we have

𝑔1 = 𝜎̃1
(

𝑏1,1
)

+ |

|

𝑏1,2||

=
𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑
−

[

𝛽𝑑𝐼𝑑
1 + 𝛼𝐼𝑑

+ (𝜇𝑑 + 𝛾𝑑 ) +
(

𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑
)

]

+
𝛽𝑑𝑆𝑑

(1 + 𝛼𝐼𝑑 )2

≤
𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑
−
(

2𝜇𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝛾𝑑
)

+
Λ𝑑𝛽𝑑
𝜇𝑑

,

where 1 + 𝛼𝐼𝑑 ≥ 1, 𝑆𝑑 ≤ 𝑁𝑑 ≤ Λ𝑑
𝜇𝑑

 and all associated parameters and 
variables are positive.

𝑔2 = 𝜎̃1
(

𝑏2,2
)

+ |

|

𝑏2,1||

= 𝜎𝑑 +
𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑
−
(

2𝜇𝑑 + 𝜉𝑑 + 𝜔𝑑
)

+ max{−𝛾𝑑 ,−(𝜎𝑑 + 𝜂𝑑 )} + 𝜎𝑑

=
𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑
−
(

2𝜇𝑑 + 𝜉𝑑 + 𝜔𝑑 + 𝛾𝑑
)

+ 𝜎𝑑 if 𝜎𝑑 + 𝜂𝑑 ≥ 𝛾𝑑 .

Let 𝑎̃ = min

{

2𝜇𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝛾𝑑 −
Λ𝑑𝛽𝑑
𝜇𝑑

, 2𝜇𝑑 + 𝜉𝑑 + 𝜔𝑑 + 𝛾𝑑 −

𝜎𝑑

}

. Suppose

𝛾𝑑 > max

{

Λ𝑑𝛽𝑑
𝜇𝑑

− (2𝜇𝑑 + 𝜎𝑑 + 𝜂𝑑 ), 𝜎𝑑 − (2𝜇𝑑 + 𝜉𝑑 + 𝜔𝑑 )

}

.

Thus we have 𝑎̃ > 0. Then

𝑔1 ≤
𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑
− 𝑎̃,

𝑔2 ≤
𝐼 ′𝑑
𝐼𝑑

−
𝐸′
𝑑

𝐸𝑑
− 𝑎̃ if 𝜎𝑑 + 𝜂𝑑 ≥ 𝛾𝑑 .

Along each solution 
(

𝑆𝑑 (𝑡), 𝐸𝑑 (𝑡), 𝐼𝑑 (𝑡)
)

 of model (2.1) with 
arbitrary initial condition 𝑥0 =

(

𝑆𝑑 (0), 𝐸𝑑 (0), 𝐼𝑑 (0)
)

 in Ω̃, we
have

1
𝑡 ∫

𝑡

0
𝑔1 𝑑𝜃,

1
𝑡 ∫

𝑡

0
𝑔2 𝑑𝜃 ≤ −𝑎̃ +

1
𝑡

{

ln

[

𝐼𝑑 (𝑡)
𝐼𝑑 (0)

]

− ln

[

𝐸𝑑 (𝑡)
𝐸𝑑 (0)

]}

.

Hence

1
𝑡 ∫

𝑡

0
𝜎̃(𝐵) 𝑑𝜃 ≤max

{

− 𝑎̃ +
1
𝑡

(

ln

[

𝐼𝑑 (𝑡)
𝐼𝑑 (0)

]

− ln

[

𝐸𝑑 (𝑡)
𝐸𝑑 (0)

])}

.

Therefore,

lim sup
𝑡→∞

sup
𝑥0∈Ω̃

1
𝑡 ∫

𝑡

0
𝜎̃(𝐵) 𝑑𝜃 ≤ −𝑎̃ < 0 since 𝑎̃ > 0.

Since (𝑆𝑑 , 𝐸𝑑 , 𝐼𝑑 , 𝑉𝑑
)

→
(

𝑆∗
𝑑 , 𝐸

∗
𝑑 , 𝐼

∗
𝑑 , 𝑉

∗
𝑑
) and 𝑆 + 𝐸 + 𝐼 + 𝑉 →

Λ
𝜇
 as 

𝑡 → ∞, the humans-only model (final four equations of model (2.1)) is a 
three-dimensional asymptotically autonomous differential system with 
limit system

𝑆′(𝑡) = Λ + 𝜔

(

Λ
𝜇
− 𝑆 − 𝐸 − 𝐼

)

−
𝛽𝑆𝐼𝑑
1 + 𝛼𝐼𝑑

− (𝜇 + 𝛾)𝑆,

𝐸′(𝑡) =
𝛽𝑆𝐼𝑑
1 + 𝛼𝐼𝑑

− (𝜎 + 𝜂 + 𝜇)𝐸,

𝐼 ′(𝑡) = 𝜎𝐸 − (𝜇 + 𝜉)𝐼. (3.20)
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Fig. 2. All trajectories converge to the disease-free equilibrium (𝐸1) whenever 𝑅0 < 1, 𝜂𝑑 ≤ 𝛾𝑑 and 𝜂 ≤ 𝛾.

The Jacobian matrix of (3.20) is given as follows:

𝐽ℎ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−

(

𝛽𝐼∗𝑑
1 + 𝛼𝐼𝑑∗

+ 𝜔 + 𝜇 + 𝛾

)

−𝜔 −𝜔

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

−(𝜎 + 𝜂 + 𝜇) 0

0 𝜎 −(𝜇 + 𝜉)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The second additive compound matrix of 𝐽ℎ is defined as

𝐽 [2]
ℎ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
⎡

⎢

⎢

⎣

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ (2𝜇 + 𝜔 + 𝛾 + 𝜎 + 𝜂)
⎤

⎥

⎥

⎦

0 𝜔

𝜎 −
⎡

⎢

⎢

⎣

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ (𝜔 + 2𝜇 + 𝛾 + 𝜉)
⎤

⎥

⎥

⎦

−𝜔

0
𝛽𝐼∗𝑑

1 + 𝛼𝐼∗𝑑
−(2𝜇 + 𝜉 + 𝜎 + 𝜂)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Let

𝑃 = diag
{ 𝐼
𝐸
, 𝐼
𝐸
, 1
𝐸

}

,

𝑃𝑓 = diag
{

𝐼
𝐸

(

𝐼 ′

𝐼
− 𝐸′

𝐸

)

, 𝐼
𝐸

(

𝐼 ′

𝐼
− 𝐸′

𝐸

)

, 𝐼
𝐸

(

𝐼 ′

𝐼
− 𝐸′

𝐸

)}

,

𝑃−1 = diag
{𝐸
𝐼
, 𝐸
𝐼
, 𝐸
𝐼

}

𝑃𝑓𝑃
−1 = diag

{

𝐼 ′

𝐼
− 𝐸′

𝐸
, 𝐼

′

𝐼
− 𝐸′

𝐸
, 𝐼

′

𝐼
− 𝐸′

𝐸

}

,

where 𝑃𝑓  is the matrix obtained by taking the derivative of each entry 
of 𝑃  along the direction of a vector field 𝑓 .

The matrix 𝐵̂ = 𝑃𝑓𝑃−1 + 𝑃𝐽 [2]
ℎ 𝑃−1 can be written in the following 

form:

𝐵̂ =

⎛

⎜

⎜

⎜

⎜

⎝

𝑏̂1,1 0 𝜔
𝜎 𝑏̂2,2 −𝜔

0
𝛽𝐼∗𝑑

1 + 𝛼𝐼∗𝑑
𝑏̂3,3

⎞

⎟

⎟

⎟

⎟

⎠

,

where

𝑏̂1,1 =
𝐼 ′

𝐼
−

𝐸′

𝐸
−

[

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ (2𝜇 + 𝜔 + +𝛾 + 𝜎 + 𝜂)

]

,

𝑏̂2,2 =
𝐼 ′

𝐼
−

𝐸′

𝐸
−

[

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ (2𝜇 + 𝛾 + 𝜔 + 𝜉)

]

𝑏̂3,3 =
𝐼 ′

𝐼
−

𝐸′

𝐸
− (2𝜇 + 𝜉 + 𝜎 + 𝜂).

By using the same approach as in the dog population, we obtain

𝜎̂1(𝑏̂11) =
𝐼 ′

𝐼
−

𝐸′

𝐸
−

[

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ (2𝜇 + 𝜔 + +𝛾 + 𝜎 + 𝜂)

]

|

|

|

𝑏̂12
|

|

|

= 𝜔

𝑔̂1 = 𝜎̂1(𝑏̂11) +
|

|

|

𝑏̂12
|

|

|

𝑔̂1 =
𝐼 ′

𝐼
−

𝐸′

𝐸
−

[

𝛽𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ (2𝜇 + 𝜔 + +𝛾 + 𝜎 + 𝜂)

]

+ 𝜔
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Fig. 3. All trajectories converge to the endemic equilibrium (𝐸∗) whenever 𝑅0 > 1 and all conditions as in Theorem 7 are satisfied.

Fig. 4. Tornado plot illustrating the partial rank correlation coefficients (PRCCs) with 𝑅0 as the output variable. The three parameters with the greatest impact on 
the reproduction number are the birth, death and transmission rates of dogs.
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Fig. 5. Monte Carlo simulations illustrating sensitivity of 𝑅0 to the three parameters (Λ𝑑 , 𝛽𝑑 and 𝜇𝑑) that have the greatest influence on the disease.

Fig. 6. The surface 𝑅0 = 1 and the influence of the three most influential pa-
rameters (Λ𝑑 , 𝛽𝑑 and 𝜇𝑑). Disease eradication is possible for parameter values 
below the surface, whereas the disease persists for parameter values above the 
surface.

≤ 𝐼 ′

𝐼
− 𝐸′

𝐸
− [2𝜇 + 𝜎 + 𝛾 + 𝜂],

since all associated parameters are positive. Next, we have

|

|

|

𝑏̂21
|

|

|

= 𝜎

𝜎̂1(𝑏̂22) = max

{

𝐼 ′

𝐼
−

𝐸′

𝐸
− (2𝜇 + 𝛾 + 𝜔 + 𝜉),

𝐼 ′

𝐼
−

𝐸′

𝐸
− (2𝜇 + 𝜉 + 𝜎 + 𝜂) − 𝜔

}

=
𝐼 ′

𝐼
−

𝐸′

𝐸
− (2𝜇 + 𝜉 + 𝜔) + max{−𝛾,−(𝜎 + 𝜂)}

𝑔̂2 =
|

|

|

𝑏̂21
|

|

|

+ 𝜎̂1(𝑏̂22)

𝑔̂2 =
𝐼 ′

𝐼
− 𝐸′

𝐸
− (2𝜇 + 𝜉 + 𝜔 + 𝛾) + 𝜎 if𝜎 + 𝜂 ⩾ 𝛾.

Let 𝑎̂ = min
{

2𝜇 + 𝜎 + 𝛾 + 𝜂, 2𝜇 + 𝜉 + 𝜔 + 𝛾 − 𝜎
}

. Suppose 𝛾 >

max
{

− (2𝜇 + 𝜎 + 𝜂), 𝜎 − (2𝜇 + 𝜉 + 𝜔)
}

. Thus we have 𝑎̂ > 0. Then

𝑔̂1 ⩽
𝐼 ′

𝐼
− 𝐸′

𝐸
− 𝑎̂,

𝑔̂2 =
𝐼 ′

𝐼
− 𝐸′

𝐸
− 𝑎̂ if 𝜎 + 𝜂 ≥ 𝛾.

Along each solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) of model (3.20) with arbitrary 
initial condition
𝑥̂0 =

(

𝑆(0), 𝐸(0), 𝐼(0)
)

 in Ω̃, we have

1
𝑡 ∫

𝑡

0
𝑔1 𝑑𝜃,

1
𝑡 ∫

𝑡

0
𝑔2 𝑑𝜃 ≤ −𝑎̃ +

1
𝑡

{

ln

[

𝐼(𝑡)
𝐼(0)

]

− ln

[

𝐸(𝑡)
𝐸(0)

]}

.

Hence

1
𝑡 ∫

𝑡

0
𝜎̃(𝐵) 𝑑𝜃 ≤ max

{

− 𝑎̃ +
1
𝑡

(

ln

[

𝐼(𝑡)
𝐼(0)

]

− ln

[

𝐸(𝑡)
𝐸(0)

])}

,

and

lim sup
𝑡→∞

sup
𝑥̂0∈Ω̃

1
𝑡 ∫

𝑡

0
𝜎̃(𝐵) 𝑑𝜃 ≤ −𝑎̃ < 0 since 𝑎̃ > 0.

Therefore, the endemic equilibrium of model (2.1) is globally asymp-
totically stable if 𝑅0 > 1, 𝜎𝑑 + 𝜂𝑑 ≥ 𝛾𝑑 and 𝜎 + 𝜂 ≥ 𝛾. ∎
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Fig. 7. The transmission dynamics of infected dogs and humans in model (2.1) with varying 𝛼 values when 𝑅0 > 1.

Fig. 8. The values of 𝐼∗
𝑑  and 𝐼∗ of model (2.1) as 𝛼 varies when 𝑅0 > 1.

Fig. 9. The transmission dynamics of infected dogs and humans in model (2.1) with varying 𝛼 values when 𝑅0 < 1.
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Fig. 10. Effect of vaccination with fixed 𝛼 when 𝑅0 > 1.

4.  Numerical simulations

4.1.  Stability of equilibria

We conduct numerical simulations of model (2.1) depicting the 
transmission dynamics of rabies in the dog and human populations in or-
der to validate our results using the parameter values in Table 1. We rep-
resent the initial conditions using the symbol n and equilibrium points 
by l. Parameters are given in Table 1.

From Fig. 2, we observe that all trajectories with arbitrary initial con-
ditions are converging to 𝐸1 as 𝑡 → ∞ whenever the conditions 𝑅0 < 1, 
𝜂𝑑 ≤ 𝛾𝑑 and 𝜂 ≤ 𝛾 are satisfied. Fig. 3 shows that all trajectories con-
verge to 𝐸∗ as 𝑡 → ∞ if 𝑅0 > 1 and all conditions stated in Theorem 7 
are satisfied.

4.2.  Sensitivity analysis

We used Latin Hypercube Sampling (LHS) and partial rank correla-
tion coefficients (PRCCs) to conduct a sensitivity analysis. LHS selects 
parameter values from a random grid without replacement, ensuring 
each row and column is used only once. Since there is limited or no 
empirical data available for the associated parameters of the basic re-
production number, 𝑅0, but their feasible ranges are known, we default 
to assuming uniform distributions [60,61]. Suppose the range of each of 
the input variables 𝑥𝑖 (𝑖 = 1, 2,… , 𝑘) is divided into 𝑛 non-overlapping 
intervals of equal probability 1𝑛 . From each interval, one value is sam-
pled uniformly at random. The sampled values for each variable are 
then independently shuffled to eliminate any correlation between vari-
ables. To ensure uniqueness, 𝑛 distinct sample points are constructed by 
combining the shuffled values across all variables. (For more details, see 
[60–64].)

PRCCs are then used to assess the sensitivity of 𝑅0 to each param-
eter by ranking their effects while holding all other parameters at me-
dian values. This approach has been widely applied in epidemiological 

modelling to determine the parameters that most significantly influence 
disease transmission and control [65–70].

In this study, we perform LHS with 2000 simulations per run 
to ensure conclusive results and allow us to observe distinct pat-
terns. The ranges of the associated parameters that are used in 
performing the simulation are given in Table 2 unless otherwise
stated.

Fig. 4 shows that there are three parameters out of nine that have 
the greatest effect in controlling disease transmission: Λ𝑑 , 𝛽𝑑 and 𝜇𝑑 . 𝑅0
increases as Λ𝑑 and 𝛽𝑑 increase and decreases as 𝜇𝑑 increases. Fig. 5 
illustrates the sensitivity analysis of 𝑅0 to these three parameters. From 
this figure, it is more promising to control the spreading of rabies by 
reducing Λ𝑑 and 𝛽𝑑 values. However, we are unlikely to achieve disease 
extinction by increasing 𝜇𝑑 .

By setting 𝑅0 = 1 and fixing all associated parameters at their sam-
ple values as stated in Table 2, we would like to further examine these 
three important parameters. The resulting surface is shown in Fig. 6. 
The combination of three parameters above the surface will lead to dis-
ease persistence, whereas the disease is likely to die off for parameter 
values below the surface. In addition, the 𝑅0 value is directly propor-
tional to Λ𝑑 and 𝛽𝑑 . Hence, if we could control the recruitment rate of 
dogs and the disease transmission rate from infected dogs to suscepti-
ble dogs, then 𝑅0 < 1. However, such control is difficult to achieve in 
practice, and the actual 𝑅0 values in the field may be higher than previ-
ously thought [71]. We thus turn to investigating other possibilities for 
control when 𝑅0 > 1.

4.3.  Including incidence

It follows from Fig. 5 that we can only achieve disease control if the 
transmission rate is very small or the recruitment rate is tiny. Culling 
dogs does not even cross the threshold. A larger issue is that the majority 
of Monte Carlo simulations in Fig. 5 are above the threshold, suggesting 
that actually eradicating rabies is unlikely except with extreme control 

Mathematical Biosciences 391 (2026) 109567 

13 



N.S. Chong et al.

Table 2 
Sample values and ranges of associated parameters in performing 
sensitivity analysis of 𝑅0.

 Parameter  Value  Unit  Source  Range
Λ𝑑 325 individuals

year
 [40]  [10, 600]

𝛽𝑑 5.2 × 10−4 year−1  Estimation  [0.0001, 1]
𝜇𝑑 0.0833 year−1  [41]  [0.001, 1]
𝜎𝑑 6 year−1  [27]  [0.01, 15]
𝜉𝑑 1 year−1  [27]  [0.01, 10]
𝜈𝑑 0.9  unitless  Estimation  [0.01, 1]
𝜔𝑑 0.5 year−1  [28]  [0.01, 10]
𝛾𝑑 0.5 year−1  [44]  [0.01, 10]
𝜂𝑑 0.09 year−1  [27]  [0.001, 5]

measures. Furthermore, we know that the disease persists in reality, so 
eradication is unlikely. Instead, we examine disease management in the 
case of viral persistence.

A next-level approach is to examine the effect of changing 𝛼 on the 
outcome. It should be noted that 𝑅0 does not depend on the form of 
the incidence function or the parameter 𝛼. This is because 𝑅0 is derived 
from a linearisation of the model around equilibria; nonlinear terms in 
the model, such as those describing saturated incidence, play no part in 
the calculation of 𝑅0. The parameter 𝛼 corresponds to either changing 
behaviour among susceptible humans as they avoid contacts due to ris-
ing infections or reducing dog contacts through targeted interventions.

Fig. 7 shows that changes in the inhibitory effect, 𝛼, significantly 
affect the number of infected dogs and humans when 𝑅0 > 1. We can see 

that by increasing the 𝛼 value, the saturated levels of model (2.1), 
𝛽𝑑
𝛼
 and 

𝛽
𝛼
, are decreasing; hence, the number of infected dogs and humans are 

converging to a smaller steady state as 𝑡 → ∞. This is illustrated in more 
detail in Fig. 8, showing the reduction in the endemic equilibrium as 𝛼
increased. In Fig. 7, for 𝛼 = 0.8, we observe that 𝐼𝑑 → 1.0201 and 𝐼 →
5.8277 as 𝑡 → ∞. Furthermore, Fig. 8 shows that, for instance, when 𝛼 =
0.7, 𝐼∗ → 8.8705 and 𝐼∗𝑑 → 1.1643, while for 𝛼 = 1, 𝐼∗ → 6.2602 and 𝐼∗𝑑 →
0.8173. These values do not approach zero when 𝑅0 > 1 and hence do not 
contradict Theorem 7 or Fig. 3. However, in practice, if the value of the 
endemic equilibrium can be sufficiently lowered, then it is functionally 
indistinguishable from eradication.

Conversely, when 𝑅0 < 1, Fig. 9 shows that varying the 𝛼 values 
only results in a small difference in the number of infected dogs and 
humans, slightly accelerating disease elimination. By fixing the value 
of 𝛼 and varying the vaccination rates (𝛾𝑑 , 𝜂𝑑 , 𝛾 and 𝜂), Fig. 10 illus-
trates that the impact of vaccination becomes negligible when 𝛼 is 
sufficiently large and 𝑅0 > 1. However, when 𝛼 is small, vaccination 
proves to be effective: higher vaccination rates can reduce both the 
peak and the final size of the number of infected dogs and humans. 
It follows that inhibiting infection due to crowding is critical, even 
when 𝑅0 > 1. This can be achieved in dogs through surveillance and 
control in humans through education, awareness and prevention pro-
grams. The inhibitory effect thus plays a crucial role when rabies is en-
demic, with the potential to eliminate the disease even when vaccination
cannot.

5.  Discussion

We proposed a rabies mathematical model with saturated incidence 
rate, governed by a set of nonlinear ordinary differential equations 
describing dog and human populations. By applying the comparison 
principle [51] and the theory of asymptotic autonomous systems [52], 
we proved global stability of the disease-free equilibrium (𝐸1) when-
ever 𝑅0 < 1 and under the additional parameter restrictions 𝜂𝑑 ≤ 𝛾𝑑 and 
𝜂 ≤ 𝛾. A geometric approach [53] was used to prove that the endemic 
equilibrium (𝐸∗) achieves global stability whenever 𝑅0 > 1. A sensitivity 
analysis determined the three parameters that play the most significant 

effect in controlling the outbreak: Λ𝑑 , 𝛽𝑑 and 𝜇𝑑 . This suggests that in-
creasing vaccination programmes, public-awareness campaigns and dog 
surveillance and monitoring will reduce the prevalence of the disease. 
Rabies in dogs has been eliminated in countries such as the United King-
dom, Austria, Australia and Belgium [72], largely through successful 
vaccination efforts [73]. However, global eradication has not yet been 
achieved, despite robust and active intervention and control programs 
in countries like Mexico and Nicaragua [72].

However, it should be noted from Figs. 5 and 6 that the vast majority 
of parameter combinations lead to disease persistence. We capped Fig. 6 
at Λ𝑑 = 400 for ease of illustration, but the graph is mostly flat at zero for 
the range of Λ𝑑 values included in Table 2. It follows that disease eradi-
cation is unlikely in practice, unless the birth rate of dogs is significantly 
reduced. However, eradication is not the only goal of rabies control; re-
ducing 𝑅0 will improve the outcome, even if the value of 𝑅0 in practice 
does not cross the threshold. Even with 𝑅0 > 1, increasing the inhibitory 
effect has a noticeable impact on disease control. It follows that rabies 
can be controlled with soft interventions, such as public-awareness cam-
paigns, reduced contacts, animal curfews and fences. These interven-
tions can control rabies better than current vaccination programs; see 
Fig. 10. The importance of “soft” interventions — such as raising public 
or community awareness and enhancing educational campaigns — has 
been qualitatively shown to be more effective in combating rabies than 
the implementation of mass rabies vaccination in dogs in some locales 
[74–76].

Our model has several limitations, which should be acknowledged. 
We considered dogs to be the only primary source of rabies transmission 
in our model (2.1), and both dog and human populations will become 
susceptible if the loss of immunity occurs. Moreover, we assumed that 
the recruitment rates of dog and human populations were constant and 
that a constant fraction 𝜈𝑑 of newly recruited dogs is vaccinated. We did 
not include human-to-human transmission in our model; such transmis-
sion, via saliva or bite, is theoretically feasible, but it has never been 
proven [22]. Our sensitivity analysis is robust within the range of pa-
rameter values chosen, but we did not explore values outside of these 
(plausible) ranges, which could potentially lead to some outlier results.

For future work, we suggest integrating spatial and temporal dynam-
ics (spatially, the disease can spread through different geographical re-
gions or within communities; temporally, the disease can have seasonal 
fluctuations), incorporation of vaccination hesitancy (despite the effec-
tiveness of vaccination programs, vaccine hesitancy can be a significant 
barrier to achieve high vaccination coverage in the populations) and/or 
environmental factors (environmental factors such as temperature, hu-
midity and habitat fragmentation can influence the spread of the dis-
ease).

Despite the availability of a vaccine and dog-culling programs, ra-
bies is a difficult disease to eradicate. Birth, death and transmission rates 
among dogs are driving factors, while increasing the inhibitory effect 𝛼
(a measure of psychological or inhibitory effect from behaviour changes 
or crowding) can result in a decrease in infections. This may produce a 
counter-intuitive result: as rabies-control programs reduce the number 
of infected dogs, the crowding effect may lighten, hampering these ef-
forts. It follows that intervention methods may require careful monitor-
ing for confounding effects.

Although we can prove local and global stability results for the erad-
ication threshold, this is not very useful in practice. Instead, includ-
ing saturated incidence in our model shows that the soft interventions
matter: they have a tangible effect on disease control, even when 𝑅0 > 1. 
It follows that integrating soft interventions into mathematical models 
is a crucial element of disease management.
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Appendix A.  Local stability of the endemic equilibrium

We find that 𝑎4, 𝑎5, 𝑎6, 𝑎7 > 0 if 𝑅0 > 1. For 𝑎6(𝑎4𝑎5 − 𝑎6) − 𝑎24𝑎7, we 
have

𝑎6(𝑎4𝑎5 − 𝑎6) − 𝑎24𝑎7
= 𝜇𝑑 (𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(2𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 )(3𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 )𝑊1

+ 𝜇𝑑 (2𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 )

{

(𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )𝑊2 + (3𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 )

[

𝑊3 + (𝜇𝑑 + 𝜉𝑑 )(𝜇𝑑 + 𝜔𝑑 )
]

}

𝛽𝑑𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ (4𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝛾𝑑 + 𝜔𝑑 )
[

(𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )𝑊4 + 𝛾𝑑 (𝜇𝑑 + 𝜉𝑑 )

(𝜎𝑑 + 𝜇𝑑 )(3𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 )
] 𝛽𝑑𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ (𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )𝑊9

(

𝛽𝑑𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

)(

𝛼𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

)

+ (𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )
[

𝑊3 +𝑊5 + (𝜇𝑑 + 𝜉𝑑 )(2𝜇𝑑 + 𝜔𝑑 ) + (2𝜇𝑑 + 𝜉𝑑 )

(𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )
] 𝛼𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

(

𝛽𝑑𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

)2

+ (2𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(𝜇𝑑 + 𝜉𝑑 )2(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )2
(

𝛽𝑑𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

+ 2𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑

)(

𝛼𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

)2

+ (𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )(2𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(2𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 )

𝑊6

(

𝛼𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

)

+𝑊10

(

𝛽𝑑𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

)2

+
[

(𝜇𝑑 + 𝜉𝑑 )𝑊8 + (3𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝜔𝑑 )𝑊3

]

(

𝛽𝑑𝐼∗𝑑
1 + 𝛼𝐼∗𝑑

)3

> 0 if 𝑅0 > 1,

where

𝑊1 = (𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(4𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝛾𝑑 + 𝜔𝑑 )

+ 𝜇𝑑 (2𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 ),

𝑊2 = (𝜇𝑑 + 𝛾𝑑 )(3𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 ) + (𝜇𝑑 + 𝜉𝑑 )(3𝜇𝑑 + 𝜉𝑑 + 𝛾𝑑 + 𝜔𝑑 )

+ 𝜔𝑑 (𝜇𝑑 + 𝜂𝑑 ),

𝑊3 = 𝜔𝑑 (𝜎𝑑 + 𝜇𝑑 ) + (2𝜇𝑑 + 𝜉𝑑 )(𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 ),

𝑊4 = 𝜔𝑑 (𝜇𝑑 + 𝜉𝑑 )(3𝜇𝑑 + 𝜉𝑑 + 𝜂𝑑 ) + (3𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 )
[

(𝜇𝑑 + 𝜔𝑑 )

(𝜎𝑑 + 𝜇𝑑 ) + 𝜇𝑑 (𝜇𝑑 + 𝜉𝑑 + 𝜂𝑑 )
]

+ 𝜇2
𝑑 (𝜇𝑑 + 𝜉𝑑 ) + 𝜇𝑑 (𝜎𝑑 + 𝜂𝑑 + 𝜇𝑑 )

(2𝜇𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝜔𝑑 ),

𝑊5 = 2𝜇2
𝑑 + (𝜎𝑑 + 𝜂𝑑 + 𝜔𝑑 )(2𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 ),

𝑊6 = (𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(2𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝛾𝑑 + 𝜔𝑑 )

+ 𝜇𝑑 (3𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 ),

𝑊7 = 𝜇𝑑
[

(2𝜎𝑑 + 2𝜂𝑑 + 𝜇𝑑 + 𝜔𝑑 )(2𝜇𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝜔𝑑 ) + (𝜇𝑑 + 𝜉𝑑 )

(2𝜇𝑑 + 𝜔𝑑 )
]

+ 𝜔𝑑

[

𝜎2𝑑 + 𝜉𝑑𝜂𝑑 + (𝜇𝑑 + 𝜂𝑑 + 𝜔𝑑 )(𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 )
]

+ 𝜉𝑑 (𝜎𝑑 + 𝜂𝑑 )(2𝜇𝑑 + 𝜎𝑑 + 𝜂𝑑 ),

𝑊8 = 𝜇𝑑 (2𝜇𝑑 + 𝜉𝑑 + 𝜔𝑑 ) + 𝜔𝑑 (2𝜇𝑑 + 𝜉𝑑 + 𝜂𝑑 + 𝜔𝑑 ),

𝑊9 = (2𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 )
[

𝑊3 + 𝜇𝑑𝛾𝑑 + (𝜇𝑑 + 𝜔𝑑 )(2𝜇𝑑 + 𝜉𝑑 )
]

+ (2𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )𝑊2 + (4𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝛾𝑑 + 𝜔𝑑 )𝑊5 and

𝑊10 = 𝜇𝑑 (𝜇𝑑 + 𝛾𝑑 + 𝜔𝑑 )(2𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 )(3𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝜔𝑑 )
[

𝑊3 + (𝜇𝑑 + 𝜉𝑑 )(𝜇𝑑 + 𝜔𝑑 )
]

𝑊2

+ (4𝜇𝑑 + 𝜉𝑑 + 𝜎𝑑 + 𝜂𝑑 + 𝛾𝑑 + 𝜔𝑑 )𝑊7.
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