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Abstract

We consider an SIR-type model of immunological behaviour for HIV dynamics, including the
effects of reverse transcriptase inhibitors and other drugs which prevent cellular infection. We use
impulsive differential equations to model drug behaviour. We classify different regimes according to
whether the drug efficacy is negligible, intermediate or high. We consider two strains of the virus:
a wild-type strain that can becontrolled by both intermediate and high drug concentrations, and
a mutant strain that can only be controlled by high drug concentrations. Drug regimes may take
trajectories through one, two or all three regimes, depending on the dosage and the dosing schedule.
We demonstrate that drug resistance arises at both intermediate and high drug levels. At low drug
levels resistance does not emerge, but the total T cell count is proven to be significantly lower than in
the disease-free state. At intermediate drug levels, drug resistance is guaranteed to emerge. At high
drug levels, either the drug-resistant strain will dominate or, in the absence of longer-lived reservoirs
of infected cells, both viral sub-populations will be cleared. In the latter case the immune system is
maintained by a population of T cells which have absorbed sufficientquantities of the drug to prevent
infection by even thedrug-resistant strain. We provide estimates of a range of dosages and dosing
schedules which would, if physiologically tolerable, theoretically eliminate free virus in this system.
Our results predict that to control viral load, decreasing the interval between doses is more effective
than increasing the dose.
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1. Introduction

The emergence of drug resistance is one of the most prevalent reasons for treatment
failure in HIV therapy. A large number of mathematical models have been developed to
describe the population dynamics of HIV-1 including drug treatment and drug resistance;
studies in the last decade includePerelson et al. (1996), de Boer and Boucher (1996),
de Jong et al. (1996), Ki rschner and Webb (1996), Perelson et al. (1997), de Boer and
Perelson (1998), Wein et al. (1998), Wodarz and Nowak (1999), Ribeiro and Bonhoeffer
(2000), Wodarz et al. (2000), Wodarz (2001)and Perelson (2002). Historically, such
models have focussed on the emergence of drug resistance within an individual during
continuous drug therapy (Nowak et al., 1991; McLean and Nowak, 1992; Frost and
McLean, 1994; Coffin, 1995; Bonhoeffer and Nowak, 1997; Stilianakis et al., 1997; Nowak
et al., 1997; Austin and Anderson, 1999).

In contrast, a handful of studies have modeled the interaction ofchanging drug
concentrations with the population dynamics of a pathogen, examining the conditions
necessary for the emergence of drug resistance (Kepler and Perelson, 1998; Lipsitch and
Levin, 1998; Wahl and Nowak, 2000).

Wehave recently proposed the use of impulsivedifferential equations to model dynamic
drug concentrations during HIV-1 therapy (Smith and Wahl, 2004). This framework
allowed us to capitalize on a fairly sophisticated mathematical literature (Bainov and
Simeonov, 1989, 1993, 1995; Lakshmikantham et al., 1989), facilitating our investigation
of drug classes with different mechanisms of action.

In the sections that follow we extend this approach to examine the conditions required
for the emergence of drug resistance during HIV therapy. We consider drug regimes for
classes of drugs that mimic the dynamics of reverse transcriptase inhibitors. Specifically,
these are drugs that prevent viral infection of T cells. Such drugs include reverse
transcriptase inhibitors (nucleoside, nonnucleoside and nucleotide), fusion inhibitors and
integrase inhibitors. The class of such drugs that prevent viral infection will be henceforth
referred to as “preventative drugs”.

Weassume a single drug regimen (though this regimen may actually consist of a number
of different preventative drugs), a wild-type strain of the virus that initially dominates and
a drug-resistant strain, which has lower infectivity. Intermediate drug levels will affect
the wild-type strain of the virus alone, while high drug levels will affect both strains. Our
approach is a novel one, using impulsive differential equations to model drug behaviour and
classifying different model regimes according to whether the drug efficacy is negligible,
intermediate or high.

The aim of this study is to determine how dosing schedules and concentrations of
preventative drugs will facilitate or prevent the emergence of drug resistance. Although
the advantage of our formulation is that dynamic changes in drug concentration can be
examined using a completely analytical approach, we illustrate many of our results using
numerical simulations.
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2. The model

2.1. T cells

We would like to examine the various possible fates of a CD4+ T cell in some detail.
At any time, a T cell may come into contact with (1) a virion infected with the wild-type
virus, (2) a virion infected with the mutant strain of the virus, or (3) the drug. Depending
on the level of drug absorbed, the cell may subsequently become immune to neither, one or
both strains of the virus. The T cells can thus be classified into five populations, described
below in paragraphs (a) through (e) and pictured inFig. 1A.

(a) LetTS be the population of susceptible (noninfected) CD4+ T cells. These cells are
produced at a constant rate,λ. There are four possible fates for these T cells: they may die
at natural death ratedS; they may (b) become infected with the wild-type virus; (c) they
may become infected with the mutant virus; or (d) they may absorb the drug.

(b) We useTI to denote the population of CD4+ T cells infected with the wild-type
virus. These cells produce wild-type infectious virus,VI , andhave a significantly higher
death rate,dI (Ho et al., 1995). Like the healthy cells, these cells may later absorb drug.
Since the viral genome has already been transcribed into the host DNA, absorbing the drug
has no effect on these infected cells. Thus, the only possible fate for these cells is cell
death.

(c) TY denotes the cells infected with the mutant virus. These cells produce mutant
infectious virus,VY, and we assume their death rate is the same as cells infected with
the wild-type virus. The drug will also haveno effect on these infected cells. We also
assume that there is no difference in the average number of infectious virions produced per
infectious cell. The only possible fate for these cells is also cell death.

(d) TRI denotes noninfected cells which have absorbed sufficient quantities of the drug
sothat the wild-type strain is inhibited, but not enough to prevent infection by the mutant
strain of the virus. These cells may come into contact with either the wild-type or the
mutant strain of the virus or the drug. If the cell comes into contact with a wild-type virus,
it cannot become infected, so this has no consequence for the cell. However, if the cell
comes into contact with the mutant virus, it will become infected with the mutant strain.
If the cell comes into contact with sufficientlyhigh drug concentrations, it can become (e)
a TRY cell. If not, the cell will eventually revert back to a susceptible cell when the drug
effect wears off, or undergo cell death.

(e) TRY denotes noninfected cells which have absorbed sufficient quantities of the drug
sothat both strains of the virus are inhibited. Such cells cannot become infected while they
remainin this state. These cells will eventually revert back toTRI cells as the drug effect
wears off, or undergo cell death.

Wild-type infectious virions, VI (respectively mutant infectious virionsVY), are
produced by T cells infected with the wild-type virus (respectively the mutant strain of
the virus) and are removed by clearance and infection of susceptible cells.

2.2. Drugs

We useR(t) to denote the intracellular concentration of the drug and its active metabo-
lites (Hoggard and Back, 2002). We assume that drugs are taken at (not necessarily fixed)
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Fig. 1. Three-regime model. A: The five classes of T cells are susceptible (S), infected with the wild type (I),
infected with the mutant type (Y), inhibited with intermediate levels of drug (RI) and inhibited with high levels
of drug (RY). Each cell may come into contact with a wild type virion, a mutant virion, or the drug. Once
infected, cells cannot move into the classof drug-inhibited cells. Cells inhibited with intermediate levels of drug
are immune to the wild-type virus while they remain inhibited, but can be infected by the mutant strain. Cells
inhibited with high drug levels cannot be infected while they remain in this state. B: Example dose–effect curves
for the wild-type (solid curve) and drug-resistant (dashedcurve) viral strains. When drug concentrationR is less
than R1, the probability that a T cell absorbs sufficient drug to block infection is negligible for both strains.
Between thresholds (R1 < R < R2), only the wild-type strain has a non-negligible probability of being blocked
by the drug. For high drug concentrations (R > R2), this probability grows monotonically with dose for both
viral strains. IC50 values for thereverse transcriptase inhibitor AZT were used in this example. See text for
details.

times tk. Theeffect of the drugs is assumed to be instantaneous, resulting in a system of
impulsive differential equations, whereby solutions are continuous fort �= tk (satisfying the
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associated system of ordinary differential equations) and undergo an instantaneous change
in state whent = tk.

According to impulsive theory, we can describe the nature of the impulse at timerk via
the difference equation

�R ≡ R(t+k ) − R(t−k ) = f (tk, R(t−k )). (2.1)

(We refer the interested reader toBainov and Simeonov (1989, 1993, 1995) and
Lakshmikantham et al. (1989)for more details on the theory of impulsive differential
equations.)

This technique assumes that the change in intracellular drug concentration immediately
after a dose is taken is nearly instantaneous, that is, the time to peak is negligible
on the relevant time scale. By neglecting the known dispersion and delay as the drug
enters the intracellular space,we overestimate the temporal effects of dosing at intervals.
The implications of this assumption will be taken up further in the Discussion. For
a fuller treatment of the effects of spatially distinct compartments, seeKepler and
Perelson (1998); for a detailed model of the kinetics of drug action, seeAustin et al.
(1998).

For simplicity, we assume that drugs are cleared from the body at a constant rate. This
has the effect of overestimating the clearance rate, since presumably clearance from the
intracellular compartments will be delayed. However, we argue that such an assumption is
a reasonable approximation in the absence of more complete knowledge of the mechanics
of drug clearance, and further that this assumption ensures that our estimates of overall
treatment efficacy are conservative.

To model the effects of a resistance mutation on drug efficacy, we consider an
underlying scenario as illustrated inFig. 1B. Here the solid line shows a dose–effect
curve for the wild-type virus, while the dashed line shows the same curve for a drug-
resistant strain; drug resistance implies an increase in theIC50 concentration of the
drug. The y-axis, or “effect” in the dose–effect curve, is related to the probability
that a given T cell absorbs sufficient quantities of the drug to prevent viral infection.
Thus when R < R1, this probability is negligible for both viral strains. In some region
R1 < R < R2, this probability remains negligible for the drug-resistant virus, but grows

monotonically with dose for the wild-type. Similarly whenR > R2, the probability of
blocking infection is significant for both wild-type and drug-resistant strains, although
higher for the wild-type. In all three cases where the probability that infection will
be blocked is non-negligible, we assumethat this probabilitygrows linearly with
increasing dose, although at different rates for different strains and regions (note that
the dose–effect curves in these regimes are much closer to linear than suggested by this
semilog plot). Our model of HIV dynamics therefore consists of three distinct systems
in which different drug actions are possible, depending on the drug concentrationR
(Fig. 1A).

2.3. Combining T cell populations with virus and drugs

For R < R1, the dynamics of virions and T cells are given by:
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dVI

dt
= nI ωTI − dV VI − r I TSVI

dVY

dt
= nI ωTY − dV VY − rYTSVY − rYTRIVY

dVN I

dt
= nI (1 − ω)(TI + TY) − dV VN I

dTS

dt
= λ − r I TSVI − rYTSVY − dSTS + mRITRI

dTI

dt
= r I TSVI − dI TI

dTY

dt
= rYTSVY − dI TY + rYTRIVY

dTRI

dt
= −rYTRIVY − (dS + mRI)TRI + mRYTRY

dTRY

dt
= −(dS + mRY)TRY

(2.2)

for t �= tk (see impulsive conditions below).
Heret is time in days,nI is the number of virions produced per infected cell per day,ω is

the fraction of virions produced by an infected T cell which are infectious,dV is the rate at
which free virus is cleared,dS is thenoninfected CD4+ T cell death rate,dI is the infected
CD4+ T cell death rate,r I is the rate at which wild-type virus infects T cells, andrY is the
rate at which the drug-resistant virus infects T cells. The constantλ represents a source of
susceptible cells, whilemRI andmRY are the rates at which the drug is cleared from the
intracellular compartment for intermediate and high drug concentrations respectively.

For R1 < R < R2, the dynamics of virions and T cells are given by:

dVI

dt
= nI ωTI − dV VI − r I TSVI

dVY

dt
= nI ωTY − dV VY − rYTSVY − rYTRIVY

dVN I

dt
= nI (1 − ω)(TI + TY) − dV VN I

dTS

dt
= λ − r I TSVI − rYTSVY − dSTS − r PTSR + mRITRI

dTI

dt
= r I TSVI − dI TI

dTY

dt
= rYTSVY − dI TY + rYTRIVY

dTRI

dt
= r PTSR − rYTRIVY − (dS + mRI)TRI + mRYTRY

dTRY

dt
= −(dS + mRY)TRY

(2.3)

for t �= tk. Herer P is the rate at which the drug inhibits the wild-type T cells when drug
concentrations are intermediate.
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For R > R2, the dynamics of virions and T cells are given by:

dVI

dt
= nI ωTI − dV VI − r I TSVI

dVY

dt
= nI ωTY − dV VY − rYTSVY − rYTRIVY

dVN I

dt
= nI (1 − ω)(TI + TY) − dV VN I

dTS

dt
= λ − r I TSVI − rYTSVY − dSTS − r RTSR + mRITRI

dTI

dt
= r I TSVI − dI TI

dTY

dt
= rYTSVY − dI TY + rYTRIVY

dTRI

dt
= r RTSR − rYTRIVY − (dS + mRI)TRI + mRYTRY − r QTRI R

dTRY

dt
= r QTRI R − (dS + mRY)TRY

(2.4)

for t �= tk. Herer R and r Q are the rates at which the drug inhibits the wild-type and
drug-resistant T cells, respectively,when drug concentrations are high.

All death rates, rates of infection andλ are assumed to be positive. We assume
0 � ω ≤ 1 andr I > rY (i.e. the wild-type is the more infectious strain of the virus).
Furthermore,dS < dI < dV (Ho et al., 1995).

In addition, the dynamics of the drug,R are given by:

dR

dt
= −dRR t �= tk

with impulsive conditions �R = Ri t = tk.
(2.5)

Here,dR is the rate at which the drug is cleared andRi is the dosage.
Note that, using (2.1), we have

R(t+k ) = R(t−k ) + Ri . (2.6)

The impulse timestk can be assumed fixed, reflecting regular dosing periods, although we
can sett1 to be significantly large to reflect the fact that drugs are not taken until after the
infection has been diagnosed. We will likewise assume thatR(0) = 0.

Thus (2.2)–(2.4), together with (2.5) describe our three-regime model of impulsive
differential equations.

3. Asymptotic behaviour

For each region, we find equilibria and (some) impulsive periodic orbits by equating the
non-impulsive derivatives to zero. We then determine the stability of these equilibria and
orbits, in order to understand the behaviour of trajectories in each region.
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3.1. Region 1: low drug levels

System (2.2) has equilibria

(VI , VY, VN I , TS, TI , TY, TRI, TRY) =
(

0, 0, 0,
λ

dS
, 0, 0, 0, 0

)
,(

V̄I , 0,
nI (1 − ω)

dV
T̄I ,

dVdI

r I (nI ω − dI )
, T̄I , 0, 0, 0

)
,(

0, V̄Y,
nI (1 − ω)

dV
T̄Y,

dVdI

rY(nI ω − dI )
, 0, T̄Y, 0, 0

)
,

where

V̄I = λr I (nI ω − dI ) − dVdI dS

r I dVdI
V̄Y = λrY(nI ω − dI ) − dVdI dS

rYdVdI

T̄I = λr I (nI ω − dI ) − dVdI dS

r I dI (nI ω − dI )
T̄Y = λrY(nI ω − dI ) − dVdI dS

rYdI (nI ω − dI )
.

We shall refer to these three equilibria as thedisease-free equilibrium, the wild-type
equilibrium and the mutant equilibrium, respectively.

The Jacobian matrix for Region 1 (described by (2.2) and (2.5)) is J1 = [J(a)
1 |J(b)

1 ]
where

J(a)
1 =




−dV − r I TS 0 0 −r I VI

0 −dV − rYTS − rYTRI 0 −rYVY

0 0 −dV 0
−r I TS −rYTS 0 −r I VI − rYVY − dS

r I TS 0 0 r I VI

0 rYTS + rYTRI 0 rYVY

0 −rYTRI 0 0
0 0 0 0
0 0 0 0




J(b)
1 =




nI ω 0 0 0 0
0 nI ω −rYVY 0 0

nI (1 − ω) nI (1 − ω) 0 0 0
0 0 mRI 0 0

−dI 0 0 0 0
0 −dI rYVY 0 0
0 0 −rYVY − dS − mRI mRY 0
0 0 0 −dS − mRY 0
0 0 0 0 −dR




.

Note thatTRI = TRY = 0 for all three equilibria. Thus, this matrix has characteristic
equation

0 = det(J1(VI , VY, VN I , TS, TI , TY, 0, 0, R) − µI )

= (dV + µ)(rYVY + dS + mRI + µ)(dS + mRY + µ)(dR + µ) f1(µ),
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where f1(µ) is the determinant of


−dV − r I TS − µ 0 −r I VI nI ω 0
0 −dV − rYTS − µ −rYVY 0 nI ω

−r I TS −rYTS −r I VI − rYVY − dS − µ 0 0
r I TS 0 r I VI −dI − µ 0

0 rYTS rYVY 0 −dI − µ




andVI , VY andTS are equilibrium values.
For the disease-free equilibrium,VI = 0, VY = 0 andTS = λ

dS
, so we have

f1(µ) = −(dS + µ)(µ2 + a1µ + b1)(µ
2 + a2µ + b2)

where

a1 = dV + dI + r I λ

dS

b1 = dI

(
dV + r I λ

dS

)
− nI ωr I λ

dS

a2 = dV + dI + rYλ

dS

b2 = dI

(
dV + rYλ

dS

)
− nI ωrYλ

dS
.

We have

b2 = dVdI + rYλ

dS
(dI − nI ω) < 0

usually, since nI is large compared to the other constants andω is not too close to
zero. Thus there is an eigenvalue with positive real part. It follows that the disease-free
equilibrium of system (2.2), (2.5) is usually unstable.

For themutant equilibrium,VI = 0, VY = λrY(nI ω−dI )−dVdI dS
rYdV dI

andTS = dV dI
rY(nI ω−dI )

, so
we have

f1(µ) = (µ2 + a3µ + b3) det


−dV − rYTS − µ −rYVY nI ω

−rYTS −rYVY − dS − µ 0
rYTS rYVY −dI − µ




where

a3 = dV + dI + r I TS

b3 = dVdI + r I TS(dI − nI ω)

= dVdI + r I
dVdI

rY(nI ω − dI )
(dI − nI ω)

= dVdI (rY − r I )

rY
< 0

sincer I > rY. Thus there is an eigenvalue with positive real part. It follows that the mutant
equilibrium of system (2.2), (2.5) is unstable.
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For thewild-type equilibrium,VI = λr I (nI ω−dI )−dV dI dS
r I dV dI

, VY = 0 andTS = dV dI
r I (nI ω−dI )

,
so we have

f1(µ) = (µ2 + a4µ + b4) det


−dV − r I TS − µ −r I VI nI ω

−r I TS −r I VI − dS − µ 0
r I TS r I VI −dI − µ




where

a4 = dV + dI + rYTS

b4 = dVdI + rYTS(dI − nI ω)

= dVdI + rY
dVdI

r I (nI ω − dI )
(dI − nI ω)

= dVdI (r I − rY)

r I
> 0

sincer I > rY. Next,

det


−dV − r I TS − µ −r I VI nI ω

−r I TS −r I VI − dS − µ 0
r I TS r I VI −dI − µ


 = −µ3 − a5µ

2 − b5µ − c5

where

a5 = dV + dI + dS + r I TS + r I VI

b5 = dVdI + dVdS + dI dS + r I dV VI + r I dSTS + r I dI VI + r I (dI − nI ω)TS

= dVdI + r I (nI ω − dI )

(
λ

dI
+ λ

dV
− TS

)
+ r I dSTS

= dVdI + r I (nI ω − dI )

(
λr I (nI ω − dI )(dV + dI ) − d2

Vd2
I

r I dVdI (nI ω − dI )

)
+ r I dSTS

> 0

usually, sincenI andλ are large compared to the other constants andω is not too close to
zero. Finally,

c5 = dVdI dS + r I dVdI VI + r I dS(dI − nI ω)TS

= r I (nI ω − dI )(λ − dSTS)

> 0

sinceTS < λ
dS

. Hence, all eigenvalues usually have negative real part. It follows that the
wild-type equilibrium is usually stable.

Thus, when there are low or zero drug levels, the wild-type virus dominates, barring any
internal periodic orbits or chaotic attractors (but simulations inSection 5do not show any
such behaviour).

3.2. Region 2: intermediate drug levels

In this case, there are no equilibria, due to the impulsive nature of the drugs, which
do not reach equilibrium, but rather approach an impulsive periodic orbit, as we shall
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show inSection 4. However, we can find impulsive periodic orbits by setting the left hand
side of system (2.3) equal to zero. This yields four impulsive periodic orbits: disease-free
(extinction of virus and infected cells), wild-type (extinction of mutant), mutant (extinction
of wild-type) and an interior periodic orbit (both strains coexist). We denote equilibrium
solutions by X̄ and impulsive periodic orbits byX∗. In all cases, there is an impulsive
periodic orbitR∗ satisfying (2.5) andR1 < R(t) < R2.

The disease-free periodic orbit is in the form

(VI , VY, VN I , TS, TI , TY, TRI, TRY, R) = (0, 0, 0, T∗
S, 0, 0, T∗

RI, 0, R∗),

where

T∗
S = λ(dS + mRI)

dS(dS + mRI + r P R∗)

T∗
RI = λr P R∗

dS(dS + mRI + r P R∗)
.

The wild-type periodic orbit is in the form

(VI , VY, VN I , TS, TI , TY, TRI, TRY, R) = (V∗
I , 0, V∗

N I , T̄S, T∗
I , 0, T∗

RI, 0, R∗),

where

V∗
I = λ(nI ω − dI )

dVdI
− dS(dS + mRI + r P R∗)

r I (dS + mRI)

V∗
N I = nI r I (1 − ω)

dVdI
T̄SV∗

I

T̄S = dVdI

r I (nI ω − dI )

T∗
I = r I

dI
T̄SV∗

I

T∗
RI = r PdVdI R∗

r I (nI ω − dI )(dS + mRI)
.

Note that this orbit is only positive whenV∗
I > 0.

The mutant periodic orbit is in the form

(VI , VY, VN I , TS, TI , TY, TRI, TRY, R) = (0, V̄Y, V̄N I , T∗
S, 0, T̄Y, T∗

RI, 0, R∗),

where

V̄Y = λ(nI ω − dI )

dVdI
− dS

rY

V̄N I = nI (1 − ω)

nI ω − dI
V̄Y

T∗
S = dVdI (λrY(nI ω − dI ) + mRIdVdI )

rY(nI ω − dI )[λrY(nI ω − dI ) + dVdI (dS + mRI + r P R∗)]
T̄Y = dV

nI ω − dI
V̄Y
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T∗
RI = dVdI

rY(nI ω − dI )
− T∗

S .

This orbit is usually positive, sinceλ andnI are large compared to the other constants.
The interior periodic orbit is in the form

(VI , VY, VN I , TS, TI , TY, TRI, TRY, R) = (V∗
I , V∗

Y , V̄N I , T̄S, T∗
I , T∗

Y , T̄RI, 0, R∗),
where

V∗
I = λ(nI ω − dI )

dVdI
− r P R∗

r I − rY
+ mRI

rY

V∗
Y = r P R∗

r I − rY
− dS + mRI

rY

V̄N I = nI (1 − ω)

nI ω − dI

[
λ(nI ω − dI )

dVdI
− dS

rY

]

T̄S = dVdI

r I (nI ω − dI )

T∗
I = dV

nI ω − dI
V∗

I

T∗
Y = dV

nI ω − dI
V∗

Y

T̄RI = dVdI (r I − rY)

r I rY(nI ω − dI )
.

Note that the interior periodic orbit is positive only if

R1 >
(dS + mRI)(r I − rY)

r PrY
and R2 <

r I − rY

r P

(
λ(nI ω − dI )

dVdI
+ mRI

rY

)
.

However, we expect thatr I ≈ rY andR1 is not too close to zero, so the former will usually
be true, whereasthe latter is usually true sinceλ andnI are large compared to the other
constants (and in practiceλ may be of the same order as1

r I −rY
). Furthermore,

VI + VY = λ(nI ω − dI )

dVdI
− dS

rY
.

Sinceλ andnI are large, we expect this to be positive.
The Jacobian matrix for Region 2 (described by (2.3) and (2.5)) is J2 = [J(a)

2 |J(b)
2 ]

where

J(a)
2 =




−dV − r I TS 0 0 −r I VI

0 −dV − rY(TS + TRI) 0 −rYVY

0 0 −dV 0
−r I TS −rYTS 0 −r I VI − rYVY − dS − r P R
r I TS 0 0 r I VI

0 rY(TS + TRI) 0 rYVY

0 −rYTRI 0 r P R
0 0 0 0
0 0 0 0



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J(b)
2 =




nI ω 0 0 0 0
0 nI ω −rYVY 0 0

nI (1 − ω) nI (1 − ω) 0 0 0
0 0 mRI 0 −r PTS

−dI 0 0 0 0
0 −dI rYVY 0 0
0 0 −rYVY − dS − mRI mRY r PTS

0 0 0 −dS − mRY 0
0 0 0 0 −dR




.

This matrix has characteristic equation

0 = det(J1(VI , VY, VN I , TS, TI , TY, TRI, 0, R) − µI )

= −(dV + µ)(dS + mRY + µ)(dR + µ) f2(µ),

where f2(µ) = det[F (a)
2 |F (b)

2 ], for

F(a)
2 =




−dV − r I TS − µ 0 −r I VI
0 −dV − rY(TS + TRI) − µ −rYVY−r I TS −rYTS −r I VI − rYVY − dS − r P R − µ

r I TS 0 r I VI
0 rY(TS + TRI) rYVY
0 −rYTRI r P R




F(b)
2 =




nI ω 0 0
0 nI ω −rYVY
0 0 mRI−dI − µ 0 0
0 −dI − µ rYVY
0 0 −rYVY − dS − mRI − µ




andVI , VY andTS are equilibrium or impulsive periodic solutions.
For the disease-free periodic orbit,VI = VY = 0, TS = λ(dS+mRI)

dS(dS+mRI+r P R∗) and

TRI = λr P R∗
dS(dS+mRI+r P R∗) , so we have

f2(µ) = (µ2 + e1µ + g1)(µ
2 + e2µ + g2)(µ

2 + e3µ + g3)

where

e1 = 2dS + mRI + r P R∗

g1 = dS(dS + mRI + r P R∗)

e2 = dV + dI + r I
λ(dS + mRI)

dS(dS + mRI + r P R∗)

g2 = dVdI + r I (dI − nI ω)
λ(dS + mRI)

dS(dS + mRI + r P R∗)

e3 = dV + dI + rY
λ

dS

g3 = dVdI + rY(dI − nI ω)
λ

dS
< 0
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usually, sincenI is large andω is not too close to zero. Thus there is an eigenvalue with
positive real part. It follows that the disease-free periodic orbit of system (2.3) and (2.5) is
usually unstable.

For the mutant orbit, VY = λ(nI ω−dI )
dV dI

− dS
rY

, TS + TRI = dV dI
rY(nI ω−dI )

and TS =
dV dI (λrY(nI ω−dI )+mRIdV dI )

rY(nI ω−dI )[λrY(nI ω−dI )+dV dI (dS+mRI+r P R∗)] , so we have

f2(µ) = (µ2 + e4µ + g4) det M0

where

e4 = dI + dV + r I TS

g4 = dV dI − r I TS(nI ω − dI )

M0 =



−dV − rY(TS + TRI) + µ −rYVY nI ω −rYVY−rYTS −rYVY − dS − r RR − µ 0 mRI
rY(TS + TRI) rYVY −dI − µ rY VY

−rYTRI r P R 0 −rYVY − dS − mRI − µ


 .

We have

g4 = dVdI − r I dVdI (λrY(nI ω − dI ) + mRIdVdI )

rY[λrY(nI ω − dI ) + dVdI (dS + mRI + r P R∗)]
= dVdI [(λrY(nI ω − dI ) + dVdI mRI)(rY − r I ) + dVdI (dS + r P R∗)rY]

rY[λrY(nI ω − dI ) + dVdI (dS + mRI + r P R∗)]
< 0

usually, sincerY < r I andλ andnI are large. Thus, the mutant orbit is usually unstable.

Proposition 3.1. When there are intermediate drug levels, the wild-type and mutant virus
will coexist.

Proof. Suppose the wild-type periodic orbit is stable. Then since it has the property that
V̄Y = 0, we must havedVY(t)

dt ≤ 0 for anappropriate orbit whent is sufficiently large (note
thatVY(t) is continuous for allt). SupposeVY(τ ) = ε > 0 for somesufficiently large time
τ . Furthermore, for someγ satisfying 0< γ < dV

r I
we have

dVdI

r I (nI ω − dI )
< TS(τ ) <

dVdI

r I (nI ω − dI )
+ γ

r PdVdI R1

r I (nI ω − dI )(dS + mRI)
< TRI(τ ) <

r PdVdI R2

r I (nI ω − dI )(dS + mRI)

sinceR1 < R(τ ) < R2. Then we have

TY(τ ) >
rY

dI

(
dVdI

r I (nI ω − dI )
+ r PdVdI R1

r I (nI ω − dI )(dS + mRI)

)
ε.

Thus

dVY(τ )

dt
> nI ωrYε

(
dV

r I (nI ω − dI )
+ r PdV R1

r I (nI ω − dI )(dS + mRI)

)

− rYε

(
dVdI

r I (nI ω − dI )
+ γ + r PdVdI R2

r I (nI ω − dI )(dS + mRI)

)
− dVε
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= rYε

r I (nI ω − dI )(dS + mRI)
[r PdV (nI ωR1 − dI R2)

+ (dV − γ r I )(nI ω − dI )(dS + mRI)] − dVε

> 0

usually, sincenI ω � dI R2
R1

> dI for nI large andω not too close to zero. It follows that
for τ sufficiently large,VY(τ ) is increasing, which is a contradiction. Thus the wild-type
periodic orbit is unstable. Since the disease-free and mutant orbits are also unstable, it
follows that the mutant and wild-type strains will coexist in Region 2.�

3.3. Region 3: high drug levels

If r R ≥ r Q, system (2.3) has three impulsive periodic orbits: disease free (extinction of
virus and infected cells), wild type (extinction of mutant) and mutant (extinction of wild
type). In all cases, there isan impulsive periodic orbitR∗ satisfying (2.5) andR(t) > R2.
If r R < r Q then there is also an interior impulsive periodic orbit, but we expect from the
dose effect curves that this will not be the case.

The disease-free periodic orbit is in the form

(VI , VY, VN I , TS, TI , TY, TRI, TRY, R) = (0, 0, 0, T∗
S, 0, 0, T∗

RI, T∗
RY, R∗),

where

T∗
S = λ[(dS + mRY)(dS + mRI) + dSr Q R∗]

dS[(dS + mRY)(dS + mRI + r RR∗) + r Q R∗(dS + r RR∗)]
T∗

RI = λ(dS + mRY)r RR∗

dS[(dS + mRY)(dS + mRI + r RR∗) + r Q R∗(dS + r RR∗)]
T∗

RY = λr Rr Q(R∗)2

dS[(dS + mRY)(dS + mRI + r RR∗) + r Q R∗(dS + r RR∗)] .

The wild-type periodic orbit is in the form

(VI , VY, VN I , TS, TI , TY, TRI, TRY, R) = (V∗
I , 0, V∗

N I , T̄S, T∗
I , 0, T∗

RI, T∗
RY, R∗),

where

V∗
I = λ(nI ω − dI )

dVdI
− dS

r I
− r RR∗

r I
+ mRI(dS + mRY)r RR∗

r I [(dS + mRY)(dS + mRI) + dSr Q R∗]
V∗

N I = nI (1 − ω)

dV
T∗

I

T̄S = dVdI

r I (nI ω − dI )

T∗
I = r I

dI
T̄SV∗

I

T∗
RI = dVdI (dS + mRY)r RR∗

r I (nI ω − dI )[(dS + mRY)(dS + mRI) + dSr Q R∗]
T∗

RY = dVdI r Rr Q(R∗)2

r I (nI ω − dI )[(dS + mRY)(dS + mRI) + dSr Q R∗] .
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Note that the wild-typeorbit only exists if

λr I (nI ω − dI )

dVdI
θ − (dS + r RR∗)θ + mRI(dS + mRY)r RR∗ > 0 (3.7)

whereθ = (dS + mRY)(dS + mRI) + dSr Q R∗. It turns out that this condition is also an
important stability condition for the disease-free periodic orbit, as we shall demonstrate
shortly.

The mutant periodic orbit is in the form

(VI , VY, VN I , TS, TI , TY, TRI, TRY, R) = (0, V∗
Y , V∗

N I , T̄S, 0, T∗
Y , T∗

RI, T∗
RY, R∗),

whereT∗
S is the positive root of thequadratic equation

η(T∗
S)2 + [

ζ(r RR∗ + mRI − η) + λ
]

T∗
S − ζ(λ + mRIζ ) = 0

for

η = dSr Q R∗

dS + mRY

ζ = dVdI

rY(nI ω − dI )

and where

V∗
Y = λ

rYT∗
S

− dS

rY
− r RR∗

rY
+ mRIT∗

RI

rYT∗
S

V∗
N I = nI (1 − ω)

nI ω − dI
V∗

Y

T∗
Y = dV

nI ω − dI
V∗

Y

T∗
RI = dVdI

rY(nI ω − dI )
− T∗

S

T∗
RY = r Q R∗

dS + mRY
T∗

RI.

This orbit is only positive ifV∗
Y > 0.

The Jacobian matrix for Region 3 (described by (2.4) and (2.5)) is J3 = [J(a)
3 |J(b)

3 ]
where

J(a)
3 =




−dV − r I TS 0 0 −r I VI

0 −dV − rY(TS + TRI) 0 −rYVY

0 0 −dV 0
−r I TS −rYTS 0 −r I VI − rYVY − dS − r RR
r I TS 0 0 r I VI

0 rY(TS + TRI) 0 rYVY

0 −rYTRI 0 r RR
0 0 0 0
0 0 0 0



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J(b)
3 =




nI ω 0 0 0 0
0 nI ω −rYVY 0 0

nI (1 − ω) nI (1 − ω) 0 0 0
0 0 mRI 0 −r RTS

−dI 0 0 0 0
0 −dI rYVY 0 0
0 0 −rYVY − dS − mRI − r Q R mRY r RTS − r QTRI

0 0 r Q R −dS − mRY r QTRI

0 0 0 0 −dR




.

This matrix has characteristic equation

0 = det(J1(VI , VY, VN I , TS, TI , TY, TRI, TRY, R) − µI )

= (dV + µ)(dR + µ) f3(µ),

where f3(µ) = det[F (a)
3 |F (b)

3 ] for

F(a)
3 =




−dV − r I TS − µ 0 −r I VI
0 −dV − rY(TS + TRI) − µ −rYVY

−r I TS −rYTS −r I VI − rYVY − dS − r RR − µ

r I TS 0 r I VI
0 rY(TS + TRI) rYVY
0 −rYTRI r RR
0 0 0




F(b)
3 =




nI ω 0 0 0
0 nI ω −rYVY 0
0 0 mRI 0

−dI − µ 0 0 0
0 −dI − µ rYVY 0
0 0 −rYVY − dS − mRI − r Q R − µ mRY
0 0 r Q R −dS − mRY − µ




andVI , VY andTS are equilibrium or impulsive periodic solutions.
For the disease-free periodic orbit,VI = VY = 0, so we have

f3(µ) = (µ2 + k1µ + l1) det M1

where

k1 = dV + dI + r I TS

l1 = dVdI − r I (nI ω − dI )TS

and where

M1 =




−dV − rY(TS + TRI) − µ 0 nI ω 0 0
−rYTS −dS − rR R − µ 0 mRI 0

rY (TS + TRI) 0 −dI − µ 0 0
−rYTRI rRR 0 −dS − mRI − rQ R − µ mRY

0 0 0 rQ R −dS − mRY − µ


 .

We have

l1 = dVdI − λr I (nI ω − dI )[(dS + mRY)(dS + mRI) + dSr Q R∗]
dS[(dS + mRY)(dS + mRI + r RR∗) + r Q R∗(dS + r RR∗)]
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=
dVdI

[
(dS + r RR∗)θ − mRI(dS + mRY)r RR∗ − λr I (nI ω−dI )

dV dI
θ
]

dS[(dS + mRY)(dS + mRI + r RR∗) + r Q R∗(dS + r RR∗)]
< 0

if and only if the wild-type orbit exists, by Eq. (3.7). Thus, if the wild-type orbit exists,
then there is an eigenvalue with positive real part and hence the disease-free periodic orbit
of system (2.4) and (2.5) will be unstable.

For the wild-typeperiodic orbit,VY = 0, so we have

f3(µ) = (µ2 + k2µ + l2) det M2

where

k2 = dV + dI + rY(TS + TRI)

l2 = dV dI − rY(nI ω − dI )(TS + TRI)

M2 =




−dV − r I TS − µ −r I VI nI ω 0 0

−r I TS −r I VI − dS − rRR − µ 0 mRI 0

r I TS r I VI −dI − µ 0 0

0 rRR 0 −dS − mRI − rQ R − µ mRY

0 0 0 rQ R −dS − mRY


 .

We have

l2 = dVdI − rY(T∗
S + T∗

RI)(nI ω − dI )

= dVdI [((dS + mRI)(dS + mRY) + dSr Q R∗)(r I − rY) − rY(dS + mRY)r RR∗]
r I [(dS + mRI)(dS + mRY) + dSr Q R∗]

< 0

for realistic parameters, sincer I ≈ rY. Thus there is an eigenvalue with positive real part.
It follows that the wild-type periodic orbit of system (2.4) and (2.5) is usually unstable.

The disease-free orbit will be stable if

λ(nI ω − dI )

dVdI
− dS

r I
− r RRi e−dRτ

r I (1 − e−dRτ )

+ mRI(dS + mRY)r RRi

r I [(dS + mRY)(dS + mRI)(1 − e−dRτ ) + dSr Q Ri e−dRτ ] < 0.

Solving for the positive root of the quadratic, the disease-free orbit will be stable if

Ri >
(1 − e−dRτ )

2a

[
b +

√
b2 + 4ac

]
(3.8)

where

a = r Re−2dRτ dSr Q

b =
[
λr I (nI ω − dI )

dVdI
− dS

]
dSr Qe−dRτ − r Re−dRτ (dS + mRY)(dS + mRI)

+ mRI(dS + mRY)r R

c =
[
λr I (nI ω − dI )

dVdI
− dS

]
(dS + mRY)(dS + mRI).
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Sincea andc are usually positive, it follows that the right hand side of (3.8) is real
and positive. Thus, there is a nonempty region of parameter space where the disease-
free orbit will be stable. In particular, forτ large, the condition is approximatelyRi >

e2dRτ mRI(dS + mRY)/r QdS. We shall refer to this subset of Region 3 as the region of
viral elimination, since viral elimination is possible, although not guaranteed, for these
parameter values. SeeSection 5for further results on this region.

Note that condition (3.8) is actually a stronger condition than needed to ensure the
stability of the disease-free orbit; that is, there may be regions of parameter space for
which the disease-free orbit is stable, but condition (3.8) is not met. In contrast, condition
(3.7) gives an “if and only if” condition for stability. Unlike Eq. (3.8), however, Eq. (3.7)
depends onR∗, theperiodic orbit of the drug, which maybe difficult to estimate in practice.

3.4. Summary of asymptotic behaviour

In summary for this section, then, we find that at low drug levels resistance does not
emerge, and a stable equilibrium is predicted between the wild-type virus, T cells infected
by the wild-type virus, and healthy T cells. In contrast at intermediate drug levels, drug
resistance is guaranteed to emerge. Recall that we have defined “intermediate” drug levels
as the regime in which the drugs significantly inhibit replication of the wild-type virus, but
have negligible effect on the drug-resistant strain.

In the third case, if the summed effect of all preventative drugs reduces replication of
boththe wild-type and drug-resistant viral strains (“high” drug levels), one of two scenarios
can occur. Either drug resistance will emerge, or both populations of free virus will be
driven to extinction. (We note that our model does not consider longer-lived reservoirs
of virus, such as latent T cells, and thus elimination of free virus in our model is not
equivalent to clearing the infection.) The latter case is possible when condition (3.7)
is not fulfilled. For realistic parameter values, we can approximate condition (3.7) as
λr I nI ω > r RR∗dVdI . Thus elimination of free virus is possible if the number of infectious
virions produced per infected cell, or the infectivity of these virions, is not too large, or if
the periodic orbit of the drug and the drug efficacy are not too small. These conditions
make intuitive sense, and the exactmagnitude of the parameters required in order for
viral elimination to be possible is given by condition (3.7). As mentioned above, (3.8)
is an alternative expression for the same condition; the difference is that (3.8) is astronger
condition than strictly necessary, but may be more easily evaluated in practice.

4. Equilibrium T cell counts

In this section, we examine the total T cell count at equilibrium or at the stable periodic
orbit(s) predicted for low, intermediate and high drug concentrations.

Suppose the drugs are given at fixed intervals. Letτ = tk+1 − tk be the dosing interval
(for k ≥ 1). Fort satisfyingtk < t ≤ tk+1, we have

R(t) = R(t+k )e−dR(t−tk).

The impulsive effect means we have a recursion relation at the moments of impulse, given
by (2.6). Thus
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R(t+k ) = Ri 1 − e−kdRτ

1 − e−dRτ
→ Ri

1 − e−dRτ

ask → ∞.
Note that

R(t+k ) − Ri

1 − e−dRτ
= Ri 1 − e−kdRτ

1 − e−dRτ
− Ri

1 − e−dRτ

= − Ri e−kdRτ

1 − e−dRτ
< 0.

However, if R(0) = Ri

1−e−dRτ , thenR(τ−) = Ri e−dRτ

1−e−dRτ and so

R(τ+) = Ri e−dRτ

1 − e−dRτ
+ Ri

= Ri

1 − e−dRτ
.

It follows that the impulse points Ri

1−e−dRτ and Ri e−dRτ

1−e−dRτ define the ends of a positive
impulsive periodic orbit in drug concentration, to which the endpoints of each cycle

monotonically increase. In particular, sinceR(0) < Ri

1−e−dRτ , it follows that

R(t) ≤ Ri

1 − e−dRτ
(4.9)

for all t . Sincethe impulsive drug orbits are asymptotically stable, it follows that for any
ε > 0 thereexists t1 suchthat

R(t) >
Ri e−dRτ

1 − e−dRτ
− ε (4.10)

for all t > t1.
For low drug levels (R < R1), we know from Section 3.1that the wild-type virus

dominates. Furthermore, sincenI is large, T̄S is small. Thus the immune system is
maintained primarily byTI cells when the drug concentrations are low. The totalT cell
count at the stable (wild-type) equilibrium is

T̄S + T̄I = λ

dI
+ dV(dI − dS)

r I (nI ω − dI )
. (4.11)

SincedS < dI , this will be significantly smaller thanλdS
, theT cell count in the disease-free

state (seeSmith and Wahl, 2004).
For intermediate drug levels (R1 < R < R2), we use the results ofSection 3.2to show

that the total T cell count for the interior periodic orbit is

T̄S + T∗
I + T∗

Y + T̄RI = λ

dI
+ dV(dI − dS)

rY(nI ω − dI )
. (4.12)

The same comments as above apply to (4.12). However, it should be noted that we have
not shown that the interior orbit is necessarily the orbit to which trajectories approach.
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There may be other interior periodic orbits, or more complex behaviour in which both
strains coexist.

For high drug levels, we examine the effect on the T cell count as the dosing intervals
shrink to zero, or as the doses increase to infinity. This implies that trajectories will
ultimately reside in Region 3, since drug concentrations will eventually accumulate beyond
the cut-off valueR2.

To evaluatethese limits, we will frequently use the following straightforward lemma:

Lemma 4.1. Suppose x is a variable satisfying

x′(t) < c − q(φ)x(t)

where c is a constant and q(φ) is independent of x and t. Then

(a) If x(0) < c
q(φ)

it follows that

x(t) <
c

q(φ)

for all t.
(b) If x(0) < c

q(φ)
andlimφ→0 q(φ) = ∞ it follows that

x(t) → 0

asφ → 0 for all t.

(SeeSmith and Wahl (2004)for a proof.)

Remark. Lemma 4.1also holds if the inequalities are reversed.
Weassume initial conditions to reflect the veryearliest stages of the virus, with no drug

effects initially. Thus

0 < VY(0) � VI (0) � nI λ

dSdV

0 � TS(0) ≤ λ

dS

(4.13)

andTI (0) = TY(0) = TRI(0) = TRY(0) = R(0) = 0.
Note that for all models, we have, usingLemma 4.1,

T ′
S + T ′

I + T ′
Y + T ′

RI + T ′
RY = λ − dS(TS + TRI + TRY) − dI (TI + TY)

≤ λ − dS(TS + TRI + TRY + TI + TY)

TS + TRI + TRY + TI + TY ≤ λ

dS
. (4.14)

Lemma 4.2. For Region 3, Vj < nI λ
dSdV

for j = I , Y ,and

TS >
λdSdV (1 − e−dRτ )

(2r I nI λ + d2
SdV )(1 − e−dRτ ) + r RRi dSdV

→ 0

asτ → 0 or Ri → ∞.
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Proof. From model (2.4) andusingLemma 4.1and (4.14), we have

V ′
j <

nI λ

dS
− dV Vj

Vj <
nI λ

dSdV
.

Using this result, (4.10), Lemma 4.1, (4.13), (4.14) and the fact thatr I > rY, we have,

T ′
S > λ − 2r I

nI λ

dSdV
TS − dSTS − r RTS

Ri

1 − e−dRτ

TS >
λdSdV (1 − e−dRτ )

(2r I nI λ + d2
SdV )(1 − e−dRτ ) + r RRi dSdV

≡ α(τ) → 0

asτ → 0 or Ri → ∞. �

Theorem 4.1. As t → ∞ and eitherτ → 0, or Ri → ∞, TS, TI , TY, TRI → 0 and
TRY → T (∞)

RY in Region 3, where T(∞)
RY satisfies

λ

dS + mRY
≤ T (∞)

RY ≤ λ

dS
. (4.15)

Proof. From model (2.4) andusing (4.10) andLemma 4.1we have, for t > t1,

T ′
S < λ − dSTS − r RRi e−dRτ

1 − e−dRτ
TS + εr RTS + λmRI

dS

TS <
λ(dS + mRI)(1 − e−dRτ )

dS
[
r RRi e−dRτ + (dS − εr R)(1 − e−dRτ )

]
−
(

λ(dS + mRI)(1 − e−dRτ )

dS
[
r RRi e−dRτ + (dS − εr R)(1 − e−dRτ )

] − TS(0)

)

× exp

[
− λ(dS + mRI)(1 − e−dRτ )t

dS
[
r RRi e−dRτ + (dS − εr R)(1 − e−dRτ )

]
]

≡ β(t, τ )

→ 0

ast → ∞ and eitherτ → 0 or Ri → ∞. Next,

T ′
I <

r I β(t, τ )λnI

dSdV
− dI TI

TI <
r I β(t, τ )λnI

dSdI dV
→ 0

ast → ∞ andτ → 0.
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The right hand side of (4.15) follows from (4.14). From model (2.4), and using (4.9),
(4.10), Lemmas 4.1and4.2, for anyε > 0, there existst1 suchthat

T ′
RI >

α(τ)r RRi e−dRτ

1 − e−dRτ
− r Rεα(τ) −

(
λnI rY

dSdV
+ dS + mRI + r Q Ri

1 − e−dRτ

)
TRI

TRI >
α(τ)r RRi e−dRτ − r Rεα(τ)(1 − e−dRτ )(
λnI rY
dSdV

+ dS + mRI

)
(1 − e−dRτ ) + r Q Ri

≡ γ (τ).

Then if ε is sufficiently small, we have

T ′
RY >

(
r Q Ri e−dRτ

1 − e−dRτ
− r Qε

)
γ (τ ) − (dS + mRY)TRY

TRY >
α(τ)r Qr R(Ri )2e−2dRτ − (1 − e−dRτ )εα(τ )r Qr R[2Ri e−dRτ − ε(1− e−dRτ )]

(dS + mRY)
[(

λnI rY
dSdV

+ dS + mRI

)
(1 − e−dRτ ) + r Q Ri

]
(1 − e−dRτ )

.

As τ → 0, we have

α(τ) → 0
α(τ)

1 − e−dRτ
→ λ

r RRi
.

Thus,

T (∞)
RY ≥ λ

dS + mRY
.

Using (4.9) and (4.10), Lemma 4.1and (4.14), for ε sufficiently small, there existst2
suchthat

T ′
RI <

β(t, τ )r RRi

1 − e−dRτ
− (dS + mRI)TRI + λmRY

dS
− r Q Ri e−dRτ

1 − e−dRτ
TRI + r QεTRI

TRI <
β(t, τ )r RRi + λmRY

dS
(1 − e−dRτ )

(dS + mRI − r Qε)(1 − e−dRτ ) + r Q Ri e−dRτ

≡ δ(t, τ )

→ 0

ast → ∞ and eitherτ → 0 or Ri → ∞.
Finally, usingLemmas 4.1and4.2, we have

T ′
Y = rY(TS + TRI)VY − dI TY

< rY(β(t, τ ) + δ(t, τ ))
λnI

dSdV
− dI TY

TY < rY(β(t, τ ) + δ(t, τ ))
λnI

dI dSdV
→ 0

ast → ∞ and eitherτ → 0 or Ri → ∞. �
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4.1. Summary of T cell results

In this section we have shown that although drug resistance does not emerge at low drug
levels, the total T cell count will be significantly lower than T cell counts in the disease-free
state.

At intermediate drug levels, the total T cell count will not be very different from the T
cell count at low drug levels (compare Eqs. (4.11) and (4.12)).

At high drug levels, the total T cell count will be less thanor equal tocell counts in
the disease-free state, and will be dominated by the populationTRY, those cellsthat have
absorbed sufficient drugs to prevent infection by either viral strain. Interestingly, all other
types of T cells will be driven to zero as drug concentrations increase.

5. Numerical simulations

Putting together the results fromSections 3and4, we demonstrate some of the likely
behaviour, given that drug concentrations will likely move through all three regions.
Intuitively, we expect that whenR(t) is high, the mutant strain of the virus should
dominate, but in relatively low numbers. Then asR(t) falls to intermediate levels, the
wild-type strain can coexist with the mutant. WhenR(t) becomes low, the wild-type virus
gains control. Depending on the amount of time the drug spends in each region (if any),
trajectories will likely oscillate, with either coexistence, one or the other strain gaining
dominance, or the drugs eliminating both strains.

After the transient behaviour has settled into a periodic orbit, we will have

Ri e−dRτ

1 − e−dRτ
≤ R(t) ≤ Ri

1 − e−dRτ
.

It follows that trajectories will remain solely in Region 1 if

0 < Ri < R1(1 − e−dRτ ),

whereas trajectories willbe outside Region 1 if

Ri > R1edRτ (1 − e−dRτ ).

Trajectories will remain solely within Region 2 if

R1edRτ (1 − e−dRτ ) < Ri < R2(1 − e−dRτ )

whereas trajectories will beoutside Region 2 if either

Ri < R1(1 − e−dRτ ) or Ri > R2edRτ (1 − e−dRτ ).

Finally, trajectories will remain solely within Region 3 if

Ri > R2edRτ (1 − e−dRτ )

whereas trajectories willbe outside Region 3 if

Ri < R2(1 − e−dRτ ).
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Fig. 2. The possible combinations of regions that trajectories of drug concentrations may traverse, for given
dosages and dosing intervals. Parameters used werenI = 262.5 day−1, ω = 0.8, r I = 0.02 day−1,
rY = 0.01 day−1, dV = 3 day−1, dS = 0.1 day−1, dI = 0.5 day−1, r P = r R = 40 µM−1 day−1, rQ =
10.4 µM−1 day−1, dR = 24 log(2)/6 day−1, λ = 180 cellsµL−1 day−1, mRI = mRY = 24 log(2)/8 day−1,
R1 = 3 µM and R2 = 6 µM. These parameters are similar to those described in greater detail inSmith and Wahl
(2004); in particular the value ofr R assumes that trough concentrations are approximately sufficient to inhibit
viral replication in all T cells at some point during their lifetime. The values ofr P andrQ were estimated from
r R by comparing best-fit linear slopes in the dose–effect curves ofFig. 1B. We illustrate the case when the drug
in use has a 6 h half-life in plasma, and an 8 h intracellular half-life.

Fig. 2demonstrates which regions drug concentration trajectories will visit, for various
combinations of dosing interval and dose. The curves plotted are

Ri = R1(1 − e−dRτ )

Ri = R1edRτ (1 − e−dRτ )

Ri = R2(1 − e−dRτ )

Ri = R2edRτ (1 − e−dRτ )

and the dotted curve is the curve given by equality in Eq. (3.8). Parameters are chosen from
the literature and are similar to those described more fully inSmith and Wahl (2004)(see
figure legend).

Figs. 3and4 illustrate the different cases found inFig. 2. In all cases, parameters are
as given in the legend toFig. 2, with only the dosing intervalτ and the dosageRi varied.
The figures give phase-plane plots of the populations of cells infected by the wild-type or
drug-resistant viral strains. The insets inFig. 3 show the total population of all classes of
T cells; uninfected cell classes are shown to theleft of the vertical line and infected cell
classes to the right.

Fig. 3A demonstrates the behaviour when trajectories remain solely in Region 1. In this
case there is no drug-resistant strain of the virus. T cells infected with the wild-type strain
dominate, with all other T cells approaching zero. This demonstrates (4.11).
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Fig. 3. Infected cell populations whentrajectories of drug concentration remain solely within a region. Values
of TI andTY were estimated by numerical integration of system (2.2), (2.3) or (2.4) using a fourth/fifth order
Runge–Kutta algorithm. Initial conditions wereVI (0) = 500, TS(0) = 1000 andVY(0) = 5 × 10−5; all other
initial populations were set to zero. All parameters except the dose and dosing interval are as forFig. 2. The
inset shows the size of each T cell population at the final time (shown as a solid circle on the phase-plane plot);
three populations on the left are uninfected T cells, twopopulations on the right are infected cells. A: Region 1
(τ = 12 h, Ri = 1 µM). In this case there is no drug-resistant strain of thevirus. T cells infected with the wild-
type strain dominate, with all other T cells approaching zero. B: Region 2 (τ = 2 h, Ri = 1 µM). In this case
both strains of the virus coexist. T cells infected with the mutant strain are approximately nine times as numerous
as T cells infected with the wild-type strain. C: Region 3, where thedosing intervals and dosages are not too
extreme (τ = 6 h, Ri = 8 µM). In this case there are large numbers of Tcells infected by the drug-resistant viral
strain, and a small population of uninfected T cells inhibited with high drug levels. D: Region of viral elimination
(τ = 0.3 h, Ri = 20 µM). In this case both strains of the virus are eliminated. Uninfected T cells inhibited with
high drug levels dominate, with all other T cells approaching zero. Furthermore, the total T cell count is similar
to that of the uninfected immune system.

Fig. 3B demonstrates the behaviour when trajectories remain solely in Region 2. In
this case both strains of the virus coexist. T cells infected with the mutant strain are
approximately nine times as numerous as T cells infected with the wild-type strain. This
demonstrates (4.12).

Fig. 3C demonstrates the behaviour when trajectories remain solely in Region 3,
but where thedosing intervals and dosages are not too extreme. In this case there are
high numbers of T cells infected by the drug-resistant strain, and a small population of
uninfected T cells inhibited with high drug concentrations.

Fig. 3D demonstrates the behaviour when trajectories remain solely within the region
of viral elimination. In this case both strains of the virus are eliminated. Uninfected T cells
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Fig. 4. The behaviour whentrajectories of drug concentration move between regions. All parameters except the
dose and dosing interval are as forFig. 2. The main panels illustrate the periodic orbits obtained between cells
infected by the wild-type and drug-resistant viral strains. The inset shows the overallphase-plane behaviour with
a solid circle illustrating the final time; periodic orbits are not visible on this scale. A: Regions 1 and 2 (τ = 12
h, Ri = 3 µM). In this case both strains of the virus coexist. T cells infected with the wild-type strain are
approximately eight times as numerous as T cells infected with the mutant strain. B: Regions 2 and 3 (τ = 8 h,
Ri = 8 µM). In this case the mutant strain dominates, driving the wild-type virus toward extinction. Note that
there are also low numbers of uninfected T cells inhibited with high drug levels (not shown). C: Regions 1, 2 and
3 (τ = 12 h, Ri = 6 µM). In this case both strains of the virus coexist.
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inhibited with high drug concentrations dominate, withall other T cells approaching zero.
Furthermore, the total T cell count is similar to that of the uninfected immune system. This
demonstratesTheorem 4.1. We note that for the dose–effect curves illustrated inFig. 1B
(modelled after the reverse transcriptase inhibitor AZT) the dose required to eliminate both
the wild-type and drug-resistant virus would not be physiologically tolerable.

Fig. 4 plots similar results for situations in which the drug concentration moves
between regions over time. Here we plot the periodic orbits observed in each case; the
overall phase-plane behaviour is shown in the inset.Fig. 4A demonstrates the behaviour
when trajectories move between Regions 1 and 2. In this case both strains of the virus
coexist.Fig. 4B demonstrates the behaviour when trajectories move between Regions 2
and 3. In this case the mutant strain dominates, driving the wild-type viral strain toward
extinction. We also observed a small population of uninfected T cells inhibited with high
drug concentrations (not shown).Fig. 4C demonstrates the behaviour when trajectories
move between all three regions. In this case both strains of the virus coexist once
again.

6. Discussion

We consider an SIR-type model of immunological behaviour for HIV dynamics,
including drugs that act in a manner similar to reverse transcriptase inhibitors, that is,
they prevent the virus from transcribing its genome onto the host T cell DNA. Our model
provides a novel approach to the question of drug resistance, using impulsive differential
equations to model drug behaviour and classifying different model regimes according to
whether the drug efficacy is negligible, intermediate or high. We consider two strains
of the virus: a wild-type strain that is susceptible to both intermediate and high drug
concentrations, and a mutant strain that is only susceptible to high drug concentrations.

This three-regime model is based on an underlying model of the appropriate dose–effect
curves (Fig. 1B): at low doses, we assume that T cells will not absorb sufficient drug to
counter either strain of the virus. Similarly, T cells which have absorbed sufficient drug to
combat the wild-type strain of the virus may have inadequate drug concentration to counter
the mutant strain, given that mutations often produce a 5- to 50-fold resistance to the drug
in question. Only when the drug concentrationsare sufficiently high will both strains of the
virus be prevented from transcribing their RNA into the T cell DNA.

We find that impulsive differential equations are an ideal method of approaching such
a scheme. This framework allows us to model dynamic changes in drug efficacy using
a completely analytical approach. It should be noted, however, that there are several
shortcomings to the model. First, we are assuming the drug effects are instantaneous, that
is, that the “time to peak” of the drug is negligible on the time scale under consideration.
Our results are therefore inaccurate for dosing intervals that shrink to a few hours
or less (for example the bottom left corner ofFig. 2). Furthermore, even for longer
dosing intervals, dispersion and delay as the drug enters the intracellular space may
affect our conclusions. We are encouraged that the intracellular dynamics of some HIV
pharmaceuticals are becoming available in recent literature (Hoggard and Back, 2002),
and look forward to examining these effects in more detail in future work.
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Our model predicts that if drug concentrations are uniformly low, drug resistance will
not emerge, but the total T cell count is guaranteed to be significantly lower than in the
disease-free state. In the “intermediate” dose range, we prove that drug resistance will
emerge. At these drug levels, defined to be doses at which the drugs significantly inhibit
replication of the wild-type virus, but have negligible effect on the drug-resistant strain, the
total T cell count will be similar to T cell counts at low drug levels. Thus this intermediate
range is the worst of both worlds; T cell counts and viral loads are similar to scenarios
without drugs, but drug-resistant mutants are now successfully competing with the wild-
type.

At high drug concentrations, either drug resistance will emerge, or the free viral
population of both strains will be eliminated. As noted previously, elimination of free
virus in our model is not equivalent to clearing the infection, since we have not explicitly
considered longer-lived reservoirs of virus, such as latent T cells. Nonetheless the latter
case is clearly optimal, and is possible if the dosing intervals and dosages are chosen from
the region of viral elimination (Fig. 2), described by Eq. (3.8). In this case, we have also
proven that as the dosing interval shrinks or the dosage increases, the population of T
cells inhibited with high drug levels will approach T cell counts in the uninfected immune
system, while all other classes of T cells willapproach zero. Although drug toxicities may
limit the extent to which this optimum can be approached, it is encouraging to prove that
such a scenario is even theoretically possible for reverse transcriptase inhibitors and other
“preventative” drugs. We hypothesize that this willnot be possible for protease inhibitors
(Smith and Wahl, 2004), and hope to incorporate this second class of drugs in future work.

In practice, a realistic dosing schedule may take trajectories through one, two or all
three regimes. For example drug concentrations may start off high, decrease through
intermediate levels and finally reach low levels before the next dose is taken. We illustrate
some likely behaviours in Figs. 3 and 4. We also demonstrate that the relationship
between the dosage and the dosing intervalswill completely determine which region(s)
trajectories will remain in over time (Fig. 2). Unfortunately, only when drug concentrations
remain uniformly high will the uninfected T cell count be close to the disease-free state.
Interestingly,Fig. 2also predicts that in practice, decreasing the dosing interval for a fixed
dosage is more likely to control the virus than increasing the dosage for a fixed dosing
interval.

Finally, our model assumes that each and every dose is taken; we hope to examine the
complex interplay of drug resistance and adherence (Wahl and Nowak, 2000; Huang et al.,
2003) in future work.
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