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Abstract

We consider an SIR-type model of immunological behaviour for HIV dynamics, including the
effects of reverse transcriptase inhibitors and other drugs which prevent cellular infection. We use
impulsive differential equations to model drug behaviour. We classify different regimes according to
whether he drug efficacy is negligible, intermediate or high. We consider two strains of the virus:

a wild-type strain that can beontrolled by both intermediate and high drug concentrations, and

a mutant s@in that can only be controlled by high drug concentrations. Drug regimes may take
trajectories through one, two or all three regimes, depending on the dosage and the dosing schedule.
We denonstrate that drug resistance arises at both intermediate and high drug levels. At low drug
levels resistance does not emerge, but the total T cell count is proven to be significantly lower than in
the disease-free state. At intermediate drug levels, drug resistance is guaranteed to emerge. At high
drug levels, either the drug-resistant strain will dominate or, in the absence of longer-lived reservoirs
of infected cells, both viral sub-populations will be cleared. In the latter case the immune system is
maintained by a population of T cells which haveated sufficienguantities ofthe drug to prevent
infection by even thalrug-resistant strain. We provide estimates of a range of dosages and dosing
schedules which would, if physiologically tolerable, theoretically eliminate free virus in this system.
Our results predict that to control viral load, decreasing the interval between doses is more effective
than inceasing the dose.
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1. Introduction

The emergence of drug resistance is one of the most prevalent reasons for treatment
failure in HIV therapy. A large number of mla¢matical models have been developed to
describe the population dynamics of HIV-1 including drug treatment and drug resistance;
studies in the last decade includrReErelson et al. (1996)de Boer and Boucher (1996)
de Jong et al. (1996Kirschner and Webb (1996Peelson et al. (1997)de Boer and
Peelson (1998)Wein et al. (1998) Wodarz and Nowak (1999Ribeiro and Bonhoeffer
(2000) Wodarz et al. (2000)Wodarz (2001)and Peelson (2002) Historically, such
models have focussed on the emergence of drug resistance within an individual during
continuous drug therapyNpwak et al., 1991, McLean and Nowak, 1992Frog¢ and
McLean, 1994Ccdffin, 1995 Bonhoeffer and Nowak, 199%tilianakis et al., 199 Nowak
et al., 1997 Austin and Anderson, 1999

In contrast, a handful of studies have modeled the interactioshahging drug
concentrations with the population dynamiof a pathogen, examining the conditions
necessary for the emergence of drug resistadeplér and Perelson, 1998ipsitch and
Levin, 1998 Wahl and Nowak, 200D

We have recently proposed the use of impulglifeerential equations to model dynamic
drug concentrations during HIV-1 therapgr(ith and Wahl, 200% This framework
allowed us to capitalize on a fairly sogticated mathematical literaturé3ginov and
Simeonov, 19891993 1995 Lakshmikantham et al., 198%acilitating our investigation
of drug classes with different mechanisms of action.

In the sections that follow we extend this approach to examine the conditions required
for the emergence of drug resistance during HIV therapy. We consider drug regimes for
classes of drugs that mimic the dynamics of reverse transcriptase inhibitors. Specifically,
these are drugs that prevent viral infection of T cells. Such drugs include reverse
transcriptase inhibitors (nucleoside, nonnucleoside and nucleotide), fusion inhibitors and
integrase inhibitors. fie class of such drugs that prevent viral infection will be henceforth
referred to as “preventative drugs”.

We assume a single drug regimen (though this regimen may actually consist of a number
of different preventative drugs), a wild-type strain of the virus that initially dominates and
a drugresistant strain, which has lower infedtiv Intermediate drug levels will affect
the wild-type strain of the virus alone, whileghi drug levels will affect both strains. Our
approachis a novel one, using impulsive differential equations to model drug behaviour and
classifying different model regimes accordito whether the drug efficacy is negligible,
intermediate or high.

The aim of this study is to determine how dosing schedules and concentrations of
preventative drugs will facilitate or prevethe emergence of drug resistance. Although
the advantage of our formulation is that dynamic changes in drug concentration can be
examined using a completely analytical approach, we illustrate many of our results using
numerical simulations.
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2. The model
2.1. Tcells

We would like to examine the various possible fates of a €O4cell in some detail.
At any time, a T cell may come into contacttiv(1) a virion infected with the wild-type
virus, (2) a virion infected with the mutant strain of the virus, or (3) the drug. Depending
on the level of drug absorbed, the cell may subsequently become immune to neither, one or
both strains of the virus. The T cells can thus be classified into five populations, described
below in paragraphs (a) through (e) and pictureBim 1A.

(a) LetTs be the population of susceptible (noninfected) CDHcells. These cells are
produced at a constant rate,There aredur possible fates for these T cells: they may die
at natural death ratés; they may (b) lecome infected with the wild-type virus; (c) they
may become infected with the mutant virus; or (d) they may absorb the drug.

(b) We useT, to denote the population of CO4T cells infected with the wild-type
virus. These cells produce wild-type infectious vir\g, andhave a significantly higher
death rated, (Ho et al., 199%. Like the healthy cells, these cells may later absorb drug.
Since the viral genome has already been trabed into the host DNA, absorbing the drug
has no effect on these infected cells. Thus, the only possible fate for these cells is cell
death.

(c) Ty denotes the cells infected with the mutant virus. These cells produce mutant
infectious virus,Vy, and we asume their dath rate is the same as cells infected with
the wild-type virus. The drug will also havao effect on these infected cells. We also
assume that there is no difference in the average number of infectious virions produced per
infectious cell. The oyl possible fate for these cells is also cell death.

(d) Tr denotes noninfected cells which have@ibed sufficient quatities of he drug
sothat the wild-type strain is inhibited, but not enough to prevent infection by the mutant
strain of the virus. These cells may come into contact with either the wild-type or the
mutant stran of the virus or the drug. If the cell comes into contact with a wild-type virus,
it cannot become infected, so this has no consequence for the cell. However, if the cell
comes into contact with the mutant virus, it will become infected with the mutant strain.
If the cell comes into contact with sufficienthigh drug concentrations, it can become (e)

a Try cell. If not, the cell will eventually revert back to a susceptible cell when the drug
effect wears off, or undergo cell death.

(e) Try denotes noninfected cells which have atied sufficient quatities of he drug
sothat both strains of the virus are inhibited. Such cells cannot become infected while they
remainin this state. These cells will eventually revert bacKitg cells as the drug effect
wears off, or undergo cell death.

Wild-type infedious virions, V| (respectively mutant infectious virion¥y), are
produced by T cells infected with the wild-type virus (respectively the mutant strain of
the virus) and are removed by cleacarand infection of susceptible cells.

2.2. Drugs

We useR(t) to denote the intracellular concentration of the drug and its active metabo-
lites (Hoggard and Back, 2002\e assume that drugs are taken at (not necessarily fixed)
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Fig. 1. Three-regime model. A: The five classes of T cells are susceptible (S), infected with the wild type (1),
infected with the mutant type (Y), inhibited with inteediate levels of drug (RI) and inhibited with high levels

of drug (RY). Each cell may come into contact with @datype virion, a mutant virion, or the drug. Once
infected, cells cannot move into the stf drug-inhibited cells. Cells inhibited with intermediate levels of drug
are immune to the wild-type virus while they remain inhibited, but can be infected by the mutant strain. Cells
inhibited with high drug levels cannot be infected whileyliemain in this state. B: Example dose—effect curves
for the wild-type (solid curve) and drug-resistantgtadcurve) viral strains. When drug concentratiBis less

than Ry, the probability that a T cell absorbs sufficient drug to block infection is negligible for both strains.
Between thresholdsR; < R < Rp), only the wild-type strain has a non-negligible probability of being blocked
by the drug. For high drug concentratiorR & Ry), this probability grows monotonically with dose for both
viral strains.|Csq values for thereverse transcriptasahibitor AZT were used in this example. See text for
details.

timestyx. The effect of the drugs is assumed to be instantaneous, resulting in a system of
impulsive differential equations, whereby solutions are continuous:foti (satisfying the
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associated system of ordinary differential equations) and undergo an instantaneous change
in state whert = ti.

According to impulsive theory, we can stibe the natre of the impulse at time via
the difference equation

AR =Rt — R(ty) = f(t, R ). (2.1)

(We refer the interested reader ®ainov and Simeonov (19891993 1995) and
Lakshmikantham et al. (1989pr more details on the theory of impulsive differential
equations.)

This technique assumes that the change in intracellular drug concentration immediately
after a dose is taken is nearly instantaneous, that is, the time to peak is negligible
on the relevant time scale. By neglectingetknown dispersion and delay as the drug
enters the intracellular spacge overestimate the temporal effects of dosing at intervals.
The implications of this assumption will be taken up further in the Discussion. For
a fuller treatment of the effects of spatially distinct compartments, Isepler and
Peelson (1998)for a detiled model of the kinetics of drug action, s@estin et al.
(1998)

For simplicity, we assume that drugs are cleared from the body at a constant rate. This
has the effect of overestimating the clearamate, since presumably clearance from the
intracellular compartments will be delayed. However, we argue that such an assumption is
a reasonable approximation in the absence of more complete knowledge of the mechanics
of drug clearance, and further that this asgtion ensures that our estimates of overall
treatment efficacy are conservative.

To model the effects of a resistance mutation on drug efficacy, we consider an
underlying scenario as illustrated Fig. 1B. Here the solid line shows a dose—effect
curve for the wild-type virus, while the dashed line shows the same curve for a drug-
resistant strain; drug resistance implies an increase inl @y concentration of the
drug. They-axis, or “effect” in the dose—effect curve, is related to the probability
that a given T cell absorbs sufficient quantities of the drug to prevent viral infection.
Thus when R < Ry, this probability is negligible for both viral strains. In some region
R1 < R < Ry, this probability remains negligible for the drug-resistant virus, but grows
monotonically with dose for the wild-type. Similarly wheR > Ry, the probability of
blocking infection is significant for both wild-type and drug-resistant strains, although
highe for the wild-type. In all three cases where the probability that infection will
be blocked is non-negligible, we assuntteat this probabilitygrows linearly with
increasing dose, although at different rates for different strains and regions (note that
the dose—effect curves in these regimes are much closer to linear than suggested by this
samilog plot). Our model of HIV dynamics therefore consists of three distinct systems
in which different drug actins are possible, depending on the drug concentre®on
(Fig. 1A).

2.3. Combining T cell populations with virus and drugs

For R < Ry, the dynamics of virions and T cells are given by:
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dv
d—tl =nmwT —dyV| —rTsV,
dv
d—tY =noTy —dvW —ryTsW —ryTriVy
dv
d?' —n(1— )T +Ty) —dyVni
dT.
d—ts =1—nTsV| —ryTsW — dsTs + Mg Tri
& (2.2)
|
— =nTsV| —dT
@ 1 TsVi 1M
dTy
T — rYTSVY — d| TY + rYTRI\/Y
dT;
TRI = —ryTrVy — (ds + mg) Tri + MryTRy
dT;
TRY = —(ds + Mry) TRy

fort # tx (see impulsive conditions below).
Heret is time in daysn, is the number of vions produced per infected cell per days
the fraction of virions ppduced by an infected T cell which are infectiodg,is the rate at
which free virus is clearedls is the noninfected CD# T cell death rateq, is the infected
CD4* T cell death ratey;, is the rate at which wildytpe virus infects T cells, and is the
rate at which the drug-resistant virus infects T cells. The constagpresents a source of
susceptible cells, whileng; andmgy are the rates at which the drug is cleared from the
intracellular compartment fontermediate and high drug concentrations respectively.
For R; < R < Ry, the dynamics of virions and T cells are given by:

av,
d_tl =mowT —dvV| —r TV,
dW:
d—tY =nmowTy —dvW —ryTsWy —ry TRy
dVv,
d:” = (1—-w) (T +Ty) —dvVni
dTs
o = A—=11TsVI —ryTsVy —dsTs —rpTsR+ mgTr
& (2.3)
I
— =0TV, —d T
p 1 TsV) 1T
dT
d—tY =ryTsVy —d Ty +ryTriVy
o = rpTsR—ryTriVy — (ds + M) Tri + MRYTRY
dT,
TRY = —(ds + MRry) TRy

fort # tx. Hererp is the rate at which the drug inhibits the wild-type T cells when drug
concentrations are intermediate.
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For R > Ry, the dynamics of virions and T cells are given by:

dv
d_tl =mowT —dvV| —r TsV,
dv
d—tY =nNoTy —dvVW —ryTsVWy —ryTriVy
dv
d;\“ =n(1—-w)(T) +Ty) —dyVni
dTs
T = A =1 TsV| —ryTsVy —dsTs — rrTsR+ mg Try
& (2.4)
|
— =0TV, —d T
p 1 TsVi 1T
dT
d—tY =ryTsVW —d Ty +ryTriVy
dTri
5 = rRTsR—ryTriVy — (ds+ MR TR + MRYTRY — rQTRIR
dTry
—dt = rQTRI R— (ds -+ mMRy) TRy

fort # tk. Hererr andrq are the rates at which the drug inhibits the wild-type and
drug-resistant T cells, respectivelyhen dug concentrations are high.

All death rates, rates of infection and are asumed to be positive. We assume
0 € w < 1andr; > ry (i.e. the wild-type is the more infectious strain of the virus).
Furthemore,ds < d; < dy (Hoet al., 1995.

In addition, the dynamics of the druR,are given by:

dR _ 4R t£t
d ~ R k | (2.5)
with impulsive conditions AR =R t = ty.

Here,dr is the rate at which the drug is cleared aRidis the dosage.
Note that, using4.1), we have

Rt = Rt) + R (2.6)

The impulse timeg can be assumed fixed, reflecting regular dosing periods, although we
can set; to be significantly large to reflect the fact that drugs are not taken until after the
infection has been diagnosed. We will likewise assumeRiéf = 0.

Thus @.2—(2.4), togetrer with (2.5 de<ribe our three-regime model of impulsive
differential equations.

3. Asymptotic behaviour

For each region, we find equilibria and (some) impulsive periodic orbits by equating the
non-impulsive derivatives to zero. We therteleine the stability of these equilibria and
orbits, in order to understand the behaviour of trajectories in each region.
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3.1. Region 1: low drug levels

System 2.2) has equilibria

A
ML VW, VN, Ts, TiL Ty, Tri, TRy) = (0, 0,0,—,0,0,0, 0) ,

ds

_ 1—w) .- _

(vl,o, UGS SN LR o),
dv rno-—d)
- Nl-ow)- dvd -
(O’ VY’ dV Y’ rY(nla)_dI)’07 TY7O’ 0>’
where

v _Arn(njw —d) —dyvdids v _ Mry(nw—d) —dvdids

I= rydyd, v rydyd,
T _an(no —d) —dydds T _ My(no—d)—dydds

- rd(nw—d) B rvdi (mow —d))

We shall refer to these three equilibria as tkiésease-free equilibrium, the wild-type
equilibrium and the mutant equilibrium, respectively.

The Jacobian matrix for Region 1 (described By2\ and @.5)) is J; = [Jl(a)|J1(b)]

where
[—dy —r Ts 0 0 —nV 7
0 —dv —ryTs—ryTRri 0 —rvyVWy
0 0 —dy 0
- Ts —ryTs 0 -V, —ryWw — ds
J](_a) = rnTs 0 0 rV
0 ryTs+ryTR 0 rvyVy
0 —Iry TR 0 0
0 0 0 0
L 0 0 0 0 ]
[ no 0 0 0 0]
0 nw —ryVy 0 0
nNl—w) N(1—w) 0 0 0
0 0 MRy 0 0
=1 —q 0 0 0 0
0 —d| rvyVy 0 0
0 0 —ryVy — ds — MR) MRy 0
0 0 0 —ds —mry O
|0 0 0 0  —dr]

Note thatTgr; = Try = O for all three equilibria. Thus, this matrix has characteristic

equation

= (dv + W) (ryVy +ds+ Mgy + w)(ds + Mry + ) (dr + w) fa(w),
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where f1(u) is the deteminant of

—dv—l'|T3—;L 0 —r 'V nw 0
0 —dV —ryTg— " —ryVy 0 nw
—rTs —ryTs —nVy —ryWw — ds - 0 0
rnTs 0 rVi —d —u 0
0 ryTs rvyVy 0 —d| —u

andV,, Vy andTs are equilibrium values.
For the disease-free equilibriurk; = 0,Vy = 0 andTs = dis, so we have

f1(u) = —(ds + 1) (u? + agpe 4 b)) (u? + agp + by)

where
ra
a1 =dy +d +—=
ds
ra njowr A
b1=d (d — ) -
1 |(v+ds) ds
ryA

ap=dy +d +—
ds

ryA njwryA
b,=d (d — | - .
2 I ( v + ds> ds

We have
ryi
b =dyd) + — (| —njw) <0
ds

usually sincen, is large compared tohe other constants and is not too close to
zero. Thus there is an eigenvalue with positive real part. It follows that the disease-free
equilibrium of systemZ.2), (2.5) is usially unstable.

PN _ _ ary(nw—d)—dydid _ dyd
For the mutant equilibrium,)V, =0, Vy = 2 "‘;Yd\'/dl VEIES andTg = Mm"ﬁ,so
we have
—dv —ryTs—,bL —I’Yvy nw
f1(w) = (u? + agu + bg) det —IyTs —yW —ds—pu 0
ryTs ryVy —d —u
where

azg=dy +d +rTs
bz =dvd +rTs(d| — njw)

dvd,
= dvyd ——(d| —
v '+r'ry(n|a)—d|)( | —Nw)
_ dvdi(ry =)
v
<0

sincer|; > ry. Thus there is anigenvalue with positive real part. It follows that the mutant
equilibrium of systemZ.2), (2.5) is unstable.
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. I _ A (njo—d)—dydd _ _ _ dvd
For thewild-type equilibrium V| = *-EE=ERVASS Wy = 0 andTs = - lgs,
so we have
—dv—l’|T5—/,L —I’|V| nw
f1(10) = (u? + agje + bg) det —nTs —nVi—ds—p 0
NnTs rnv —di —u
where

ay=dy +d +ryTs
bs = dvdi +ryTs(d) — njw)
dyd,

= dyd ry———(d; —n
\/ '+Yr|(n|a)—d|)(' | )

_ dvdi(ri —ry)

Er—

>0

sincer; > ry. Next,
—dv—r|Ts—[,L —nV nyw
det —nTs —nVi —ds—pu 0 = —p® —aspu® — bsp — Cs
rnTs nv —di —u

where

as=dy +d +ds+r Ts+nV,
bs = dyd) +dyds+dids+ridyV, +rdsTs+ridiV, +r;(dy —nw)Ts
A A
=dvd +rne—-d)|{—+-——Ts)+rdsTs
d dy
Arp(njw —dp)(dy +d|)—d\2/d|2
ridvd (N —d)

= dvd, —Hl(mw—dl)(
>0

usually sincen; anda are large compared to the other constantsaiginot too close to
zero. Finally,

) +rdsTs

Cs = dvdids+ridyd V, +rids(di —nw)Ts
=r (o —d)K —dsTs)
>0
sinceTs < dis. Herce, all eigenvalues usually have negative real part. It follows that the
wild-type equilibrium is usually stable.
Thus, when there are low or zero drug levels, the wild-type virus dominates, barring any

internal periodic orbits or chaotic attractors (but simulationSéction 5do not show any
such béaviour).

3.2. Region 2: intermediate drug levels

In this case, there are no equilibria, due to the impulsive nature of the drugs, which
do not reach equilibrium, but rather approach an impulsive periodic orbit, as we shall
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show inSection 4 However, we can find impulsive periodic orbits by setting the left hand
side of systemZ.3) equal to zero. This yields four impulsive periodic orbits: disease-free
(extinction of virus and infected cells), wild-type (extinction of mutant), mutant (extinction
of wild-type) and an interior periodic orbit (both strains coexist). We denote equilibrium
solutions by X and impulsive periodic orbits by*. In all cases, there is an impulsive
periodic orbitR* satisfying .5 andR; < R(t) < Ry.

The disease-free periodic orbit is in the form

ML W, N, Ts, Ti, Ty, Tri, TRy, R) = (0, 0,0, TS, 0,0, TR, 0, RY),

where
. _ A(ds + MRy)
S 7 ds(ds + mR| 4 rpR*)
ArpR*
Ta i

~ ds(ds+ MR+ rpR%)
The wild-type periodic orbit is in the form

(V| ’ VYa VNla TSa T| ’ TYa TR|7 TRYa R) = (V|*7 Oa V§|7 -I_-Sa T|*a 07 Tgh 07 R*)a

where

VF = A(Njw —d)) B ds(ds + mg; +rpR*)
! dyd, r (ds+ mgy)
X nnl—-w) -,

- dvd,
Tg= ——MM—

S rnno—d)

r =

T = —TsV/*

| d; SV

dyd| R*

Tﬁ] rpdyQ

T (Ntw —dy)(ds+ Mgy

Note that this orbit is only positive wher* > 0.
The mutant periodic orbit is in the form

Vi, W, Vi, Ts, Ti, Ty, Tri, TRy, R) = (0, Vy, Ui, TE, 0, Ty, T, 0, R),

where

- A(meo—d) ds
Wy = 2@ )5S

v dvd| Iy
Vi = A0y

nw— d|

5 _ dvd (Arry (njo —dy) + mgidyd))

STy —dp[Ary(nje — d) + dvd; (ds + Mgy 4+ rpR)]
=y

a n|a)—d|
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dvd,
ry(nfow —dy)

This orbit is usually positive, sinceandn, are large compared to the other constants.
The interior periodic orbit is in the form

(V| ) VYa VN| ) TSa T| ) TYa TRla TRYa R) = (V|*a VY*a \7N|a -I_-Sa T|*7 TY*a -I_-R|7 Oa R*)v

where

*

Tri S

S-

_k(n|w—d|)_ rpR* @

V* =
! dyd, rn—ry ry
N rpR* ds + mgy
VY == -
r —ry Iy
v _nl-w) [Mmo-d) ds
NI nw—d dvd ry
T dyvd,
ST o —d)
dy
T* — V*
! n|a)—d| !
dy
T* — *
Y n|a)—d| Y

7 dyd (ry —ry)
RIl—m, ——————————— .
nry(nio —dp)
Note that the interior periodic orbit is positive only if

R > (ds+ mg)(r; —ry) and Ry < r—ry ()»(nlw—d|) @)
rpry P dvd ry

However, we expect that ~ ry andRy is not too close to zero, so the former will usually
be true, whereathe latter is usually true sinceandn, are large compared to the other
constants (and in practiéemay be of the same order ﬁéry). Furthermore,

Anfw —d;) ds
dvd| Iy ’
Sincei andn; are large, we expect this to be positive.

The Jacobian matrix for Region 2 (described By3| and @.5)) is J» = [Jz(a)|J2(b)]
where

Vi+ VW =

_—dv —nTs 0 0 —nV T
0 —dy —ry(Ts+Tr) O —IyVy
0 0 —dy 0
—nTs —ryTs 0 -—nVi—-ryWw—ds—rpR
RIS nTs 0 0 Y
0 ry(Ts+ Tri) 0 ryVy
0 —IvyTRi 0 reR
0 0 0 0
o0 0 0 0 |




R.J. Srith, L.M. Wahl / Bulletin of Mathematical Biolody(unin) i 13

nw 0 0 0 0
0 nw —rvyVy 0 0
nNl—w) Nn(l—w) 0 0 0
0 0 MR 0 —rpTg
I =1 —d 0 0 0 0
0 —d| ryVy 0 0
0 0 —IyVy —ds— mg MRy rpTs
0 0 0 —ds — MRy 0
0 0 0 0 —dr |
This matrix has characteristic equation
= —(dv + w)(ds+ mry + w)(dr + ) f2(u),
where fo(u) = dei[Fz(a)| Fz(b)], for
[—dv -1 Ts—u 0 —rV
0 —dy —ry(Ts+ Tr)) — —ryVy
@ _ -1 Ts —IyTs NV —ryWw —ds—rpR—pu
2 = r TS 0 r V|
0 ry(Ts+ Tri) ryVy
L 0 —rvy TR reR
B nfw 0 0
0 nw —ryVy
b _ 0 0 MR
2 = —d| - U 0 0
0 —d| - ryvy
L O 0 —ryWy—ds—mg/ —pu
andV,, Vy andTs are equilibrium or impulsive periodic solutions. .
: - - N _ A(ds+mR))
For the ;:Ilssfase-free periodic orb¥) = W = 0, Ts = m and
o R
Tr = W, so we have
fa() = (u? + e + g1) (u? + et + g2) (1? + €3t + g3)
where

e =2ds+ mg+rpR*
g1 = ds(ds + Mgy + rpR)
A(ds + mR))
ds(ds+ mr| +rpR¥)
A(ds + mR))
ds(ds + mr| +rpR*)

e=dv+d +r

g2 =dvd +r(d —njw)

A
es=dy +d +ry—
ds

A
g3=dvd +ry(d —njw)-— <0
ds
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usually sincen; is large andw is not too close to zero. Thus there is an eigenvalue with
positive real part. It follows that the disease-free periodic orbit of sysfe8dénd @.5) is
usually unstable.

; _ Amo—d) ds _ dvd, _
For t:ed Er;ut(at ozb;t, VYd d_) v it Ts + Tr = G and Ts =
v d (Ary (N @—0;)+MmRiQy d
ry () o—dp))[Ary (Nj w—d;)+dyd| (ds+mRri+rp R¥)]’ so we have
fa(u) = (u? + eap + g4) det Mo
where
e =d +dy +rTs
g4 =dyd; —r Ts(njw —d)
—dvy —ry(Ts+ Tr) + 1 —ryVy no —ryVy
Mo = —ryTs —ryWy —ds—rrR—u 0 mgR)
ry(Ts+ Tri) ryVy —d —u ry Vy
=y TR rpR 0 —IyVy —ds—mg| — u
We have
ridyd (Ary(njo —di) + mgdyd))
g4 = dyd; —

ry[(Ary(njw — di) + dyd (ds + mg; + rpR*)]
_ dvd [(Ary(njw —d;) +dvdimr)(ry —ry) + dyd; (ds+rpR*)ry]
ry[Ary(Njw —dp) 4+ dyd; (ds+ mg| + rp R*)]

<0
usually sincery < r; andx andn, are large. Thus, the mutant orbit is usually unstable.

Proposition 3.1. When there are intermediate drug levels, the wild-type and mutant virus
will coexist.

Proof. Suppose the wild-type periodic orbit is stable. Then since it has the property that
Vy = 0, we must havg— < 0 for anappropriate orbit whehis sufficiently large (note
thatVy (t) is continuous for alt). Supposé/y (t) = € > 0 for somesufficiently large time
7. Furthermoe, for somey satisfying O< y < Cr’—‘l’ we have
dvd, dvd,
nw—d) Ts(o) = r(no—d)
I‘pdvd| Ry rpdvd| R>

-
r (N —d)(ds+ mgy) = RIGEAS r (N —d)(ds+ mgy)

sinceR; < R(7) < Ry. Then we have
Iy ( dvd| rpdvd| Ry >
€

T Y
Y(T)>d| nMmo—d) ro-—d)ds+ mg)

Thus
dVy (1)
dt

dV 4 I’pdle >
nme—d) rMmo—d)ds+ mg)

dyd, repdyd Ry )
—rye | —————— +y + — dye
v <r|(n|a)—d|) 4 r (N —d)(ds+ mgy) v

> Njwlye (
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. Irye
- rni(njo —d)(ds+ mgy)
+(@dv — yr)(Mo —d)(ds+ mg))] — dve
>0

usually sincen; o > % > d for n; large andw not too dose to zero. It follows that

for = sufficiently large,Vy (1) is increasing, which is a comtdiction. Thus the wild-type
periodic orbit is unstable. Since the disease-free and mutant orbits are also unstable, it
follows that the mutant and wild-type strains will coexist in Region 2[]

[rrdv(NwRy — d| Ry)

3.3. Region 3: high drug levels

If rr > rq, system 2.3) has three irpulsive periodic orbits: disase free (extinction of
virus and infected cel)swild type (extinction of mutant) and mutant (extinction of wild
type). In all cases, there & impulsive periodic orbiR* satisfying .5 andR(t) > Ry.

If rr < rg then there is also an interior impulsi perbdic orbit, but we expect from the
dose effect curves that this will not be the case.

The disease-free periodic orbit is in the form

(Vl ) VY: Vle TS: T| ) TY: TR|7 TRY? R) = (Os 07 Os Téks 07 Os Tgh Téka R*)s

where
Tx_ Al(ds + Mry)(ds + MRry) + dsr q R*]
S 7 ds[(ds+ mRy)(ds + Mr| + rRR*) + rqQR*(ds + rrR*)]
A(ds + mry)rrR*

ds[(ds + MRy)(ds + Mr| + rrRR*) + roR*(ds + rrR*)]
" Al RI’Q(R*)2
Try = .

ds[(ds + MRy)(ds + MRy + rrRR*) + roR*(ds + rrR*)]
The wild-type periodic orbit is in the form

(V| ’ VYa VN I TSa T| ’ TYa TR|7 TRYa R) = (V|*7 Oa Vﬁ |» -I_-Sa T|*a 07 Tgh T&Ya R*)v

Tri =

where
V*:k(ﬂlw—dl) _ds  rrR* mgy(ds + Mry)rrR*
! dvd r r r[(ds + mRy)(ds + M) + dsr g R*]
" nNa-ow)_,
VN = TTI
T — dvd
rnno—d)
* N = *
T = ETSVI

¥ dyd (ds + mry)rrR*
Tri =
r (njw — dp)[(ds + Mry)(ds + mgy) + dsr g R*]
i _ dvdirrro(R%)?
Y™ 11 (@ — d)[(ds + MRy) (ds + MRy) + dsroR*]
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Note that the wild-typ@rbit only exists if

Arp(mo —dp)
dvd,

wheref = (ds + mry)(ds + mg)) + dsrq R*. It turns out that this condition is also an
important stability condition for the disease<€rgeriodic orbit, as we shall demonstrate
shortly.

The mutant periodic orbit is in the form

6 — (ds+rrR*)0 + mri(ds + mry)rrR* > 0 (37)

(V| ) VYa VN| ) TSa T| ) TYa TRla TRYa R) = (Oa Vka V[i]k| ) -I_-Sa Oa TY*a Tgh Téka R*)a
whereT¢ is the positive root of taquadratic equation

N(THZ + [¢rrRR* +Mri — 1) + 4] TE — ¢(A + Mrig) =0

for
. dsrgoR*
= ds + mRy
_ dvd
Cry(o—dp)
and where
«_ A ds rrR* mRriTg
Y= ryTg Iy Iy TYTé‘<
n(1—w)
Vi, = ————V
NI nw — d|
dv
T* — *
Y n|a)—d| Y
e dvd o
R rv(io —d)) S
« rQR*
TRy = ds+mry "

This orbit is only positive ifvy > 0.

The Jacobian matrix for Region 3 (described By and @.5)) is J3 = [Jéa)uéb)]
where

[—dy — 1 Ts 0 0 -V
0 —dv —ry(Ts+Tr) O —ryVy
0 0 —dv 0
- Ts —ryTs 0 —nV,—-ryWw—-ds—-rgrR
I = nTs 0 0 nv
0 ry(Ts+ Tri) 0 rvVWy
0 —ryTR| 0 rRR
0 0 0 0
L 0 0 0 0 i
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now 0 0 0 0 7
0 nw —ryVWy 0 0
nNl—-w) N(l—w) 0 0 0
0 0 mR| 0 —IrTs
W =] —d 0 0 0 0
0 —d, rvyVy 0 0
0 0 —ryWy — ds — MR — FQR MRy rrRTs — FQTR|
0 0 roR —ds — mry roTri
| o0 0 0 0 —dr
This matrix has characteristic equation
0=det(J1(Vi, W, VNI, Ts, Ti, Ty, Tri, TRy, R) — ul)
= (dv + w)(dr + w) fa(n),
where f3(n) = def Féa)| F3(b)] for
[—dy —r Ts— 1 0 —nVv ]
0 —dy —ry(Ts+ Tr)) — —ryVy
-nTs —IyTs NV —ryWw —ds—rrR—pu
F?(’a) = rnTs 0 rnv
0 ry(Ts+ Trp) ryVy
0 —Ivy TR rrRR
i 0 0 0
[ no 0 0 0 ]
0 nw —ryVWy 0
0 MR 0
FP=|—d - 0 0 0
0 —d| - ryVy 0
0 0 —l’yVY_ds—mR|—I’QR—/L MRy
L 0 0 I’QR —ds—mRy—/L_
andV,, Vy andTs are equilibrium or impulsive periodic solutions.
For the disease-free periodic orbit, = Vy = 0, so we have
fa(u) = (u? + ke + 1) det My
where
ki=dy +d +rTs
l1=dvd —ri(nfw—d))Ts
and where
—dy —ry(Ts+ Tr)) — 1 0 n o 0 0
—ryTs —ds—I’RR—p. 0 MR 0
M1 = ry (Ts+ Tri) 0 —di —n 0 0
—ryTRri rrR 0 —ds — mR) —I‘QR—;/, MRy
0 0 0 I’QR —ds— MRy —
We have
Arp(njw — dp)[(ds + mRy)(ds + mgy) + dsr g R*]
1 =dyd, —

ds[(ds + mRry)(ds + mR| 4+ rrR*) 4+ rqoR*(ds + rrR*)]
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dvd, [(ds-i- rrRR")6 — mgi(ds + Mry)rRR* — %‘5("')9]
~ ds[(ds+ MRy)(ds + M| + FRR¥) + rqQR*(ds + rRR")]

<0

if and only if the wild-type orbit exists, by Eq.3(7). Thus, if the wild-type orbit exists,
then there is an eigenvalue with positive real part and hence the disease-free periodic orbit
of system @.4) and @.5) will be unstable.
For the wild-type periodic orbit,Vy = 0, so we have
fa() = (U2 + ko + I2) det M
where
ko =dv +di +ry(Ts+ Tr)
Iz =dvd —ry(nw—d)(Ts+ Tri)

—dv—l’|Ts—,u, —nV n o 0 0
—nTs —nV —ds—l’RR—,u, 0 MR 0
Mo = I’|TS rnv —d| — M 0 0
0 rRR 0 —ds—mR|—rQR—;L MRy
0 0 0 roR —ds — MRy,

We have
l2 =dvd) —ry(TS + T3P —d))
_ dvd [((ds + mg))(ds + MRy) + dsr g R*)(r —ry) —ry(ds + mry)rrR*]
r[(ds + mg))(ds + MRy) + dsr g R*]

<0

for redistic parameters, sinag ~ ry. Thus there is a eigenviue with positive real part.
It follows that the wild-type peddic orbit of systemZ.4) and @.5) is ustally unstable.
The disease-free orbit will be stable if
Ao —d)) ds I’RRie_dRT
dvd, o r@-—edrr)
mRi(ds + MRY)rrR'
+ — 3 <0
r[(ds 4+ MRy) (ds + MR (1 — e 9R?) + dsrq R'e~0r7]

Sdving for the positive root of the quadratic, the disease-free orbit will be stable if

) d T
R. =™ [b+ Vb2 + dac] (3.8)

where

a=rre 29R"dgrq
b— [M|(n|w—d|)
dvd,
+ mR(ds + MRY)IR
Arp(mo —dp)
- [ dvd,

— ds} dsroe™IR* — rre” IR (ds + mry) (ds + MR1)

ds} (ds + mRy)(ds + mMRy).
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Sincea andc are usually positive, it follows that the right hand side 8fg is real
and positive. Thus, there is a nonempty region of parameter space where the disease-
free orbit will be stake. In particular, forr large, the condition is approximate >
2R g, (ds + MRy)/rqods. We shall réer to this subset of Region 3 as the region of
viral elimination, since viral eliminationsipossible, although not guaranteed, for these
parameter values. S&ection Sor further reslts on this region.

Note that condition %.8) is actually a stronger condition than needed to ensure the
stability of the disease-free orbit; that is, tkemay be regions of parameter space for
which the disease-free orbit is stable, but conditi®B)is notmet. In contrast, condition
(3.7) gives an “if and only if” condition for stability. Unlike Eq.3(8), however, Eq.3.7)
depends ofiR*, theperiodic orbit of the drug, which maye difficult to estimate in practice.

3.4. Summary of asymptotic behaviour

In summary for this section, then, we find that at low drug levels resistance does not
emerge, and a stable equilibrium is predicted between the wild-type virus, T cells infected
by the wild-type virus, and héthy T cells. In contrast at intermediate drug levels, drug
resistance is guaranteed to emerge. Recall tiedtaxe defined “intermediate” drug levels
as the regime in which the drugs significantly inhibit replication of the wild-type virus, but
have negligilte effect on the drug-resistant strain.

In the third case, if the summed effect of atepentative drugs reduces replication of
boththe wild-type and drug-resistant viral strains (“high” drug levels), one of two scenarios
can occur. Either drug resistance will emerge, or both populations of free virus will be
driven to extinction. (We note that our model does not consider longer-lived reservoirs
of virus, such as latent T cells, and thus elimination of free virus in our model is not
equivalent to clearing the infection.) The latter case is possible when condgi@n (
is not fulfilled. For realistic parameter values, we can approximate condifor) @s
A njw > rrR*dyd;. Thus elimination of free virus is possible if the number of infectious
virions produced per infected cell, or the infectivity of these virions, is not too large, or if
the periodic orbit of the drug and the drug efficacy are not too small. These conditions
make irtuitive sense, and the examgtagnitude of the parameters required in order for
viral elimination to be possible is given by conditioB.7). As mentioned above 3(8)
is an alternative expressi for the same condition; the difference is tHag is astronger
condition than strictly necessary, but may be more easily evaluated in practice.

4. Equilibrium T cell counts

In this section, we examine the total T cebunt at equilibrium or at the stable periodic
orbit(s) predited for low, intermediate and high drug concentrations.

Suppose the drugs are given at fixed intervals.t.et ty ;1 — tx be the dosing interval
(for k > 1). Fort satisfyingty <t < tk;+1, we have

R(t) = R(t,")e dR(-t,

The impulsive effect means we have a recursielation at the moments of impulse, given
by (2.6). Thus
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11— efdet Ri
+\ _ pi
RGO =R a7 T_ew
ask — oc.
Note that
Ri 1— e—der Ri
+y _ pi
RO = 1= g-drt Rz e drt 1 e drr
Ri e—der
=—-———<0.
1—edrr
However, ifR(0) = 1—edF' thenR(z ™) = %’:—i and so
Ri e—dRT .
+\ |
Ri
T 1-e ke
It follows that the impulse point~°17‘aF{_idRr and Rie_d - define the ends of a positive

impulsive periodic orbit in drug conceatiion, to WhICh the endpoints of each cycle
monotonically increase. In particular, sinB¢0) < W, it follows that

R < 7 (4.9)

— e—dR‘L’
for all t. Sincethe impulsive drug orbits are asymptotically stable, it follows that for any
€ > 0 thereexidst; suchthat

Ri e—dRr

R(t) > (4.10)

T_edw
forallt > t;.

For low dug levels (R < R1), we know from Section 3.1that the wild-type virus
dominates. Furthermore, sineg is large, Ts is small. Thus the immune system is
mairtained primarily byT, cells when the drug concentrations are low. The tdtalell
count at the stable (wild-type) equilibrium is

A dy(di —ds)

_ 4.11
d|+r|(n|a)—d|) ( )

Ts+ T =
Sinceds < d, this will be significantly smaller thara%, theT cell countin the disease-free
state (se&mith and Wahl, 2004

For intermeliate drug levelsR; < R < Ry), we use the results &ection 3.20 show
that the total T cell count for the interior periodic orbit is

A dy(d —ds)
d - ry(Mo—d)

The same comments as above apply4d ®. However, it should be noted that we have
not shown that the interior orbit is necessarily the orbit to which trajectories approach.

Ts+ T+ Ty + Tri = (4.12)
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There may be other interior periodic orbits, or more complex behaviour in which both
strains oexist.

For high drug levels, we examine the effect on the T cell count as the dosing intervals
shrink to zero, or as the doses increase to infinity. This implies that trajectories will
ultimately reside in Region 3, since drug cemtrations will eventually accumulate beyond
the cut-off valueRy.

To evaluatehese limits, we will frequently use the following straightforward lemma:

Lemma4.1. Suppose X is a variable satisfying
X'(t) < c— (@)X
where c is a onstant and ¢p) is indgpendent of x and t. Then

(a) If x(0) < -C- it follows that

a(@)

c
X(t) < —

[C2)

for all t.
(b) Ifx(0) < q(—°¢) andlimg_.0q(¢) = oo it follows that

X(t) = 0
as¢ — Oforallt.
(SeeSmith and Wahl (2004jor a proof.)

Remark. Lemma 4.1also holds if the inequalities are reversed.
We assume initial conditions to reflect the vesgrliest stages of the virus, with no drug
effects initially. Thus

niA
0 < W(0) <« V| (0) « —

N dsdv (4.13)
0« Ts(0) < —
ds
andT,; (0) = Ty(0) = Tri(0) = Try(0) = R(0) = 0.
Note that for all models, we have, usihgmma 4.1
Té + T|/ + T\/( + T|$| + TéY =A—ds(Ts+ Tri + Try) — d| (T} + Ty)
< A—ds(Ts+ Tri+Try+ T + Tv)
A
Ts+Tri+Try+ T + Ty < ae (4.14)
s

Lemma4.2. For Region 3, Y < O{‘S'—dkv forj=1,Y,and

rdsdy (1 — e 9r7)
(2riny & + d&dv) (1 — e~%R7) + rrRIdsdy

-0

ast — 0or R — oo.
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Proof. From nodel 2.4) andusingLemma 4.land @.14), we have

Vi< 22 _dv

v nia
< .
'™ dsdy

Using this result,4.10, Lemma 4.1 (4.13), (4.14) and the &ct thatr| > ry, we have,

na R
TE> A —2r ——Tg—dsTg — rRTg———
s> ' degy 18~ 9sTs RIS s
rdsdy (1 — e~ 9r7)
Ts > 5 -
(2r|n|A+dev)(1—e—de)+rRR'd3dV
=a(t) >0

ast —» 0orR — oco. [

Theorem4.1. Ast — oo and eithert — 0, or R — oo, Ts, T}, Ty, Tri — 0 and
Try — T3 in Regbn 3, where £ satisfies

TR < = (4.15)

Proof. From nodel 2.4) andusing @.10 andLemma 4.1we havefort > t,

I‘RRi e_dRTT AMR|
1_edrr 'S +errTs+ ds
M(ds + MR (1 — e %7)
ds[rrR e 9rRT + (ds — err) (1 — e 9r7)]
—dRrt
_ ( .k(_ds-i-le)(l— RT) _ B TS(O)>
ds [rRR'e drT 4 (ds—err)(l—e dRT)]

TS <A —dsTs—

Ts <

s+ mR)(1— e %)t
S (o drr —dre
s[rrRRe"IR" 4 (ds — err)(1 — e~9=7)]
B(t, 7)
0

Lo

ast — oo and eitherr — 0 or R — oo. Next,

/ I’|,3(t, t))"n|
T —  —dT
| < dsdy 11
r B, T)An
dsd, dy

-0

T <

ast — oo andt — 0.
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The right hand side of4(15 follows from (4.14). From model 2.4), and using 4.9),
(4.10, Lemmas 4.5and4.2, for anye > 0, there exist$; suchthat

. a(t)rrRedr? AN Ty rQR

Tri > e rrea(t) — dsdy +ds+ mg| + 1o dnr Tri
a(D)rRRIEIRT — rpea(r) (1 — e 9RT)

Tri > .
()arg_dr\;( +ds+ mR|) (1—e9r7) 4 rgR

= y (7).
Then if ¢ is sufficiently small, we have
rqoR e dr?

Try > (m - rQ€> y(t) — (ds+ Mry) Try
a(D)rorr(R)2e 2R — (1 — e 9R7)eq(1)rorr[2R e 9RT — (1 — e~ 9RT)]
(ds + mRy) [()ar;hr\;( +ds+ mR|> (1—e9R7) +rqg Ri] (1 — e drr)

Try >

Ast — 0, we have
a(t) > 0
o (T) A
1_edrt reR
Thus,

A
ds+ mry’
Using @.9) and @.10, Lemma 4.1and @.14), for ¢ sufficiently small, there exists
suchthat

(00)
Try =

B, O)rrR AmRy  roRiedre
1— e dre ds 1—edre
B(t, IRR + 208X (1 — g~0rr)
(ds + MRy —rQe)(1 — e 9RT) +-rqRiedre
= §(t, 1)
—- 0

Tri+rQeTRI

TR < — (ds+ mr)Tri +

Tri <

ast — oo and either — 0 or R — oo.
Finally, usingLemmas 4.5and4.2, we have

Ty =rv(Ts+ TrOVy — di Ty
AN
<ry(Bt, o)+, 1) — —d Ty
dsdy

AN
d dsdy

Ty < ry(B(t, ) +68(t, 1))
-0

ast — oo and eitherr — 0orR — oco. [
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4.1. Summary of T cell results

In this section we have shown that although drug resistance does not emerge at low drug
levels, the total T cell count will be significantly lower than T cell counts in the disease-free
stae.

At intermediate drug levels, the total T cell count will not be very different from the T
cell count at low drug levels (compare Egé.1(1) and @.12).

At high drug levels, the total T cell count will be less thanequal tocell counts in
the dsease-free state, and will be dominated by the populdfigh those cellghat have
absorbed sufficient drugs to prevent infectigneither viral strain. Interestingly, all other
types of T cells will be driven to zeras drug concerdtions increase.

5. Numerical smulations

Putting together the results froBectons 3and4, we denonstrate some of the likely
behaviour, given that drug concentrations will likely move through all three regions.
Intuitively, we expect that wherR(t) is high, the mutant strain of the virus should
dominate, but in relatively low numbers. Then B#&) falls to intermediate levels, the
wild-type strain can coexist with the mutant. WhR(t) becomes low, the wild-type virus
gains control. Depending on the amount ofgithe drug spends in each region (if any),
trajectories will likely oscillate, with either coexistence, one or the other strain gaining
dominance, or the drugs elinating both strains.

After the transient behaviour has settled into a periodic orbit, we will have

Ri e—dRT Ri
1—e o = "U= 7 cdme

It follows that trajectories will remain solely in Region 1 if
0<R < Ri(1-e 97,

whereas trajectories wible outside Region 1 if
R > RiefR?(1 — g dr7),

Trajectories will remain solely within Region 2 if
Rie¥R7 (1 — e 9RT) < R < Ry(1 — e 9RT)

whereas trajectories will beutside Region 2 if either
R <R(l—e %) or R > Re™R7(1—gdr7)

Finally, trajectories will remain solely within Region 3 if
R > Ryedr? (1 — g 0rr)

whereas trajectories wible outside Region 3 if

R < Ry(1— e 9r7),
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Fig. 2. The possible combinations of regions that trajges of drug concentrations may traverse, for given
dosages and dosing intervals. Parameters used mjere= 2625 day’l, w = 08, r; = 002 day'l,

ry = 001 dayt, dy = 3day !, ds = 0lday ™l dy =05day L, rp =rgr=40uM L dayl rg =
104 pM~1 day 1, dg = 24log(2)/6 day 1, » = 180 cellsuL—1 day 1, mg; = mry = 24 l0g(2)/8 day 1,

R; = 3uM and R, = 6 uM. These prameters are similar to those described in greater det&itith and Wahl
(2004) in paticular the value of g assumes that trough concentrations gproximately sufficient to inhibit
viral replication in all T cells at some point during their lifetime. The valuespofindrg were etimated from
rr by comparing best-fit linear slopes in the dose—effect curvésgpflB. We illustrate the case when the drug
in use has a 6 h half-life in plasma, and an 8 haallular half-life.

Fig. 2demonstrates which regions drug concentration trajectories will visit, for various
combinations of dosing interval and dose. The curves plotted are

RI — Rl(l— —dR‘L’)

RI — RledR‘L’(l _ e—dR‘L’)

R = Ry(1— e 9r7)

RI — RzedR‘L’(l _ e—dR‘L’)
and the dotted curve is the curve given by equality in Bi)( Parameters are chosen from
the literature and are similar to those described more fullyriith and Wahl (2004)see
figure legend).

Figs. 3and4 illustrate the different cases found kig. 2 In all cases, parameters are
as given in the legend tBig. 2, with only the dosing intervat and the dosag®' varied.
The figures give phase-plane plots of the populations of cells infected by the wild-type or
drug-resistant val strains. The insets iRig. 3 show the total population of all classes of
T cells; uninfected cell classes are shown tolgfeof the vertical line and infected cell

classes to the right.
Fig. 3A denonstrates the behaviour when traje@smremain solely in Region 1. In this

case there is no drug-resistant strain of the virus. T cells infected with the wild-type strain
dominate, with all other T cells appaching zero. This demonstratdsi(1).



26 R.J. Srith, L.M. Wahl / Bulletin of Mathematical Biolodi/(anin) i
x107° A B
4 400
400 400
3 200 300 200
0 SRIRY | Y 0 SRIRY | Y
2 200
-
ES
o}
s 100
(2]
2
S
S o0 0
2 0 200 400 600 800 1000 0 200 400 600
E
[0}
N c -5 D
> x 10
2 500 1.2
Q 400
g 1 1000
£ 400 200 500
= 9 08
E 300 o SRIRY | Y ’ ¢ SRIRY | Y
0.6
200
0.4
100 02
0
0 100 200 300 400 500 0 50 100 150

T cells infected by the wild-type virus (per uL)

Fig. 3. Infected cell populations wherajectories of drug concentratioemain solely within a region. Values

of T} and Ty were etimated by numerical integration of systeth3), (2.3) or (2.4) using a burth/fifth order
Runge-Kutta algorithm. Initial conditions we¥g (0) = 500, Tg(0) = 1000 andVy (0) = 5 x 10-5; all other

initial populations were set to zero. All parameters except the dose and dosing interval ard-igs foiThe

inset shows the size of each T cell population at the final time (shown as a solid circle on the phase-plane plot);
three populations on the left are uninfected T cells, pppulations on the right are infected cells. A: Region 1

(r =12h,R" = 1uM). In this case there is no drug-resistant straf thevirus. T cells infected with the wild-

type strain dominate, with all other T cells approaching zero. B: Regian2 @ h, R' = 1 uM). In this case

both strains of the virus coexist. T cells infected with the mutant strain are approximately nine times as numerous
as T cells infected with the wild-type strain. C: Regiopvhere thedosing intervals and dosages are not too
extreme ¢ = 6 h, R' = 8 uM). In this case there are large numbers afells infected by the drug-resistant viral
strain, and a small population of uninfected T cells inhiBitgth high drug levels. D: Region of viral elimination

(r =0.3h,R' = 20uM). In this case both strains of the virus atiergnated. Uninfected T cells inhibited with

high drug levels dominate, with all ath T cells approaching zero. Furtheara, the total T cell count is similar

to that of the uninfected immune system.

Fig. 3B denonstrates the behaviour when tragies remain solely in Region 2. In
this case both strains of the virus coexist. T cells infected with the mutant strain are
approximately nine times as numerous as T cells infected with the wild-type strain. This
demonstrategi(12).

Fig. 3C denonstrates the behaviour when traigs remain solely in Region 3,
but where thedosing intervals and dosages are not too extreme. In this case there are
high numbers of T cells infected by the drug-resistant strain, and a small population of
uninfected T cells inhibited with high drug concentrations.

Fig. 3D denpnstrates the behaviour when trajea@srremain solely within the region
of viral elimination. In this case both strains of the virus are eliminated. Uninfected T cells



R.J. Srith, L.M. Wahl / Bulletin of Mathematical Biolody(unin) i 27

A
44 .
50
401
% 200
36
315
B
= . .
=
®
=
(2]
2
>
§ 355f i
3
E
£ 400,
>
el
e
2 200
o
2
E
2 0
8 0 100 200
~ 350 : ;
0 2 4
[¢]
2221
200
100
218 0
134 138
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Fig. 4. The behaviour whetmajectories of drug concentration move between regions. All parameters except the
dose and dosing interval are as féig. 2 The main panels illustrate the periodic orbits obtained between cells
infected by the wild-type and drug-resistant viral steaifihe inset shows the overahase-plane behaviour with

a olid circle illustrating the final time; periodic orbits are not visible on this scale. A: Regions 1 ané=21Q

h, R' = 3 uM). In this case both strains of the virus coéxi$ cells infected with the wild-type strain are
approximately eight times as numerous as T celledted with the mutant strain. B: Regions 2 andt 3«8 h,

R' = 8 uM). In this case the mutant strain dominates, aigvihe wild-type virus toward extinction. Note that
there are also low numbers of uninfected T cells inhibitéth high drug levels (not shown). C: Regions 1, 2 and

3 (r =12 h,R" = 6 uM). In this case both strains of the virus coexist.
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inhibited with high drug concentrations dominate, wéh other T cells approaching zero.
Furthermore, the total T cell count is similar to that of the uninfected immune system. This
demonstrate$heorem 4.1We note tha for the dose—effect curves illustratedfig. 1B
(modelled after the reverse transcriptase inhibitor AZT) the dose required to eliminate both
the wild-type and drug-resistant virus would not be physiologically tolerable.

Fig. 4 plots simlar results for situations in which the drug concentration moves
between regions over time. Here we plot the periodic orbits observed in each case; the
overall phaseplane behaviour is shown in the insEtg. 4A demonstrates the behaviour
when trajectories move bebtgn Regions 1 and 2. In this case both strains of the virus
coexist.Fig. 4B denonstrates the behaviour whemjectories move between Regions 2
and 3. In this case the mutant strain dominates, driving the wild-type viral strain toward
extinction. We also observed a small population of uninfected T cells inhibited with high
drug concentrations (not showrBig. 4C denonstrates the behaviour when trajectories
move between all three regions. In this case both strains of the virus coexist once
again.

6. Discussion

We consider an SIR-type model of immunological behaviour for HIV dynamics,
including drugs that act in a manner similar to reverse transcriptase inhibitors, that is,
they preventhe virus from transcribing its genome onto the host T cell DNA. Our model
provides a novel approach to the question ofgdresisance, usingmpulsive differential
equations to model drug behaviour and cladésg different model regimes according to
whether he drug efficacy is negligible, intermediate or high. We consider two strains
of the virus: a wild-type strain that is susceptible to both intermediate and high drug
concentrations, and a mutant strain that is only susceptible to high drug concentrations.

This three-regime model is based on an underlying model of the appropriate dose—effect
curves Fig. 1B): at low doses, we assume that T cells will not absorb sufficient drug to
counter either strain of the virus. Similarly, T cells which have absorbed sufficient drug to
combat the wild-type strain of the virus may have inadequate drug concentration to counter
the mutant strain, given that mutations often produce a 5- to 50-fold resistance to the drug
in guestion. Only when the drug concentratians sufficiently high will both strains of the
virus be prevented from transcribing their RNA into the T cell DNA.

We find that inpulsive differential equations are an ideal method of approaching such
a sheme. This framework allows us to model dynamic changes in drug efficacy using
a completely analytical approach. It should be noted, however, that there are several
shortcomings to the model. First, we are assuming the drug effects are instantaneous, that
is, that the “time to peak” of the drug is negligible on the time scale under consideration.
Our results are therefore aocurate for dosing intervals that shrink to a few hours
or less (for example the bottom left corner Big. 2). Furthermore, even for longer
dosing intervals, dispersion and delay as the drug enters the intracellular space may
affect our conclusions. We are encouraged that the intracellular dynamics of some HIV
phamaceuticals are becoming available in recent literattt@gfard and Back, 2002
and look forward to examining these effects in more detail in future work.
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Our model predicts that if drug concentrations are uniformly low, drug resistance will
not emerge, but the total T cell count is guaranteed to be significantly lower than in the
disease-free state. In the “intermediate” dose range, we prove that drug resistance will
emerge. At these drug levels, defined to be doses at which the drugs significantly inhibit
replicaion of the wild-type virus, but have negligible effect on the drug-resistant strain, the
total T cell count will be similar to T cell counts at low drug levels. Thus this intermediate
range is the worst of both worlds; T cell counts and viral loads are similar to scenarios
without drugs, but drug-resistant mutante aow successfully comptng with the wild-
type.

At high drug concentrations, either drug resistance will emerge, or the free viral
population of both strains will be eliminated. As noted previously, elimination of free
virus in our modd is notequivalent to clearing the infection, since we have not explicitly
considered longer-lived reservoirs of virus, such as latent T cells. Nonetheless the latter
case is clearly optimal, and is possible if the dosing intervals and dosages are chosen from
the region of viral eliminationKig. 2), described by Eq.3.8). In this case, we have also
proven that as the dosing interval shrinks or the dosage increases, the population of T
cells inhibited with high drug levels will approach T cell counts in the uninfected immune
system, while all other classes of T cells wadpproach zero. Although drug toxicities may
limit the extent to which this optimum can bp@roached, it is encouraging to prove that
such a scenario is even theoretically possible for reverse transcriptase inhibitors and other
“preventative” drugs. We hypothesize that this widit be possible for protease inhibitors
(Smith and Wahl, 2003 and hope to incorporate this second class of drugs in future work.

In practice, a realistic dosing schedule may take trajectories through one, two or all
three regimes. For example drug concentrations may start off high, decrease through
intermediate levels and finally reach low levels before the next dose is taken. We illustrate
some likey behavours in Figs. 3 and 4. We also deronstrate that the relationship
between the dosage and the dosing intervallscompletely determine which region(s)
trajectories will remain in over timd=g. 2). Unfortunately, only when drug concentrations
remain uniformly high will the uninfected T cell count be close to the disease-free state.
Interestinglyfig. 2also predicts that in practice, deasing the dosing interval for a fixed
dosage is more likely to control the virus than increasing the dosage for a fixed dosing
interval.

Finally, our model assumes that each and every dose is taken; we hope to examine the
complex interplay of drug resistance and adhereWéai( and Nowak, 2000Huang et al.,

2003 in future work.
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