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Abstract: Respiratory Syncytial Virus (RSV) is an acute respiratory infection that infects millions
of children and infants worldwide. Recent research has shown promise for the development of
a vaccine, with a range of vaccine types now in clinical trials or preclinical development. We extend
an existing mathematical model with seasonal transmission to include vaccination. We model
vaccination both as a continuous process, applying the vaccine during pregnancy, and as a discrete
one, using impulsive differential equations, applying pulse vaccination. We develop conditions for
the stability of the disease-free equilibrium and show that this equilibrium can be destabilised under
certain extreme conditions, even with 100% coverage using an (unrealistic) vaccine. Using impulsive
differential equations and introducing a new quantity, the impulsive reproduction number, we showed
that eradication could be acheived with 75% coverage, while 50% coverage resulted in low-level
oscillations. A vaccine that targets RSV infection has the potential to significantly reduce the overall
prevalence of the disease, but appropriate coverage is critical.

Keywords: Respiratory Syncytial Virus; vaccination; mathematical model; impulsive reproduction
number; infection spikes

1. Introduction

Respiratory Syncytial Virus (RSV) is the main cause of acute lower respiratory infections in
infants and toddlers [1], with almost all children having been infected by two years of age [2,3] and an
estimated 0.5–2% of infants requiring hospitalisation due to infection [4]. It has been estimated that, in
2005, 33.8 million new episodes of RSV (both severe and non-severe) occurred worldwide in children
younger than five years of age [1]. Symptoms of RSV range from mild (cough, runny nose, sore throat,
earache and fever) to more severe afflictions such as bronchiolitis, difficulty breathing, blue skin due to
lack of oxygen and pneumonia [2]. While mortality due to RSV infection in developed countries is
low, occurring in less than 0.1% of cases [5], few data have been published about RSV morbidity and
mortality in developing countries [6]. However, estimates of the hospitalisation costs are substantial
[7–9], making RSV a significant economic and healthcare-system burden.

Newborn infants are typically protected from RSV infection by maternal antibodies until about six
weeks of age [10], and the highest number of observed RSV cases occur in children aged six weeks to six
months [11,12]. Immunity to RSV following an infection is short-lasting, and reinfection in childhood
is common [13]. Few studies have been undertaken to investigate transmission of RSV among adults,
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but it is thought that infection can occur throughout life [14,15] and that, in older children and adults,
RSV manifests as a mild cold [2,16]. RSV has been identified as a cause of mortality in the elderly,
with documented outbreaks in aged-care settings [17,18]; one such study found that up to 18% of
pneumonia hospitalisation in adults aged above 65 years may be due to RSV infection [19].

In temperate climates, RSV epidemics exhibit distinct and consistent seasonal patterns. Most RSV
infections occur during the cooler winter months, whether wet or dry [6], and outbreaks typically last
between two and five months [20,21]. In a number of temperate regions, a biennial pattern for RSV
cases has been identified [22–24]. In tropical climates, RSV is detected throughout the year with less
pronounced seasonal peaks, and the onset of RSV is typically associated with the wet season [6,25].

Immunoprophylaxis with the monoclonal antibody Palivizumab, while not preventing the
onset of infection, has proven effective in reducing the severity of RSV-related symptoms [26].
However, prophylaxis is expensive and generally only administered to high-risk children, with
recommendations varying across jurisdictions. There is currently no licensed vaccine to prevent RSV
infection, despite about 50 years of vaccine research. Recent research has focused on the development
of particle-based, subunit and vectored vaccines; several such vaccines are being evaluated in clinical
trials, with other vaccines in preclinical development [27,28]. Live-attenuated vaccines are also
undergoing Phase 1 trials [29]. With the possibility of an RSV vaccine becoming available, mathematical
models are powerful tools for assessing the impacts of different vaccine characteristics.

Several compartment models for RSV transmission have been published to date, most using
Susceptible-Exposed-Infectious-Recovered (SEIR) dynamics and with a sine or cosine forcing term
to account for seasonal variation in transmission [30–36]. Few studies have used dynamic models
to explore vaccination strategies for RSV, and these have generally investigated RSV vaccination
from a cost-effectiveness perspective [37,38], for example in the context of a newborn vaccination
strategy in the Spanish region of Valencia [39,40]. More recent studies conducted for the settings of
rural Kenya and the United States have focussed on the likely benefits of vaccination for particular
target groups [41–43]. To the best of our knowledge, there are no theoretical models that examine the
impact of an RSV vaccine analytically.

Here, we examine the effects of a vaccine on the transmission of RSV in a single age class.
We consider several vaccination scenarios, including differing levels of coverage, seasonal oscillations
in the transmission rate and a waning of the vaccine. We also compare continuous vaccination to
impulsive vaccination in order to determine conditions on the vaccination strength and duration that
will control the virus.

2. The Nonimpulsive Model

We first extend the SEIRS compartmental model for a single age cohort described by
Weber et al. [30] to include a vaccine strategy for RSV where a fixed proportion of individuals
entering the model are temporarily immune to infection. This reflects the situation where pregnant
women are vaccinated in their third trimester, generating protective maternal antibodies that are
transferred transplacentally to the unborn infant, conferring protection from RSV infection in the first
few months of life. We assume that the leaving rate µ is unchanged across all classes and that there is
no disease-specific death rate. We scale the entry and leaving rates so that the population is constant.

Let S represent susceptible, I represent infected and R represent recovered individuals, with
V, IV and RV the corresponding compartments for vaccinated individuals. The birth rate is µ, with
a proportion p vaccinated, of whom ε successfully mount an immune response; the death rate is equal
to the birth rate. The time-dependent transmissibility function is β(t), with recovery ν and loss of
immunity γ. The transmissibility of infected vaccinated individuals is described by βV(t), and the
recovery and loss of immunity rates for vaccinated individuals are νV and γV respectively. Finally, the
waning of the vaccine protectiveness is given by ω. Note that, although the definition of vaccine
duration is not fully elucidated for RSV, mathematically it is well-defined as the period spent in the
vaccinated classes before returning to the associated unvaccinated classes. This definition is based on
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an exponentially distributed time spent in the vaccination classes, and hence the duration corresponds
to 1

ω years.
The basic model with vaccination is then

S′ = µ(1− εp)− µS− β(t)S(I + IV) + γR + ωV

I′ = β(t)S(I + IV)− νI − µI + ωIV

R′ = νI − µR− γR + ωRV

V′ = εpµ− µV − βV(t)V(I + IV) + γV RV −ωV

I′V = βV(t)V(I + IV)− νV IV − µIV −ωIV

R′V = νV IV − µRV − γV RV −ωRV ,

with β(t) = b0(1 + b1 cos(2πt + φ)) and βV(t) = (1− α)β(t), for 0 ≤ α ≤ 1, where α represents the
efficacy of vaccination in preventing infection. (We will relax the lower bound on α later in order to
examine some theoretical scenarios.) The model is illustrated in Figure 1.

S
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I

IV

R

RV

μ μ μ

μ μ μ

1-εp

εp

(1-α)β

β

ω ω ω

ν

νV

γ

γ
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Figure 1. The model.

3. Analysis

There is a disease-free equilibrium (DFE) that satisfies

(S̄, Ī, R̄, V̄, ĪV , R̄V) =

(
(1− εp)µ + ω

µ + ω
, 0, 0,

εpµ

µ + ω
, 0, 0

)
.

Constant Transmission

If we assume transmission is constant, so that β and βV are independent of time, then the Jacobian
is J = [J1|J2], where
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J1 =



−µ− β(I + IV) −βS̄ γ

β(I + IV) βS̄− µ− ν 0
0 ν −µ− γ

0 −βVV̄ 0
0 βVV̄ 0
0 0 0



J2 =



ω −βS̄ 0
0 βS̄ + ω 0
0 0 ω

−µ− βV(I + IV)−ω −βVV̄ γV
βV(I + IV) βVV̄ − νV − µ−ω 0

0 νV −µ− γV −ω


.

At the DFE, we have

J
∣∣∣∣
DFE

=



−µ −βS̄ γ ω −βS̄ 0
0 βS̄− µ− ν 0 0 βS̄ + ω 0
0 ν −µ− γ 0 0 ω

0 −βVV̄ 0 −µ−ω −βVV̄ γV
0 βVV̄ 0 0 βVV̄ − νV − µ−ω 0
0 0 0 0 νV −µ− γV −ω


.

The characteristic polynomial satisfies

det(J − λI) = (−µ− λ)(−µ− γ− λ)(−µ−ω− λ)(−µ− γV −ω− λ)det M,

where

M =

[
βS̄− µ− ν− λ βS̄ + ω

βVV̄ βVV̄ − νV − µ−ω− λ

]
.

The first four eigenvalues are always negative. The nontrivial part of characteristic equation satisfies

λ2 + b1λ + c1 = 0,

where

b1 = −βS̄ + µ + ν− βVV̄ + νV + µ + ω

c1 = (βS̄− µ− ν)(βVV̄ − νV − µ−ω)− βVV̄(βS̄ + ω)

= βS̄(−νV − µ−ω)− (µ + ν)(βVV̄ − νV − µ−ω)− βVV̄ω.

We use the method of the constant term of the characteristic polynomial to determine the
reproduction number [44]. Rearranging c1 = 0, we find

R0 =
βS̄(νV + µ + ω) + βVV̄(µ + ν + ω)

(µ + ν)(µ + νV + ω)
.

(This is equivalent to the value found using the next-generation method.)
If c1 = 0 and b1 > 0, then we have a bifurcation with the property that the DFE is stable if R0 < 1

and unstable if R0 > 1.
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However, it is possible that when c1 = 0, b1 < 0. In this case, R0 is not a threshold, and the disease
can persist if R0 < 1.

When c1 = 0, we have

b1

∣∣∣∣
c1=0

=
1

νV + µ + ω

[
βVV̄(ν− νV) + (νV + µ + ω)2

]
.

Note that if ν = νV , then b1 > 0. However, it is plausible that vaccinated individuals infected
with RSV will recover faster than unvaccinated individuals. Thus νV > ν. This raises the possibility
that b1 could be negative.

If νV → ∞, then this is equivalent to vaccinated individuals recovering instantaneously.
In this case,

lim
νV→∞

b1 = lim
νV→∞

βVV̄(ν− νV)

ω + µ + νV
+ ω + µ + νV

= ∞− βVV̄ > 0.

Hence if we define f (νV) = βV V̄(ν−νV)+(ω+µ+νV)
2

ω+µ+νV
, then it is clear that f (0) > 0 and f (∞) > 0.

So we would like to know whether f has a turning point ν∗V such that f (ν∗V) < 0.
We have

f ′(νV) =
(ω + µ + νV)

[
− βVV̄ + 2(ω + µ + νV)

]
−
[

βVV̄(ν− nuV) + (ω + µ + νV)
2
]

(ω + µ + νV)2

=
(ω + µ + νV)

2 − βVV̄[ω + µ + ν]

(ω + µ + νV)2 .

It follows that ν∗V =
√

βVV̄(ω + µ + ν) − ω − µ. There are three requirements for this to be
meaningful (Figure 2):

1. ν∗V > ν

2. f (ν∗V) < 0 and
3. ν∗V is a local minimum.

f(νV)

νV* νV→ ∞νV=ν

Figure 2. Possible sketch of the form of f (νV) with a negative minimum between two positive extremes.
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The first and second criteria determine whether such a ν∗V exists. To prove the third, we can
differentiate again:

f ′′(νV) =
(ω + µ + νV)

2 + βV(ω + µ + ν)

(ω + µ + νV)
> 0.

It follows that ν∗V is a local minimum whenever it exists.

4. The Impulsive Model

Previously, we assumed that a fixed proportion of pregnant women were vaccinated in pregnancy,
resulting in a proportion of infants being born with temporary immunity to RSV infection. This is
effectively continuous vaccination. However, vaccination may occur later and may be administered at
regular times (for example, in schools or daycare centres). We assume that the effect of the vaccine is to
reduce the susceptible population by a fixed proportion r. Such a model is described by a system of
non-autonomous impulsive differential equations [45–48].

The impulsive model is given by

S′ = µ− µS− β(t)S(I + IV) + γR + ωV t 6= tk

I′ = β(t)S(I + IV)− νI − µI + ωIV t 6= tk

R′ = νI − µR− γR + ωRV t 6= tk

V′ = −µV − βV(t)V(I + IV) + γV RV −ωV t 6= tk

I′V = βVV(I + IV)− νV IV − µIV −ωIV t 6= tk

R′V = νV IV − µRV − γV RV −ωRV t 6= tk

∆S = −rS t = tk

∆V = rS t = tk.

Here tk are the vaccination times. They may be fixed or non-fixed, although for our purposes we
will consider them fixed.

4.1. Impulsive Analysis

We set β to be constant for mathematical convenience, and therefore consider the system in
the absence of seasonal transmission. In order to analyse the impulsive system, we need to solve
the differential equations for finite time. Since this is not possible in general, we develop several
overestimates in order to determine bounds for the long-term numbers of susceptible, infected and
vaccinated individuals, under appropriate assumptions.

4.2. Susceptible Individuals

First we consider the overestimate I + IV ≤ 1 (i.e., maximal infection). Then we have

S′ ≥ µ− µS− βS.

Integrating and applying the "initial" condition S(t+k ) in the (k + 1)st cycle, we have

S(t) ≥ e−(µ+β)(t−tk)S(t+k ) +
µ

µ + β

(
1− e−(µ+β)(t−tk)

)
, for tk < t ≤ tk+1

S(t−k+1) ≥ e−(µ+β)τS(t+k ) +
µ

µ + β

(
1− e−(µ+β)τ

)
.

Applying the impulsive condition, we have
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S(t+k+1) = (1− r)S(t−k )

S(t+k+1) ≥ (1− r)e−(µ+β)τS(t+k ) +
µ

µ + β
(1− r)

(
1− e−(µ+β)τ

)
.

A recurrence relation in the form xn+1 = axn + b has equilibrium x̄ = b
1−a , and the equilibrium is

stable if |a| < 1. In our case, we have a = (1− r)e−(µ+β)τ < 1, so the equilibrium of the corresponding
recurrence relation is stable. It follows that solutions are bounded below by a stable impulsive periodic
orbit with endpoints

S−∞ =
µ
(

1− e−(µ+β)τ
)

(µ + β)
(
1− (1− r)e−(µ+β)τ

)
S+

∞ =
µ(1− r)

(
1− e−(µ+β)τ

)
(µ + β)

(
1− (1− r)e−(µ+β)τ

) .

These values correspond to the local maximum and minimum values for the unvaccinated
susceptibles after a long time. These values are well-defined, since both the numerator and the
denominator are always positive.

Note in particular that

lim
τ→0

S−∞ = 0.

That is, if the period between vaccinations shrinks to zero, then the number of susceptibles would
shrink to zero. (Note that this is a theoretical result only, since the impulsive assumptions of long cycle
times relative to instantaneous approximation would break down [49].)

4.3. Vaccinated Individuals

Second, we consider vaccination. Using the inequalities I + IV ≤ 1 and RV ≥ 0, we have

V′ ≥ −µV − βV −ωV.

Integrating and applying the "initial" condition V(t+k ) in the (k + 1)st cycle, we have

V(t) ≥ V(t+k )e
−(µ+β+ω)(t−tk), for tk < t ≤ tk+1

V(t−k+1) ≥ V(t+k )e
−(µ+β+ω)τ .

Applying the impulsive condition, we have

V(t+k+1) = V(t−k+1) + rS(t1
k+1)

V(t+k+1) ≥ V(t−k+1) +
rµ
(

1− e−(µ+β)τ
)

(µ + β)
(
1− (1− r)e−(µ+β)τ

)
≥ V(t−k )e

−(µ+β+ω)τ +
rµ
(

1− e−(µ+β)τ
)

(µ + β)
(
1− (1− r)e−(µ+β)τ

) .

Since e−(µ+β+ω)τ < 1, the corresponding recurrence relation has a stable equilibrium, and hence
solutions are bounded below by the impulsive periodic orbit with endpoints
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V−∞ =
rµ
(

1− e−(µ+β)τ
)

e−(µ+β+ω)τ

(µ + β)
(
1− (1− r)e−(µ+β)τ

)(
1− e−(µ+β+ω)τ

)
V+

∞ =
rµ
(

1− e−(µ+β)τ
)

(µ + β)
(
1− (1− r)e−(µ+β)τ

)(
1− e−(µ+β+ω)τ

) .

4.4. Infected Individuals

Finally, we examine the number of infected individuals under the assumption that the number of
infected vaccinated individuals is negligible (so IV ≈ 0). We then have

I′ ≈ βSI − νI − µI

≤ βS−∞ I − νI − µI

=
βµ
(

1− e−(µ+β)τ
)

(µ + β)
(
1− (1− r)e−(µ+β)τ

) I − νI − µI.

It follows that, after sufficient time, the number of infections will be decreasing if

q =
βµ
(

1− e−(µ+β)τ
)

(µ + β)
(
1− (1− r)e−(µ+β)τ

) − ν− µ < 0.

We thus define a new quantity, the impulsive reproduction number

T0 =
βµ
(

1− e−(µ+β)τ
)

(ν + µ)(µ + β)
(
1− (1− r)e−(µ+β)τ

) ,

which has the condition that the disease will be controlled if T0 < 1.
Solving the equation T0 = 1, we can define the maximal period as

τ̂ =
1

µ + β
ln

(1− r)(ν + µ)(µ + β)− βµ

(ν + µ)(µ + β)− βµ
.

This is defined only if

r < r∗ ≡ 1− βµ

(ν + µ)(µ + β)
. (1)

Differentiating, we have

∂T0

∂r
=

βµ
(
1− e−µ+βτ

)
(ν + µ)(µ + β)

[
−
(

1− (1− r)e−(µ+β)τ
)

e−(µ+β)τ
]
< 0.

It follows that T0 is decreasing as r increases, for r < r∗.
Now let r = r∗ + ε in order to determine what happens beyond r∗. We have

r =
(ν + µ)(µ + β)− βµ

(ν + µ)(µ + β)
+ ε.

Substituting into q and taking a common denominator, we find that the numerator of q is

(ν + µ)2(µ + β)2
[
(1− ε)e−(µ+β)τ − 1

]
< 0.
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It follows that T0 < 1 whenever r > r∗.
In summary, assuming the number of infected vaccinated individuals is negligible, if r > r∗,

where r∗ is defined by (1), then the disease will be controlled, whereas if r < r∗, then the disease will
theoretically be controlled, assuming the period between vaccinations satisfies τ < τ̂. High coverage
can thus control the disease, while sufficiently frequent vaccinations can achieve control when coverage
is limited.

5. Numerical Simulations

5.1. The Nonimpulsive Model

From Weber et al. [30], we use the parameter values β = 50, µ = 1/70 and ν = 36, taking
the transmission parameter to be constant. Figure 3 shows the results of transmission using disease
parameters from Weber et al. [30] and assuming vaccination parameters such that recovery was
slightly faster and transmission slightly less likely. Of the eligible population, 50% were assumed to
be protected by vaccination, but the vaccine waned after 0.5 years, in line with the natural immunity
following recovery from RSV infection. The parameter values were µ = 1/70; ω = 2; β = 50;
βV = 0.5β; ε = 0.9; p = 0.5; ν = 36; νV = 1.2ν; γ = 1.8; and γV = 1.2γ.
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Figure 3. Results from the nonimpulsive model. (A) There is an outbreak, and the infectious population
oscillates, eventually approaching an endemic equilibrium. (B) A small proportion of individuals are
(and remain) vaccinated, with a low-level outbreak among vaccinated individuals. Note the log scale
in this figure.

5.2. The Impulsive Model

Next, following Weber et al. [30], we examined the more realistic case when the transmission rate
oscillated and examined several possibilities for periodic vaccine coverage via the impulse proportion r.

When there is no vaccine, the disease results in a maximum of about 7% of the population infected.
The parameters used were µ = 1/70; ω = 2; b0 = 60; b1 = 0.16; φ = 0.15; βV = 0.5β; ν = 36;
νV = 1.2ν; γ = 1.8; γV = 1.2γ and r = 0. See Figure 4.

A vaccine administered to half the population with 50% transmission that waned after two years
resulted in a maximum of about 2% of the population infected. See Figure 5. Data used were identical
to Figure 4 except that r = 0.5. In this case, the disease still oscillates but at substantially reduced levels.

A vaccine given to three quarters of the population with 50% transmission that waned after
two years resulted in theoretical eradication of the disease. See Figure 6. The parameters used were
identical to those in Figures 4 and 5 except that r = 0.75. In this case, there are eventually roughly
equal numbers of susceptible and vaccinated individuals, with no infected individuals.
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Figure 4. Without vaccination, the disease infects up to 7% of the population. (A) The total infected
population, including vaccinated individuals; (B) The final size in each population.
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Figure 5. 50% coverage with a vaccine that reduced transmissibility by half and waned after two years
resulted in a substantial reduction in the disease compared to no vaccination. (A) The total infected
population, including vaccinated individuals; (B) The final size in each population.
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Figure 6. 75% coverage with a vaccine that reduced transmissibility by half and waned after two
years resulted in theoretical eradication of the disease. (A) The total infected population, including
vaccinated individuals; (B) The final size in each population.

Note that, even in the unrealistic case of perfect coverage with a lifelong vaccine (so that ε = p = 1
and µ = ω = 1

70 ), the DFE still satisfies

S̄ =
ω

µ + ω
=

1
2

V̄ =
µ

µ + ω
=

1
2

,

so the population without infection would eventually split into equal numbers of vaccinated and
unvaccinated susceptible individuals. With infection included and oscillating transmission, explicitly



Vaccines 2017, 5, 12 11 of 15

calculating the final size in each compartment is not possible. However, we expect that high coverage
with a vaccine with faster waning would tend to a final size with approximately similar numbers;
Figure 6 shows that this is indeed the case. Note that these results confirm the theoretical predictions
from Section 4.4.

Figure 7 illustrates the long-term population dynamics for the case of 50% vaccination coverage.
The disease is not eradicated in this case but oscillates at low levels.
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Figure 7. Population dynamics for 50% vaccination coverage for a vaccine that reduced transmissibility
by half and waned after two years. Note the low-level oscillations in both infected classes.
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Figure 8. Extreme parameters show that perfect vaccination can induce unexpected infection spikes.
(A) With no vaccine (r = 0), the result is that the infection clears and the entire population remains
susceptible. (Note that the timescale is given for only 0.5 years to show the decline but was run for
15 years). (B) The final size of each compartment in the case of no vaccine after 15 years. (C) When an
imperfect vaccine is given to the entire population (r = 1), the result is a series of disease spikes in the
vaccinated population. Note that the transmission rate is not oscillating in this example. (D) The final size
of each compartment in the case of full vaccination after 15 years. Vaccination thus destabilises the DFE.
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Finally, Figure 8 illustrates the destabilisation of the DFE when extreme vaccination parameters
are used. In this case, transmission due to vaccinated individuals was extremely high, but recovery
was fast, allowing for low-level infection spikes to occur in the infected populations. The parameters
used were µ = 1/70; ω = 0.1; β = 0.03; βV = 300; r = {0, 1} (representing either no coverage or
complete coverage); ν = 36; νV = 177; γ = 1.8; and γV = 1.2γ.

With no coverage, the infection clears. However, with complete coverage, the infection rebounds
from low levels, producing infection spikes in vaccinated individuals. Although the transmission
rate is unrealistically high, this nevertheless demonstrates that a stable DFE can be destabilised by
a vaccine. Note that this phenomenon is not a backward bifurcation but rather a destabilisation of
the equilibrium.

6. Discussion

Before a new vaccine is introduced, anticipated benefits and issues must be assessed. Mathematical
models can provide information about the population-level effects of a vaccine and therefore assist in
the decision-making process. We have highlighted potential issues that may arise with vaccination
for RSV. In particular, we determine conditions under which a destabilisation of the DFE is possible.
This is not in the form of a backward bifurcation, as is sometimes seen, but rather occurs when the
vaccine causes sufficiently fast recovery but transmission from infected vaccinated individuals is
extremely high. An infection-free population that is effectively protected against RSV can nevertheless
produce disease spikes in the vaccinated population. These regular spikes occur even in the case when
the transmission function is not oscillating. Although such a case is unlikely to occur with the highly
unrealistic parameters we chose, we have shown proof-of-concept that it is possible and determined
conditions on the recovery rate due to vaccination that allow for the possibility.

We considered two forms of vaccination: single vaccination before infection (such as a maternal
vaccine) and periodic vaccination. Using impulsive differential equations, we were able to formulate
conditions on the period and the strength of vaccination to allow for disease control.

We also defined a new quantity, the impulsive reproduction number T0. This is a sufficient (but
not necessary) condition, based on an overestimate of the infected population, that ensures eradication
if T0 < 1. If T0 < 1, then the infected population is contracting within each impulsive cycle; the
result is the eventual eradication of the infection. Note that we assumed constant transmission for
this derivation; however, numerical simulations were performed using seasonal oscillations and
demonstrated comparative results. In particular, if the strength of periodic vaccination r is sufficiently
high, then the disease will be controlled, assuming the vaccine is given with sufficient frequency.
See Figure 6.

Our model has some limitations, which should be acknowledged. First, we assumed that the time
to administer the vaccine was significantly shorter than the time between vaccine administrations in
order to justify the impulsive approximation. Such assumptions are reasonable in many cases [50],
although they can produce confounding effects in some situations [49]. The extreme parameters that
we used to illustrate the vaccination spikes operated under the assumption that the transmission
rate for infected vaccinated individuals was significantly higher than the transmission rate without
vaccination. Since we extended the model introduced by Weber et al. [30], our model inherited many
of the assumptions from that model, such as mass-action transmission, a constant birth rate and that
the birth and death rates were matched, resulting in a constant total population.

In our model, we considered RSV transmission dynamics for a single age class, in order to allow
for the model to be analytically tractable. Given that we examined the broad population-level impacts
in a large population, we considered this a reasonable model simplification. Furthermore, it has been
shown that, for a similar compartmental RSV model, including multiple age classes did not change
the bifurcation structure of the model [51]. However, different vaccine candidates for RSV are being
developed for distinct key age groups: infants, young children, pregnant women and the elderly [28].
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In addition, our model simulated RSV dynamics for a general population, rather than for a specific
country or region, so we did not incorporate RSV-related hospitalisation rates for any one region.
However, for public-health organisations to make decisions about the cost-effectiveness of a future
RSV vaccine, the anticipated reduction in RSV-related hospitalisations will be a key factor. This means
that future models that explore the specific implications of vaccines for target age groups may need to
incorporate additional age classes and region-specific RSV-related hospitalisation data. The model
we present here may be readily adapted to incorporate additional age classes and local public-health
data. With regards to the assumption of maternal vaccination, it should be noted that there is some
existing level of maternal antibodies that protect some unknown proportion of infants from RSV in
their first few months of life (perhaps up to three months [52]). Some other models have accounted for
this existing protection [41].

A vaccine that targets RSV infection has the potential to significantly reduce the overall prevalence
of the disease, but appropriate coverage is critical. For vaccines of short duration, a single pre-infection
vaccine is unlikely to result in eradication. Long-term periodic vaccination can theoretically control the
disease, but coverage needs to be sufficiently high. Furthermore, extreme vaccination parameters have
the potential to induce unexpected infected spikes as a result of the vaccine. While this is not likely to
occur in practice, the possibility of such a surprising result demonstrates the care that should be taken
to understand the potential long-term effects of new vaccines before widespread introduction.
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