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A B S T R A C T

Intermittent androgen-deprivation therapy (IADT) can be beneficial to delay the occurrence of treatment
resistance and cancer relapse compared to the standard continuous therapy. To study the effect of IADT in
controlling prostate cancer, we developed a Filippov prostate cancer model with a joint threshold function:
therapy is implemented once the total population of androgen-dependent cells (AC-Ds) and androgen-
independent cells (AC-Is) is greater than the threshold value 𝐸𝑇 , and it is suspended once the population is
less than 𝐸𝑇 . As the parameters vary, our model undergoes a series of sliding bifurcations, including boundary
node, focus, saddle, saddle-node and tangency bifurcations. We also obtained the coexistence of one, two or
three real equilibria and the bistability of two equilibria. Our results demonstrate that the population of AC-Is
can be contained at a predetermined level if the initial population of AC-Is is less than this level, and we
choose a suitable threshold value.
1. Introduction

Prostate cancer, one of the most common forms of malignant cancer,
is the second leading cause of cancer-related mortality in men in
the global north [1]. Approximately one in six men are diagnosed
with prostate cancer. The average five-year survival rate of prostate
cancer is about 99%, dropping to 30% after the cancer metastasizes.
Although the rate of prostate-cancer progression is very slow, the
incidence of prostate cancer keeps increasing worldwide [2,3]. In 1941,
Huggins demonstrated that castration induces the regression of prostate
tumours, suggesting high dependence of prostate cancer cells on andro-
gen, a male-characteristic hormone similar to testosterone [4]. There-
fore, androgen-deprivation therapy (ADT) — a type of hormonal ther-
apy inhibiting prostate cancer cell proliferation, promoting the death
of prostate cancer cells and preventing prostate cancer cells’ mutation
— has become the most commonly used method to treat prostate
cancer [5]. However, ADT was initially administrated continuously,
known as continuous androgen-deprivation therapy (CADT), which
is often associated with such side effects as impotence, depression,
bone demineralization, dementia and even therapy resistance [6–8].
Intermittent androgen-deprivation therapy (IADT), which consists of
patients going on and off therapy according to either a prostate-specific
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antigen threshold or a fixed time interval, has been proposed as an
alternative to CADT to reduce the side effects, which can significantly
improve patients’ quality of life [9,10].

Since the effect of the therapy and the mechanism of prostate
cancer is far from understood, mathematical models have been pro-
posed to better explain the observation from experimental and clinical
studies [11–22]. To identify the models with the highest likelihood
to mimic the clinically observed dynamics, Pasetto et al. performed
Bayesian inference and model calibration in order to determine the
treatment schedule of hormone therapy [11,12]. Kuang et al. focused
on the modelling and parameterization of the progression dynamics
of prostate cancer during the implementation of ADT [13–16]. Wang
et al. studied the dynamics of prostate-cancer models with ADT in
which the different competition intensities between AC-Ds and AC-Is
was mimicked [17–19]. Pei et al. modelled the impact of intermittent
therapy on the development of the tumour cells by formulating impul-
sive models, which include the residual effect of chemotherapy [20,21].
They found that optimal IADT plus chemotherapy can greatly reduce
the on-treatment time, as well as the level of prostate-specific anti-
gen. Hirata et al. found that intermittent androgen suppression cannot
stabilize the origin (where no cancer cells exist for some patients), so
they highlighted the importance of seeking to delay the relapse [23].
https://doi.org/10.1016/j.mbs.2024.109301
Received 3 March 2024; Received in revised form 20 August 2024; Accepted 9 Sep
vailable online 20 September 2024 
025-5564/© 2024 The Author(s). Published by Elsevier Inc. This is an open access
c/4.0/ ). 
tember 2024

 article under the CC BY-NC license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/mbs
https://www.elsevier.com/locate/mbs
mailto:wangal@xaut.edu.cn
mailto:stacey.smith@uottawa.ca
https://doi.org/10.1016/j.mbs.2024.109301
https://doi.org/10.1016/j.mbs.2024.109301
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


A. Wang et al.

w
p
A
o
t
r
t
j
A
c
a
(
m
o
t
w
m
a
a
e
m

𝛴

s

𝐺

𝐺

I
𝐹
w

𝐹

T

𝑍

W
t
d
𝑆

s
o
p

H
𝜎

Mathematical Biosciences 377 (2024) 109301 
Cunningham et al. applied evolutionary game theory to mimic evo-
lution within a patient, and the best therapy schedule was explored
based on optimal control theory [22]. Adamiecki et al. reviewed the
literature of in vitro, ex vivo and in vivo models of prostate cancer, in
order to help tackle the question of which model associated with the
development of prostate cancer best suits their future studies [24,25].
Many of the existing models account for the interaction between AC-
Ds and AC-Is, the microenvironment of inter-patients, the acquisition
of therapy resistance and the efficacy of treatments. Most modelling
work considering the effects of ADT assumes that ADT is administrated
continuously or is activated following a fixed time interval. There are
limitations to these studies, although ADT has been revealed to make
crucial contributions to tumour inhibition and yields useful insights on
the treatment of prostate cancer.

In order to examine the effect of intermittent therapy, Filippov
models have been proposed. These models are continuous but have dis-
continuities in the derivatives, which have been shown to correspond to
delays in the application of interventions [26]. Filippov models include
multiple subsystems with different dynamics that are distinguished by
the value of the adjoining thresholds [27,28]; such models can improve
on impulsive models and classic continuous models. Here, we adopt a
Filippov model with a single threshold to mimic the impact of IADT
on the evolution of the prostate cancer, in order determine when
to administer the treatment as determined by the population of AC-
Ds [29]. Ideally, the populations of AC-Ds and AC-Is could be detected
separately, resulting in a single threshold strategy dependent on AC-D
population. However, it is difficult to measure the population of these
two cancer cells independently, so a joint threshold is required. The
control strategy with a joint threshold is defined as follows: when the
sum of the population of AC-Ds and AC-Is exceeds a certain level, the
therapy is activated; otherwise, the therapy is suspended.

Filippov systems have been successfully applied in plant diseases
[30], pest management [31–33] and epidemic control [34–38], includ-
ing modelling the spread of HIV and COVID-19 [39,40], and there
are various results on the dynamics of Filippov systems with a single
threshold. However, there are still very few results for the dynamics of
Filippov systems with more complex threshold functions or generalized
threshold functions [41–43]. We address the question of how to analyse
the dynamics of Filippov system with a joint threshold and find effec-
tive ADT schedules for prostate cancer. The organization of our paper
is as follows: In Section 2, we establish a Filippov model of prostate
cancer cells with joint threshold function and analyse the dynamics of
the subsystems. In Section 3, we explore the sliding-mode region as well
as the sliding dynamics. The sliding bifurcation, including boundary-
equilibrium bifurcation and tangency bifurcation, and global dynamics
will be addressed in Section 4. We present a discussion in the last
section.

2. A Filippov prostate cancer model with joint threshold

We assume that whether ADT is implemented depends not only
on the population of AC-Ds but also on that of AC-Is, which owes to
the fact that it is hard to measure the population of AC-Ds and AC-
Is individually. This induces a joint threshold that depends on both
AC-D and AC-I populations. Therefore, we established a novel model
with joint threshold by improving our previous model [29]. The joint
threshold is defined as follows: ADT is implemented once the total
population of AC-Ds and AC-Is is greater than the threshold value 𝐸𝑇 ;
the therapy is suspended once the total population of AC-Ds and AC-Is is
less than this threshold. ADT has three main effects for prostate cancer:
inhibiting prostate-cancer-cell proliferation, accelerating cell mortality
and preventing cell mutation. Thus we established the following Filipov
prostate cancer model:
𝑑𝑋1
𝑑𝑡

= 𝑟1(1 − 𝜖𝑢)
(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

𝑋1 − (𝑑1 + 𝑚1)𝜖𝑢𝑋1,

𝑑𝑋2 = 𝑟2

(

1 −
𝛽𝑋1 +𝑋2

)

𝑋2 + 𝑚1𝑢𝜖𝑋1,
(1)
𝑑𝑡 𝐾 t

2 
with

𝜖 =
{

0, 𝜎(𝑋1, 𝑋2) ≡ 𝑋1 +𝑋2 − 𝐸𝑇 < 0,
1, 𝜎(𝑋1, 𝑋2) ≡ 𝑋1 +𝑋2 − 𝐸𝑇 > 0,

(2)

here 𝑋1 represents the population of AC-Ds and 𝑋2 represents the
opulation of AC-Is, 𝑟1 denotes the growth rate of AC-Ds, 𝑑1 denotes
DT-induced mortality rate of AC-Ds, 𝑟2 represents the net growth rate
f AC-Is, 𝐾 is the carrying capacity of cancer cells, 𝛼 and 𝛽 represent
he positive competition coefficients between AC-Ds and AC-Is, 𝑚1
epresents the irreversible mutation rate from AC-Ds to AC-Is and 𝑢 is
he efficacy of ADT for prostate cancer. In model (1)–(2), 𝜎(𝑋1, 𝑋2) is a
oint threshold function, which depends on the sum of the population of
C-Ds and AC-Is; i.e., 𝜎(𝑋1, 𝑋2) = 𝑋1+𝑋2−𝐸𝑇 , and 𝜖 is a discontinuous
ontrol function. The detailed definitions and values of each parameter
re as shown in Table 1. It is worth noting that our targeted model (1)–
2) is a non-smooth model with discontinuous right-hand sides, which
imics the situation where activating or suspending ADT depends

n the total population of the AC-Ds and AC-Is. However, the model
hat Pei et al. formulated is a piecewise one with pulsed pattern, in
hich on-treatment and off-treatment processes are activated at fixed
oments [20]. The model that Hirata et al. studied is piecewise linear,

nd its dynamics are modelled with rapid shifts between two levels
ccording to fixed intervals [23]. It follows that a substantial difference
xists between the targeted model proposed in this work and the above
odels.

In the following, we define the hyperplane

≡
{

(𝑋1, 𝑋2) ∈ 𝑅2
+
|

|

|

𝜎(𝑋1, 𝑋2) = 0
}

eparating R2
+ into two regions:

1 ≡
{

(𝑋1, 𝑋2) ∈ 𝑅2
+
|

|

|

𝜎(𝑋1, 𝑋2) < 0
}

,

2 ≡
{

(𝑋1, 𝑋2) ∈ 𝑅2
+
|

|

|

𝜎(𝑋1, 𝑋2) > 0
}

.

n region 𝐺𝑖, system (1)–(2) is denoted as 𝐹𝐺𝑖
(𝑋); the components of

𝐺𝑖
(𝑋) are denoted as 𝐹𝑖1 and 𝐹𝑖2, where 𝑖 = 1, 2. Letting 𝑍 = (𝑋1, 𝑋2)𝑇 ,

e get

𝐺1
(𝑍) =

(

𝑟1
(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

𝑋1, 𝑟2
(

1 −
𝛽𝑋1 +𝑋2

𝐾

)

𝑋2

)𝑇
,

𝐹𝐺2
(𝑍) =

(

𝑟1(1 − 𝑢)
(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

𝑋1 − (𝑑1 + 𝑚1)𝑢𝑋1,

𝑟2
(

1 −
𝛽𝑋1 +𝑋2

𝐾

)

𝑋2 + 𝑚1𝑢𝑋1

)𝑇
.

hen system (1)–(2) constitutes the following Filippov system:

̇ =
{

𝐹𝐺1
(𝑍), 𝑍 ∈ 𝐺1,

𝐹𝐺2
(𝑍), 𝑍 ∈ 𝐺2.

(3)

e denote the Filippov system in the region 𝐺1 as Subsystem 𝑆1, and
he Filippov system in the region 𝐺2 as Subsystem 𝑆2. Therefore, the
ynamics of Filippov system (3) consist of the dynamics of Subsystems
1 and 𝑆2 and the dynamics on the hyperplane 𝛴.

Note that the trajectory of the Filippov system (3) consists of the
tandard trajectory in each region 𝐺𝑖 (𝑖 = 1, 2) and the sliding trajectory
n 𝛴. To deal with the trajectory of the Filippov system (3) through a
oint 𝑍 ∈ 𝛴, we split 𝛴 into three parts, depending on whether or not

the vector field points towards it:

• crossing-mode region: 𝛴𝑐 = {𝑍 ∈ 𝛴|𝐹𝐺1
𝜎(𝑍) ⋅ 𝐹𝐺2

𝜎(𝑍) > 0},
• sliding-mode region: 𝛴𝑠 = {𝑍 ∈ 𝛴|𝐹𝐺1

𝜎(𝑍) > 0, 𝐹𝐺2
𝜎(𝑍) < 0},

• escaping-mode region: 𝛴𝑒 = {𝑍 ∈ 𝛴|𝐹𝐺1
𝜎(𝑍) < 0, 𝐹𝐺2

𝜎(𝑍) > 0}.

ere 𝐹𝐺𝑖
(𝑍)𝜎(𝑍) = 𝐹𝐺𝑖

(𝑍) ⋅ ∇𝜎(𝑍) (𝑖 = 1, 2) is the Lie derivative of
(𝑍) = 𝑋1 +𝑋2 − 𝐸𝑇 at point 𝑍 on the vector field 𝐹𝐺𝑖

.
It is worth emphasizing that the sliding-mode region plays an impor-

ant role in the dynamics of the Filippov system (3). Mathematically,
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Table 1
Definitions and values of parameters for model (1)–(2).

Parameters Definition Value Source

𝑟1 Growth rate of AC-Ds 0.5/day [13]
𝑑1 Mortality rate of AC-Ds 0.064/day [13]
𝑟2 Net growth rate of AC-Is 0.006/day [13]
𝑚1 Irreversible mutation rate from AC-Ds to AC-Is 0.00005/day [19]
𝐾 Cancer cell carrying capacity 11 billion [13]
𝑢 Efficacy of ADT for prostate cancer 0.5 [17]
𝛼, 𝛽 Positive competition coefficients between AC-Ds and AC-Is varied –
b
𝐸

W
t

e

e

𝐸

𝐸

𝐸

once a trajectory reaches the sliding-mode region, it will slide along
this region. Biologically, in the sliding-mode region, there is a rapid
alternation between implementing ADT and suspending ADT, resulting
in shorter periods of both modalities.

In the following, we define three types of equilibria and two types
of tangencies of Filippov system (3), which will be used in the rest of
this paper.

Definition 1. (i) A point 𝑍∗ is called a real equilibrium of (3) if
𝐺1
(𝑍∗) = 0, 𝜎(𝑍∗) < 0, or 𝐹𝐺2

(𝑍∗) = 0, 𝜎(𝑍∗) > 0.
(ii) A point 𝑍∗ is called a virtual equilibrium of (3) if 𝐹𝐺1

(𝑍∗) =
, 𝜎(𝑍∗) > 0, or 𝐹𝐺2

(𝑍∗) = 0, 𝜎(𝑍∗) < 0.

A real equilibrium is an equilibrium belonging to the region it lies
n, which has not been excised. A virtual equilibrium is an equilibrium
n a region that has been excised due the to Filippov definition, but
hich may still attract trajectories from another region. Both the real
quilibrium and virtual equilibrium are called regular equilibria.

Let 𝐹 (𝑍) = 𝑞𝐹𝐺1
(𝑍) + (1 − 𝑞)𝐹𝐺2

(𝑍) be the convex combination of
he two vectors 𝐹𝐺1

(𝑍) and 𝐹𝐺2
(𝑍) to each nonsingular point 𝑍 ∈ 𝛴𝑠,

here

=
𝐹𝐺2

(𝑍)𝜎(𝑍)
(

𝐹𝐺2
(𝑍) − 𝐹𝐺1

(𝑍)
)

𝜎(𝑍)
.

hus the sliding-mode dynamics of Filippov system (3) can be deter-
ined by

d𝑍
d𝑡

= 𝐹 (𝑍), 𝑍 ∈ 𝛴𝑠, (4)

hich is smooth on the sliding-mode region 𝛴𝑠.

efinition 2. A point 𝑍∗ is called a pseudo-equilibrium of Filippov
ystem (3) if it is an equilibrium of the system (4).

efinition 3. A point 𝑍∗ is called a boundary equilibrium of Filippov
ystem (3) if 𝐹𝐺1

(𝑍∗) = 0, 𝜎(𝑍∗) = 0, or 𝐹𝐺2
(𝑍∗) = 0, 𝜎(𝑍∗) = 0.

efinition 4. A point 𝑍∗ is called a tangency point of Filippov system
3) if 𝑍∗ ∈ 𝛴 and 𝐹𝐺1

𝜎(𝑍∗) = 0 or 𝐹𝐺2
𝜎(𝑍∗) = 0.

Such points are not equilibria of any individual region but are rather
ormed by the boundaries of Filippov regions. Note that 𝑋1 +𝑋2 = 𝐸𝑇
olds true in (4), so (4) is in fact of dimension one. Thus the stability of
he pseudo-equilibrium can be derived by the sign of the function on the
ight-hand side of (4). If a pseudo-equilibrium of Filippov system (3) is
table, the population of the prostate cancer cells can be contained at a
redetermined level, which can be pivotal in the treatment of prostate
ancer.

.1. Dynamics of subsystem 𝑆1

Free-subsystem. When 𝑋1+𝑋2 < 𝐸𝑇 (i.e., 𝜖 = 0), ADT is suspended
and system (3) takes the following form:
𝑑𝑋1
𝑑𝑡

= 𝑟1

(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

𝑋1,

𝑑𝑋2 = 𝑟2

(

1 −
𝛽𝑋1 +𝑋2

)

𝑋2.
(5)
𝑑𝑡 𝐾

3 
We call system (5) the free-subsystem.
For subsystem 𝑆1, we have a trivial equilibrium 𝐸0 = (0, 0), two

oundary equilibria 𝐸01 = (0, 𝐾), 𝐸10 = (𝐾, 0) and a positive equilibrium
𝐼
1 = (𝑋11, 𝑋21) =

(

(1−𝛼)𝐾
1−𝛼𝛽 , (1−𝛽)𝐾1−𝛼𝛽

)

. The following four cases illustrate
the existence and stability of equilibria for the free-subsystem (5):

Case 𝐴1: 𝛼 < 1, 𝛽 < 1. There exist four equilibria 𝐸𝐼
1 , 𝐸0, 𝐸01, 𝐸10 for

the free-subsystem (5); the regular equilibrium 𝐸𝐼
1 is a stable node, 𝐸0

is an unstable node, and both 𝐸01 and 𝐸10 are saddles.
Case 𝐴2: 𝛼 < 1, 𝛽 > 1. There exist three equilibria 𝐸0, 𝐸01, 𝐸10 for

the free-subsystem (5); 𝐸0 is an unstable node, 𝐸01 is a saddle and 𝐸10
is a stable node.

Case 𝐴3: 𝛼 > 1, 𝛽 < 1. There exist three equilibria 𝐸0, 𝐸01, 𝐸10 for
the free-subsystem (5); 𝐸0 is an unstable node, 𝐸01 is a stable node and
𝐸10 is a saddle.

Case 𝐴4: 𝛼 > 1, 𝛽 > 1. There exist four equilibria 𝐸𝐼
1 , 𝐸0, 𝐸01, 𝐸10 for

the free-subsystem (5); the regular equilibrium 𝐸𝐼
1 is a saddle, 𝐸0 is an

unstable node, and both 𝐸01 and 𝐸10 are stable nodes.

2.2. Dynamics of subsystem 𝑆2

Control-subsystem. When 𝑋1+𝑋2 > 𝐸𝑇 (i.e., 𝜖 = 1), ADT is carried
out. The therapy will affect the proliferation rate, the mortality rate
and the mutation rate of AC-Ds, so the following system can be used to
describe the changes in the population of AC-Ds and AC-Is:

𝑑𝑋1
𝑑𝑡

= 𝑟1(1 − 𝑢)
(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

𝑋1 − (𝑑1 + 𝑚1)𝑢𝑋1,

𝑑𝑋2
𝑑𝑡

= 𝑟2

(

1 −
𝛽𝑋1 +𝑋2

𝐾

)

𝑋2 + 𝑚1𝑢𝑋1.
(6)

e call system (6) the control-subsystem. System (6) has an unstable
rivial equilibrium 𝐸0 = (0, 0), a boundary equilibrium 𝐸01 = (0, 𝐾) and

five possible positive equilibria:
(i) When 𝛼 < 𝑄, 𝛼𝛽 ≠ 1, there exists one positive equilibrium 𝐸𝐼𝐼

1 ;
(ii) When 𝛼 > 𝑄, 𝛼𝛽 > 1,− 𝐴2

2𝐴1
< 𝐾𝑄

𝛼 , 𝛥1 > 0, there exist two positive
quilibria 𝐸𝐼𝐼

1 and 𝐸𝐼𝐼
2 ;

(iii) When 𝛼 > 𝑄, 𝛼𝛽 > 1,− 𝐴2
2𝐴1

< 𝐾𝑄
𝛼 , 𝛥1 = 0, there exists one

positive equilibrium 𝐸𝐼𝐼
3 ;

(iv) When 𝛼 < 𝑄, 𝛼𝛽 = 1, there exists one positive equilibrium 𝐸𝐼𝐼
4 ;

(v) When 𝛼 = 𝑄, 𝛼𝛽 > 1, 𝛼𝑚1𝑢 < 𝑟2(𝛼𝛽 − 1), there exists one positive
quilibrium 𝐸𝐼𝐼

5 , where

𝐼𝐼
1 = (𝑋1

1 , 𝑋
1
2 ) =

(

𝐾𝑄 − 𝛼𝑋1
2 ,

−𝐴2 −
√

𝛥1

2𝐴1

)

,

𝐼𝐼
2 = (𝑋2

1 , 𝑋
2
2 ) =

(

𝐾𝑄 − 𝛼𝑋2
2 ,

−𝐴2 +
√

𝛥1

2𝐴1

)

,

𝐼𝐼
3 = (𝑋3

1 , 𝑋
3
2 ) =

(

𝐾𝑄 − 𝛼𝑋3
2 ,

−𝐴2
2𝐴1

)

,

𝐸𝐼𝐼
4 = (𝑋4

1 , 𝑋
4
2 ) =

(

𝐾𝑄 + 𝛼
𝐴3
𝐴2

,−
𝐴3
𝐴2

)

,

𝐸𝐼𝐼
5 = (𝑋5

1 , 𝑋
5
2 ) =

(

(

1 −
𝛼𝑚1𝑢

)

𝛼𝐾,
𝛼𝑚1𝑢 𝐾

)

,

𝑟2(𝛼𝛽 − 1) 𝑟2(𝛼𝛽 − 1)
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and

𝑄 = 1 −
(𝑑1 + 𝑚1)𝑢
𝑟1(1 − 𝑢)

, 𝐴1 = 𝑟2(𝛼𝛽 − 1), 𝐴2 = 𝑟2𝐾(1 − 𝛽𝑄) − 𝛼𝑚1𝑢𝐾,

𝐴3 = 𝑚1𝑢𝐾
2𝑄, 𝛥1 = 𝐴2

2 − 4𝐴1𝐴3.

We summarize the existence and stability of all possible equilibria
for system 𝑆2 and have the following three cases.

Case 𝐵: 𝛼 < 𝑄. In this case, we have two scenarios depending on
the relationship between 𝛼𝛽 and 1.

Case 𝐵1: When 𝛼 < 𝑄 and 𝛼𝛽 ≠ 1, there exist three equilibria 𝐸𝐼𝐼
1 ,

𝐸0 and 𝐸01; the regular equilibrium 𝐸𝐼𝐼
1 is a stable node or focus, 𝐸0

is an unstable node and the equilibrium 𝐸01 is a saddle.
Case 𝐵2: When 𝛼 < 𝑄 and 𝛼𝛽 = 1, there exist three equilibria 𝐸𝐼𝐼

4 ,
𝐸0 and 𝐸01; the regular equilibrium 𝐸𝐼𝐼

4 is a stable node or focus, 𝐸0
is an unstable node and the equilibrium 𝐸01 is a saddle.

Case 𝐶: 𝛼 > 𝑄. In this case, there are three scenarios to consider.
Case 𝐶1: When 𝛼 > 𝑄, 𝛼𝛽 > 1,− 𝐴2

2𝐴1
< 𝐾𝑄

𝛼 and 𝐴2
2 −4𝐴1𝐴3 > 0, there

xist four equilibria 𝐸𝐼𝐼
1 , 𝐸𝐼𝐼

2 , 𝐸0 and 𝐸01; the regular equilibrium 𝐸𝐼𝐼
1

is a stable node or focus, the regular equilibrium 𝐸𝐼𝐼
2 is a saddle, 𝐸0 is

an unstable node and the equilibrium 𝐸01 is a stable node.
Case 𝐶2: When 𝛼 > 𝑄, 𝛼𝛽 > 1,− 𝐴2

2𝐴1
< 𝐾𝑄

𝛼 and 𝐴2
2 −4𝐴1𝐴3 = 0, there

exist three equilibria 𝐸𝐼𝐼
3 , 𝐸0 and 𝐸01; the regular equilibrium 𝐸𝐼𝐼

3 is a
saddle-node, 𝐸0 is an unstable node and the equilibrium 𝐸01 is a stable
node.

Case 𝐶3: When 𝛼 > 𝑄, 𝛼𝛽 > 1,− 𝐴2
2𝐴1

≥ 𝐾𝑄
𝛼 or 𝛼𝛽 ≤ 1, there exist two

equilibria 𝐸01 and 𝐸0; 𝐸01 is a stable node and 𝐸0 is an unstable node.
Case 𝐷: 𝛼 = 𝑄. In this case, we have two further scenarios to

onsider.
Case 𝐷1: When 𝛼 = 𝑄, 𝛼𝛽 > 1 and 𝛼𝑚1𝑢 < 𝑟2(𝛼𝛽−1), there exist three

equilibria 𝐸𝐼𝐼
5 , 𝐸0 and 𝐸01; the regular equilibrium 𝐸𝐼𝐼

5 is a stable node
or focus, 𝐸0 is an unstable node and the equilibrium 𝐸01 is a saddle.

Case 𝐷2: When 𝛼 = 𝑄 and 𝛼𝛽 > 1, 𝛼𝑚1𝑢 ≥ 𝑟2(𝛼𝛽 − 1) or 𝛼𝛽 ≤ 1,
there exist two equilibria 𝐸01 and 𝐸0; 𝐸01 is a stable node and 𝐸0 is an
unstable node.

3. Sliding dynamics

In this section, we will examine the dynamics on the hyperplane
𝛴, which lies along the boundary of adjacent regions. To this end,
we initially investigate the existence of the sliding-mode region for
Filippov system (3) and further analyse the dynamics of such a region.
When the trajectories of the free subsystem and the control subsystem
reach the sliding-mode region, new sliding dynamics will be generated
in the sliding-mode region, and a class of new equilibria, which do not
belong to the free-subsystem or the control-subsystem, will occur on
the sliding-mode region. The total population of AC-Ds and AC-Is can
then be theoretically contained at a predetermined threshold value.

3.1. Sliding-mode region of Filippov system (3)

In the previous section, we saw that Filippov system (3) consists
of three parts: the free-subsystem, control-subsystem and the system
defined exactly on the hyperplane 𝛴. The sliding-mode regions refer
to the subregions of 𝛴 with special properties; i.e., the vector fields
of the free-subsystem and the control-subsystem on the sliding-mode
region point towards each other. The sliding-mode region is defined as
follows:

𝛴𝑠 =
{

𝑍 ∈ 𝛴|

|

|

𝐹𝐺1
(𝑍)𝜎(𝑍) ≥ 0, 𝐹𝐺2

(𝑍)𝜎(𝑍) ≤ 0
}

.

From the definition of the Lie derivative, we get that:

𝐹𝐺1
(𝑍)𝜎(𝑍) = 𝑟1

(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

𝑋1 + 𝑟2

(

1 −
𝛽𝑋1 +𝑋2

𝐾

)

𝑋2

and

𝐹𝐺 (𝑍)𝜎(𝑍) = 𝑟1(1−𝑢)
(

1−
𝑋1 + 𝛼𝑋2

)

𝑋1+𝑟2

(

1−
𝛽𝑋1 +𝑋2

)

𝑋2−𝑑1𝑢𝑋1.
2 𝐾 𝐾

4 
hen 𝐹𝐺1
(𝑍)𝜎(𝑍) ≥ 0, we have

1

(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

𝑋1 + 𝑟2

(

1 −
𝛽𝑋1 +𝑋2

𝐾

)

𝑋2 > 0.

n the sliding-mode region, we have 𝜎(𝑍) = 𝑋1 + 𝑋2 − 𝐸𝑇 = 0.
ubstituting into the above inequality gives the following inequality
ith respect to 𝑋1

𝑟1(𝛼 − 1) + 𝑟2(𝛽 − 1)
)

𝑋2
1+

(

𝑟1(𝐾 − 𝛼𝐸𝑇 ) − 𝑟2(𝐾 − 𝐸𝑇 )

+ 𝑟2(1 − 𝛽)𝐸𝑇
)

𝑋1 + 𝑟2(𝐾 − 𝐸𝑇 )𝐸𝑇 ≥ 0.
(7)

enote

1(𝑋1) = 𝑙21𝑋
2
1 + 𝑙11𝑋1 + 𝑙01,

here

21 = 𝑟1(𝛼 − 1) + 𝑟2(𝛽 − 1),

11 = 𝑟1(𝐾 − 𝛼𝐸𝑇 ) − 𝑟2(𝐾 − 𝐸𝑇 ) + 𝑟2(1 − 𝛽)𝐸𝑇 ,

01 = 𝑟2(𝐾 − 𝐸𝑇 )𝐸𝑇 .

t is natural to assume 𝐸𝑇 < 𝐾 due to the biological interpretation of
, which results in 𝑙01 > 0. If 𝐿1(𝑋1) = 0, one can obtain two roots

𝑢
1 =

−𝑙11 −
√

𝛥1

2𝑙21
, 𝑋𝑣

1 =
−𝑙11 +

√

𝛥1

2𝑙21
,

where 𝛥1 = 𝑙211 − 4𝑙21𝑙01. For (7), we have the following three possibili-
ties.

• If 𝑙21 > 0 and 𝑙11 < 0, we have 𝑋𝑢
1 ⋅ 𝑋

𝑣
1 > 0 and 𝑋𝑢

1 + 𝑋𝑣
1 > 0; the

solution to (7) is 0 < 𝑋1 ≤ 𝑋𝑢
1 or 𝑋1 ≥ 𝑋𝑣

1 .
• If 𝑙21 > 0 and 𝑙11 > 0, we have 𝑋𝑢

1 ⋅ 𝑋𝑣
1 > 0 and 𝑋𝑢

1 + 𝑋𝑣
1 < 0;

solving (7) gives 𝑋1 > 0.
• If 𝑙21 < 0, then (7) is true if and only if 0 < 𝑋1 ≤ 𝑋𝑢

1 .

When 𝐹𝐺2
(𝑍)𝜎(𝑍) ≤ 0, we have

1(1 − 𝑢)

(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

𝑋1 + 𝑟2

(

1 −
𝛽𝑋1 +𝑋2

𝐾

)

𝑋2 − 𝑑1𝑢𝑋1 ≤ 0.

ubstituting 𝑋1 + 𝑋2 − 𝐸𝑇 = 0 into the above inequality, we have an
nequality in 𝑋1

22𝑋
2
1 + 𝑙12𝑋1 + 𝑙02 ≤ 0, (8)

here

22 = 𝑟1(1 − 𝑢)(𝛼 − 1) + 𝑟2(𝛽 − 1), 𝑙02 = 𝑟2(𝐾 − 𝐸𝑇 )𝐸𝑇 ,

12 = 𝑟1(1 − 𝑢)(𝐾 − 𝛼𝐸𝑇 ) − 𝑢𝑑1𝐾 + 𝑟2(2𝐸𝑇 − 𝛽𝐸𝑇 −𝐾).

et 𝐿2(𝑋1) = 𝑙22𝑋2
1 + 𝑙12𝑋1 + 𝑙02. If 𝐿2(𝑋1) = 0, we have two roots

𝑚
1 =

−𝑙12 −
√

𝛥2

2𝑙22
, 𝑋𝑛

1 =
−𝑙12 +

√

𝛥2

2𝑙22
,

where 𝛥2 = 𝑙212 − 4𝑙22𝑙02. For (8), there are also three possibilities.

• If 𝑙22 > 0, 𝑙12 < 0, then 𝑋𝑚
1 and 𝑋𝑛

1 satisfy 𝑋𝑚
1 ⋅𝑋𝑛

1 > 0, 𝑋𝑚
1 +𝑋𝑛

1 > 0.
Thus solving (8) yields 𝑋𝑚

1 ≤ 𝑋1 ≤ 𝑋𝑛
1 .

• If 𝑙22 > 0, 𝑙12 > 0, then 𝑋𝑚
1 and 𝑋𝑛

1 satisfy 𝑋𝑚
1 ⋅𝑋𝑛

1 > 0, 𝑋𝑚
1 +𝑋𝑛

1 < 0.
Thus inequality (8) is not satisfied for any 𝑋1.

• If 𝑙22 < 0, we have 𝑋𝑚
1 ⋅𝑋𝑛

1 < 0 and 𝐿2(𝑋1) ≤ 0 for 𝑋1 ≥ 𝑋𝑚
1 .

According to all possible conditions that satisfy 𝐿1(𝑋1) ≥ 0, 𝐿2(𝑋1) ≤
(i.e., 𝐹𝐺1

(𝑍)𝜎(𝑍) ≥ 0, 𝐹𝐺2
(𝑍)𝜎(𝑍) ≤ 0), we have the following six

ases to describe the sliding-mode region of Filippov system (3).
Case 𝐻1: 𝛼 > 1, 𝑙21 > 0 and 𝑙11 < 0. Denote

1
𝑠 =

{

(𝑋1, 𝑋2) ∈ 𝑅2
+
|

|

|

𝑋𝑚
1 ≤ 𝑋1 ≤ 𝑋𝑢

1 , 𝑋2 = 𝐸𝑇 −𝑋1

}

,

2 =
{

(𝑋 ,𝑋 ) ∈ 𝑅2 |
| 𝑋𝑣 ≤ 𝑋 ≤ 𝑋𝑛, 𝑋 = 𝐸𝑇 −𝑋

}

,
𝑠 1 2 +
|

1 1 1 2 1
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Table 2
Conditions for the occurrence of different sliding-mode regions.

Conditions Sliding modes

Case 𝐻1 𝛼 > 1, 𝑙21 > 0, 𝑙11 < 0
𝑙22 > 0, 𝑙12 < 0

𝑋𝑚
1 < 𝑋𝑢

1 , 𝑋
𝑛
1 < 𝑋𝑣

1 𝛴1
𝑠 or 𝛴3

𝑠
𝑋𝑣

1 < 𝑋𝑛
1 , 𝑋

𝑢
1 < 𝑋𝑚

1 𝛴2
𝑠 or 𝛴3

𝑠
𝑋𝑚

1 < 𝑋𝑢
1 , 𝑋

𝑣
1 < 𝑋𝑛

1 𝛴1
𝑠 ∪ 𝛴2

𝑠

𝑙22 < 0
𝑋𝑢

1 < 𝑋𝑚
1 < 𝑋𝑣

1 𝛴4
𝑠

𝑋𝑚
1 < 𝑋𝑢

1 𝛴1
𝑠 ∪ 𝛴4

𝑠

Case 𝐻2 𝛼 > 1, 𝑙21 > 0, 𝑙11 > 0
𝑙22 > 0, 𝑙12 < 0 𝛴3

𝑠
𝑙22 < 0 𝛴5

𝑠

Case 𝐻3 𝛼 > 1, 𝑙21 < 0 𝑙22 < 0 𝑋𝑚
1 < 𝑋𝑢

1 𝛴1
𝑠

Case 𝐻4 𝛼 < 1, 𝑙21 > 0, 𝑙11 < 0 𝑙22 > 0, 𝑙12 < 0 𝛴1
𝑠 ∪ 𝛴2

𝑠

Case 𝐻5 𝛼 < 1, 𝑙21 > 0, 𝑙11 > 0 𝑙22 > 0, 𝑙12 < 0 𝛴3
𝑠

Case 𝐻6 𝛼 < 1, 𝑙21 < 0
𝑙22 > 0, 𝑙12 < 0 𝑋𝑚

1 < 𝑋𝑢
1 𝛴1

𝑠 or 𝛴3
𝑠

𝑙22 < 0 𝑋𝑚
1 < 𝑋𝑢

1 𝛴1
𝑠

𝛤

c

𝛴3
𝑠 =

{

(𝑋1, 𝑋2) ∈ 𝑅2
+
|

|

|

𝑋𝑚
1 ≤ 𝑋1 ≤ 𝑋𝑛

1 , 𝑋2 = 𝐸𝑇 −𝑋1

}

.

If we further have 𝑙22 > 0, 𝑙12 < 0, the sliding-mode region 𝛴1
𝑠 or 𝛴3

𝑠
exists when 𝑋𝑚

1 < 𝑋𝑢
1 and 𝑋𝑛

1 < 𝑋𝑣
1 are satisfied; the sliding-mode

region 𝛴2
𝑠 or 𝛴3

𝑠 exists when 𝑋𝑣
1 < 𝑋𝑛

1 and 𝑋𝑢
1 < 𝑋𝑚

1 are satisfied; if
and only if both conditions 𝑋𝑚

1 < 𝑋𝑢
1 and 𝑋𝑣

1 < 𝑋𝑛
1 are satisfied, the

sliding-mode region is 𝛴1
𝑠
⋃

𝛴2
𝑠 .

Denote

𝛴4
𝑠 =

{

(𝑋1, 𝑋2) ∈ 𝑅2
+
|

|

|

𝑋1 ≥ 𝑋𝑣
1 , 𝑋2 = 𝐸𝑇 −𝑋1

}

.

If we further have 𝑙22 < 0, the sliding-mode region is 𝛴4
𝑠 when 𝑋𝑢

1 <
𝑋𝑚

1 < 𝑋𝑣
1 is satisfied, while the sliding-mode region is 𝛴1

𝑠
⋃

𝛴4
𝑠 when

𝑋𝑚
1 < 𝑋𝑢

1 is satisfied.
Case 𝐻2: 𝛼 > 1, 𝑙21 > 0 and 𝑙11 > 0. If we further have 𝑙22 > 0, 𝑙12 < 0,

the sliding-mode region 𝛴3
𝑠 exists. If we have 𝑙22 < 0, the sliding-mode

region 𝛴5
𝑠 exists, where

𝛴5
𝑠 =

{

(𝑋1, 𝑋2) ∈ 𝑅2
+
|

|

|

𝑋1 ≥ 𝑋𝑚
1 , 𝑋2 = 𝐸𝑇 −𝑋1

}

.

Case 𝐻3: 𝛼 > 1 and 𝑙21 < 0. It is easy to get 𝑙22 < 0 since 𝑙21 > 𝑙22
for 𝛼 > 1. The sliding-mode region 𝛴1

𝑠 exists when 𝑋𝑚
1 < 𝑋𝑢

1 .
Case 𝐻4: 𝛼 < 1, 𝑙21 > 0 and 𝑙11 < 0. It is easy to get 𝑙22 > 0

since 𝑙21 < 𝑙22 for 𝛼 < 1. In this case, we get 𝐿1(𝑋1) > 𝐿2(𝑋1). If we
further have 𝑙12 < 0, then the roots of 𝐿1(𝑋1) = 0 and 𝐿2(𝑋2) = 0
satisfy 𝑋𝑚

1 < 𝑋𝑢
1 < 𝑋𝑣

1 < 𝑋𝑛
1 , so the sliding-mode region takes the form

𝛴1
𝑠
⋃

𝛴2
𝑠 . If we have 𝑙12 > 0, no sliding-mode region exists.

Case 𝐻5: 𝛼 < 1, 𝑙21 > 0 and 𝑙11 > 0. In this case, we similarly
have 𝑙22 > 0 since 𝑙21 < 𝑙22 for 𝛼 < 1. If we further have 𝑙12 < 0, the
sliding-mode region is 𝛴3

𝑠 . If we have 𝑙12 > 0, no sliding-mode region
exists.

Case 𝐻6: 𝛼 < 1 and 𝑙21 < 0. If we further have 𝑙22 > 0, 𝑙12 < 0,
the sliding-mode region 𝛴1

𝑠 or 𝛴3
𝑠 exists when 𝑋𝑚

1 < 𝑋𝑢
1 is satisfied. If

we have 𝑙22 < 0, the sliding-mode region 𝛴1
𝑠 exists when 𝑋𝑚

1 < 𝑋𝑢
1 is

satisfied.
We summarize all conditions in which sliding-mode regions may

occur in Table 2.

3.2. Sliding dynamics of Filippov system (3)

From the above discussion, we can get that the sliding-mode regions
are different under different parameters. Further, we will examine the
sliding dynamics of Filippov system (3). Generally, there are three
methods to solve the dynamics of system (3) on the sliding-mode
region: the Filippov convex method, Utkin’s equivalent control method
and the singular perturbation method. In the following, we will employ
5 
the Filippov convex method to determine the sliding-mode dynamics of
Filippov system (3).

Denote any sliding-mode region as 𝛴𝑠. It follows from Section 2 that
the sliding-mode dynamics of Filippov system (3) are determined by
(4), where 𝛴𝑠 is given in Table 2. Since 𝐹 (𝑍) is tangent to the sliding-
mode region 𝛴𝑠, one can obtain that 𝐹 (𝑍)𝜎(𝑍) = 0 on the sliding-mode
region. It follows that

𝑞𝐹11(𝑍) + (1 − 𝑞)𝐹21(𝑍) + 𝑞𝐹12(𝑍) + (1 − 𝑞)𝐹22(𝑍) = 0.

Solving with respect to 𝑞 gives

𝑞 =
𝐹21(𝑍) + 𝐹22(𝑍)

𝐹21(𝑍) − 𝐹11(𝑍) + 𝐹22(𝑍) − 𝐹12(𝑍)
. (9)

Substituting (9) into (4), we derive the sliding dynamics of the Filippov
system (3) as follows

d𝑋1
d𝑡

= 𝑞𝐹11(𝑍) + (1 − 𝑞)𝐹21(𝑍) =
𝛤1
𝛤2

,

d𝑋2
d𝑡

= 𝑞𝐹12(𝑍) + (1 − 𝑞)𝐹22(𝑍) = −
𝛤1
𝛤2

,
(10)

where

𝛤1 = 𝐹22(𝑍)𝐹11(𝑍) − 𝐹21(𝑍)𝐹12(𝑍)

= 𝑟1𝑋1

(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

[

𝑟2

(

1 −
𝛽𝑋1 +𝑋2

𝐾

)

𝑋2 + 𝑢𝑚1𝑋1

]

− 𝑟2𝑋2

(

1 −
𝛽𝑋1 +𝑋2

𝐾

)

[

𝑟1(1 − 𝑢)𝑋1

(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

− (𝑑1 + 𝑚1)𝑢𝑋1

]

,

2 = 𝐹21(𝑍) − 𝐹11(𝑍) + 𝐹22(𝑍) − 𝐹12(𝑍) = −𝑟1𝑢𝑋1

(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

− 𝑢𝑑1𝑋1.

(11)

Since on the sliding-mode region 𝛴𝑠, we have 𝑋1 +𝑋2 = 𝐸𝑇 , direct
alculation yields that 𝑑𝑋1

𝑑𝑡 = − 𝑑𝑋2
𝑑𝑡 , which can also be derived from

(10). Therefore, we only focus on the dynamics of

𝑑𝑋1
𝑑𝑡

=
𝛤1
𝛤2

. (12)

We next examine the existence of the equilibria on the sliding mode
𝛴𝑠; i.e., the pseudo-equilibria of Filippov system (3). To this end, we
need to compute all possible nonnegative equilibria of (12), which is



A. Wang et al.

r
c

a
r
s

0
r
n

T

𝛤

S
w

𝑋

(

i
r

a
F
s

e

a
F
o

Mathematical Biosciences 377 (2024) 109301 
equivalent to 𝛤1 = 0. Let

𝛾3 = 𝑟1𝑟2𝑢(𝛼 − 1)(𝛽 − 1),

𝛾2 = 𝑟1𝑟2𝑢(3𝛼 − 2𝛼𝛽 + 𝛽 − 2)𝐸𝑇 + 𝑟1𝑟2𝑢(𝛽 − 𝛼)𝐾 + 𝑟2𝑢𝐾(𝑑1 + 𝑚1)(𝛽 − 1)

+ 𝑟1𝑚1𝑢𝐾(𝛼 − 1),

𝛾1 = 𝑟1𝑟2𝑢(𝛼𝛽 + 1 − 3𝛼)𝐸𝑇 2+
[

𝑟1𝑟2𝑢𝐾(2𝛼 − 𝛽 + 1)

+ 𝑟2𝑢𝐾(𝑑1 + 𝑚1)(2 − 𝛽) − 𝛼𝑟1𝑚1𝑢𝐾
]

𝐸𝑇

− 𝑟1𝑟2𝑢𝐾
2 − 𝑟2𝑢(𝑑1 + 𝑚1)𝐾2 + 𝑟1𝑚1𝑢𝐾

2,

𝛾0 = (𝐾 − 𝐸𝑇 )𝐸𝑇
[

𝑟1𝑟2𝑢(𝐾 − 𝛼𝐸𝑇 ) + 𝑟2𝑢(𝑑1 + 𝑚1)𝐾
]

.

Substituting 𝑋1 + 𝑋2 = 𝐸𝑇 into 𝛤1 = 0 is equivalent to the following
equations with respect to 𝑋1

𝛤 (𝑋1) ≡ 𝛾3𝑋
3
1 + 𝛾2𝑋

2
1 + 𝛾1𝑋1 + 𝛾0 = 0. (13)

For convenience, we rewrite 𝛾1, 𝛾2 as

𝛾1 = 𝛾12𝐸𝑇 2 + 𝛾11𝐸𝑇 + 𝛾10, 𝛾2 = 𝛾21𝐸𝑇 + 𝛾20,

where
𝛾12 = 𝑟1𝑟2𝑢(𝛼𝛽 − 3𝛼 + 1),

𝛾11 = 𝑟1𝑟2𝑢𝐾(2𝛼 − 𝛽 + 1) + 𝑟2𝑢𝐾(𝑑1 + 𝑚1)(2 − 𝛽) − 𝛼𝑟1𝑚1𝑢𝐾,

𝛾10 = −𝑟1𝑟2𝑢𝐾2 − 𝑟2𝑢(𝑑1 + 𝑚1)𝐾2 + 𝑟1𝑚1𝑢𝐾
2,

𝛾21 = 𝑟1𝑟2𝑢(3𝛼 − 2𝛼𝛽 + 𝛽 − 2),

𝛾20 = 𝑟1𝑟2𝑢(𝛽 − 𝛼)𝐾 + 𝑟2𝑢𝐾(𝑑1 + 𝑚1)(𝛽 − 1) + 𝑟1𝑚1𝑢𝐾(𝛼 − 1).

There are at most three roots for 𝛤 (𝑋1), which we denote as 𝑋𝑎
1 , 𝑋𝑏

1
and 𝑋𝑐

1 . According to Vieta’s theorem, we have

𝑋𝑎
1 +𝑋𝑏

1 +𝑋𝑐
1 = −

𝛾2
𝛾3

, 𝑋𝑎
1 ⋅𝑋𝑏

1 ⋅𝑋
𝑐
1 = −

𝛾0
𝛾3

. (14)

Let 𝑋1 = 𝑦 − 𝛾2
3𝛾3

and divide both sides of (13) by 𝛾3, so that (13) can
be rewritten as

𝑦3 + 𝑛1𝑦 + 𝑛0 = 0, (15)

where

𝑛1 =
𝛾1
𝛾3

−
𝛾22
3𝛾23

, 𝑛0 =
𝛾0
𝛾3

+
2𝛾32
27𝛾33

−
𝛾1𝛾2
3𝛾23

.

Denote 𝑁 =
(

𝑛1
3

)3
+

(

𝑛0
2

)2
. By using Cardano’s formula and the

elationship between Eqs. (13) and (15), we have the following three
ases:

• If 𝑁 < 0, there are three distinct real roots for 𝛤 (𝑋1).
• If 𝑁 = 0, there is one real root of multiple three or two distinct

real roots with one of them being multiple two for 𝛤 (𝑋1).
• If 𝑁 > 0, there exists one real root and a pair of conjugate

complex roots for 𝛤 (𝑋1).

In order to verify the existence of pseudo-equilibria, we analyse
the sign of each real root by using Vieta’s theorem. There are three
possibilities to consider: 𝛾0 > 0, 𝛾0 < 0 and 𝛾0 = 0. We initially consider
the first possibility 𝛾0 > 0, which is equivalent to 𝐾−𝛼𝐸𝑇 > − 𝑟2(𝑑1+𝑚1)𝐾

𝑟1𝑟2
,

and we have three further cases to discuss.
Case 𝑄1: 𝛾0 > 0, 𝑁 < 0. In this case, there exist three roots 𝑋𝑎

1 , 𝑋𝑏
1

nd 𝑋𝑐
1 for (13), and we next examine the existence of positive real

oots. There are four further possibilities to consider depending on the
ign of 𝛾2 and 𝛾3.

Case 𝑄1
1: 𝛾2 > 0, 𝛾3 > 0. It is easy to derive 𝑋𝑎

1 + 𝑋𝑏
1 + 𝑋𝑐

1 <
, 𝑋𝑎

1 ⋅𝑋
𝑏
1 ⋅𝑋

𝑐
1 < 0 in this scenario. It follows that there is one negative

oot and two positive roots (shown in as shown in Fig. 1(a)) or three
egative roots (shown in Fig. 1(b)). Direct calculation yields 𝛾3 > 0 if

𝛼 < 1, 𝛽 < 1
 s

6 
Table 3
Conditions for the existence of two positive roots in Case 𝑄1

1.

𝛾0 > 0, 𝑁 < 0

𝛼 < 1, 𝛽 < 1, 𝛾1 < 0
𝛾21 > 0, 𝛾20 > 0 for all 𝐸𝑇
𝛾21 > 0, 𝛾20 < 0 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 > 0 0 < 𝐸𝑇 < − 𝛾20

𝛾21

𝛼 > 1, 𝛽 > 1, 𝛾1 < 0
𝛾21 > 0, 𝛾20 > 0 for all 𝐸𝑇
𝛾21 > 0, 𝛾20 < 0 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 > 0 0 < 𝐸𝑇 < − 𝛾20

𝛾21

or

𝛼 > 1, 𝛽 > 1.

o ensure 𝛾2 > 0, it is necessary to discuss the sign of 𝛾21 and 𝛾20. We
get 𝛾2 > 0 if one of the following conditions holds:

• 𝛾21 > 0, 𝛾20 > 0;
• 𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21
;

• 𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20
𝛾21

.

Concluding the above discussions, we obtain that there exist two
positive roots and one negative root or three negative roots for (13) if
one of the following conditions is true:

• 𝛼 < 1, 𝛽 < 1, 𝛾21 > 0, 𝛾20 > 0;
• 𝛼 < 1, 𝛽 < 1, 𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21
;

• 𝛼 < 1, 𝛽 < 1, 𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20
𝛾21

;

• 𝛼 > 1, 𝛽 > 1, 𝛾21 > 0, 𝛾20 > 0;
• 𝛼 > 1, 𝛽 > 1, 𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21
;

• 𝛼 > 1, 𝛽 > 1, 𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20
𝛾21

.

Differentiating 𝛤 (𝑋1) with respect to 𝑋1 gives
′(𝑋1) = 3𝛾3𝑋2

1 + 2𝛾2𝑋1 + 𝛾1.

olving 𝛤 ′(𝑋1) = 0 with respect to 𝑋1 yields two roots, the larger of
hich is

′
11 =

−𝛾2 +
√

𝛾22 − 3𝛾3𝛾1
3𝛾3

. (16)

If 𝑋′
11 > 0, there are two positive roots and one negative root for

13), as shown in Fig. 1. In fact, we have 𝑋′
11 > 0 if 𝛾3 > 0 and

𝛾1 < 0. Thus the conditions for the existence of two positive roots
(𝑋𝑏

1 , 𝑋
𝑐
1), can be obtained. For convenience, we denote the conditions

(𝑁 < 0, 𝛾0 > 0, 𝛾1 < 0, 𝛾3 > 0, 𝛾2 > 0) to guarantee two positive roots
n this case as 𝑄11

1 below. The detailed conditions for the two positive
oots are summarized in Table 3.

Case 𝑄2
1: 𝛾3 > 0 and 𝛾2 ≤ 0. In this case, we have 𝑋𝑎

1 +𝑋𝑏
1 +𝑋𝑐

1 ≥ 0
nd 𝑋𝑎

1 ⋅ 𝑋𝑏
1 ⋅ 𝑋𝑐

1 < 0, so there exists one negative root (𝑋𝑎
1 , shown in

ig. 1(a)) and two positive roots (𝑋𝑏
1 and 𝑋𝑐

1 , shown in Fig. 1(a)). We
imilarly get 𝛾2 ≤ 0 if one of the following conditions is true:

• 𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20
𝛾21

;

• 𝛾21 < 0, 𝛾20 < 0;
• 𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20

𝛾21
;

• 𝐸𝑇 = − 𝛾20
𝛾21

.

Similarly, we derive the conditions to guarantee the existence of
xactly two positive roots and summarize them in Table 4.

Case 𝑄3
1: 𝛾3 < 0 and 𝛾2 ≤ 0. In this case, we have 𝑋𝑎

1 +𝑋𝑏
1 +𝑋𝑐

1 ≤ 0
nd 𝑋𝑎

1 ⋅ 𝑋𝑏
1 ⋅ 𝑋𝑐

1 > 0, so there exist one positive root (𝑋𝑎
1 , shown in

ig. 2(a)) and two negative roots (𝑋𝑐
1 and 𝑋𝑏

1 , shown in Fig. 2(a)). We
btain the conditions for the existence of exactly one positive root and
ummarize them in Table 5.
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Fig. 1. Schematic diagram to show the potential arrangement of the roots of (13) in Cases 𝑄1
1 and 𝑄2

1.
Fig. 2. Schematic diagram to show the potential arrangement of the roots of (13) in Cases 𝑄3
1 and 𝑄4
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Table 4
Conditions for the existence of two positive roots in Case 𝑄2

1.

𝛾0 > 0, 𝑁 < 0

𝛼 < 1, 𝛽 < 1

𝛾21 > 0, 𝛾20 < 0 0 < 𝐸𝑇 < − 𝛾20
𝛾21

𝛾21 < 0, 𝛾20 < 0 for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0 𝐸𝑇 > − 𝛾20

𝛾21
𝛾2 = 0 𝐸𝑇 = − 𝛾20

𝛾21

𝛼 > 1, 𝛽 > 1

𝛾21 > 0, 𝛾20 < 0 0 < 𝐸𝑇 < − 𝛾20
𝛾21

𝛾21 < 0, 𝛾20 < 0 for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0 𝐸𝑇 > − 𝛾20

𝛾21
𝛾2 = 0 𝐸𝑇 = − 𝛾20

𝛾21

Table 5
Conditions for the existence of one positive root in Case 𝑄3

1.

𝛾0 > 0, 𝑁 < 0

𝛼 > 1, 𝛽 < 1

𝛾21 > 0, 𝛾20 < 0 0 < 𝐸𝑇 < − 𝛾20
𝛾21

𝛾21 < 0, 𝛾20 < 0 for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0 𝐸𝑇 > − 𝛾20

𝛾21
𝛾2 = 0 𝐸𝑇 = − 𝛾20

𝛾21

𝛼 < 1, 𝛽 > 1
𝛾21 > 0, 𝛾20 < 0 0 < 𝐸𝑇 < − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 < 0 for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0 𝐸𝑇 > − 𝛾20

𝛾21
𝛾2 = 0 𝐸𝑇 = − 𝛾20

𝛾21

Case 𝑄4
1: 𝛾3 < 0 and 𝛾2 > 0. In this case, we have 𝑋𝑎

1 +𝑋𝑏
1 +𝑋𝑐

1 > 0
and 𝑋𝑎

1 ⋅𝑋
𝑏
1 ⋅𝑋

𝑐
1 > 0, so there is one positive root (𝑋𝑎

1 , shown in Fig. 2(a))
and two negative roots (𝑋𝑐

1 and 𝑋𝑏
1 , shown in Fig. 2(a)) or three positive

roots (𝑋𝑎
1 , 𝑋𝑏

1 and 𝑋𝑐
1 , shown in Fig. 2(b)). Whether there is only one

positive root or three positive roots in this scenario depends on the sign
of the smaller root 𝑋′ of 𝛤 ′(𝑋 ) = 0, where 𝑋′ is defined as in formula
11 1 11 t

7 
(16). If 𝑋′
11 > 0, there are three positive roots, as shown in Fig. 2(b).

Otherwise, there is only one positive root. Direct calculation yields that
𝑋′

11 > 0 for 𝛾3 < 0, 𝛾1 < 0 and 𝑋′
11 < 0 for 𝛾3 < 0, 𝛾1 > 0. Similarly, we

an derive the conditions for the existence of three positive roots or one
ositive root. For convenience, we denote the conditions (𝑁 < 0, 𝛾0 >

0, 𝛾1 > 0, 𝛾3 < 0, 𝛾2 > 0) guaranteeing one positive root as 𝑄41
1 , while

he conditions (𝑁 < 0, 𝛾0 > 0, 𝛾1 < 0, 𝛾3 < 0, 𝛾2 > 0) guaranteeing three
ositive root are denoted as 𝑄42

1 . The detailed conditions for one or
hree positive roots are summarized in Table 6.

Case 𝑄2: When 𝑁 = 0, there are three real roots for 𝛤 (𝑋1) = 0. If we
urther have 𝑛1 ≠ 0, 𝑛0 ≠ 0, there is a real root of multiplicity two and
single real root (shown in Fig. 3(a),(b),(d),(e)); otherwise, we have
real root of multiplicity three (shown in Fig. 3(c)). It is sufficient to

xamine the existence of positive real roots for (13), as shown in Fig. 3.
n Fig. 3(a), 𝑋𝑐

1 is the single positive real root and 𝑋𝐴
1 is the positive

eal root of multiplicity two. The single positive real root and positive
eal root of multiplicity two are 𝑋𝑎

1 and 𝑋𝐵
1 in Fig. 3(b), respectively.

nly one single positive real root 𝑋𝑎
1 exists for (13) in Fig. 3(d), while

positive real root of multiplicity two (𝑋𝐴
1 ) exists for (13) in Fig. 3(e).

n Fig. 3(c), 𝑋𝐷
1 is the real root of multiplicity three. Similar to Case

1, we can obtain the conditions (𝑁 = 0, 𝛾0 > 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 <
, 𝛾3 < 0, 𝛾2 > 0) for the existence of two distinct positive real roots, as
hown in Fig. 3(a) and (b). For convenience, we denote the conditions
s 𝑄1

2 below. By replacing 𝑛1 ≠ 0, 𝑛0 ≠ 0 with 𝑛1 = 0, 𝑛0 = 0, we obtain
he conditions that Eq. (13) has one positive real root of multiplicity
hree, as shown in Fig. 3(c). We similarly denote this set of conditions
s 𝑄2

2 in the following. We can get only one positive root 𝑋𝑎
1 for (13)

f 𝑁 = 0, 𝛾0 > 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 < 0, 𝛾3 > 0, 𝛾2 > 0, which we denote
s 𝑄3

2 below, are true. There exists one positive root 𝑋𝐴
1 of multiplicity
wo if 𝑁 = 0, 𝛾0 > 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 > 0, 𝛾3 < 0, 𝛾2 > 0, which we
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Table 6
Conditions for the existence of positive roots for Case 𝑄4

1.

Conditions Number of
positive roots

𝛾0 > 0, 𝑁 < 0

𝛼 > 1, 𝛽 < 1, 𝛾1 < 0
𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21

Three

𝛾21 > 0, 𝛾20 > 0, for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21

𝛼 < 1, 𝛽 > 1, 𝛾1 < 0
𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 > 0, 𝛾20 > 0, for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21

𝛼 > 1, 𝛽 < 1, 𝛾1 > 0
𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21

One

𝛾21 > 0, 𝛾20 > 0, for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21

𝛼 < 1, 𝛽 > 1, 𝛾1 > 0
𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 > 0, 𝛾20 > 0, for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
Fig. 3. Possible roots of 𝛤 (𝑋1) = 0 for Case 𝑄2.
i

u

able 7
onditions for the existence of two distinct real roots for Case 𝑄2.

𝛾0 > 0, 𝑁 = 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0

𝛼 > 1, 𝛽 < 1, 𝛾1 < 0
𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 > 0, 𝛾20 > 0, for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21

𝛼 < 1, 𝛽 > 1, 𝛾1 < 0
𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 > 0, 𝛾20 > 0, for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21

denote as 𝑄4
2 below. We listed the detailed conditions to guarantee the

existence of two positive real roots in this case in Table 7.
Case 𝑄3: When 𝑁 > 0, there is one real root and two conjugate

omplex roots for 𝛤 (𝑋1) = 0, as shown in Fig. 4. Since the product of
wo conjugate complex roots is positive, there is one positive real root
or Eq. (13) if 𝛾3 < 0 according to (14). Further discussion yields that
3 < 0 if and only if 𝛼 > 1, 𝛽 < 1 or 𝛼 < 1, 𝛽 > 1.

From the positive real root of Eq. (13), we derive the possible
seudo-equilibria for the sliding-mode dynamics (12). Denote all the
8 
(boundary) pseudo-equilibria by 𝐸𝑧
𝑠 = (𝑋𝑧

1 , 𝑋
𝑧
2 ), 𝑧 ∈ {𝑎, 𝑏, 𝑐, 𝐴, 𝐵,𝐷},

where 𝑋𝑧
1 is defined as above and 𝑋𝑧

2 = 𝐸𝑇 − 𝑋𝑧
1 . The existence

of all possible pseudo-equilibria has thus been examined above. If
the possible pseudo-equilibrium 𝐸𝑧

𝑠 , 𝑧 ∈ {𝑎, 𝑏, 𝑐, 𝐴, 𝐵,𝐷} lies on the
sliding-mode region (i.e., 𝐸𝑧

𝑠 ∈ 𝛴𝑠), then it is a pseudo-equilibrium of
Filippov system (3). If 𝐸𝑧

𝑠 , 𝑧 ∈ {𝑎, 𝑏, 𝑐, 𝐴, 𝐵,𝐷} is a pseudo-equilibria
of Filippov system (3), the stability can be analysed by examining the
sign of Eq. (12) at any point (𝑋1, 𝑋2) ∈ 𝑈 (𝐸𝑧

𝑠 ), where 𝑈 (𝐸𝑧
𝑠 ) is some

neighbourhood of 𝐸𝑧
𝑠 . Since 𝛤2 < 0 for any 𝑋1, 𝑋2 < 𝐸𝑇 , we get that

sgn
{

d𝑋1
d𝑡

|

|

|(𝑋1 ,𝑋2)

}

= sgn
{

−𝛤 (𝑋1)
}

for any (𝑋1, 𝑋2) ∈ 𝑈 (𝐸𝑧
𝑠 ). For the pseudo-equilibrium 𝐸𝑏

𝑠 in case 𝑄11
1 ,

t follows from the discussion in 𝑄11
1 and Fig. 1 that 𝛤 (𝑋1) > 0 for

𝑋1 ∈ 𝑈 (𝑋𝑏
1 ) and 𝑋1 < 𝑋𝑏

1 while 𝛤 (𝑋1) < 0 for 𝑋1 ∈ 𝑈 (𝑋𝑏
1 ) and 𝑋1 > 𝑋𝑏

1 ,
so 𝐸𝑏

𝑠 is unstable. Similarly, we get that the pseudo-equilibrium 𝐸𝑎
𝑠 is

nstable in Cases 𝑄3
1, 𝑄

41
1 , 𝑄1

2, 𝑄
3
2, 𝑄

42
1 and 𝑄3; the pseudo-equilibrium

𝐸𝑏
𝑠 in Case 𝑄2

1 is unstable, but it is stable in Case 𝑄42
1 ; the pseudo-

equilibrium 𝐸𝑐 is stable in Cases 𝑄11 and 𝑄2 but it is unstable in Cases
𝑠 1 1
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Fig. 4. The roots of 𝛤 (𝑋1) = 0 for Case 𝑄3.
Table 8
Conditions for the existence of different pseudo-equilibria and their stability. In the penultimate row, the parentheses refer
to the two possibilities for a single pseudo-equilibrium and a pseudo-equilibrium of multiplicity two in Fig. 3(b), as distinct
from Fig. 3(a).

Number of
pseudo-equilibria

Conditions Pseudo-equilibria and
their stability

One

𝑁 < 0, 𝛾0 > 0, 𝛾3 < 0, 𝛾2 ≤ 0 𝑄3
1 𝐸𝑎𝑢

𝑠𝑁 < 0, 𝛾0 > 0, 𝛾1 > 0, 𝛾3 < 0, 𝛾2 > 0 𝑄41
1

𝑁 = 0, 𝛾0 > 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 < 0, 𝛾3 > 0, 𝛾2 > 0 𝑄3
2

𝑁 > 0, 𝛾0 > 0, 𝛾3 < 0 𝑄3 𝐸𝑎𝑢
𝑠 or 𝐸𝑐𝑢

𝑠

𝑁 = 0, 𝛾0 > 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 > 0, 𝛾3 < 0, 𝛾2 > 0 𝑄4
2 𝐸𝐴𝑢

𝑠

𝑁 = 0, 𝛾0 > 0, 𝑛1 = 0, 𝑛0 = 0, 𝛾1 < 0, 𝛾3 < 0, 𝛾2 > 0 𝑄2
2 𝐸𝐷𝑢

𝑠

Two
𝑁 < 0, 𝛾0 > 0, 𝛾1 < 0, 𝛾3 > 0, 𝛾2 > 0 𝑄11

1 𝐸𝑏𝑢
𝑠 , 𝐸𝑐𝑠

𝑠𝑁 < 0, 𝛾0 > 0, 𝛾3 > 0, 𝛾2 ≤ 0 𝑄2
1

𝑁 = 0, 𝛾0 > 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 < 0, 𝛾3 < 0, 𝛾2 > 0 𝑄1
2 𝐸𝐴𝑢

𝑠 (𝐸𝐵𝑢
𝑠 ), 𝐸𝑐𝑢

𝑠 (𝐸𝑎𝑢
𝑠 )

Three 𝑁 < 0, 𝛾0 > 0, 𝛾1 < 0, 𝛾3 < 0, 𝛾2 > 0 𝑄42
1 𝐸𝑎𝑢

𝑠 , 𝐸𝑏𝑠
𝑠 , 𝐸𝑐𝑢

𝑠

e

𝑃

t

e
f
C
e
𝑃
u

s

a

𝑀
o

𝑀

𝑄42
1 , 𝑄1

2 and 𝑄3; the pseudo-equilibria 𝐸𝐴
𝑠 , 𝐸𝐵

𝑠 and 𝐸𝐷
𝑠 in Cases 𝑄1

2 and
𝑄2

2 are unstable. Concluding the above discussion, we get the following
result.

Theorem 1. When 𝛾0 > 0, the sliding dynamics of Filippov system (3) are
as follows.

(i) There exists one unstable pseudo-equilibrium if one of the conditions
𝑄3

1, 𝑄
41
1 , 𝑄3

2, 𝑄3, 𝑄4
2, 𝑄

2
2 holds.

(ii) Two pseudo-equilibria exist if the condition 𝑄11
1 or 𝑄2

1 holds, one
of which is stable and the other one is unstable; conversely, two unstable
pseudo-equilibria exist if the condition 𝑄1

2 holds.
(iii) Three pseudo-equilibria exist if the condition 𝑄42

1 holds and one of
them is stable.

For clarity, we have listed the conditions for the existence of all
pseudo-equilibria and the stability of each pseudo-equilibrium in Ta-
ble 8. In Table 8, the superscript ‘s’ of the pseudo-equilibrium 𝐸𝑧

𝑠
represents stable and the superscript ‘u’ represents unstable. For in-
stance, 𝐸𝑎𝑠

𝑠 demonstrates that 𝐸𝑎
𝑠 is stable and 𝐸𝑎𝑢

𝑠 demonstrates that
𝐸𝑎
𝑠 is unstable.

Next, we examine the existence of all possible pseudo-equilibria
and their stability for 𝛾0 < 0 by implementing a similar analysis for
the case 𝛾0 > 0. The details are given in Appendix A. It follows from
this appendix that there are a total of six possible positive real roots
(𝑋𝑎

1 , 𝑋
𝑏
1 , 𝑋

𝑐
1 , 𝑋

𝐴
1 , 𝑋

𝐵
1 and 𝑋𝐷

1 ) for (15). Thus we can get all possible
pseudo-equilibria 𝐸𝑎

𝑠 , 𝐸
𝑏
𝑠 , 𝐸

𝑐
𝑠 , 𝐸

𝐴
𝑠 , 𝐸

𝐵
𝑠 and 𝐸𝐷

𝑠 for the sliding-mode dy-
namics (3). If the pseudo-equilibrium 𝐸𝑧

𝑠 , 𝑧 ∈ {𝑎, 𝑏, 𝑐, 𝐴, 𝐵,𝐷} lie on the
sliding-mode region 𝛴𝑠, the stability can be analysed. Here we omit the
details and summarize the conditions for the existence of all pseudo-
equilibria and the stability of each pseudo-equilibrium in the following

theorem.

9 
Theorem 2. When 𝛾0 < 0, the sliding dynamics of Filippov system (3) is as
follows.

(i) There is a stable pseudo-equilibrium if one of the conditions
𝑃 1
1 , 𝑃

21
1 , 𝑃3, 𝑃 3

2 , 𝑃
4
2 or 𝑃 2

2 hold, whereas an unstable pseudo-equilibrium
xists if the condition 𝑃 5

2 or 𝑃
6
2 holds.

(ii) There are two pseudo-equilibria if one of the conditions 𝑃 31
1 , 𝑃 4

1 or
1
2 hold. One is stable, and the other is unstable.
(iii) Three pseudo-equilibria exist, two of which are stable if the condi-

ion 𝑃 22
1 holds.

For clarity, we list the conditions for the existence of all pseudo-
quilibria and the stability of each pseudo-equilibrium in Table 9. It
ollows from Table 9 that the pseudo-equilibrium 𝐸𝑎

𝑠 is unstable in
ases 𝑃 31

1 and 𝑃 4
1 , and it is stable in Cases 𝑃 22

1 and 𝑃 1
2 ; the pseudo-

quilibrium 𝐸𝑏
𝑠 is stable in Cases 𝑃 31

1 and 𝑃 4
1 , and it is unstable in Case

22
1 ; 𝐸𝑐

𝑠 is stable in Cases 𝑃 1
1 , 𝑃

21
1 , 𝑃 22

1 , 𝑃 1
2 , 𝑃

3
2 , 𝑃

4
2 and 𝑃3; 𝐸𝐴

𝑠 and 𝐸𝐵
𝑠 are

nstable in Cases 𝑃 1
2 , 𝑃

5
2 and 𝑃 6

2 ; 𝐸𝐷
𝑠 is stable in Case 𝑃 2

2 .
Next, we examine the existence of pseudo-equilibria for the Filippov

ystem (3) when 𝛾0 = 0; i.e., 𝐾 − 𝛼𝐸𝑇 = (𝑑1+𝑚1)𝐾
𝑟1

or 𝐾 = 𝐸𝑇 . See
Appendix B for the details. It follows from this appendix that there are
four possible pseudo-equilibria 𝐸𝑧

𝑠 = (𝑋𝑧
1 , 𝑋

𝑧
2 ), where 𝑋𝑧

2 = 𝐸𝑇 − 𝑋𝑧
1

and 𝑧 ∈ {𝑒, 𝑓 , 𝐸, 𝐹 }. We summarize the results in Theorem 3 and omit
the details here.

Theorem 3. When 𝛾0 = 0, the sliding dynamics of Filippov system (3) are
s follows.
(i) There is one stable pseudo-equilibrium if one of the conditions

1
1 ,𝑀

2
2 or 𝑀

2
5 hold, whereas there is one unstable pseudo-equilibrium if

ne of the conditions 𝑀1
3 ,𝑀

1
4 ,𝑀

1
5 or 𝑀

1
6 hold.

(ii) There are two pseudo-equilibria, and one of them is stable, if one of
1 or 𝑀2 holds.
2 3
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Table 9
Conditions for the existence of all pseudo-equilibria and their stability.

Number of
pseudo-equilibria

Conditions Pseudo-equilibria and
their stability

One

𝑁 < 0, 𝛾0 < 0, 𝛾3 > 0, 𝛾2 ≥ 0 𝑃 1
1

𝐸𝑐𝑠
𝑠

𝑁 < 0, 𝛾0 < 0, 𝛾1 < 0, 𝛾3 > 0, 𝛾2 < 0 𝑃 21
1

𝑁 > 0, 𝛾0 < 0, 𝛾3 > 0 𝑃3
𝑁 = 0, 𝛾0 < 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾3 > 0, 𝛾2 ≥ 0 𝑃 3

2
𝑁 = 0, 𝛾0 < 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 < 0, 𝛾3 > 0, 𝛾2 < 0 𝑃 4

2

𝑁 = 0, 𝛾0 < 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾3 < 0, 𝛾2 < 0 𝑃 5
2 𝐸𝐴𝑢

𝑠𝑁 = 0, 𝛾0 < 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 < 0, 𝛾3 < 0, 𝛾2 ≥ 0 𝑃 6
2

𝑁 = 0, 𝛾0 < 0, 𝑛1 = 0, 𝑛0 = 0, 𝛾1 > 0, 𝛾3 > 0, 𝛾2 < 0 𝑃 2
2 𝐸𝐷𝑠

𝑠

Two
𝑁 < 0, 𝛾0 < 0, 𝛾1 > 0, 𝛾3 < 0, 𝛾2 < 0 𝑃 31

1 𝐸𝑎𝑢
𝑠 , 𝐸𝑏𝑠

𝑠𝑁 < 0, 𝛾0 < 0, 𝛾3 < 0, 𝛾2 ≥ 0 𝑃 4
1

𝑁 = 0, 𝛾0 < 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 > 0, 𝛾3 > 0, 𝛾2 < 0 𝑃 1
2 𝐸𝐴𝑢

𝑠 (𝐸𝐵𝑢
𝑠 ), 𝐸𝑐𝑠

𝑠 (𝐸𝑎𝑠
𝑠 )

Three 𝑁 < 0, 𝛾0 < 0, 𝛾1 > 0, 𝛾3 > 0, 𝛾2 < 0 𝑃 22
1 𝐸𝑎𝑠

𝑠 , 𝐸𝑏𝑢
𝑠 , 𝐸𝑐𝑠

𝑠

Table 10
Conditions for the existence of different pseudo-equilibria and their stabilities when 𝛾0 = 0.

Number of
pseudo-equilibria

Conditions Pseudo-equilibria and
their stability

One

𝛺0 > 0, 𝛾3 > 0, 𝛾2 > 0, 𝛾1 < 0 𝑀1
1 𝐸𝑓𝑠

𝑠𝛺0 > 0, 𝛾3 > 0, 𝛾2 < 0, 𝛾1 < 0 𝑀2
2

𝛺0 > 0, 𝛾3 < 0, 𝛾2 > 0, 𝛾1 > 0 𝑀1
3 𝐸𝑒𝑢

𝑠𝛺0 > 0, 𝛾3 < 0, 𝛾2 < 0, 𝛾1 > 0 𝑀1
4

𝛺0 > 0, 𝛾3 < 0, 𝛾2 = 0, 𝛾1 > 0 𝑀1
5 𝐸𝐸𝑢

𝑠

𝛺0 > 0, 𝛾3 > 0, 𝛾2 = 0, 𝛾1 < 0 𝑀2
5 𝐸𝐸𝑠

𝑠

𝛺0 = 0, 𝛾3 ⋅ 𝛾2 < 0 𝑀1
6 𝐸𝐹𝑢

𝑠

Two 𝛺0 > 0, 𝛾3 > 0, 𝛾2 < 0, 𝛾1 > 0 𝑀1
2 𝐸𝑒𝑢

𝑠 , 𝐸𝑓𝑠
𝑠𝛺0 > 0, 𝛾3 < 0, 𝛾2 > 0, 𝛾1 < 0 𝑀2

3

For clarity, we summarize the conditions for the existence of all
seudo-equilibria and the stability of each pseudo-equilibrium in Ta-
le 10. According to Table 10, in Case 𝑀1

1 , there exists only one stable
pseudo-equilibrium 𝐸𝑓

1 . In Case 𝑀2, there exists one stable pseudo-
equilibrium 𝐸𝑓

1 and one unstable pseudo-equilibrium 𝐸𝑒
1 if 𝛾1 > 0,

while there exists one stable pseudo-equilibrium 𝐸𝑓
1 if 𝛾1 < 0. In Case

𝑀3, there exists one stable pseudo-equilibrium 𝐸𝑓
1 and one unstable

pseudo-equilibrium 𝐸𝑒
1 if 𝛾1 < 0, while there exists one stable pseudo-

equilibrium 𝐸𝑓
1 if 𝛾1 > 0. In Case 𝑀1

4 , there exists one unstable
pseudo-equilibrium 𝐸𝑒

1. In Case 𝑀5, there exists one unstable (resp.
stable) pseudo-equilibrium 𝐸𝐸

1 if 𝛾1 > 0 (resp. 𝛾1 < 0). In Case 𝑀1
6 , only

one unstable pseudo-equilibrium 𝐸𝐹
1 exists for the Filippov system (3).

Up to this point, we have examined the sliding-mode region and
the sliding dynamics of Filippov system (3). In fact, Filippov system (3)
exhibits quite rich sliding dynamics as the parameters vary, including a
series of sliding-mode regions and many pseudo-equilibria. There are a
total of seven sliding-mode regions, including 𝛴1

𝑠 , 𝛴
2
𝑠 , 𝛴

3
𝑠 , 𝛴

4
𝑠 , 𝛴

5
𝑠 , 𝛴

1
𝑠
⋃

𝛴2
𝑠 and 𝛴1

𝑠
⋃

𝛴4
𝑠 , for Filippov system (3). If we choose suitable pa-

rameters — for example, the parameters in Cases 𝐻1 and 𝐻4 — two
sliding-mode regions 𝛴1

𝑠 and 𝛴2
𝑠 or 𝛴1

𝑠 and 𝛴4
𝑠 coexist. For other param-

eters, only one sliding-mode region, which will take a different form for
different parameters, exists for Filippov system (3). The details about
the sliding-mode regions and the conditions for each sliding-mode
region are listed in Table 2. There exist at most three pseudo-equilibria
for Filippov system (3). All possible pseudo-equilibria consist of 𝐸𝑎

𝑠 , 𝐸𝑏
𝑠 ,

𝐸𝑐
𝑠 , 𝐸𝐴

𝑠 , 𝐸𝐵
𝑠 , 𝐸𝐷

𝑠 , 𝐸𝑒
𝑠 , 𝐸

𝑓
𝑠 , 𝐸𝐸

𝑠 and 𝐸𝐹
𝑠 . By choosing suitable parameters,

we can derive the existence of a unique pseudo-equilibrium or coexis-
tence of two pseudo-equilibria. Two pseudo-equilibria 𝐸𝑏

𝑠 and 𝐸𝑐
𝑠 , 𝐸𝐴

𝑠
and 𝐸𝑐

𝑠 , or 𝐸𝐵
𝑠 and 𝐸𝑎

𝑠 coexist in Cases 𝑄11
1 , 𝑄2

1 and 𝑄1
2. We can also get

the coexistence of the two pseudo-equilibria 𝐸𝑎
𝑠 and 𝐸𝑏

𝑠 in Cases 𝑃 31
1 and

𝑃 4
1 and the coexistence of 𝐸𝐴

𝑠 and 𝐸𝑐
𝑠 or 𝐸𝐵

𝑠 and 𝐸𝑎
𝑠 in case 𝑃 1

2 . Two
pseudo-equilibria 𝐸𝑒

𝑠 and 𝐸𝑓
𝑠 coexist in case 𝑀1

2 and 𝑀2
3 . Three pseudo-

𝑎 𝑏 𝑐 42
equilibria 𝐸𝑠 , 𝐸𝑠 and 𝐸𝑠 coexist for Filippov system (3) in cases 𝑄1 and

10 
𝑃 22
1 . The detailed results are shown in Theorems 1–3 and Tables 8 and

9, 10.
It is worth emphasizing that the pseudo-equilibrium, as a special

equilibrium of Filippov system, plays an important role in the global
dynamics of the system. In particular, if the solutions of model (3)
eventually approach a pseudo-equilibrium, the number of prostate-
cancer cells can be controlled at a predetermined level, which is a
desirable outcome.

3.3. Impact of the threshold value on sliding-mode region and pseudo-
equilibria

Next we examine the variation of the sliding-mode regions and
pseudo-equilibria under different parameter values. To this end, we fix
the parameters in Table 1 and parameter 𝛽 and select two different
values for the parameter 𝛼 in order to explore how the sliding-mode
regions and pseudo-equilibria vary, as shown in Fig. 5. Each subplot
in Fig. 5 shows the length of sliding-mode region and the number of
pseudo-equilibria with different joint threshold value 𝐸𝑇 . In Fig. 5,
the light grey dotted lines represent the crossing region of 𝛴, while
thick dark grey solid lines represent the sliding-mode regions 𝛴𝑠. The
grey-blue curves and purple curves represent 𝑔1(𝑋1, 𝐸𝑇 ) = 0 and
𝑔2(𝑋1, 𝐸𝑇 ) = 0, where

𝑔1(𝑋1, 𝐸𝑇 ) = [𝑟1(1 − 𝑢)(𝛼 − 1) + 𝑟2(𝛽 − 1)]𝑋2
1 − 𝑟2𝐸𝑇 2 + [−𝑟1(1 − 𝑢)𝛼

+ 𝑟2(2 − 𝛽)]𝐸𝑇𝑋1 + 𝑟2𝐾𝐸𝑇

+ [𝑟1(1 − 𝑢)𝐾 − 𝑢𝑑1𝐾 − 𝑟2𝐾]𝑋1,

𝑔2(𝑋1, 𝐸𝑇 ) = [𝑟1(𝛼 − 1) + 𝑟2(𝛽 − 1)]𝑋2
1 − 𝑟2𝐸𝑇 2

+ [−𝑟1𝛼 + 𝑟2(2 − 𝛽)]𝐸𝑇𝑋1 + 𝑟2𝐾𝐸𝑇 + (𝑟1𝐾 − 𝑟2𝐾)𝑋1.

These two curves specify the endpoints of the sliding-mode regions.
In fact, the part of any straight line 𝐸𝑇 = 𝑐 that falls between these

two curves 𝑔1(𝑋1, 𝐸𝑇 ) = 0 and 𝑔2(𝑋1, 𝐸𝑇 ) = 0 is a sliding-mode region
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Fig. 5. The sliding-mode regions (thick grey lines) and pseudo-equilibria (red stars) of Filippov system (3) under different parameters 𝛼, 𝛽 and joint threshold value 𝐸𝑇 . The
parameter values are (a) 𝛼 = 0.99, 𝛽 = 1.4, (b) 𝛼 = 1.3, 𝛽 = 1.4 and (c) 𝛼 = 1.3, 𝛽 = 1.4. Subplot (c) is a close-up of subplot (b).
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𝑠, where 𝑐 represents any positive constant. The red curves represent
(𝑋1) = 0, in which 𝐸𝑇 is a variable other than the variable 𝑋1,

o we denote these curves as 𝛤 (𝑋1, 𝐸𝑇 ) = 0. The intersection points
f 𝛤 (𝑋1, 𝐸𝑇 ) = 0 and 𝐸𝑇 = 𝑐 are pseudo-equilibria provided they
ie on the sliding-mode region. The red stars in Fig. 5 indicate the
seudo-equilibria.

When we select the competition coefficient of AC-Ds due to the
resence of AC-Is 𝛼 = 0.99 and the competition coefficient of AC-Is due
o the presence of AC-Ds 𝛽 = 1.4, the sliding-mode regions of Filippov
ystem (3) are shown in Fig. 5(a). There exists one sliding-mode region
or different threshold values 𝐸𝑇 . In this case, Conditions 𝐻6 are
atisfied, so the sliding-mode region is 𝛴1

𝑠 . At the joint threshold value
𝑇 = 7, two pseudo-equilibria appear on the sliding-mode region 𝛴1

𝑠 .
f the threshold value 𝐸𝑇 increases (for example, 𝐸𝑇 = 8), the pseudo-
quilibrium disappears; i.e., there is no equilibrium on the sliding-mode
egion. When 𝐸𝑇 continues to increase (for example, 𝐸𝑇 = 9), there
re again two pseudo-equilibria on the sliding-mode region. As the
hreshold value 𝐸𝑇 increases further, the sliding-mode region remains
s 𝛴1

𝑠 , although it enlarges.
When we choose the competition coefficients 𝛼 = 1.3 and 𝛽 =

.4, the sliding-mode regions and pseudo-equilibria are as shown in
ig. 5(b). At the joint threshold value 𝐸𝑇 = 8, there is only one sliding-
ode region, and no pseudo-equilibrium exists for system (3). In this

cenario, Conditions 𝐻2 hold, so the sliding-mode region is 𝛴3
𝑠 . As 𝐸𝑇

ncreases (for example, 𝐸𝑇 = 9), two sliding-mode regions appear for
ystem (3). Then system (3) satisfies Conditions 𝐻1 and the sliding-
ode regions take the form 𝛴1

𝑠 and 𝛴2
𝑠 , which we show in thick solid

black lines and thick solid grey lines in Fig. 5(b). A pseudo-equilibrium
appears on the grey sliding-mode region 𝛴2

𝑠 . When 𝐸𝑇 continues to
increase (for example, 𝐸𝑇 = 9.5), there is only one sliding-mode region

2
𝑠 for the Filippov system (3) and the pseudo-equilibrium disappears.
he existence of two sliding-mode regions 𝛴1

𝑠 and 𝛴2
𝑠 are shown clearly

n Fig. 5(c), which is a close-up of Fig. 5(b).

. Sliding bifurcation and global dynamics

In this section, we focus our attention on the bifurcation phenomena
f Filippov system (3), in which some sliding-mode region is involved.
here are four types of equilibria and a special point for Filippov system
3): a real equilibrium, a virtual equilibrium, a pseudo-equilibrium, a
oundary equilibrium and a tangent point.

.1. Equilibria of Filippov system (3)

Regular equilibrium. For system (3), 𝐸𝐼
1 is a real equilibrium for

𝑇 > 𝑋11 +𝑋21, while it is a virtual equilibrium for 𝐸𝑇 < 𝑋11 +𝑋21. If
𝐸𝑇 < 𝑋𝑖

1+𝑋
𝑖
2, 𝐸

𝐼𝐼
𝑖 is a real equilibrium, while it is a virtual equilibrium

𝑖 𝑖
for 𝐸𝑇 > 𝑋1+𝑋2, where 𝑖 ∈ {1, 2, 3, 4, 5}. Both the real equilibrium and 𝑡

11 
the virtual equilibrium are called regular equilibria, and only those real
equilibria can be attractors of the system.

Pseudo-equilibrium. It follows from Section 3 that Filippov system
(3) can have at most three pseudo-equilibria 𝐸𝑎

𝑆 (𝑋
𝑎
1 , 𝑋

𝑎
2 ), 𝐸𝑏

𝑆 (𝑋
𝑏
1 , 𝑋

𝑏
2 )

nd 𝐸𝑐
𝑆 (𝑋

𝑐
1 , 𝑋

𝑐
2) if the conditions in case 𝑄42

1 or 𝑃 22
1 hold. Two pseudo-

quilibria exist for (3) if the conditions in Cases 𝑄11
1 , 𝑄2

1, 𝑄1
2, 𝑃 31

1 ,
4
1 , 𝑃 1

2 , 𝑀1
2 or 𝑀2

3 hold. There is only one pseudo-equilibrium if the
onditions in other cases listed in Tables 8, Tables 9 and 10 hold.
Boundary equilibrium. The boundary equilibrium of Filippov sys-

em (3) satisfies the following condition

1

(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

(1 − 𝜖𝑢)𝑋1 − (𝑑1 + 𝑚1)𝜖𝑢𝑋1 = 0,

𝑟2

(

1 −
𝛽𝑋1 +𝑋2

𝐾

)

𝑋2 + 𝑚1𝑢𝜖𝑋1 = 0,

𝑋1 +𝑋2 = 𝐸𝑇 .

(17)

olving (17) yields one boundary equilibrium 𝐸1
𝑏 (𝑋11, 𝑋21) if 𝐸𝑇 =

11 + 𝑋21. We similarly derive five boundary equilibria 𝐸𝑖
𝐵(𝑋

𝑖
1, 𝑋

𝑖
2) if

𝑇 = 𝑋𝑖
1+𝑋𝑖

2, where 𝑖 = 1, 2, 3, 4, 5. The boundary equilibria 𝐸1
𝑏 and 𝐸𝑖

𝐵
re boundary nodes or boundary foci with 𝑖 ∈ {1, 4, 5}, 𝐸2

𝐵 is a boundary
addle and 𝐸3

𝐵 is a boundary saddle node.
Tangent point. The possible tangent point of Filippov system (3)

atisfies the following condition

1(1 − 𝜖𝑢)
(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

𝑋1 + 𝑟2(1 −
𝛽𝑋1 +𝑋2

𝐾
)𝑋2 − 𝑑1𝜖𝑢𝑋1 = 0,

𝑋1 +𝑋2 = 𝐸𝑇 .

(18)

Letting 𝜖 = 0, we obtain

1

(

1 −
𝑋1 + 𝛼𝑋2

𝐾

)

𝑋1 + 𝑟2

(

1 −
𝛽𝑋1 +𝑋2

𝐾

)

𝑋2 = 0,

𝑋1 +𝑋2 = 𝐸𝑇 .
(19)

ubstituting the second equation of (19) into the first equation, we have

1

(

1 −
𝑋1 + 𝛼(𝐸𝑇 −𝑋1)

𝐾

)

𝑋1

+ 𝑟2

(

1 −
𝛽𝑋1 + (𝐸𝑇 −𝑋1)

𝐾

)

(𝐸𝑇 −𝑋1) = 0.

t follows that

12𝑋
2
1 + 𝑡11𝑋1 + 𝑡10 = 0, (20)

here

12 = 𝑟1(𝛼 − 1) + 𝑟2(𝛽 − 1), 𝑡11 = 𝑟1(𝐾 − 𝛼𝐸𝑇 ) + 𝑟2(2𝐸𝑇 − 𝛽𝐸𝑇 −𝐾),
10 = 𝑟2(𝐾 − 𝐸𝑇 )𝐸𝑇 .
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Solving (20) gives two roots

𝑋𝑡
11 =

−𝑡11 +
√

𝑡211 − 4𝑡12𝑡10
2𝑡12

, 𝑋𝑡
12 =

−𝑡11 −
√

𝑡211 − 4𝑡12𝑡10
2𝑡12

.

hus there are two tangent points 𝐸1
𝑡 (𝑋

𝑡
11, 𝑋

𝑡
21) and 𝐸2

𝑡 (𝑋
𝑡
12, 𝑋

𝑡
22) for

system 𝑆1, where

𝑋𝑡
21 = 𝐸𝑇 −𝑋𝑡

11, 𝑋𝑡
22 = 𝐸𝑇 −𝑋𝑡

12.

When 𝜖 = 1, we obtain

𝑡22𝑋
2
1 + 𝑡21𝑋1 + 𝑡20 = 0,

where
𝑡22 = 𝑟1(1 − 𝑢)(𝛼 − 1) + 𝑟2(𝛽 − 1), 𝑡20 = 𝑟2(𝐾 − 𝐸𝑇 )𝐸𝑇 ,

𝑡21 = 𝑟1(1 − 𝑢)(𝐾 − 𝛼𝐸𝑇 ) + 𝑟2(2𝐸𝑇 − 𝛽𝐸𝑇 −𝐾) − 𝑑1𝑢.

Solving the above equation with respect to 𝑋1, one can obtain two roots

𝑋𝑇
11 =

−𝑡21 +
√

𝑡221 − 4𝑡22𝑡20
2𝑡22

, 𝑋𝑇
12 =

−𝑡21 −
√

𝑡221 − 4𝑡22𝑡20
2𝑡22

.

hus there are two tangent points 𝐸1
𝑇 (𝑋

𝑇
11, 𝑋

𝑇
21) and 𝐸2

𝑇 (𝑋
𝑇
12, 𝑋

𝑇
22) for

system 𝑆2, where

𝑋𝑇
21 = 𝐸𝑇 −𝑋𝑇

11, 𝑋𝑇
22 = 𝐸𝑇 −𝑋𝑇

12.

4.2. Boundary-equilibrium bifurcation of Filippov system (3)

It follows from Section 4.1 that there are six boundary equilibria
for system (3). Denote the Jacobians of the free subsystem (5) and the
control subsystem (6) as

𝐽1(𝑋1, 𝑋2) =
⎡

⎢

⎢

⎣

𝑟1
(

1 − 2𝑋1+𝛼𝑋2
𝐾

)

− 𝛼
𝐾 𝑟1𝑋1

− 𝛽
𝐾 𝑟2𝑋2 𝑟2

(

1 − 𝛽𝑋1+2𝑋2
𝐾

)

⎤

⎥

⎥

⎦

nd

2(𝑋1, 𝑋2)

=
⎡

⎢

⎢

⎣

𝑟1(1 − 𝑢)
(

1 − 2𝑋1+𝛼𝑋2
𝐾

)

− (𝑑1 + 𝑚1)𝑢 − 𝛼
𝐾 𝑟1(1 − 𝑢)𝑋1

− 𝛽
𝐾 𝑟2𝑋2 + 𝑚1𝑢 𝑟2

(

1 − 𝛽𝑋1+2𝑋2
𝐾

)

⎤

⎥

⎥

⎦

,

respectively. By the boundary-equilibrium coordinates, we have

det
(

𝐽1(𝐸1
𝑏 )
)

= 𝑟1𝑟2
(𝛼 − 1)(𝛽 − 1)

1 − 𝛼𝛽
≠ 0,

et
(

𝐽2(𝐸1
𝑏 )
)

= 𝑟1𝑟2(1 − 𝑢)
(1 − 𝛼)(1 − 𝛽)

1 − 𝛼𝛽
+ 𝑟2𝑢(𝑑1 + 𝑚1)

1 − 𝛽
1 − 𝛼𝛽

+ 𝑟1(1 − 𝑢)𝛼𝑚1𝑢
1 − 𝛼
1 − 𝛼𝛽

.

When 𝛼 < 1, 𝛽 < 1, we have det
(

𝐽2(𝐸1
𝑏 )
)

≠ 0, so a boundary-node
bifurcation occurs at 𝐸1

𝑏 if 𝐸𝑇 = 𝑋11 + 𝑋12; i.e., 𝐸𝑇 = (2−𝛼−𝛽)𝐾
1−𝛼𝛽 .

When 𝛼 > 1, 𝛽 > 1, a boundary saddle bifurcation occurs at 𝐸1
𝑏 if

det
(

𝐽2(𝐸1
𝑏 )
)

≠ 0 and 𝐸𝑇 = (2−𝛼−𝛽)𝐾
1−𝛼𝛽 .

Similarly, we have

et
(

𝐽2(𝐸𝑖
𝐵)
)

= 𝑟1𝑟2(1 − 𝑢)
𝑋𝑖

1𝑋
𝑖
2

𝐾2
+ 𝑟1𝑚1𝑢(1 − 𝑢)

𝑋𝑖
1

𝐾

(

𝑋𝑖
1

𝑋𝑖
2

+ 𝛼

)

> 0,

det
(

𝐽1(𝐸𝑖
𝐵)
)

= −
2𝑟1𝑟2𝛼
𝐾2

(𝑋𝑖
2)

2 + 𝑟1𝑟2
𝛼 − 𝛼𝛽 − 2 + 4𝑄

𝐾
𝑋𝑖

2

+ 𝑟1𝑟2(1 − 𝛽𝑄)(1 − 2𝑄),

ith 𝑖 = 1, 2, 3, 4, 5. Let

2 = −2𝑟1𝑟2𝛼, 𝐵1 = 𝑟1𝑟2(𝛼−𝛼𝛽−2+4𝑄)𝐾, 𝐵0 = 𝑟1𝑟2(1−𝛽𝑄)(1−2𝑄)𝐾2

nd
2

2(𝑋2) + 𝐵1𝑋2 + 𝐵0 = 0. (21)

12 
hen we have

gn
(

det
(

𝐽1(𝐸𝑖
𝐵)
)

)

= sgn
(

𝐵2(𝑋𝑖
2)

2 + 𝐵1𝑋
𝑖
2 + 𝐵0

)

.

olving (21) with respect to 𝑋2 yields two possible roots:

𝐵
21 =

−𝐵1 +
√

𝐵2
1 − 4𝐵2𝐵0

2𝐵2
, 𝑋𝐵

22 =
−𝐵1 −

√

𝐵2
1 − 4𝐵2𝐵0

2𝐵2
.

hen we have the following three possibilities to consider: 𝐵0 < 0, 𝐵0 >
and 𝐵0 = 0.

When 𝐵0 < 0 holds, one can obtain that 𝑋𝐵
21 ⋅𝑋

𝐵
22 > 0. If we further

ave 𝐵1 > 0, then 𝑋𝐵
21+𝑋𝐵

22 > 0 holds. It follows that det
(

𝐽1(𝐸𝑖
𝐵)
)

≠ 0 if
𝑖
2 ≠ 𝑋𝐵

21 and 𝑋𝑖
2 ≠ 𝑋𝐵

22. Therefore, a boundary-equilibrium bifurcation
ccurs at 𝐸𝑖

𝐵 if and only if 𝐸𝑇 = 𝑋𝑖
1 + 𝑋𝑖

2 and 𝑋𝑖
2 ≠ 𝑋𝐵

21 or 𝑋𝑖
2 ≠ 𝑋𝐵

22,
here 𝑖 = 1, 2, 3, 4, 5. If we further have 𝐵1 ≤ 0, then det

(

𝐽1(𝐸𝑖
1)
)

≠ 0
or all 𝑋𝑖

2 since
𝐵
21 +𝑋𝐵

22 ≤ 0 ⟹ 𝑋𝐵
2𝑖 ≤ 0, 𝑖 = 1, 2,

n this scenario. Hence, a boundary-equilibrium bifurcation occurs at
𝑖
𝐵 if 𝐸𝑇 = 𝑋𝑖

1 +𝑋𝑖
2 with 𝑖 = 1, 2, 3, 4, 5.

When 𝐵0 > 0, we have 𝑋𝐵
21 < 0 and 𝑋𝐵

22 > 0, so det
(

𝐽1(𝐸𝑖
𝐵)
)

≠ 0 if
nd only if 𝑋𝑖

2 ≠ 𝑋𝐵
22. Then a boundary-equilibrium bifurcation occurs

t 𝐸𝑖
𝐵 , 𝑖 = 1, 2, 3, 4, 5 if 𝐸𝑇 = 𝑋𝑖

1 +𝑋𝑖
2 and 𝑋𝑖

2 ≠ 𝑋𝐵
22.

When 𝐵0 = 0, one can obtain that 𝑋𝐵
21 = 0 or 𝑋𝐵

22 = 0. If we further
ave 𝐵1 > 0, then 𝑋𝐵

21 = 0 and 𝑋𝐵
22 > 0, so we have det

(

𝐽1(𝐸𝑖
1)
)

≠ 0 if
nd only if 𝑋𝑖

2 ≠ 𝑋𝐵
22. Hence, a boundary-equilibrium bifurcation occurs

t 𝐸𝑖
𝐵 , 𝑖 = 1, 2, 3, 4, 5, if 𝐸𝑇 = 𝑋𝑖

1 +𝑋𝑖
2 and 𝑋𝑖

2 ≠ 𝑋𝐵
22. If we further have

1 ≤ 0, then 𝑋𝐵
21 < 0 and 𝑋𝐵

22 = 0, so det
(

𝐽1(𝐸𝑖
1)
)

≠ 0 holds true for
ll 𝑋𝑖

2, where 𝑖 = 1, 2, 3, 4, 5. Then a boundary-equilibrium bifurcation
ccurs at 𝐸𝑖

𝐵 , 𝑖 = 1, 2, 3, 4, 5, if 𝐸𝑇 = 𝑋𝑖
1 +𝑋𝑖

2.
Hence a series of boundary-equilibrium bifurcations occur for Filip-

pov system (3). A boundary node (focus) bifurcation, boundary saddle
bifurcation or boundary saddle-node bifurcation occurs with different
parameter values. To better understand the boundary-equilibrium bi-
furcation, we next demonstrate how it occurs by varying the control
parameter 𝐸𝑇 with all other parameters fixed, as shown Fig. 6. In
Fig. 6, the red diamonds represent the saddle points; the red asterisks,
red stars and red circles represent nodes, boundary equilibria and trivial
equilibria, respectively, which are all the regular real equilibria. The
grey thick solid lines and grey thin dashed lines represent the sliding-
mode regions and crossing regions, respectively. The orange curves
and green curves represent the stable and unstable manifolds of the
saddle points 𝐸𝐼𝐼

2 , 𝐸2
𝐵 , 𝐸𝑏

𝑆 and 𝐸𝐼
1 , while the black solid curves are

the trajectories of Filippov system (3). When we select threshold value
𝐸𝑇 = 8, we have 𝐸𝑇 < 𝑋2

1 +𝑋2
2 < 𝑋1

1 +𝑋1
2 , so both 𝐸𝐼𝐼

1 and 𝐸𝐼𝐼
2 are in

he region 𝐺2; i.e., they are real. The equilibria 𝐸𝐼𝐼
1 and 𝐸01 are stable

odes and 𝐸𝐼𝐼
2 is a saddle. The conditions in Case 𝐻2 are satisfied, so

he sliding-mode region 𝛴3 exists, as shown in Table 2 and Fig. 6(a).
s 𝐸𝑇 increases to the critical value 𝐸𝑇 = 𝑋2

1 + 𝑋2
2 (i.e., 𝐸𝑇 = 8.73),

he boundary equilibrium 𝐸2
𝐵 appears, in which 𝐵0 > 0, 𝐵1 > 0 and

2
2 ≠ 𝑋𝐵

22, so a boundary-equilibrium bifurcation occurs, as shown
n Fig. 6(b). Then the conditions in Case 𝐻1 are true, so the sliding-
ode region takes the form 𝛴2

𝑠 . As 𝐸𝑇 continues to increase until it
atisfies 𝑋2

1 +𝑋2
2 < 𝐸𝑇 < 𝑋1

1 +𝑋1
2 , the boundary saddle 𝐸2

𝐵 disappears,
n which the conditions in Case 𝑄2

1 are true, so an unstable pseudo-
quilibrium 𝐸𝑏

𝑆 appears, as shown in Table 8 and Fig. 6(c), and the
liding-mode region 𝛴2

𝑠 still exists. If we increase the threshold value
𝑇 to 9.53, the pseudo-equilibrium 𝐸𝑏

𝑆 disappears. Direct calculation
ives 𝐸𝑇 = 𝑋1

1 +𝑋1
2 , 𝐵0 > 0, 𝐵1 > 0 and 𝑋1

2 ≠ 𝑋𝐵
22, so another boundary

quilibrium 𝐸1
𝐵 occurs. Then another boundary-equilibrium bifurcation

ccurs, as shown in Fig. 6(d). When 𝐸𝑇 continues to increase such that
𝑇 > 𝑋1

1 +𝑋1
2 , the boundary equilibrium 𝐸1

𝐵 disappears, in which the
onditions in Case 𝑃 1

1 hold, so the pseudo-equilibrium 𝐸𝑐
𝑆 appears, as

hown in Table 9 and Fig. 6(e). The real equilibria 𝐸𝐼
1 and 𝐸01 still

xist, where 𝐸𝐼
1 is a saddle and 𝐸01 is a stable node.

With the continuous variation of the control threshold 𝐸𝑇 above,
wo boundary-equilibrium bifurcations occur for Filippov system (3).
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Fig. 6. Boundary-equilibrium bifurcation for Filippov system (3) showing the movement of sliding modes (thick grey lines) and appearance of pseudo-equilibria (red stars). The
parameters are 𝑟1 = 0.5, 𝑟2 = 0.006, 𝛼 = 1.3, 𝛽 = 1.4, 𝑢 = 0.5, 𝑑1 = 0.064, 𝑚1 = 0.00005 and 𝐾 = 11. (a) 𝐸𝑇 = 8, (b) 𝐸𝑇 = 8.73, (c) 𝐸𝑇 = 9, (d) 𝐸𝑇 = 9.53, (e) 𝐸𝑇 = 10.5.
𝐸

t

enoting the values of 𝐸𝑇 in the five scenarios above as 𝐸𝑇1, 𝐸𝑇2,
𝑇3, 𝐸𝑇4 and 𝐸𝑇5, we have

𝑇1 < 𝑋2
1 +𝑋2

2 = 𝐸𝑇2 < 𝐸𝑇3 < 𝑋1
1 +𝑋1

2 = 𝐸𝑇4 < 𝐸𝑇5.

s 𝐸𝑇 goes through the variation 𝐸𝑇1 ⟶ 𝐸𝑇2 ⟶ 𝐸𝑇3, the first
oundary-equilibrium bifurcation occurs, in which we have the fol-
owing transformation 𝐸𝐼𝐼 ⟶ 𝐸2 ⟶ 𝐸𝑏 ; i.e., the real saddle
2 𝐵 𝑆 e

13 
𝐼𝐼
2 becomes the boundary saddle 𝐸2

𝐵 first, and second it becomes
the unstable pseudo-equilibrium 𝐸𝑏

𝑆 , as shown in Fig. 6(a)–(c). Simi-
larly, as 𝐸𝑇 goes through the variation 𝐸𝑇3 ⟶ 𝐸𝑇4 ⟶ 𝐸𝑇5, the
second boundary-equilibrium bifurcation occurs, in which the transfor-
mation 𝐸𝐼𝐼

1 ⟶ 𝐸1
𝐵 ⟶ 𝐸𝑐

𝑆 happens; i.e., the real node 𝐸𝐼𝐼
1 becomes

he boundary node 𝐸1
𝐵 first, and then it becomes the stable pseudo-

𝑐
quilibrium 𝐸𝑆 , as shown in Fig. 6(c)–(e). Thus, as 𝐸𝑇 goes through
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Fig. 7. Flow diagram of the boundary equilibrium bifurcation of Filippov system (3) as the threshold value 𝐸𝑇 varies.
𝐸𝑇1 ⟶ 𝐸𝑇2 ⟶ 𝐸𝑇3 ⟶ 𝐸𝑇4 ⟶ 𝐸𝑇5, two different boundary-
equilibrium bifurcations occur. For clarity, we summarize the main
result in Fig. 7. In Fig. 7, boundary-equilibrium bifurcation (I)/(II)
refers to the first/second boundary-equilibrium bifurcation.

According to the above analysis, small changes in the threshold
value 𝐸𝑇 will cause substantial changes in the dynamic behaviour
of Filippov system (3). Fig. 6 shows that when the threshold level is
𝐸𝑇 = 8.73, if the sum of the initial population of AC-Ds and AC-Is is
8.73, then after rapid switching between implementing and suspending
ADT, the AC-Is may eventually be contained at a higher level. When the
threshold level is greater than 8.73 — for instance, 𝐸𝑇 = 9 — if the
sum of the population of AC-Is and AC-Ds is still equal to the threshold
value 9, the population of AC-Is may eventually stabilize at a higher
level or at a lower level.

4.3. Tangency bifurcation of Filippov system (3)

It follows from Section 3 that there are many sliding-mode regions
for Filippov system (3). As the parameters vary, two, one or no sliding-
mode regions occur, as shown in Table 2. In the above subsection,
we found that a total of four tangent points exist for Filippov system
(3). When the number of sliding-mode regions and the tangent points
change as the parameters vary, Filippov system (3) will undergo a
tangency bifurcation. In the following, we vary the threshold value
𝐸𝑇 and let other parameters be fixed to illustrate the phenomenon
of tangency bifurcation for Filippov system (3), as shown in Fig. 8.
In Fig. 8, the grey thick solid lines denote the sliding-mode regions,
and the grey circles stand for the tangent points. The competition
coefficients between AC-Ds and AC-Is, 𝛼 and 𝛽, are specified as 1.3 and
1.4, respectively, while all other parameters except 𝐸𝑇 are the same as
in Table 1. Then as the threshold value 𝐸𝑇 varies, a series of tangency
bifurcations occur. If the threshold value 𝐸𝑇 = 9.4, Condition 𝐻1 holds,
so there exists one sliding-mode region 𝛴2

𝑠 with two tangent points 𝐸1
𝑡

and 𝐸1
𝑇 for Filippov system (3), as shown in Table 2 and Fig. 8(a). Case

𝑄2
1 also holds in this scenario, so an unstable pseudo-equilibrium 𝐸𝑏

𝑆
exists with two stable regular equilibria 𝐸01 and 𝐸𝐼𝐼

1 . If the threshold
value 𝐸𝑇 decreases to 9.25, Condition 𝐻1 also holds, so another sliding-
mode region 𝛴1

𝑠 appears, although it consists of only one point that
is the collision of the two tangent points 𝐸2

𝑡 and 𝐸2
𝑇 . This suggests a

tangency bifurcation. Thus there are two sliding-mode regions 𝛴1
𝑠 and

𝛴2
𝑠 for Filippov system (3), as shown in Fig. 8(b). If we continue to

decrease the threshold value 𝐸𝑇 such that 𝐸𝑇 = 8.83, then Condition
14 
𝐻1 holds too, so the sliding-mode region 𝛴1
𝑠 expands to a segment

with two tangent points 𝐸2
𝑡 and 𝐸2

𝑇 from a collision point, as shown
in Fig. 8(c). Thus two sliding-mode regions 𝛴1

𝑠 , bounded by the two
tangent points 𝐸2

𝑡 and 𝐸2
𝑇 , and 𝛴2

𝑠 , bounded by the two tangent points
𝐸1
𝑡 and 𝐸1

𝑇 coexist for Filippov system (3). When 𝐸𝑇 decreases to 8.82,
Condition 𝐻2 holds, so the two tangent points 𝐸1

𝑡 and 𝐸2
𝑡 collide to

one regular point, while the two sliding-mode regions 𝛴1
𝑠 and 𝛴2

𝑠 merge
into one sliding-mode region 𝛴3 with two tangent points 𝐸1

𝑇 and 𝐸2
𝑇 , as

shown in Fig. 8(d). This demonstrates a second tangency bifurcation.
When 𝐸𝑇 continues to decrease such that 𝐸𝑇 = 8.5, Condition 𝐻2 is
also true, so there is also only one sliding-mode region 𝛴3

𝑠 , as shown
in Fig. 8(e). When the threshold value 𝐸𝑇 decreases to 7.92, Condition
𝐻2 also holds, so the two tangent points 𝐸1

𝑇 and 𝐸2
𝑇 collide such that

the sliding-mode region 𝛴3
𝑠 shrinks to one point, as shown in Fig. 8(e).

This indicates the occurrence of a third tangency bifurcation. When 𝐸𝑇
decreases continuously, the sliding-mode region 𝛴3

𝑠 disappears.
It is worth emphasizing that when the control threshold 𝐸𝑇 de-

creases continuously, as addressed above, three tangency bifurcations
occur for Filippov system (3). Let the values of 𝐸𝑇 in the above six
scenarios be 𝐸𝑇𝑐𝑖, 𝑖 = 1, 2, 3, 4, 5, 6, with 𝐸𝑇𝑐1 = 9.4, 𝐸𝑇𝑐2 = 9.25,
𝐸𝑇𝑐3 = 8.83, 𝐸𝑇𝑐4 = 8.82, 𝐸𝑇𝑐5 = 8.5 and 𝐸𝑇𝑐6 = 7.92. Then we have

𝐸𝑇𝑐1 < 𝐸𝑇𝑐2 < 𝐸𝑇𝑐3 < 𝐸𝑇𝑐4 < 𝐸𝑇𝑐5 < 𝐸𝑇𝑐6.

As 𝐸𝑇 goes through the variation 𝐸𝑇𝑐1 ⟶ 𝐸𝑇𝑐2 ⟶ 𝐸𝑇𝑐3, the first
tangency bifurcation occurs, as shown in Fig. 8(a)–(c). In particular,
when 𝐸𝑇 = 𝐸𝑇𝑐2, the sliding-mode region 𝛴1

𝑠 appears with only one
point that is the collision of the two tangent points 𝐸2

𝑡 and 𝐸2
𝑇 , so the

sliding-mode region becomes 𝛴1
𝑠
⋃

𝛴2
𝑠 from 𝛴2

𝑠 , as shown in Fig. 8(b).
As 𝐸𝑇 goes through the variation 𝐸𝑇𝑐3 ⟶ 𝐸𝑇𝑐4 ⟶ 𝐸𝑇𝑐5, the second
tangency bifurcation occurs, as shown in Fig. 8(c)–(e). In particular,
when 𝐸𝑇 = 𝐸𝑇𝑐4, the two tangent points 𝐸1

𝑡 and 𝐸2
𝑡 collide to one

point, so the two sliding-mode regions 𝛴1
𝑠 and 𝛴2

𝑠 merge into one
sliding-mode region 𝛴3

𝑠 , as shown in Fig. 8(d). Similarly, as 𝐸𝑇 goes
through the variation 𝐸𝑇𝑐5 ⟶ 𝐸𝑇𝑐6, the third tangency bifurcation
occurs, as shown in Fig. 8(e)–(f). In particular, when 𝐸𝑇 = 𝐸𝑇𝑐6, the
two tangent points 𝐸1

𝑇 and 𝐸2
𝑇 collide to one point, so the sliding-mode

region 𝛴3
𝑠 shrinks to one point, as shown in Fig. 8(f). For clarity, we

summarize the main result in the following flow diagram. In Fig. 9,
tangency bifurcations (I), (II) and (III) refer to the first, second and
third tangency bifurcation, respectively. ‘SR’ and ‘TP’ represent the
sliding-mode region and the tangent points, respectively.

The above analysis demonstrates that varying the threshold level
𝐸𝑇 has a significant effect on the evolution of the population of
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Fig. 8. Tangency bifurcation for Filippov system (3) showing the movement and eventual collapse of the sliding mode (thick grey lines and circles). The parameters are 𝑟1 = 0.5,
2 = 0.006, 𝛼 = 1.3, 𝛽 = 1.4, 𝑢 = 0.5, 𝑑1 = 0.064, 𝑚1 = 0.00005 and 𝐾 = 11. (a) 𝐸𝑇 = 9.4, (b) 𝐸𝑇 = 9.25, (c) 𝐸𝑇 = 8.83, (d) 𝐸𝑇 = 8.82, (e) 𝐸𝑇 = 8.5, (f) 𝐸𝑇 = 7.92.
o
—
e

rostate cancer cells. For example, as shown in Fig. 8, if the threshold
evel satisfied 𝐸𝑇 ≥ 9.25 and the population of AC-Is eventually
tabilizes at the level 𝐾, then a period of rapid switching between

mplementing and suspending ADT is initiated before the population i

15 
f AC-Is goes to the level 𝐾. If the threshold level is less than 9.25
for instance, 𝐸𝑇 = 8.83 — then although the population of AC-Is

ventually stabilizes at level 𝐾, two periods of rapid switching between

mplementing and suspending ADT are initiated.
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Fig. 9. Flow diagram of the tangency bifurcation of Filippov system (3) with the variation of the threshold value 𝐸𝑇 .
4.4. Global dynamics of Filippov system (3)

According to Section 2 and Subsection 4.1, there are a total of nine
possible regular equilibria for Filippov system (3), including six positive
equilibria (𝐸𝐼

1 and 𝐸𝐼𝐼
𝑖 , 𝑖 = 1, 2, 3, 4, 5) and three trivial equilibria

(𝐸0, 𝐸01 and 𝐸10). Every real equilibrium can be the attractor of
Filippov system (3). There exists a pseudo-equilibrium, and three or
two pseudo-equilibria coexist if we choose suitable parameters, while
only one pseudo-equilibrium exists in some parameter spaces, as shown
in Tables 8, 9 and 10. Among these pseudo-equilibria, some are stable
and can be the attractors of Filippov system (3), while the others are
unstable. In different parameter spaces, one or two of the seven possi-
ble sliding-mode regions 𝛴1

𝑠 , 𝛴
2
𝑠 , 𝛴

3
𝑠 , 𝛴

4
𝑠 , 𝛴

5
𝑠 , 𝛴

1
𝑠
⋃

𝛴2
𝑠 and 𝛴1

𝑠
⋃

𝛴4
𝑠 exist

for Filippov system (3). So as the parameters vary, different sliding-
mode regions, regular equilibria and pseudo-equilibria appear, which
results in rich dynamics. In the following, we choose the competition
coefficients between AC-Ds and AC-Is 𝛼, 𝛽 as 1.3 and 1.4, respectively,
while all other parameters except 𝐸𝑇 are fixed as in Table 1. Then, for
different threshold values 𝐸𝑇 , our targeted model (3) exhibits different
behaviour.

When the threshold value 𝐸𝑇 = 7.92, there are four equilibria
𝐸0, 𝐸01, 𝐸𝐼𝐼

1 and 𝐸𝐼𝐼
2 for system (3), as shown in Fig. 10(a). The

equilibria 𝐸01 and 𝐸𝐼𝐼
1 are stable nodes, while 𝐸0 and 𝐸𝐼𝐼

2 are saddle
points. There is one sliding-mode region, 𝛴2

𝑠 with only one point. For
convenience, we denote the stable manifolds of the saddle point 𝐸𝐼𝐼

2
as 𝛷1

2 and 𝛷2
2. Thus 𝛷1

2 and 𝛷2
2 divide R2

+ into two subregions. The
subregion consisting of all points above (resp. below) 𝛷1

2 and 𝛷2
2 is

denoted as 𝛤21 (resp. 𝛤22). We denote the initial point of system (3)
as 𝑍0 ≡ (𝑋10, 𝑋20) in the following. Thus every trajectory starting from
𝑍0 ∈ 𝛤21 will tend to the regular equilibrium 𝐸01, while every trajectory
starting from 𝑍0 ∈ 𝛤22 will tend to the regular equilibrium 𝐸𝐼𝐼

1 , as
shown in Fig. 10(a). Hence, we have bistability of the equilibria 𝐸01
and 𝐸𝐼𝐼

1 in system (3).
When the threshold value increases to 𝐸𝑇 = 8, as shown in

Fig. 10(b), the unique sliding-mode region 𝛴2
𝑠 becomes longer, which

satisfies Condition 𝐻1. The regular equilibria 𝐸01 and 𝐸𝐼𝐼
1 also are

attractors of Filippov system (3). In Fig. 10(c), the threshold value 𝐸𝑇
increases to 8.83, and two sliding-mode regions 𝛴1

𝑠 and 𝛴2
𝑠 occur. Both

𝐸01 and 𝐸𝐼𝐼
1 also exist, which are two stable nodes. There exists one

pseudo-equilibrium 𝐸𝑏
𝑆 for Filippov system (3), which is a saddle in

2 2
Case 𝑄1 on the longer sliding-mode region 𝛴𝑠 . Similarly, denote the

16 
stable manifolds of pseudo-equilibrium 𝐸𝑏
𝑆 as 𝛷1

𝑏 and 𝛷2
𝑏 , which divide

R2
+ into two subregions, 𝛤𝑏1 and 𝛤𝑏2. Subregion 𝛤𝑏1 (resp. 𝛤𝑏2) consists

of all points above (resp. below) 𝛷1
𝑏 and 𝛷2

𝑏 . Hence every orbit starting
from all points 𝑍0 ∈ 𝛤𝑏1 will tend to the regular equilibrium 𝐸01, and
every orbit starting from all points 𝑍0 ∈ 𝛤𝑏2 will tend to another regular
equilibrium 𝐸𝐼𝐼

1 . Thus, there are also two attractors, 𝐸𝐼𝐼
1 and 𝐸01, for

system (3).
When the threshold value 𝐸𝑇 increases to 9, as shown in Fig. 10(d),

the shorter sliding-mode region 𝛴1
𝑠 in the above situation disappears,

and there is one sliding-mode region 𝛴2
𝑠 . The unique pseudo-equilibrium

𝐸𝑏
𝑆 exists in the form of a saddle, and 𝐸01 and 𝐸𝐼𝐼

1 are two attractors of
Filippov system (3). In Fig. 10(e), the threshold value 𝐸𝑇 continues to
increase to 9.53, and the sliding-mode region 𝛴2

𝑠 still exists, but pseudo-
equilibrium 𝐸𝑏

𝑆 disappears and changes into a regular equilibrium 𝐸𝐼
1 ,

which is a saddle. The regular equilibrium 𝐸𝐼𝐼
1 changes into a boundary

equilibrium 𝐸1
𝐵 , which is a stable node. Denote the stable manifolds of

real equilibrium 𝐸𝐼
1 as 𝛷1

1 and 𝛷2
1; they divide R2

+ into two subregions,
𝛤11 and 𝛤12, where 𝛤11 (resp. 𝛤12) consists of all points above (resp.
below) 𝛷1

1 and 𝛷2
1. Every orbit starting from all points 𝑍0 ∈ 𝛤11 will

tend to the regular equilibrium 𝐸01, and every orbit starting from all
points 𝑍0 ∈ 𝛤12 will tend to the boundary equilibrium 𝐸1

𝐵 . Hence, we
have bistability of the two equilibria, 𝐸1

𝐵 and 𝐸01, in system (3).
When the threshold value 𝐸𝑇 continues to increases to 10.5, as

shown in Fig. 10(f). A saddle 𝐸𝐼
1 and a stable node 𝐸01 still exist.

Boundary equilibrium 𝐸1
𝐵 disappears, and a stable pseudo-equilibrium

𝐸𝑐
𝑆 occurs. Every orbit starting from all points 𝑍0 ∈ 𝛤11 will tend to the

regular equilibrium 𝐸01, and every orbit starting from all points 𝑍0 ∈
𝛤12 will tend to the pseudo-equilibrium 𝐸𝑐

𝑆 . Hence we have bistability
of equilibria 𝐸𝑐

𝑠 and 𝐸01 in system (3). For clarity, we summarize the
main result in Table 11.

According to the above analysis, the final population of prostate
cancer cells not only depends on the threshold level 𝐸𝑇 but also
depends on the population of AC-Ds and AC-Is at the initial moment.
Choosing a suitable threshold level 𝐸𝑇 can contain the population of
AC-Is at a very low level in patients whose population of prostate cancer
cells in their early treatment can very widely.

5. Discussion

Androgen-deprivation therapy (ADT) is the main method to control

prostate cancer, and many models have been established to study the
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Fig. 10. 𝑋1-𝑋2 phase plane for Filippov system (3), showing the global dynamics of Filippov system (3). Sliding modes are created, merge and change stability (thick grey lines).
The parameters are 𝑟1 = 0.5, 𝑟2 = 0.006, 𝛼 = 1.3, 𝛽 = 1.4, 𝑢 = 0.5, 𝑑1 = 0.064, 𝑚1 = 0.00005 and 𝐾 = 11. (a) 𝐸𝑇 = 7.92, (b) 𝐸𝑇 = 8, (c) 𝐸𝑇 = 8.83, (d) 𝐸𝑇 = 9, (e) 𝐸𝑇 = 9.53, (f)
𝑇 = 10.5.
c
t
c
t

s

ffect of ADT in controlling the development of the prostate cancer.
hese models mainly focus on the efficacy of continuous therapy, but

ntermittent androgen-deprivation therapy (IADT) plays a vital role in
he treatment. In this study, we establish a type of novel non-smooth
odel to mimic the effect of IADT to combat the development of ADT

y introducing a joint piecewise-defined control function. The joint
 t

17 
ontrol measure is defined as follows: ADT is carried out once the to-
al population of androgen-dependent cells and androgen-independent
ells (AC-Is) of the patients exceeds the threshold value 𝐸𝑇 , while the
reatment is suspended once the population of cancer cells is below 𝐸𝑇 .

We first analysed the existence of all possible equilibria for the free-
ubsystem and control-subsystem and then examined the dynamics of

he two subsystems. The sliding-mode region as well as the sliding
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Table 11
Attractors, attraction regions and sliding-mode regions for Filippov system (3) with the
variation of threshold values.

Threshold values Sliding-mode regions Attractors with attraction regions

𝐸𝑇 = 7.92 𝛴3
𝑠 (𝐸

1
𝑇 ∕𝐸

2
𝑇 ) 𝐸01(𝛤21), 𝐸𝐼𝐼

1 (𝛤22), 𝐸𝐼𝐼
2 (𝛷1

2
⋃

𝛷2
2)

𝐸𝑇 = 8 𝛴3
𝑠 𝐸01(𝛤21), 𝐸𝐼𝐼

1 (𝛤22), 𝐸𝐼𝐼
2 (𝛷1

2
⋃

𝛷2
2)

𝐸𝑇 = 8.83 𝛴2
𝑠
⋃

𝛴1
𝑠 𝐸01(𝛤𝑏1), 𝐸𝐼𝐼

1 (𝛤𝑏2), 𝐸𝑏
𝑠 (𝛷

1
𝑏
⋃

𝛷2
𝑏 )

𝐸𝑇 = 9 𝛴2
𝑠 𝐸01(𝛤𝑏1), 𝐸𝐼𝐼

1 (𝛤𝑏2), 𝐸𝑏
𝑠 (𝛷

1
𝑏
⋃

𝛷2
𝑏 )

𝐸𝑇 = 9.53 𝛴2
𝑠 𝐸01(𝛤11), 𝐸1

𝐵 (𝛤12), 𝐸1
1 (𝛷

1
1
⋃

𝛷2
1)

𝐸𝑇 = 10.5 𝛴2
𝑠 𝐸01(𝛤11), 𝐸𝑐

𝑆 (𝛤12), 𝐸1
1 (𝛷

1
1
⋃

𝛷2
1)

dynamics are discussed for the proposed Filippov system. We found that
seven possible sliding-mode regions may occur for our targeted system.
As the parameters vary, there are either one or two sliding-mode
regions for the targeted system. Two pieces of sliding-mode regions
coexist for system (3) if certain conditions are satisfied; while two other
pieces of sliding-mode regions exist if other conditions are satisfied. In
different parameter space, there are one, two or at most three pseudo-
equilibria for the targeted Filippov system. The most interesting is that
a total of three pseudo-equilibria can coexist under certain conditions;
one of these pseudo-equilibria is stable, while the other two pseudo-
equilibria are unstable. These three pseudo-equilibria also exist for our
targeted Filippov system when other conditions hold, where two of
them are stable and the other is unstable. The conditions and stability of
all pseudo-equilibria are shown in Tables 8, 9 and 10. Biologically, the
existence of a sliding-mode region provides the possibility of a rapid
alternation of initiating ADT while suspending ADT and vice versa,
which leads to shorter periods of both modalities. The existence of
a stable pseudo-equilibrium suggests that the population of prostate
cancer cells can be curbed at a predetermined level.

A series of boundary-equilibrium bifurcations — including a
boundary-node (focus) bifurcation, a boundary-saddle bifurcation and
a boundary–saddle-node bifurcation — occur for our targeted Filippov
system. In particular, as the threshold value 𝐸𝑇 increases from 𝐸𝑇1
o 𝐸𝑇5, two boundary-equilibrium bifurcations (i.e., a boundary saddle
ifurcation and a boundary-node bifurcation) occur for the targeted
ilippov system. As the threshold value 𝐸𝑇 varies, the number of
liding-mode regions and tangent points will change, resulting in a
eries of tangency bifurcations for targeted Filippov system. As 𝐸𝑇
ecreases from 𝐸𝑇𝑐1 to 𝐸𝑇𝑐6, the targeted Filippov system undergoes a
otal of three tangency bifurcations, in which one sliding-mode region
hanges to two sliding-mode regions, or these two sliding-mode regions
erge into one sliding-mode region, or the sliding-mode region shrinks

o a single point. These phenomena indicate that small changes in
he threshold value will cause substantial changes in the dynamic
ehaviour of the targeted Filippov system. In particular, small changes
n 𝐸𝑇 result in a variation of the attractors or the sliding mode regions,
hich suggests a variation of procession dynamics or a stabilized level
f the population of prostate cancer cells occurring as the threshold
alue crosses the critical value.

Due to the complexity of the dynamics for Filippov system (3), it
s hard to theoretically determine the global dynamics in the whole
arameter space, and our numerical simulations show some special
ases, in which we have addressed the coexistence of three equilibria
s well as the bistability of two equilibria. With different threshold
alues and initial states, the trajectory of the targeted Filippov system
ltimately approaches the trivial equilibrium, one of the regular equi-
ibria, one of the boundary equilibria or the pseudo-equilibrium. The
ain findings indicate that the population of AC-Is can be contained

t a relatively low level or a predetermined level if its initial value is
elow the critical value and a proper threshold value is chosen. We can
urther choose a threshold such that the rapid alternation of activating
DT and suspending ADT is required for one period, two periods or no
eriod of time before the population of prostate cancer cells stabilizes.
his is related to studies focused on optimal schedules of treatment or
n whether cancer cells can be eliminated. For example, Pei et al. [20]
18 
proposed optimal durations of on- and off-treatment and chemotherapy
dosages. Hirata et al. [23] found that for those patients, the relapse of
prostate cancer can be delayed by IADT compared with CADT, but that
IADT cannot stabilize the origin where no cancer cells exist. In contrast
to these studies, we have proposed strategies to contain the prostate
cancer cells at a specified level when elimination is not possible.

Our model has several limitations, which should be acknowledged.
We ignore the possibility of back mutation in our model, which we
will consider in future work. Filippov systems are an approximate
description of the switching between two distinctive control measures
in the real world after a threshold is reached; a piecewise model with
a threshold window constituted by a lower threshold and an upper
threshold could better mimic real-world activation. This would result
in a system that is different and much less smooth than the Filippov
system. Treatment may also work asymmetrically for AC-Ds versus AC-
Is, which can be mimicked by a more detailed model and will be
addressed in a future study.

We focused on the effect of the IADT in controlling prostate cancer,
which leads to a Filippov model with a joint threshold. The main results
obtained in this work indicate that we can choose an appropriate joint
threshold such that as few AC-Ds mutate into AC-Is as possible and that
we can reduce the population of AC-Ds and AC-Is as much as possible
after IADT treatment. Designing such treatment schedules could greatly
ease the burden of prostate-cancer treatment and vastly increase patient
quality of life.
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Appendix A. Existence of pseudo-equilibrium for the case 𝜸𝟎 > 𝟎

In the following, we examine the existence of all possible pseudo-
equilibria and their stability for 𝛾0 < 0 by implementing a similar
analysis for the case 𝛾0 > 0. In this case, there are also three scenarios.

Case 𝑃1: 𝛾0 < 0, 𝑁 < 0. In this case, there also exist three roots
𝑋𝑎

1 , 𝑋𝑏
1 and 𝑋𝑐

1 for 𝛤 (𝑋1) = 0, and we have the following four further
ossibilities to consider according to the sign of 𝛾3 and 𝛾2.

Case 𝑃 1
1 : 𝛾3 > 0, 𝛾2 ≥ 0. In this case, two negative roots and one

ositive root (i.e., 𝑋𝑐
1) exist for 𝛤 (𝑋1) = 0 since 𝑋𝑎

1 +𝑋𝑏
1 +𝑋𝑐

1 ≤ 0 and
𝑎
1 ⋅ 𝑋𝑏

1 ⋅ 𝑋
𝑐
1 > 0. Performing a similar analysis to Case 𝑄1, we get the

etailed conditions for the existence of one positive root and describe
hem in Table 12.

Case 𝑃 2
1 : 𝛾3 > 0, 𝛾2 < 0. In this case, there exist two negative roots

nd one positive root (i.e., 𝑋𝑐
1) or three positive roots (i.e., 𝑋𝑎

1 , 𝑋𝑏
1 and

𝑐
1) since 𝑋𝑎

1 +𝑋𝑏
1 +𝑋𝑐

1 > 0 and 𝑋𝑎
1 ⋅𝑋𝑏

1 ⋅𝑋
𝑐
1 > 0. One positive root or

hree positive roots exist if one of the following conditions are satisfied:
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Table 12
Conditions for the existence of one positive root in Case 𝑃 1

1 .

𝑁 < 0, 𝛾0 < 0

𝛼 < 1, 𝛽 < 1

𝛾21 > 0, 𝛾20 > 0, for all 𝐸𝑇
𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 < 0, 𝜃20 > 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
𝐸𝑇 = − 𝛾20

𝛾21

𝛼 > 1, 𝛽 > 1

𝛾21 > 0, 𝛾20 > 0, for all 𝐸𝑇
𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 < 0, 𝜃20 > 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
𝐸𝑇 = − 𝛾20

𝛾21

Table 13
Conditions for the existence of positive roots in Case 𝑃 2

1 .

Conditions Number of
roots

𝛾0 < 0, 𝑁 < 0

𝛼 < 1, 𝛽 < 1, 𝛾1 < 0
𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21

One

𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20
𝛾21

𝛾21 < 0, 𝛾20 < 0, for all 𝐸𝑇

𝛼 > 1, 𝛽 > 1, 𝛾1 < 0
𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 < 0, for all 𝐸𝑇

𝛼 < 1, 𝛽 < 1, 𝛾1 > 0
𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21

Three

𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20
𝛾21

𝛾21 < 0, 𝛾20 < 0, for all 𝐸𝑇

𝛼 > 1, 𝛽 > 1, 𝛾1 > 0
𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 < 0, for all 𝐸𝑇

• 𝛼 < 1, 𝛽 < 1, 𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20
𝛾21

;

• 𝛼 < 1, 𝛽 < 1, 𝛾21 < 0, 𝛾20 < 0;
• 𝛼 < 1, 𝛽 < 1, 𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20

𝛾21
;

• 𝛼 > 1, 𝛽 > 1, 𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20
𝛾21

;

• 𝛼 > 1, 𝛽 > 1, 𝛾21 < 0, 𝛾20 < 0;
• 𝛼 > 1, 𝛽 > 1, 𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20

𝛾21
.

By solving 𝛤 ′(𝑋1) = 0 with respect to 𝑋1, we get two roots, the
maller of which is

′
12 =

−𝛾2 −
√

𝛾22 − 3𝛾3𝛾1
3𝛾3

.

If 𝑋′
12 < 0, there is one positive root for (13), while there are three

positive roots if 𝑋′
12 > 0. Direct calculation yields that 𝑋′

12 < 0 for
𝛾1 < 0 and 𝑋′

12 > 0 for 𝛾1 > 0. Concluding the above discussion, we
derive the conditions for the existence of one positive root, which we
denote as 𝑃 21

1 , and the conditions for three positive roots, which we
denote as 𝑃 22

1 , and summarize them in Table 13.
Case 𝑃 3

1 : 𝛾3 < 0, 𝛾2 < 0. In this case, there exist one negative root and
two positive roots (i.e., 𝑋𝑎

1 and 𝑋𝑏
1) or three negative roots. Whether

there are two positive roots in this scenario depends on the sign of the
larger root of 𝛤 ′(𝑋1) = 0; i.e.,

𝑋′
12 =

−𝛾2 −
√

𝛾22 − 3𝛾3𝛾1
3𝛾3

.

If 𝑋′
12 > 0, there are two positive roots. 𝑋′

12 > 0 if 𝛾1 > 0, so we denote
he conditions (𝛾0 < 0, 𝑁 < 0, 𝛾3 < 0, 𝛾2 < 0, 𝛾1 > 0) for two positive
oots as 𝑃 31

1 . Similarly, we obtain the conditions for the existence of
wo positive roots and summarize these results in Table 14.

Case 𝑃 4
1 : 𝛾3 < 0, 𝛾2 ≥ 0. Similarly, there exist two positive roots

i.e., 𝑋𝑎
1 and 𝑋𝑏

1) and one negative root for (13). We derive the condi-
ions to guarantee the existence of two positive roots and summarize
hem in Table 15.

Case 𝑃2: When 𝑁 = 0, there are three real roots for (13). There are

total of two distinct real roots, including a root of multiplicity two 𝛾

19 
able 14
onditions for the existence of two positive roots in Case 𝑃 3

1 .

𝛾0 < 0, 𝑁 < 0

𝛼 > 1, 𝛽 < 1, 𝛾1 > 0
𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 < 0, for all 𝐸𝑇

𝛼 < 1, 𝛽 > 1, 𝛾1 > 0
𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 < 0, for all 𝐸𝑇

Table 15
Conditions of the existence of two positive roots in Case 𝑃 4

1 .

𝛾0 < 0, 𝑁 < 0

𝛼 > 1, 𝛽 < 1

𝛾21 > 0, 𝛾20 > 0, for all 𝐸𝑇
𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
𝐸𝑇 = − 𝛾20

𝛾21

𝛼 < 1, 𝛽 > 1

𝛾21 > 0, 𝛾20 > 0, for all 𝐸𝑇
𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
𝐸𝑇 = − 𝛾20

𝛾21

Table 16
Conditions for the existence of two distinct positive real roots for Case 𝑃2.

𝛾0 < 0, 𝑁 = 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0

𝛼 < 1, 𝛽 < 1, 𝛾1 > 0
𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 < 0, for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20

𝛾21

𝛼 > 1, 𝛽 > 1, 𝛾1 > 0
𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
𝛾21 < 0, 𝛾20 < 0, for all 𝐸𝑇
𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20

𝛾21

and a single root if we further have 𝑛1 ≠ 0, 𝑛0 ≠ 0; otherwise, there is
nly one real root which is of multiplicity three. Similar to Case 𝑃1, we
et the conditions for the existence of two distinct real roots 𝑋𝐴

1 , 𝑋𝑐
1 or

𝐵
1 , 𝑋𝑎

1 , which are 𝑁 = 0, 𝛾0 < 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 > 0, 𝛾3 > 0, 𝛾2 < 0.
e summarize them in Table 16. For convenience, we denote them as

ondition 𝑃 1
2 below. We similarly get the conditions for the existence

f only one positive real root of multiplicity three 𝑋𝐷
1 by replacing the

onditions 𝑛1 ≠ 0, 𝑛0 ≠ 0 with 𝑛1 = 0, 𝑛0 = 0. We denote this set of
onditions as 𝑃 2

2 below. Similarly, there is only one positive root 𝑋𝑐
1 if

= 0, 𝛾0 < 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾3 > 0, 𝛾2 ≥ 0

r

= 0, 𝛾0 < 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 < 0, 𝛾3 > 0, 𝛾2 < 0

olds true, which we denote as 𝑄3
2 and 𝑄4

2 below. There exists one
ositive root 𝑋𝐴

1 of multiplicity two, if

= 0, 𝛾0 < 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾3 < 0, 𝛾2 < 0

r

= 0, 𝛾0 < 0, 𝑛1 ≠ 0, 𝑛0 ≠ 0, 𝛾1 < 0, 𝛾3 < 0, 𝛾2 ≥ 0

olds true, which we denote as 𝑄5
2 and 𝑄6

2.
Case 𝑃3: When 𝑁 > 0, there is one real root and two imaginary

oots for 𝛤 (𝑋1) = 0. According to (14), the unique real root of (15) is
ositive when 𝛾3 > 0. Direct calculation gives 𝛾3 > 0 if 𝛼 > 1, 𝛽 > 1 or
< 1, 𝛽 < 1.

ppendix B. Existence of pseudo-equilibrium for the case 𝜸𝟎 = 𝟎

We next examine the existence of pseudo-equilibria for the Filippov
ystem (3) when 𝛾0 = 0. To this end, it is necessary to solve the positive
oot of Eq. (13). We only need to analyse the positive roots of the
ollowing equation

𝑋2 + 𝛾 𝑋1 + 𝛾 = 0. (22)
3 1 2 1 1
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Denote 𝛺 = 𝛾22 −4𝛾3𝛾1. When 𝛺 > 0, there are two roots 𝑋𝑒
1 and 𝑋𝑓

1 for
22), while there is only one root 𝑋𝐸

1 if 𝛾2 = 0, where

𝑒
1 =

−𝛾2 −
√

𝛾22 − 4𝛾3𝛾1
2𝛾3

, 𝑋𝑓
1 =

−𝛾2 +
√

𝛾22 − 4𝛾3𝛾1
2𝛾3

, 𝑋𝐸
1 =

√

−𝛾1
𝛾3

,

which satisfy 𝑋𝑒
1 + 𝑋𝑓

1 = − 𝛾2
𝛾3
, 𝑋𝑒

1 ⋅ 𝑋𝑓
1 = 𝛾1

𝛾3
. So we have five further

cases to consider according to the sign of 𝛾1, 𝛾2 and 𝛾3.
Case 𝑀1: 𝛾3 > 0, 𝛾2 > 0. In this scenario, we have 𝑋𝑒

1 +𝑋𝑓
1 ≤ 0 since

− 𝛾2
𝛾3

≤ 0. When 𝛾1 > 0, we have 𝑋𝑒
1 ⋅ 𝑋

𝑓
1 > 0 since 𝛾1

𝛾3
> 0, so both 𝑋𝑒

1

and 𝑋𝑓
1 are negative. When 𝛾1 < 0, we have 𝑋𝑒

1 ⋅𝑋
𝑓
1 < 0, so there is one

positive root 𝑋𝑓
1 and one negative root 𝑋𝑒

1 for (22). We denote these
conditions (𝛾0 = 0, 𝛺 > 0, 𝛾3 > 0, 𝛾2 > 0, 𝛾1 < 0) for the existence of one
positive root (i.e., 𝑋𝑓

1 ) as Case 𝑀1
1 . Further investigation yields that

𝑋𝑓
1 is a positive root for (22) if 𝛼 < 1, 𝛽 < 1 and one of the following

conditions holds:
(𝑀𝑎

1 ) 𝛾21 > 0, 𝛾20 > 0;
(𝑀𝑏

1 ) 𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20
𝛾21

;
(𝑀𝑐

1 ) 𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20
𝛾21

.
We similarly derive that 𝑋𝑓

1 is the unique positive root if 𝛼 > 1, 𝛽 > 1
nd one of (𝑀𝑠

1 ), 𝑠 ∈ {𝑎, 𝑏, 𝑐} is true.
Case 𝑀2: 𝛾3 > 0, 𝛾2 < 0. In this scenario, 𝑋𝑒

1 + 𝑋𝑓
1 > 0 since

− 𝛾2
𝛾3

> 0. When 𝛾1 > 0, we have 𝑋𝑒
1 ⋅ 𝑋𝑓

1 > 0 since 𝛾1
𝛾3

> 0, so both
𝑋𝑒

1 and 𝑋𝑓
1 are positive roots of (22). When 𝛾1 < 0, it follows that

𝑋𝑒
1 ⋅ 𝑋𝑓

1 < 0 since 𝛾1
𝛾3

< 0, so there is only one positive root 𝑋𝑓
1 of

(22). We denote the conditions to guarantee two positive roots (resp.
one positive root) — i.e., 𝛾0 = 0, 𝛺 > 0, 𝛾3 > 0, 𝛾2 < 0, 𝛾1 > 0 (resp.
𝛾0 = 0, 𝛺 > 0, 𝛾3 > 0, 𝛾2 < 0, 𝛾1 < 0) — as Case 𝑀1

2
(

resp.𝑀2
2
)

. There
are two (resp. one) positive roots — i.e., 𝑋𝑒

1 and 𝑋𝑓
1 (resp. 𝑋𝑓

1 ) — if
𝛼 < 1, 𝛽 < 1, 𝛾1 > 0 (resp. 𝛾1 < 0) and one of the following conditions
hold:

(𝑀𝑎
2 ) 𝛾21 > 0, 𝛾20 < 0, 0 < 𝐸𝑇 < − 𝛾20

𝛾21
;

(𝑀𝑏
2 ) 𝛾21 < 0, 𝛾20 < 0, for all 𝐸𝑇 ;

(𝑀𝑐
2 ) 𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20

𝛾21
.

Similarly, 𝑋𝑒
1 and 𝑋𝑓

1 are positive roots for (22) if 𝛼 > 1, 𝛽 > 1 and
𝛾1 > 0, while only 𝑋𝑓

1 is a positive root for (22) if 𝛼 > 1, 𝛽 > 1 and
𝛾1 < 0.

Case 𝑀3: 𝛾3 < 0, 𝛾2 > 0. In this scenario, we have 𝑋𝑒
1 +𝑋𝑓

1 > 0 since
− 𝛾2

𝛾3
> 0. If we further have 𝛾1 > 0, then 𝑋𝑒

1 ⋅ 𝑋𝑓
1 < 0 since 𝛾1

𝛾3
< 0,

so there is only one positive root 𝑋𝑓
1 of Eq. (22). If we have 𝛾1 < 0,

hen 𝑋𝑒
1 ⋅ 𝑋𝑓

1 > 0 since 𝛾1
𝛾3

> 0, so both 𝑋𝑒
1 and 𝑋𝑓

1 are positive roots
of Eq. (22). We similarly denote the conditions for one positive root
(resp. two positive roots) — i.e., 𝛾0 = 0, 𝛺 > 0, 𝛾3 < 0, 𝛾2 > 0, 𝛾1 > 0
(resp., 𝛾0 = 0, 𝛺 > 0, 𝛾3 < 0, 𝛾2 > 0, 𝛾1 < 0) — as Case 𝑀1

3 (resp. 𝑀2
3 )

below. There are two positive roots (𝑋𝑒
1, 𝑋

𝑓
1 ) of (22) if 𝛼 > 1, 𝛽 < 1, 𝛾1 <

and one of the following conditions hold:
(𝑀𝑎

3 ) 𝛾21 > 0, 𝛾20 < 0, for all 𝐸𝑇 ;
(𝑀𝑏

3 ) 𝛾21 > 0, 𝛾20 < 0, 𝐸𝑇 > − 𝛾20
𝛾21

;
(𝑀𝑐

3 ) 𝛾21 < 0, 𝛾20 > 0, 0 < 𝐸𝑇 < − 𝛾20
𝛾21

.
We similarly find that there are also two positive roots 𝑋𝑒

1 and 𝑋𝑓
1

of (22) if 𝛼 < 1, 𝛽 > 1, 𝛾1 < 0 and one of (𝑀𝑠
3 ), 𝑠 ∈ {𝑎, 𝑏, 𝑐} are true;

here is one positive root 𝑋𝑓
1 of (22) if 𝛾1 > 0, 𝛼 > 1, 𝛽 < 1 and one of

𝑀𝑠
3 ), 𝑠 ∈ {𝑎, 𝑏, 𝑐} are true; 𝑋𝑓

1 is also the unique positive root for (22)
f 𝛾1 > 0, 𝛼 < 1, 𝛽 > 1 and one of (𝑀𝑠

3 ), 𝑠 ∈ {𝑎, 𝑏, 𝑐} are true.
Case 𝑀4: 𝛾3 < 0, 𝛾2 < 0. In this scenario, 𝑋𝑒

1 +𝑋𝑓
1 < 0 since − 𝛾2

𝛾3
< 0.

f we further have 𝛾1 > 0, then 𝑋𝑒
1 ⋅ 𝑋𝑓

1 < 0 since 𝛾1
𝛾3

< 0, so there
exists one positive root 𝑋𝑒

1 of (22). If 𝛾1 < 0, we have 𝑋𝑒
1 ⋅𝑋

𝑓
1 > 0 since

𝛾1
𝛾3

> 0, so both 𝑋𝑓
1 and 𝑋𝑓

1 are negative. We denote the conditions
𝛾0 = 0, 𝛺 > 0, 𝛾3 < 0, 𝛾2 < 0, 𝛾1 > 0 as Case 𝑀1

4 . There is one positive
root 𝑋𝑒

1 of (22) if 𝛼 < 1, 𝛽 > 1, 𝛾1 > 0 and one of the following conditions
hold:

(𝑀𝑎) 𝛾 > 0, 𝛾 < 0, 0 < 𝐸𝑇 < − 𝛾20 ;
4 21 20 𝛾21

20 
(𝑀𝑏
4 ) 𝛾21 < 0, 𝛾20 < 0, for all 𝐸𝑇 ;

(𝑀𝑐
4 ) 𝛾21 < 0, 𝛾20 > 0, 𝐸𝑇 > − 𝛾20

𝛾21
.

Similarly, if 𝛼 > 1, 𝛽 < 1, 𝛾1 > 0 and one of (𝑀𝑠
4 ), 𝑠 ∈ {𝑎, 𝑏, 𝑐} are

rue, 𝑋𝑒
1 is the unique positive root for (22).

Case 𝑀5: 𝛾2 = 0. When 𝐸𝑇 = − 𝛾20
𝛾21

, we have 𝛾2 = 0. Thus, there exists
one positive root 𝑋𝐸

1 if 𝛾3 ⋅ 𝛾1 < 0 and 𝐸𝑇 = − 𝛾20
𝛾21

. Direct calculation
yields that 𝑋𝐸

1 is positive if one of the following conditions holds:
(𝑀1

5 )𝛾2 = 0, 𝛾3 < 0, 𝛾2 > 0;
(𝑀2

5 )𝛾2 = 0, 𝛾3 > 0, 𝛾2 < 0.
The detailed conditions can be obtained similarly to Case 𝑀4.
Case 𝑀6: 𝛺 = 0. In this scenario, there exists one root 𝑋𝐹

1 = − 𝛾2
2𝛾3

. It
is easy to see that 𝑋𝐹

1 is positive if 𝛾2 ⋅ 𝛾3 < 0. We denote the conditions
for the existence of positive root 𝑋𝐹

1 (i.e., 𝛾0 = 0, 𝛺 > 0, 𝛾2 ⋅ 𝛾3 < 0) as
Case 𝑀1

6 .
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