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a b s t r a c t

In order to control plant diseases and eventually maintain the number of infected plants below an eco-
nomic threshold, a specific management strategy called the threshold policy is proposed, resulting in Fil-
ippov systems. These are a class of piecewise smooth systems of differential equations with a
discontinuous right-hand side. The aim of this work is to investigate the global dynamic behavior includ-
ing sliding dynamics of one Filippov plant disease model with cultural control strategy. We examine a
Lotka–Volterra Filippov plant disease model with proportional planting rate, which is globally studied
in terms of five types of equilibria. For one type of equilibrium, the global structure is discussed by the
iterative equations for initial numbers of plants. For the other four types of equilibria, the bounded global
attractor of each type is obtained by constructing appropriate Lyapunov functions. The ideas of construct-
ing Lyapunov functions for Filippov systems, the methods of analyzing such systems and the main results
presented here provide scientific support for completing control regimens on plant diseases in integrated
disease management.

! 2012 Elsevier Inc. All rights reserved.

1. Introduction

Plant diseases are currently one of the major threats to crops
around the world, due to the fact that they carry health, social
and economical problems [1,2]. The total worldwide crop loss from
plant diseases is about US$220 billion dollars [3]. Therefore, it is
necessary to have acceptable and effective strategies to manage
epidemic development of plant diseases. It is possible to influence
the course of disease development by chemical controls, which
have an environmental impact because of their chemical residues.
However, a wide array of measures for the control of plant diseases
need to be considered, which leads to the development of inte-
grated disease management (IDM) [4,5]. IDM combines biological,
chemical and cultural tactics and so on to prevent and diminish the
impact of the diseases [6]. It has been recognized that the cultural
strategy of IDM — replanting of disease-free plants and roguing (i.e.
identifying and removing) infected plants — is useful and effective
for the control of plant diseases. For examples, the citrus tristeza
virus of citrus trees, the bacterial disease in pear and apple orch-
ards, and the fungal disease in plum are controlled by this method
[7]. Hence, we examine the cultural strategy.

On the basis of IDM and the cultural strategy, in order to give a
full description of the dynamics of plant disease, many different
types of mathematical models on plant disease have been pro-
posed [2,8–14]. The types most commonly used include ordinary

differential equation (ODE) models, difference equation models
and impulsive differential equation models. For instance, assume
that the plants are divided into susceptible and infected plants
and suppose the dynamics of both classes of plants is governed
by the following ODE model [15]:

dSðtÞ
dt
¼ f ðSðtÞ; IðtÞÞ;

dIðtÞ
dt
¼ gðSðtÞ; IðtÞÞ;

ð1Þ

where S; I denote the numbers of susceptible plants and infected
plants, respectively; f and g represent the change rates of numbers
of both classes of plants, respectively. Based on the model (1), van
den Bosch et al. investigated vegetatively propagated plant diseases
and made use of a mathematical model with continuous control
strategies to analyze the evolution of within-plant virus titre as a
response to the implementation of a range of disease-control meth-
ods [9]. In addition, a model for the temporal spread of an epidemic
in a closed plant population with periodic removals of infected
plants has been analyzed by Fishman et al. [14]. They compared
the eradication program with no control policy and concluded that
the former is economically superior.

In practice, complete eradication of the diseased plants is gen-
erally not possible, nor is it biologically or economically desirable.
One of the important objectives of IDM is to minimize losses and
maximize returns. IDM admits a tolerant threshold, called the eco-
nomic threshold (ET), under which the plant damage can be
acceptable. Thus, the control strategies should only be applied
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when the number of diseased individuals reaches the ET. We term
this the threshold policy. The threshold policy has shown to be
easily implemented and fast-acting in IDM [16–18]. For example,
Tang et al. studied a state-dependent impulsive differential equa-
tion model of plant disease with cultural control strategies and
ET [18].

However, there exist some disadvantages in the models men-
tioned above. First, in the continuous models and the models with
impulsive effects at fixed moments, regardless of whether the
number of infected plants reaches the ET or not, one always exer-
cises control. This will consume vast resources, so it is not neces-
sary to implement control when the number of infected plants is
less than the ET. Secondly, in the state-dependent impulsive differ-
ential models on plant diseases, the kernel of the control is that
once the number of infected plants reaches ET, one would carry
out control instantaneously and make it less than ET at that mo-
ment, which is not reasonable. In reality, the control strategies last
some time and cannot be finished instantaneously.

Consequently, it is necessary to improve the above models to
describe the reality such that non-instantaneous control is imple-
mented in the model when the number of infected plants exceeds
ET. Integrating the non-instantaneous control with the threshold
policy, we use Filippov systems to describe the development of
plant diseases [19–21]. Filippov systems have many applications
in science and engineering, including harvesting thresholds, oil-
well drilling and liquid–gas reactions, for which the differential
equation is extended to a differential inclusion [22–27]. Although
Filippov systems have been used in lots of areas, very little is
known about the applications of them to the investigation of
plant diseases. Consequently, our main purpose is to extend the
existing models on plant diseases to be the Filippov system by
considering non-instantaneous control interventions. Then, by
applying the theory of Filippov systems to our proposed model,
we seek conditions under which the number of infected plants
can be maintained below the ET and susceptible plants do not
go to extinction; this identifies the factors that are the most crit-
ical for controlling plant diseases. Hence, the Filippov plant dis-
ease model with proportional planting rate is formulated and
analyzed. We concentrate on the following issues: Can the
threshold policy guarantee the number of infected plants below
the ET eventually? Does the limit cycle or the global attractor ex-
ist for our Filippov system? What is the difference between
implementing replanting and roguing simultaneously versus car-
rying out only one control?

To address these questions, we initially propose a Lotka–Volter-
ra Filippov model with proportional planting rate. Using the qual-
itative analysis and Lyapunov function approach, we are able to
rigorously investigate the limiting set of solutions and global
behavior of the system. Then the factors determining the global
qualities are discussed. Finally, we make some concluding remarks
on the results of this work.

2. Filippov plant disease model and preliminaries

We consider the threshold policy in plant disease modeling:
once the number of infected plants exceeds the ET, control mea-
sures should be carried out to prevent an increasing number of in-
fected plants from reaching the economic injury level. Whereas, if
it is less than ET, the control measures are not necessary. A simple
Filippov plant disease model based on (1) with the cultural strat-
egy, such as replanting and roguing, can be described as follows:

dSðtÞ
dt
¼ PðSÞ $ bSðtÞIðtÞ $ g1SðtÞ þ wðIÞpSðtÞ;

dIðtÞ
dt
¼ bSðtÞIðtÞ $ g2IðtÞ $ wðIÞtIðtÞ;

ð2Þ

with

wðIÞ ¼
0 if I < ET;
1 if I > ET;

!
ð3Þ

where PðSÞ is the planting number of susceptible plants per unit
time; b represents the transmission rate of each infected plant,
where the transmission from susceptible plants to infected plants
is mediated by insects or other vectors; g1, g2 denote the death or
harvest rates of susceptible and infected plants, respectively; p
and t represent the replanting and roguing rates, respectively. Note
that here we choose the roguing proportional to the number of in-
fected plants tI [9,18]. That is because, on the one hand, the value of
the roguing rate t could be dependent on the number of available
workers; on the other hand, such a roguing term is reasonable in
mathematics since the solutions can not become negative com-
pared to constant roguing. Similarly, the replanting rate p depends
on the number of available workers; moreover, such a proportional
replant brings convenience in mathematical analysis. The planting
function PðSÞ could be a constant that is independent of the suscep-
tible plants or proportional to the number of susceptible plants.

Set HðXÞ ¼ I $ ET with X ¼ ðS; IÞT , and

F1ðXÞ ¼ ðPðSÞ $ bSðtÞIðtÞ $ g1SðtÞ;bSðtÞIðtÞ $ g2IðtÞÞT ;
F2ðXÞ ¼ ðPðSÞ $ bSðtÞIðtÞ $ g1SðtÞ þ pSðtÞ;bSðtÞIðtÞ

$ g2IðtÞ $ tIðtÞÞT :
ð4Þ

We define the hyperplane

R ¼ fX 2 R2
þjHðXÞ ¼ 0g; ð5Þ

which divides R2
þ into two regions:

G1 ¼ fX 2 R2
þjHðXÞ < 0g; G2 ¼ fX 2 R2

þjHðXÞ > 0g:

We distinguish the following regions on the discontinuity set R:

(i) R1 & R is the sliding region if hHX ; F1i > 0 and hHX ; F2i < 0 on
R1;
(ii) R2 & R is the sewing region if hHX ; F1ihHX ; F2i > 0 on R2;
(iii) R3 & R is the escaping region if hHX ; F1i < 0 and hHX ; F2i > 0
on R3,

where h'i represents the scalar product and HX ¼ ð0;1ÞT is the non-
vanishing gradient of H on R. The trajectories of (2) will stay in R in
the sliding region R1; will pass through R in the direction from G1

to G2 or from G2 to G1 in the sewing region; and will move either to
G1 or to G2 in the escaping region. Note that the case (iii) does not
occur in our models, since hHX ; F1i < 0 and hHX ; F2i > 0 cannot be
valid simultaneously.

For the basic details and knowledge of Filippov systems, includ-
ing the concepts of Filippov solution and sliding-mode solution, we
refer the interested reader to the book of Filippov [19].

Solutions of (2) can be constructed by concatenating standard
solutions in G1;2 and sliding-mode solutions on R obtained with
the well-known Filippov convex method [19] or Utkin equivalent
control method [20], which are given in Appendix A. The Lambert
W function [28] and various types of equilibria — such as regular,
virtual and pseudo-equilibrium — play an important role in analyz-
ing global structure of (2); the concepts of them are given in
Appendix B. The notion of a Lyapunov function V, the proposition
on LaSalle’s Invariance Principle and its corollary for the Filippov
system are given in Appendix C [29].

3. The plant disease model with proportional planting rate

A good control program would reduce the number of infected
plants below a critical level, which does not induce the great losses.
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Thus what we want to do next is to ensure that the number of in-
fected plants does not exceed the ET eventually. We not only con-
sider the threshold policy, but also take the proportional planting
rate into account for the susceptible plants. The main purpose of
this section is to establish the conditions that ensure achievement
of our objective.

Integrating model ð2Þ with proportional planting rate, i.e.
PðSÞ ¼ aS, the Filippov plant disease model reads

dSðtÞ
dt
¼ aSðtÞ $ bSðtÞIðtÞ $ g1SðtÞ þ wðIÞpSðtÞ;

dIðtÞ
dt
¼ bSðtÞIðtÞ $ g2IðtÞ $ wðIÞtIðtÞ;

ð6Þ

where a represents the planting rate and wðIÞ is defined in (3).
The model in G1 becomes

dSðtÞ
dt ¼ aSðtÞ $ bSðtÞIðtÞ $ g1SðtÞ;

dIðtÞ
dt ¼ bSðtÞIðtÞ $ g2IðtÞ;

IðtÞ > ET ð7Þ

and in G2 becomes
dSðtÞ

dt ¼ aSðtÞ $ bSðtÞIðtÞ $ g1SðtÞ þ pSðtÞ;
dIðtÞ

dt ¼ bSðtÞIðtÞ $ g2IðtÞ $ tIðtÞ;
IðtÞ > ET: ð8Þ

Here, p > 0 means that if I > ET, then we will increase the effort to
grow susceptible plants when we remove the infected plants. From
now on, we shall assume that a > g1. Then both (7) and (8) are Lot-
ka–Volterra equations. It can be seen that there is a unique positive
equilibrium for (7) or (8), which can be expressed as follows,
respectively,

E1 ¼ ðS(1; I
(
1Þ ¼

g2

b
;
a$ g1

b

" #
or

E2 ¼ ðS(2; I
(
2Þ ¼

g2 þ t
b

;
aþ p$ g1

b

" #
: ð9Þ

There exist four types of equilibria for (6): real equilibrium, vir-
tual equilibrium, pseudoequilibrium and boundary equilibrium,
which are denoted by ER; EV ; EP and EB, respectively.

3.1. Sliding region and sliding-mode dynamics

A ‘sliding mode’ exists if there are regions in the vicinity of man-
ifold R where the vectors for the two different structures of the
system (6) are directed towards each other. Two basic methods
were developed for a sliding mode to occur on the discontinuity
surface (see details in [19,20]). It is easy to get the closure of the
sliding region from its existence conditions:

R1 ¼ ðS; ETÞjg2

b
6 S 6 g2 þ t

b

! $
:

The sewing region is R2 ¼ fðS; ETÞjS > g2þt
b or S < g2

b g. Thus
R ¼ R1

S
R2.

Utilizing the method illustrated in Appendix A we obtain the
differential equations of sliding-mode dynamics on the sliding re-
gion R1,

dSðtÞ
dt
¼ bp

t SðtÞ2 þ a$ bET $ g1 $
pg2

t

% &
SðtÞ ) f1ðSðtÞÞ;

dIðtÞ
dt
¼ 0; ðSðtÞ; IðtÞÞ 2 R1:

ð10Þ

Therefore, the sliding-mode dynamics are described by the first
equation of (10). There exist two roots of f1ðSðtÞÞ ¼ 0 given as
follows:

eS1 ¼ 0; eS2 ¼
btET þ g1tþ pg2 $ at

bp
:

The unique pseudoequilibrium EP ¼ ðeS2; ETÞ exists for (10) if and
only if

g2

b
<

btET þ g1tþ pg2 $ at
bp

<
g2 þ t

b
:

Note that the pseudoequilibrium EP is unstable if it is feasible since
f 01ðeS2Þ ¼ bET þ g1 þ

pg2
t $ a > 0.

3.2. Global analysis of dynamic behavior of (6)

Before showing the global behavior of the trajectories of (6), we
first give the following equivalent relations.

Claim

btET þ g1tþ pg2 $ at
bp

<
g2 þ t

b
() bET þ g1 $ a$ p < 0;

btET þ g1tþ pg2 $ at
bp

>
g2

b
() bET þ g1 $ a > 0;

which is easy to prove, so we omit it here.
It should be emphasized that, according to the coordinates of E1

and E2, the case that both E1 and E2 are virtual equilibria does not
occur. For the global qualities of (6), we consider the following five
cases in terms of the types of equilibrium points E1 and E2.

Case 3.1. Both E1 and E2 are real equilibria, i.e. a$g1
b < ET < aþp$g1

b .

In this case, E1 and E2 are denoted by E1
R and E2

R, respectively. It
follows from the Claim that there exists a unique unstable pseudo-
equilibrium EP for (10). Let ðSðtÞ; IðtÞÞ be any solution of system (6),
the initial value of which is ðS0; I0Þ. Without loss of generality, we
fix I0 with I0 < ET. The analysis for the case I0 > ET is similar to that
for I0 < ET . Set

l1 ¼ ðS; IÞjS ¼ g2

b

! $
; l2 ¼ ðS; IÞjS ¼ g2 þ t

b

! $
;

l3 ¼ ðS; IÞjI ¼ a$ g1

b

! $
; l4 ¼ ðS; IÞjI ¼ aþ p$ g1

b

! $
;

l5 ¼ fðS; IÞjI ¼ ETg; l6 ¼ fðS; IÞjI ¼ I0g:

ð11Þ

For any given ET, there exists a closed trajectory tangent to l5 at
D1 ¼ g2=b; ETð Þ in G1 denoted by C1, and a closed trajectory tangent

to l5 at D3 ¼ g2þt
b ; ET

% &
in G2 denoted by C2, as shown in Fig. 1. Since

the pseudoequilibrium D2 — i.e. EP — is unstable, once the solution
of (6) enters the region jD1D2j ¼ fðS; IÞj g2

b < S < eS2; I ¼ ETg, then it

will slide left and finally approach C1. Similarly, if the solution en-
ters the region jD2D3j ¼ fðS; IÞjeS2 < S < g2þt

b ; I ¼ ETg, then it slides

right and tends to C2 eventually. It is interesting to examine where
the trajectories approach if they do not enter the sliding region
jD1D3j when they intersect l5 for the first time? Does the closed tra-
jectory exist in G1

S
G2 for system (6)?

The nonexistence of the closed trajectory in G1
S

G2. Sup-
pose there exists a closed trajectory. It follows from Fig. 1 that
the only possible way for the closed trajectory in G1

S
G2 is the

closed curve dB1B2B1 , where B1 ¼ ðSB1 ; ETÞ and B2 ¼ ðSB2 ; ETÞ. Then,
from the first integrals of (7) and (8) we have

bðSB2 $ SB1 Þ $ g2 ln
SB2

SB1

" #
¼ 0;

bðSB1 $ SB2 Þ $ ðg2 þ tÞ ln SB1

SB2

" #
¼ 0;

which yield

bðSB1 $ SB2 Þ ¼ ðg2 þ tÞ ln SB1

SB2

" #
¼ g2 ln

SB1

SB2

" #
:

36 T. Zhao et al. / Mathematical Biosciences 241 (2013) 34–48
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This implies t ln
SB1
SB2

% &
¼ 0, which is impossible since t – 0 and

SB1 – SB2 . Consequently, such a closed trajectory does not exist.
In order to facilitate the analysis, we use Fig. 2 to investigate the

global qualities of (6). Assume that C1 intersects the line l6 at point
C1 ¼ ðSC1 ; I0Þ. Since C1 and C2 and their interiors are the invariant
sets of the Filippov system (6), and the solutions starting from
the point on l6 with 0 < S0 <

g2
b will enter the region satisfying

SðtÞ > g2
b , we only consider the solution with initial values satisfy-

ing S0 > SC1 . All the trajectories between two adjacent trajectories

described with arrows will first enter the sliding region,
i.e. jD1D3j, then either approach C1 or C2 eventually. If the initial
point belongs to the line segment jC1C2j; jC4C5j, jC5C6j or jC8C9j,
the corresponding trajectory will first reach jD1D2j on l5, and then
slide left to C1. Whilst, if the initial point belongs to the line seg-
ment jC2C3j; jC3C4j; jC6C7j or jC7C8j, the corresponding trajectory
will first get to jD2D3j on l5, and then slide right to C2. Note that
the trajectories of (6) consist of solutions of (7) and solutions of
(8) before entering the sliding region. Suppose that a trajectory
of (6) intersects with the line l5 n1 and n2 times following

l4

l5

l3

l6

l1 l2

EP

1
RE

2
RE

B1 B2

1

2

D1 D2 D3

S

I

0

2 2
1 2: S= ; : S=l l

11
3 4

5 6 0

: I= ; : I=

: I= ; : I=

pl l

l ET l I

Fig. 1. Schematic diagram illustrating the nonexistence of the closed trajectory of the Filippov model (6) in Case 3.1 when E1 and E2 are real equilibria denoted by E1
R and E2

R ,
respectively. D1 and D3 are the boundary points of the sliding region jD1D3j.

S

I

l4
l5
l3
l6

l1 l2

E4 E3 E2 E1 D1
D2 D3 D4 D5 D6 D7 D8

D9

C1 C2 C3 C4 C5 C6 C7 C8 C9

Γ1

Γ2

l1: S=η2/β
l2: S=(η2+υ)/β
l3: I=(α−η1)/β
l4: I=(α+p−η1)/β
l5: I=ET
l6: I=I0

Fig. 2. Schematic diagram illustrating the basic behavior of solutions of the Filippov model (6) in Case 3.1 with different values of S0 when E1 and E2 are real equilibria
denoted by E1

R and E2
R , respectively. D1 and D3 are the boundary points of the sliding region jD1D3j. Initial points of the trajectories with arrows are taken as follows:

C2;C3;C4;C5;C6;C7;C8;C9.
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trajectories of (7) and (8), respectively, before entering the sliding
region. Let f2ðxÞ be the function that rounds x to the nearest inte-
gers less than or equal to x. Therefore, we denote these critical tra-
jectories as !m

i;j , where m represents the ordinal of the trajectory,
i ¼ f2

n1
2

' (
and j ¼ f2

n2
2

' (
. Then the paths of !m

i;j can be shown as
follows:

(i) !1
0;0 : C2 ! D2;

(ii) !2
0;0 : C3 ! D3;

(iii) !3
0;1 : C4 ! D4 ! D2;

(iv) !4
0;1 : C5 ! D5 ! D1;

(v) !5
1;1 : C6 ! D6 ! E1 ! !1

0;0;
(vi) !6

1;1 : C7 ! D7 ! E2 ! !2
0;0;

(vii) !7
1;2 : C8 ! D8 ! E3 ! !3

0;1;
(viii) !8

1;2 : C9 ! D9 ! E4 ! !4
0;1,

where Ci; Di; Ei represent the intersections of the trajectories with
lines l6; l5 ðSðtÞ > g2

b Þ and l5 ðSðtÞ < g2
b Þ, respectively.

Using the same idea, we can also show the critical trajectories
under the condition S0 > SC9 . It is interesting mathematically and
biologically to investigate the qualities of critical trajectories, from
which we can deduce the regions of the initial values of the solu-
tions tending to C1 or C2. If this can be done, then we can better
understand the behavior of solutions of (6). Therefore, the purpose
of the following analysis is to study the initial values of the critical
trajectories.

It is necessary to define the following functions:

W1ðSðtÞÞ ¼$
g2

b
Lambert W $

b
g2

SðtÞexp $
b
g2

SðtÞ$Q
" #" #

;

W2ðSðtÞÞ ¼$
g2þt

b
Lambert W $1; $ b

g2þtSðtÞexp $ b
g2þtSðtÞ

" #" #
;

W3ðSðtÞÞ ¼$
g2

b
Lambert W $1; $ b

g2
SðtÞexp $ b

g2
SðtÞþQ

" #" #
;

where Q ¼ b
g2
ðI0 $ ETÞ $ a$g1

g2
ln I0

ET

' (
. It follows from the definition of

Lambert W function and the first integrals of (7) and (8) that

SC2 ¼ W3ðeS2Þ; SC3 ¼ W3
g2 þ t

b

" #
; SC4 ¼ W3 *W2ðeS2Þ; SC5 ¼ W3 *W2

g2

b

" #
;

SC6 ¼ W3 *W2 *W1ðSC2 Þ ¼ W3 *W2 *W1 *W3ðeS2Þ;

SC7 ¼ W3 *W2 *W1ðSC3 Þ ¼ W3 *W2 *W1 *W3
g2 þ t

b

" #
;

SC8 ¼ W3 *W2 *W1ðSC4 Þ ¼ W3 *W2 *W1 *W3 *W2ðeS2Þ;

SC9 ¼ W3 *W2 *W1ðSC5 Þ ¼ W3 *W2 *W1 *W3 *W2
g2

b

" #
; ð12Þ

where * means the compound of functions. Then define

U1 ¼ W3 *W2 *W1 *W3;

U2 ¼ W3 *W2 *W1 *W3 *W2; U3 ¼ W3 *W2 *W1: ð13Þ

Generally, the paths of the critical trajectories can be expressed as
follows:

(I) !4ðk$1Þþ1þ4
k;k : C4ðk$1Þþ1þ4þ1!D4ðk$1Þþ1þ4þ1! E4ðk$1Þþ1!!4ðk$1Þþ1

k$1;k$1 ;

(II) !4ðk$1Þþ2þ4
k;k : C4ðk$1Þþ2þ4þ1!D4ðk$1Þþ2þ4þ1!E4ðk$1Þþ2!!4ðk$1Þþ2

k$1;k$1 ;

(III) !4ðk$1Þþ3þ4
k;kþ1 : C4ðk$1Þþ3þ4þ1!D4ðk$1Þþ3þ4þ1!E4ðk$1Þþ3!!4ðk$1Þþ3

k$1;k ;

(IV) !4ðk$1Þþ4þ4
k;kþ1 : C4ðk$1Þþ4þ4þ1!D4ðk$1Þþ4þ4þ1!E4ðk$1Þþ4!!4ðk$1Þþ4

k$1;k ,

where SE4ðk$1Þþi ¼W1ðSC4ðk$1Þþiþ1 Þ, SD4ðk$1Þþiþ4þ1 ¼W2ðSE4ðk$1Þþi Þ, SC4ðk$1Þþiþ4þ1 ¼
W3ðSD4ðk$1Þþiþ4þ1 Þ;i¼1;2;3;4, and kP1.

Theorem 3.1. The horizontal coordinates of the initial points of the
critical trajectories can be calculated as follows:

SC4kþ2 ¼ Uk$1
3 U1ðeS2Þ; SC4kþ3 ¼ Uk$1

3 U1
g2 þ t

b

" #
;

SC4kþ4 ¼ Uk$1
3 U2ðeS2Þ; SC4kþ5 ¼ Uk$1

3 U2
g2

b

" #
;

ð14Þ

where Uk$1
3 represents the compound of the function U3 with the order

k$ 1; k P 1.
We make use of induction to prove the above theorem (see

Appendix D).
According to the qualitative investigation, we have the follow-

ing theorem on the dynamical behavior of the solutions between
the above critical trajectories.

Theorem 3.2. If the initial value satisfies S0 2 D, then the solution of
ð6Þ will approach C1, while if the initial value satisfies
S0 2 ðSC4kþ2 ; SC4kþ4 Þ, then the solution of ð6Þ will tend to C2, where
D ¼ ðSC4kþ1 ; SC4kþ2 Þ

S
ðSC4kþ4 ; SC4kþ5 Þ and k P 0.

Thus, there exist two final trends for the solutions of the Fil-
ippov system (6). In order to better illustrate, we plot the basins
of attraction of C1 and C2 in Fig. 3. It shows that the trajectories
in the black areas will tend to C1 and trajectories in the gray
areas will tend to C2. It is interesting to note that the black
and gray areas are alternately present in the S-I phase plane.
The object of our control is to eventually maintain the number
of infected plants below the given ET, which will be achieved
via the solutions approaching C1; that is, what we need are the
solutions in the black area in Fig. 3. It is thus necessary to make
the initial number of the susceptible plants satisfy S0 2 D, since in
such a situation the number of infected plants is always less than
or equal to ET and both numbers of plants will eventually fluctu-
ate periodically.

Case 3.2. E1 is a real equilibrium and E2 is a virtual equilibrium,
i.e. a$g1

b < aþp$g1
b < ET .

For this case, E1 and E2 are denoted by E1
R and E2

V , respectively. It
indicates that btETþg1tþpg2$at

bp > g2þt
b as a result of the Claim. Hence,

there is no pseudoequilibrium for (6). It follows from S < g2þt
b in

the sliding region that

dS
dt
¼ S

bp
t Sþ a$ bET $ g1 $

pg2

t

" #
< S pþ a$ bET $ g1ð Þ

< 0; ð15Þ

which implies that SðtÞ is decreasing with respect to t in the sliding
region.

Making use of the same method as Case 3.1, we could prove

that in this case there is no closed trajectory similar to dB1B2B1

shown in Fig. 1 and we can also get the global dynamics of (6).
The solutions initiating from any point on l6 with SC1 < S0 6 SC4

will reach the sliding region jABj, then slide left to the point A, and

finally approach the closed trajectory dC1AC1 which is tangent to
the line l5, as shown in Fig. 4.

Here, the global behavior of model (6) is obtained from the
knowledge of an appropriate Lyapunov function. We set

V1ðS;IÞ¼S$g2

b
$g2

b
ln

S
g2
b

 !

þ I$a$g1

b
$a$g1

b
ln

I
a$g1

b

 !

;

V2ðS;IÞ¼S$g2þt
b
$g2þt

b
ln

S
g2þt

b

 !

þ I$aþp$g1

b
$aþp$g1

b
ln

I
aþp$g1

b

 !

: ð16Þ
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Functions V1 and V2 are the Lyapunov functions for the differen-
tial equations (7) and (8) in the usual sense. Using these two
functions, we may construct Lyapunov functions for the Filippov
system (6).

Theorem 3.3. The function VðS; IÞ,

VðS; IÞ )

V1ðS; IÞ; if I < ET;
V2ðS; IÞ þ V1ðS; ETÞ $ V2ðS; ETÞ; if I > ET;
V2ðS; IÞ þ V1ðS; ETÞ $ V2ðS; ETÞ; if I ¼ ET; S P g2

b ;

V1ðS; IÞ; if I ¼ ET; S < g2
b ;

8
>>>><

>>>>:

ð17Þ
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l4: I=(α+p−η1)/β
l5: I=ET
l6: I=I0

Fig. 3. Basins of attraction of C1 and C2 of the Filippov model (6) in Case 3.1 when E1 and E2 are real equilibria with b ¼ 0:5; g1 ¼ 0:2; g2 ¼ 0:4; p ¼ 0:6;
t ¼ 0:6; ET ¼ 1:2; a ¼ 0:5; I0 ¼ 0:4.
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Fig. 4. Basic behavior of solutions of the Filippov model (6) in Case 3.2 with different values of S0 when E1 is a real equilibrium and E2 is a virtual equilibrium denoted by E1
R

and E2
V , respectively. Parameters are fixed as follows: b ¼ 0:5; g1 ¼ 0:2; g2 ¼ 0:4; p ¼ 0:6; t ¼ 0:6; ET ¼ 3:5; a ¼ 1; I0 ¼ 0:8. A ¼ ð0:8;3:5Þ and B ¼ ð2;3:5Þ are the boundary

points of the sliding region jABj. Initial values are chosen as follows: C1 ¼ ð1:78;0:8Þ; C2 ¼ ð2:53;0:8Þ; C3 ¼ ð4:54;0:8Þ; C4 ¼ ð7:63;0:8Þ.
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Fig. 5. Basic behavior of solutions of the Filippov model (6) in Case 3.3 with different values of S0 when E1 is a virtual equilibrium and E2 is a real equilibrium denoted by E1
V

and E2
R , respectively. Parameters are fixed as follows: b ¼ 0:5; g1 ¼ 0:2; g2 ¼ 0:4; p ¼ 0:6; t ¼ 0:6; ET ¼ 1:2; a ¼ 1; I0 ¼ 0:8. A ¼ ð0:8;1:2Þ and B ¼ ð2;1:2Þ are the boundary

points of the sliding region jABj. Initial values are chosen as follows: C1 ¼ ð1:54;0:8Þ; C2 ¼ ð3:72;0:8Þ; C3 ¼ ð6:97;0:8Þ; C4 ¼ ð12:01;0:8Þ.
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Fig. 6. Basic behavior of solutions of the Filippov model (6) in Case 3.4 with different values of S0 when E1 is a real equilibrium and E2 is a boundary equilibrium denoted by E1
R

and E2
B , respectively. Parameters are fixed as follows: b ¼ 0:5; g1 ¼ 0:2; g2 ¼ 0:4; p ¼ 0:6; t ¼ 0:6; ET ¼ 2:8; a ¼ 1; I0 ¼ 1. A ¼ ð0:8;2:8Þ and B ¼ ð2;2:8Þ are the boundary

points of the sliding region jABj. Initial values are chosen as follows: C1 ¼ ð1:40;1Þ; C2 ¼ ð2:25;1Þ; C3 ¼ ð4:23;1Þ; C4 ¼ ð7:43;1Þ.
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is a Lyapunov function on R2
þ for system ð6Þ, and the set

x1ðR2
þÞ ¼ ðS; IÞjV1ðS; IÞ 6 V1

g2

b
; ET

" #! $
& G1

[ g2

b
; ET

" #
; ð18Þ

is the global attractor for system ð6Þ.

Proof. If IðtÞ > ET, then it follows from aþp$g1
b < ET that

@V2

@I
¼ 1$

aþp$g1
b

I
> 0;

which yields V2ðS; ETÞ < V2ðS; IÞ. Hence,
VðS; IÞ ¼ V2ðS; IÞ þ V1ðS; ETÞ $ V2ðS; ETÞ > 0 provided IðtÞ > ET. It
suffices to show that conditions of Proposition C.1 and Corollary
C.1 introduced in Appendix C are satisfied.

By calculating, we can get the following conclusions:

(i) If ðS; IÞ 2 G1, then hrVðS; IÞ; F1ðS; IÞi ¼ 0.
(ii) If ðS; IÞ 2 G2, then hrVðS; IÞ; F2ðS; IÞi ¼ t

b ða$ bI $ g1 þ pÞ <
t
b ða$ bET $ g1 þ pÞ < 0.

(iii) If ðS; IÞ 2 R and S P g2
b , then

hrVðS; IÞ; F1ðS; IÞi ¼ $p S$ g2

b

" #
6 0;

hrVðS; IÞ; F2ðS; IÞi ¼
t
b
ða$ bI $ g1 þ pÞ

¼ t
b
ða$ bET $ g1 þ pÞ < 0:

Hence

sup
06k61

hrVðS; IÞ; kF1ðS; IÞ þ ð1$ kÞF2ðS; IÞi ¼ 0:

(iv) If ðS; IÞ 2 R and S < g2
b , then

hrVðS; IÞ; F1ðS; IÞi ¼ 0;

hrVðS; IÞ; F2ðS; IÞi ¼ pS$ tI þ$pg2 þ at$ g1t
b

<
t
b
ða$ g1 $ bETÞ < 0:
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Fig. 7. Basic behavior of solutions of the Filippov model (6) in Case 3.5 with different values of S0 when E1 is a boundary equilibrium and E2 is a real equilibrium denoted by E1
B

and E2
R , respectively. Parameters are fixed as follows: b ¼ 0:5; g1 ¼ 0:2; g2 ¼ 0:4; p ¼ 0:6; t ¼ 0:6; ET ¼ 1:6; a ¼ 1; I0 ¼ 0:8. A ¼ ð0:8;1:6Þ and B ¼ ð2;1:6Þ are the boundary

points of the sliding region jABj. Initial values are chosen as follows: C1 ¼ ð1:41;0:8Þ; C2 ¼ ð3:65;0:8Þ; C3 ¼ ð6:91;0:8Þ; C4 ¼ ð11:95;0:8Þ.

Table 1
Main results of model (6) with a > 0.

Tapes of E1 and E2 Conditions Existence of pseudoequilibrium Main results

E1
R; E

2
R

a$g1
b < ET < aþp$g1

b
Yes (I)

E1
R; E

2
V

a$g1
b < aþp$g1

b < ET No (II)

E1
V ; E

2
R ET < a$g1

b < aþp$g1
b

No (III)

E1
R; E

2
B ET ¼ aþp$g1

b EP and E2
B coincide (II)

E1
B; E

2
R ET ¼ a$g1

b EP and E1
B coincide (III)

The superscript of E, i.e. 1 or 2, represents the equilibrium of (7) or (8), respectively. The subscript of E, i.e. R, V or B, denotes the type of equilibrium is real, virtual or boundary
equilibrium, respectively. EP is the pseudoequilibrium of (6). (I) means that if S0 2 D, then I 6 ET eventually; if S0 2 ðSC4kþ2 ; SC4kþ4 Þ, then I P ET finally; C1 SC2 and its interior is
the global attractor. (II) denotes x1ðR2

þÞ is the global attractor and I 6 ET eventually. (III) means x2ðR2
þÞ is the global attractor and I P ET eventually. Here, D;C1;C2 and

ðSC4kþ2 ; SC4kþ4 Þ;x1ðR2
þÞ, x2ðR2

þÞ are defined in Theorems 3.2, 3.3 and 3.4.
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Thus,

sup
06k61

rVðS; IÞ; kF1ðS; IÞ þ ð1$ kÞF2ðS; IÞh i ¼ 0:

It follows that _V(ðS; IÞ 6 0 for all ðS; IÞ 2 R2
þ and that K ¼ G1

S
R,

where _V( and K are defined in Appendix C. Assume that X1 consists

of dD3C2B and the line segment jBD3j, and their interiors, as shown
in Fig. 4. We conclude that the largest positively invariant subset of
K is X1. Then, according to Proposition C.1, x1ðR2

þÞ is a subset of X1.
Due to the sliding mode behavior and the neutral stability of Lotka-
Volterra cycles in G1, x1ðR2

þÞ can be shown as (18), which indicates
that x1ðR2

þÞ is closed. Therefore, x1ðR2
þÞ is the global attractor for

system (6). h

The global attractor x1ðR2
þÞ consists of neutrally stable Lotka-

Volterra trajectories. In Fig. 4, the middle gray area denotes the
set x1ðR2

þÞ. The trajectories cannot enter the interior of the attrac-
tor from outside. Therefore, for all initial conditions
ðS0; I0Þ R x1ðR2

þÞ, we have

x1ðS0; I0Þ ¼ @ðx1ðR2
þÞÞ ¼ ðS; IÞjV1ðS; IÞ ¼ V1

g2

b
; ET

" #! $
:

Remark 1. The solutions with initial values outside the global
attractor will first reach the sliding region and move leftwards,
then approach a limit Lotka-Volterra cycle which is actually the
border of the global attractor. The solutions starting from the
interior of the global attractor will follow the usual Lotka-Volterra
dynamics with periodic trajectories. Thus in this case, our aim, i.e.
reducing the number of infected plants below a tolerable level ET
eventually, is obtained.

Case 3.3. E1 is a virtual equilibrium and E2 is a real equilibrium,
i.e. ET < a$g1

b < aþp$g1
b .

In this situation, E1 and E2 are denoted by E1
V and E2

R, respec-
tively. It indicates that btETþg1tþpg2$at

bp < g2
b . Hence, there is no

pseudoequilibrium for (6). It follows from S > g2
b in the sliding re-

gion that
dS
dt
¼ S

bp
t Sþ a$ bET $ g1 $

pg2

t

" #
> S a$ bET $ g1ð Þ > 0; ð19Þ

which yields that SðtÞ is increasing with respect to t in the sliding
region.

For this case, the behavior of system (6) bears some analogy
with the one in 3.2.

The solutions will first reach the line segment jABj, then slide
right to the point B and approach the closed trajectory tangent to
the line l5, i.e. the boundary of the middle gray area, as shown in
Fig. 5. System (6) can also be globally studied via a Lyapunov
function.

Theorem 3.4. The function VðS; IÞ,

VðS; IÞ )

V2ðS; IÞ; if I > ET;
V1ðS; IÞ þ V2ðS; ETÞ $ V1ðS; ETÞ; if I < ET;
V1ðS; IÞ þ V2ðS; ETÞ $ V1ðS; ETÞ; if I ¼ ET; S 6 g2þt

b ;

V2ðS; IÞ; if I ¼ ET; S > g2þt
b ;

8
>>>><

>>>>:

ð20Þ

is a Lyapunov function on R2
þ for system ð6Þ, and the set

x2ðR2
þÞ¼ ðS;IÞjV2ðS;IÞ6V2

g2þt
b

;ET
" #! $

&G2

[ g2þt
b

;ET
" #

; ð21Þ

is the global attractor for system ð6Þ.

We can use the same method as Theorem 3.3 to prove Theo-
rem 3.4, so we omit that here. It follows from Theorem 3.4 that
K ¼ G2

S
R. Suppose that the X2 consists of dD1A and the line
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Fig. 8. Bifurcation set for Filippov system (6) with respect to (A) p and ET; (B) a and
ET; (C) p and a. Here we fix all other parameters as follows: (A)
b ¼ 0:5; g1 ¼ 0:2; a ¼ 1. (B) b ¼ 0:5; g1 ¼ 0:2; p ¼ 0:5. (C)
b ¼ 0:5; g1 ¼ 0:2; ET ¼ 1.
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segment jAD1j and their interiors in Fig. 5. Then the largest posi-
tively invariant subset of K is X2. According to Proposition C.1,
x2ðR2

þÞ is a subset of X2 and can be written as (21), which

demonstrates that x2ðR2
þÞ is closed. In Fig. 5, the middle gray area

denotes the set x2ðR2
þÞ. For the initial point satisfying

ðS0; I0Þ R x2ðR2
þÞ, it is easy to see that
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Fig. 9. Basic behavior of solutions of the Filippov model (6) with a ¼ 0 with different values of S0. (A) E2 is a real equilibrium denoted by ER . Parameters are fixed as follows:
b ¼ 0:2; g1 ¼ 0:2; g2 ¼ 0:3; p ¼ 0:8; t ¼ 0:4; ET ¼ 2; I0 ¼ 1. A1 ¼ ð1:5;2Þ and A2 ¼ ð3:5;2Þ are the boundary points of the sliding region jA1A2j. Initial values are chosen as
follows: A3 ¼ ð5:00;1Þ; A4 ¼ ð5:64;1Þ; A5 ¼ ð6:00;1Þ; A6 ¼ ð6:44;1Þ; A8 ¼ ð8:88;1Þ. (B) E2 is a virtual equilibrium denoted by EV . Parameters are fixed as follows:
b ¼ 0:4; g1 ¼ 0:2; g2 ¼ 0:3; p ¼ 0:8; t ¼ 0:6; ET ¼ 2; I0 ¼ 1. A1 ¼ ð0:75;2Þ and A2 ¼ ð2:25;2Þ are the boundary points of the sliding region jA1A2j. Initial values are chosen as
follows: A3 ¼ ð3:18;1Þ; A5 ¼ ð4:35;1Þ; A8 ¼ ð6:58;1Þ.

T. Zhao et al. / Mathematical Biosciences 241 (2013) 34–48 43



Author's personal copy

x2ðS0; I0Þ ¼ @ðx2ðR2
þÞÞ ¼ ðS; IÞjV2ðS; IÞ ¼ V2

g2 þ t
b

; ET
" #! $

:

Remark 2. Any trajectory initiating from the outside of the set
x2ðR2

þÞ will approach the @ðx2ðR2
þÞÞ eventually. Any trajectory

starting from the interior of x2ðR2
þÞ will follow the dynamics of

system (8) and hence exhibit periodic oscillation. Note that, in this
case, the eventual number of infected plants is larger than or equal
to the ET, which is not our desire, since this will cause great
economic losses. Therefore, in practice, we would like to avoid this
situation.

Case 3.4. E1 is a real equilibrium and E2 is a boundary equilibrium,
i.e. ET ¼ aþp$g1

b .
For this situation, we denote E1 as E1

R and E2 as E2
B. It is easy to

see that eS2 ¼ g2þt
b . Thus, EP and E2

B coincide at the point

B ¼ g2þt
b ; ET

% &
and l4 coincides with l5, as shown in Fig. 6. Compar-

ing Fig. 6 and Fig. 4, we see that the dynamics of Filippov system
(6) in 3.4 is similar to 3.2. Therefore, there exists a global attractor

x1ðR2
þÞ given by (18), which consists of dC1AC1 and its interior. The

middle gray area in Fig. 6 denotes the x1ðR2
þÞ.

Case 3.5. E1 is a boundary equilibrium and E2 is a real equilibrium,
i.e. ET ¼ a$g1

b .

In this case, we denote E1 as E1
B and E2 as E2

R. It is easy to yield
eS2 ¼ g2

b . EP and E1
B coincide at the point A ¼ g2

b ; ET
% &

and l3 coincides

with l5, as shown in Fig. 7. It follows from Fig. 7 and Fig. 5 that the
solutions of Filippov system (6) in 3.5 and 3.3 have the analogous
dynamical behavior. Therefore, the global attractor x2ðR2

þÞ exists
and can be expressed by (21), which consists of the trajectory
going through the point B and tangent to the line l5 and its interior.
In Fig. 7, the middle gray area denotes the set x2ðR2

þÞ.
So far, the global dynamics of the Filippov plant disease system

(6) have been investigated and the main results obtained above are
summarized in Table 1. For the result (I), our control object — that
is, ensuring the number of infected plants does not exceed the ET
eventually — can be reached under some conditions for the initial
values. For the result (II), our goal can be achieved, while for the
result (III) our target fails to be reached.

3.3. The effects of parameters on dynamics of system (6)

It follows from the above global analysis that a and p are two
factors in determining the dynamics of the system (6). To address
the richness of the possible equilibria of (6), we let parameters p
and ET vary and fix other parameters to build the bifurcation dia-
gram, as shown in Fig. 8A. Define

l7 ¼ ðp; ETÞjET ¼ a$ g1

b

! $
; l8 ¼ ðp; ETÞjET ¼ aþ p$ g1

b

! $
:

The lines l7 and l8 divide the p-ET parameter space into three re-
gions, X1;X2 and X3, and the existence of various types of equilibria
is indicated in each region. The ranges of parameters in Cases 3.1,
3.2, 3.3, 3.4 and 3.5 correspond to X1;X2;X3, l8 and l7, respectively.
As a result of the previous discussion, it is clear that the gray area of
Fig. 8A, which consists of X2 and l8, is the region in which our goal of
controlling plant diseases can always be achieved. If parameters are
selected from X1, the goal may be reached depending on the initial
numbers of both plants. The number of infected plants is always
more than the given ET if the parameters are set in X3 or l7; how-
ever, this is not what we pursue. All in all, if other parameters are
fixed and the given ET is relatively small, i.e. less than or equal to

a$g1
b , then no matter what the value of p is, we cannot reach the tar-

get since the number of infected plants is greater than the ET even-
tually. If the ET is relatively large, i.e. greater than a$g1

b , then our
objective can always be achieved provided 0 < p 6 bET þ g1 $ a,
and may be reached in some cases provided p > bET þ g1 $ a,
depending on the initial conditions. Therefore, if we adjust the
replanting rate for the susceptible plants p to control the plant dis-
eases, then the number of infected plants will not be less than the
threshold finally unless the threshold ET is relatively large.

Next, we let parameters a and ET change and fix other parame-
ters to build the bifurcation diagram, as shown in Fig. 8B. Define

l9 ¼ ða; ETÞja ¼ g1f g; l10 ¼ ða; ETÞjET ¼ a$ g1

b

! $
;

l11 ¼ ða; ETÞjET ¼ aþ p$ g1

b

! $
:

Here, suppose p > g1. The lines l9; l10 and l11 divide the a-ET param-
eter space into four regions, X(i , with i ¼ 1;2;3;4. Since a < g1 in X(4,
our above discussions focus on R2

þ nX(4. The ranges of parameters in
Cases 3.1, 3.2, 3.3, 3.4 and 3.5 correspond to X(1, X(2;X

(
3; l11 and l10,

respectively. The middle gray area consists of X(2 and l11, in which
our aim is always achieved. For a smaller threshold, i.e. ET less than
or equal to p=b, we can choose the parameters in the dark gray area
in X(1, so that the goal may be reached, depending on the initial val-
ues of both plants. For a larger threshold, i.e. ET greater than p=b,
the parameters can be chosen in X(1 with appropriate initial condi-
tions or in the middle gray area so that the number of infected
plants can be maintained below ET eventually. For the case of
p 6 g1, we will get similar conclusions.

From the above analysis, it is natural to ask how the parameters
p and a jointly affect the dynamic behavior of system (6) if ET is
fixed. We use Fig. 8C to address this. Define

l12 ¼ ðp;aÞja ¼ g1f g; l13 ¼ ðp;aÞja ¼ bET þ g1f g; l14

¼ ðp;aÞja ¼ bET þ g1 $ pf g:

The above three lines divide the parameter space into four parts. Be-
cause a > g1 holds in our discussions, we consider the issue in
X((i ; i ¼ 1;2;3; l13 and l14. The conditions a < bET þ g1 and
aþ p > bET þ g1, corresponding to Case 3.1, are valid in X((1 . The
ranges of a P bET þ g1; aþ p > bET þ g1, corresponding to Cases
3.3 and 3.5, are satisfied in X((3 and l13; the ranges of a < bET þ g1
and aþ p 6 bET þ g1, corresponding to Cases 3.2 and 3.4, hold true
in X((2 and l14. From these correspondences, we conclude the follow-
ing results. First, suppose the planting rate a is relatively small, i.e.
less than bET þ g1. If the replanting rate p is so small that the
parameters belong to the gray area — that is, the condition
aþ p 6 bET þ g1 holds — then the number of infected plants can al-
ways be eventually reduced below the threshold. If p is relatively
large so that aþ p > bET þ g1, i.e. ða;pÞ 2 X((1 , then the objective is
achieved by choosing the initial number of plants to satisfy the con-
dition that S0 2 D, where D ¼ ðSC4kþ1 ; SC4kþ2 Þ

S
ðSC4kþ4 ; SC4kþ5 Þ; k P 0, as

shown in (14). Secondly, assume a is relatively large, i.e. greater

Table 2
Main results of model (6) with a ¼ 0.

Tapes of E2 Conditions Existence of pseudoequilibrium Main results

ER ET < p$g1
b

Yes (i)

EV ET > p$g1
b

No (ii)

EB ET ¼ p$g1
b

EP and EB coincide (ii)

The subscript of E, i.e. R, V or B, denotes the type of E2 is real, virtual or boundary
equilibrium, respectively. EP is the pseudoequilibrium of (6). (i) means that both
plants either tend to C2 or go to the origin eventually, depending on initial values.
(ii) denotes both plants approach extinction.
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than or equal to bET þ g1. Then, no matter what the value of p is, the
number of infected plants will eventually exceed the threshold, so
our target fails to be achieved. Therefore, the dynamic behavior of
(6) can be determined by the planting and replanting rates. The
above information can guide our production practices.

Remark 3. By using similar analysis as Subsection , we could get
the main results for the special system (6) with null-planting rate
(a ¼ 0). Note that the null-planting rate has been considered by
Tang et al. in the model with ET [18].

Case 3.1 corresponds to the situation where E2 is a real equilib-
rium denoted by ER, i.e. ET < p$g1

b . The stable origin with a ¼ 0 cor-
responds to E1 with a > 0, for the model ð7Þ. For any given ET, there
is a phase trajectory of model (7) denoted by C1, starting from the
point A3 on L5 (L5 : I ¼ I0), tangent to the line L4 (L4 : I ¼ ET), at the
point A1 ¼ ðg2=b; ETÞ. There also exists a closed trajectory of the
model (8), denoted by C2, that is tangent to L4 at A2 ¼ ðg2þt

b ; ETÞ,
as shown in Fig. 9A. The trajectory starting from a point on L5 with
SA3 < S0 < SA8 will enter the sliding region jA1A2j with the pseudo-
equilibrium EP . However, only the solutions in the middle gray
area, which start from the segment jA4A6j, approach the closed tra-
jectory C2 eventually; others will eventually approach ð0;0Þ.

Case 3.2 corresponds to the situation where E2 is a virtual equi-
librium denoted by EV , i.e. ET > p$g1

b . The trajectories with initial
values satisfying SA3 < S0 < SA8 will experience sliding motion. All
solutions starting from any point on the line L5 will tend to the ori-
gin, which reveals that both susceptible and infected plants with
arbitrary initial numbers always go to extinction, as shown in
Fig. 9B.

Case 3.4 corresponds to the situation where E2 is a boundary
equilibrium denoted by EB, i.e. ET ¼ p$g1

b . We note that the dynam-
ics of (6) in this case are similar to the above situation. Therefore,
all the solutions starting from any point on the line L5 will eventu-
ally tend to zero. In addition, Cases 3.3 and 3.5 do not exist under
the condition a ¼ 0.

The main results obtained here are displayed in Table 2, which
demonstrates that the numbers of susceptible and infected plants
either go to zero or oscillate periodically with I P ET . Therefore,
in this scenario of null-planting rate, we fail to control plant
diseases.

4. Biological conclusions and discussion

Recently, the Filippov system has attracted great attention in
different fields, since it provides a natural and rational framework
for many real-world problems. The threshold policy has been
widely used in grazing, harvesting and culling [25,30,31]. In partic-
ular, in the scenario of controlling plant disease, the plants are ro-
gued and replanted only when the number of infected plants
reaches or exceeds the ET. The main purpose of this paper is to
use the Filippov system to model this intervention and examine
the conditions under which the number of infected plants is even-
tually maintained below the ET while ensuring susceptible plants
do not become extinct. Therefore, the Filippov plant disease mod-
els developed here describe the disease dynamics associated with
cultural strategy and threshold policy. Making use of the qualita-
tive analysis of the global dynamics of the model, we have estab-
lished conditions under which our objective can be achieved,
which are summarized in Table 1.

It is worth noting that the Filippov models described here differ
from the state-dependent impulsive differential models discussed
by Tang et al. [18] and have many advantages from the point of
view of plant disease management and mathematics, although nei-
ther system is smooth. First, the trajectories of impulsive models
are not continuous, while the trajectories of the Filippov systems
proceeding along alternate subsystems are continuous. Secondly,
under the state-dependent impulsive modeling approach, the
interventions are implemented instantaneously; conversely, in
the Filippov systems, when the number of infected plants reaches
or exceeds the ET, control measures are triggered, the system is
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1
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l1 , l2

l3
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l1: S=η2/β
l2: S=(η2+υ)/β
l3: I=(α−η1)/β
l4: I=(α+p−η1)/β
l5: I=ET
l6: I=I0

Fig. 10. Basic behavior of the solution of the Filippov model (6) with t ¼ 0 when E1 and E2 are real equilibria denoted by E1
R and E2

R , respectively. Parameters are fixed as
follows: b ¼ 0:5;g1 ¼ 0:2;g2 ¼ 0:4;p ¼ 0:6; ET ¼ 1:2;a ¼ 0:5. Initial value is taken as follows A1 ¼ ðS0; I0Þ ¼ ð2;0:4Þ.
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switched into the control system, and interventions last for a dura-
tion until to the next switch. Hence, non-instantaneous control is
modeled in the Filippov systems. Thirdly, the Filippov systems
can give rise to qualitatively new behavior, such as the appear-
ances of various types of equilibria and sliding dynamics. There-
fore, it is more meaningful and realistic to use Filippov systems
to investigate the development of plant diseases. However, the
sliding nature of the Filippov systems makes the study more
complicated.

It should be emphasized that, by making full use of the first
integral, Lambert W Function and Lyapunov function, we have
examined the global dynamics for model (6) with proportional
planting rate: the nonexistence of a limit cycle and the existence
of a global attractor. The methods used here can be applied to com-
pletely analyze many Lotka-Volterra models with first integrals,
such as a predation model proposed by Krivan [32]. However, there
are limitations for some nonlinear systems without the first inte-
grals. That is because, with the help of analytical solutions or first
integrals, we could easily get the trajectories in the phase plane
and investigate the global dynamics. The analysis of Section 3 re-
veals that there does not exist the limit cycle in G1

S
G2, and the

global attractor of Case 3.1, 3.2, 3.3, 3.4, 3.5 refers to C1SC2 and
its interior, x1ðR2

þÞ;x2ðR2
þÞ, x1ðR2

þÞ;x2ðR2
þÞ, respectively.

The planting and replanting rates are two important factors in
determining the dynamical behavior of the system. First, if only p
changes among parameters of (6), then our objective can be
reached provided the ET is relatively large (i.e. ET > a$g1

b ) and one
of the following conditions holds: (i) 0 < p 6 bET þ g1 $ a; (ii)
p > bET þ g1 $ a; S0 2 D, where D ¼ ðSC4kþ1 ; SC4kþ2 Þ

S
ðSC4kþ4 ; SC4kþ5 Þ;

k P 0. Secondly, let a change and a > g1; p > g1 be valid. When
the ET is relatively small (i.e. ET 6 p=b), we can achieve the target
if we control the parameter a to satisfy bET þ g1 $ p < a < bETþ
g1; S0 2 D. When the ET is relatively large (i.e. ET > p=b), we can
achieve the target if one of the following conditions holds true:
(i) a 6 bET þ g1 $ p, (ii) bET þ g1 $ p < a < bET þ g1; S0 2 D.
Thirdly, if the ET is fixed, and p and a vary, the goal can be achieved
if the parameters satisfy one of the conditions as follows:

(i) a < bET þ g1; aþ p 6 bET þ g1;
(ii) a < bET þ g1; aþ p > bET þ g1; S0 2 D.
Consequently, we can use the initial conditions, the planting

and replanting rates to design the threshold policy such that the
number of infected plants can be maintained below the ET
eventually.

It is always postulated that t > 0; p > 0 in the Filippov plant
disease model (6), which indicates that the replanting and roguing
control strategies are implemented simultaneously. What is the re-
sult if we only carry out one control? First, assume t ¼ 0; p > 0.
Here, we take the case that E1 and E2 are real equilibria as an exam-
ple. It follows from Fig. 10 that the trajectory starting from A1 is
closed. These reveal that all trajectories are closed, which gives dif-
ferent dynamic behavior compared with t > 0; p > 0. For other
cases, we will get similar results. Hence, if we only carry out
replanting control when I > ET, the goal cannot be achieved.
Secondly, suppose t > 0; p ¼ 0. The sliding-mode dynamics are
described by

dSðtÞ
dt
¼ ða$ bET $ g1ÞSðtÞ: ð22Þ

There are three situations: 1. E1
R and E2

V ; 2. E1
V and E2

R; 3. E1
B and E2

B.
The results of the first two situations are the same as those in Cases
3.2 and 3.3, respectively. However, for the third situation, according
to (22) and a$g1

b ¼ ET , we have dS=dt ¼ 0 in the sliding region R1, so
all points in R1 are pseudoequilibria for (6). Making use of qualita-
tive analysis, it is easy to see that all solutions will eventually sta-
bilize at a point in R1, which is a new phenomenon compared
with t > 0; p > 0. So we can reach the target in this case. To sum

up, if we only implement replanting control, we will fail to achieve
our aim. If we only carry out roguing control, our aim may be
achieved.

We mention that we here consider the effort to replant or rogue
plants to be proportional to the number of plants. This assumption
could be initially reasonable from the point of view of mathematics
[18]. That is because the proportional roguing cannot lead to neg-
ative solutions compared to the relatively large constant roguing.
Moreover, the values of the proportional roguing and replanting
rates might depend on the availability of workers. Our results indi-
cate that we may not reach our goal mentioned above if the rates
are not appropriate. It is interesting to note that the replanting and
roguing plants can be modeled by constants, independent of the
existing numbers of plants or the number of available workers.
We leave this for future work.

The related practical significance for all results obtained in this
work can guide us to establish a good treatment program and pre-
vent an intolerable build-up of diseases. Finally, it is essential to
link the costs of implementing controls to modeling of plant dis-
ease epidemics, to consider other strategies of IDM, such as biolog-
ical tactics that introduce some natural enemies of the insects who
transmit plant diseases in the plant-growth environment. We leave
these for further investigations.

Acknowledgements

Research was supported by the National Natural Science Foun-
dation of China (NSFC 11171268), by the Fundamental Research
Funds for the Central Universities (08143042), and by the Interna-
tional Development Research Center, Ottawa, Canada (104519-
010). R.J.S.? was supported by an NSERC Discovery Grant, an Early
Researcher Award and funding from MITACS. For citation purposes,
note that the question mark is part of his name.

Appendix A. Methods for analyzing sliding solution

Filippov convex method: The Filippov method associates the fol-
lowing convex combination M1ðXÞ of the two vectors F1ðXÞ and
F2ðXÞ to each nonsingular sliding point X 2 R1, i.e.

M1ðXÞ ¼ kF1ðXÞ þ ð1$ kÞF2ðXÞ;

where k ¼ hHX ðXÞ;F2ðXÞi
hHX ðXÞ;F2ðXÞ$F1ðXÞi

. M1ðXÞ is tangent to R1.

Thus, the sliding-mode dynamics can be determined by

dXðtÞ
dt
¼ M1ðXðtÞÞ; X 2 R1; ðA:1Þ

which is smooth on a one-dimensional sliding interval of R1. The
solution of (A.1) is the sliding solution.

Utkin equivalent control method: Utkin proposed an equivalent
control method to describe the sliding-mode dynamics on the
switching line R for (2). Assume that a sliding mode exists on R,
i.e. R1 is non-empty. The Filippov system (2) can be rewritten as

dXðtÞ
dt
¼ M2ðX;lHÞ; ðA:2Þ

where the control lH is defined as

lH ¼
0; if HðXÞ < 0;
l; if HðXÞ > 0;

!
ðA:3Þ

with l a continuous function.
The solution of the equation

dHðtÞ
dt
¼ @H
@X

M2ðX;lHÞ ¼ 0 ðA:4Þ

with respect to lH is referred to as ‘‘equivalent control’’. We denote
it by l(H . Substituting lH with l(H yields
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dXðtÞ
dt
¼ M2ðX;l(HÞ; X 2 R1; ðA:5Þ

which determines the sliding-mode dynamics of the Filippov sys-
tem (2).

Appendix B. Definitions of Lambert W function and equilibrium

Definition 4.1. [28] The Lambert W function is defined to be the
multi-valued inverse of the function z! zez satisfying

LambertWðzÞ expðLambertWðzÞÞ ¼ z:

It is easy to see that the function zez has the positive derivative
ðzþ 1Þ expðzÞ if z > $1. The inverse function of zez restricted on
the interval ½$1;1, is defined by LambertWð0; zÞ. For simplicity,
LambertWð0; zÞ ) LambertWðzÞ. Similarly, we define the inverse
function of zez restricted on the interval ð$1;$1, to be
LambertWð$1; zÞ. Now we define the concepts of various types of
equilibria for system (2).

Definition 4.2.

(i) A point E is called a real equilibrium of (2) if

F1ðEÞ ¼ 0; HðEÞ < 0; or F2ðEÞ ¼ 0; HðEÞ > 0:

A point E is called a virtual equilibrium of (2) if

F1ðEÞ ¼ 0; HðEÞ > 0; or F2ðEÞ ¼ 0; HðEÞ < 0:

(ii) A point E is called a pseudoequilibrium if it is an equilibrium
of the sliding mode (A.1) or (A.5), i.e.

M1ðEÞ ¼ 0; HðEÞ ¼ 0; or M2ðEÞ ¼ 0; HðEÞ ¼ 0:

(iii) A point E is called a boundary equilibrium of (2) if

F1ðEÞ ¼ 0; HðEÞ ¼ 0; or F2ðEÞ ¼ 0; HðEÞ ¼ 0:

It follows from the above definitions that a stable virtual equilib-
rium is never actually attained since the dynamic change as soon
as the trajectory crosses the switching manifold R.

Appendix C. Definition of Lyapunov function and theories on
the global quality of the Filippov system

Denote the solution from a given initial condition X0 of (2) by
uX0

, the x limit set by xðX0Þ and, for G & R2
þ,

AGðtÞ ) fX 2 R2
þjX ¼ uX0

ðtÞ for some X0 2 Gg; nðGÞ )
[

tP0

AGðtÞ:

Definition 4.3. [29] A function V 2 C1ðR2
þÞ is called a Lyapunov

function of (2) on G & R2
þ if it is nonnegative on G and, for all X 2 G,

_V(ðXÞ ) max
j2FðXÞ

hrVðXÞ;ji 6 0;

where FðXÞ is defined as follows:

FðXÞ )
fF1ðXÞg; if X 2 G1;

fkF1ðS; ETÞ þ ð1$ kÞF2ðS; ETÞ : k 2 ½0;1,g; if X 2 R;
fF2ðXÞg; if X 2 G2:

8
><

>:

ðC:1Þ

Proposition 4.1. [29] (LaSalle’s Invariance Principle) Suppose that
G & R2

þ is an open set which satisfies xðGÞ )
S

x2G
xðXÞ & nðGÞ. Let

every Filippov solution uX0
; X0 2 G, of (2) be unique and defined for

all t P 0, and V : R2
þ ! R be a Lyapunov function of (2) on nðGÞ. Then

xðGÞ is a subset of the largest positively invariant subset of K, where
K ) fX 2 Gj _V(ðXÞ ¼ 0g.

Corollary 4.1. [29] Assume that G and V : R2
þ ! R satisfy Proposition

C.1 and R2
þ n G is repelling, in the sense that all solutions stay in R2

þ n G

for only a finite time. Let xðR2
þÞ ¼ xðGÞ be bounded. Then xðR2

þÞ is
globally asymptotically stable.

Appendix D. The proof of Theorem 3.1

Proof. If k ¼ 1, according to (12) it is easy to illustrate that (14)
holds. Assume that (14) holds true for k ¼ N, i.e.

SC4Nþ2 ¼ UN$1
3 U1ðeS2Þ; SC4Nþ3 ¼ UN$1

3 U1
g2 þ t

b

" #
;

SC4Nþ4 ¼ UN$1
3 U2ðeS2Þ; SC4Nþ5 ¼ UN$1

3 U2
g2

b

" #
:

ðD:1Þ

If k ¼ N þ 1, then the paths of the corresponding critical trajectories
can be shown as follows:

(I) !4Nþ5
Nþ1;Nþ1 : C4Nþ6 ! D4Nþ6 ! E4Nþ1 ! C4Nþ2;

(II) !4Nþ6
Nþ1;Nþ1 : C4Nþ7 ! D4Nþ7 ! E4Nþ2 ! C4Nþ3;

(III) !4Nþ7
Nþ1;Nþ2 : C4Nþ8 ! D4Nþ8 ! E4Nþ3 ! C4Nþ4;

(IV) !4Nþ8
Nþ1;Nþ2 : C4Nþ9 ! D4Nþ9 ! E4Nþ4 ! C4Nþ5,

where C4Nþ2;C4Nþ3;C4Nþ4;C4Nþ5 are the initial points of the critical
trajectories !4Nþ1

N;N ;!4Nþ2
N;N ;!4Nþ3

N;Nþ1 and !4Nþ4
N;Nþ1, respectively. Due to

the results (D.1) and the facts that

SE4Nþ1 ¼ W1ðSC4Nþ2 Þ; SD4Nþ6 ¼ W2ðSE4Nþ1 Þ; SC4Nþ6 ¼ W3ðSD4Nþ6 Þ;

we have

SC4Nþ6 ¼ W3 *W2 *W1ðSC4Nþ2 Þ ¼ U3ðSC4Nþ2 Þ ¼ U3 *UN$1
3 U1ðeS2Þ

¼ UN
3 U1ðeS2Þ:

Using the same method, we get the following conclusions

SC4Nþ7 ¼ UN
3 U1

g2 þ t
b

" #
; SC4Nþ8 ¼ UN

3 U2ðeS2Þ;

SC4Nþ9 ¼ UN
3 U2

g2

b

" #
:

Therefore, the conclusion (14) is true for k ¼ N þ 1, which demon-
strates that (14) holds true for all positive integers k. h
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