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Among the vector-borne diseases of trees and plants, the most destructive are a red ring disease of palms and 
Pine Wilt Disease (PWD), whose causative agent is pine wood nematodes (PWNs)1. !e vector for PWD is the 
pine sawyer beetle, which transfers nematodes to healthy host pine trees and usually kills host trees within a few 
months of infection. !e lack of resin exudation of bark wounds become visible as a "rst symptom. !e foliage 
become pale green in the second stage, yellow in the third stage and "nally become reddish brown when the trees 
fail to resist against the disease. It is well-established that PWD has three di#erent transmission paths: the "rst 
happens during maturation feeding2; the second during oviposition of the mature female on recently cut, dying, 
or dead pine trees through the oviposition wounds3; and the third is horizontal transmission, which happens 
during mating4.

A number of epidemiological studies have been carried out to investigate the transmission dynamics of pine 
wilt disease5–8. !ese models investigating the spread and control of PWD are used to describe the host–vector 
interaction between nematode-carrying pine sawyers and pine trees. Lee9 presented an epidemiological model of 
PWD and developed optimal-control strategies for the prevention of PWD. Khan et al.10 introduced a dynamical 
model of PWD and investigates the stability of the disease with saturated incidence rate. !ey classi"ed the total 
host tree size into three states: susceptible, exposed and infected host pine trees, while the vector size was also 
classi"ed into three similar states. Ozair11 included horizontal transmission and nonlinear incidence. !e global 
stability of PWD in a model with nonlinear incidence rates was analyzed by Lee5. Optimal control has been used 
to study a variety of infectious disease12–16, including plant diseases17–19.

Asymptomatic carrier cases can play a critical role in the subsequent spread of PWD20. Asymptomatic infec-
tion increases the density of infected vectors, which further increases the level of infection in the host. Studies 
on asymptomatic infection in pine trees show that asymptomatic infected trees may remained infected for up 
to a year and may ultimately die21. Mathematical models that address pine tree dynamics with asymptomatic 
infections have previously been considered22,23. !e e#ect of asymptomatic infection on neighboring trees has 
also been studied20.

ͷInformetrics Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam. Faculty of Mathematics and 
Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam. Department of Mathematics, City University of 
Science and Information Technology, Peshawar, Pakistan. ͺ�������������������������ǡ������Ǧ������������������ǡ�
������������ǡ�ͽͷ�ͻǡ��Ǥ�Ǥǡ������Ǥ�ͻDepartment of Mathematics and Faculty of Medicine, The University of Ottawa, 
������ǡ���ǡ��ͷ��ͼ�ͻǡ�������Ǥ�ͼDepartment of Mathematics and Physics University of Portsmouth, Portsmouth, 
��ͷ���ǡ���Ǥ�ᅒ�Ǧ����ǣ�mainul.haque@port.ac.uk

OPEN



2SCIENTIFIC REPORTS |        (2020) 10:11412  | �����ǣȀȀ���Ǥ���ȀͷͶǤͷͶ;Ȁ�ͺͷͻͿ;ǦͶͶǦͼͽͶͿͶǦͽ

www.nature.com/scientificreportswww.nature.com/scientificreports/

Here, we develop a dynamic model of PWD incorporating an asymptomatic carrier class and examine control 
policies that minimize implementation costs while protecting forests from the disease. To the best of our knowl-
edge, none of the previous mathematical studies used optimal control to explore the transmission dynamics of the 
PWD in the presence of the asymptomatic carriers.

Model formulation
!e total host (pine wood trees) and vector (beetles) are represented by NH(t) and NV(t), respectively. NH(t) is 
further classi"ed into four epidemiological classes: susceptible pine trees SH(t), exposed pine trees EH(t), asymp-
tomatic carrier pine trees AH(t) and infected pine trees IH(t). NV(t) is classi"ed into three epidemiological classes: 
susceptible beetles SV(t), exposed beetles EV(t) and infected beetles IV(t).

!e recruitment rates of host trees and beetles are represented, respectively, by ΛH and ΛV, while the natural 
death rates of host pine trees and vector beetles are denoted by γ1 and γ2, and the disease mortality rate of host 
pine trees is represented by µ. Here, m and η are the respective rates of progression from the exposed class to the 
infected class in the host and vector populations. !e term β1ψSHIV denotes the incidence rate, where β1 is the 
rate of transmission and ψ is the average number of daily contacts with vector adult beetles during maturation. 
β2 is the rate at which an infected beetle transmits a nematode through oviposition, with the average number 
of oviposition contacts per day denoted by θ. !e termination of oleoresin exudation in susceptible trees with-
out infection of nematode is denoted by α. We thus interpret β2θα as the transmission through oviposition, 
and hence β2θαSHIV represents the number of new infections. A fraction ω (0 ≤ ω ≤ 1) of the exposed tree class 

Figure 1. Flow chart for the transmission of PWD. !e short dashed arrows indicate the natural and the 
disease-speci"c death rates in each compartment. !e long dashed arrows represent the interaction between the 
vector and pine trees. !e long solid arrows represent the transition between compartments due to disease. !e 
short solid arrows represent the recruitment.

Figure 2. Sensitivity of R0 to all input parameters.
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generates symptomatic infection, while the remaining fraction (1 − ω) generates asymptomatic infection. !e 
vector incidence rate is given by the term KIHSV

15. !e schematic diagram for the PWD model is shown in Fig. 1.
!e model is thus given by

Parameter Interpretation Values References
β1 transmission probability during maturation 0.0016600 day−1 29

β2 transmission probability of nematode through oviposition 0.0004000 day−1 29

ψ contacts averagely made during maturation per day 0.2000000 day−1 30

γ1 natural death rate of host pine trees 0.0000301 day−1 31

γ2 natural death rate of vector beetles 0.0011764 day−1 32

θ contacts averagely made during oviposition per day 0.0023000 day−1 assumed
m progression rate of pine trees from EH to IH 0.0133000 day−1 assumed
ΛV recruitment rate of susceptible vector 0.0132652 day−1 assumed
K the rate at which the adult beetles carry PWN when they escape from dead trees 0.00305 day−1 33

η progression rate of vectors from EV to IV 0.0100000 day−1 assumed
α probability that host susceptible cease oleoresin exudation without infected by the nematode 0.0032000 day−1 assumed
ΛH recruitment rate of host trees 0.0020210 day−1 assumed
ω rate of symptomatic cases 0.1000000 assumed
µ transfer rate from EV to IV 0.0022000 day−1 assumed

Table 1. Parameter interpretations and their sample values used in numerical simulations.

Figure 3. !e behaviour of the pine-tree population for the controls u2 and u3; (a) Susceptible pine trees, (b) 
Exposed pine trees, (c) Asymptomatic pine trees, (d) Infected pine trees.
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Nonnegative solutions of system (1) can be easily veri"ed for appropriate initial values. !e "rst four equations 
of (1) imply that

Figure 4. !e behaviour of the vector (beetles) population for the controls u2 and u3; (a) Susceptible beetles, (b) 
Exposed beetles, (c) Infected beetles, (d) Control pro"le.
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Hence, the solutions of the system (1) are bounded.
In the Supplementary Material, we determine 0*  and prove that the disease-free equilibrium (DFE) is globally 

asymptotically stable, which also rules out the possibility of a backward bifurcation. We also show that the 
endemic equilibrium is globally asymptotically stable, under certain conditions.

�����������������������������������������
Due to uncertainties in experimental data, determining accurate outcomes from an epidemiological system is 
di%cult25. To compensate for these uncertainties, we use partial rank correlation coe%cients (PRCCs) to identify 
the impact of all parameters on *0. !is technique measures the degree of the relationship between inputs and 
output of the system. Positive PRCCs indicate parameters that increase *0 when they are increased, while nega-

Figure 5. !e behaviour of the pine-tree population for the controls u1 and u3; (a) Susceptible pine trees, (b) 
Exposed pine trees, (c) Asymptomatic pine trees, (d) Infected pine trees.
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tive PRCCs indicate parameters that decrease *0 when they are increased. Parameters with PRCCs values greater 
than 0.4 in magnitude have a signi"cant e#ect on the outcome.

Figure 2 illustrates the e#ect of parameter variations on *0 for all fourteen parameters. Clearly, 0*  is most sensi-
tive to γ1 and γ2, the natural death rates of pine trees and beetles, respectively; the latter can be controlled using 
insecticide (u3), while the former can be partially controlled by eliminating infected trees (u2). 0*  is also sensitive to 
the birth rates of pine trees and beetles, the latter of which can be controlled using insecticide (u3). !e transmission 
rate K is also a sensitive parameter, which can be controlled by nematicide-injection and vaccination (u1).

Optimal control strategies
In this section, we introduce u1, u2 and u3 as three control measures that can a#ect PWD. !e force of infection 
in the pine-tree population is reduced by (1 − u1), where precautionary measures e#orts are denoted by u1; for 
example nematicide injection and vaccination. To keep the host tree population safe and to prevent infection, the 
nematicide-injection preventative control measure is used. We use the control variable u2 to describe elimination 
of infected host trees. Supplementary infections are extremely reduced by demolition and elimination of infected 
host trees. !e removal of these infected trees guarantees that eggs, larvae and pupa that are occupying the host 
pines are devasted. Our third control variable represents spraying of insecticide and larvacide to kill adult insects 
and reduce the vector birth rate.

Model (1) is modi"ed for optimal control as follows:
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Figure 6. !e behaviour of the vector (beetles) population for the controls u1 and u3; (a) Susceptible beetles, (b) 
Exposed beetles, (c) Infected beetles, (d) Control pro"le.
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with nonnegative initial conditions. !e control functions u(t) = (u1, u2, u3) ∈ U associated to the variables SH, EH, 
AH, IH, SV, EV and IV satisfy

= ≤ ≤ ∈ = .U t u u u are Lebesgue measurable u t T i( ) {( , , ) , 0 1, [0, ], 1, 2, 3} (3)i1 2 3

!e constants b0 and b1 are removal-rate constants whose inverses correspond to the average time spent in the 
relevant compartment. Since it is unlikely that infected trees will be removed within one day of infection, we set 
b1 = 1; hence the range 0 ≤ u2 ≤ 1 corresponds to a removal time between 1 day and in"nite time. !e objective 
functional for the optimal-control problem is

∫= + + +

+ + +

J u u u L E L A L I L N

B u B u B u dt

( , , ) [

1
2

( )] ,
(4)

T
H H H V1 2 2 0 1 2 3 4

1 1
2

2 2
2

3 3
2

subject to the control system (2). !e constants L1, L2, L3, L4, B1, B2 and B3 are the weight or balancing constants, 
which measure the relative cost of interventions over the interval [0, T]. We seek optimal controls ⁎ ⁎ ⁎u u u, ,1 2 3 , 
such that

= .⁎ ⁎ ⁎J u u u u u u( , , ) min{ , , } (5)U1 2 3 1 2 3

Clearly, the equations in the control system (2) are bounded above, and thus we can apply the results in26 
to model (2). Moreover, the set of control variables and the state variables is nonempty, and the set of control 
variables denoted by U is closed and convex. In the control problem (2), the right-hand side is continuous and 
bounded above by state variables and a sum of the bounded control, and can be expressed as a linear function of 
U having state- and time-dependent coe%cients. Hence there exists constants m > 1 and l1, l2 > 0 such that the 
integrand L(y, u, t) of the objective functional J is convex and satis"es

Figure 7. !e behaviour of the pine-tree population for the controls u1 and u2; (a) Susceptible pine trees, (b) 
Exposed pine trees, (c) Asymptomatic pine trees, (d) Infected pine trees.
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We apply the results presented in27 to justify the existence of (2) and to obey the above conditions. Clearly, the 
set of control and state variables are bounded and nonempty. !e solutions are bounded and convex. !erefore 
the system is bilinear in the control variables. We verify the last condition:
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where L1, L2, L3, L4, B1, B2, B3, l1, l2 > 0 and m > 1. We have thus proved the following theorem.
!eorem 1. For the objective functional (4) and the control set (3) subject to the control system (2), there exists 

an optimal control =⁎ ⁎ ⁎ ⁎u u u u( , , )1 2 3  such that =⁎ ⁎ ⁎u u u J u u u( , , ) min ( , , )1 2 3 U 1 2 3 .
In order to get the solution of the control problem, it is necessary to obtain the Lagrangian and the 

Hamiltonian of (2). !e Lagrangian L is expressed as
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By choosing X = (SH, EH, IH, SH, EH, IH), U = (u1, u2, u3) and λ = (λ1, λ2, λ3, λ4, λ5, λ6, λ7), the Hamiltonian can 
be written

Figure 8. !e behaviour of the vector (beetles) population for the controls u1 and u2; (a) Susceptible beetles, (b) 
Exposed beetles, (c) Infected beetles, (d) Control pro"le.
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We use Pontryagin’s Maximum Principle28 to obtain the optimal solution of the control system (2). Since 
⁎ ⁎u u,1 2  and ⁎u3  are solutions to the control problem (2), there exist adjoint variables λi (i = 1, 2, 3, 4, 5, 6, 7) satis-

fying the following conditions:
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!eorem 2. For the optimal-control measures ⁎ ⁎ ⁎u u u, ,1 2 3  and the state solutions ⁎ ⁎ ⁎ ⁎ ⁎ ⁎ ⁎S E A I S E I, , , , , ,H H H H V V V  of 
system (2), there exist adjoint variables λi (i = 1, 2, 3, 4, 5, 6, 7) such that

Figure 9. !e behaviour of the pine-tree population for the controls u1, u2 and u3; (a) Susceptible pine trees, (b) 
Exposed pine trees, (c) Asymptomatic pine trees, (d) Infected pine trees.
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Figure 10. !e behaviour of the vector (beetles) population for the controls u1, u2 and u3; (a) Susceptible 
beetles, (b) Exposed beetles, (c) Infected beetles, (d) Control pro"le.
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Proof. To determine the required adjoint system (8) and the transversality conditions mentioned in (9), we 
utilize the Hamiltonian in (6). By applying the third condition of (7), we get (8). Applying the second condition 
of (7), we get (9).

Numerical Results
Unless mentioned otherwise, we use the fourth-order Runge–Kutta method over a timescale of 100 days. !e 
input parameters for our simulations are L1 = 0.01, L2 = 0.002, L3 = 0.0020, L4 = 0.003, B1 = 0.10, B2 = B3 = 10, 
c = 0.001241, b0 = 0.21; all other parameter values are shown in Table 1.

������������������������������ȋuȌ������������������������������ȋuȌǤ� We considered two controls: the 
elimination of infected trees (u2) and the spraying of insecticides (u3) in the absence of tree injection and vaccina-
tion. Figures 3 and 4 show the outcomes in both the absence and presence of control. Figure 3 shows the dynamics 
of the pine-tree population, while Fig. 4 shows the dynamics of the vector population. With these controls, we see 
a rapid increase in the population of susceptible trees (Fig. 3(a)) and eventual elimination of exposed and infected 
trees (Fig. 3(b,d)), with only the asymptomatic carriers remaining in the infected classes (Fig. 3(c)). !e vector 
population is eventually depleted (Fig. 4(a–c)) in the presence of these two controls. !e two control pro"les u2 
and u3 are bounded up to 0.4 and 0.8 (Fig. 4(d)). Biologically, u2 is the additional elimination rate of only infected 
trees, while u3 acts to simultaneously increase the removal rate of all vectors, while also decreasing the birth rate. 
Since all interventions range between 0 (no control) and 1 (complete control), this suggests that our objective can 
be achieved with only partial controls. Hence if infected trees are removed 2.5 days or later a&er infection or if 
insecticides/larvacides are up to 80% e#ective, the infection can be controlled.

���������������ȋuͷȌ������������������������������ȋuȌǤ� We next examine the combination of tree injec-
tion (u1) and insecticide spraying (u3). !e results are shown in Figs. 5 and 6. With these two controls, there is 
a signi"cant increase in the population of susceptible and exposed pine trees, while the population of asympto-
matic carriers and infected pine trees are reduced but not eliminated (Fig. 5). !is suggests that the elimination 
of infected pine trees has a signi"cant impact on the disease. Note that the vector population is eliminated using 
these controls (Fig. 6).

Figure 11. Temporal variation of the control pro"le for L1 = 0.01, L2 = 0.002, L3 = 0.0020, L4 = 0.003, 
B2 = B3 = 10; (a) B1 = 0.10, (b) B1 = 1, (c) B1 = 10, (d) B1 = 100.
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���������������ȋuͷȌ�����������������������������������ȋuȌǤ� Considering u1 and u2 in combination, 
Figs. 7 and 8 illustrate that, without insecticide spraying, the control (minimization and/or elimination) of infec-
tion in the pine trees is not possible. While the population of susceptible pine trees has a slower decline with these 
control (Fig. 7(a)), the infection eventually takes over. Likewise, although the susceptible beetle population is 
recovered using these controls, the infection nevertheless eventually dominates (Fig. 8). It follows that, without 
insecticide spraying, the control of infection is not possible.

����������������Ǥ� We now apply all three controls in order to determine the ideal outcome (Figs. 9 and 10).  
Comparing Fig. 9 to Fig. 3, we see that susceptible pine trees recover faster and the disease is eliminated quicker, 
except for asymptomatic carriers. We thus see that the most e#ective strategy is to apply all three controls, 
although similar results can be achieved by applying only two controls: elimination of the infected pine trees (u2) 
and the spraying of insecticides (u3).

���������������������������������Ƥ���Ǥ� Next, we investigate the control pro"les and their relationships 
to the weight constants. In Fig. 11, we "x the weight constants L1 = 0.01, L2 = 0.002, L3 = 0.0020, L4 = 0.003, 
B2 = B3 = 10 and allow B1 to vary. In Fig. 12, we fix the weight constants L1 = 0.01, L2 = 0.002, L3 = 0.0020, 
L4 = 0.003, B1 = 0.1, B3 = 10 and allow B2 to vary. In Fig. 13, we "x L1 = 0.01, L2 = 0.002, L3 = 0.0020, L4 = 0.003, 
B1 = 0.1, B2 = 10 and allow B3 to vary. !ese variations represent 'uctuating costs of implementing our controls.

From Fig. 11, we see that, as the cost of u1 increases, the control pro"le is dominated by u3. !at is, if tree injec-
tion becomes prohibitively expensive, the procedure can be replaced by increased insecticide spraying.

Figure 12 shows little variation in the control pro"les as the cost B2 increases unless the cost is prohibitive. !is 
suggests that the control u2 is worth implementing, even at high cost. !e combination of u1 and u3 alone does not 
eliminate infection, so it follows that elimination of infected trees is essential to disease control. !is may hinder 
disease eradication if the costs of elimination become prohibitively expensive.

Figure 13 shows that if the cost of insecticide spraying increases, the control pro"le is dominated by tree 
injection. Interestingly, while the combination of u2 and u3 produced superior results to the combination of u1 
and u2, the latter combination can still produce e#ective results if supplemented by a small amount of insecticide 
spraying.

Figure 12. Temporal variation of the control pro"le for L1 = 0.01, L2 = 0.002, L3 = 0.0020, L4 = 0.003, B1 = 0.1, 
B3 = 10; (a) B2 = 0.010, (b) B2 = 0.10, (c) B2 = 1, (d) B2 = 10.
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Discussion
We developed a mathematical model to examine the e#ect of asymptomatic carriers of Pine Wilt Disease (PWD) 
on the long-term course of disease. We showed that the disease-free equilibrium was globally asymptotically 
stable and that the endemic equilibrium was globally asymptotically stable under some conditions. A sensitivity 
analysis identi"ed key parameters: natural death rates in trees and beetles; birth rates in both trees and beetles; 
and transmission rates from trees to beetles.

We applied several controls to our system: tree injection, insecticide spraying and elimination of infected trees. 
!ese were chosen in conjunction with the most sensitive parameters except for the natural birth and death rates 
of trees, since our ultimate goal is the preservation of trees. We showed that the disease can be eliminated using 
suitable controls, except for the asymptomatic carriers. By including this class, our model showed that the disease 
may remain endemic, requiring permanent control, even in the best-case scenario.

Examining the controls in detail, we found that elimination of infected trees is critical, especially when used 
in conjunction with insecticide spraying. If the cost of insecticide spraying becomes prohibitive, it can be partially 
replaced by tree injection. However, if the costs of elimination of infected trees becomes prohibitive, there is no 
simple replacement, which may result in runaway costs.

It follows that we can control the disease using suitable interventions, but it will not be eliminated due to the 
presence asymptomatic carriers. !e presence of infection in these carriers suggests that infection can restart in 
nearby healthy trees. It follows that our control measures must be undertaken continually unless such asymp-
tomatic carriers can be identi"ed and removed. !is has long-term implications for disease management and 
economic investment.
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Stability analysis of the model

There are two biologically meaningful equilibria of the PWD model: the disease-free equi-
librium (DFE) and the endemic equilibrium (EE). The former is given by

E0 =

✓
⇤H

�1
, 0, 0, 0,

⇤V

�2
, 0, 0

◆
.

Using the next-generation method [1], we find the repoduction number is

R0 = ⇢(FV

�1) =

s
mK!⇤V⇤H⌘(�2✓↵ + �1 )

�1�
2
2(m+ �1)(µ+ �1)(⌘ + �2)

.

Note that this value is a threshold for disease emergence, not necessarily the average
number of secondary infections [2].



Global stability of the DFE

Here, we prove the global stability of the DFE E0 using the approach from Castillo-Chavez
and Huang [3]. We rewrite our model as follows:

dY

dt

= F (Y, Z),

dZ

dt

= M(Y, Z), M(Y, 0) = 0,
(1)

where Y = (SH , SV ) 2 R2
+, represent the number of uninfected compartments and Z =

(EH , AH , IH , EV , IV ) 2 R5
+, represent the infected tree and vector classes. The DFE

is (Y 0
, 0), where Y

0 =
⇣

⇤H

�1
,

⇤V

�2

⌘
. For global stability of the DFE, the following two

conditions need to be satisfied:

(C1) For
dY

dt

= F (Y, 0) = 0, Y

0 is globally asymptotically stable

(C2) M(Y, Z) = AZ � b
G(Y, Z), where b

G(Y, Z) � 0, for (Y, Z) 2 ⌦,

and where A = DzM(Y 0
, 0) is an M -matrix and ⌦ is the biological feasible region.

Lemma 1. If R0 < 1, then the fixed point denoted by (Y 0
, 0) of system (1) is globally

asymptotically stable if (C1) and (C2) are satisfied.

For the proof of Lemma 1 where the conditions are proved in general, see [3], but in
particular case, these conditions are proven in below theorem.

Theorem 1. If R0 < 1 and assumptions (C1) and (C2) are satisfied, then the DFE E0 is
gobally asymptotically stable.

Proof. Let
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where ⌧4 = ↵�2✓+�1 . Then M(Y, Z) can be written as M(Y, Z) = AZ� bG(Y, Z). Clearly,
b
G(Y, Z) � 0 and A is an M -matrix with negative diagonals. Hence conditions (C1) and
(C2) are fulfilled. Thus, by Lemma 1, E0 is globally asymptotically stable.

Note that the global stability of the DFE implies local stability and also that no back-
ward bifurcation is possible.

Global stability of the endemic equilibrium

Next, we will prove global stability of EE

⇤ [4, 5, 6]. At the EE, the PWD model at steady
state satisfies
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Theorem 2. If R0 > 1 and
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then the endemic equilibrium EE

⇤ is globally asymptotically stable

Proof. Consider the Lyapunov function
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ÁH

+
⌧4S

⇤
HI

⇤
V

m!E

⇤
H

✓
1� I

⇤
H

IH

◆
ÍH
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ÍV

�
.

3



Simplifying, we get the following results:
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✓
1� E

⇤
H

EH

◆
[⌧4SHIV � ⌧1EH ]

=

✓
1� E

⇤
H

EH

◆
⌧4SHIV � ⌧4S

⇤
HI

⇤
V

E

⇤
H

EH

�

= ⌧4S
⇤
HI

⇤
V

⇣
1� EH

E

⇤
H

� SHIVE
⇤
H

S

⇤
HI

⇤
VEH

+
SHIV

S

⇤
HI

⇤
V

⌘
,

⌧4S
⇤
HI

⇤
V

m(1� !)E⇤
H

✓
1� A

⇤
H

AH

◆
A

0
H =

⌧4S
⇤
HI

⇤
V

m(1� !)E⇤
H

✓
1� A

⇤
H

AH

◆
[m(1� !)EH � �1AH ]

=
⌧4S

⇤
HI

⇤
V

E

⇤
H

✓
1� A

⇤
H

AH

◆
EH � E

⇤
H

A

⇤
H

AH

�

= ⌧4S
⇤
HI

⇤
V

✓
1� AH

A

⇤
H

� EHA
⇤
H

E

⇤
HAH

+
EH

E

⇤
H

◆
,

⌧4S
⇤
HI

⇤
V

m!E

⇤
H

✓
1� I

⇤
H

IH

◆
I

0
H =

⌧4S
⇤
HI

⇤
V

m!E

⇤
H

✓
1� I

⇤
H

IH

◆
[m!EH � ⌧2IH ]

=
⌧4S

⇤
HI

⇤
V

E

⇤
H

✓
1� I

⇤
H

IH

◆
EH � E

⇤
H

I

⇤
H

IH

�
,

= ⌧4S
⇤
HI

⇤
V

✓
1� IH

I

⇤
H

� EHI
⇤
H

IHE
⇤
H

+
EH

E

⇤
H

⌘
,

✓
1� S

⇤
V

SV

◆
S

0
V =

✓
1� S

⇤
V

SV

◆
[⇤V �KSV IH � �2SV ]

=

✓
1� S

⇤
H

SH

◆
[KS

⇤
V I

⇤
H + �2S

⇤
V �KSV � �2SV ]

= �2S
⇤
V

✓
2� SV

S

⇤
V

� S

⇤
V

SV

◆
+KS

⇤
V I

⇤
H

✓
1� SV IH

S

⇤
V I

⇤
H

� S

⇤
V

SV

+
IH

I

⇤
H

◆
,

✓
1� E

⇤
V

EV

◆
E

0
V =

✓
1� E

⇤
V

EV

◆
[KSV IH � ⌧3EV ]

=

✓
1� E

⇤
V

EV

◆
KSV IH � KS

⇤
V I

⇤
HEV

E

⇤
V

�

= KS

⇤
V I

⇤
H

⇣
1� EV

E

⇤
V

� SV IHE
⇤
V

EV S
⇤
V I

⇤
H

+
SV IH

S

⇤
V I

⇤
H

⌘
,

4



and
✓
1� I

⇤
V

IV

◆
KS

⇤
V I

⇤
H

⌘E

⇤
V

I

0
V =

KS

⇤
V I

⇤
H

⌘E

⇤
V

✓
1� I

⇤
V

IV

◆
[⌘EV � �2IV ]

=
KS

⇤
V I

⇤
H

E

⇤
V

✓
1� I

⇤
V

IV

◆
[EV � E

⇤
V

I

⇤
V

IV ]

= KS

⇤
V I

⇤
H

✓
1� IV

I

⇤
V

� EV I
⇤
V

IVE
⇤
V

+
EV

E

⇤
V

◆
.

It follows from the above equations that

L

0(t) = ⌧4KS

⇤
HI

⇤
V S

⇤
V I

⇤
H


7� S

⇤
H

SH

� SHIVE
⇤
H

S

⇤
HI

⇤
VEH

� AH

A

⇤
H

� EHA
⇤
H

AHE
⇤
H

� EHI
⇤
H

IHE
⇤
H

+
EH

E

⇤
H

�S

⇤
V

SV

� SV IHE
⇤
V

S

⇤
VEV I

⇤
H

� EV I
⇤
V

IVE
⇤
V

�
+ �1KS

⇤
HS

⇤
V I

⇤
H

✓
2� SH

S

⇤
H

� S

⇤
H

SH

◆

+⌧4�2S
⇤
HI

⇤
V S

⇤
V

✓
2� SV

S

⇤
V

� S

⇤
V

SV

◆
.

in which
✓
2� SH

S

⇤
H

� S

⇤
H

SH

◆
 0,

✓
2� SV

S

⇤
V

� S

⇤
V

SV

◆
 0,

and if

7� S

⇤
H

SH

� SHIVE
⇤
H

S

⇤
HI

⇤
VEH

� AH

A

⇤
H

� EHA
⇤
H

AHE
⇤
H

� EHI
⇤
H

IHE
⇤
H

+
EH

E

⇤
H

� S

⇤
V

SV

� SV IHE
⇤
V

S

⇤
VEV I

⇤
H

� EV I
⇤
V

IVE
⇤
V

�
 0,

then the largest invariant subset for which L

0 = 0 is EE

⇤. By LaSalle’s Invariance Principle
[7], EE

⇤ is globally asymptotically stable whenever R0 > 1.
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