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Overview

• What this workshop is not
1. First Draft
2. The Introduction
3. Collation
4. Refinement
5. Responding to reviewers
6. What’s next.



What this workshop is not

• I’m not telling you how to come up with ideas
• Or how to solve equations
• This is about how to present your work
• But more importantly how to refine it
• All writing is editing
• We’ll work through a successful example to 

illustrate the process
• Note that this is just one approach
• You may have a different one.



Part 1: First draft

• Brief statement of the problem
• Mathematical analysis
• Research question(s)
• Figures
• What it does not include:

– introduction
– references
– discussion
– abstract (always leave until last).



Preliminaries

• Coming up with the idea
– what if we had a vaccine for RSV?

• Existing work in the literature
– read the biology 

• Creating the model
– extending an existing one, in this case

• Initial analysis
– DFE, simplifying assumptions, Jacobian, R0

• This is all very standard
• It does not make your results worth publishing!



Respiratory Syncytial Virus vaccination

Robert J. Smith?

1
, Geo↵ Mercer

Part 2: impulsive model

1 Introduction

2 The model

We extend the basic model from Weber et al to include vaccination.

Assumptions: The leaving rate µ is unchanged across all classes. There is

no disease-specific death rate. We scale the entry and leaving rates so that the

population is constant.

The basic model with vaccination is

S0
= µ(1� ✏p)� µS � �(t)S(I + IV ) + �R+ !V

I 0 = �(t)S(I + IV )� ⌫I � µI + !IV

R0
= ⌫I � µR� �R+ !RV

V 0
= ✏pµ� µV � �V (t)V (I + IV ) + �V RV � !V

I 0V = �V (t)V (I + IV )� ⌫V IV � µIV � !IV

R0
V = ⌫V IV � µRV � �V RV � !RV

with �(t) = b0(1+ b1 cos(2⇡t+�)) and �V (t) = (1�↵)�(t), for 0  ↵  1. (We

may relax the lower bound on ↵ later.)

3 Analysis

There is a disease-free equilibrium that satisfies

(

¯S, ¯I, ¯R, ¯V , ¯IV , ¯RV ) =

✓
1

µ


µ(1� ✏p) +

!✏pµ

µ+ !

�
, 0, 0,

✏pµ

µ+ !
, 0, 0

◆

1

Draft title

More work to 
come later

The core idea.



3.1 Constant transmission

If we assume transmisison is constant so that � and �V are independent of time,

then the Jacobian is

J =

2

6666664

�µ� �(I + IV ) �� ¯S � ! �� ¯S 0

�(I + IV ) � ¯S � µ� ⌫ 0 0 � ¯S + ! 0

0 ⌫ �µ� � 0 0 !
0 ��V

¯V 0 �µ� �V (I + IV )� ! ��V
¯V �V

0 �V
¯V 0 �V (I + IV ) �V

¯V � ⌫V � µ� ! 0

0 0 0 0 ⌫V �µ� �V � !
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7777775

At the DFE, we have

J

����
DFE

=

2

6666664

�µ �� ¯S � ! �� ¯S 0

0 � ¯S � µ� ⌫ 0 0 � ¯S + ! 0

0 ⌫ �µ� � 0 0 !
0 ��V

¯V 0 �µ� ! ��V
¯V �V

0 �V
¯V 0 0 �V

¯V � ⌫V � µ� ! 0

0 0 0 0 ⌫V �µ� �V � !

3

7777775

The characteristic polynomial satisfies

det(J � �I) = (�µ� �)(�µ� � � �)(�µ� ! � �)(�µ� �V � ! � �)⇥

det


� ¯S � µ� ⌫ � � � ¯S + !

�V
¯V �V

¯V � ⌫V � µ� ! � �

�

The first four eigenvalues are always negative. The nontrivial part of char-

acteristic equation satisfies

�2
+ b1�+ c1 = 0

where

b1 = �� ¯S + µ+ ⌫ � �V
¯V + ⌫V + µ+ !

c1 = (� ¯S � µ� ⌫)(�V
¯V � ⌫V � µ� !)� �V

¯V (� ¯S + !)

= � ¯S(�⌫V � µ� !)� (µ+ ⌫)(�V
¯V � ⌫V � µ� !)� �V

¯V !

From c1 = 0, we find

R0 =

� ¯S(⌫V + µ+ !) + �V
¯V (µ+ ⌫ + !)

(µ+ ⌫)(µ+ ⌫V + !)

(This is equivalent to the value found using the next-generation method.)

Simplifying 
assumptions

Standard but 
necessary result.



Secondary analysis

• This is where you produce original insights
– noticing b1 may not be positive when c1=0
– one parameter could change the sign
– it doesn’t at the extremes
– could there be a region where it does?
– we just found our research question!

• Key question: What do we learn that we 
didn’t know?
– it’s possible to destabilise the equilibrium in a 

new way (not a backward bifurcation)
• There’s no algorithm for this part.



If c1 = 0 and b1 > 0, then we have a bifurcation point with the property
that the DFE is stable if R0 < 1 and unstable if R0 > 1

However, it is possible that when c1 = 0, b1 < 0. In this case, R0 is not a
threshold and the disease can persist if R0 < 1.

When c1 = 0, we have

b1

����
c1=0

=
1

⌫V + µ+ !

⇥
�V V̄ (⌫ � ⌫V ) + (⌫V + µ+ !)2

⇤

Note that if ⌫ = ⌫V , then b1 > 0. However, we expect that vaccinated individu-
als will recover faster than unvaccinated individuals. Thus ⌫V > ⌫. This raises
the possibility that b1 could be negative.

if ⌫V ! 1, then this is equivalent to vaccinated individuals recovering
instantaneously. In this case,

lim
⌫V !1

b1 = lim
⌫V !1

�V V̄ (⌫ � ⌫V )

! + µ+ ⌫V
+ ! + µ+ ⌫V

= 1� �V V̄ > 0

Surprising result

May not happen...

...but it could!

Extreme case.



Refining the secondary analysis
• What are the implications?

– Under what conditions does a critical point 
exist? Can we find it?

– Is it definitely a local minimum? Can we prove 
that?

• Can we draw a picture?
• Diagrams are always helpful
• Some people will only read the abstract, the 

figure captions and the discussion
• The pictures need to tell the story

– thus you need to have a narrative.



Hence if we define f(⌫V ) = �V V̄ (⌫�⌫V )+(!+µ+⌫V )2

!+µ+⌫V
, then we would like to

know whether f has a turning point ⌫⇤V such that f(⌫⇤V ) < 0.
We have

f 0(⌫V ) =
(! + µ+ ⌫V )[��V V̄ + 2(! + µ+ ⌫V )]� [�V V̄ (⌫ � nuV ) + (! + µ+ ⌫V )2]

(! + µ+ ⌫V )2

=
(! + µ+ ⌫V )2 � �V V̄ [! + µ+ ⌫]

(! + µ+ ⌫V )2

It follows that ⌫⇤V =
p

�V V̄ (! + µ+ ⌫)� ! � µ.
There are two requirements we need for this to be meaningful: 1. ⌫⇤V > ⌫

and 2. f(⌫⇤V ) < 0. See Figure 1.
[Is this definitely a local minimum?]

Yes, proven. Write up results.

f(νV)

νV* νV→ ∞νV=ν

Figure 1: Possible sketch of the form of f(‹V ) with a negative minimum between two positive extremes.

4 Impulsive model

SÕ = µ ≠ µS ≠ —(t)S(I + IV ) + “R + ÊV t ”= tk

I Õ = —(t)S(I + IV ) ≠ ‹I ≠ µI + ÊIV t ”= tk

RÕ = ‹I ≠ µR ≠ “R + ÊRV t ”= tk

V Õ = ≠µV ≠ —V (t)V (I + IV ) + “V RV ≠ ÊV t ”= tk

I Õ
V = —V V (I + IV ) ≠ ‹V IV ≠ µIV ≠ ÊIV t ”= tk

RÕ
V = ‹V IV ≠ µRV ≠ “V RV ≠ ÊRV t ”= tk

�S = ≠rS t = tk

�V = rS t = tk

5 Numerical simulations

From Weber et al, we have — = 0.03, µ = 0.041 and ‹ = 36. We add vaccination parameters Ê = 0.1, ‘ = 1,
p = 1, ‹V = 177 and —V = 3000. (We also have “ = 1.8 and impose “V = 1.2“.) This represents a vaccine with
complete coverage and perfect e�cacy that wanes after ten years, but vaccinated individuals can be infected
with a high transmission rate, but recover very quickly.

Although the transmission rate is unrealistically high, this nevertheless demonstrates that a stable DFE can
be destabilised by a vaccine.

Note that what we are dealing with here is not a backward bifurcation, but rather a destabilisation of the
equilibrium.

Figure 2 shows the results of transmission using data from Weber et al and assumed vaccination parameters
such that recovery was slightly faster and transmission slightly less likely. The vaccine was given to 50% of
the eligible population, but waned after 0.01 years (check this) The data used were µ = 0.041; Ê = 100; — =
50; —V = 0.8—; ‘ = 0.9; p = 0.5; ‹ = 36; ‹V = 1.2‹; “ = 1.8; “V = 1.2“.

Figure 3 illustrates the destabilisation of the DFE when extreme vaccination parameters are used. In this
case, transmission of the vaccinated strain was extremely high but recovery extremely fast, allowing for infection
spikes to occur among a small proportion of vaccinated individuals before the infection stabilises. Data used
were µ = 0.041; Ê = 0.1; — = 0.03; —V = 3000; ‘ = 1; p = 0, 1; ‹ = 36; ‹V = 177; “ = 1.8; “V = 1.2.“.

Next, following Weber et al, we examined the more realistic case when the transmission rate oscillated.
Since the waning rate of the vaccine was not known, we decided to investigate several options for Ê.

When there is no vaccine, the disease results in a maximum of 7% of the population infected. Data used was
µ = 1/70; Ê = 1/10; b0 = 60; b1 = 0.16; „ = 0.15; —V = 0.5—; ‘ = 1; p = 0; ‹ = 36; ‹V = 1.2‹; “ = 1.8; “V = 1.2“.
See Figure 4.

A vaccine given to the entire population with 50% transmission that did not wane for ten years resulted in
about 6% of the population infected. Data used was identical to Figure 4 except that p = 1. See Figure 5. In

3

Identify and 
solve key issues.



Further ideas
• Possible future directions for this to go in

– extending the model to an impulsive version
• Doesn’t need to be completed yet
• Remember, the more depth you have in your 

paper, the more likely it is to be accepted
(and read)

• If you want to change the world, you need to 
communicate your ideas
– if you don’t write it down, you didn’t do it

• Superficial or single results should not be 
published.



4 Impulsive model

S0 = µ� µS � �(t)S(I + IV ) + �R+ !V t 6= tk

I 0 = �(t)S(I + IV )� ⌫I � µI + !IV t 6= tk

R0 = ⌫I � µR� �R+ !RV t 6= tk

V 0 = �µV � �V (t)V (I + IV ) + �V RV � !V t 6= tk

I 0V = �V V (I + IV )� ⌫V IV � µIV � !IV t 6= tk

R0
V = ⌫V IV � µRV � �V RV � !RV t 6= tk

�S = �rS t = tk

�V = rS t = tk

• Note that this is the entirety of Section 4 in 
the first draft.



Numerical simulations

• Used these to guide and reinforce the 
analysis
– the possibility of b1<0
– trawl through parameter sets: can we see it?

• Parameters should be derived from the 
biological literature

• Not made up or drawn from mathematical 
models

• What do we learn that we didn’t know?
– extreme parameters can induce infection 

spikes, even with 100% vaccination.



5 Numerical simulations

From Weber et al, we have � = 0.03, µ = 0.041 and ⌫ = 36. We add vaccination

parameters ! = 0.1, ✏ = 1, p = 1, ⌫V = 177 and �V = 3000. (We also have � =

1.8 and impose �V = 1.2�.) This represents a vaccine with complete coverage

and perfect e�cacy that wanes after ten years, but vaccinated individuals can

be infected with a high transmission rate, but recover very quickly.

Although the transmission rate is unrealistically high, this nevertheless demon-

strates that a stable DFE can be destabilised by a vaccine.

Note that what we are dealing with here is not a backward bifurcation, but

rather a destabilisation of the equilibrium.

Figure 2 shows the results of transmission using data from Weber et al

and assumed vaccination parameters such that recovery was slightly faster and

transmission slightly less likely. The vaccine was given to 50% of the eligible

population, but waned after 0.01 years (check this) The data used were µ =

0.041;! = 100;� = 50;�V = 0.8�; ✏ = 0.9; p = 0.5; ⌫ = 36; ⌫V = 1.2⌫; � =

1.8; �V = 1.2�.
Figure 3 illustrates the destabilisation of the DFE when extreme vaccina-

tion parameters are used. In this case, transmission of the vaccinated strain

was extremely high but recovery extremely fast, allowing for infection spikes to

occur among a small proportion of vaccinated individuals before the infection

stabilises. Data used were µ = 0.041;! = 0.1;� = 0.03;�V = 3000; ✏ = 1; p =

0, 1; ⌫ = 36; ⌫V = 177; � = 1.8; �V = 1.2.�.

Extreme 
parameters

Illustrates the 
surprising results

Identify any 
issues

A new result 
from simulations.
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Figure 2: Results from the basic model with vaccination. There is an outbreak and the disease oscillates,
eventually approaching an equilibrium. A small proportion of individuals are (and remain) vaccinated, with a
low-level outbreak among vaccinated individuals.

this case, there is only a slight decrease in the maximum disease burden, despite complete vaccination coverage.
[If the entire population is vaccinated, who is susceptible?]

A vaccine given to the entire population with 50% transmission that did not wane for 70 years resulted in
a significant reduction in the infected population. Data used was identical to Figure 5 except that Ê = 1/70.
See Figure 6. In this case, there is a significant reduction in the total disease burden, reducing the maximum
to less than 2% of the total population.

Of course, complete vaccination coverage is not realistic. Consequently, we examined the e�ect of 50%
coverage with a vaccine that did not wane for 70 years. Data used was identical to Figure 6 except that p = 0.5.
See Figure 7. In this case, there is still a significant reduction in total disease burden. Note that significantly
greater reduction is achieved with 50% coverage and a lifelong vaccine than was achieved with 100% coverage
and a vaccine that lasted 10 years (see Figure 5).

It follows that the waning rate of the vaccine is crucial. Even if complete coverage could be achieved, a
vaccine with a moderate duration (eg 10 years) results in very little reduction of infection. Conversely, a vaccine
that does not wane over a lifetime results in significant reduction in disease burden.

The best-case scenario involves complete coverage with a vaccine that does not wane for 70 years. Figure 8
illustrates the population dynamics when such a vaccine is introduced.

4
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Figure 3: Extreme parameters show that perfect vaccination can induce infection spikes. A. With no vaccine,
the result is that the infection clears and the entire population remains susceptible (note that the low-level
fluctuations result from numerical limitations in MATLAB) B. With a vaccine given to the entire population,
the susceptible population dips slightly as infection takes hold. C. Infection in the vaccinated population initially
takes the form of infection spikes before stabilising. Note that vaccination thus destabilises the disease-free
equilibrium.

5

Infection spikes.



Refining numerical simulations

• More realism
– include seasonal oscillations

• Apply stress tests
– what if the coverage varied?
– what happens when there’s no vaccine?
– what if the vaccine lasts for a lifetime?

• Identify key features
– which is better, good coverage with a weak 

vaccine or a good vaccine given to only some 
people?

– these should be issues people want to know.



Next, following Weber et al, we examined the more realistic case when the
transmission rate oscillated. Since the waning rate of the vaccine was not known,
we decided to investigate several options for !.

When there is no vaccine, the disease results in a maximum of 7% of the
population infected. Data used was µ = 1/70;! = 1/10; b0 = 60; b1 = 0.16;� =
0.15;�V = 0.5�; ✏ = 1; p = 0; ⌫ = 36; ⌫V = 1.2⌫; � = 1.8; �V = 1.2�. See Figure
4.

A vaccine given to the entire population with 50% transmission that did
not wane for ten years resulted in about 6% of the population infected. Data
used was identical to Figure 4 except that p = 1. See Figure 5. In this case,
there is only a slight decrease in the maximum disease burden, despite complete
vaccination coverage.

[If the entire population is vaccinated, who is susceptible?]

A vaccine given to the entire population with 50% transmission that did not
wane for 70 years resulted in a significant reduction in the infected population.
Data used was identical to Figure 5 except that ! = 1/70. See Figure 6. In this
case, there is a significant reduction in the total disease burden, reducing the
maximum to less than 2% of the total population.

Of course, complete vaccination coverage is not realistic. Consequently, we
examined the e↵ect of 50% coverage with a vaccine that did not wane for 70
years. Data used was identical to Figure 6 except that p = 0.5. See Figure 7.
In this case, there is still a significant reduction in total disease burden. Note
that significantly greater reduction is achieved with 50% coverage and a lifelong
vaccine than was achieved with 100% coverage and a vaccine that lasted 10
years (see Figure 5).

It follows that the waning rate of the vaccine is crucial. Even if complete
coverage could be achieved, a vaccine with a moderate duration (eg 10 years)
results in very little reduction of infection. Conversely, a vaccine that does not
wane over a lifetime results in significant reduction in disease burden.

The best-case scenario involves complete coverage with a vaccine that does
not wane for 70 years. Figure 8 illustrates the population dynamics when such
a vaccine is introduced.

More realism

Questions arise

A key 
comparison

The take-home 
message.
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Figure 4: Without vaccination, the disease infects up to 7% of the population. A. The total infected population,
including vaccinated individuals. B. The final size in each population.
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Figure 5: Complete coverage with a vaccine that did not wane for 10 years results in a di�erence of 1%
reduction in the disease. A. The total infected population, including vaccinated individuals. B. The final size
in each population.
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Figure 6: Complete coverage with a vaccine that did not wane for 70 years results in a significant reduction in
infection. A. The total infected population, including vaccinated individuals. B. The final size in each population.

6

Baseline case

Intermediate 
case

Extreme case.
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Figure 7: 50% coverage with a vaccine that did not wane for 70 years results in a significant reduction in infection.
A. The total infected population, including vaccinated individuals. B. The final size in each population.
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Figure 8: Population dynamics for a lifelong vaccine with complete coverage. Note that the vaccinated infected
are too small to appear on the figure. [Fix figure; the lowest arrow is regular infected.]
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Different case

Identify issues.



Implications

• Do these results make sense?
– if the entire population is vaccinated, who is 

susceptible?
– is the vaccine realistic?

• What do we learn that we didn’t know?
– the waning rate is crucial
– we see infection spikes that were not predicted
– suddenly, we have a key result...

...and the title for the paper.



Understanding

• Why do we get these surprising results?
– vaccinated individuals have a small chance of 

being infected 
– the transmission rate is very high, but the 

waning is very fast
– the disease can thus act extremely intensely, 

but only in a small window of time
– hence we see spikes

• If you can’t explain surprising results 
biologically, they may be too good to be true
– better that you find this out now than later.



Part 2: The Introduction
• Only a few, tight paragraphs
• Must be well written

– find a native English speaker to read it
– get a non-expert to read it

• Only things that are introductory should be in 
the Introduction
– and things that are introductory should not be in 

other sections
• Don’t tell us how the paper is organised

– unless the organisation is confusing
– consider removing this confusion.



What to write
• Sketch a brief outline of each paragraph

– what is RSV?
– immunity
– seasonal oscillations
– treatment
– previous models

• Do not write too little
• Do not write too much
• You are aiming to situate your work within 

the context of what’s come before
– needs to be tight.



Respiratory syncytial virus vaccination

I. INTRODUCTION

Respiratory syncytial virus (RSV) is the main cause of acute lower respiratory infections in infants and
young children [22], with almost all children having been infected by two years of age [10, 25] and an esti-
mated 0.5–2% of infants requiring hospitalisation due to infection [18]. One recent study estimated in that in
2005, 33.8 million new episodes of RSV occurred worldwide in children younger than five years of age [22].
Symptoms of RSV range from those of a cold, more severe afflictions such as bronchiolitis and pneumonia
[10]. While mortality due to RSV infection in developed countries is low, occurring in less than 0.1% of
cases [32], little data is published about RSV morbidity and mortality in developing countries [34]. However,
estimates of the hospitalisation costs are substantial [14, 30, 36], making RSV a significant economic and
health care system burden.

Newborn infants are typically protected from RSV infection by maternal antibodies until about six weeks
of age [8], and the highest number of observed RSV cases occur in children aged six weeks to six months
[5, 27]. Immunity to RSV following an infection is short-lasting and reinfection in childhood is common
[19]. Few studies have been undertaken to investigate transmission of RSV among adults, but it is thought
that infection can occur throughout life [6, 15] and that in older children and adults, RSV manifests as a mild
cold [10, 16]. RSV has been identified as a cause of mortality in the elderly with documented outbreaks in
aged care settings [13, 31]; one such study found that up to 18% of pneumonia hospitalisation in adults aged
above 65 years may be due to RSV infection [12].

In temperate climates RSV epidemics exhibit distinct and consistent seasonal patterns. Most RSV infections
occur during the cooler winter months, whether wet or dry [34], and outbreaks typically last between two and
five months [11, 23]. In a number of temperate regions a biennial pattern for RSV cases has been identified;
see, for example, [4, 20, 28]. In tropical climates RSV is detected throughout the year with less pronounced
seasonal peaks, and the onset of RSV is typically associated with the wet season [26, 34].

Immunoprophylaxis with the monoclonal antibody Palivizumab, while not preventing the onset of infec-
tion, has proven effective in reducing the severity of RSV-related symptoms [29]. However, prophylaxis is
expensive and generally only administered to high-risk children, with recommendations varying across juris-
dictions. There is currently no licensed vaccine to prevent RSV infection, despite about 50 years of vaccine
research. Recent research has focused on the developed of live attenuated vaccines; several such vaccines are
being evaluated in clinical trials, with other vaccines in preclinical development [9, 14]. With the possibility
of a RSV vaccine becoming available, mathematical models can be powerful tools for planning vaccination
roll-out strategies.

Several ordinary differential equation Susceptible-Exposed-Infectious-Recovered (SEIR) type mathematical
models for RSV transmission have been published to date, such as those presented in [3, 7, 17, 21, 24, 33, 35]
with a sine or cosine forcing term to account for seasonal variation in transmission. Weber et al. [33] present
a SEIRS model which incorporates a gradual reduction in susceptibility to reinfection and maternally de-
rived immunity, and fit the model to several data sets. Leecaster et al. [17] present a SEIDR model with both
child and adult classes for the S, E and I compartments, and where the D class represents children in which
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infection was detected. The model is fit to seven years of data from Salt Lake City, USA.

Moore et al. [21] present an age-structured SEIRS model for children under two years of age and the re-
maining population. The model is fit to data from Perth, Western Australia. Capistran et al. [7] outline a
SIRS model with seasonal forcing and propose a method to estimate the model parameters, demonstrated by
fitting models to data from The Gambia and Finland. Paynter et al. [24] investigate the ecological drivers
of RSV seasonality in the Philippines, where the model includes a second partially susceptible class, and
second classes for latent and infectious individuals with a subsequent RSV infection. This work also applies
a square wave transmission term that accounts decreased transmissability over the summer holidays, as well
as a seasonally driven birth rate.

White et al. [35] describe nested differential equation models for RSV transmission and fit these to RSV
case data for eight different regions. In the work of Arenas et al. [3], randomness is introduced into the
differential equation model and the model fit to RSV hospitalisation data for Valencia, Spain.

Few papers have so far explored vaccination strategies for RSV. A newborn vaccination strategy is outlined
in [1] for the Spanish region of Valencia, in order to estimate the cost-effectiveness of potential RSV vac-
cination strategies. The modelling approach removes a fraction of susceptible newborns into a vaccinated
class, where they remained until they reached the next age group, at which point they move to the second
susceptible class. This strategy assumes booster doses of the vaccine in the first year of life, such that the
immunisation period would be at least equal to the immunity of those who have recovered from RSV infec-
tion. In subsequent work, an RSV vaccine cost analysis is conducted based on a stochastic network model,
with children vaccinated at two months, four months and one year of age [2].

Details of what we plan to do...
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Unexpected infection spikes in a model of

Respiratory Syncytial Virus vaccination

Robert J. Smith?1, Alexandra Hogan2, Geo� Mercer2

1. Department of Mathematics, The University of Ottawa, 585 King
Edward Ave, Ottawa ON K1N 6N5 Canada

2. National Centre for Epidemiology and Population Health, Australian
National University, Canberra, 2601, Australia

Abstract
Respiratory Syncytial Virus (RSV) is an actute respiratory infection
that infects millions of children and infants worldwide. Recent research
has shown promise for the development of live attentuated vaccines,
several of which are in clinical trials or preclinical development. We
extend an existing mathematical model with seasonal transmission to
include vaccination. We model vaccination both as a continuous pro-
cess and as a discrete one, using impulsive di�erential equations. We
develop conditions for the stability of the disease-free equilibrium and
show that this equilibrium can be destabilised under certain (extreme)
conditions. Using impulsive di�erential equations and introducing a
new quantity, the impulsive reproduction number, we determine condi-
tions for the period and strength of vaccination that will control (but
not eradicate) RSV. The waning rate of the vaccine is a critical pa-
rameter for long-term reduction in RSV prevalence, even more than
coverage. We recommend that candidate vaccines be tested for su�-
cient duration before being released on the market.

1 Introduction

Respiratory syncytial virus (RSV) is the main cause of acute lower respira-
tory infections in infants and young children [27], with almost all children
having been infected by two years of age [14, 31] and an estimated 0.5–2%
of infants requiring hospitalisation due to infection [23]. One recent study
estimated that, in 2005, 33.8 million new episodes of RSV occurred world-
wide in children younger than five years of age [27]. Symptoms of RSV range
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5 Discussion

The introduction of a vaccine is always desirable, but new vaccines pose the
risk of unintended consequences. We have highlighted some of the potential
issues that may arise with vaccination against RSV. In particular, we deter-
mine conditions under which a destabilisation of the disease-free equilibrium is
possible. This is not in the form of a backward bifurcation, as is sometimes
seen, but rather occurs when the vaccine causes su�ciently fast recovery and
transmission is extremely high. An infection-free population that is e↵ectively
vaccinated against RSV can nevertheless produce vaccination-innduced spikes of
infection. Although such a case is unlikely to occur with the unrealistic parame-
ters we chose, we have shown proof-of-concept that it is possible and determined
conditions on the recovery rate due to vaccinaton that allow for the possibility.

Using impulsive di↵erential equations, we were able to formulate conditions
on the period and the strength of vaccination to allow for disease control (though
not eradication). If the vaccine reduces transmissibility and is applied fre-
quently, then vaccinated infected individuals can be reduced to low numbers.
We relaxed the assumption of constant transmission. We demonstrated that
the waning of the vaccine has a greater e↵ect on the outcome that coverage.
Hence it is imperative that a good vaccine be developed before being released
for general use.

We also defined a new quantity, the impulsive reproduction number T0.
This is a su�cient (but not necessary) condition, based on an overestimate of
the infected population, that ensures eradication if T0 < 1. If T0 < 1, then the
infected population is contracting within each impulsive cycle. Since the infected
population is then reduced at each impulse point, the result is the eventual
eradication of the infection. Note that we assumed constant transmission for
this derivation; however, numerical simulations were performed using seasonal
oscillations. The result was a double period: one from the impulsive periodic
orbit and the other from the seasonal oscillations.

Our model has some limitations, which should be acknowledged. We as-
sumed that time to administer the vaccine was significantly shorter than the
time between vaccine administrations in order to justify the impulsive approx-
imation. Such assumptions are reasonable in many cases [30], although can
produce confounding e↵ects in some situations [11]. The extreme parameters
that we used to illustrate the vaccination spikes operated under the assumption
that the transmission rate for infected vaccinatied individuals was significantly
higher than the transmission rate without vaccination. Since we extended the
model of Weber et al. [39], our model inherited many of the assumptions from
that model, such as mass-action transmission, a constant birth rate and that
the birth and death rates were matched, resulting in a constant population.

A vaccine that targets RSV infection has the potential to significantly reduce
the overall prevalence of the disease, but it has to be su�ciently long-lasting.
Coverage and e↵ectiveness of the vaccine is important, but the critical param-
eter that our modelling identified is the waning rate of the vaccine. We thus
recommend that candidate vaccines be tested for su�cient duration before be-
ing released to the public. If a durable vaccine can be developed, then we stand

a chance of controlling this disease, assuming su�ciently widespread coverage.
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of a cold to more severe a�ictions such as bronchiolitis and pneumonia [10].
While mortality due to RSV infection in developed countries is low, occur-
ring in less than 0.1% of cases [38], few data have been published about
RSV morbidity and mortality in developing countries [40]. However, esti-
mates of the hospitalisation costs are substantial [14, 36, 42], making RSV
a significant economic and health care system burden.

Newborn infants are typically protected from RSV infection by mater-
nal antibodies until about six weeks of age [9], and the highest number of
observed RSV cases occur in children aged six weeks to six months [6, 33].
Immunity to RSV following an infection is short-lasting, and reinfection in
childhood is common [22]. Few studies have been undertaken to investigate
transmission of RSV among adults, but it is thought that infection can occur
throughout life [7, 15] and that, in older children and adults, RSV manifests
as a mild cold [10, 18]. RSV has been identified as a cause of mortality in
the elderly, with documented outbreaks in aged-care settings [13, 37]; one
such study found that up to 18% of pneumonia hospitalisation in adults
aged above 65 years may be due to RSV infection [12] *could take out this
paragraph?.

In temperate climates RSV epidemics exhibit distinct and consistent sea-
sonal patterns. Most RSV infections occur during the cooler winter months,
whether wet or dry [40], and outbreaks typically last between two and five
months [11, 26]. In a number of temperate regions, a biennial pattern for
RSV cases has been identified [4, 23, 34]. In tropical climates, RSV is de-
tected throughout the year with less pronounced seasonal peaks, and the
onset of RSV is typically associated with the wet season [32, 40].

Immunoprophylaxis with the monoclonal antibody Palivizumab, while
not preventing the onset of infection, has proven e�ective in reducing the
severity of RSV-related symptoms [35]. However, prophylaxis is expensive
and generally only administered to high-risk children, with recommendations
varying across jurisdictions. There is currently no licensed vaccine to prevent
RSV infection, despite about 50 years of vaccine research. Recent research
has focused on the development of particle-based and subunit vaccines; sev-
eral such vaccines are being evaluated in clinical trials, with other vaccines
in preclinical development [28, 30]. With the possibility of an RSV vaccine
becoming available, mathematical models are powerful tools for assessing
the impacts of di�erent vaccine characteristics.

Several ordinary di�erential equation mathematical models for RSV trans-
mission have been published to date, most using Susceptible–Exposed–Infectious–
Recovered (SEIR) dynamics and with a sine or cosine forcing term to ac-
count for seasonal variation in transmission [3, 8, 19, 24, 27, 39, 41]. Few
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papers have so far used dynamic models to explore vaccination strategies for
RSV, and these have generally investigated RSV vaccination from a cost-
e�ectiveness perspective [5, 21], for example in the context of a newborn
vaccination strategy in the Spanish region of Valencia [1, 2]. More recent
studies conducted for the setting of rural Kenya have focussed on the likely
benefits of vaccination for particular target groups [17, 29]. *A nice segue
here would be to say that we have not identified any RSV vaccination mod-
els that examine the impact of a theoretical vaccine analytically, and look at
the stability of di�erent scenarios - but can’t think right now how to word
this.

Here, we examine the e�ects of a theoretical vaccine on the transmission
of RSV in a single age class. We consider several vaccination scenarios, in-
cluding di�ering levels of coverage, seasonal oscillations in the transmission
rate and a waning of the vaccine. We also compare continuous vaccination
to impulsive vaccination in order to determine conditions on the vaccination
strength and duration? that will control the virus.

2 The model

We extend the basic compartmental model for a single age cohort described
by Weber et al. [39] to include a vaccine strategy for RSV where a fixed
proportion of newborns are vaccinated?. We assume that the leaving rate
µ is unchanged across all classes and that there is no disease-specific death
rate. We scale the entry and leaving rates so that the population is constant.

Let S represent susceptible, I represent infected and R represent recov-
ered individuals, with V , IV and RV the corresponding compartments for
vaccinated individuals. The birth rate is µ, with a proportion p vaccinated,
of whom ‘ successfully mount an immune response; the death rate is equal to
the birth rate. The time-dependent transmissibility function is —(t), with re-
covery ‹ and loss of immunity “. The transmissibility of infected vaccinated
individuals is described by —V (t), and the recovery and loss of immunity rates
for vaccinated individuals are ‹V and “V respectively. Finally, the waning of
the vaccine protectiveness? is given by Ê.
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Figure 1: The model.

The basic model with vaccination is then

S

Õ = µ(1 ≠ ‘p) ≠ µS ≠ —(t)S(I + IV ) + “R + ÊV

I

Õ = —(t)S(I + IV ) ≠ ‹I ≠ µI + ÊIV

R

Õ = ‹I ≠ µR ≠ “R + ÊRV

V

Õ = ‘pµ ≠ µV ≠ —V (t)V (I + IV ) + “V RV ≠ ÊV

I

Õ
V = —V (t)V (I + IV ) ≠ ‹V IV ≠ µIV ≠ ÊIV

R

Õ
V = ‹V IV ≠ µRV ≠ “V RV ≠ ÊRV ,

with —(t) = b0(1 + b1 cos(2fit + „)) and —V (t) = (1 ≠ –)—(t), for 0 Æ – Æ 1,
where – represents.... (We may relax the lower bound on – later.) The model
is illustrated in Figure 1. *I’m confused about the rationale for relaxing the
lower bound on –?
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The first four eigenvalues are always negative. The nontrivial part of
characteristic equation satisfies

⁄

2 + b1⁄ + c1 = 0,

where

b1 = ≠—S̄ + µ + ‹ ≠ —V V̄ + ‹V + µ + Ê

c1 = (—S̄ ≠ µ ≠ ‹)(—V V̄ ≠ ‹V ≠ µ ≠ Ê) ≠ —V V̄ (—S̄ + Ê)
= —S̄(≠‹V ≠ µ ≠ Ê) ≠ (µ + ‹)(—V V̄ ≠ ‹V ≠ µ ≠ Ê) ≠ —V V̄ Ê.

From c1 = 0, we find I am confused about this step here, sorry! How did
we get from setting c1 = 0 to determining R0?

R0 = —S̄(‹V + µ + Ê) + —V V̄ (µ + ‹ + Ê)
(µ + ‹)(µ + ‹V + Ê)

(This is equivalent to the value found using the next-generation method.)
If c1 = 0 and b1 > 0, then we have a bifurcation with the property that

the DFE is stable if R0 < 1 and unstable if R0 > 1
However, it is possible that when c1 = 0, b1 < 0. In this case, R0 is not

a threshold and the disease can persist if R0 < 1.
When c1 = 0, we have

b1

----
c1=0

= 1
‹V + µ + Ê

Ë
—V V̄ (‹ ≠ ‹V ) + (‹V + µ + Ê)2

È
.

Note that if ‹ = ‹V , then b1 > 0. However, it is plausible that vaccinated
individuals infected with RSV will recover faster than unvaccinated individ-
uals. Thus ‹V > ‹. This raises the possibility that b1 could be negative.

If ‹V æ Œ, then this is equivalent to vaccinated individuals recovering
instantaneously. In this case,

lim
‹V æŒ

b1 = lim
‹V æŒ

—V V̄ (‹ ≠ ‹V )
Ê + µ + ‹V

+ Ê + µ + ‹V

= Œ ≠ —V V̄ > 0

Hence if we define f(‹V ) = —V V̄ (‹≠‹V )+(Ê+µ+‹V )2

Ê+µ+‹V
, then it is clear that

f(0) > 0 and f(Œ) > 0. So we would like to know whether f has a turning
point ‹

ú
V such that f(‹ú

V ) < 0.
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higher than the transmission rate without vaccination. Since we extended
the model introduced by Weber et al. [39], our model inherited many of the
assumptions from that model, such as mass-action transmission, a constant
birth rate and that the birth and death rates were matched, resulting in a
constant population.

In our model we considered RSV transmission dynamics for a single age
class, in order to allow for the model to be analytically tractable. Given we
were examining the broad popoulation-level impacts in a large population,
we considered this a reasonable model simplification. Further, it has been
shown that for a similar compartmental RSV model, including multiple age
classes did not change the bifurcation structure of the model [16]. However,
di�erent vaccine candidates for RSV are being developed for distinct key age
groups – infants, young children, pregnant women, and the elderly [30]. This
means that future models that explore the specific implications of vaccines
for these target groups may need to incorporate additional age classes.

A vaccine that targets RSV infection has the potential to significantly
reduce the overall prevalence of the disease, but it has to be su�ciently
long-lasting. Coverage and e�ectiveness of the vaccine is important, but the
critical parameter that our modelling identified is the waning rate of the
vaccine. We thus recommend that candidate vaccines be tested for su�cient
duration before being released to the public.
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tion in transmission [3, 11, 25, 30, 33, 46, 48]. Few papers have so far used
dynamic models to explore vaccination strategies for RSV, and these have
generally investigated RSV vaccination from a cost-e�ectiveness perspective
[8, 27], for example in the context of a newborn vaccination strategy in the
Spanish region of Valencia [1, 2]. More recent studies conducted for the set-
ting of rural Kenya have focussed on the likely benefits of vaccination for
particular target groups [22, 35]. To the best of our knowledge, there are no
theoretical models that examine the impact of an RSV vaccine analytically.

Here, we examine the e�ects of a prophylactic vaccine on the transmis-
sion of RSV in a single age class. We consider several vaccination scenarios,
including di�ering levels of coverage, seasonal oscillations in the transmission
rate and a waning of the vaccine. We also compare continuous vaccination
to impulsive vaccination in order to determine conditions on the vaccination
strength and duration that will control the virus.

2 The model

We extend the SEIRS compartmental model for a single age cohort described
by Weber et al. [46] to include a vaccine strategy for RSV where a fixed
proportion of newborns are vaccinated before infection. (This is equivalent
to the situation where pregnant mothers are vaccinated before giving birth.)
We assume that the leaving rate µ is unchanged across all classes and that
there is no disease-specific death rate. We scale the entry and leaving rates
so that the population is constant.

Let S represent susceptible, I represent infected and R represent recov-
ered individuals, with V , IV and RV the corresponding compartments for
vaccinated individuals. The birth rate is µ, with a proportion p vaccinated,
of whom ‘ successfully mount an immune response; the death rate is equal to
the birth rate. The time-dependent transmissibility function is —(t), with re-
covery ‹ and loss of immunity “. The transmissibility of infected vaccinated
individuals is described by —V (t), and the recovery and loss of immunity rates
for vaccinated individuals are ‹V and “V respectively. Finally, the waning of
the vaccine protectiveness is given by Ê.
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The basic model with vaccination is then

S

Õ = µ(1 ≠ ‘p) ≠ µS ≠ —(t)S(I + IV ) + “R + ÊV

I

Õ = —(t)S(I + IV ) ≠ ‹I ≠ µI + ÊIV

R

Õ = ‹I ≠ µR ≠ “R + ÊRV

V

Õ = ‘pµ ≠ µV ≠ —V (t)V (I + IV ) + “V RV ≠ ÊV

I

Õ
V = —V (t)V (I + IV ) ≠ ‹V IV ≠ µIV ≠ ÊIV

R

Õ
V = ‹V IV ≠ µRV ≠ “V RV ≠ ÊRV ,

with —(t) = b0(1 + b1 cos(2fit + „)) and —V (t) = (1 ≠ –)—(t), for 0 Æ – Æ 1,
where – represents the e�cacy of vaccination in preventing infection. (We
will relax the lower bound on – later in order to examine some theoretical
scenarios.) The model is illustrated in Figure 1.
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The first four eigenvalues are always negative. The nontrivial part of
characteristic equation satisfies

⁄

2 + b1⁄ + c1 = 0,

where

b1 = ≠—S̄ + µ + ‹ ≠ —V V̄ + ‹V + µ + Ê

c1 = (—S̄ ≠ µ ≠ ‹)(—V V̄ ≠ ‹V ≠ µ ≠ Ê) ≠ —V V̄ (—S̄ + Ê)
= —S̄(≠‹V ≠ µ ≠ Ê) ≠ (µ + ‹)(—V V̄ ≠ ‹V ≠ µ ≠ Ê) ≠ —V V̄ Ê.

We use the method of the constant term of the characteristic polynomial
to determine the reproduction number [19]. Rearranging c1 = 0, we find

R0 = —S̄(‹V + µ + Ê) + —V V̄ (µ + ‹ + Ê)
(µ + ‹)(µ + ‹V + Ê)

(This is equivalent to the value found using the next-generation method.)
If c1 = 0 and b1 > 0, then we have a bifurcation with the property that

the DFE is stable if R0 < 1 and unstable if R0 > 1
However, it is possible that when c1 = 0, b1 < 0. In this case, R0 is not

a threshold and the disease can persist if R0 < 1.
When c1 = 0, we have

b1

----
c1=0

= 1
‹V + µ + Ê

Ë
—V V̄ (‹ ≠ ‹V ) + (‹V + µ + Ê)2

È
.

Note that if ‹ = ‹V , then b1 > 0. However, it is plausible that vaccinated
individuals infected with RSV will recover faster than unvaccinated individ-
uals. Thus ‹V > ‹. This raises the possibility that b1 could be negative.

If ‹V æ Œ, then this is equivalent to vaccinated individuals recovering
instantaneously. In this case,

lim
‹V æŒ

b1 = lim
‹V æŒ

—V V̄ (‹ ≠ ‹V )
Ê + µ + ‹V

+ Ê + µ + ‹V

= Œ ≠ —V V̄ > 0

Hence if we define f(‹V ) = —V V̄ (‹≠‹V )+(Ê+µ+‹V )2

Ê+µ+‹V
, then it is clear that

f(0) > 0 and f(Œ) > 0. So we would like to know whether f has a turning
point ‹

ú
V such that f(‹ú

V ) < 0.
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Unexpected infection spikes in a model of

Respiratory Syncytial Virus vaccination

Dear Dr. Yang,

We thank the Editor and Reviewers for their time and consideration of our manuscript
on RSV vaccination. We have done everything the reviewers requested. Here is a
point-by-point response to the reviewers.

Reviewer 1

General This reviewer had four major comments and three minor comments.
Response: We have done everything this reviewer suggested. Changes due to this
reviewer are in blue.

Comment (1) The authors describe current e↵orts at vaccine development as “fo-
cused on the development of particle-based and subunit vaccines (p.2, 3/4 down)”.
They do not mention, or consider, the continuing work on live attenuated vaccines or
vectored vaccines both of which are supported by multiple large pharma companies.
Response: Good point. We have changed this sentence to: “focused on the develop-
ment of particle-based, subunit and vectored vaccines. Live-attenuated vaccines are
also undergoing phase 1 trials.” This is based on the summary at http://www.path.
org/vaccineresources/files/RSV-snapshot-December2016.pdf (Page 2)

Comment (2) The authors consider (p.3, middle) “a vaccine strategy for RSV where
a fixed proportion of individuals entering the model are temporarily immune to in-
fection. This reflects the situation where newborn children are vaccinated at birth.”
They do not mention, or consider, that the main vaccine strategy now being pur-
sued for the youngest infants is not direct immunization, but is instead maternal
immunization. Vaccination occurring during the third trimester generates antibodies
in the mother that are transferred transplacentally to the infant, resulting in higher
antibody titers in the infant at birth. The thought is that the higher antibody titers
should protect the infant for approximately two months longer. Pre-formed antibod-
ies decay with time, and by 6 months maternal antibodies are no longer detectable
in an infant.
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Response: This is an excellent point, so we have changed the focus in this section
to maternal vaccination and discussed this in some detail. Happily, by doing so, the
results are unchanged from a mathematical perspective. (Pages 3, 7, 16, 17)

Comment (3) Vaccination of infants as soon as they are born is seldom successful
for any pathogen because the infants immune system is immature. It is not currently
being contemplated for RSV. However, MedImmune (owner of the prophylactic mon-
oclonal antibody that is currently used for “at risk” infants to protect them against
RSV) has developed a more potent RSV-neutralizing monoclonal antibody with in-
creased stability that could be given at birth to protect infants for their first 6 months.
This approach would avoid the uncertainties of individual maternal responses to RSV
and the problem of premature birth which could result in incomplete transfer of the
antibodies elicited by a maternal vaccine, depending on the time of vaccination rela-
tive to birth.
In general, the thinking in the field is that there will be two vaccines for RSV, one
to protect infants during their first 6 months, and another to protect them from
6 months on. I realize that there may be too many variables for the authors to
consider in one report, but they could choose one of these strategies and model that.
Maternal vaccination before birth would seem to be the most important to study
now since it is being pursued aggressively by the NIH and two big pharma companies
and several smaller companies, and is being supported by the Bill and Melinda Gates
Foundation. The MedImmune stabilized monoclonal antibody approach could be
included as generally equivalent.
Response: This brings up a point that we realise was not clear: we are actually
considering both options. The nonimpulsive model considers pre-infection vaccination
only, while the impulsive model considers subsequent vaccination. We have added
emphasis in several places to make this clear. (Pages 3, 7, 11, 16, 17)

Comment (4) But the protection of any of these approaches would cover only the
first 6 months of life. Thereafter, immunization of the child with another vaccine
would be needed to induce active immunity and a recall response that would provide
future, more rapid protection upon infection. Right now, live attenuated or vectored
(adenovirus) vaccines are the front runners, but direct immunization with a subunit
vaccine might eventually be considered. A subunit vaccine has not been considered
largely because of the initial formalin-inactivated vaccine trial in the 1960s resulted
in much more severe disease following the first community acquired infection in the
vaccinees.
While modeling a 10-year protective vaccine and a lifetime-protective vaccine can be
done, even infection with the wild-type virus does not provide 10-year protection, so it
is di�cult to see how a long-term protective vaccine could be generated. Nevertheless,
it is a laudable goal.
Response: This is a helpful observation. We have decided to change our focus away
from long-lasting vaccines and instead mostly focus on short-term durations, as the
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reviewer suggests. We have mostly restricted ourselves to vaccines lasting six months
(corresponding to ! = 2) and have instead moved the focus to vaccine coverage via
the proportion of individuals who are vaccinated (r). We re-ran all our simulations
and have thus updated all figures. The results are actually stronger with this new
focus, so we are grateful to the reviewer for raising this. (Pages 12, 13, 14)

Comment (5) p.1, author list. Why is Robert J. Smith followed by a ? ?
Response: It is part of the author’s name. See, for example:
http://mysite.science.uottawa.ca/rsmith43/MDRHIV.pdf

Comment (6) p.18, l.10. vaccination-induced
Response: Fixed (Page 16)

Comment (7) p.18, l.20.outcome than coverage
Response: We agree, although this sentence has now been deleted, so it no longer
applies.

Reviewer 2

General This reviewer noted that the research questions examined in our manuscript
are extremely important and relevant and that we use an innovative approach to
address the question of potential vaccine e�cacy. This reviewer had five major com-
ments.
Response: We have done everything this reviewer suggested. Changes due to this
reviewer are in red.

Comment (1) The authors base the model on the assumption that infants will be
given the vaccine at birth. While this is true for a few vaccines, most are not given
at birth. Additionally, the most advanced vaccines in development are not being
targeted to infants. They are primarily targeting the elderly, and pregnant mothers
to protect newborns. The authors need to address the fact that their assumption is
very unlikely, or even false more than they have as the manuscript stands.
Response: This is a good point that was also raised by Reviewer #1. See our
response to Comments (2) and (3) above. Note in particular that we are actually
considering both and have made that more clear. (Pages 3, 12, 16, 17, in blue.)

Comment (2) The authors conclude that vaccine duration would be more important
than vaccine coverage. They recommend that vaccine be tested for duration before
approval. The authors need to discuss how the practicality of studying long term
immunity is very challenging, especially regarding the time frames they test. Obvi-
ously 70, or even 10 years would be impossible to test during a clinical trial before
licensure.
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Response: This point was also raised by Reviewer #1. We have changed the focus
to short-term durations and re-run our simulations. See our response to Comment
(4) above. (Pages 12, 13, 14, in blue.)

Comment (3) Vaccine duration is a somewhat vague term, especially since the
correlates of immunity have not been fully defined for RSV, and natural infection
does not necessarily confer protection from reinfection.
Response: This isn’t as important now, although we will note that it is a well-defined
term mathematically, even if that is an approximation to a more fuzzy concept in
reality. We have added a definition. (Pages 3–4)

Comment (4) The authors should cite other, already licensed vaccines that are in
use where duration is more important than vaccine coverage.
Response: We have changed the focus away from this, although we did find that
this is true for both pertussis and HPV.

Comment (5) The endpoints of most RSV clinical trials are not sterilizing immunity,
but a reduction in RSV-associated hospitalizations. The authors should consider
incorporating this endpoint into their model or at least discuss this point.
Response: This is a good point that is worth mentioning. We have added a para-
graph to the discussion addressing this. (Page 17)

In summary, we feel that these revisions have addressed all the points raised by the
reviewers and hope that the manuscript is now acceptable.

Yours sincerely,

Alexandra Hogan, Geo↵ry Mercer and Robert Smith?
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Further polishing

• Often, the reviewers’ questions can bring up 
issues that you find
– infection spikes changed dramatically

• You may need to rework things significantly
• Don’t be afraid of doing this
• Or you may just want to change for clarity

– eg different timescales.
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Figure 4: Without vaccination, the disease infects up to 7% of the population. A. The total infected population,
including vaccinated individuals. B. The final size in each population.
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Figure 5: Complete coverage with a vaccine that did not wane for 10 years results in a di�erence of 1%
reduction in the disease. A. The total infected population, including vaccinated individuals. B. The final size
in each population.
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Figure 6: Complete coverage with a vaccine that did not wane for 70 years results in a significant reduction in
infection. A. The total infected population, including vaccinated individuals. B. The final size in each population.
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Figure 4: Without vaccination, the disease infects up to 7% of the population.
A. The total infected population, including vaccinated individuals. B. The
final size in each population.

ulation infected. See Figure 5. Data used were identical to Figure 4 except
that r = 0.5. In this case, the disease still oscillates but at substantially
reduced levels.
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Figure 5: 50% coverage with a vaccine that reduced transmissibility by half
and waned after two years resulted in a substantial reduction in the disease
compared to no vaccination. A. The total infected population, including
vaccinated individuals. B. The final size in each population.

A vaccine given to three quarters of the population with 50% transmis-
sion that waned after two years resulted in theoretical eradication of the
disease. See Figure 6. The parameters used were identical to those in Fig-
ures 4 and 5 except that r = 0.75. In this case, there are eventually roughly
equal numbers of susceptible and vaccinated individuals, with no infected
individuals.

Note that, even in the unrealistic case of perfect coverage with a lifelong
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Figure 3: Extreme parameters show that perfect vaccination can induce infection spikes. A. With no vaccine,
the result is that the infection clears and the entire population remains susceptible (note that the low-level
fluctuations result from numerical limitations in MATLAB) B. With a vaccine given to the entire population,
the susceptible population dips slightly as infection takes hold. C. Infection in the vaccinated population initially
takes the form of infection spikes before stabilising. Note that vaccination thus destabilises the disease-free
equilibrium.
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Figure 8: Extreme parameters show that perfect vaccination can induce
unexpected infection spikes. A. With no vaccine (r = 0), the result is that
the infection clears and the entire population remains susceptible. (Note
that the timescale is given for only 0.5 years to show the decline but was
run for 15 years.) B. The final size of each compartment in the case of no
vaccine after 15 years. C. When an imperfect vaccine is given to the entire
population (r = 1), the result is a series of disease spikes in the vaccinated
population. Note that the transmission rate is not oscillating in this example.
D. The final size of each compartment in the case of full vaccination after
15 years. Vaccination thus destabilises the DFE.

and the strength of vaccination to allow for disease control.
We also defined a new quantity, the impulsive reproduction number T0.

This is a su�cient (but not necessary) condition, based on an overestimate
of the infected population, that ensures eradication if T0 < 1. If T0 < 1,
then the infected population is contracting within each impulsive cycle; the
result is the eventual eradication of the infection. Note that we assumed
constant transmission for this derivation; however, numerical simulations
were performed using seasonal oscillations and demonstrated comparative
results. In particular, if the strength of periodic vaccination r is su�ciently
high, then the disease will be controlled, assuming the vaccine is given with
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Part 6: What’s next?
• Turn your paper into a 20-minute talk
• Present it to colleagues
• Ideally do this before the final version, to iron 

out any outstanding issues
– you will likely find further weak spots

• Do any big questions come out of the 
presentation?
– “Have you considered...?”
– “What about...?”

• These may be the basis for your next paper
– there’s always more exciting research waiting.



Summary

• Research starts with an idea
• You find the paper through editing + refining
• What did we learn that we didn’t know?

– if you can’t answer this question, don’t publish
• The Abstract and Introduction must be tight
• The figures must tell the story 
• The Discussion is for implications
• Use the reviews to help you find the narrative
• Ultimately, you’re telling a story 
• Make it a good one.



The Handout
mysite.science.uottawa.ca/rsmith43/paperwritinghandouts.htm

Includes links to:
• slides from this talk
• multiple drafts
• biological introduction
• response to reviewers
• final version.


