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Abstract. Self-cycling fermentation is a computer-aided process used for culturing mi-

croorganisms. Potential applications could include water purification, treatment of sewage,

and the cleanup of toxic waste. We consider a model of growth of a single species in the

fermenter, assuming a single limiting nutrient, with the level of this nutrient as the trigger-

ing factor. The model is formulated in terms of impulsive ordinary differential equations.

The model predicts that either the system fails and the population of microorganisms

essentially washes out, or more favourably, the fermenter cycles indefinitely, with one im-

pulse per period, maintaining a positive, though oscillatory, number of cells. The predicted

outcome is based on a threshold criterion that can be determined in advance in terms of

biologically relevant parameters. An analytic expression for the cycle time is also derived.

Using this expression, it is shown that the total yield over a specified time period depends

on the choice of the optimal emptying/refilling fraction. A method for determining the

optimal emptying/refilling fraction is given. The results are illustrated by means of nu-

merical simulations.
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1 Introduction

The development of the process of self-cycling fermentation (SCF) is de-
scribed in Sheppard and Cooper [11], and a model similar to the one discussed
here is given in Wincure, Cooper, and Rey [16].

Briefly, the process of self-cycling fermentation is a computer-controlled
semibatch fermentation. A well-stirred tank containing fresh medium is in-
oculated with microorganisms that consume the nutrients in the broth. The
microorganisms process the nutrient in order to grow and to reproduce. A

2To whom correspondence should be addressed.
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probe inserted in the tank relays information to a computer that monitors
the system. When certain conditions are met, the computer initiates a rapid
emptying and refilling process. A set fraction of the contents of the tank
is released and replaced by an equal volume of fresh medium, and then the
process begins anew.

The time at which the emptying and refilling process is initiated is re-
ferred to variously as the time of impulsive effect, the harvesting time, the
moment of impulse, or the end of cycle time. The time between impulsive
effects is referred to as the cycle time. Under the right conditions, this cy-
cling continues indefinitely. No a priori estimate of the natural cycle time of
the microorganisms is necessary. Once the process has been initiated, there
is no need for human intervention. Self-cycling fermentation has been shown
to be potentially useful for a variety of applications, including sewage treat-
ment (Sarkis and Cooper [10]), elimination of industrial pollutants (Brown
and Cooper [4]), cultivation of synchronous populations for use in a second
stage reactor resulting in a significant increase in the biomass production
rate of a secondary metabolite (Wentworth and Cooper [15]), and produc-
tion of antibiotics (Zenaitis and Cooper [18]). Since our formulation of the
model is nutrient driven, applications that require decreasing contaminants
to specified levels, such as water-purification, sewage treatment, and toxic
waste clean up would be appropriate.

In Sheppard and Cooper [11], five different feedback mechanisms are de-
scribed. The model developed in Wincure, Cooper and Rey [16] uses dissolved
oxygen concentration as the feedback mechanism that triggers the emptying
and refilling process. Following the depletion of the limiting nutrient, a rapid
rise in the dissolved oxygen level is observed as a result of the organism’s
declining respiration rate. In our model, instead we take a specified concen-
tration of the limiting nutrient as the triggering mechanism. This has several
advantages. First, this model gives the experimenter more flexibility to de-
termine a feedback mechanism to initiate the emptying and refilling process.
The model applies as long as the feedback mechanism ultimately results in
the cycling of the tank occurring at a consistent concentration of the limiting
nutrient. This appears to be the case, for example, in the experiments and
the simulations carried out in Wincure, Cooper and Rey [16], even though
they used the dissolved oxygen level as the feedback mechanism. Using the
concentration of the limiting nutrient directly resulted in a model for which
it was possible to do a very thorough and mathematically rigorous analysis,
resulting in predictions that can be tested in the laboratory. The analysis
indicated that the model appears to be very robust and applies for any rea-
sonable monotone increasing response function, not just response functions
of the Monod form. This is important because models for response functions
are at best approximations, and so if the predicted dynamics of a model are
sensitive to the form of the response function, the model loses predictability.

In particular, the analysis predicts that the process is extremely stable.
Once an acceptable level of the contaminant is set, the model predicts that
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there is a threshold criterion given in terms of the biologically relevant pa-
rameters that indicates how to choose an appropriate population of microor-
ganisms and corresponding operating parameters such as the emptying and
refilling fraction, in order to obtain the desired outcome. In Wincure, Cooper
and Rey [16] the species-specific death rate is ignored. In fact, if the species-
specific death rate is ignored and the initial concentration of microorganisms
is positive, our model predicts that the fermenter cycles indefinitely and con-
centrations of contaminant and microorganism rapidly approach a unique
positive cycle with a fixed finite period. However, we include the species-
specific death rate in our model so that we can explore how variations in
this death rate might affect the outcome. Our model predicts that if the de-
sired level of contaminant in the output, s̄, is set sufficiently low, then if the
species-specific death rate is too high relative to its growth rate for concentra-
tions of the contaminant near s̄, the process could break down if a threshold
criterion is not satisfied. This is because the microorganism concentration
does not increase fast enough to offset its death rate during the part of the
cycle when the nutrient is close to s̄, and depends upon whether the increase
in the concentration of the microorganism during the rest of the cycle is
sufficient to overcome this. Hence, the model predicts that selection of an
appropriate population of microorganisms depends on an interplay between
the species-specific death rate and the acceptable level of the contaminant
that can be released, as well as selection of an appropriate emptying and
refilling fraction.

In Wincure, Cooper and Rey [16], the emptying and refilling fraction r,
was assumed to be half the tank (r = 0.5) and all of the experiments reported
were for this value of this fraction. However, they did computer simulations
for other values of r. Our model allowed us to explore the use of different
emptying and refilling fractions. We proved that whether or not the process
cycles indefinitely can depend on the choice of this fraction and that choice
of this fraction can significantly affect the expected yield over time. We
showed how to determine the best fraction predicted by the model in order
to optimize the yield. Any real understanding of self-cycling fermentation
will require experimental evidence of the effect of different values of r, and
we hope that our analysis will stimulate such experiments.

This paper is organized as follows. In section 2 we introduce the model,
define a threshold, and present our main result. We provide criteria for the
existence of an asymptotically stable nontrivial periodic orbit with the prop-
erty of asymptotic phase and characterize when trajectories will approach this
periodic orbit. In section 3 we present numerical simulations to illustrate the
various cases of the main theorem. In section 4 we find an analytic expres-
sion of the cycle time and then discuss how to select the emptying/refilling
fraction in order to optimize the yield over any specified period of time. In
section 5, we prove our results, and in section 6, we discuss their implications
and compare the dynamics of the self-cycling fermenter with the dynamics
of the chemostat.
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2 A nutrient driven model for the self-cycling
fermentation process

First we formulate a model that describes the nutrient driven self-cycling
fermentation process. This model is an adaptation of a model described by
Wincure, Cooper, and Rey [16].

Since the time taken to empty and refill the tank is negligible, compared
to each cycle time, we assume that the process occurs instantaneously so that
we can formulate the model as a system of impulsive differential equations.
Impulsive differential equations are described in Bainov and Simeonov [1],
[2], [3] and Lakshmikantham, Bainov, and Simeonov [8].

In accordance with the theory of impulsive differential equations (see
Bainov and Simeonov [1], [2]), for a given function y(t), and time ø ,

∆y ¥ y

+ ° y

°
,

where

y

+ ¥ y(ø+) ¥ lim
t!ø

+
y(t) and y

° ¥ y(ø°) ¥ lim
t!ø

°
y(t).

Consider the impulsive system

ds

dt

= ° 1
Y

f(s)x, s 6= s̄,

dx

dt

= °d̄x + f(s)x, s 6= s̄,

∆s = °rs̄ + rs

i

, s = s̄,

∆x = °rx

°
, s = s̄,

(2.1)

s(0) > s̄, x(0) > 0.

Here, t denotes time in minutes, s denotes the concentration (g/L) of the
limiting nutrient in the fermentation tank, x the biomass concentration (g/L)
of the population of microorganisms that consume the nutrient, Y the cell
yield constant (g biomass/g limiting substrate), d̄ the species-specific death
rate (per minute), s

i the concentration (g/L) of the fresh medium added to
the tank at the beginning of each new cycle, s̄ the threshold concentration
(g/L) of limiting nutrient that initiates the emptying and refilling process,
and r the emptying/refilling fraction. It is assumed that d̄ ∏ 0, Y > 0, s

i

>

s̄ > 0, and 0 < r < 1.
The response function is denoted f and satisfies

i. f : R! R,

ii. f is continuously differentiable,
iii. f(0) = 0,

iv. f

0(s) > 0, if s > 0.

(2.2)
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Let t

k

denote the time at which the kth moment of impulse occurs, i.e., the
time at which the concentration of the limiting nutrient in the tank reaches
the specified threshold, s̄ for the kth time. Thus, s(t°

k

) = s̄. From (2.1), it
follows that ∆s(t

k

) = s(t+
k

)°s(t°
k

) = °rs̄+rs

i

, and so s(t+
k

) = (1°r)s̄+rs

i

.

It will be convenient to define

s̄

+ ¥ (1° r)s̄ + rs

i

.

Note that, since s is decreasing during each cycle, if s(0) < s̄ then the
tolerance s̄ is never reached and there will be no impulsive effect. In accor-
dance with impulsive theory, we also assume that s(0) 6= s̄, so that there is no
impulsive effect initially. In fact, in most applications, s(0) = s

i

. The appli-
cations we have in mind include water purification or waste decomposition.
Here, s

i would denote the concentration of some contaminant in the envi-
ronment, s the concentration of the contaminant in the fermentation tank,
and s̄ the acceptable level of the contaminant in the environment, consistent
with standards set by an environmental protection agency.

Define ∏ to be the value of the nutrient that satisfies f(∏) = d̄. If f

is bounded below d̄, then we define ∏ = 1. Thus, ∏ represents the so-
called break-even concentration of the nutrient. Provided the concentration
of the nutrient is above ∏, x

0(t) is positive, and so the concentration of the
microorganism is increasing. However, if it is below ∏, x

0(t) is negative, and
so the concentration is decreasing. If f is bounded below d̄, then x

0(t) is
negative for all concentrations of the nutrient, and there is no hope for the
process to succeed. The relative values of s̄ and ∏ play an important role in
the potential dynamics of the model.

Between impulses the system is modelled by a system of ordinary dif-
ferential equations. This system will be called the associated system and is
given by

ds

dt

= ° 1
Y

f(s)x,

dx

dt

= °d̄x + f(s)x,

(2.3)

s(0) ∏ 0, x(0) ∏ 0.

For our analysis it is necessary to understand the dynamics of this asso-
ciated system for a slightly expanded set of initital conditions compared to
system (2.1). It is easy to show that solutions of (2.3) remain nonnegative
and bounded.

If d̄ = 0, then ∏ = 0, by (2.2)(iii). In this case all points of the form (s§, 0)
with s

§ ∏ 0 or (0, x

§) with x

§ ∏ 0 are equilibrium points. See Figure 1 (a).
All orbits lie along lines Y s+x = Y s(0)+x(0) with s(t) decreasing and x(t)
increasing. Any orbit with initial condition satisfying s(0) > 0, x(0) > 0,
approaches (0, x

§), where x

§ = Y s(0)+x(0) > 0 and hence these equilibrium
points are all stable (but not asymptotically stable). All equilibrium points
of the form (s§, 0), with s

§
> 0 are unstable.
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If d̄ > 0, then only points of the form (s§, 0), with s

§ ∏ 0 are equilibrium
points. See Figure 1 (b). If s

§
> ∏, then (s§, 0) is unstable, and if s

§ ∑ ∏,

then it is stable (but not asymptotically stable). If s(0) > 0 and x(0) > 0,
then s(t) is decreasing for all t. x(t) increases if s(t) > ∏ and then decreases
to an equilibrium point of the form (s§, 0) with 0 < s

§
< ∏, that depends on

the initial conditions.
Provided s(0) > 0 and x(0) > 0, from (2.3),

dx

ds

= Y

µ
d̄

f(s)
° 1

∂
, (2.4)

a separable differential equation. It follows that

x(t) = x(0) + Y

Z
s(0)

s(t)

µ
1° d̄

f(u)

∂
du. (2.5)

Figure 1 depicts typical phase portraits in x-s space, in the case (a) that
d̄ = 0 and (b) that d̄ > 0. Note that, since x does not appear explicitly
on the right hand side of (2.4), the slope of trajectories depends only on s.
Therefore, if ∞̃(t) and ∞̂(t) are two orbits with initial conditions, (s̃(0), x̃(0))
and (ŝ(0), x̂(0)), respectively, with s̃(0) = ŝ(0), but x̃(0)° x̂(0) = ¥ > 0, then
for any times t̃ > 0 and t̂ > 0, where s̃(t̃) = ŝ(t̂), it follows that x̃(t̃)°x̂(t̂) = ¥.

It can also be shown that t̃ < t̂. (For the proof, see Lemma 1 in section 5.)

microorganism
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en
t
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λ 

Figure 1: Phase portrait for the associated system of ordinary differential
equations. Note that the bold lines on the axes indicate lines of equilibria.
(a) phase portrait with d̄ = 0, and (b) phase portrait with d̄ > 0. Notice
that the concentration of biomass is increasing for concentrations of nutrient
above ∏ and decreasing for concentrations below ∏.
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In the analysis of (2.1), it will be helpful to define

sint ¥ Y

Z
s̄

+

s̄

µ
1° d̄

f(s)

∂
ds. (2.6)

Setting s(0) = s̄

+ and s(ø) = s̄ in (2.5), it follows that x(ø) ° x(0) = sint.

Therefore, whenever impulse times t

k°1 and t

k

are defined,

x(t°
k

)° x(t+
k°1) = sint. (2.7)

Note that if s̄ ∏ ∏, then sint > 0, whereas if s̄

+ ∑ ∏, then sint < 0.
The following is our main result.

Theorem 1. Consider model (2.1). There exists a unique nontrivial positive

periodic orbit if, and only if, sint > 0. This periodic orbit has exactly one im-

pulse per period, is asymptotically stable, and has the property of asymptotic

phase.

At the times of impulse {t
n

}1
n=1, the periodic orbit satisfies

s(t°
n

) = s̄, s(t+
n

) = s̄

+
,

x(t°
n

) = 1
r

sint, x(t+
n

) = 1°r

r

sint.

1. Assume that sint > 0.

i) If s̄ ∏ ∏, then the periodic orbit attracts all orbits with initial

conditions satisfying x(0) > 0.

ii) If s̄ < ∏, then the periodic orbit attracts all orbits with initial

conditions satisfying x(0) > 0 and x(0) + Y

R
s(0)
s̄

≥
1° d̄

f(s)

¥
ds >

0. In particular, if s(0) ∏ s̄

+
, then the periodic orbit attracts all

orbits with initial conditions satisfying x(0) > 0.

iii) If x(0) + Y

R
s(0)
s̄

≥
1° d̄

f(s)

¥
ds ∑ 0, then there are no impulses

and x(t) ! 0, s(t) ! s

§ = s

§(s(0), x(0)), as t ! 1, where

s̄ ∑ s

§
< ∏.

Let T > 0 denote the period of the periodic orbit.

In cases (i) and (ii) the fermenter cycles indefinitely, and so there

exists an infinite sequence of impulse times {t
n

}1
n=1. As n!1, t

n

!
1, t

n+1 ° t

n

! T, x(t°
n

)! 1
r

sint, and x(t+
n

)! 1°r

r

sint.

For all positive integers n, solutions satisfy s(t+
n

) = s̄

+
and s(t°

n

) = s̄,

and one of the following holds:

a) t

n+1 ° t

n

= T, x(t°
n

) = 1
r

sint, and x(t+
n

) = 1°r

r

sint; or

b) t

n+1 ° t

n

> T, x(t°
n

) < x(t°
n+1), x(t+

n

) < x(t+
n+1), x(t°

n

) <

1
r

sint, and x(t+
n

) <

1°r

r

sint; or
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c) t

n+1 ° t

n

< T, x(t°
n

) > x(t°
n+1), x(t+

n

) > x(t+
n+1), x(t°

n

) >

1
r

sint, and x(t+
n

) >

r

1°r

sint.

2. Assume that sint = 0. Then lim inf
t!1 x(t) = 0. If x(0) > 0 and

x(0)+Y

R
s(0)
s̄

≥
1° d̄

f(s)

¥
ds > 0, i.e., x(0) is sufficiently large, or s(0) ∏

s̄

+
and x(0) > 0, then there are an infinite number of impulses, but

the time between impulses increases, approaching infinity. If x(0) +
Y

R
s(0)
s̄

≥
1° d̄

f(s)

¥
ds ∑ 0 i.e., s̄ < s(0) < s̄

+
and x(0) is sufficiently

small, there are no impulses and s(t)! s

§ = s

§(s(0), x(0)) as t!1,

where s̄ ∑ s

§
< ∏.

3. Assume that sint < 0. Then there are at most a finite number of im-

pulses, the time between impulses increases, and eventually s(t)! s

§ =
s

§(s(0), x(0)) and x(t)! 0 as t!1, where s̄ ∑ s

§
< ∏.

Thus, if sint > 0, solutions that undergo impulsive effect once, undergo an
infinite number of impulsive effects and approach the positive periodic orbit.
For these orbits, the time between each impulse approaches the period of the
periodic orbit monotonically. As well, the portion of the orbit between each
impulse moves monotonically towards the periodic orbit. If sint = 0, solutions
that undergo impulsive effect once, also undergo impulsive effect an infinite
number of times, but the time between impulses increases without bound
and the population of microorganisms essentially washes out. If sint < 0,
solutions undergo impulsive effect at most a finite number of times, and
eventually the microorganism washes out. (For the proof, see section 5.)

An analytic expression for the period T of the unique periodic orbit that
exists when sint > 0, will be derived in Section 4 (see (4.3)).

3 Simulations illustrating Theorem 1

We illustrate the various cases of Theorem 1 by means of numerical simula-
tions. All simulations were run using ODE45 in MATLAB, with the appro-
priate events option to calculate the moment of impulsive effect. Figures 2,
4, and 5 in this section show the phase portrait in x-s space.

In the simulations shown in Figures 2–5, we select the response function
of the form f(s) = ms

Ks+s

, as in Wincure, Cooper and Rey [16], and as they
did, choose the maximum specific growth rate m = 0.01, the half saturation
constant K

s

= 0.007, and the cell yield Y = 0.73. We set r = 0.6, s

i = 1.333,

and s̄ = 0.1, Therefore, s̄

+ = 0.8398. The species-specific death rate, d̄

is varied in order to obtain the appropriate case of Theorem 1. When
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Figure 2: Orbits in phase space in the case sint = 0.011163 > 0 and s̄ < ∏ <

s̄

+. There is an orbitally stable positive periodic orbit with the property of
asymptotic phase in the area where the solid and dashed curves converge.
Two orbits, one (solid) approaches it from the right, and the other (dashed)
approaches it from the left. At each impulse, there is a discontinuity. The
solid orbit moves further to the left and the dashed orbit moves further to
the right. Both orbits become almost indistinguishable from the periodic
orbit in approximately 5-6 cycles. A third orbit, (dot-dashed), far left, very
small and very close to the ordinate axis, does not undergo any impulses, but
rather approaches (s§, 0), where s

§
> s̄, in a single cycle. Initial conditions

of the solid orbit are s(0) = s̄

+ and x(0) = 0.015, of the dashed orbit are
s(0) = s̄

+ = 0.398 and x(0) = 0.002, and of the dot-dashed orbit are s(0) =
0.2 and x(0) = 0.0002. Parameters selected are s

i = 1.333, s̄ = 0.1, m = 0.01,
K

s

= 0.007, Y = 0.73, r = 0.6, and d̄ = 0.0096, and so ∏ = 0.168.

f(s) = ms

Ks+s

, and d̄ < m, so that ∏ <1,

sint = Y

µ
1° d̄

m

∂
r(si ° s̄)° d̄Y K

s

m

ln
s̄

+

s̄

=
d̄Y K

s

m

µ
r

∏

(si ° s̄)° ln
s̄

+

s̄

∂
. (3.1)

Figures 2 and 3 illustrate case 1 of Theorem 1. Figure 2 is a phase portrait,
i.e., the projection of the solution onto phase space, whereas Figure 3 is a
time series.

In order to illustrating case 1, we chose the death rate, d̄ = 0.0096, so
that sint = 0.011163 > 0. For this choice, ∏ = 0.168, and so s̄ < ∏ <

s̄

+ . Depending on the initial conditions, either orbits cycle indefinitely and
approach the unique orbitally asymptotically stable periodic orbit, or orbits
do not undergo any impulses and approach (s§, 0) for some s

§
> s̄, where the
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Figure 3: The corresponding time series of the dashed orbit in Figure 2,
and so the initial conditions are s(0) = s̄

+ and x(0) = 0.002. This orbit
converges to a stable periodic cycle and is almost indistinguisable from it
within approximately 5-6 cycles. The cycle time decreases and approaches
the period of the attracting periodic orbit.

value of s

§ also depends on the initial conditions. It is worth noting that the
latter case is more a mathematical curiosity. In practise, s(0) = s

i

> s̄

+, and
so as long as x(0) > 0 when sint > 0, the model predicts that orbits cycle
indefinitely and approach the unique orbitally asymptotically stable periodic
orbit and so the eventual outcome in most applications is not really initial
condition dependent. In the phase portrait, Figure 2, it was not necessary to
plot the attracting periodic orbit explicitly, since the simulations show two
other orbits converging to it, one from the left and the other from the right.

Figure 3 depicts the time series of the dashed orbit in Figure 2, the orbit
that was initiated with a relatively small concentration of microorganism.
From this Figure one can see that for this orbit the cycle time, that is the
time between each impulse, also approaches the period of the periodic orbit
monotonically, as predicted by the Theorem.

The case ∏ < s̄, i.e., the species-specific death rate is relatively small,
is similar, except in this case, x(t) increases throughout each cycle, and so
all orbits with x(0) > 0 cycle indefinitely and approach the unique orbitally
asymptotically stable periodic cycle.

Figure 4 illustrates case 2 of Theorem 1. Here, the death rate d̄ =
0.009802623 was chosen so that sint º 0. It follows that s̄

+ = 0.8398 and
∏ = 0.3477, and so s̄ < ∏ < s̄

+. In this case there is no periodic orbit and
depending on initial conditions, either orbits undergo an infinite number of
impulses and approach a singular orbit with infinite period from the right or
orbits do not undergo any impulses and eventually approach (s§, 0) for some
s

§
> s̄, where the value of s

§ also depends on the initial conditions.
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Figure 4: Orbits in phase space in the case sint = 0. One orbit (solid) under-
goes an infinite number of impulses, (with impulse points moving to the left)
and approaches a heteroclinic orbit joining an unstable equilibrium of the
form (s§, 0) to a stable equilibrium of the same form. Another orbit (dashed)
does not undergo any impulses, but instead approaches (s§, 0), where s

§
> s̄.

The initial conditions of the solid orbit are s(0) = s̄

+ and x(0) = 0.02 and
of the dashed orbit are s(0) = 0.6 and x(0) = 0.0005. d̄ = 0.0098. All other
parameters are the same as in Figure 2, and so ∏ = 0.343. The correspond-
ing time series of the solid orbit would show that each cycle takes longer and
longer as the concentration of microorganism tends to zero.
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Figure 5: An orbit in phase space in the case sint = °0.01087 < 0, illustrating
a single orbit that moves to the left and undergoes a finite number of impulses
before approaching (s§, 0), where s

§
> s̄. The initial conditions are s(0) =

s̄

+ = 0.4699 and x(0) = 0.07. d̄ = 0.01 and r = 0.3. All other parameters
are the same as in Figure 2, and so ∏ =1.
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Figure 5 illustrates case 3 of Theorem 1. Here, the death rate d̄ = 0.01
was chosen so that sint = °0.01087 < 0. In this case ∏ = 1, and so s̄ <

s̄

+
< ∏. All orbits undergo impulsive effect at most a finite number of times.

They eventually approach (s§, 0) for some s

§
> s̄, where the value of s

§

also depends on the initial conditions. Hence, for all initial conditions the
microorganism eventually washes out.

4 Selection of the emptying/refilling fraction

In the process of self-cycling fermentation, the parameter that the experi-
menter can control most easily is the emptying/refilling fraction r. Wincure,
Cooper and Rey [16] selected r = 0.5. However, they did not discuss their
reasons for this choice. We shall show that r can be selected in order to
maximize the yield, and hence the efficiency, of the self-cycling fermenta-
tion process. By the yield, we mean the total volume of medium processed
then emptied over some fixed time period, T , assuming T is relatively long
compared to the time between impulses.

So that the fermenter cycles indefinitely without the time between im-
pulses becoming unbounded, it is necessary to ensure that sint(r) > 0. Re-
call that a necessary condition for sint(r) > 0 is that s̄

+
> ∏. Note that ∏ is

independent of r, however, s̄

+ increases as r increases. Thus, it is possible
to choose r so that s̄

+
> ∏, if and only if, s

i

> ∏. This means that certain
populations of microorganisms can only be used if the concentration of the
pollutant is sufficiently high.

Next, notice that

d

dr

sint = Y (si ° s̄)
µ

1° d̄

f(s̄+)

∂
. (4.1)

Thus, when s̄

+
> ∏, it follows that d

dr

sint
> 0.

Therefore, once all parameters except r are fixed so that s̄

+
> ∏, there

are three possibilities. Either sint(r) is negative for all r in the interval (0, 1),
or it is positive throughout the entire interval, or there exists a critical value,
say r0, satisfying 0 < r0 < 1, such that sint(r0) = 0, and sint(r) > 0 for all
r0 < r < 1. In the case that sint(r) is positive throughout the entire interval
(0, 1), we will define r0 = 0.

In order for the fermenter to be operated as desired, it is necessary to
ensure that sint(r) > 0 and that x(0) > 0 and s(0) is sufficiently large, so
that orbits rapidly approach a unique, positive, periodic orbit. Therefore,
after a finite number of impulses, orbits are almost indistinguishable from
the periodic orbit. Thus, for the purpose of comparing yields for different
values of r, since we are assuming T is large compared to the cycle time,
it is reasonable to choose initial conditions on the periodic orbit, that is,
s(0) = s̄

+ and x(0) = 1°r

r

sint. However, in practice, it is more likely that
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s(0) = s

i. Selection of x(0) would depend on cost and availability. Note that
the larger x(0), the less time required between the first few impulses.

One of the assumptions used to develop the model was that the total time
involved in emptying and refilling the tank at the end of each cycle is short
compared to the time between impulses and could be ignored. However, for r

sufficiently small this may not be reasonable. Therefore, in order to determine
the most efficient r, the time taken to empty and refill the tank will be taken
into consideration. We shall denote this time by ≤. In experiments described
in Wincure, Cooper and Rey [16], ≤ was approximately 5 minutes.

The following observations lead us to expect that there is a choice of
r 2 (r0, 1) that optimizes the yield. In the limiting case, r = 1, the process
terminates, since there would no longer be any microorganisms left in the
tank to process the fresh medium during the second cycle. Thus, even though
the closer r is to 1, the larger the volume released at the end of each cycle,
one would expect the total yield to be relatively small, because very few
microrganisms are left to process the medium during each subsequent cycle,
and so the cycle time would be relatively long.

In the limiting case that r = r0 = 0, again the process terminates, since
nothing is released. For r very close to zero, even if there were a large
number of releases from the tank in a relatively short period of time, the
volume released each time would be very small, resulting in a very small
total yield, once the emptying and refilling time is taken into account. Also,
if r = r0 > 0, then sint(r0) = 0, and so there is no periodic orbit. Instead,
there is an attracting singular orbit that takes an infinite amount of time to
traverse. For r very close to r0, the periodic orbit is very close to this singular
orbit and hence the cycle time is very large and the yield is relatively small.

With the above observations in mind, in what follows we express the yield
as

Ω(r) =
rV

T (r) + ≤

T , (4.2)

where r is the emptying/refilling fraction, assumed to be strictly between r0

and 1, V is the volume of the tank, which is assumed to be constant except
during the emptying and refilling time, T (r) is the period of the periodic
orbit and hence the time between impulses, ≤ is the time taken to empty and
refill the tank, assumed to be a constant independent of r, and T ¿ T (r) is
the fixed time period over which the total yield is calculated, assumed to be
long compared to the time between impulses. We would like to find the r in
(r0, 1), that maximizes Ω(r).

We begin by finding an explicit formula for T (r). Substituting the expres-
sion for x(t) given in (2.5) into the equation for s

0(t) in (2.1) one obtains

ds

dt

= ° 1
Y

f(s)

√
x(0) + Y

Z
s(0)

s(t)

µ
1° d̄

f(u)

∂
du

!
,
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another separable differential equation. Separating and integrating from 0 to
T (r), we obtain the analytic expression for T (r),

T (r) =
Z

s̄

+

s̄

Y

f(s)

0

@ 1
(1°r)

r

sint + Y

R
s̄

+

s

≥
1° d̄

f(u)

¥
du

1

A
ds. (4.3)

Unfortunately, finding an analytical expression for the optimal value of
r using the expression for T (r) given in (4.3) is too messy. However, after
specifying the response function and all parameters except r, it is possible
to use a symbol manipulation package like MAPLE to differentiate Ω(r)
and then find the critical value of r where this derivative equals zero, hence
obtaining the optimal emptying/refilling fraction. It is also possible to use
MAPLE to graph T (r) and Ω(r). See Figures 6 and 7. These graphs could
also have been obtained using numerical simulations using software such as
MATLAB instead of the analytical expression (4.3).

In both figures the parameter values selected were s

i = 1.333, s̄ = 0.1,
m = 0.01, K

s

= 0.007, Y = 0.73 and ≤ = 5. r was allowed to vary throughout
the range where sint(r) remained positive. We assumed the volume V of the
medium in the fermenter was 1 litre and T = 105 minutes. Initial conditions
were set (for each r) so that each trajectory started on the periodic orbit
with s(0) = s̄

+
. Two different values of d̄ were selected in order to show that

the optimal value of r need not be 0.5.

In Figure 6, d̄ = 0.009. For this value of d̄, ∏ < s̄, and so sint(r) > 0 for
0 < r < 1. The period T (r), of the periodic orbit increases as r increases.
Ω(r) attains its maximum value, 60.57 litres, for r º 0.3123. For this value
of r the period is 510.578 minutes.

In Figure 7, d̄ = 0.00975. In this case ∏ > s̄, and sint(r) < 0 for r < r0

where r0 º 0.39. Therefore, only values of r between 0.39 and 1 are shown.
In this case the period T (r), of the periodic orbit is decreasing for r close
to r0 and increasing for r close to 1. Ω(r) attains its maximum value, 5.93
litres, for r º 0.7791. For this value of r the period is 13,133.07 minutes
or approximately 9 days. Such a long time between impulses may not be
practical and such factors may also have to be taken into consideration when
selecting r.

Thus, we observe that the optimal choice for r depends on the parameters
in the model. For example, a slight increase in d̄ (and hence ∏), changed the
optimal choice for r from 0.3123 to 0.7791 and reduced the optimal yield,
Ω(r), from 60.57 litres to 5.93 litres.

In the actual experiment in Wincure, Cooper and Rey [16], r = 0.5 was
selected, the cycle time (period of the periodic orbit) was 124 minutes, and
it required 5 minutes to empty and refill the tank at the end of each cycle.
When d̄ = 0.004215, ≤ = 5, and r = 0.5 our model also predicts that the time
between impulses is 124 minutes, and so this value of d̄ might be an estimate
of the species-specific death rate for the population of microorganisms that
they used. If this is the case, then setting T = 105 minutes, Ω(0.5) = 387.42
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Figure 6: (a) shows how the period, T (r), of the periodic orbit varies as r

varies. (b) depicts how the yield, Ω(r), varies as r varies. All parameters are
the same as in Figure 2 except d̄ = 0.009, V = 1, ≤ = 5, T = 105

. r varies
throughout (0, 1), since ∏ > s̄, and so sint > 0 for all r 2 (0, 1).
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Figure 7: (a) shows how the period, T (r), of the periodic orbit varies as r

varies. (b) depicts how the yield, Ω(r), varies as r varies. All parameters are
the same as in Figure 6, except d̄ = 0.00975. r only varies throughout (r0, 1),
where r0 º 3.9, since sint < 0 when 0 < r < r0.

litres. Our model predicts that the optimal choice for r would be 0.2217,
giving a time between impulses of 45.86 minutes, and an optimal yield of
Ω(0.2217) = 436.01 litres.

This is a significant predicted increase in the yield, demonstrating the
practical advantages of understanding how the system relies on the empty-
ing/refilling fraction and validation of this model should include experiments
that include a range of values for r.

5 Proofs

Before we prove Theorem 1, we prove two Lemmas about the associated
system of ordinary differential equations (2.3).
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Lemma 1. Let ∞̃(t) and ∞̂(t) be two orbits of (2.3), with initial conditions,

(s̃(0), x̃(0)) and (ŝ(0), x̂(0)), respectively, satisfying s̃(0) = ŝ(0), but x̃(0) °
x̂(0) = ¥ > 0. For any times t̃ > 0 and t̂ > 0, where s̃(t̃) = ŝ(t̂), it follows

that x̃(t̃)° x̂(t̂) = ¥ and t̃ < t̂.

Proof. Evaluating x̃(t̃)° x̂(t̂) using (2.5) yields x̃(t̃)° x̂(t̂) = ¥.

To show that t̃ < t̂, define y(t) = s̃(t)° ŝ(t). Then y(0) = 0 and y

0(0) < 0.

Therefore, y(t) < 0 for t > 0, sufficiently small. Suppose there exists ø > 0
such that y(t) < 0 for 0 < t < ø , and y(ø) = 0. Then y

0(ø) ∏ 0. Define
s

ø

= s̃(ø) = ŝ(ø). Noting that x̃(ø) ° x̂(ø) = ¥, using the first equation
of (2.3), a simple calculations yields y

0(ø) = °¥

f(sø )
Y

< 0, a contradiction.
Therefore, no such ø exists, and so y(t) < 0 for all t ∏ 0. Since both s̃(t)
and ŝ(t) are decreasing functions, s̃(t) < ŝ(t) for all t, and so if s̃(t̃) = ŝ(t̂),
it follows that t̃ < t̂.

Lemma 2. Let ∞(t) = (s(t), x(t)) be an orbit of (2.3). Assume that sint ∏ 0.

If x(0) > 0 and x(0) + Y

R
s(0)
s̄

≥
1° d̄

f(s)

¥
ds > 0, then there exists ø > 0,

finite, such that s(ø) = s̄. In particular, if s(0) ∏ s̄

+
and x(0) > 0, then there

exists ø > 0, finite, such that s(ø) = s̄.

Proof. Recall that the vector field for (2.3) is C

1, all orbits are bounded,
there are no equilibria with both components positive, and s(t) is strictly
decreasing. Therefore, either s(t) ! 0 as t ! 1, or s(t) ! s

§
> 0 and

x(t) ! 0. In the first case we are done, and in the second case, if s

§
< s̄ we

are also done.
Suppose x(t)! 0 and s(t)! s

§ ∏ s̄ as t!1. Since x(t)! 0 as t!1,
it follows that s

§
< ∏. Then, letting t!1 in (2.5), we obtain,

0 = x(0) + Y

Z
s(0)

s

§

µ
1° d̄

f(s)

∂
ds ∏ x(0) + Y

Z
s(0)

s̄

µ
1° d̄

f(s)

∂
ds > 0,

a contradiction. Therefore, s

§
< s̄, and we are done.

In particular, since sint ∏ 0, s̄

+
> ∏. If s(0) ∏ s̄

+, then
Y

R
s(0)
s̄

≥
1° d̄

f(s)

¥
ds ∏ sint ∏ 0, and the result follows from the previous

part.

The following Lemmas concern system (2.1).

Lemma 3. Let ∞(t) = (s(t), x(t)) be an orbit of (2.1). Assume that sint ∏ 0.
Then, if there exists a first time t1 > 0, finite, such that s(t°1 ) = s̄, then there

exists an increasing sequence of distinct times {t
n

}1
n=1, such that s(t°

n

) = s̄.
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Proof. Recall that since sint ∏ 0, it follows that s̄

+
> ∏. Suppose that

there exists a time t1, finite, such that s(t°1 ) = s̄. Therefore, x(0) > 0 and
x(t°1 ) > 0. It follows from (2.1) that s(t+1 ) = s̄

+ and x(t+1 ) = (1°r)x(t°1 ) > 0.

By Lemma 2, it follows that there is a time t2 > t1 such that s(t°2 ) = s̄. From
(2.5), x(t°2 ) = x(t+1 ) + sint > 0, and by (2.1), x(t+2 ) = (1° r)x(t°2 ) > 0. This
process can be repeated without end, and so there is an increasing sequence
of distinct impulse times, {t

n

}1
n=1, and at these times s(t°

n

) = s̄.

Lemma 4. Consider an orbit (s(t), x(t)) of (2.1). If there exists an increas-

ing sequence of distinct times {t
n

}1
n=1, such that s(t°

n

) = s̄, then

x(t°
n

) = (1° r)(n°1)
x(t°1 ) + sint

µ
1° (1° r)(n°1)

r

∂
,

and so lim
n!1 x(t°

n

) = 1
r

sint and lim
n!1 x(t+

n

) = 1°r

r

sint.

Proof. From (2.5),

x(t°
n+1) = x(t+

n

) + sint = (1° r)x(t°
n

) + sint, n = 1, 2, 3, ... (5.1)

This has the general solution

x(t°
n

) = (1° r)(n°1)
x(t°1 ) + sint

≥
1 + (1° r) + · · · + (1° r)(n°2)

¥

= (1° r)(n°1)
x(t°1 ) + sint

µ
1° (1° r)(n°1)

r

∂
. (5.2)

Letting n ! 1, it follows that lim
n!1 x(t°

n

) = 1
r

sint. Noting that x(t+
n

) =
(1° r)x(t°

n

), we obtain lim
n!1 x(t+

n

) = 1°r

r

sint.

Proof of Theorem 1. Suppose (t, s(t), x(t)) is a T -periodic solution of (2.1).
Since the associated system of ordinary differential equations (2.3), does not
admit any periodic solutions, there must be at least one impulse per period.
Without loss of generality, assume that t1 = T , and so s(T°) = s̄. Then, from
the impulsive conditions in (2.1), s(T+) = s̄

+ and x(T+) = (1 ° r)x(T°).
Since the solution is T -periodic, s(0+) = s(T+) = s̄

+ and x(0+) = x(T+).
Therefore, x(T°) = 1

1°r

x(0+). From (2.5),

x(T°) = x(0+) + Y

Z
s(0+)

s(T°)

µ
1° d̄

f(s)

∂
ds.

Therefore,
1

1° r

x(0+) = x(0+) + sint.
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After rearranging,
r

1° r

x(0+) = sint.

Thus a T -periodic orbit exists, only if sint > 0. It follows also, that if s(T°) =
s̄, then s(0+) = s̄

+
, x(0+) = 1°r

r

sint, and x(T°) = 1
r

sint.

Also, if sint > 0, s(0+) = s̄

+, and x(0+) = 1°r

r

sint, then by Lemma
2, there exists a first time t1 such that s(t°1 ) = s̄. As above, by (2.5),
x(t°1 ) = 1

r

sint. Therefore, (t, s(t), x(t)) is a T -periodic solution with exactly
one impulse each period and this is the only periodic solution possible (up
to translation in time). Hence there is a unique periodic orbit.

Clearly, at the impulse points, the periodic orbit satisfies s(t°
n

) = s(T°) =
s̄, s(t+

n

) = s(0+) = s̄

+
, x(t°

n

) = x(T°) = 1
r

sint, and x(t+
n

) = x(0+) =
1°r

r

sint.

Next we apply impulsive Floquet theory to system (2.1) to establish or-
bital asymptotic stability of the periodic orbit and asymptotic phase. We
calculate the nontrivial impulsive Floquet multiplier (see Bainov and Sime-
onov [2]).

For convenience of notation, let

≥0 = s̄

+
, ≥1 = s̄, ª0 =

1° r

r

sint, ª1 =
sint

r

,

and define

P = °f(s)x
Y

, Q = °d̄x + f(s)x,

a = °rs + rs

i

, b = °rx,

¡ = s° s̄.

Therefore, the nontrivial Floquet multiplier is

∆1 exp

"Z
T

0

µ
@P

@s

+
@Q

@x

∂
dt

#
,

where

∆1 =
P (≥0, ª0)

≥
@b

@x

@¡

@s

° @b

@s

@¡

@x

+ @¡

@s

¥
+ Q(≥0, ª0)

≥
@a

@s

@¡

@x

° @a

@x

@¡

@s

+ @¡

@x

¥

P (≥1, ª1)@¡

@s

+ Q(≥1, ª1)@¡

@x

,

and @a

@s

,

@a

@x

,

@b

@s

,

@b

@x

,

@¡

@s

,

@¡

@x

are evaluated at the point (≥1, ª1).
Therefore,

∆1 = (1° r)2
f(≥0)
f(≥1)

.
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Furthermore,
Z

T

0

µ
@P

@s

+
@Q

@x

∂
dt =

Z
T

0

µ
°f

0(s)x
Y

° d̄ + f(s)
∂

dt

=
Z

T

0

µ
f

0(s)s0

f(s)
+

x

0

x

∂
dt

= ln f(s)
ØØØ
≥1

≥0

+ ln ª

ØØØ
ª1

ª0

= ln
f(≥1)
f(≥0)

+ ln
1

1° r

.

Thus it follows that the nontrivial multiplier is

(1° r)2
f(≥0)
f(≥1)

· f(≥1)
f(≥0)

· 1
1° r

= 1° r.

It lies inside the unit circle, and so the T -periodic orbit is orbitally asymp-
totically stable and has the property of asymptotic phase.

1 . Assume that sint > 0.

1. i) If s̄ > ∏, then if x(0) > 0, there exists a time t1 such that s(t°1 ) = s̄,

and so by Lemma 3, there exists an infinite sequence of times {t
n

}1
n=1, such

that s(t°
n

) = s̄ and s(t+
n

) = s̄

+
. By Lemma 4, lim

n!1 x(t°
n

) = 1
r

sint and
lim

n!1 x(t+
n

) = 1°r

r

sint, and so the periodic orbit attracts all orbits with
initial conditions satisfying x(0) > 0.

1. ii) Assume that s̄ < ∏. By Lemma 2, under the given conditions, there
exists a time t1 > 0 such that s(t°1 ) = s̄. The argument is now similar to
that given for 1. i) .

1. iii) Assume that x(0) + Y

R
s(0)
s̄

≥
1° d̄

f(s)

¥
ds ∑ 0. Suppose that there

exists a first time t1 > 0, finite, such that s(t°1 ) = s̄. By (2.5),

x(t°1 ) = x(0) + Y

Z
s(0)

s̄

µ
1° d̄

f(u)

∂
du ∑ 0,

a contradiction. Hence, there are no impulses and iii) holds.

In cases 1. (i) and (ii), we have shown that for appropriate initial con-
ditions, the fermenter cycles indefinitely and all orbits with the appropriate
initial conditions approach the unique periodic orbit asymptotically. Hence,
there exists a sequence of times {t

n

}1
n=1 such that s(t°

n

) = s̄ and by Lemma
4, lim

n!1 x(t°
n

) = 1
r

sint and lim
n!1 x(t+

n

) = 1°r

r

sint. Since the periodic
orbit is asymptotically stable and has the property of asymptotic phase, it
follows that t

n+1 ° t

n

! T as n!1.
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By the impulse condition in (2.1), s(t+
n

) = s̄

+ and s(t°
n

) = s̄. Next we
show that one of a), b), or c), in the statement of the theorem must hold.

a) If x(t°1 ) = 1
r

sint, then by the impulse condition in system (2.1), x(t+
n

) =
1°r

r

sint and we are on the periodic orbit so a) is satisfied.
b) If x(t°1 ) <

1
r

sint, by Lemma 4,

x(t°
n

) = (1° r)(n°1)
x(t°1 ) + sint

µ
1° (1° r)(n°1)

r

∂

<

(1° r)(n°1)
sint

r

+ sint

µ
1° (1° r)(n°1)

r

∂

=
sint

r

for all positive integers n. Therefore, x(t+
n

) = (1 ° r)x(t°
n

) <

(1°r)
r

sint, and
so by Lemma 1, t

n+1 ° t

n

> T. Hence, b) is satisfied.
c) If x(t°1 ) >

1
r

sint, the argument is similar to that given for case b).

2. Assume that sint = 0. If x(0) > 0 and x(0) + Y

R
s(0)
s̄

≥
1° d̄

f(s)

¥
ds > 0,

by Lemma 2, s̄ is reached in finite time. By Lemma 3, there are an infinite
number of impulses.

But then, by (2.5), noting that sint = 0, it follows that x(t°
n

) = x(t+
n°1) =

(1 ° r)x(t°
n°1) = (1 ° r)(n°1)

x(t°1 ). Hence x(t°
n

) ! 0, monotonically, as
n!1, and so lim inf

t!1 x(t) = 0.

It remains to prove that the time between impulses approaches infinity.
Note also that x(t+

n

) decreases monotonically to zero as n ! 1. Therefore
by Lemma 1, the time between impulses increases. The segment of the orbit
of (2.1) between time t

n

and time t

n+1 approaches the heteroclinic orbit of
(2.3) joining the equilibrium points (s̄+

, 0) and (s̄, 0), and hence the time
between impulses approaches infinity.

If x(0) + Y

R
s(0)
s̄

≥
1° d̄

f(s)

¥
ds ∑ 0 the proof is similar to 1. iii).

3. Assume that sint < 0. Suppose that there exists an infinite sequence of
distinct impulse times {t

n

}1
n=1 with s(t°

n

) = s̄ and x(t°
n

) > 0. Then there
exists a positive integer k, such that x(t°1 ) + ksint < 0. But then x(t+

k

) =
(1° r)x(t°

k

) < x(t°
k

), and so by (2.7) x(t°
k+1) = x(t+

k

)+ sint < x(t°
k

)+ sint <

· · · < x(t°1 )+ksint < 0, a contradiction. Therefore, there are at most a finite
number of impulses. By Lemma 1, the time between impulses increases and
eventually there exists at time ø > 0, finite so that s(t) > s̄ for all t > ø,

i.e., there are no impulses for t > ø . Therefore, for t > ø the orbit behaves
precisely the same as an orbit of the associated system of ODEs (2.3) for
which s(t) > s̄ for all t > 0. The result follows.
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6 Discussion

Self-cycling fermentation has a variety of applications, as described in the
introduction. The model developed here uses nutrient concentration as the
triggering factor, in order to describe nutrient minimizing processes such as
water purification, sewage treatment, or toxic waste cleanup. The relevant
environmental protection agency sets a maximum acceptable concentration
of contaminants in the environment. This concentration is chosen to be
s̄, the value of the parameter that triggers the cycling of the fermenter.
None of the contents of the bioreactor are released into the environment until
the concentration of nutrient (pollutant) is below this acceptable standard.
In practice, there is a small delay between the detection of the threshold
concentration of the pollutant and the initiation of the cycling process. Thus,
the fraction of the contents in the tank released will always be strictly below
s̄. At worst, the process terminates without releasing anything.

As explained in the introduction, the model also applies to any feedback
mechanism that is independent of the actual consumption dynamics, and
results in the cycling process being initiated at a consistent concentration
of the limiting nutrient. From experiments, (see Wincure, Cooper and Rey
[16]), this appears to be the case, for example, for the dissolved oxygen level
criterion.

Analysis of our model indicates that knowledge of the sign of the quantity
sint (defined in (2.6), and given in the special case when the response func-
tion is of the Monod form by (3.1)), allows us to determine and manipulate
the dynamics of the fermenter. This quantity depends on factors inherent to
the system, such as the concentration of pollutant in the fresh medium at
the beginning of each cycle, the maximum acceptable concentration of con-
taminants, and the emptying and refilling fraction, as well as the properties
of the particular microorganism used to consume the nutrient, including its
species-specific death rate, its functional response, and the yield constant.

Our analysis of the model gives criteria that predict whether or not a sta-
ble periodic cycle will eventually be achieved or whether the fermenter will
eventually fail to cycle. Our model predicts that only when sint is positive is
it possible to select initial conditions so that the fermenter cycles indefinitely
as desired. For appropriate initial conditions, the fermenter asymptotically
approaches a cycle with a fixed period (see (4.3)) in which the nutrient con-
centration, just before and after the emptying and refilling process, is s̄ and
s̄

+ = (1 ° r)s̄ + rs

i, respectively, and the concentration of microorganisms
is 1

r

sint and (1°r)
r

sint, respectively. Otherwise, if sint is not positive, either
the fermenter reaches the threshold infinitely often, but the time between
cycles increases without bound, or the fermenter reaches the threshold con-
centration at most a finite number of times. In either of these cases, the fer-
menter eventually fails to reach the threshold value of the pollutant (within
a reasonable length of time), the process terminates, and the population of
microorganisms eventually dies out.
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Furthermore, our results indicate that even if sint is positive, successful
operation also depends on the initial concentrations of the population of
microorganisms and the pollutant when the species-specific death rate is
taken into account. However, if sint is positive, and the initial concentration
of pollutant in the fermenter is greater than or equal to s̄

+, then as long as the
initial concentration of microorganism is positive, the reactor will function
as desired. Normally, this is the case since one would expect that the initial
concentration of pollutant in the fresh medium of the reactor would be s

i, the
concentration of pollutant in the environment and s

i

> s̄

+. It is interesting
to note that the model also predicts that the larger the initial concentration
of microorganisms the faster the threshold of pollutant required for cycling
is reached during the initial cycles before the period of the limiting cycle is
reached.

Assuming that the initial concentration of pollutant is sufficiently large,
i.e., s(0) = s

i, and that the initial biomass concentration is very small, as
would be the case in most practical applications, the model predicts that if
sint < 0, the fermenter fails to cycle within 1 cycle, and if sint = 0, although in
theory, the fermenter cycles indefinitely, the concentration of micoorganisms
tends to zero and the cycle time tends to infinity, so for all practical purposes,
the fermenter fails. However, if sint > 0, a stable periodic cycle is achieved
with a finite cycle time. In the example simulated in Figures 2 and 3, where
s(0) = s̄

+, it took approximately 5-6 cycles for the fermenter to reach the
stable periodic orbit.

In order that sint > 0, it is necessary that s̄

+
> ∏, the break-even con-

centration, and hence s

i

> ∏. Note also that,

d

ds

i

sint = Y r

µ
1° d̄

f(si)

∂
, (6.1)

and so sint increases as s

i increases when s

i

> ∏. It follows that in order for
the process to work properly, there must be a high enough concentration of
the pollutant in the fresh medium. Thus, the model predicts that a process
that was functioning well to clean up pollution in the environment might
be made to fail, if measures were taken independently that resulted in a
reduction of the concentration of the pollutant in the environment!

In practice, if we measure sint in advance and if it is less than or equal
to zero, we can either try to adjust any operating parameters over which
we have control, or we can judiciously choose a different population of mi-
croorganisms. (Note that if the species-specific death rate is assumed to be
zero, then sint is always greater than zero. Our model therefore predicts
that taking the species-specific death rate into account might prevent the
failure of the process.) The parameter that can be controlled most easily is
the emptying/refilling fraction, r. Once the population of microorganisms
has been selected and all other parameters except r fixed, it was shown that
in order for sint > 0, r must be selected so that s̄

+
> ∏. If the threshold

concentration s̄ ∏ ∏, then s̄

+
> ∏, and sint > 0 for any choice of r 2 (0, 1).
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Otherwise, s̄

+
> ∏, if and only if the concentration of the pollutant s

i

> ∏.

In this case, sint > 0 is an increasing function of r, and so either sint > 0 for
all r 2 (0, 1), or there exists a critical value r0 2 (0, 1) such that for r = r0,

sint = 0 and for r > r0, sint > 0, or sint < 0 for all 0 < r < 1.

Because the time required to empty a prescribed fraction of the tank and
refill it is usually insignificant compared to the time required for the microor-
ganisms to consume the pollutant so that the concentration of pollutant is
below the threshold concentration, we chose to model the system using a
system of impulsive, ordinary differential equations. We thus made the sim-
plifying assumption that the emptying and refilling process is instantaneous.
However, when we were concerned with finding the optimal emptying and
refilling fraction in order to process as much pollutant as possible in as short
a time as possible, we did take this emptying and refilling time into consid-
eration. See ≤ in (4.2). Although, in practice, dependence of ≤ on r is likely
to be negligible, in an actual application the function ≤(r) could easily be
determined and ≤ could then be replaced by ≤(r) in (4.2). One refinement of
the model that might warrant further analysis is to include the emptying and
refilling process in the model, especially if very small values of r are predicted
to be optimal.

We were able to show that when the process works for a particular popu-
lation of microorganisms, there is an optimal value of the emptying/refilling
fraction r that maximizes the efficiency of the self-cycling fermentation pro-
cess, i.e., resulting in the maximum yield over any specified period of time
and that this optimal value of r need not be 1

2 . We showed how to determine
this value of r and we determined this value in the case of the experimental
data used in Wincure, Cooper and Rey [16] to suggest an improved empty-
ing/refilling fraction for the particular system they studied. It was interesting
to note that in the examples we considered, this optimal value of r was very
sensitive to the species-specific death rate d̄, (compare Figure 6 with 7) and
suggested that this might be useful for determining d̄ for a given species.
Experiments to verify if the species-specific death rate actually plays a role
in determining the transient behaviour before the stable cycle is reached, as
our analysis predicts, would also be useful to help validate the model.

The experiments by Wincure, Cooper and Rey [16] with r = 0.5 iden-
tified that self-cycling fermentation produces a synchronous cell population
and that the stable cycle time matched the population’s doubling time, i.e.
the time required to double the number of cells. This contrasts with batch
fermentations in which the cell population is not in synchrony. Scientists are
still not sure what aspect of the technique is responsible for the synchrony,
i.e., whether it is due to the value of r, or the possibility that cells at certain
stages in their development die in the face of low levels of nutrient (starva-
tion), or some combination of both. As in the case of the model of Wincure,
Cooper, and Rey [16], our model suggests that knowledge of the cell popula-
tion’s state of synchrony is unnecessary to predict the stable periodicity for
all values of r for which sint > 0. In fact, our prediction of convergence to



262 R. J. Smith and G. S. K. Wolkowicz

a stable periodic cycle when sint > 0, is also independent of the form of the
response function and does not require knowledge of the maximum growth
rate, as long as the response function is monotone increasing for all concen-
trations of the pollutant less than s

i. Our model predicts that on the stable
periodic attracting cycle, the biomass concentration increases from (1°r)

r

sint

to 1
r

sint. It thus doubles during a cycle if r = 0.5, but increases by a factor
of 1

1°r

for any feasible r between 0 and 1. Of course, this estimate might
need revising if the time for emptying and refilling the tank is significant and
again live data would be required to validate this claim. Our model makes no
predictions about synchrony, since it uses macroscopic equations. However,
in applications such as water purification, treatment of sewage, or cleanup of
toxic waste, synchrony of the population need not be an issue.

Now that we understand the the dynamics predicted by the global math-
ematical analysis of our model for the nutrient driven self-cycling fermenta-
tion process in the case of any monotone response function, it is interesting
to make a comparison with the dynamics predicted by an analogous analysis
of a well established model for the chemostat. The chemostat represents an-
other apparatus that can be used for similar applications. It is also referred
to as a continuous stirred tank reactor. See Novick and Szilard [9] for a de-
scription of the apparatus and Butler and Wolkowicz [5] and Wolkowicz and
Lu [17] for a complete global analysis of the model of the chemostat in the
case of general monotone (as well as nonmonotone) response functions.

The chemostat differs from the self-cycling fermenter because for the
chemostat, the volume in the tank always remains the same. Instead of
emptying and refilling a portion of the tank, there is a continuous inflow and
outflow of fresh medium at some rate D. The model for the chemostat where
the species-specific death rate is not assumed to be negligible compared to
the dilution rate is given by

s

0(t) = (si ° s(t))D ° 1
Y

f(s)x, (6.2)

x

0(t) = x(°d̄°D + f(s)), (6.3)

where except for D defined above, the variables and parameters all have the
same meaning as in (2.1). To describe the dynamics of the chemostat, it is
useful to define a parameter ∏

c

, called the break-even concentration. This
is the unique extended real number so that f(∏

c

) = d̄ + D. (∏
c

= 1 if
f(s) < d̄ + D, for all s > 0.) This is the analogue of ∏ for the self-cycling
fermenter. Asssuming D > 0, global analysis of the model predicts that
the outcome does not depend on the initial concentrations of nutrient and
microorganisms, as long as s(0) ∏ 0 and x(0) > 0. If ∏

c

∏ s

i

, then the
population of microorganisms dies out and s(t) approaches s

i as t tends to
1. However, if ∏

c

< s

i then x(t) and s(t) approach the positive equilibrium
concentrations Y (si°∏c)D

D+d̄

and ∏

c

, respectively, as t tends to 1.

The mathematical analysis of the models predicts that the nutrient driven
self-cycling fermenter has several advantages over the chemostat when used
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for processes such as water purification. Note that, since we are assuming
that the response function, f(s) is monotone increasing, ∏

c

is always larger
than ∏. (They would be equal if D = 0, but the smaller D the less output from
the chemostat and when D = 0 the process ceases to operate as a chemostat
and becomes batch fermentation.) Given an s̄ set by some environmental
protection agency, it is much easier to find an appropriate population of
microorganisms in the case of self-cycling fermentation. The chemostat can
only be used to reduce the concentration of pollutant below s̄, if D > 0 can
be chosen so that s̄ > ∏

c

, since at best, s(t) tends to ∏

c

as t tends to 1.

On the other hand, the nutrient driven self-cycling fermenter only requires
sint > 0. This always holds if s̄ ∏ ∏, and can even hold when s̄ < ∏, as we
have shown. (See for example, Figure 2). Thus the operator has much more
flexibility in their choice of s̄. For the sake of comparison, for the data used
in Figure 2, to reduce the level of the pollutant to s̄ using the chemostat, one
would have to choose the dilution rate to be D ∑ 0.00935. This is less than
the assumed species-specific death rate!

If dissolved oxygen concentration is used as the triggering mechanism in
the self-cycling fermentation process, the operator has less flexibility than if
nutrient concentration is used, but still more flexibility than with the chemo-
stat. As well, microorganisms have a tendency to mutate. In the case of
the chemostat, the output concentration ∏

c

could thus change, resulting in a
release of water that does not meet the required standard before the problem
is detected. However, in the case of nutrient driven self-cycling fermentation,
in the worst possible case the process would terminate and nothing would be
released. Further study is still required when dissolved oxygen concentration
is used as the triggering mechanism instead of nutrient concentration and the
species-specific death rate is taken into consideration.

As pointed out above, if the dilution rate is selected to be D = 0 in
the chemostat, the process is no longer a chemostat, but rather becomes
batch fermentation. If the emptying and refilling fraction r in the self-cycling
fermenter is selected to be r = 1 or r = 0, then the process is no longer a
self-cycling fermenter, but also becomes a batch culture. This is because
there is a discontinuity in how the process works at the extremes r = 1 and
r = 0. In the first case, the entire tank is emptied once s̄ is reached, and
so microrganisms would have to be re-innoculated each cycle. In the second
case, nothing is ever released.

Analysis of the model of the chemostat generalized in the obvious way
to allow competition between more than one population of microorganisms
for the limiting nutrient indicates that coexistence is not possible. Rather,
the population with the lowest break-even concentration, ∏

c

, wins and drives
all other populations to extinction. On the other hand, coexistence of more
than one species competing for a single limiting nutrient in the nutrient
driven self-cycling fermenter has been proved to be possible (see [12] and
[14]). The question of whether it can be more effective to use more than one
population of microorganisms in processes like water purification is explored
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in [14]. Refinement of the model of self-cycling fermentation to include size-
structured populations is discussed in [12] and [13] and a mass population
balance model is studied in Godin, Cooper, and Rey [6] and [7].
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