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Abstract
The issue of medical-resource constraints has the potential to dramatically affect
disease management, especially in developing countries. We analyze a non-smooth
epidemic model with nonlinear incidence rate and resource constraints, which defines
a vaccination program with vaccination rate proportional to the number of susceptible
individuals when this number is below the threshold level and constant otherwise.
To better understand the impact of this non-smooth vaccination policy, we provide a
comprehensive qualitative analysis of global dynamics for the whole parameter space.
As the threshold value varies, the target model admits multistability of three regular
equilibria, bistability of two regular equilibria, that of one disease-free equilibrium
and one generalized endemic equilibria, and that of one disease-free equilibrium and
one crossing cycle. The steady-state regimes include healthy, low epidemic and high
epidemic. This suggests the key role of the threshold value, as well as the initial infec-
tion condition in disease control. Our findings demonstrate that the case number can
be contained at a satisfactorily controllable level or range if eradicating it proves to be
impossible.
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1 Introduction

Containing and mitigating infectious diseases are two of the challenging issues in our
time due to the complex spreading patterns and increasing spread speed (Brockmann
and Helbing 2013), despite notable success in prevention and control. Many efforts to
curb a disease attempt to cut the transmission path or control it at its source. Important
progress has been made by proposing mathematical models, which offer valuable
information for decision making in global health (Heesterbeek et al. 2015; Xiao and
Tang 2010). Modeling techniques help us to understand the observed epidemiological
patterns and predict the consequences of the introduction of intervention measures to
contain disease spread. However, one issue of practical concern, as a disease becomes
more prevalent, is the limitations in the medical resources available to prevent those
from being infected by a particular pathogenic agent or to treat those who have fallen
ill. In the absence of sufficient vaccines and treatment, mathematical modeling can
explore efficient control strategies (Wang and Ruan 2004; Zhang and Liu 2008; Wang
2006; Hansen and Day 2011; Zhou and Fan 2012; Shan and Zhu 2014; Wang et al.
2018; Böttcher et al. 2015; Qin et al. 2016; Abdelrazec et al. 2016; Shan et al. 2016;
Wang and Xiao 2014).

One common aim when modeling medical-resource constraints is to describe how
changes in interventionmeasures will affect the characteristics of the infection dynam-
ics and consequently affect disease control. Thus, many control programs such as
treatment and vaccination have been modeled. Classical epidemic models usually
assume the vaccination rate is proportional to the size of the susceptible population,
which has made key contributions to the vaccination program design (Xiao and Tang
2010; Rodrigues et al. 2014; Samsuzzoha et al. 2013). However, in many situations,
we do not have enough resources to target all those being exposed in the contami-
nated environment. Faced with the limited capacity of medical resources, other more
appropriate control measures have been proposed. Zhang and Liu (2008) adopted a
saturated treatment function to characterize the limited medical resources. A similar
treatment function is introduced in an SIR epidemic model to reveal the impact of
varying the amount of medical resources on the transmission process (Zhou and Fan
2012). To clearly depict the impact of hospital settings on disease control, some more
complicated saturated functions are defined to represent the treatment measure (Shan
and Zhu 2014; Shan et al. 2016), which triggers rich dynamics including a saddle-node
bifurcation, a Bogdanov–Takens bifurcation and a backward bifurcation. To determine
a suitable capacity for treatment, Wang and Ruan first introduce a piecewise-defined
function (Wang and Ruan 2004). This type of treatment function is further modified
as following

T (I ) =
{
r I , if 0 ≤ I ≤ I0
r I0 if I ≥ I0,

which admits a backward bifurcation when the medical-resource capacity is small
(Wang 2006).

The piecewise-defined treatment function is a good approximation for cases when
the available medical resources cannot meet the demand of increasing infective cases.

123



Multiple Equilibria in a Non-smooth Epidemic Model 965

It defines a control policy such that the maximum treatment rate is applied when the
number of infectives is above some critical value; otherwise, the treatment ratio is
proportional to the case number. However, these studies have focused mainly on the
dynamics with fixed threshold levels, and little analysis has been done to explore the
impact of threshold level on the dynamical behavior. In fact, the choice and positioning
of the threshold is guided by the capacity of resources, so different threshold levels are
available with different amounts of medical resources. In the present work, we adopt
this type of piecewise-defined function to represent vaccination and explore how it
affects the outcome of disease control. Our work extends that of Wang (2006) by
examining the dynamic phenomena triggered by the variation of the threshold level.

Besides the medical-resource constraints, the incidence rate (i.e., the rate of new
infections) is another key factor in modeling a communicable disease. Mass-action
transmission has frequently been used in many classical disease-transmission models,
which leads to a wide application of bilinear and standard incidence rates (Hethcote
2000; Brauer and Chavez 2001). Since Capasso and Serio have generalized the inci-
dence rate to a saturated form (Capasso and Serio 1978), there is an increasing interest
in describing the disease dynamics with nonlinear incidence rate (Xiao and Tang 2010;
Liu et al. 1986, 1987; Xiao and Ruan 2007; Tripathi and Abbas 2016; Li et al. 2015; Li
and Zhang 2017). To incorporate the impact of individual behavior changes on disease
spread, Liu et al. chose a nonlinear incidence rate of the form βSq I q with p, q > 0
(Liu et al. 1986, 1987), which is then used by Xiao in a vaccination model. In the
latter case, a nonlinear incidence rate induces both forward and backward bifurcations
(Xiao and Tang 2010).

The aim of this study is to use a vaccination model, including susceptible, infected
and vaccinated classes, with a nonlinear incidence rate to gain insight into the complex
dynamics of an epidemic when the vaccination of susceptible individuals depends on
a threshold, which is built on the capacity of resources. The result is a non-smooth
continuousmodel, which behaves differently from its continuous counterpart. The the-
oretic approach for non-smooth continuous systems has gained recent interest (Coll
et al. 2001; Claudio et al. 2006; Han and Zhang 2010), but only a few applications
have been found in disease control (Wang 2006;Wang et al. 2014). We emphasize that
our goal is to explore how the variation of the threshold value gives rise to dynamic
phenomena, especially the existence of multiple steady states, generalized endemic
equilibria and a crossing cycle. We also seek to characterize how these novel phenom-
ena in our targeted model affect disease control.

2 Model Formulation and Preliminaries

Nonlinear incidence rates are more reasonable in some circumstances than bilin-
ear ones. We aim to explore how varying the threshold value, together with double
exposure of susceptible individuals affects disease control. We adopt the nonlinear
incidence rate βSI 2 to represent the effect of double explore of the susceptibles on
disease spread. A more detailed explanation on this subject can be found in Xiao and
Tang (2010). The model takes the form
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dS

dt
= � − βSI 2 − μS − H(S),

dI

dt
= βSI 2 − μI − ε I ,

dV

dt
= H(S) − μV .

(1)

where S(t), I (t), V (t) are the numbers of susceptible, infected and immune individ-
uals at time t and

H(S) =
{
r S, S ≤ Sc
r Sc, S > Sc.

(2)

In model (1), we have included a disease-induced death rate (μ), which is important
for many long-term epidemic diseases, such as plague, AIDS and tuberculosis where
population demography can overlap with the effect of the disease. The function H(S)

defines the following vaccination strategy: the vaccination rate is proportional to the
number of susceptible individuals if the number of susceptible individuals is below the
critical value Sc; otherwise, we take a constant vaccination strategy k = r Sc. All other
parameters are positive constants, where � is recruitment rate, β denotes the basic
transmission rate, μ represents natural death and ε represents the disease-induced
death rate. We assume the maximum vaccination is less than the recruitment rate; i.e.,
� > r Sc. Model (1)–(2) represents a dynamical system subject to a threshold policy,
which is a simple case of variable structure control in the literature.

Remarks 1. The function (2) describes the vaccination policymore accurately, from a
biological perspective,when themedical resource is limited,which is the advantage
of this type of vaccination function. As a result, model (1)–(2) is no longer smooth
mathematically. A particular equilibrium called a generalized equilibrium is pos-
sible for the resulting non-smooth model, which is difficult to analyze, since the
classical approach using the Jacobian for smooth vector fields cannot be applied.

2. To illustrate the main idea, we propose and analyze a simple SIV model without
considering the amount of the medical resources as a separated compartment.
Indeed, the variation of medical resources has important impacts on the process
of disease control. An SIVM model of four dimension can be constructed by
considering the resource class, which we will consider in future work.

Since the vaccination class does not affect the dynamics of the first two equations,
we investigate the following equations:

dS

dt
= � − βSI 2 − μS − H(S),

dI

dt
= βSI 2 − μI − ε I .

(3)

Let N = S + I + V . We get

dN

dt
= � − μN − ε I .
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It follows that

� =
{
(S, I ) ∈ R2+ : 0 < S + I <

�

μ

}

is an attraction region of model (1)–(2). In fact, it follows from model (1) that

dS

dt

∣∣∣∣
S=0

= � > 0,
dI

dt

∣∣∣∣
I=0

= 0,
d(S + I )

dt

∣∣∣∣
S+I=�/μ

= � − μ(S + I ) − ε I − H(S) < 0,

which implies all solutions will enter into the region � and remain in it thereafter.
Hence, � is an attraction region of model (1)–(2). Denote the switching boundary as

� =
{
(S, I ) ∈ R2+ : S = Sc

}
,

which splits R2+ into two parts; i.e.,

G1 =
{
(S, I ) ∈ R2+ : S ≤ Sc

}
, G2 =

{
(S, I ) ∈ R2+ : S > Sc

}
.

The subsystem defined on the subregion Gi (i = 1, 2) is called system SGi . Denote

FG1(S, I ) =
(
� − βSI 2 − (μ + r)S, βSI 2 − (μ + ε)I

)T =̇(F11(S, I ), F12(S, I ))T

FG2(S, I ) =
(
� − βSI 2 − μS − k, βSI 2 − (μ + ε)I

)T =̇(F21(S, I ), F22(S, I ))T.

Thus, subsystem SGi (i = 1, 2) is defined by FGi and system (3) can be written as

dX

dt
=

{
FG1(S, I ), S ≤ Sc
FG2(S, I ), S > Sc,

with X = (S, I )T.
Note that the vector field defined by system (3) is continuous. We further claim that

it is locally Lipschitz continuous. In fact, since FGi (X) (i = 1, 2) is continuous in
Gi , it is sufficient to show that, for any closed rectangle M ⊂ R2+ centered at (Sc, I ),
there is a constant L(M) > 0 such that

∣∣FG1(X1) − FG2(X2)
∣∣ ≤ L|X1 − X2|

123



968 A. Wang et al.

for Xi ∈ M ∩ Gi , i = 1, 2. Denote Xi = (Si , Ii ), f̃1 = � − βSI 2 − μS and
f̃2 = βSI 2 − (μ + ε)I . We then have

∣∣FG1(X1) − FG2(X2)
∣∣2 =

(
f̃1(X1) − f̃1(X2) + r(S1 − Sc)

)2 + (
f̃2(X1) − f̃2(X2)

)2

≤
(∣∣∣ f̃1(X1) − f̃1(X2)

∣∣∣ + r(S2 − S1)
)2 + (

f̃2(X1) − f̃2(X2)
)2

.

Since f̃i (X) (i = 1, 2) is smooth in M , there are constants Li > 0 (i = 1, 2) such
that

∣∣ f̃i (X1) − f̃i (X2)
∣∣2 ≤ Li |X1 − X2|2.

Thus,

∣∣FG1(X1) − FG2(X2)
∣∣2 ≤ 2

(
L1 + r2

) [
|X1 − X2|2 + (S2 − S1)

2
]

+ L2|X1 − X2|2

≤
(
2L1 + 2r2 + L2

)
|X1 − X2|2.

Letting L2 = 2L1 + 2r2 + L2, it follows that

∣∣FG1(X1) − FG2(X2)
∣∣ ≤ L|X1 − X2|.

Therefore, system (3) is locally Lipschitz continuous in R2+, and so the trajectory of
(3) initiating from any point in R2+ exists and is unique.

It is worth noting that the equilibria of system (3) consist of all the equilibria of the
two subsystems. Any equilibrium of system (3) could lie in the subregion where the
corresponding subsystem is defined, the opposite one or on the switching boundary.
The equilibrium in the first case can be the attractor, while the other two cases are
special for non-smooth systems. Indeed, if the second case holds, the equilibrium
is virtual and cannot act as the attractor of system (3). If the third case occurs, the
equilibrium is the attractor of system (3) provided it is stable. To clearly address the
dynamics of system (3), we list the definitions of the variable equilibria as follows.
For convenience, we denote σ(S) = S − Sc.

Definition 1 Let X∗ = (S∗, I ∗)T be such that FGi (X
∗) = 0 (i = 1, 2). Then X∗ is

called a real equilibrium of system (3) if it belongs to Gi and a virtual equilibrium
if it belongs to G j , j �= i . Both the real equilibrium and the virtual equilibrium are
called regular equilibria.

Definition 2 A point X∗ ∈ � is called a generalized singular point of model (3)
if FG1σ(X∗)FG2σ(X∗) ≤ 0, where FGiσ(X∗) = FGi (Z) · gradσ(X∗) (i = 1, 2)
represents the Lie derivative of σ with respect of the vector field FGi at the point X

∗.
The generalized singular point is also called an irregular singular point.

If the trajectories near a generalized singular point turn around it, then it is called
a pseudo-focus point. It behaves similarly to the focus points of a smooth system
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and consists of four possible types: focus-focus type (FF), focus-parabolic type (FP),
parabolic-focus type (PF) and parabolic-parabolic type (PP). We only concentrate on
the pseudo-foci of FF type of system (3), which will be used in the rest of this paper.
A pseudo-focus X∗ = (Sc, I ∗) of FF type of system (3) refers to the one that is a
focus for both systems SG1 and SG2 . Furthermore, a pseudo-focus of FF type is said
to be elementary for (3) if it is elementary for both systems SG1 and SG2 . The detailed
descriptions of other types of pseudo-foci can be found in Coll et al. (2001), Han and
Zhang (2010).

3 Dynamics of the Subsystems

We concentrate on the dynamics of subsystems in this section. For subsystem SG1 ,
we easily get the unique disease-free equilibrium E10(�/(μ+ r), 0)=̇(S10, 0), which
always exists. The endemic equilibrium satisfies

⎧⎨
⎩

β(μ + ε)I 2 − β�I + (μ + ε)(μ + r) = 0

S = μ + ε

β I
.

(4)

Denote

Rc1 = β�2

4(μ + r)(μ + ε)2
.

It follows that:

• If Rc1 < 1, there is no solution for (4) and so no endemic equilibrium exists for
system (3).

• If Rc1 > 1, two endemic equilibria E11 = (S11, I11) and E12 = (S12, I12) coexist,
where

S1 j = μ + ε

β I1 j
, j = 1, 2, I11 = β� + √

�1

2β(μ + ε)
, I12 = β� − √

�1

2β(μ + ε)
,

�1 = β2�2 − 4β(μ + ε)2(μ + r).

• If Rc1 = 1, only one endemic equilibrium E1 = (S1, I1) exists, where

I1 = �

2(μ + ε)
, S1 = 2(μ + ε)2

β�
.

To investigate the stability of the equilibria, we first calculate the Jacobian matrix of
subsystem SG1 :

J1(E(S, I )) =
(−(μ + r) − β I 2 −2βSI

β I 2 2βSI − (μ + ε)

)
.
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By checking the Jacobian matrix at E10, we know the disease-free equilibrium is
always locally asymptotically stable. Now let us examine the stability of the endemic
equilibria. Calculating the determinant of J1 at E12 yields

det(J1(E12)) = (μ + ε)[β I 212 − (μ + r)] < 0,

which indicates E12 is a saddle and so it is always unstable. Since

det(J1(E11)) = (μ + ε)[β I 211 − (μ + r)] > 0,

we easily know that E11 is an anti-saddle, whose stability is determined by the sign
of

tr (J1(E11)) = (ε − r) − β I 211.

If ε ≤ r , we easily get tr (J1(E11)) < 0. Otherwise, it is necessary to evaluate

sgn
(
(ε − r) − β I 211

) = sgn
(
2(μ + ε)3 − β�2 − �

√
β2�2 − 4β(μ + ε)2(μ + r)

)
.

Direct calculation gives

β�2 ≥ 2(μ + ε)3 ⇐⇒ Rc1 ≥ μ + ε

2(μ + r)
,

β�2(ε − r) > (μ + ε)4 ⇐⇒ Rc1 >
(μ + ε)2

4(μ + r)(ε − r)
,

ε > μ + 2r �⇒ μ + ε

2(μ + r)
>

(μ + ε)2

4(μ + r)(ε − r)
> 1.

Then we get tr (J1(E11)) < 0 if one of the following inequalities hold.

• Rc1 ≥ μ + ε

2(μ + r)
or

• (μ + ε)2

4(μ + r)(ε − r)
< Rc1 <

μ + ε

2(μ + r)
, ε > μ + 2r .

We also know tr (J1(E11)) > 0 if

Rc1 <
(μ + ε)2

4(μ + r)(ε − r)
.

Further discussion yields that E11 is a focus for η1 < 0 and a node for η1 > 0,
where

η1 = (β I 211 + r − ε) − 4(μ + ε)[β I 211 − (μ + r)].

The endemic equilibrium E1 is a non-hyperbolic saddle node.
Concluding the above discussions yields the following result.
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Theorem 3.1 (i) The disease-free equilibrium E10 always exists for subsystem SG1 .
Two endemic equilibria E11 and E12 coexist when Rc1 > 1, and they coincide with
each other and are replaced by E1 when Rc1 = 1. There is no endemic equilibrium
for Rc1 < 0.

(ii) E10 is always locally asymptotically stable, while E12 is unstable provided it is
well defined. E11 is locally asymptotically stable if one of the following inequal-
ities hold:

(H1) Rc1 > 1, ε ≤ μ + 2r; or

(H2) Rc1 >
(μ + ε)2

4(μ + r)(ε − r)
, ε > μ + 2r .

(iii) E11 is unstable if

(H3) Rc1 <
(μ + ε)2

4(μ + r)(ε − r)
, ε > μ + 2r .

By Theorem 3.1, whether the endemic equilibrium exists depends on the critical
value Rc1. Two or one or no endemic equilibria exist for subsystem SG1 if Rc1 > 1
or Rc1 = 1 or Rc1 < 1. The nonexistence of endemic equilibria results in the global
stability of the disease-free equilibrium.

Theorem 3.2 The disease-free equilibrium E10 is globally asymptotically stable for
subsystem SG1 if Rc1 < 1.

Proof According to Sect. 2, � is an attraction region of subsystem SG1 . Since there
is no endemic equilibrium for subsystem SG1 when Rc1 < 1, the Poincaré–Bendixon
Theorem leads to the nonexistence of periodic orbits in � for subsystem SG1 . Note
that � is bounded and positively invariant, while E10 is the unique equilibrium of
subsystem SG1 , so the local stability of E10 implies that E10 is the ω-limit set of
any solution initiating inside �. Hence, the disease-free equilibrium E10 is globally
asymptotically stable. This completes the proof. �

It follows from Theorem 3.2 that when Rc1 < 1, the disease die out. However,
when Rc1 > 1, the endemic equilibria coexist with the disease-free equilibrium.

For subsystem SG2 , the disease-free equilibrium E20((� − k)/μ, 0) =̇(S20, 0)
always exists. Define the critical value

Rc2 = β(� − k)2

4μ(μ + ε)2
.

It follows that when Rc2 > 1, two endemic equilibria E21(S21, I21), E22(S22, I22)
exist, where

S2 j = μ + ε

β I2 j
, j = 1, 2, I21 = β(� − k) + √

�2

2β(μ + ε)
, I22 = β(� − k) − √

�2

2β(μ + ε)
,

�2 = β2(� − k)2 − 4βμ(μ + ε)2.
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When Rc2 = 1, one endemic equilibrium E2(S2, I2) exists, where

I2 = � − k

2(μ + ε)
, S2 = 2(μ + ε)2

β(� − k)
.

When Rc2 < 1, no endemic equilibrium exists for subsystem SG2 .
Next we examine the stability of equilibria for subsystem SG2 . To this end, we first

compute the Jacobian matrix of SG2 as follows

J2(E(S, I )) =
(−μ − β I 2 −2βSI

β I 2 2βSI − (μ + ε)

)
.

We easily get that the disease-free equilibrium E20 is always locally asymptotically
stable, while the endemic equilibrium E22 is unstable. Evaluating the Jacobian matrix
J2 at E21 yields

det(J2(E21)) = (μ + ε)(β I 221 − μ) > 0, tr (J2(E21)) = ε − β I 221,

sgn
(
ε − β I 221

) = sgn
(
2(μ + ε)3 − β(� − k)2 − (� − k)

√
β2(� − k)2 − 4βμ(μ + ε)2

)
.

Since

ε > μ �⇒ μ + ε

2μ
>

(μ + ε)2

4με
> 1,

we get tr (J2(E21)) < 0 if one of the following inequalities hold.

• Rc2 ≥ μ + ε

2μ
; or

• (μ + ε)2

4με
< Rc2 <

μ + ε

2μ
, ε > μ.

Furthermore, tr (J2(E21)) > 0 if

Rc2 <
(μ + ε)2

4με
, ε > μ.

Summarizing the above discussions gives the following conclusion.

Theorem 3.3 (i) The disease-free equilibrium E20 exists for subsystem SG2 . There
exist two endemic equilibria E21 and E22 for Rc2 > 1 and no endemic equilibrium
for Rc2 < 1. If Rc2 = 1, the two endemic equilibria collide and are replaced by
the equilibrium E2.

(ii) The disease-free equilibrium E20 is always locally asymptotically stable, while
the endemic equilibrium E22 is unstable when it exists. The endemic equilibrium
E21 is locally asymptotically stable if one of the following inequalities hold.

(H4) Rc2 > 1, ε ≤ μ; or
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(H5) Rc2 >
(μ+ε)2

4με
, ε > μ.

(iii) The endemic equilibrium E21 is unstable if

(H6) Rc2 <
(μ+ε)2

4με
, ε > μ.

Since the disease-free equilibrium E20 is globally asymptotically stable for Rc2 <

1, the disease can theoretically be eradicated from the population. For Rc2 > 1, the
bistability phenomenon occurs due to the coexistence of the disease-free equilibrium
E20 and the stable endemic equilibrium E21. In such a scenario, the disease can be
eradicated or become endemic, depending on the initial conditions.

4 Nature of Equilibria for Non-smooth System

The equilibria of the proposed non-smooth system (3) consist of all regular equilibria
(i.e., equilibria of the subsystem SG j ( j = 1, 2)) as well as the generalized equilibria.
Every regular equilibrium may be real or virtual, and only the real ones can act as an
attractor of system (3). We will initially examine the nature of the regular equilibria
in the following.

Since

Sc > S10 ⇐⇒ Sc >
�

μ + r
⇐⇒ Sc >

� − r Sc
μ

⇐⇒ Sc > S20,

the disease-free equilibrium E10 is real (denoted by Er
10) if and only if the disease-free

equilibrium E20 is virtual (denoted by Ev
20). When Sc = S10, we get that Sc = S20,

and so there exists a generalized disease-free equilibrium E0(�/(μ + r), 0)=̇(S0, 0).
The endemic equilibrium E21 is real if and only if Sc < S21, which is equivalent to

Sc

√
β2(� − r Sc)2 − 4βμ(μ + ε)2 < 2(μ + ε)2 − β(� − r Sc)Sc. (5)

We need the following inequalities:

{
2(μ + ε)2 − βSc(� − r Sc) > 0

β(μ + r)S2c − β�Sc + (μ + ε)2 > 0
(6)

to ensure (5). The first inequality of (6) can be rewritten as

βr S2c − β�Sc + 2(μ + ε) > 0, (7)

which is true if one of the following inequalities hold.

(a1) 1 < Rc1 <
2r

μ + r
;

(a2) Rc1 >
2r

μ + r
, Sc <

β� − √
β2�2 − 8βr(μ + ε)2

2βr
≡ ξ−

1 ;
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(a3) Rc1 >
2r

μ + r
, Sc >

β� + √
β2�2 − 8βr(μ + ε)2

2βr
≡ ξ+

1 .

The second inequality of (6) holds if Sc < S11 or Sc > S12, where S1 j ( j = 1, 2) is as
defined in Sect. 3. As a result, the endemic equilibrium E21 is real if (ai ) (i = 1, 2, 3)
and Sc < S11 or Sc > S12 hold.

The endemic equilibrium E22 is real if and only if Sc < S22, which is equivalent to

Sc

√
β2(� − r Sc)2 − 4βμ(μ + ε)2 > β(� − r Sc)Sc − 2(μ + ε)2. (8)

The inequality (8) holds if

β(� − r Sc)Sc − 2(μ + ε)2 ≤ 0 (9)

or {
βSc(� − r Sc) − 2(μ + ε)2 > 0

β(μ + r)S2c − β�Sc + (μ + ε)2 < 0
(10)

are true. The inequality (9) is true if the condition (a1) or (a2) or (a3) is true. Solving
(10) gives

Rc1 ≥ 2r

μ + r
, max

{
ξ−
1 , S11

}
< Sc < min

{
ξ+
1 , S12

}
. (11)

Hence, the endemic equilibrium E22 is real if (ai ) (i = 1, 2, 3) and (11) hold.
Similarly, we can derive conditions to ensure the equilibria E21 and E22 are virtual

by reversing the inequalities (5) and (8), respectively; we omit them here.
The endemic equilibrium E11 is real when Sc > S11, and the equilibrium E12 is

real when Sc > S12. Otherwise, both E11 and E12 are virtual equilibria if the last two
inequalities are reversed.

We easily get that

S11 < ξ−
1 < ξ+

1 , S12 > ξ−
1 .

Denote ξ1 = �/(2r), and we can address the nature of all the endemic equilibria
Esl (s, l = 1, 2) in detail after some algebra. For clarity, we list the result in Table 1. It
follows from Table 1 that one endemic equilibrium may be real or virtual for different
sets of parameters. We always denote the real (or virtual) equilibrium Els(l, s = 1, 2)
as Er

ls (or E
v
ls) in the following. More importantly, Sc = S11 leads to Sc = S21, so a

generalized equilibrium E1(S1, I1) exists for (3) with

I1 = β� + √
β2�2 − 4β(μ + ε)2(μ + r)

2β(μ + ε)
, S1 = β� − √

β2�2 − 4β(μ + ε)2(μ + r)

2β(μ + r)
.

The same method results in another generalized equilibrium E2(S2, I2) with

I2 = β� − √
β2�2 − 4β(μ + ε)2(μ + r)

2β(μ + ε)
, S2 = β� + √

β2�2 − 4β(μ + ε)2(μ + r)

2β(μ + r)
.
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Table 1 Nature of the endemic equilibria

Threshold value E11 E12 E21 E22

1 < Rc1 <
2r

μ + r
(Q11) Sc < S11 Virtual Virtual Real Real

(Q12) S11 < Sc < S12 Real Virtual Virtual Real

(Q13) Sc > S12 Real Real Real Real

Rc1 >
2r

μ + r
(Q21) ξ−

1 < Sc < min
{
ξ+
1 , S12

}
Real Virtual Virtual Real

(Q22) Sc < S11 Virtual Virtual Real Real

(Q23)§c > max
{
ξ+
1 , S12

}
Real Real Real Real

(Q24) S12 < Sc < ξ+
1 , S12 < ξ+

1 Real Real Virtual Virtual

(Q25) S11 < Sc < ξ−
1 Real Virtual Virtual Real

(Q26) ξ+
1 ≤ Sc < S12, S12 > ξ1 Real Virtual Virtual Real

(Q27) Sc = ξ−
1 Real Virtual Virtual Real

(Q28) Sc = ξ+
1 , S12 < ξ+

1 Real Real Virtual Real

Rc1 = 2r

μ + r
(Q31) Sc < S11 Virtual Virtual Real Real

(Q32) Sc > S12, Sc �= ξ1 Real Real Real Real

(Q33) S11 < Sc < S12 Real Virtual Virtual Real

(Q34) Sc = ξ1, S12 < ξ1 Real Real Virtual Real

5 Dynamics of Non-smooth System (3)

In this section, we focus on the dynamic behavior of the non-smooth system (3).
There are three possible disease-free equilibria and six endemic equilibria. Whether
the endemic equilibrium exists depends on whether the threshold value Rcj ( j = 1, 2)
is greater or less than 1. So we consider three cases in the following:

(A): max{Rc1, Rc2} < 1; (B): max{Rc1, Rc2} > 1, min{Rc1, Rc2} < 1;
(C): min{Rc1, Rc2} > 1.

Case (A) max{Rc1, Rc2} < 1.
There are two disease-free equilibria (E10, E20) and no endemic equilibrium for

system (3) in this scenario. Moreover, a possible generalized disease-free equilibrium
E0 exists. By the above discussion, the disease-free equilibrium E10 is real and E20
is virtual when Sc > S10. For Sc > S10, the equilibrium E10 is virtual, and E20 is
real. The generalized equilibrium E0 exists for system (3) if Sc = S10. Moreover, we
know that the regular disease-free equilibrium E j0( j = 1, 2) is locally asymptotically
stable if it is real. For the local stability of the generalized disease-free equilibrium
E0, the classic approach of evaluating the Jacobian matrix for a C1 vector field at this
point is not available since the vector field defined by (3) is not smooth. Then we adopt
the generalized Jacobian proposed by Clarke (Leine 2006; Clarke et al. 1998; Zhang
and Wang 2012).
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Fig. 1 Phase plane of the non-smooth epidemic model, showing the extinction of the disease with distinct
attractors for different parameter sets. The parameter values are � = 2; β = 0.8;μ = 0.3; r = 0.1; ε =
1.2, Sc = 3.5 (a) and Sc = 5 (b)

Here, the generalized Jacobian matrix of system (3) takes the form

((1 − p)J1 + pJ2)(X(S, I )) =
(−(μ + rp) − β I 2 −2βSI

β I 2 2βSI − (μ + ε)

)
,

where p ∈ [0, 1]. Evaluating the above matrix at the generalized disease-free equilib-
rium E0 gives

((1 − p)J1 + pJ2)(E0(S0, 0)) =
(−(μ + rp) 0

0 −(μ + ε)

)
,

which suggests the local stability of E0.
Summarizing the above discussion yields the following result.

Theorem 5.1 The disease-free equilibrium E10 or E20 or E0 is the attractor of system
(3) when max{Rc1, Rc2} < 1.

In particular, the regular equilibrium E10 (or E20) is locally asymptotically stable for
Sc > S10 (or Sc < S10), as shown in Fig. 1a; the generalized disease-free equilibrium
E0 is locally asymptotically stable if Sc = S10, as shown in Fig. 1b.

In Fig. 1, the circular points represent the disease-free equilibria, in which the solid
ones are stable while the hollow ones are unstable (since they are virtual). The thick
(or thin) lines are the trajectories of the subsystem SG2 (or SG1). Subplot (a) shows
the stability of the regular equilibrium Er

20, and subplot (b) describes the stability of
the generalized equilibrium E0.

Case (B) max{Rc1, Rc2} > 1, min{Rc1, Rc2} < 1.
In this section, we will address the dynamic behavior of system (3) for the existence

of endemic equilibria. To this end, we initially examine the nature of the endemic
equilibria, which depends on the relationship between the threshold level and the
abscissa of the steady state.
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Direct calculation yields

Rc1 − Rc2 = β

4μ(μ + r)(μ + ε)2

[ − (μ + r)r S2c + 2�r(μ + r)Sc − r�2]

= β

4μ(μ + r)(μ + ε)2
f (Sc),

where

f (Sc) = −(μ + r)r S2c + 2�r(μ + r)Sc − r�2.

Solving f (Sc) = 0 gives

S−
c1 = �(μ + r) − �

√
μ(μ + r)

r(μ + r)
, S+

c1 = �(μ + r) + �
√

μ(μ + r)

r(μ + r)
.

It follows that

S−
c1 < Sc < S+

c1 ⇒ f (Sc) > 0 (i.e., Rc1 > Rc2)

Sc > S+
c1 (or Sc < S−

c1) ⇒ f (Sc) < 0 (i.e., Rc1 < Rc2)

Sc = S+
c1 (or Sc = S−

c1) ⇒ f (Sc) = 0 (i.e., Rc1 = Rc2).

Since

Rc2 < 1 ⇐⇒ βr S2c − 2βr�Sc + [β�2 − 4μ(μ + ε)2] < 0,

one gets

β� − 2(μ + ε)
√

βμ

βr
< Sc <

β� + 2(μ + ε)
√

βμ

βr
.

Denote

S−
c2 = β� − 2(μ + ε)

√
βμ

βr
, S+

c2 = β� + 2(μ + ε)
√

βμ

βr
,

and we have Rc2 < 1 for S−
c2 < Sc < S+

c2, while Rc2 > 1 if and only if Sc > S+
c2 or

Sc < S−
c2. Direct calculation gives

sgn
(
S−
c1 − S−

c2

) = sgn
(
2(μ + r)(μ + ε)

√
βμ − β�

√
μ(μ + r)

)
= sgn

(
4(μ + r)(μ + ε)2 − β�2

)
.

It follows that S−
c1 > S−

c2 for Rc1 < 1 and S−
c1 < S−

c2 for Rc1 > 1. Similar discussion
yields that S+

c1 < S+
c2 for Rc1 < 1 and S+

c1 > S+
c2 for Rc1 > 1. Thus, we have

S−
c1 < S−

c2 < S+
c2 < S+

c1
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for Rc1 > 1 and

S−
c2 < S−

c1 < S+
c1 < S+

c2

for Rc1 < 1. Note that S−
cj and S+

cj ( j = 1, 2) are thresholds that make sense for

S−
cj < �/μ, S+

cj < �/μ. We have the following results:

• S−
c1 < �/μ always holds;

• S+
c1 ≤ �/μ holds for r > μ and μ3 + 2rμ2 ≤ r3;

• S−
c2 < �/μ holds if r ≥ μ or r < μ and β�2(μ − r)2 < 4μ3(μ + ε)2;

• S+
c2 < �/μ holds if r > μ or r < μ and β�2(μ − r)2 > 4μ3(μ + ε)2.

Note that we assume r Sc < �, whereas

Sc > S+
c1 �⇒ � < r Sc,

which is out of our consideration. We consider the following two possibilities:
(B1) Rc1 > 1 > Rc2; (B2) Rc2 > 1 > Rc1.

It is worth mentioning that the disease cannot be eradicated from the population in
most cases, so the aim of disease control is to contain the case number below some
critical level. Thus, the equilibrium level of infected individuals in steady state plays
an important role in disease control.

(B1) Rc1 > 1 > Rc2.
By the above discussion, the threshold value Sc satisfies S

−
c2 < Sc < S+

c2 in this sce-
nario. Three possible disease-free equilibria (E10, E20, E0) and twoendemic equilibria
(E11, E12) exist for system (3). It is worth mentioning that only the real equilibrium
can act as the attractor, so we first address the nature of the equilibria. We have

S−
c1 − S11 = �(β� + M1)

[
(μ + r) − √

μ(μ + r)
] − 2r(μ + r)(μ + ε)2

r(μ + r)(β� + M1)

≥
�M1

[
(μ + r) − √

μ(μ + r)
] + β�2

[
d + r

2
− √

μ(μ + r)

]

r(μ + r)(β� + M1)

> 0,

where

M1 =
√

β2�2 − 4β(μ + r)(μ + ε)2.

It follows that S−
c1 > S11 and so E11 is real in this scenario. We easily get that

S−
c2 − S12 > 0, so Sc > S12, which suggests the endemic equilibrium E12 is also real.
According to Sect. 3, the endemic equilibrium E11 is stable if (H1) or (H2) is true,

while it is unstable if (H3) holds. For the former case, one of the disease-free equilibria
E10 or E20 or E0 competes with the stable endemic equilibrium E11, which triggers
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Fig. 2 Phase plane of the non-smoothmodel (3), showing the bistability of the systemwith distinct attractors
for different parameter sets. The parameter values are � = 3;β = 0.8; μ = 0.3; r = 0.2; ε = 1.2, Sc =
7.5 (a), and Sc = 6 (b)

a bistability phenomenon. The two stable manifolds �s11 and �s12 of the saddle point
E12 split the R2+ plane into two subregions, as shown in Fig. 2.

For simplicity, we denote the subregion above �s11 and �s12 as Ge11 and the lower
one as Ge01. Any trajectory initiating from the subregion Ge11 ultimately tends to the
endemic equilibrium E11, while those initiating from the subregion Ge01 reach one of
the disease-free equilibria. This implies that Ge11 is the endemic region while Ge01
is the eradication region. This indicates the disease may die out or become endemic,
depending on the initial infection, as shown in Fig. 2.

In Fig. 2, the diamond points and square points denote the endemic equilibria;
the diamonds are anti-saddle points, while the squares are saddle points. The circular
points represent the disease-free equilibria. Here we omit the virtual equilibria, and all
the regular equilibria are real. The curves �s1 j and �u1 j ( j = 1, 2) are, respectively,
the stable and unstable manifolds of the saddle point E12.

If (H3) is true, neither of the endemic equilibria is stable. Ifwe further have Sc > S10
or Sc < S10 or Sc = S10, the disease-free equilibrium E10 or E20 or E0 acts as the
attractor for system (3), as shown in Fig. 3. In Fig. 3, the endemic equilibrium E12
is a saddle with two stable manifolds �s11 and �s12. The endemic equilibrium E11 is
unstable, while the disease-free equilibrium E20 or E0 is stable as shown in Fig. 3a,
or b. So the case number approaches zero whenever the initial infection is not in
the critical case (i.e., (S0, I0) ∈ �s11 ∪ �s12). This suggests that the disease can
die out except for the critical cases, even though real endemic equilibria exist. It is
interesting that max{Rc1, Rc2} < 1 can lead to the eradication of the disease, but
max{Rc1, Rc2} > 1 may not trigger a disease outbreak. As the threshold value varies,
the disease will be eradicated with different levels of susceptibles. In particular, the
number of susceptible individuals tends to S10 for Sc < S10 and S20 for Sc > S10.
For the critical level Sc = S0, the number of susceptible individuals goes to S0.
This suggests that the disease can be eradicated and the final size of the susceptible
population can be determined except for the critical case (S0, I0) ∈ �s11 ∪ �s12. The
disease-free equilibrium E10 or E20 or E0 is the attractor of system (3) in this case.
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Fig. 3 Phase plane of the non-smooth model (3), showing disease extinction for most solutions. The
parameter values are � = 3; β = 0.55;μ = 0.3; r = 0.2; ε = 1.2, Sc = 5 (a), and Sc = 6 (b)

In particular, the regular equilibrium E10 (or E20) is locally asymptotically stable for
Sc > S10 (or Sc < S10), as shown in Fig. 1a; the generalized disease-free equilibrium
E0 is locally asymptotically stable if Sc = S10, as shown in Fig. 1b.

Let X0 = (S0, I0) be the initial point and Es0 be one of the disease-free equilibria.
Thus, we can conclude the above discussion as follows.

Theorem 5.2 If the inequalities (H1) or (H2) hold, then the solution of (3) will
approach E11 for X0 ∈ Ge11, while it will tend to Es0 for X0 ∈ Ge01. If (H3)

holds, the solution of (3) ultimately goes to Es0 for X0 ∈ R2+\{�s11 ∪ �s12}.

(B2) Rc2 > 1 > Rc1.
Two endemic equilibria (E21, E22) and three possible disease-free equilibria coexist

for system (3). According to the above discussion,we get that Sc < S−
c2 in this scenario.

Assume S21 > Sc, then we get

β� − β(r + 2μ)Sc >

√
β2(� − r Sc)2 − 4βμ(μ + ε)2. (12)

Direct calculation gives S−
c2 < �/(r + 2μ), so β� − β(r + 2μ)Sc > 0. Inequality

(12) is equivalent to

β(r + μ)S2c − β�Sc + (μ + ε)2 > 0,

which is always true due to Rc1 < 1. This implies that S21 > Sc always holds and so
E2 j ( j = 1, 2) is true in this case. Performing a similar analysis to case (B1) gives that
one of the disease-free equilibria E10, E20, E0 competes with the endemic equilibrium
E21, and a bistable phenomenon occurs if the inequalities (H4) or (H5) are true. If
the inequalities (H6) are true, only the disease-free equilibrium (E10 or E20 or E0)
is stable. For the former case, the disease can die out or become endemic depending
on the initial level of infection. If it becomes endemic, the case number ultimately
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stabilizes at the level E21. For the latter case, the disease can be eradicated except for
the critical case.

Similarly, denote the stable manifolds of E22 as �s21 and �s22. Let Ge12 be the
subregion above �s21 and �s23, and let Ge02 be the subregion below �s21 and �s22.
We get the following conclusion.

Theorem 5.3 If the inequalities (H4) or (H5) hold, then the solution of (3) will
approach E21 for X0 ∈ Ge12, while it will tend to Es0 for X0 ∈ Ge02. If the inequality
(H6) holds, the solution of (3) ultimately goes to Es0 for X0 ∈ R2+\{�s21 ∪ �s22}.

Case (C) min{Rc1, Rc2} > 1.
We easily get that Sc < S−

c2 or Sc > S+
c2 holds in this case. Three possible disease-

free equilibria and six possible endemic equilibria exist for system (3). According
to the relationship between Rc1 and Rc2, there are three possibilities to consider:
(C1) Rc1 > Rc2 > 1, (C2) Rc2 > Rc1 > 1, (C3) Rc1 = Rc2 > 1. As the
threshold value Sc varies, the nature of the regular equilibria varies and the generalized
equilibrium may exist or disappear.

(C1) Rc1 > Rc2 > 1.
By the above discussion, we get that S−

c1 < Sc < S−
c2 or S+

c2 < Sc < S+
c1 in this

scenario. The endemic equilibrium E11 is real, due to S11 < S−
c1. Both inequalities

S12 < S−
c1 and S12 > S−

c1 are possible with S−
c2 > S12, so the equilibrium E12 may

be real or virtual. The detailed nature of the endemic equilibrium E12 as well as that
of E21 and E22 are listed in Table 1. By some algebra, we easily get that all cases
except (Q11), (Q22), (Q31) are possible in this scenario. Since one of the disease-free
equilibria including E10, E20 and E0 is always stable, one of the endemic equilibria
E11 and E21 or both compete with one of the disease-free equilibria. In particular, for
cases (Q12), (Q21), (Q24), (Q25), (Q26), (Q27), (Q28), (Q33) and (Q34), there exist
two attractors (the endemic equilibrium E11 and one of the disease-free equilibria)
for system (3) if E11 is stable; otherwise, only the disease-free equilibrium acts as the
attractor if E11 is unstable.

For cases (Q13), (Q23) and (Q32), stability of multiple equilibria may occur. In
fact, there may be one or two or three attractors for system (3). When both endemic
equilibria E11 and E21 are unstable, only the disease-free equilibrium is the attractor.
The endemic equilibria E11 or E21 and one of the disease-free equilibria are the
attractors if E11 or E21 is stable and the other one is unstable, as shown in Fig. 4. In
Fig. 4, the endemic equilibrium E11 and the disease-free equilibrium E20 are locally
asymptotically stable, while the endemic equilibrium E21 is unstable. Figure 4b shows
the instability of the endemic equilibrium E21, which is an augmentation of Fig. 4a.
Any trajectory initiating from Ge11 ultimately approaches the endemic equilibrium
E11, so the disease cannot die out and become endemic. Here Ge11,Ge01,Ge12,Ge02
is as defined above. All trajectories starting from Ge01\{�s21 ∪ �s22} tend to the
disease-free equilibrium E20, which leads to the eradication of the disease.

If both the endemic equilibria E11 and E21 are stable for cases (Q13), (Q23) and
(Q32), three attractors (the endemic equilibria E11, E21 and one of the disease-free
equilibrium) coexist for system (3), as shown in Fig. 5. In Fig. 5, the two stable
manifolds of E12 (i.e., curves �s11 and �s12) and the two stable manifolds of E22 (i.e.,
curves �s21 and �s22) divide the first quadrant into three parts. Denote the part above
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Fig. 4 Phase plane of the non-smooth model (3), showing the stability of multi-equilibria including E11
and E20. The parameter values are � = 6; β = 0.15;μ = 0.5; r = 0.6; ε = 0.5, Sc = 3.28
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Fig. 5 Phase plane of the non-smoothmodel (3), showing the stability ofmulti-equilibria including E11, E21
and E20. The parameter values are � = 3; β = 0.5;μ = 0.5; r = 0.6; ε = 0.5, Sc = 1.64

�s11 and �s12 as Ge13, the one below �s21 and �s22 as Ge03 and the part between
�s11, �s12 and �s21, �s22 as Ge23. Subregions Ge13,Ge23 and Ge03 are shown in
Fig. 6. Every trajectory initiating from Ge13 tends to the endemic equilibrium E11;
those trajectories initiating fromGe03 go to the disease-free equilibrium; all trajectories
starting from Ge23 approach the other endemic equilibrium E21. This suggests that
the area Ge13 represents the high endemic region; the area Ge23 stands for the low
endemic region; the area Ge03 represents the disease eradication region. Hence, the
disease can die out by implementing the threshold policy if the initial infection lies in
the disease eradication region. The disease can become endemic if the initial infection
lies in either the higher endemic region or the lower endemic region. However, the size
of the infected class in steady state is distinct for the last two cases, which implies that
the ultimate number of infected individuals can be higher or lower depending on the
initial situation if the disease cannot be eradicated from the population. Concluding
the above discussion yields the following result.
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Fig. 6 The basin of attraction for the three attractors of system (3). Areas Ge13,Ge23 and Ge03 are the
basins of attraction for the endemic equilibria E11, E21 and the disease-free equilibrium E20, respectively.
The parameter values are � = 3; β = 0.5;μ = 0.5; r = 0.6; ε = 0.5, Sc = 1.64

Table 2 Main results of (3) for (C1)

Values of Rc1, Rc2 Cases Conditions Attractors

Rc1 > Rc2 > 1
(Q12),(Q13),(Q32)−(Q34),

(Q21),(Q23)−(Q28),
(H3) or (H6) Es0

(H1) or (H2) Es0, E11
(Q13), (Q23), (Q32) (H4) or (H5) Es0, E21

(Hs ) and (Hl )(s = 1, 2, u = 4, 5) Es0, E11, E21

Theorem 5.4 (i) If the inequalities (H3) and (H6) hold, the solution of (3) ulti-
mately goes to Es0 for most cases except Cases (Q11), (Q22) and (Q31) and
X0 ∈ R2+\{�s11 ∪ �s12} or X0 ∈ R2+\{�s21 ∪ �s22} or X0 ∈ R2+\{�s11 ∪ �s12 ∪
�s21 ∪ �s22}.

(ii) If the inequalities (H1) or (H2) hold, then, for most cases except Cases (Q11),

(Q22) and (Q31), the solution of (3) will approach E11 for X0 ∈ Ge11 while it will
tend to Es0 for X0 ∈ Ge01 or X0 ∈ Ge01\{�s21 ∪ �s22}.

(iii) If the inequalities (H4) or (H5) hold, then, for Cases (Q13), (Q23) and (Q32), the
solution of (3) will approach E21 for X0 ∈ Ge12 or X0 ∈ Ge12\{�s11 ∪ �s12},
while it will tend to Es0 for X0 ∈ Ge02.

(iv) If the inequalities (Hs) (s = 1, 2) and (Hl) (l = 4, 5) hold, then, for Cases
(Q13), (Q23) and (Q32), the solution of (3) will approach E11 for X0 ∈ Ge13,
solutions tend to E21 for X0 ∈ Ge23, and will tend to Es0 for X0 ∈ Ge03.

For clarity, we list the result obtained in this case in Table 2.
(C2) Rc2 > Rc1 > 1.
The threshold level satisfies Sc < S−

c1 in this scenario. By implementing a similar
analysis to (C1), we get two possible attractors for Cases (Q12), (Q21), (Q24)−(Q28),
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(Q33) and (Q34); i.e., the endemic equilibrium E11 and one of the disease-free equi-
libria. Further discussion yields E11 and one of the disease-free equilibria are locally
asymptotically stable if (H1) or (H2) hold, while only the unique disease-free equilib-
rium is locally asymptotically stable if (H3) holds. This indicates that Rc2 > Rc1 > 1
will not always lead to prevalence of the disease. Similarly, if (H4) or (H5) hold,
the endemic equilibrium E21 and one of the disease-free equilibria is locally asymp-
totically stable for Cases (Q11), (Q22) and (Q31); if (H6) holds, only one of the
disease-free equilibria is locally asymptotically stable. For Cases (Q13), (Q23) and
(Q32), three possible attractors may coexist for system (3): the endemic equilibria
E11, E21 and one of the disease-free equilibria. In conclusion, both the endemic
equilibria E11, E21 and one of the disease-free equilibria are locally asymptotically
stable if (Hl) (l = 1, 2) and (Hk) (k = 4, 5) hold; one of the endemic equilibria
E j1 ( j = 1, 2) and one of the disease-free equilibria are locally asymptotically sta-
ble if (Hs) (s = 1, 2, 4, 5) holds; only the unique disease-free equilibrium is locally
asymptotically stable if (H3) and (H6) hold.

Theorem 5.5 (i) If (H3) and (H6) hold, the solution of (3) ultimately goes to Es0 for
X0 ∈ R2+\{�s11 ∪ �s12} or X0 ∈ R2+\{�s21 ∪ �s22} or X0 ∈ R2+\{�s21 ∪ �s22 ∪
�s11 ∪ �s12}

(ii) If (H1) or (H2) hold, then for cases (Q12), (Q13), (Q21), (Q23)−(Q28) and
(Q32)−(Q34), the solution of (3) will approach E11 for X0 ∈ Ge11, while it will
tend to Es0 for X0 ∈ Ge01.

(iii) If (H4) or (H5) hold, then for cases (Q11), (Q13), (Q22), (Q23), (Q31) and
(Q32), the solution of (3) will approach E21 for X0 ∈ Ge21, while it will tend to
Es0 for X0 ∈ Ge02.

(iv) If (Hs) (s = 1, 2) and (Hl) (l = 4, 5) hold, then, for cases (Q13), (Q23) and
(Q32), the solution of (3) will approach E11 for X0 ∈ Ge13, solutions tend to
E21 for X0 ∈ Ge23 and will tend to Es0 for X0 ∈ Ge03.

Now we turn to examine the critical case Sc = S11, when the threshold level Sc
reaches exactly the level of susceptible people in steady state. Thus, a generalized
equilibrium E∗(S∗, I∗) occurs, where

S∗ = β� − √
β2�2 − 4β(μ + ε)2(μ + r)

2β(μ + r)
, I∗ = β� + √

β2�2 − 4β(μ + ε)2(μ + r)

2β(μ + ε)
.

Without loss of generality, let E∗ be a focus point of subsystem SG1 and SG2 , which
implies E∗ is a parabolic-focus of FF type. It is worth emphasizing that system (3) is
no longer smooth, which means the Jacobian matrix and the Lyapunov coefficients for
smooth systems cannot determine local stability. In the following, we will examine its
stability by using the theory developed in Clarke et al. (1998) and Leine (2006).

Evaluating the Jacobian matrix J1 at E∗ yields

tr(J1(E∗)) = (ε − r) − β I 2∗ , det(J1(E∗)) = (μ + ε)(β I 2∗ − μ − r).
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Denote

α1 = tr(J1(E∗)), β1 =
√

α2
1 − 4 det(J1(E∗)).

Similarly, by evaluating the Jacobian matrix J2 of subsystem SG2 , we get

α2 = ε − β I 2∗ , β2 =
√

(ε − β I 2∗ )2 − 4(μ + ε)(β I 2∗ − μ).

The first-order generalized Lyapunov coefficient at E∗ is

V1 = v1v2 − 1,

where

v1 = exp
(πα1

β1

)
, v2 = exp

(πα2

β2

)
,

so sgn(V1) = sgn(α1β2+α2β1)=̇sgn(η). To determine the sign of η, we will consider
the following three possibilities: (a) ε −β I 2∗ ≤ 0; (b) ε − r −β I 2∗ ≥ 0; (c) ε −β I 2∗ >

0, ε − r − β I 2∗ < 0 according to the sign of ε − β I 2∗ and ε − r − β I 2∗ . We initially
examine case (a).

(a) ε − β I 2∗ ≤ 0.

In this scenario, we easily get η < 0, so V1 < 0 and the generalized equilibrium
E∗ is locally asymptotically stable. In fact, ε − β I 2∗ ≤ 0 is equivalent to

2(μ + ε)2(μ + ε + r) − β�2 ≤ �

√
β2�2 − 4β(μ + ε)2(μ + r).

The last inequality is true if and only if

2(μ + ε)2(μ + ε + r) − β�2 ≤ 0 (13)

or {
2(μ + ε)2(μ + ε + r) − β�2 > 0

(μ + ε)2(μ + ε + r)2 − βε�2 ≥ 0
(14)

is true. Denote

M1 = 2(μ + ε)2(μ + ε + r)

�2 , M2 = (μ + ε)2(μ + ε + r)2

ε�2 .

We have M2 < M1 for ε > μ+ r and M2 > M1 for ε < μ+ r . Solving (13) and (14)
gives β ≥ M1 and ε > μ + r , M2 < β < M1, respectively. Hence, if the following
inequalities

• ε ≤ μ + r , β ≥ M1 or
• ε > μ + r , β > M2
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hold, then η < 0, and so V1 < 0, which results in the local stability of E∗.

(b) ε − r − β I 2∗ ≥ 0.

If this inequality is true, then η > 0, so V1 > 0 and the generalized equilibrium E∗
is unstable. In fact, the inequality ε − r − β I 2∗ > 0 holds if and only if

2(μ + ε)3 − β�2 ≥ �

√
β2�2 − 4β(μ + ε)2(μ + r),

which is equivalent to {
2(μ + ε)3 − β�2 ≥ 0,
β�2(ε − r) ≤ (μ + ε)4.

(15)

Solving (15) yields

ε > r , β ≤ min{M3, M4},

where

M3 = 2(μ + ε)3

�2 , M4 = (μ + ε)4

�2(ε − r)
.

Direct calculation yields M3 < M4 for ε < μ + 2r and M3 > M4 for ε > μ + 2r . As
a conclusion, if one of the following inequalities

• r < ε ≤ μ + 2r , β ≤ M3 or
• ε > μ + 2r , β ≤ M4

is true, the generalized equilibrium E∗ is unstable.

(c) ε − β I 2∗ > 0, ε − r − β I 2∗ < 0.

For convenience, we refer to these two inequalities as inequality (c) in the following
discussion. Different to (a) and (b), both a stable equilibrium E∗ and an unstable
equilibrium E∗ are possible in this scenario. Performing a similar analysis to (a), we
get the first inequality in this scenario; i.e., ε − β I 2∗ > 0 holds if one of the following
inequalities

• ε ≥ μ + r , β < M2 or
• ε < μ + r , β < M1

is true. Similarly, the second inequality ε − r −β I 2∗ < 0 is true if one of the following
inequalities

• ε ≤ μ + 2r , β ≥ M3 or
• ε > μ + 2r , β > M4

are true. Direct calculation gives M3 < M1, so M4 < M3 < M1 for ε > μ+2r . Note
that

sgn(M3 − M2) = sgn{ε2 − 2rε − (μ + r)2} = −1
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if and only if

ε < r +
√
r2 + (μ + r)2,

so the inequality r + √
r2 + (μ + r)2 > μ + 2r leads to M3 < M2 for μ + r < ε ≤

μ + 2r . Similarly, we have

sgn(M4 − M2) = sgn{−ε2 + rε + (μ + r)2} = −1

if and only if

ε >
r + √

r2 + 4(μ + r)2

2
,

so M4 < M2 for ε > μ + 2r due to (r + √
r2 + 4(μ + r)2)/2 < μ + 2r . Hence,

inequality (c) is true if one of the following inequalities

ε > μ + 2r , M4 < β < M2

or

μ + r < ε ≤ μ + 2r , M3 ≤ β < M2

or

ε ≤ μ + r , M3 ≤ β < M1

is true.
To derive the stability of E∗, examining η < 0 is necessary. Note that in this

scenario,

η < 0 ⇐⇒ (β I 2∗ )2 + (r − 4ε − 2μ)β I∗ + (ε2 + 2εμ − μr) < 0. (16)

Inequality (16) holds if and only if

Nmin < β I 2∗ < Nmax,

where

Nmax = 2μ + 4ε − r + √
12ε2 + 8εμ + r2 + 4μ2 − 8εr

2
,

Nmin = 2μ + 4ε − r − √
12ε2 + 8εμ + r2 + 4μ2 − 8εr

2
.
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Denote

η1 = (μ + ε)2
[
4μ + 4ε + r + √

12ε2 + 8εμ + r2 + 4μ2 − 8εr
]

η2 = (μ + ε)2
[
4μ + 4ε + r − √

12ε2 + 8εμ + r2 + 4μ2 − 8εr
]

η1 = η21

2�2(μ + ε)2
[
2μ + 4ε − r + √

12ε2 + 8εμ + r2 + 4μ2 − 8εr
]

η2 = η22

2�2(μ + ε)2
[
2μ + 4ε − r − √

12ε2 + 8εμ + r2 + 4μ2 − 8εr
] .

We have

β I 2∗ < Nmax ⇐⇒ η1 − β�2 > �

√
β�2 − μβ(μ + ε)2(μ + r).

The last inequality is true if and only if

{
η1 − β�2 > 0
η21 − 2βη1�

2 + β2�4 > �2
[
β�2 − 4β(μ + ε)2(μ + r)

]
.

(17)

Solving (17) with respect to β gives

β < min
{ η1

�2 , η1

}
.

Similarly, we have

β I 2∗ > Nmin ⇐⇒ η2 − β�2 < �

√
β�2 − μβ(μ + ε)2(μ + r).

The inequality on the right-hand side is true if and only if

η2 − β�2 ≤ 0 (18)

or {
η2 − β�2 > 0
η22 − 2βη2�

2 + β2�4 < �2
[
β�2 − 4β(μ + ε)2(μ + r)

]
.

(19)

Solving (18) and (19) with respect to β gives β > η2. Direct calculation yields

η1 <
η1

�2 , η1 > η2,

so inequality (16) is true if and only if η2 < β < η1. Therefore, we conclude that the
generalized equilibrium E∗ is locally asymptotically stable if

ε ≤ μ + r , min{M3, η2} < β < max{M1, η1}
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or

μ + r < ε ≤ μ + 2r , min{M3, η2} < β < max{M2, η1}

or

ε > μ + 2r , min{M4, η2} < β < max{M2, η1}

in this scenario.
A similar procedure gives the conditions for the unstable equilibrium E∗. Figures 7

and 8 illustrate the stability of the pseudo-equilibrium E∗. Here the diamond point E∗
represents the pseudo-equilibrium and the thick cycle �s stands for the crossing cycle.
If we denote the subregion above the unstable manifolds of saddle E22 (the curves
�s21 and�s22) asG1p and the subregion below them asG0p, then summarizing (a)–(c)
results in the following conclusion.

Remark 3. Herewe use “crossing cycle” to denote the limit cycle composed of pieces
of the orbit of subsystem SG1 and pieces of the orbit of subsystem SG2 .

Theorem 5.6 (i) All solutions with X0 ∈ G1p approach the generalized equilibrium
E∗ and those with X0 ∈ G0p tend to the disease-free equilibrium Es0 (as shown
in Fig. 7) if one of the following conditions hold:

(Cs1) ε > μ + 2r ,max{M4, η2} < β < min{M2, η1} or β > M2;
(Cs2) μ + r < ε ≤ μ + 2r ,max{M3, η2} < β < min{M2, η1} or β > M2;
(Cs3) ε ≤ μ + r ,max{M3, η2} < β < min{M1, η1} or β > M1.

(ii) All solutions with X0 ∈ G1p\E∗ approach the crossing cycle �s , and those with
X0 ∈ G0p tend to the disease-free equilibrium Es0 (as shown in Fig. 8) if one of
the following inequalities hold.

(Cu1) ε > μ + 2r ,max{M4, η1} < β < M2 or M4 < β < min{M2, η2} or
β < M4;
(Cu2) μ + r < ε ≤ μ + 2r ,max{M3, η1} < β < M2 or M3 < β <

min{M2, η2} or β < M3;
(Cu3) r < ε ≤ μ + r ,max{M3, η1} < β < M1 or M3 < β < min{M1, η2}
or β < M3;
(Cu4) ε ≤ r ,max{M3, η1} < β < M1 or M3 < β < min{M1, η2}.

It follows that the pseudo-equilibrium E∗ competes with the disease-free equilib-
rium if the inequalities (Csi ) (i = 1, 2, 3) hold. In particular, the pseudo-equilibrium
E∗ is locally asymptotically stable for X0 ∈ G1p and the disease-free equilibrium
E20 is locally asymptotically stable for X0 ∈ G0p. This indicates that disease con-
trol is dependent on the initial sizes of the sub-populations. If the initial size of the
sub-population satisfies X0 ∈ G0p, the disease becomes endemic, but the number of
infected individuals can be contained at a previously given value I∗. However, if the
conditions (Cui ) (i = 1, 2, 3, 4) hold, the crossing cycle �s coexists with the disease-
free equilibrium. In this scenario, the crossing cycle�s is locally asymptotically stable
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0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

8

S=Sc

I

S

(a)

E22

Γs

E*

Γs21

E20

Γu21

Γu22 Γs22

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

I

S

(b)

E*

Γs

Fig. 8 Phase plane of the non-smooth model (3), showing the instability of the FF-type generalized focus
and the stability of the crossing cycle and the disease-free equilibrium. The parameter values are � =
3;β = 0.205;μ = 0.2; r = 0.25; ε = 0.8, Sc = 2.8128

for X0 ∈ G1p while the disease-free equilibrium is locally asymptotically stable for
X0 ∈ G0p; i.e., G1p and G0p are also the endemic and eradication regions, respec-
tively. Hence, the disease cannot be eradicated and the number of infected individuals
varies periodically. In conclusion, if Sc = S11 and X0 ∈ G1p, the case number can
either be controlled at a previously given level or the solutions may vary periodically,
but the disease cannot be eradicated.

For clarity, we list the results in this case in Table 3.
(C3) Rc1 = Rc2 > 1.
We have that Sc = S−

c1 in this scenario. Note that S11 < S−
c1, so the endemic

equilibrium E11 is always real. The nature of other endemic equilibria, especially
that of the endemic equilibrium E21, can be found in Table 1. Performing a similar
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Table 3 Main results of (3) for (C2)

Values of Rc1, Rc2 Cases Conditions Attractors

Rc2 > Rc1 > 1 All cases (H3) and (H6) Es0
(Q12), (Q13), (Q21),

(Q23)−(Q28), (Q32)−(Q34)
(H1) or (H2) Es0, E11

(Q11), (Q13), (Q22),

(Q23), (Q31), (Q32)
(H4) or (H5) Es0, E21

(Q13), (Q23), (Q32) (Hs ) and (Hl )(s ∈ {1, 2}, u ∈ {4, 5}) Es0, E11, E21
Sc = S11 and (Csj )( j ∈ {1, 2, 3}) Es0, E∗
Sc = S11 and (Cuj )( j ∈ {1, 2, 3}) Es0, �s

analysis as in Case (C1), we get a series of interesting dynamical behavior including
the stability of multiple equilibrium points (including two endemic equilibria and one
disease-free equilibrium), bistability of the endemic equilibrium and a disease-free
equilibrium, and the stability of the disease-free equilibrium. We omit the detail here.

Remarks 4. If we consider the continuous vaccination policy (i.e., Sc = ∞), then
system (1) and (2) approaches system SG1 in the limit. This illustrates the casewhen
the medical resource is abundant and the vaccination rate is always proportional
to the number of susceptible individuals. According to Theorems 3.1 and 3.2,
the disease-free equilibrium E10 is globally asymptotically stable, and the disease
can be eradicated for Rc1 < 1; if Rc1 > 1 and (H3) is true, E10 is locally
asymptotically stable, and the disease can be almost eradicated; otherwise, if the
inequalities in (H1) or (H2) are true, both the endemic equilibrium E11 and the
disease-free equilibrium E10 are locally asymptotically stable,which demonstrates
that disease eradication depends on the initial infection.

5. However, the non-smooth system (1) and (2) is an epidemic system with a
piecewise-defined vaccination policy. It follows from Theorems 5.1–5.6 that the
dynamics are much richer than system SG1 . In addition to the bistability of the
endemic equilibrium E11 and one of the disease-free equilibria Es0, coexistence of
multiple equilibria may occur: the possibilities are three stable equilibria, E11, Es0
and another endemic equilibrium E21; coexistence of the generalized equilibria
E∗ and Es0; and the coexistence of the crossing cycle �s and Es0. These out-
comes are new and are qualitatively different from the dynamics for system SG1 .
Specifically, we have shown that different initial infections can trigger different
control outcomes; a previously chosen level or region of the desired number of the
infected individuals can be reached when the threshold level and other parameters
are chosen properly; this may provide us options for disease control when medical
resources are limited and the infectious disease cannot be eradicated.

6 Discussion and Conclusions

Medical-resource constraints are important in disease control (Wang and Ruan 2004;
Zhang and Liu 2008; Wang 2006; Hansen and Day 2011; Zhou and Fan 2012; Shan

123



992 A. Wang et al.

and Zhu 2014). To explore how they affect disease containment, many mathematical
models with piecewise-defined treatment program have been proposed, resulting in
non-smooth continuous models with threshold values that are qualitatively different
from their smooth counterparts. However, to the best of our knowledge, there is little
systematic analysis of the dynamical behavior as the threshold level varies. In this
paper, we have analyzed a simple non-smooth model with vaccination, which is math-
ematically similar to the treatment policy in Wang (2006). Since we also take into
account double exposure of the susceptibles on disease spread, a nonlinear incidence
rate βSI 2 is incorporated in our model. Our main results show that the non-smooth
vaccination measure induces the multistability of three regular equilibria, bistablity of
two regular equilibria or one generalized equilibria and one disease-free equilibrium
or one crossing cycle and one disease-free equilibrium.

We mainly focus on the interaction of the nonlinear incidence rate and non-smooth
vaccination. To this end, we deliberately examine the dynamic behavior of the pro-
posed model as the threshold value varies. We address the dynamics of the proposed
model according to the relationship between the two advanced thresholds Rc1 and
Rc2, which depend on the threshold value Sc. If the threshold value Sc varies such that
max{Rc1, Rc2} < 1, no endemic equilibrium exists and the disease dies out, as shown
in Fig. 1. If Rc1 > 1 > Rc2, the disease also dies out except the case where the initial
point X0 ∈ �s11 ∪ �s12 for condition (H3), as shown in Fig. 2. But for the conditions
(H1) and (H2), the infection region Ge11 exists next to the healthy region Ge01, so
the disease can be eradicated from the population if the initial point X0 ∈ Ge01, but
it persists for X0 ∈ Ge11, as shown in Fig. 3. Similar results can be obtained for the
case Rc2 > 1 > Rc1, where the disease almost dies out if (H6) holds; it may die
out or persist if (H4) and (H5) hold, depending on whether the initial condition lies
in the healthy or infection region. It follows that the nonlinear incidence rate induces
the local stability of the disease even with the existence of one or more steady states.
It highlights the key role of the initial condition as well as the threshold value in the
outcome.

If the threshold value Sc continuously varies such that min{Rc1, Rc2} > 1, the
model behaves dramatically different from its continuous counterpart. In this scenario,
if we further have (Hs) (s = 1, 2) and (Hl) (l = 4, 5), three stable equilibria (two
endemic equilibria and one disease-free equilibrium) coexist, so a high infection area
Ge13, a low infection area Ge23 and a healthy area Ge03 coexist, as shown in Figs. 5
and 6 and Table 2. This demonstrates that the disease may die out or persist with a
higher infection level or persist with a lower infection level depends on whether it
originates in the healthy area, the high infection area or the low infection area. This
shows that different initial infection levels lead to different long-term infection levels
on the condition that the disease cannot be eradicated from the population. When the
threshold value Sc passes through the critical level S11, a generalized equilibrium E∗
or crossing cycle �s appears if other parameters satisfy conditions (Csj ) or (Cuj )with
j ∈ {1, 2, 3}. As a consequence, the case numbers can be contained at a controllable
level if eradicating it from the population proves to be impossible.

In summary, we have provided a dynamical analysis of a simple non-smooth epi-
demic model with the assistance of phase diagrams in the whole parameter space.
We have found the steady-state regimes, including healthy, low epidemic and high
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epidemic, under which the infected individuals approach zero or a relatively low level
or a relatively high level. The main results obtained in this work give insight into
the various consequences of implementing intervention measures. Our findings show
that a proper threshold policy can assist in controlling and combating an emerging
infectious disease, especially when the medical resources are constrained.
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