
218 BOOK REVIEWS

text, would benefit most from the current
book, whereas those looking for a broader
exposition with greater context for theory,
practice, and applications in biology will
not be particularly well-served.
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In 2008, I published an introductory text-
book explaining the basics of mathematical
epidemiology for a nonexpert audience [1].
It covered simple epidemic models, the ba-
sic reproductive ratio (and, in particular,
its failure, which was one of the first publi-
cations to do so), vector-borne diseases, fit-
ting models to data, and discrete epidemic
models. I did so with a lightness of touch
with respect to the mathematical details.
An Introduction to Mathematical Epidemi-
ology covers simple epidemic models, the
basic reproductive ratio (and, in particu-
lar, its failure), vector-borne diseases, fit-
ting models to data, and discrete epidemic
models. To be fair, it also covers global
stability, multistrain disease dynamics, op-
timal control, age- and class-structure, and
immuno-epidemic modeling.

This isn’t necessarily a problem, as
there’s utility in presenting these topics
with the mathematical details filled in, as
in the first half of the book. The new ma-
terial is also worthy of consideration. It’s
unacceptable that the source material isn’t
referenced at all, however. There are even
statements like “some researchers believe
that it should not be called a reproduction
number” (p. 110) without any attributions.

In general, the book presents a variety of
ordinary differential equation (ODE) mod-
els. These are fine, although it does be-
come a bit samey after a while. However,
the models chosen are somewhat simplistic.
In particular, a variety of deadly diseases
are modeled—e.g., malaria (p. 70) or TB
(p. 165)—with the assumption that there is
no death rate due to disease. This appears
to be done so that the models are more
tractable, but they ignore the biological re-
ality of the situation. Indeed, the concept
of a disease-specific death rate is not in-
troduced in any of the models until over
halfway through. This is highly unrealistic.

The definition of chaos is missing topo-
logical transitivity (p. 81), which is en-
tirely misleading: wholly unstable systems
are also aperiodic and have sensitive de-
pendence on initial conditions, but they
aren’t chaotic. There are also numerous is-
sues with the proofreading, such as comma
splices (e.g., pp. 116, 224, 389, 422) and
glaring typos like “is always grater than”
(p. 153). Sloppiness like this and the lack of
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referencing makes this book far less useful
than it otherwise might be.

Where the book excels, however, is when
it gives us the MATLAB code (p. 127)
and resources for finding data (p. 125) and
model fitting (p. 129). This is superb. Stu-
dents can input their own code and can
start digging for real-world data to use to
fit their models. The twelve pages that deal
with this are the undoubted highlight of the
book. More like this would have been ex-
cellent.

In summary, this is a book that means
well but has significant flaws. The same-
ness of each chapter containing what are
essentially small variations on the basic
ODE models makes it a slog to read at
over 400 pages. There are some variations
and some more MATLAB code in the last
few chapters, but it’s too little, too late.
It’s unclear who the audience for this book
would be; mathematicians surely want more
challenges than just simple ODEs, whereas
biologists would be unlikely to wade their
way through all the mathematical details.
However, the material on data fitting is
excellent.
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One of the most exciting and fascinating
challenges of numerical mathematics for
the next several years will be to bring
the power of modeling and simulations to
real-world engineering problems (broadly
understood) within short timelines. Ide-
ally, one would like to have almost real-
time quantitative responses for problems

that require complex methods of solution.
Having more powerful hardware is clearly
not sufficient to address the demands com-
ing not only from the engineering world
but also from medicine and clinics, to
mention just one application, since high-
performance computing facilities are not
necessarily easily accessible. The answer to
this demand is likely to come from a combi-
nation of computer science and mathemat-
ics ingredients—infrastructure and meth-
ods, hardware, and software.

In this scenario, an extremely promising
and effective tool arising from the math-
ematical side for solving partial differen-
tial equations depending on one or more
parameters—as invariably happens in real
applications—is provided by the reduced
basis method, originally developed in the
groups of T. Patera and Y. Maday. Tra-
ditional Galerkin methods (like finite el-
ements) for representing the solution of a
partial differential equation pursue a sort of
“general purpose” approach, where the ap-
proximate solution is represented by means
of a generic (piecewise polynomial, but also
trigonometric or exponential) set of func-
tions not designed for a specific problem,
but rather useful for virtually countless dif-
ferential problems. This versatility implies
that all the problem-specific information
is carried by the coefficients of the finite-
dimensional expansion with respect to the
selected set of basis functions. This gener-
ally requires many degrees of freedom. Con-
sequently, the numerical problems feature
large dimensions and eventually high com-
putational costs. The reduced basis method
still relies on the Galerkin framework, fol-
lowing the idea that the selected basis func-
tion set is customized or “educated” about
the problem to be solved. The problem-
specific information is captured by both the
basis functions and the coefficients. Giving
up versatility may reduce the number of
degrees of freedom required for the reliable
approximation of the problem at hand, with
a computational advantage. This may be
useful in the extremely common situation of
parametrized partial differential equations.
As a matter of fact, in modern engineering
the challenge is quite often the identification
of those parameters or the detection of their
optimal values for the minimization (maxi-


