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a b s t r a c t 
There is an urgent need for more understanding of the effects of surveillance on malaria control. Indoor 
residual spraying has had beneficial effects on global malaria reduction, but resistance to the insecticide 
poses a threat to eradication. We develop a model of impulsive differential equations to account for a re- 
sistant strain of mosquitoes that is entirely immune to the insecticide. The impulse is triggered either due 
to periodic spraying or when a critical number of malaria cases are detected. For small mutation rates, 
the mosquito-only submodel exhibits either a single mutant-only equilibrium, a mutant-only equilibrium 
and a single coexistence equilibrium, or a mutant-only equilibrium and a pair of coexistence equilib- 
ria. Bistability is a likely outcome, while the effect of impulses is to introduce a saddle-node bifurca- 
tion, resulting in persistence of malaria in the form of impulsive periodic orbits. If certain parameters are 
small, triggering the insecticide based on number of malaria cases is asymptotically equivalent to spraying 
periodically. 

© 2016 Elsevier Inc. All rights reserved. 
1. Introduction 

It has been estimated that one in two humans who ever lived 
has been killed by malaria [7] . Three billion people — almost half 
the world’s population — are at risk of malaria [13,20,22] . It is a 
leading cause of death and disease in many developing countries, 
where young children and pregnant women are the groups most 
affected. 40% of the world’s population live in malaria-endemic ar- 
eas [16] ; 90% of deaths due to malaria occur in sub-Saharan Africa 
[17] , 75% of whom are African children [6] . In 2015, it caused more 
than 214 million acute illnesses and 438,0 0 0 deaths [26] . This rep- 
resents a 37% reduction in cases over the previous 15 years [26] . 

This reduction has been largely driven by vector-control meth- 
ods, primarily insecticide-treated bednets and indoor residual 
spraying (IRS) [9,25] ; both are known to be highly effective [14] . 
The latter involves spraying houses and structures with insecti- 
cides, thereby killing mosquitoes after they have fed, in an effort 
to stop transmission of the disease. Recent data reconfirm the effi- 
cacy and effectiveness of IRS in malaria control in countries where 
it was implemented well [25] . Since many malaria vectors are 
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endophilic, resting inside houses after taking a blood meal, they 
are particularly susceptible to be controlled through IRS. This 
method kills the mosquitoes after they have fed, thereby stopping 
transmission of the disease. The user is able to spray the whole 
house or dwelling on the inside, and under the eaves on the out- 
side. The duration of effective action for timely, good-quality spray- 
ing is greater than six months [25] . 

Using these methods, malaria was eradicated or greatly reduced 
in many countries in the world between the 1940s and 1960s. Due 
to its success, DDT was rapidly introduced into public-health and 
malaria-control campaigns, and was the main insecticide used in 
the malaria-eradication campaign carried out between 1955 and 
1969 [24] . There is evidence of resistance, but spraying with multi- 
ple insecticides has been successful in controlling Anopheles funes- 
tus, Anopheles gambiae and Anopheles melas in Equatorial Guinea, 
for example [19] . 

Surveillance is an important tool in disease management [10] ; 
this is particularly true of malaria, which is spatially heteroge- 
neous [2] . The World Health Organization has identified effective 
surveillance as a critical component in malaria elimination and has 
called for stronger surveillance systems to track and prevent out- 
breaks in endemic regions [26] . However, the majority of scientific 
and surveillance effort s are focused on countries that are unlikely 
to be the location of important emerging infectious diseases [10] . 
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Furthermore, many countries with a high burden of malaria have 
weak surveillance systems and are not in a position to assess dis- 
ease distribution and trends [26] . 

We assume that spraying occurs at times t k . The effect of the 
insecticide is assumed to be instantaneous, resulting in a system 
of impulsive differential equations. Impulsive differential equations 
consist of a system of ordinary differential equations (ODEs), to- 
gether with difference equations. Between impulses, the system is 
continuous, behaving as a system of ODEs. At the impulse points, 
there is an instantaneous change in state in some or all of the 
variables. This instantaneous change can occur when certain spa- 
tial, temporal or spatio-temporal conditions are met [3–5,12] . This 
is related to the use of pulse vaccinations [1] , seasonal skipping 
in recurrent epidemics [23] , antiretroviral drug treatment [15] and 
birth pulses in animals [18] . Impulse times may be fixed or non- 
fixed [21] and may be either time- or state-dependent. 

This paper is organized as follows. In Section 2 , we introduce 
the impulsive model in its general form, detailing key assumptions. 
In Section 3 , we develop preliminary results, such as existence and 
uniqueness properties. In Section 4 , we analyze a non-impulsive 
submodel consisting only of mosquito dynamics. In Section 5 , we 
analyze the mosquito-only submodel with impulsive effects. In 
Section 6 we illustrate our theoretical results with numerical sim- 
ulations. In Section 7 , we determine global results for periodic or- 
bits under a simplifying assumption. We conclude with a discus- 
sion and relegate all proofs to the appendix. 
2. The model 

All humans are either susceptible ( S ), infected ( I ) or partially 
immune ( R ). Humans are born susceptible at a constant back- 
ground birth rate π , independent of the population size. The back- 
ground death rate is µH . Susceptible humans can become infected 
after being bitten by infected mosquitoes at rate β . Infected hu- 
mans die from the disease at rate γ , recover without immunity at 
rate h or acquire immunity at rate α. Humans with temporary im- 
munity lose their immunity at rate δ. All rates are per capita rates, 
unless otherwise mentioned. 

In the absence of humans (and therefore new infections), 
mosquitoes undergo logistic growth with competition and a 
small probability of unidirectional mutation at birth. There is 
no competitive advantage or disadvantage to being infected with 
malaria. Malaria infection has a negligible effect on the lifespan 
of mosquitoes. Therefore, if M w and M m denote the population 
sizes of wild-type and mutant susceptible mosquitoes, N w and N m 
denote the corresponding infected mosquitoes, and V w = M w + N w 
and V m = M m + N m denote the total populations of wild-type and 
mutant mosquitoes (susceptible and infected), then we assume 

˙ M w = ((1 − ε) b w − d w ) M w + (1 − ε) b w N w , 
˙ M m = (b m − d m ) M m + b m N m + εb w M w + εb w N w , 
˙ N w = −d w N w , 
˙ N m = −d m N m , 

where 0 < ε # 1 is the mutation rate. The birth and death rates 
are 
b w = b 0 w − K bww V w − K bwm V m , d w = d 0 w + K dww V w + K dwm V m , 
b m = b 0 m − K bmm V m − K bmw V w , d m = d 0 m + K dmm V m + K dmw V w , 
where all parameters are assumed to be positive. There is no verti- 
cal malaria transmission among mosquitoes. Notice that the above 
is not the usual, elegant definition of logistic growth. However, this 
parameter-heavy definition is necessary to take into account the 
correct mutation rate. 

Wild-type mosquitoes are more evolutionarily fit in the absence 
of insecticide: Define the intrinsic growth rates 
r w = b 0 w − d 0 w , r m = b 0 m − d 0 m , (1) 
carrying capacities 
K w = r w 

K bww + K dww , K m = r m 
K bmm + K dmm , (2) 

and competition coefficients 
αwm = K bwm + K dwm 

K bww + K dww , αmw = K bmw + K dmw 
K bmm + K dmm . (3) 

It is assumed that these bulk parameters satisfy the inequalities 
r w ≥ r m , K w ≥ K m , αmw ≥ αwm , (4) 
and at least one of the inequalities is strict. 

Susceptible mosquitoes can become infected by biting an infec- 
tious human at rate βM , which may depend on the sizes of hu- 
man and mosquito subpopulations. The infection rate of humans 
by mosquitoes, β , is positively correlated to the population of in- 
fected mosquitoes. The infection rate of mosquitoes by humans, 
βM , is positively correlated with the population of infected hu- 
mans. Infection rates are assumed to be smooth functions of the 
population variables. All infection rates are nonnegative. 

The probability of passive surveillance effort s detecting a given 
human malaria infection is given by η. Insecticide is sprayed if the 
number of reported malaria cases since the previous insecticide 
application reaches a critical level, (. Application of the insecticide 
instantaneously decreases the population of wild-type mosquitoes 
by a factor of q ∈ (0, 1). The insecticide has no effect on the mu- 
tant strain. 

With these assumptions in place, we obtain the following sys- 
tem of impulsive differential equations: 

˙ S = π − β(P ) S + hI + δR − µH S, ( & = (
˙ I = β(P ) S − hI − αI − (µH + γ ) I, ( & = (
˙ R = αI − δR − µH R, ( & = (

˙ M w = ((1 − ε) b w − d w ) M w + (1 − ε) b w N w − εb w M w 
− βM (P ) M w , ( & = (

˙ M m = (b m − d m ) M m + εb w (M w + N w ) + b m N m 
− βM (P ) M m , ( & = (

˙ N w = βM (P ) M w − d w N w , ( & = (
˙ N m = βM (P ) M m − d m N m , ( & = (
˙ ( = ηβ(P ) S, ( & = (

)M w = −qM w , ( = (
)N w = −qN w , ( = (
)( = −(, ( = (

(5) 
Here S, I and R represent the number of susceptible, infected and 
temporarily immune humans, and P = (S, I, R, M w , N w , M m , N m ) . 

Due to the model assumptions, we may assume the infection 
rates satisfy 

∂β
∂N w > 0 , ∂β

∂N m > 0 , ∂βM 
∂ I > 0 , 

β(S, I, R, M w , M m , 0 , 0) = βM (S, 0 , R, M w , M m , N w , N m ) = 0 . 
3. Preliminary results 
3.1. Existence and uniqueness of solutions and the biological domain 

To properly discuss existence, uniqueness and boundedness 
of solutions of (5) , it is necessary to adequately describe the 
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“biological domain”. Specifically, we must deal with the lack of 
positive invariance of the nonnegative cone. This lack of invariance 
is the result of incorporating mutation at birth with the logistic 
growth model. Indeed, it is possible for mosquito subpopulations 
to “become negative” if initial conditions are chosen improperly. A 
general invariance theorem is difficult to state; we provide a suffi- 
cient, implicit condition based on properties of a vector-only two- 
dimensional submodel. This submodel is considered in Sections 2 –
3 , where a more explicit invariance theorem is given. 
Theorem 1. Consider the two-dimensional system of ordinary differ- 
ential equations, 
˙ V w = r w V w (1 − V w + αwm V m 

K w 
)

− εV w (b 0 w − K bww V w − K bwm V m ), 
˙ V m = r m V m (1 − V m + αmw V w 

K m 
)

+ εV w (b 0 w − K bww V w − K bwm V m ). 
(6) 

Suppose the set 
+b w = {(V w , V m ) ∈ R 2 + : V w ≤ b 0 w − K bwm V m 

K bww 
}

is positively invariant under the flow of (6) . Then the set 
+∗

b w = { 
(P, () ∈ R 8 + : ( ≤ (, S + I + R 
≤ π

µH , (M w + N w , M m + N m ) ∈ +b w } 
is positively invariant under the flow of (5) , and all solutions that be- 
gin in +∗

b w exist for all positive time and are unique. 
3.2. Equivalence and stability of periodic solutions of fixed-time and 
autonomous models 

Let us denote G = (S, I, R, M w , M m , N w , N m ) , ˙ G = F (G ) and )G = 
LG, where the vector field F and linear impulse L are obtained from 
(5) by simply ignoring the ( equations. Consider the following im- 
pulsive differential equation with impulses at fixed times kT , for 
integers k and a fixed spraying period T : 

˙ G = F (G ) , t & = kT , 
)G = LG, t = kT . (7) 
It is fairly obvious that periodic solutions of the autonomous model 
(5) give rise to periodic solutions of the model with fixed-time 
spraying events (7) , provided the correct spraying period T is 
chosen. It turns out that the converse of this statement holds 
as well. Additionally, certain uniqueness results are transferable. 
This equivalence of periodic orbits is applicable to many impul- 
sive vector-control models, so we state and prove the following 
proposition in full generality. In the following, we assume that all 
differential equations in question admit unique, globally defined 
solutions. 
Proposition 1. Consider the following impulsive differential equation 
undergoing impulse effects at fixed times t k = kT with k ∈ Z , T ∈ R + 
and phase space + × R + , where + ⊂ R n + , the nonnegative orthant : 
dx 
dt = g(x ) , t & = kT , 
)x = a (x ) , t = kT . (8) 
Suppose (8) has a unique, non-trivial T - periodic solution with one 
impulse per cycle. Denote said periodic solution by ϕ( t ). Then, for 
any u : R n → R satisfying u ( ϕ( t )) > 0, the autonomous tracking 

system , 
dx 
dt = g(x ) , )x | θ= θ = a (x −) , 
dθ
dt = u (x ) , )θ | θ= θ = −θ , (9) 

has a unique T -periodic solution up to phase shift, with one impulse 
per cycle, given by ( ϕ( t ), θ ( t )), whenever 
θ = ∫ T 

0 u (ϕ(t )) dt . (10) 
Conversely, if (9) has a non-trivial T 0 - periodic solution with one im- 
pulse per cycle for some θ ∈ R + , then (8) has a T 0 - periodic solution 
when T = T 0 . Moreover , θ satisfies Eq. (10) . 

From now on, when referring to an autonomous model, unique- 
ness of periodic solutions will always be taken to mean uniqueness 
up to phase shift. The next lemma states that stability of periodic 
orbits in the system with impulses at fixed times is equivalent to 
the stability of the corresponding periodic orbit in the autonomous 
tracking system. 
Proposition 2. Let ϕ( t ) be a T-periodic solution of the system with 
fixed impulses (8) and let ˜ ϕ (t) denote the corresponding periodic so- 
lution of the autonomous tracking system in (9) . Suppose the solution 
operators of systems (8) and (9) are smooth with respect to initial 
conditions. Then ϕ( t ) is exponentially stable if and only if ˜ ϕ (t) is or- 
bitally asymptotically stable with asymptotic phase. 

The previous two results clearly apply to our model (5) and the 
associated fixed-time model (7) . As such, we have the following 
theorem. 
Theorem 2. Suppose the model with spraying at fixed times, (7) , has 
a T-periodic solution ϕ( t ) . If 
( = ∫ T 

0 ηβ(P (ϕ)) S(ϕ) dt, 
then the function ˜ ϕ (t) = (ϕ(t ) , ((t )) is a T-periodic solution of the 
autonomous model (5) , where ((t) = ηβ(P (ϕ )) S(ϕ ) . ϕ ( t ) is expo- 
nentially stable if and only if ˜ ϕ (t) is orbitally asymptotically stable 
with asymptotic phase. If ϕ( t ) is the only T-periodic solution of (7) , 
then ˜ ϕ (t) is the unique T-periodic solution of (5) . 
Corollary 2.1. Suppose the model with spraying at fixed times, (7) , 
has a unique hyperbolic endemic periodic orbit, ϕ( t ; T ), for all T ∈ 
(0 , T + ) for some T + > 0 . Then, there exists (+ 

> 0 such that, for all 
( ∈ (0 , (+ 

) , the autonomous model (5) has a periodic solution. 
The above is largely a consequence of Theorem 2 and the 

Lebesgue dominated convergence theorem; it can be shown that 
the map 
T +→ ∫ T 

0 ηβ(P (ϕ(t, T ))) S(ϕ(t, T )) dt 
is continuous and vanishes at T = 0 using the hyperbolicity as- 
sumption; the result follows immediately. 

We can conclude that if the model with spraying at fixed times 
has a unique stable periodic solution of period T , then the au- 
tonomous tracking model does too, provided the spraying thresh- 
old ( is chosen appropriately. In a certain sense, the autonomous 
and fixed-time spraying strategies are “asymptotically equivalent”
for initial conditions sufficiently close to the periodic orbit. How- 
ever, we cannot rule out the existence of periodic solutions of the 
autonomous model (5) with a period that is different from T , and 
we know nothing of the global stability of the periodic solutions. 
Statements regarding these properties can be made for simplified 
versions of the aforementioned models, and this is considered in 
Section 4 . 
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3.3. Introducing the mosquito-only submodel 

To understand the dynamics of the full models (5) and (7) , we 
first consider the two-dimensional system of impulsive differential 
equations with impulses at fixed times that describes the dynamics 
of the vector populations: 

˙ V w = r w V w (1 − V w + αwm V m 
K w 

)
− εV w (b 0 w − K bww V w − K bwm V m ), 

t & = kT 
˙ V m = r m V m (1 − V m + αmw V w 

K m 
)

+ εV w (b 0 w − K bww V w − K bwm V m ), 
t & = kT 

)V w = −qV w , t = kT . (11) 
This system can be easily derived from the fixed-time model (7) by 
defining V w = M w + N w and V m = M m + N m and noticing that the 
derivatives and impulse conditions decouple from the human ( S, 
I, R ) components. As previously illustrated in Theorem 2 , not much 
information is lost by working with fixed-time spraying instead of 
autonomous spraying. 

It turns out that a wealth of qualitatively different dynamics can 
be seen in this simplistic two-dimensional model (11) . We will not 
attempt to classify all of them but will instead focus on the effect 
of adding the insecticide spraying in the case where the system 
without impulses exhibits one of two phase portraits: global sta- 
bility of a coexistence equilibrium or bistability of a coexistence 
equilibrium with a mutant-only equilibrium. 
4. Analysis of the mosquito-only submodel without impulses 

In this section, we consider the system (11) without impulses 
˙ V w = r w V w (1 − V w + αwm V m 

K w 
)

− εV w (b 0 w − K bww V w − K bwm V m ), 
˙ V m = r m V m (1 − V m + αmw V w 

K m 
)

+ εV w (b 0 w − K bww V w − K bwm V m ). 
(12) 

4.1. Nullcines 
Lemmas 1 –2 characterize the V m nullcline. Lemma 3 describes 

the V w nullclines. Theorem 3 is a summary. 
Lemma 1. Suppose at most one of the equalities 
b 0 w αmw 

K m = K bww , b 0 w 
K m = K bwm (13) 

holds. There exists ε0 > 0 such that, for 0 < ε < ε0 , the V m nullcline 
is a non-degenerate hyperbola. 
Lemma 2. Suppose the inequality 
K bww 
b 0 w ≤ αmw 

K m (14) 
holds. There exists ε∗ > 0 such that if 0 < ε < ε∗, then the con- 
clusions of Lemma 1 hold, one branch of the hyperbola is nonpositive 
and intersects the origin, while the other branch intersects R 2 + in a 
curve and can be described by the graph of a strictly decreasing con- 
vex function M : V m +→ M(V m ) = V w . M satisfies M(0) = b 0 w /k bww and 
M(K m ) = 0 . 
Lemma 3. The V w nullclines consist of the line V w = 0 and the pa- 
rameterized line 
W (V m , ε) = −(αwm r w − εK bwm K w 

r w − εK bww K w 
)

V m + K w (r w − εb 0 w ) 
r w − εK bww K w . (15) 

If | ε| is sufficiently small, W ( ·, ε) is decreasing and V w (0 , ε) > 0 . 

With the previous three lemmas in hand, we have the fol- 
lowing qualitative description of the equilibrium points of the 
submodel (12) . 
Theorem 3. Suppose inequality (14) holds and at most one of the 
equalities of (13) is satisfied. There exists ε0 > 0 such that, for 0 < 
ε < ε0 , the mosquito-only submodel without impulses, (12) , has the 
trivial extinction equilibrium (0, 0), in addition to exactly one of the 
following: 
1. A mutant-only equilibrium, M 0 . 
2. A mutant-only equilibrium, M 0 , and a single coexistence equilib- 

rium, E 0 . 
3. A mutant-only equilibrium, M 0 , and two coexistence equilibria, C 0 

and C 1 . 
The mutant-only equilibrium has coordinates (0, K m ), and the co- 

existence equilibria are formed by intersections of the nonnegative 
branch of the hyperbolic V m nullcline, M, with the parameterized V w 
nullcline, W ( V m , ε) . 

Though certainly possible, it will not be our goal to determine 
the stability of the equilibria in all of the above cases, nor to com- 
pletely classify each case by constraints on the model parameters. 
One reason is that the resulting expressions are very complicated. 
Secondly, there are sufficient conditions that guarantee that, for ex- 
ample, Case 2 occurs, which will be discussed in Section 2.3. Fi- 
nally, since ε will always be assumed to be small, it is much more 
beneficial to simply consider perturbations from ε = 0 by tech- 
niques of bifurcation theory, in the event we wish to study Case 
3, which is the most difficult to classify. This will be the subject of 
Section 2.4. For the moment, we will briefly comment on Case 1. 

In the subsequent sections, we will regularly make reference 
to the hyperbolic criteria ; these will consist of the hypotheses of 
Theorem 3 . Specifically, the hyperbolic criteria are satisfied if in- 
equality (14) and at most one equality of (13) hold. 
4.2. The feasible and biologically relevant domains 

We first describe a nonnegative domain that is positively invari- 
ant, yet whose biological interpretation is inappropriate. 
Lemma 4. Suppose the hyperbolic criteria are satisfied and, addi- 
tionally, that b 0 w > K bww K w . Let γ denote the backward orbit through 
the point (b 0 w /K bww , 0) . Let + be the domain in the nonnegative 
quadrant whose boundary consists of γ , the line segment connect- 
ing (b 0 w /K bww , 0) to the origin and the positive V m axis. If ε > 0 is 
sufficiently small, + exists and is the largest positively invariant set 
contained in R 2 + . 

The domain defined in Lemma 4 is not biologically “correct”, 
because the term b w = b 0 w − K bww V w − K bwm V m appearing in the dif- 
ferential Eq. (12) represents the birth rate of wild-type mosquitoes, 
which should be nonnegative. Since the domain + described in 
Lemma 4 is unbounded, there are points in + where b w is neg- 
ative. The most straightforward (though not necessarily optimal) 
way to fix this problem is as follows. 
Theorem 4. Suppose the following inequalities hold, in addition to 
the hyperbolic criteria. 
b 0 w > K bww K w , max { 

K w 
αwm , K m } 

< b 0 w 
K bwm . (16) 

Then, for ε > 0 sufficiently small, the set +b w of Theorem 1 is posi- 
tively invariant under the flow of (12) . 
4.3. The case of no coexistence equilibria 

In this section, we will justify our claim that the case of no 
coexistence equilibria is not of biological interest. 
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Proposition 3. Suppose the hypotheses of Lemma 4 are satisfied. If 
there are no coexistence equilibria, then the mutant-only equilibrium 
is globally attracting in +!{(0, 0)} . 

Therefore if there are no coexistence equilibria, the mutant-only 
equilibrium attracts all nonzero trajectories. Since it was assumed 
that the mutant strain of mosquito was evolutionarily weaker in 
the absence of insecticide than the wild-type, we can safely ignore 
this case. 
4.4. The case of a single coexistence equilibrium 

When ε is sufficiently small, so that Theorem 3 holds, there 
are two possible ways in which there can be only one coexis- 
tence equilibrium. The non-degenerate case is when the hyperbolic 
V m nullcline intersects the parameterized V w nullcline transver- 
sally; the degenerate case is where they intersect tangentially. 
Completely classifying the relationships between parameters in the 
degenerate case is tedious but certainly not impossible. For the 
non-degenerate case, we can provide the following classification 
when ε is small. 
Theorem 5. Let the hyperbolic criteria be satisfied, and suppose b 0 w > 
K bww K w . Then there exists ε0 > 0 such that, for ε < ε0 , there is a 
single coexistence equilibrium formed by the transversal intersections 
of two nullclines, provided one of the following holds: 

A1. 
K m < K w 

αwm K m < αmw K w 
A2. 

K m = K w 
αwm , K m < αmw K w , αwm b 0 w > K bwm K w , αmw > 1 . 

In this case, the coexistence equilibrium is globally asymptotically sta- 
ble on R + 2 \ { V w = 0 } if and only if the mutant-only equilibrium is 
unstable. This will be guaranteed if Condition A1 holds. 
4.5. The case of bistability and multiple coexistence equilibria 

In this section, we establish two conditions under which bista- 
bility can occur. In the first, bistability is already present when 
ε = 0 , and it is preserved for ε > 0 small. In the second, the co- 
existence equilibrium is globally stable when ε = 0 , and bistability 
occurs when ε > 0 is small, due to a bifurcation of the mutant- 
only equilibrium. In both cases, we demonstrate that a hetero- 
clinic orbit exists, connecting the extinction equilibrium to one of 
the coexistence equilibria. This orbit is essentially the “bistability 
boundary”. 
Theorem 6 (Preservation of bistability) . Suppose the inequalities 
K w < αwm K m , K m < αmw K w , 1 < αwm αmw , b 0 w > K bww K w 

(17) 
are satisfied, in addition to the hyperbolic criteria. Then there exists 
ε0 > 0 such that, for 0 < ε < ε0 , there is a pair of coexistence 
equilibria: the mutant-only equilibrium is a sink, and the extinction 
equilibrium is a saddle. There are no periodic orbits, and there is a 
heteroclinic orbit connecting the extinction equilibrium to the saddle 
coexistence equilibrium. 
Theorem 7 (Bifurcation from wild-type-only global stability at ε = 
0 ) . Suppose the hyperbolic criteria are satisfied, in addition to the 
following. 

B1. The inequalities 
αmw αwm > 1 , b 0 w > K bwm K m , K w & = r w 
are satisfied. 

B2. There exists a C 1 function g : U ⊂ R → R , with U an open set con- 
taining 0, satisfying g(0) = 1 and 

g ′ (0) 
r w − K w < αmw αwm 

K w r w (r w − K w ) 
(

K w (K bwm r w − K bww αwm r m ) 
r w 

+ K bww K w − b 0 w ), (18) 
where K m is a function of ε and can be written K m = K w 

αwm g(ε) . 
Then there exists ε0 > 0 such that, for 0 < ε < ε0 , there is a pair of 
coexistence equilibria: the mutant-only equilibrium is a sink, and the 
extinction equilibrium is a saddle. There are no periodic orbits, and 
there is a heteroclinic orbit connecting the extinction equilibrium to 
the saddle coexistence equilibrium. 
5. Analysis of the mosquito-only submodel with impulse 
effects 

In this section, we investigate the effect of incorporating im- 
pulsive vector control on the mosquito-only submodel. We assume 
we are working in a feasible domain, such as the one described in 
Lemma 4 . 

To begin, we describe what happens to the extinction equilib- 
rium at arbitrary (but small) mutation rates, as a function of spray- 
ing efficacy. 
Theorem 8 (Bifurcation at extinction) . Define the quantity q ∗0 (ε) as 
follows: 
q ∗0 (ε) = 1 − e −(r w −εb 0 w ) T . 
If ε is sufficiently small, a biologically irrelevant (non-positive) peri- 
odic orbit collides with the extinction equilibrium, resulting in a tran- 
scritical bifurcation (in the one-dimensional centre dynamics) when 
q = q ∗0 (ε) . The extinction equilibrium transforms from a sink into a 
saddle, while the periodic orbit transforms from a saddle to a sink, 
as q increases through q ∗0 (ε) . The periodic orbit remains biologically 
irrelevant for q ≈ q ∗0 (ε) . 

Next, we state the critical spraying threshold where the 
mutant-only equilibrium undergoes a saddle-node bifurcation. 
Theorem 9 (Mutant-only saddle-node bifurcation) . Define the 
quantity q ∗M (ε) as follows: 
q ∗M (ε) = 1 − exp {T [ε(b 0 w − K bwm K m ) − c ]}, 

c = r w (1 − αwm K m 
K w 

)
. 

Suppose the inequality 
r m (e cT − e −r m T ) 
αwm (r m + c) T < e cT ∫ T 

0 e cs [ 1 + αwm αmw r m 
r m + c (e cs − e −r m s ) ] ds (19) 

holds. Then, for ε sufficiently small, we have 0 < q ∗M (ε) < 1 , and the 
mutant-only equilibrium for system (11) undergoes a saddle-node bi- 
furcation at parameter q = q ∗M (ε) . Specifically, a locally stable, non- 
negative periodic orbit collides with the mutant-only equilibrium, los- 
ing stability and becoming nonpositive, while the mutant-only equi- 
librium becomes locally stable as q increases through q ∗M (ε) . 

When ε = 0 , the wild-type equilibrium is replaced with a wild- 
type periodic orbit when q > 0 (that is, when the impulse effect is 
included). An explicit formula for this periodic orbit for t ∈ (0, T ] 
is as follows: 
˜ w (t; q ) = K w e r w t w 0 (q ) 

K w + (e r w t − 1) w 0 (q ) , 
w 0 (q ) = K w (e r w T (1 − q ) − 1) 

e r w T − 1 . 
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It is worthwhile determining the critical value of q > 0 at which 

the wild-type periodic orbit loses its stability when there is no 
mutation (that is, when ε = 0 ). There are two critical control ef- 
ficacies. 
Proposition 4 (Critical control efficacies pertinent to stability of 
the wild-type-only periodic orbit with no mutation) . Define the 
quantities q ∗1 and q ∗2 as follows: 
q ∗1 = 1 − exp ( −r w T ) , 
q ∗2 = 1 − exp (−r w T (1 − K m 

αmw K w 
))

. 
The wild-type-only periodic orbit for system (11) with no mutation 
( ε = 0 ) undergoes a transcritical bifurcation, colliding with the ex- 
tinction equilibrium, losing stability and becoming nonpositive, as the 
parameter q increases through q ∗1 , while the extinction equilibrium 
becomes a saddle point. The linearization of the wild-type-only pe- 
riodic orbit has a simple unit eigenvalue when q = q ∗2 , and this pe- 
riodic orbit loses stability as q increases through q ∗2 . The inequality 
0 < q ∗2 < q ∗1 < 1 holds, provided K m < αmw K w . 

We do not prove the above proposition, since its correctness 
can be inferred from the proof of the following theorem, which 
states that, under certain genericity assumptions, there is a bifur- 
cation curve c(q ) = (V (q ) , ε(q )) , defined in a neighbourhood of q ∗2 , 
satisfying c(q ∗2 ) = (w 0 (q ∗2 ) , 0) and for which V ( q ) is corresponds to 
a periodic orbit of system (11) with spraying efficacy q and muta- 
tion rate ε( q ). 
Theorem 10 (Existence of a bifurcation curve near the wild-type- 
only periodic orbit with no mutation) . Suppose the following in- 
equality is satisfied: 

e r m T r w αwm 
e r w T (e r w T − 1) (1 − q ∗2 ) 2 

( 
e r w T (1 − q ∗2 ) · (e r w T (1 − q ∗2 ) − 1 )

q 
) r m αmw 

r w K m 

× F × (
(1 − q ∗2 ) r w αwm 

r m K w (e r m T − 1) − q ∗1 
K w 

)
− 2 

K w (e r m T − 1) & = 0 , 
(20) 

where 
F = 2 F 1 ( r m αmw 

r w K m + 3 , r m 
r w ; r m + r w 

r w ;
e r w T (1 − q ∗2 ) − 1 

q ∗2 
)

, 
and 2 F 1 is the Gauss hypergeometric function. Define N(V, q, ε) = 
φ(T ;V, q, ε) − V, where t +→ φ( t ; V, q , ε) is the solution map of 
(11) with initial condition φ(0 ;V, q, ε) = V, initialized from time t = 
0 in the model time coordinates. There exists a unique C 1 curve c : 
q +→ ( V ( q ), ε( q )), defined in a neighbourhood N of q ∗2 , with the follow- 
ing properties. 
1. The function c = (V, ε) satisfies the equalities V (q ∗2 ) = w 0 (q ∗2 ) , 

ε(q ∗2 ) = 0 , ∂ε
∂q (q ∗2 ) = 0 . 

2. N(V (q ) , ε(q ) , q ) = 0 for q ∈ N. That is, V ( q ) corresponds to the 
initial condition at time t = 0 of a periodic solution of system 
(11) with mutation rate ε( q ) and spraying efficacy q. 

3. D V N ( V ( q ), ε( q ), q ) is non-invertible for q ∈ N. 
6. Numerical simulations 

In this section, we provide graphical representations of the bi- 
furcations that can occur in the mosquito-only submodel by sim- 
ulating the model numerically. We also approximate the relative 
sizes of the basins of attraction for the various equilibria and pe- 
riodic orbits of the model, under the assumption that, in the ab- 
sence of insecticide, the model exhibits bistability. The results sug- 
gest that the size of the basin of attraction of the mutant-only state 
increases as the efficacy of spraying increases and that another bi- 

furcation may occur involving two coexistence periodic orbits. This 
is further supported by a readily obtained analytical lower bound 
on the size of the basin of attraction. 

In Fig. 1 , plots are displayed of solutions curves with two dif- 
ferent initial conditions: (10, 10) and (10, 90), for initial popula- 
tions of wild-type and mutant mosquitoes, respectively. The curve 
from the smaller initial condition approaches a coexistence state, 
while the curve from the initial condition with a large initial mu- 
tant population approaches the mutant-only equilibrium. This is as 
predicted by Theorem 6 ; one can verify that the illustrative param- 
eters satisfy the bistability conditions. 

When the spraying is included on a quarterly basis ( T = 365 / 4 ) 
with a mild efficacy ( q = 0 . 2 ), the bistability is preserved. This 
is shown in Fig. 2 , in which different initial conditions clearly 
yield qualitatively different results when the differential equa- 
tions are simulated. These trajectories persist with perturbed initial 
conditions. 

The size of basin of attraction of the mutant-only equilibrium 
is essentially constant, up until q ≈ 0.7495. At this point, another 
bifurcation occurs; the mutant-only equilibrium abruptly becomes 
globally stable. See Fig. 3 . This change in stability has nothing to 
do with a bifurcation of the mutant-only equilibrium, since that 
equilibrium is locally stable and hyperbolic for all q ∈ [0, 1]. We 
conjecture that, at some critical spraying efficacy, ˜ q , the stable co- 
existence periodic orbit collides with an unstable coexistence peri- 
odic orbit, with the result being that they annihilate; that is, nei- 
ther orbit persists for q > ˜ q . This is certainly possible, for there is 
indeed an unstable coexistence equilibrium present when q = 0 , 
which lies on the bistability boundary. This equilibrium generically 
persists for q sufficiently close to q = 0 as a periodic orbit. It should 
be mentioned that the size of the basin of attraction depends on 
the initial time coordinate; in this case, initial conditions of the 
form X(0) = X(0 + ) were used. This means that spraying does not 
occur at time t = 0 , but only begins at time T . 

The presence of such a bifurcation is more difficult to detect 
analytically, however. If the unstable coexistence equilibrium is hy- 
perbolic when q = 0 , then the bifurcation cannot be analytically 
detected using only a local analysis. If the associated equilibrium is 
non-hyperbolic when q = 0 , then it likely coincides with the other 
coexistence equilibrium. When ε = 0 , a codimension-two bifurca- 
tion can occur at this equilibrium for a specific value of q , as illus- 
trated by Theorem 10 , which would complicate the analysis. Con- 
versely, when q = 0 and ε & = 0, it is difficult to analytically express 
the relevant equilibrium point. 

It should be mentioned that the conclusions on the size of the 
basin of attraction of the above numerical simulations will differ if 
initial conditions of the form X(0) = X(0 −) are used instead. How- 
ever, with the initial conditions as chosen, beginning spraying at 
time t = T may be a more biologically appropriate interpretation, 
since, in reality, one would expect the mosquito population to be 
closer to its natural coexistence equilibrium than to, say, the ex- 
tinction equilibrium. Allowing T units of time to pass before be- 
ginning to spray allows for the “pre-calibration” of the system. 

For the sake of mathematical precision, we will discuss what 
may be observed if spraying begins at time t = 0 . From the phase 
portrait implied by Theorem 6 , the stable coexistence equilibrium 
is separated from the mutant-only equilibrium by a heteroclinic 
orbit through the extinction state and another, unstable coexis- 
tence equilibrium. The heteroclinic orbit can be interpreted as the 
stable manifold of the “middle” unstable coexistence equilibrium. 
Due to the orientation of the nullclines, the globally stable man- 
ifold, restricted to the positive quadrant, can be identified with 
a single smooth function, b ( V m ). It follows that, when q = 0 , the 
basin of attraction of the mutant-only equilibrium, denoted M 0 , 
contains the interior of the region bounded by the curves V w = 0 
and V w = b(V m ) . 
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Fig. 1. Plots of wild-type (solid line) and mutant (dashed line) mosquito populations for four days, with no spraying ( q = 0 ). Illustrative parameters are chosen as b 0 w = 100 , 
r w = 80 , r m = 75 , K bww = 0 . 5 , K dww = 0 . 5 , K w = 100 , K m = 100 , αwm = 1 , αmw = 1 . 2 and ε = 0 . 05 . Top: initial condition (10, 10). Bottom: initial condition (10, 90). Initial 
conditions are ordered pairs of initial susceptible and infected populations. 

Now if q > 0, any initial condition X = (V m , V w ) satisfying the 
inequality V w (1 − q ) < b(V m ) will be immediately mapped into the 
(continuous) basin of attraction of M 0 at time t = 0 + . As such, all 
initial conditions lying below the curve V w = b(V m ) 

1 −q lie in the (im- 
pulsive) basin of attraction. If we denote B q to be the (impulsive) 
basin of attraction of M 0 at spraying efficacy q , the previous dis- 
cussion implies that B q is at least q 

1 −q % larger than B 0 , in the sense 
that 
µ(B q ) 
µ(B 0 ) ≥

∫ V + m 
0 b(m ) 

1 −q dm 
∫ V + m 

0 b(m ) dm = 1 + q 
1 − q , 

and V + m is any prescribed upper bound on the number of mutant 
mosquitoes. 

The above analysis provides another possible explanation of the 
theorized, numerically motivated bifurcation discussed earlier. The 
boundary of the impulsive basin of attraction of M 0 dominates a 
function that is everywhere monotone increasing in q , so it seems 
reasonable that the true boundary may interact with the stable 
coexistence periodic orbit at some critical value of q , resulting in 
a bifurcation. This also serves to explain the appeared constancy 
of the basin of attraction exhibited in the numerical simulations, 
prior to the bifurcation point. The growth of the impulsive basin of 
attraction of M 0 might not have been observed because the stable 
coexistence periodic orbit attracted points outside of the continu- 
ous basin of attraction of M 0 very quickly. Solutions numerically 
converged to the periodic orbit within the time interval (0, T ) and 
then, until q ≈ 0.7406, the action of the impulse failed to bring 
solutions across the basin boundary, let alone the lower boundary, 
V w = b(V m ) 

1 −q . 

7. Global existence and uniqueness results for periodic orbits 
in a simplified model 

The model from Section 1 can be simplified — and much 
more information obtained about the nature of its solutions —
if we make the simplifying assumption that there are no mu- 
tant mosquitoes and that all mosquitoes are infectious. That is, 
we set M m = N m = ε = 0 and define / = M w + N w , so that / ′ = 
r w (1 − /

K w ) . Under this assumption, we can say much more about 
the endemic periodic orbits. The impulsive differential equations 
are 

˙ S = π − β(P ) S + hI + δR − µH S, t & = kT , 
˙ I = β(P ) S − hI − αI − (µH + γ ) I, t & = kT , 
˙ R = αI − δR − µH R, t & = kT , 

˙ / = r w /(
1 − /

K w 
)

, t & = kT , 
)/ = −q /, t = kT , 

(21) 

7.1. Existence and stability of periodic orbits for the system with 
impulses at fixed times 

In contrast to the full model, the reduced model with spray- 
ing at fixed times is much more amenable to analytical techniques. 
Our first result pertains to the existence of periodic orbits under 
the assumption that the transmission rate is a linear function of 
the mosquito population (i.e., mass-action transmission). 
Lemma 5. Suppose β(P ) = βH /, for some βH ∈ R + . Then the sys- 
tem with impulses at fixed times (21) has a nontrivial, nonnegative 
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Fig. 2. Plots of mosquito populations in the phase plane with spraying efficacy q = 0 . 2 and spraying period T = 0 . 25 × 365 days; arrows indicate direction of forward time. 
Four initial conditions are chosen on the line V w = 10 ; notice that half of the chosen solutions converge to a coexistence periodic orbit, while the others converge to the 
mutant-only equilibrium. 
periodic solution, provided T > T ∗ ≡ − log (1 −q ) 

r w . If T ≤ T ∗, the disease- 
free equilibrium is a global attractor. 

A similar result can be obtained for standard incidence, with 
the caveat that we must assume that the death rate due to malaria 
is absent. 
Lemma 6. Suppose β(P ) = βH /

S+ I+ R , and γ = 0 . Then the system 
with impulses at fixed times (21) has a nontrivial, nonnegative pe- 
riodic solution provided T > T ∗ ≡ − log (1 −q ) 

r w . If T ≤ T ∗, the disease-free 
equilibrium is a global attractor. 

The final result of this section is a perturbation result, appli- 
cable to either mass-action or standard-incidence transmission. It 
states that if certain parameters are sufficiently small, a unique, 
positive, exponentially stable periodic orbit exists. 
Theorem 11. There exist ε1 , . . . , ε4 > 0 such that, for 
γ < ε1 , δ < ε2 , h < ε3 , α < ε4 , 
the system with impulses at fixed times (21) has a unique, nonneg- 
ative, hyperbolic periodic solution, provided either β(P ) = βH / or 
β(P ) = βH /

S+ I+ R and T > T ∗, where T ∗ is defined as in Lemma 6 . If 
T > T ∗, the periodic solution is exponentially stable. 

7.2. Properties of periodic orbits in the autonomous tracking model 
We will now characterize the periodic orbits of the simplified 

autonomous tracking model, 
˙ S = π − β(P ) S + hI + δR − µH S, ( & = (, 
˙ I = β(P ) S − hI − αI − (µH + γ ) I, ( & = (, 
˙ R = αI − δR − µH R, ( & = (, 

˙ / = r w /(
1 − /

K w 
)

, ( & = (, 
˙ ( = ηβ(P ) S, ( & = (, 

)/ = −q /, ( = (, 
)( = −(, ( = (. 

(22) 

Theorem 12. Suppose one of the following conditions is satisfied. 
1. The transmission is by mass action, so that β(P ) = βH / . For all 

T > 0, the system (21) has a unique nonnegative branch of peri- 
odic solutions, ϕ T , that depend continuously on T. 

2. There is no disease-associated death and the transmission is by 
standard incidence, so that β(P ) = βH /

S+ I+ R and γ = 0 . For T > 
T ∗, system (21) has a unique nonnegative branch of periodic solu- 
tions, ϕ T , that depend continuously on T, where T ∗ is defined as in 
Lemma 6 . 
The system with autonomous spraying (22) has a periodic solution 

for every ( > 0 . If ( is sufficiently small and the branch ϕ T is hyper- 
bolic for T sufficiently small (or, for Condition 2, for T ≈ T ∗), there is 
a unique periodic solution. 
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Fig. 3. Proportion of trajectories in the set U = { 0 ≤ V w + V m < 110 } that converge to the mutant-only equilibrium (dots) and the stable coexistence equilibrium (stars), as a 
function of spraying efficacy, q , ranging from 0.7 to 0.8. Initial conditions of the form X(0) = X(0 + ) were used for this figure. Notice that the proportions, and hence basins 
of attraction, appear numerically constant, until the mutant-only equilibrium begins attracting almost all points in U at approximately q = ̃  q ≈ 0 . 7406 . The computations 
required to produce this figure are numerically expensive; the (somewhat stiff) vector field is integrated more than 40 0 0 times to produce only twenty samples for q in the 
interval [0.7, 0, 8]. 
Corollary 12.1. Suppose that malaria transmission is modelled either 
by mass action or standard incidence. Then there exist ε1 , . . . , ε4 > 0 
and (+ > 0 such that, for 
γ < ε1 , δ < ε2 , h < ε3 , α < ε4 , ( < (+ , 
the following are true. 
1. The system with spraying at fixed times (21) has a unique, non- 

negative periodic solution that is asymptotically stable. 
2. The system with incidence-based spraying (22) has a unique, non- 

negative periodic solution that is orbitally asymptotically stable 
and enjoys the property of asymptotic phase. 

8. Discussion 
A mathematical model of malaria with insecticide effect has 

been proposed, where there is a mutant strain of mosquito that 
has complete immunity to the insecticide. The insecticide control 
is triggered when some critical number of new human malaria 
cases is detected. It was shown that this control strategy is asymp- 
totically equivalent to spraying at periodic times, in that both sys- 
tems share the same common endemic periodic orbits, and stabil- 
ity of the orbit in one system implies its stability in the other. A 
general version of this result is provided by Propositions 1 –2 . 

The positive invariance of the nonnegative cone does not hold 
in general for this model, due to how the mutation is modelled. An 
implicit condition for the existence of a nonnegative, convex, pos- 
itively invariant domain was provided by Theorem 1 . An explicit 
condition is also available and is given by Theorem 4 , assuming 
the mutation rate, ε, is sufficiently small. 

Following this, we consider the mosquito-only submodel. 
Theorem 3 outlines conditions under which, for small mutation 
rates, the mosquito submodel exhibits either a single mutant-only 
equilibrium, a mutant-only equilibrium and a single coexistence 
equilibrium, or a mutant-only equilibrium and a pair of coexistence 
equilibria; in all cases, the extinction equilibrium is also present. 
Numerous results pertaining to the persistence or development of 
bistability, when the mutation rate is small and positive, are pre- 
sented in Theorems 6 –7 . 

The impulse effects are then re-introduced. Theorem 8 provides 
conditions under which the extinction equilibrium undergoes a 
saddle-node bifurcation. This bifurcation involves a biologically ir- 
relevant periodic orbit and is not of great interest. 

Theorem 9 demonstrates that, under certain conditions, the 
mutant-only equilibrium undergoes a saddle-node bifurcation. In 
this case, as the spraying efficacy q increases and passes through 
the q ∗M (ε) , a stable nonnegative coexistence equilibrium collides 
with the mutant-only equilibrium, becoming nonnegative and los- 
ing stability. The mutant-only equilbrium changes from a saddle to 
a sink. 

The final explicit bifurcation result is Theorem 10 . This theo- 
rem provides a somewhat complicated condition under which a 
codimension-two bifurcation can occur at the wild-type-only equi- 
librium, when ε = 0 and q = q ∗2 = 1 − exp (−r w T (1 − Km 

αmw Kw )) . 
Numerical simulations were provided to reinforce the theoreti- 

cal results on bistability of the coexistence periodic orbit and the 
mutant-only equilibrium. It was suggested that another bifurcation 
can occur when the spraying efficacy is significantly large. We con- 
jecture that, under certain conditions, the stable coexistence peri- 
odic orbit collides with an unstable coexistence periodic orbit and 
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both vanish, leaving room for the mutant-only equilibrium to be- 
come globally stable when the spraying efficacy q reaches some 
critical threshold. 

From a policy perspective, this result is important. There is es- 
sentially a one-to-one correspondence between critical spraying 
thresholds and spraying periods (the defining equations for every 
critical spraying threshold can be inverted to solve for T ), the latter 
of which are typically controllable. As such, another interpretation 
for the consequence of the above conjecture is that if spraying oc- 
curs too frequently, the mutant allele may become very prevalent 
in the mosquito population. 

Finally, we returned to the human-mosquito dynamics by con- 
sidering a simplified model in which all mosquitoes are assumed 
to be infectious. This simplification makes the model far more 
amenable to analysis. We are able to prove that, provided cer- 
tain parameters are small, the correspondence between spraying 
at fixed times and spraying according to the autonomous track- 
ing model is even more strict. Specifically, the period T and infec- 
tion threshold ( uniquely determine each other, provided each is 
sufficiently small. These results hold for mass-action or standard- 
incidence infection rates and are summarized in Theorems 11 –12 
and Corollary 12.1 . 

In conclusion, the mathematical model (5) and its various sub- 
models exhibit a wealth of different qualitative dynamics, includ- 
ing bistability, several bifurcations of fixed points and periodic 
orbits. We have shown that spraying at fixed times is asymptot- 
ically equivalent to spraying when a critical number of new hu- 
man infections are detected. As such, one strategy may be more 
or less costly to implement yet yield the same long-term result 
as the other. A sufficiently powerful insecticide, sprayed too fre- 
quently, could result in the mutant allele becoming very common 
in the mosquito population, thereby reducing its efficacy as a con- 
trol method. Care must therefore be taken to not spray too often. 
How frequently to spray to avoid this problem can be informed us- 
ing the results from Section 3 , although the picture is incomplete, 
as discussed in this final section, as well as in Section 4 . Finally, 
by appealing to a simpler model, we see that, whether spraying 
at fixed times or according to an infection threshold, there can be 
only one endemic periodic orbit, provided the period or threshold 
is small enough. 
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Appendix. Proofs 
Proof of Theorem 1. The impulse effect clearly maps + into it- 
self. Second, since + is compact, ξ ≡ sup P∈ + β(P ) exists. But then, 
for all (P, () ∈ +, we have (′ ≤ ηξπ / µH ≡ C , so that if an im- 
pulse effect occurs at some time, t k , then the next impulse effect 
can occur only as early as time t k + (/C. Consequently, there is a 
finite amount of time between each impulse effect, so that no so- 
lution can have an accumulation point on the hypersurface ( = (. 
We may therefore conclude that if +∗

b w is positively invariant, then 
solutions are defined for all (positive) time [4] . 

To see the invariance, note that it is only necessary to exam- 
ine the invariance of the P component of (5) . If P 0 is a point 
on the boundary of the nonnegative cone, it is clear that, pro- 
vided the state-dependent coefficient b w is nonnegative at P 0 , the 
forward flow from P 0 will remain nonnegative for some small 
positive amount of time. It is thus sufficient to determine a do- 
main on which b w remains nonnegative for all time. Since b w = 

b 0 w − K bww V w − K bwm V m , where V w = M w + N w and V m = M m + N m , 
the nonnegativity of b w is determined by the dynamics of sys- 
tem (6) . Specifically, the condition b w ≥ 0 is equivalent to the 
positive invariance of +b w under the flow of (6) . The condition 
b w ≥ 0 accounts for the restriction on M w , M m , N w and N m in 
the expression for +∗

b w . Finally, the differential inequality (S + I + 
R ) ′ ≤ π − µH (S + I + R ) accounts for the other restriction, 0 ≤ S + 
I + R ≤ π

µH , present in +∗
b w . Uniqueness is guaranteed by standard 

results [4] . !

Proof of Proposition 1. Let (8) have a unique T -periodic solution, 
ϕ( t ), and let (10) hold. Consider the point (ϕ(0 + ) , 0) ≡ z + 0 ∈ + ×
R + ≡ X . The left limit of the forward flow φ : X × R + → X of (9) at 
time T is 
φ(z + 0 , T −) = lim 

t→ T − φ(z + 0 , t) = (ϕ(T −) , ∫ T 
0 u (ϕ(t )) dt )

= (ϕ(T −) , θ)
. 

Hence an impulse occurs along the forward orbit from z + 0 at time 
t = T . By periodicity of ϕ( t ) and the impulse condition, we have 
φ(z + 0 , T + ) = lim 

t→ T + φ(z + 0 , t) = ( ϕ(0) , 0 ) = z + 0 . 
Note also that θ & = 0 , since u is strictly positive along ϕ. It fol- 
lows that there is always a finite amount of time between im- 
pulses. We may therefore conclude that Eq. (9) has a T -periodic 
solution. Moreover, it is unique up to phase shift. If (9) had an- 
other T -periodic solution, say ( x 1 ( t ), θ1 ( t )), which had an impulse 
effect at t = T , then x 1 (t + T ) would be a T -periodic solution of (8) . 
By uniqueness of periodic solutions of the fixed-time equation, we 
would then have x 1 (t + T ) = ϕ(t) . By the impulse condition, we 
have ˜ θ (0 + ) = 0 = θ1 (T + ) . Finally, for t ∈ (0, T ), 
θ (t) = θ (0 + ) + ∫ t 

0 u (ϕ(s )) ds 
= θ1 (T + ) + ∫ t 

0 u (x 1 (T + s )) ds 
= θ1 (T + ) + ∫ T + t 

T u (x 1 (s )) ds 
= θ1 (T + t) . 

Therefore ( x 1 , θ1 ) is a phase shift of (ϕ, ˜ θ ) . There can thus be only 
one T -periodic solution of the autonomous Eq. (9) up to phase shift 
equivalence. The converse statement is obvious. !

Proof of Proposition 2. Without loss of generality, we have ˜ ϕ = 
(ϕ, θ ) for a T -periodic function θ satisfying θ (0 + ) = 0 . The varia- 
tional equation associated to the periodic orbit ϕ( t ) is 

˙ z = dg 
dx (ϕ(t)) z, t & = kT , 

)z = da 
dx z, t = kT . (23) 

Conversely, the variational equation at ˜ ϕ (t) is 
˙ w = 

 
   

0 
dg 
dx (ϕ(t)) . . . 

0 
∇u (ϕ(t)) 0 

 
   w, t & = kT , 

)w = 
 
   da 

dx ξ

0 · · · 0 −1 

 
   w, t = kT , 

(24) 

http://dx.doi.org/10.13039/501100000038
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where 
ξ = g(ϕ(T + )) − g(ϕ(T )) − da 

dx g(ϕ(T )) , 
and w = (w 1: n , w n +1 ) . It follows by classical results [4] that Eq. (24) 
has a nontrivial T -periodic solution, namely ˜ ϕ ′ (t) . Without loss of 
generality, we may assume ˜ ϕ ′ (0) = e n +1 . If ϕ( t ) is exponentially 
stable, then there exist n linearly independent solutions v 1 , . . . , v n 
of (23) satisfying v j (0) = e j for j = 1 , . . . , n . It is then easy to check 
that ( v j , 0) are linearly independent solutions of (24) . Therefore a 
monodromy matrix for the linearized tracking system is 
M = [v 1 (T ) · · · v n (T ) ϕ ′ (T ) 

0 · · · 0 θ ′ (T ) 
]
. 

The matrix M has a block structure; the floquet multipliers are pre- 
cisely θ ′ (T ) = θ ′ (0) = 1 and the multipliers of ϕ( t ), which are, by 
hypothesis, within the unit disc, since this solution is exponentially 
stable. Therefore ˜ ϕ (t) is orbitally asymptotically stable and has the 
property of asymptotic phase [4] . The converse follows by similar 
reasoning. !

Proof of Lemma 1. The V m nullcline is the solution of the second- 
degree equation 
N (V w , V m ) = V 2 m ( r m 

K m 
)

+ V m V w ( r m αmw 
K m + εK bwm ) + V 2 w ( εK bww ) 

+ V m (−r m ) + V w (−εb 0 w ) = 0 . (25) 
Its determinant, which we consider as a function of ε, is 
det (ε) = 1 

4 
[ (

r m αmw 
K m + εK bwm )r m εb 0 w − εK bwm r 2 m − r m 

K m ε2 (b 0 w ) 2 ] 
= εr m 

4 
[

r m (b 0 w αmw 
K m − K bww ) − εb 0 w ( b 0 w 

K m − K bwm )]
. 

Thus, the determinant vanishes if ε = 0 or if ε = ˆ ε, where 
ˆ ε ≡

r m ( b 0 w αmw 
K m − K bwm )

b 0 w ( b 0 w 
K m − K bww ) . 

By the hypothesis on the equalities (13) , ˆ ε is either well-defined 
and nonzero, zero, or is undefined. If ˆ ε is undefined, we will for- 
mally write ˆ ε = ∞ . The case ˆ ε = ∞ occurs when b 0 w 

K m = K bwm , so 
that the determinant reduces to 
det (ε) = εr 2 m 

4 
(

b 0 w αmw 
K m − K bww ). 

The determinant is nonzero when ε & = 0. In summary, if we for- 
mally write 
ε1 = { ˆ ε, ˆ ε & = 0 , 

∞ , ˆ ε = 0 , 
then det (ε) & = 0 provided 0 < ε < ε1 . 

Next, the discriminant of (25) is 
)(ε) = ( r m αmw 

K m + εK bwm )2 
− 4 r m εK bww 

K m 
= ( r m αmw 

K m 
)2 

+ ε(2 r m 
K m (αmw K bwm − 2 K bww ) + εK 2 bwm ). 

Since )( ε) is continuous and )(0) > 0, it follows that there ex- 
ists ε2 > 0 such that if 0 < ε < ε2 , we have ) > 0. If we de- 
fine ε0 = min { ε1 , ε2 } , then we have ) > 0 and det & = 0 whenever 
0 < ε < ε0 . This indicates that (25) describes a non-degenerate 
hyperbola. !

Proof of Lemma 2. Let 0 < ε < ε0 , so that the V m nullcline is a 
hyperbola. Notice that (0, 0), (0, K m ) and (b 0 w /K bww , 0) are all so- 
lutions of the equation N (V w , V m ) = 0 , and the first two constitute 

the only solutions of the equation N (0 , V m ) = 0 . Implicitly differ- 
entiating both sides N (V w , V m ) = 0 with respect to V m at (0, 0), we 
obtain the equation r m + εb 0 w V ′ w (0 , 0) = 0 , which gives 
V ′ w (0 , 0) = − r m 

εb 0 w < 0 . (26) 
Implicitly differentiating with respect to V m at (b 0 w /K bww , 0) results 
in 

V ′ w (b 0 w /K bww , 0 ) = r m 
εb 0 w 

(
1 − αmw b 0 w 

K m K bww 
)

− K bwm 
K bww < 0 , (27) 

where the inequality follows by the assumption in Eq. (14) . Finally, 
implicitly differentiating at (0, K m ) gives 
V ′ w (0 , K m ) = r m 

−r m αmw + ε(b 0 w − K m K bwm ) < 0 (28) 
provided ε is sufficiently small; say, ε < ε0 . Inequalities (26) and 
(28) indicate that the points (0, 0) and (0, K m ) must lie on dis- 
tinct branches of the hyperbola; otherwise, there would need to be 
a branch with two critical points. Similarly, inequalities (26) and 
(27) guarantee that the points (0, 0) and (b 0 w /K bww , 0) must lie 
on different branches. We conclude that (b 0 w /K bww , 0) and (0, K m ) 
lie on the same branch of the hyperbola, while (0, 0) is on the 
other. From the above analysis, we can also conclude that the por- 
tion of the first branch contained in the nonnegative quadrant 
can be identified with the graph of a strictly decreasing function 
M : [0 , K m ] → [0 , b 0 w /K bww ] . !

Proof of Lemma 4. Assume ε > 0 is sufficiently small to guaran- 
tee the conditions of Theorem 3 are satisfied. Let W ( V m ) and M ( V m ) 
denote, respectively, the V w and V m nullclines (15) and (25) in the 
nonnegative quadrant. Let V 0 w and V 0 m denote, respectively, the in- 
tersections of W and M with the line V w = 0 . A quick calculation 
reveals 

W 0 = K w (r w − εb 0 w ) 
αwm r w − εK bwm K w , M 0 = K m , 

W (0) = K w (r w − εb 0 w ) 
r w − εK bww K w , M(0) = b 0 w 

K bww . 
We have 
V ′ w (M(0) , 0) = b 0 w 

K bww 
(

1 − b 0 w 
K bww K w 

)
< 0 , (29) 

by the hypothesis b 0 w > K bww K w . Also 
∂V ′ m 
∂V w (M(0) , 0) = −εb 0 w < 0 . (30) 
By inequalities (29) –(30) , if γ is given a parameterization γ : 
[0 , ∞ ) → R 2 + such that γ (0) = (b 0 w /K bww , 0) , then both compo- 
nents of γ are initially increasing. The condition b 0 w > K bww K w im- 
plies that W (0) is a decreasing function of ε, so that if 0 < ε #

r w 
K bww K w , we will have 0 < W (0) < M (0). Consequently, there are no 
nullclines with the V w coordinate greater than b 0 w /K bww in the non- 
negative quadrant. We conclude that γ is increasing for all time. 
The inequality (30) implies that V ′ m > 0 along the line connect- 
ing γ (0) to the origin (except at γ (0), where V ′ m = 0 ). Finally, the 
line V w = 0 is a V w nullcline, so is itself positively invariant since 
∂V ′ m 
∂V m > 0 at the origin. It follows that + is positively invariant. See 
Fig. A for a visualization. 

That + is the largest nonnegative positively invariant set can be 
explained as follows. Any trajectory that is initially positive but not 
contained in + must satisfy V ′ m < 0 and V ′ w < 0 until it traverses a 
nullcline. However, since + contains all portions of all nullclines 
contained in the nonnegative quadrant, and the “upper” boundary 
of + is a solution curve, the proposed trajectory cannot cross it. 
Since the upper boundary of + contains no equilibrium point, the 
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Fig. A. A typical phase portrait of the system (12) . In this case, there is a single coexistence equilibrium that appears to be asymptotically stable. Nullclines are indicated 
by bold lines. The backward orbit from ( M (0), 0), denoted γ (see Lemma 4 ), is present in the figure. The dashed line indicates the “upper” boundary of the region (32) of 
Theorem 4 . Equilibrium points are indicated by dots, and arrow directions indicate approximate directions of solution velocity in forward time. 
proposed trajectory cannot have a limit point on the upper bound- 
ary of +. Therefore the trajectory must eventually leave the non- 
negative quadrant. !

Proof of Theorem 4. Verification that inequalities (16) imply the 
hyperbolic criteria is straightforward. Next, as in the proof of 
Lemma 4 , the first condition of (16) guarantees that W (0) is a de- 
creasing function of ε and, when ε is small, that W (0) < M (0). The 
second inequality of (16) is equivalent to 
max { M 0 , W 0 } < b 0 w 

K bwm (31) 
when ε = 0 . Since M 0 is constant and W 0 is continuous with re- 
spect to ε, inequality (31) persists for ε > 0 small. 

Consider the region defined by the inequality b w ≥ 0, contained 
in R 2 + . This is the region defined by 
V w ≤ b 0 w 

K bww − K bwm 
K bww V m . (32) 

The V w intercept is b 0 w 
K bww = M(0) , while the V m intercept is the 

right-hand side of (31) . We conclude from the above analysis that 
the graph of the boundary of (32) lies above the the graph of 
both W and M , in the nonnegative quadrant. Consequently, the 
signs of ˙ V m and ˙ V w are constant above both the graph of max { W, 
M } and below the graph of the boundary of (32) . Both of these 
derivatives are nonpositive in this region, since ˙ V w (M(0) , 0) < 0 by 
(29) and ˙ V m (0 , b 0 w /K bwm ) < ˙ V m (0 , M 0 ) = 0 . This allows us to con- 
clude that (32) is positively invariant, since this set is a strict 
subset of the positively invariant set + from Theorem 4 , and the 
boundaries of (32) consist of boundaries of +, together with the 
line V w = b 0 w 

K bww − K bwm 
K bww V m , on which both ˙ V w and ˙ V m are nonpositive 

(in fact negative, except ˙ V m (M(0) , 0) , which has been discussed in 
Theorem 4 ). See Figure A for a visualization. The result follows if 
one recalls that +b w of Theorem 1 is defined by inequality (32) . !

Proof of Proposition 3. Since the only biologically relevant equi- 
librium points lie on the the line V w = 0 , which is a V w nullcline, 

it follows that there are no periodic orbits. The extinction equilib- 
rium’s eigenvalues are λ0 

1 = r w − εb 0 w and λ0 
2 = r m , so that (0, 0) is 

unstable for all ε ∈ R ; in particular, when ε is small, both its eigen- 
values are positive. Consequently, there are no heteroclinic circuits 
between the equilibria. By the Poincaré–Bendixson theorem, it fol- 
lows that the mutant-only equilibrium, (0, K m ), is globally attract- 
ing on +!{(0, 0)}. !

Proof of Theorem 5. Let W ( V m ) and M ( V m ) denote, respectively, 
the V w and V m nullclines (15) and (25) in the nonnegative quad- 
rant. Let W 0 and M 0 denote, respectively, the intersections of W 
and M with the line V w = 0 . We have 

W 0 = K w (r w − εb 0 w ) 
αwm r w − εK bwm K w , M 0 = K m , 

W (0) = K w (r w − εb 0 w ) 
r w − εK bww K w , M(0) = b 0 w 

K bww . 
The condition K m < αmw K w implies that W and M , when ε = 
0 , cannot intersect on the interior of R 2 + (see the proof of 
Theorem 6 for the explicit intersection point), so that there can 
be at most three equilibrium points, all of which must be on the 
boundary. This fact holds true for ε > 0 sufficiently small, by con- 
tinuity of W and M with respect to ε. 

The condition b 0 w > K bww K w implies that W (0) is a decreasing 
function of ε, so that if 0 < ε # r w 

K bww K w , we will have 0 < W (0) 
< M (0). But then, due to the hyperbolic criteria, Lemma 2 implies 
that if there is a single coexistence equilibrium at which the null- 
clines (15) and (25) intersect, then we must have M 0 ≤ W 0 . One 
will notice that, when ε = 0 , the inequality M 0 < W 0 is equivalent 
to condition A1, but since M 0 and W 0 are continuous functions of 
ε at ε = 0 , the inequality must persist for ε small. On the other 
hand, when ε = 0 , the condition M 0 = W 0 is equivalent to the first 
equality of condition A2. The other two inequalities of condition 
A2 are necessary for the condition M 0 ≤ W 0 to persist when ε > 
0 is small. This establishes necessity. 

If condition A1 holds, so that we have M 0 < W 0 and W (0) < 
M (0) for ε > 0 small, the intermediate value theorem guarantees 
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that the nullclines must intersect at least once, and there can be no 
more than one intersection in the positive quadrant because M is 
convex there. Conversely, if condition A2 holds, then W 0 ≤ M 0 for 
ε > 0 small, and one will find that the third inequality of condition 
A2 implies that W ′ ( M 0 ) < M ′ ( M 0 ), provided ε > 0 is small, so that 
for 0 # v < V m , we have M ( v ) < W ( v ). Again, since W (0) < M (0), 
the intermediate value theorem guarantees that W and M intersect 
in the interval (0, v ), and there can be only one intersection in 
the positive quadrant, due to the convexity of M . We have proven 
sufficiency of conditions A1 and A2. 

Next we discuss attractivity. It has already been demonstrated 
in Proposition 3 that the extinction equilibrium is unstable. If both 
it and the mutant-only equilibrium are unstable, then, by similar 
reasoning as that of the proof of Proposition 3 , E 0 will either be 
globally attracting, or there will be a stable periodic orbit that en- 
closes it. We will now rule out the existence of periodic orbits. 

Suppose conditions A1 or A2 of the theorem hold. We have 
V ′ w (M(0) , 0) = b 0 w 

K bww 
(

1 − b 0 w 
K bww K w 

)
< 0 , 

by the hypothesis b 0 w > K bww K w . Also, 
V ′ m (W (0) , 0) = εW (0)(b 0 w − K bww W (0)) > 0 , 
provided b 0 w > K bww W (0) > 0 . That is, to maintain the above in- 
equality, we require 
b 0 w > K bww K w ( r w − εb 0 w 

r w − εK bww K w 
)

> 0 . (33) 
When ε = 0 , the inequality holds due to the hypothesis b 0 w > 
K bww K w . By continuity, (33) holds for ε sufficiently small. Finally, 
we have 
∂V ′ m 
∂V w (M(0) , 0) = −εb 0 w < 0 . 
Therefore it follows that, when ε is sufficiently small, the region 
+ = { (V w , V m ) ∈ R + 2 : 0 ≤ V m ≤ E 1 0 , W (V m , ε) ≤ V w ≤ M(V m ) } 
is positively invariant. However, any periodic orbit enclosing E 0 
must intersect +. Hence there can be no periodic orbit. 

As for the sufficient condition for instability of the mutant-only 
equilibrium, we observe that one of the eigenvalues of its lineariza- 
tion is 
r w (1 − αwm K m 

K w 
)

− ε(b 0 w − K bwm K m ) , 
so that the equilibrium will be unstable if the above is positive. 
When condition A1 holds, the above is positive when ε = 0 , as 
stated in the theorem. !

Proof of Theorem 6. Part 1: Existence of equilibria and their stabil- 
ity. When ε = 0 and the inequalities (17) are satisfied, there are 
four equilibria: the extinction equilibrium, 0̄ = (0 , 0) ; the wild- 
type-only equilibrium, W 0 = (K w , 0) ; the mutant-only equilibrium, 
M 0 = (0 , K m ) ; and a coexistence equilibrium, 
E 0 = ( K w − αwm K m 

1 − αwm αm w , K m − αmw K w 
1 − αwm αmw 

)
. 

The linearizations, Lx , at these equilibria satisfy the following: 
σ (L ̄0 ) = { r w , r m } , det (LE 0 ) = r w r m E 1 0 E 2 0 

K w K m (1 − αwm αmw ) , 
σ (LW 0 ) = { 

−r w , r m (1 − αmw K w 
K m 

)} 
, 

σ (LM 0 ) = { 
r w (1 − αwm K m 

K w 
)
, −r m } 

. 
From the above, we conclude that 0̄ is a source, W 0 and M 0 are 
sinks, E 0 is a saddle and their linearizations are invertible. By the 

implicit function theorem, these equilibria persist for ε > 0 small, 
and they have the same stability. The extinction and mutant-only 
equilibria do not depend on ε, and the coexistence equilibrium is 
strictly positive, which means that these equilibria will all remain 
nonnegative when ε is small. Also, we note that 
LW 0 = 

[ 
r m (1 − αmw K w 

K m 
)

· · ·
0 −r w 

] 
, 

which implies that the implicit function W 0 (ε) = (W (ε) , M(ε)) de- 
scribing the perturbation of the wild-type-only equilibrium satis- 
fies, by the implicit function theorem, 
M ′ (0) = −r w K w (b 0 w − K bww K w ) 

r w r m (1 − αmw K w 
K m ) > 0 , 

where positivity is guaranteed by inequalities (17) . It follows that 
W 0 ( ε) is nonnegative for ε > 0 small. In conclusion, all equilibria 
described in the theorem exist and their stability is as stated. 

Part 2: Nonexistence of periodic orbits. An argument similar to 
the proof of Theorem 5 can be used to show that no periodic or- 
bit can enclose W 0 ( ε). Since 0̄ and M 0 ( ε) both lie on the invariant 
W nullcline, V w = 0 , neither of these can be enclosed within a pe- 
riodic orbit. From the linearizations in Part 1, all equilibria are hy- 
perbolic. Since the only other equilibrium ( E 0 ) is a saddle, by index 
theory, we conclude that there are no periodic orbits. 

Part 3: Existence of the heteroclinic orbit. To exhibit the hete- 
roclinic orbit, we consider the α-limit set of a point, x 0 , on the 
stable manifold of the saddle-type coexistence equilibrium, E 0 , ly- 
ing below the V m nullcline. By the Poincaré–Bendixson theorem, 
this limit set must be an (unstable) equilibrium point, a periodic 
orbit or a connected set of homoclinic/heteroclinic orbits. Part 2 
rules out the possibility of a periodic orbit. The only possible ho- 
moclinic orbit would need to be based at the saddle coexistence 
equilibrium. However, the unstable manifold of E 0 is contained 
within two disjoint (except for one point: E 0 itself) positively in- 
variant sets, each of which contains a single, stable equilibrium 
point ( W 0 ( ε) and M 0 respectively). Consequently, α( x 0 ) cannot con- 
tain a point on the unstable manifold of E 0 , since any point on this 
manifold has either W 0 ( ε) or M 0 as its ω-limit set. It follows that 
α( x 0 ) does not contain a homoclinic orbit. Moreover, all equilibria 
excluding E 0 have all of the real parts of their eigenvalues strictly 
negative or strictly positive, indicating that α( x 0 ) does not con- 
sist of a circuit of heteroclinic orbits connecting these equilibria. 
The above discussion allows us to conclude that α(x 0 ) = 0 . There- 
fore there is a heteroclinic orbit connecting E 0 with the extinction 
equilibrium. !

Proof of Theorem 7. First, we consider the stability of equilib- 
ria of system (12) when ε = 0 , under the assumptions B1–B2 of 
Theorem 7 . Due to assumption B2, there are no coexistence equi- 
libria. The equilibria are 0̄ = (0 , 0) , W 0 = (K w , 0) and M 0 = (0 , K m ) , 
as in the proof of Theorem 6 . W 0 and 0̄ are seen to be stable and 
hyperbolic, by considering the linearizations appearing in the proof 
of Theorem 6 . Consequently, W 0 persists under small perturbations 
of ε and remains a sink. M 0 , however, is non-hyperbolic, because 
of condition B2. 

When ε > 0, there is a mutant-only equilibrium at 
M 0 (ε) = (0 , K m ) = (0 , K w 

αwm g(ε) ). 
This particular equilibrium is formed by the nullclines V w = 0 and 
V w = M(V m ) (see the proof of Theorem 5 ). The non-hyperbolicity 
occurs because, at ε = 0 , the nullclines V w = W (V m ) and V w = 
M(V m ) both intersect at M 0 (0). The nullcline V w = M(V m ) is the 
solution V w of Eq. (25) . Restricting that equation to the nullcline 
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V w = W (V m ) and applying assumption B2 results in 
V 2 m ( r m αwm 

g(ε) 
)

+ V m W · ( r m αmw αwm 
K w g(ε) + εK bwm )

+ W 2 εK bwm − εb 0 w W = 0 . 
Let us denote the left-hand side of the above equation by G ( V m , ε). 
Recall now that we can express W as 
W = −(αwm r m − εK bwm K w 

r w − εK bww K w 
)

V m + K w (r w − εb 0 w ) 
r w − εK bww K w ) . 

It follows that G is C 1 and satisfies G ( K w 
αwm , 0 ) = 0 . The partial 

derivatives are 
∂G 
∂V m 

(
K w 
αwm , 0 ) = r m (1 − K w 

r w 
)
, 

∂G 
∂ε

(
K w 
αwm , 0 ) = − g ′ (0) K 2 w r m 

αwm 
+ r m αmw K w 

r w 
(

K w (K bwm r w − K bww αwm r m ) 
αwm r w 

+ k bww K w − b 0 w ). 
By the implicit function theorem, there exists a unique C 1 func- 
tion V m : ε +→ V m ( ε) satisfying V m (0) = K w 

αwm and G (V m (ε) , ε) = 0 for 
| ε| sufficiently small. It follows that ( W ( V m ( ε)), V m ( ε)) is a coexis- 
tence equilibrium (i.e., is nonnegative in both components) for ε > 
0 sufficiently small, provided ∂V m 

∂ε (0) < 0 . By the implicit function 
theorem, we have 
∂V m 
∂ε

(0) = −(
∂G 
∂V m 

(
K w 
αwm , 0 ))−1 

∂G 
∂ε

(
K w 
αwm , 0 ). 

Eq. (34) , along with some straightforward algebra, shows that 
∂V m 
∂ε (0) < 0 is equivalent to inequality (18) . 

The rest of the proof proceeds similarly to that of 
Theorem 6 and is thus omitted. !

Proof of Theorem 8. For brevity, we will write q ∗ = q ∗0 (ε) . Let φ( t, 
q, x ) denote the flow from time t = 0 of the solution of the impul- 
sive system (12) , with initial condition φ(0 , q, x ) = x and spraying 
efficacy q . All other parameters are assumed to be fixed. Denote 
N(q, x ) = φ(T , q, x ) − x . D x N ( q , 0) is easily found to be 
D x N(q, 0) = [(1 − q ) e (r w −εb 0 w ) T − 1 0 

ξ e r m T − 1 , 
]
, 

ξ = εb 0 w (e r m T − e (r w −εb 0 w ) T ) 
(r m − r w + εb 0 w ) T . 

Consequently, det D x N(q ∗, 0) = 0 . Let us define the variable q = q −
q ∗ and define M( q , x ) = N( q + q ∗, x ) , so that we have M(0 , 0) = 0 
and det D x M(0 , 0) = 0 . Our objective will now be to obtain a non- 
trivial solution of the equation M( q , x ) = 0 . 

Write M = [ M 1 M 2 ] T in component form, and define f : R ×
R × R → R 2 by f ( q , r, s ) = M( q , re 1 + se 2 ) , where e 1 and e 2 are the 
standard basis vectors in R 2 . Then, with f = [ f 1 f 2 ] T , we can 
readily calculate the partial derivative of f 2 with respect to s at 0. 
We have 
∂ f 2 
∂s (0) = ∂M 2 

∂x 2 (0) = e r m T − 1 . 
Therefore ∂ f 2 

∂s (0) & = 0 and, by the implicit function theorem, there 
exists a unique smooth function s : ( q , r) +→ s ( q , r) such that 
f 2 ( q , r, s ( q , r)) = 0 and s (0 , 0) = 0 , which is defined in some neigh- 

bourhood of (0, 0). We also have the partial derivatives 
∂s 
∂r = −∂ f 2 

∂s 
−1 ∂ f 2 

∂r = − 1 
e r m T − 1 ∂M 2 

∂x 1 = − ξ
e r m T − 1 

∂s 
∂ q = −∂ f 2 

∂s 
−1 ∂ f 2 

∂ q = − 1 
e r m T − 1 ∂M 2 

∂ q = 0 , 
with all partial derivatives evaluated at zero, and the final equality 
follows from the fact that N(q, 0) = 0 , so that M( q , 0) = 0 . 

Our problem is now reduced to solving the equation 
f 1 (q, r, s ( q , r)) = 0 . This will be accomplished by a second- 
order application of Taylor’s theorem. To simplify notation, write 
g( q , r) = f 1 (q, r, s ( q , r)) , so we must solve g( q , r) = 0 . The first- 
order partial derivatives of g at zero are 
∂ 
∂r g = ∂ 

∂r f 1 (0 , r, s (0 , r)) ∣∣∣∣
r=0 = ∂ f 1 

∂r (0) + ∂ f 1 
∂s (0) ∂s 

∂ q (0) 
= D x M(0 , 0) 11 + D x M(0 , 0) 12 · (− ξ

e r m T − 1 
)

= 0 , 
∂ 
∂ q g = ∂N 1 

∂q + ∂N 1 
∂x 2 ∂s 

∂ q = 0 . 
We must now calculate the second-order partial derivatives of 

g . First, since N 1 (q, se 2 ) = 0 for all q, s ∈ R , we readily find that ∂ 2 g 
∂ q 2 

is zero. Indeed, 
∂ 2 g 
∂ q 2 = ∂ 2 

∂q 2 N 1 (q, s (q − q ∗, 0) e 2 ) ∣∣∣∣
q = q ∗ = 0 . 

The other second-order partial derivatives require a bit more 
effort. We find 
∂ 2 g 
∂r 2 = ∂ x 1 x 1 N 1 + ∂ x 2 x 1 N 1 · ∂ r s + ∂ x 2 x 1 N 1 · ∂ r s + ∂ x 2 x 2 N 1 · ∂ r s 

+ ∂ x 2 N 1 · ∂ rr s 
= ∂ x 1 x 1 N 1 + ∂ r s · (2 ∂ x 2 x 1 N 1 + ∂ x 2 x 2 N 1 ) , (35) 

where ∂ x 2 N 1 = 0 is known by previous calculation. Notice, how- 
ever, that since ∂ r s = −ξ/ (e r m T − 1) and ξ = εC(ε) is continuous 
at ε = 0 , it follows that ∂ r s = 0 when ε = 0 . Therefore the sign of 
∂ 2 g 
∂r 2 near ε = 0 is determined primarily by the sign of ∂ x 1 x 1 N 1 . We 
therefore compute only this partial derivative. 

The partial derivatives of N seen above can be determined by 
solving certain differential equations. The following are true about 
the function z(t, x ) = φ1 (t, q ∗, x ) : 

d 
dt ∂ x 1 x 1 z = (r w − εb 0 w ) ∂ x 1 x 1 z 

+ [(1 − q ∗) e (r w −εb 0 w ) t ]2 (
2 εK bww − 2 r w 

K w 
)
, 

∂ x 1 x 1 z(0) = 0 . 
The above can be computed analytically, and we find 
∂ x 1 x 1 z(T ) = 2 e (r w −εb 0 w ) T (e (r w −εb 0 w ) T − 1) 

r w − εb 0 w 
(
εK bww − r w 

K w 
)

< 0 , 
where the inequality holds provided | ε| is sufficiently small. By 
(35) , it follows that ∂ 2 g 

∂r 2 (0) < 0 when | ε| is small enough. 
Next we calculate the mixed partial derivative in the variables 

q and r . We find 
∂ 2 g 
∂ q r = ∂ qx 1 N 1 + ∂ x 2 x 1 N 1 · ∂ q s + ∂ qx 2 N 1 · ∂ r s 

+ ∂ x 2 x 2 N 1 · (∂ r s ) 2 + ∂ x 2 N 1 ∂ q r s 
= ∂ qx 1 N 1 , (36) 

as almost all partial derivatives vanish. 
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As before, ∂ qx 2 N 1 can be found by solving a particular dif- 

ferential equation. However, we do not have to, since it is al- 
ready known that ∂ x 1 N 1 (q, 0) = (1 − q ) e (r w −εb 0 w ) T − 1 . Therefore we 
have 
∂ qx 1 N 1 = ∂ 

∂q ∂ x 1 N 1 (q, 0) ∣∣∣∣
q = q ∗ = −e (r w −εb 0 w ) T < 0 . 

Hence, by (36) , we have ∂ 2 g 
∂ q r < 0 . 

From the above calculations and Taylor’s theorem, we have 
g( q , r) = Ar 2 + B q r + o( q 2 + r 2 ) 
as ( q , r) → 0 , for real numbers A = 1 

2 ∂ r 2 g(0) and B = ∂ q r g(0) satis- 
fying A, B < 0. Near ( q , r) = 0 , there is a nontrivial branch of solu- 
tions, written approximately as 
r(q ) ≈ − B 

A q (q ) = − B 
A (q − q ∗) . 

Therefore the initial condition of our nontrivial periodic solu- 
tion can be written, locally, as the approximation 
p(T , q ) ≈ (

− B 
A (q − q ∗) , s (q − q ∗, − B 

A (q − q ∗) ))
. 

To determine the location of this point as q varies near q ∗, we cal- 
culate partial derivatives, considering, for this purpose, the above 
approximation to be exact (as it is essentially a linear approxima- 
tion). We have 
∂ p 
∂q (T , q ∗) = (− B 

A , ∂ q s (0) − B 
A ∂ r s (0) ) = (− B 

A , Bξ
A (e r m T − 1) 

)
, 

whose components have sign (−, +) . It follows that p ( T, q ) is non- 
positive for all q sufficiently close to q ∗, while p(T , q ∗) = 0 . This 
proves the theorem. !

Proof of Theorem 9. The proof will follow much the same for- 
mat as that of Theorem 8 . As before, let φ( t, q, x ) denote the flow 
from time t = 0 of the solution of the impulsive system (12) , with 
initial condition φ(0 , q, x ) = x and spraying efficacy q . All other pa- 
rameters are assumed to be fixed. Denote N(q, x ) = φ(T , q, x ) − x, 
M 0 = (0 , K m ) and q ∗ = q ∗M (ε) . D x N ( q, M 0 ) is easily found to be 
D x N(q, M 0 ) 
= [(1 −q ) exp ((r w (1 −αwm K m 

K w ) −ε(b 0 w −K bwm K m ) )T )−1 0 
χ e −r m T −1 , 

]
, 

χ = χ (ε) 
= ( −r m αmw + εb 0 w ) [e −r m T − exp ((r w (1 −αwm K m 

K w ) −ε(b 0 w −K bwm K m ) )T )]
−
(
r m + r w (1 −αwm K m 

K w ) −ε(b 0 w −K bwm K m ) )T . 
Consequently, det D x N(q ∗, M 0 ) = 0 . 

As before, define q = q − q ∗ and define the function f = 
( f 1 , f 2 ) : R 3 → R 2 by 
f ( q , r, s ) = N( q + q ∗, re 1 + (s + M 0 ) e 2 ) . 

The first-order partial derivatives of f are very similar to those 
appearing in the proof of Theorem 8 ; we state the results without 
proof. All partial derivatives are calculated at zero. 
∂ f 2 
∂s = e −r m T − 1 , ∂ f 2 

∂ q = 0 , ∂ f 2 
∂r = χ . 

Therefore, as before, we apply the implicit function theorem to 
write s = s ( q , r) . If we define g( q , r) = f 1 ( q , r, s ( q , r)) , then the par- 
tial derivatives at zero satisfy 
∂g 
∂ q = ∂g 

∂r = 0 . 
Also, the implicit function s satisfies 
∂s 
∂ q (0) = 0 , ∂s 

∂r (0) = χ
1 − e −r m T . 

As for the second-order partial derivatives at zero, we find 
∂ 2 g 
∂ q 2 (0) = 0 , since N 1 (q, M 0 ) = 0 for all q . The symbolic calculation 
of the other partial derivatives are the same as in the previous the- 
orem; in particular, all partial derivatives appearing in ∂ 2 g 

∂ q ∂r vanish 
except for one: 
∂ 2 g 
∂ q ∂r = ∂ qx 1 N (q ∗, M 0 ) = ∂ 

∂q D x N (q, M 0 ) 11 ∣∣∣∣
q = q ∗

= −e ( r w (1 − αwm K m 
K w ) −ε(b 0 w −K bwm K m ) ) T < 0 . 

For the double partial derivative in the variable r , not as many 
terms are able to be ignored as in the previous proof, since χ does 
not become negligible as ε becomes small. Comparing to the first 
line of (35) , many terms do indeed vanish (any term involving only 
N 1 without partial derivatives in x 1 will vanish). We find 
∂ 2 g 
∂r 2 = ∂ x 1 x 1 N 1 (q ∗, M 0 ) + (2 ∂ r s ) · ∂ x 1 x 2 N 1 (q ∗, M 0 ) . 

The mixed partial derivative can be found by solving the differ- 
ential equation 

d 
dt ∂ x 2 x 1 z = A∂ x 1 x 2 z + (1 − q ∗) · (εK bwm − r w αwm 

K w 
)

e (A −r m ) t , 
A = A (ε) = r w (1 − αwm K m 

K w ) − ε(b 0 w − K bwm K m ) , 
∂ x 2 x 1 z(0) = 0 . 

Specifically, we have ∂ x 2 x 1 z(T ) = ∂ x 2 x 1 φ(T , q ∗, M 0 ) = 
∂ x 2 x 1 N 1 (q ∗, M 0 ) . Computing, we find, since e A (ε) T = 1 

1 −q ∗ , that 
∂ x 2 x 1 N 1 (q ∗, M 0 ) = (1 − e −r m T ) εK bwm − r w αwm 

K w 
r m . 

The double partial derivative in x 1 can calculated similarly: 
when ε = 0 , ∂ x 1 x 1 N 1 (q ∗, M 0 ) = ∂ x 1 x 1 w (T ) , where 

d 
dt ∂ x 1 x 1 w = A (0) ∂ x 1 x 1 w − 2 r w 

K w e 2 A (0) t [ 1 + αwm αmw r m 
r m + A (0) (e A (0) t − e −r m t ) ] 

∂ x 1 x 1 w (0) = 0 . 
Therefore, 
∂ x 1 x 1 N 1 ( q ∗, M 0 ) = −2 r w 

K w e A ( 0 ) T 
∫ T 

0 e A ( 0 ) s 
×
[

1 + αwm αmw r m 
r m + A ( 0 ) (e A ( 0 ) s − e −r m s )]ds . 

In summary, when ε = 0 , we have the following conclusions: 
∂ 2 g 
∂ q ∂r = − 1 

1 − q ∗M (0) < 0 , 
∂ 2 g 
∂ q 2 = 0 , 
∂ 2 g 
∂r 2 = −2 r w 

K w e A (0) T ∫ T 
0 e A (0) s [ 1 + αwm αmw r m 

r m + A (0) (e A (0) s − e −r m s ) ] ds 
− 2 χ (0) r w αwm 

r m K w 
= −2 r w 

K w (Y + χ (0) Z) . 
Under the assumptions of the theorem, we have Y + χ (0) Z > 0 . 
The rest of the proof is now essentially identical to the proof of 
Theorem 8 and is hence omitted. !

Proof of Theorem 10. Let φ( t, x, q , ε) denote the flow from time 
t = 0 of the solution of the impulsive system (12) , with initial con- 
dition φ(0 , x, q, ε) = x, spraying efficacy q and mutation rate ε. 
All other parameters are assumed to be fixed. Denote N(x, q, ε) = 
φ(T , x, q, ε) − x . 
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A straightforward calculation shows that, for an initial condition 

of the form x w = (V w , V m ) = (x w , 0) , the differential D x N ( x w , q , 0) 
can be written 
D x N(x w , q, 0) 

= [ 
(1 − q ) e r w T [ Z(x w )] −2 − 1 −αwm e r w T [ Z(x w )] −2 (1 − [ Z(x w )] −2 −Y ) 

2 + Y 
0 e r m T [ Z(x w )] −Y − 1 

] 

Z(x w ) = K w + x w (e r w T − 1) 
K w 

Y = r m αmw K w 
r m K m . (37) 

It is easy to verify that D x (w 0 (q ∗2 ) , q ∗2 , 0) is non-invertible and has 
the form D x N(w 0 (q ∗2 ) , q ∗2 , 0) = [ A B 

0 0 ] . Note that A & = 0. 
Define the map L : R 3+1 → R 3 by L (x, q ; ε) = 

[ N(x, q, ε) det D x N(x, q, ε) ] T . From the above, we know that 
D x,εL (w 0 (q ∗2 ) , q ∗2 , 0) has the structure 
D x,εL (w 0 (q ∗2 ) , q ∗2 , 0) = 

 
 A B · · ·

0 0 E 
C D · · ·

 
 , 

[ A B ] = D x N(w 0 (q ∗2 ) , q ∗2 , 0) e 1 , 
[ C D ] = [ ∇ x det D x ] N(w 0 (q ∗2 ) , q ∗2 , 0) , 

E = ∂N 2 
∂ε

(w 0 (q ∗2 ) , q ∗2 , 0) . 
It follows that D x,εL (w 0 (q ∗2 ) , q ∗2 , 0) is invertible, provided E & = 0 and 
AD − BC & = 0 . If this is the case, the implicit function theorem will 
guarantee the existence of a function satisfying all the conditions 
of Theorem 10 except for the condition on the partial derivative of 
ε( q ). We will prove this part later. 
Calculation of E. We have 
d 
dt ∂φ2 

∂ε
(t, w 0 (q ∗2 ) , q ∗2 , ε) = ∂ 

∂ε
[ ε ˜ w (t, q 2 ∗)(b 0 w − K bww ˜ w (t, q ∗2 )] , 

so that 
d 
dt ∂φ2 

∂ε
(t, w 0 (q ∗2 ) , q ∗2 , 0) = ˜ w (t, q ∗2 )(b 0 w − K bww ˜ w (t, q ∗2 )) . 

From this, we conclude that 
E = ∂N 2 

∂ε
(w 0 (q ∗2 ) , q ∗2 , 0) = ∫ T 

0 ˜ w (t, q ∗2 )(b 0 w − K bww ˜ w (t , q ∗2 )) dt . 
Since we are working in one of the biologically relevant domains 
described in Theorem 4 , we know that b 0 w > K bww ̃  w (t, q ∗2 ) for all 
t ∈ [0, T ] because ˜ w (t, q ∗2 ) > 0 . Consequently, the integrand above 
is strictly positive, and we conclude that E > 0. 
Simplification of AD − BC. By Jacobi’s formula, [ C D ] can be writ- 
ten 
[ C D ] = ∇ x det D x (w 0 (q ∗2 ) , q ∗2 , 0) 

= 
 
   tr 

(
adj (L 1 ) d 

d V w ◦ D x N(w 0 (q ∗2 ) , q ∗2 , 0) )
tr (adj (L 1 ) d 

d V m ◦ D x N(w 0 (q ∗2 ) , q ∗2 , 0) )
 
   

T 
, 

where L 1 = D x N(w 0 (q ∗2 ) , q ∗2 , 0) = [ A B 
0 0 ] . However, it can be shown 

that M ≡ d 
d V w ◦ D x N(w 0 (q ∗2 ) , q ∗2 , 0) is upper triangular. Consequently, 

C = tr (adj (L 1 ) M ) = A · M 22 . 

Taking into account that A & = 0, we have AD − BC & = 0 if and only if 
D − M 22 B & = 0 . 
Calculation of M 22 . We have M 22 = d 

d x w D x (x w , q ∗2 , 0) 22 ∣∣x w = w 0 (q ∗
2 ) . 

The matrix D x ( x w , q , 0) appears in Eq. (37) . We have 
M 22 = −Ye r m T Z ′ (w 0 (q ∗2 ))[ Z(w 0 (q ∗2 ))] −Y −1 

= 1 
K w e −r w T (e r w T − 1) = q ∗1 

K w , 
where the final two equalities result from straightforward algebra. 
Calculation of D. It can be shown that Z(t) ≡

d 
dV m D x φ(t, w 0 (q ∗2 ) , q ∗2 , 0) satisfies the set of matrix initial-value 
problems 

Z ′ = Q(t) Z + R (t) S(t) , t & = kT 
S ′ = Q(t) S, t & = kT 

)Z = [0 0 
0 −q ∗2 

]
Z, t = kT 

)S = [0 0 
0 −q ∗2 

]
S, t = kT 

Z(0) = 0 , 
S(0) = I, 
Q(t) = 

 
   r w 

(
1 − 2 ̃  w (t, q ∗2 ) 

K w 
)

− r w αwm 
K w ˜ w (t, q ∗2 ) 

0 r m (1 − αmw ̃  w (t, q ∗2 ) 
K m 

)

 
   , 

R (t) = −e r m t [ r w αwm 
K w 0 

r m αmw 
K m 2 r m 

K m 
] 

As such, if we denote by S ( t ) the fundamental matrix solution of 
the system S ′ = Q(t) S satisfying S (0) = I, we can write, by the vari- 
ation of constants formula, 
H ≡ d 

dV m D x φ(T , w 0 (q ∗2 ) , q ∗2 , 0) 
= S (T ) ∫ T 

0 S −1 (t) R (t) [ 
1 − q ∗2 0 

0 1 
] 

S ( t) dt. 
Now, since d 

dV m N(x, q, ε) = d 
dV m (D x φ(T , x, q, ε) − I) = 

d 
dV m D x φ(T , x, q, ε) , we have 
D = tr ([

0 −B 
0 A 

]
· H ) = tr [−BH 21 · · ·

· · · AH 22 
]

= −BH 21 + AH 22 . 
An elementary calculation shows that H 21 = −(1 − q ∗2 ) αmw 

K m (e r m T −
1) and H 22 = − 2 

K m (e r m T − 1) . 
Conclusion. The value of B cannot be written in terms of el- 

ementary functions unless r w = r m . The condition that −BH 21 + 
AH 22 − M 22 B = AH 22 − B (H 21 + M 22 ) & = 0 is equivalent to condition 
(20) of the theorem. !

Proof of Lemma 5. The mosquito compartment has a unique non- 
trivial periodic solution, 
˜ /(t; T ) = K w e r w t w 0 (T ) 

K w + (e r w t − 1) w 0 (T ) , 
w 0 (T ) = K w (e r w T (1 − q ) − 1) 

e r w T − 1 . 
It follows that if T > T ∗, then ˜ / > 0 . Therefore, to search for non- 
trivial periodic solutions of (21) , we may take / = ˜ / . We must 
prove the existence of positive periodic solutions of 

˙ S = π − βH S ̃  / + hI + δR − µH S, 
˙ I = βH S ̃  / − hI − αI − γ I − µh I, 
˙ R = αI − δR − µH R. (38) 
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However, this system of ordinary differential equations is linear, R 3 + 
is positively invariant, and the sum H = S + I + R satisfies 
˙ H ≤ π − µH H 

for positive initial conditions, implying that this linear system has 
a bounded solution. By the Massera theorem [11] , it has a periodic 
solution. 

Conversely, if T ≤ T ∗, the only nonnegative recurrent state of the 
mosquito dynamics is the extinction equilibrium, which is globally 
asymptotically stable for nonnegative initial population. A compar- 
ison principle argument then shows that the disease-free equilib- 
rium is globally attracting. !

Proof of Lemma 6. As before, we may take / = ˜ / . Under the 
assumptions of the lemma, H = S + I + R satisfies the differential 
equation H ′ = π − µH H. Therefore, in searching for periodic solu- 
tions, we may assume H = π

µH is constant. Consequently, 
β(P ) = βH /

S + I + R = βH µH 
π

/. 
The result follows by Lemma 5 . !

Proof of Theorem 11. We prove the theorem only for standard in- 
cidence, β(P ) = βH /

S+ I+ R , since the proof for mass action is very 
similar. This will be proven in several parts. 

Part 1: We start with the case where γ = h = α = 0 . As in the 
previous proof, we may assume that H = S + I + R is constant. In 
this case, (38) reduces to 

˙ S = π − βH 
H S ̃  / + δR − µH S, 

˙ I = βH 
H S ̃  / − µH I, 

˙ R = −δR − µH R. 
The homogeneous equation associated to the above linear system 
has no periodic solutions and, consequently, the inhomogeneous 
equation has a unique periodic solution. It follows that (21) has a 
unique periodic solution. 

Part 2: Suppose γ = 0 . We wish to establish conditions under 
which any given periodic solution 
( ̃  S (t) , ̃  I (t) , ˜ R (t) , ˜ /(t)) 
is nonnegative for all time. Since the positive orthant is positively 
invariant, it suffices to show that the initial conditions on this pe- 
riodic orbit are positive. We clearly have ˜ /(t) > 0 , and, by using 
the identity ˜ S + ̃  I + ˜ R = π

µH , we find 
˜ S (t) = exp (− ∫ t 

0 a (s ) ds )[
˜ S (0) + ∫ t 

0 
(

π

(
1 + h 

µH 
)

+ ˜ R (s )(δ − h ) )

× exp (∫ s 
0 a (w ) dw )ds ], 

where 
a (s ) = βH 

H ˜ /(s ) + h + µH . 
The initial condition ˜ S (0) can be shown to be positive provided 
˜ R (t)(δ − h ) ≥ 0 . By taking δ = h, this condition is satisfied. There- 
fore if δ = h, then ˜ S (t) > 0 . 

Conversely, if ˜ S (t) > 0 , then it is simple to verify by the vari- 
ation of constants formula that ˜ I (t) > 0 and, following this, that 
˜ R (t) > 0 , where this result does not depend on the parameters δ, 
γ or h . Therefore, in conclusion, the conditions γ = 0 and δ = h 
are sufficient, but not necessary, to guarantee positivity of any pe- 
riodic solution. Moreover, if ˜ S (0) > 0 , then the periodic solution is 
positive, independent of those three parameters. 

Part 3: Define the multiparameter λ ≡ ( γ , δ, h, α) and let ϕ( t ) 
denote the periodic solution when λ = 0 . By Parts 1 and 2, we have 
˜ R = 0 and ˜ S (t) > 0 on this solution, so the solution is nonnegative. 
It is clear that the vector field is sufficiently regular to perform 
a linearization at the periodic orbit. When λ = 0 , the linearized 
equation is 

˙ u = 
 
  

−βH 
H ˜ /(t) − µH 0 0 −βH 

H ϕ S (t) 
βH 
H ˜ /(t) −µH − α 0 βH 

H ϕ S (t) 
0 α −µH 0 
0 0 0 −µ

 
  u, 

t & = kT , 
)u = 

 
  

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 −r 

 
  u −, t = kT . 

This linear system has no nontrivial periodic solutions, and the 
Floquet multipliers are found to be exponentials of the diagonal 
entries multiplied by T (with one multiplier scaled by a factor of 
1 − r), and, since these diagonal entries are negative, all multipli- 
ers are within the unit circle. Consequently [4] , the periodic orbit 
is exponentially stable in the nonlinear system. Moreover, for | λ| < 
ε sufficiently small, there is a unique exponentially stable periodic 
solution ϕ λ that converges to ϕ as λ → 0 in the B topology. In 
other words, the unique periodic solution persists for λ ≈ 0 and is 
close to ϕ. 

Let ˜ S λ(t) denote the S component of the periodic solution at 
parameter λ. Since ˜ S 0 (t) > 0 , the above convergence result implies 
that ˜ S λ(t) > 0 for λ ≈ 0. By Part 2, ˜ S λ(t) > 0 is a sufficient condi- 
tion for nonnegativity of the periodic solution. !

Proof of Theorem 12. We will assume that we are in Case 2, since 
Case 1 is similar. Define the map X : (T ∗, ∞ ) → R + , 
X (T ) = ∫ T 

0 ˜ S T (t ) ̃  /T (t ) dy, 
where ˜ S T (t) and ˜ /T (t) are the S and / components of the unique 
T -periodic solution of the fixed-impulse equation. Note that ˙ S ≥
π − βH CS − µH S for all T > T ∗, where C is a constant that depends 
on the choice of β (mass action or standard incidence). In partic- 
ular, there exists a neighbourhood of S = 0 where ˙ S > 0 . Hence we 
must have S min ≡ inf T > 0 || ̃  S T || ∞ > 0 . Consequently, 
0 < S min ∫ T 

0 ˜ /T (t) dt ≤ X (T ) . (39) 
The lower bound can easily be seen to approach infinity with T → 
∞ 1 and so X is unbounded. Since the branch of periodic solutions 
depends continuously on T and is bounded for all T and ˜ /T ∗ = 0 , it 
follows (by Lebesgue’s dominated convergence theorem) that R is 
continuous and R (T + ∗ ) = 0 . Due to the unboundedness, R is surjec- 
tive. From the assumptions of the theorem, the map ηβ( ·) is linear, 
so the map T +→ ∫ T 0 ηβ( ̃  P T ) ̃  S T dt = ηX(T ) is also surjective. There- 
fore, for all ( > 0 , there exists T such that 
∫ T 

0 ηβ( ̃  P T ) ̃  S T dt = (. 
Consequently, for all ( > 0 , the system with autonomous spraying 
(22) has a periodic solution. 

Denote H = π/µH . To show uniqueness for small values of (, 
we require several auxiliary results. We claim X is differentiable. To 

1 Indeed, ˜ /T (t) → ˜ /∞ (t) ≥ K w (1 − q ) . 
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show this, consider the differential equation 

˙ S = π − βH 
H S /T (t) + hI + δR − µH S 

˙ I = βH 
H /T (t) S(t) − αI − hI − µH I 

˙ R = αI − δR − µH R, 
(40) 

where / : R × R → R is a C 1 extension of / ’s restriction to the 
interval (0, T ]. That is, /(t; T ) = ˜ /T (t) for t ∈ (0, T ]. The derivative 
of /(t; T ) with respect to t when t ≤ 0 is defined to be constant 
and equal to lim t→ 0+ /T (t) , with an analogous definition at times 
t > T . 

For every T > T ∗, the human components of the periodic so- 
lution of (21) , denoted ˜ S T (t ) , ˜ I T (t ) and ˜ R T (t ) , coincide with the 
forward solution of (40) from S(0) = ˜ S T (0) , I(0) = ˜ S T (0) , R (0) = 
˜ R T (0) for t < T . By standard results of smooth dependence on ini- 
tial conditions and parameters, the solution map x ( t ; x 0 , T ) associ- 
ated to (40) is a continuously differentiable function of T . By the 
hyperbolicity hypothesis of the theorem, ˜ S T (0) , ˜ I T (0) and ˜ R T (0) 
are differentiable with respect to T for T − T ∗ > 0 small. The dif- 
ferential equation is C 1 , so we have smooth dependence on initial 
conditions and parameters. It then follows that the composition 
x (t; ˜ x 0 (T ) , T ) , 
where ˜ x 0 (T ) ≡ ( ̃  S T (0) , ̃  I T (0) , ˜ R T (0)) , is C 1 in T small for each fixed 
t . By the Leibniz integral formula [8] , the map X : R + \ 0 → R + de- 
fined by 
X (T ) = ∫ T 

0 x 1 (t; ˜ x 0 (T ) , T ) /T (t) dt 
is continuously differentiable for small T − T ∗ > 0 , where the su- 
perscript x 1 denotes the first component. Since x 1 (t; ˜ x 0 (T ) , T ) = 
˜ S T (t) and /T (t) = ˜ /T (t) for t < T , we have X = X . We therefore 
conclude that X is C 1 for T − T ∗ > 0 small. 

Next we claim that lim T → T + ∗
X ′ (T ) ≡ X ′ (T + ∗ ) exists and is zero. 

Again, first considering the map X , by the Leibniz integral formula 
[8] , the limit X ′ (T + ∗ ) is given by 
lim 

T → T + ∗

∫ T 
0 

[
d 

dT /(t; T ) ]x 1 (t; ˜ x 0 (T ) , T ) dt 
+ ∫ T 

0 /(t; T ) [ d 
dT x 1 (t; ˜ x 0 (T ) , T ) ]dt 

+ ˜ x 1 (t; ˜ x 0 (T ) , T ) /(T ; T ) , 
provided the above exists, where we write /T (t) = /(t; T ) to 
ensure no ambiguity in the above expression. The rightmost 
term converges to zero. By smooth dependence on parameters, 

d 
dT x 1 (t; ˜ x 0 (T ) , T ) remains bounded in a neighbourhood of T = T ∗. 
Let d 

dT x 1 (t; ˜ x 0 (T ) , T ) ≤ D in this neighbourhood. Thus, for T − T ∗ > 
0 sufficiently small, 
∣∣∣∣
∫ T 

0 /(t; T ) [ d 
dT x 1 (t; ˜ x 0 (T ) , T ) ]dt ∣∣∣∣

≤ T K w e r w T w 0 (T ) 
K w + (e r w T − 1) w 0 (T ) D → 0 , 

as T → T + ∗ , since w 0 (T ∗) = 0 . Hence 
X ′ (T + ∗ ) = lim 

T → T + ∗

∫ T 
0 

[
d 

dT /(t; T ) ]x 1 (t; ˜ x 0 (T ) , T ) dt 
= lim 

T → T + ∗

∫ T 
0 

[
d 

dT /(t; T ) ] ˜ S T (t ) dt , 
if the above exists. We have 
d 

dT /(t; T ) = K w q (1 − q ) r w e r w (t+2 T ) 
( e r w t ( e r w T ( 1 − q ) − 1) + qe r w T ) 2 ≥ 0 , 

which is jointly continuous in both of its arguments, from which 
it follows that that the integral I(T ) = ∫ T 0 /(t; T ) dt ≥ 0 exists for 
each T ∈ [ T ∗, ∞ ), and T +→ I ( T ) is continuous. Moreover, since 
/(t; T ∗) = 0 , we have ˜ S T → π

µH uniformly on any given compact 
set. By Lebesgue’s dominated convergence theorem, we conclude 
lim 

T → T + ∗

∫ T 
0 

[
d 

dT /(t; T ) ] ˜ S T (t) dt = I(T ∗) πµH ≥ 0 , 
so X ′ (T + ∗ ) = X ′ (T + ∗ ) exists and X ′ (T + ∗ ) ≥ 0 . Define A = η βH 

H X . Then 
A is C 1 and A ′ (T + ∗ ) ≥ 0 . 

If A ′ > 0 for all T > T ∗, then the result holds for all ( > 0 
since A is invertible. Suppose then A ′ (z) = 0 for some z ∗ > T ∗. Since 
A ′ (T + ∗ ) ≥ 0 and A (T + ∗ ) = 0 , we cannot have A ′ ≤ 0 on any interval 
of the form ( T ∗, a ), since then A would be nonpositive. Hence z ∗
can be chosen so that A ′ ( T ) > 0 for T ∗ < T < z ∗. Define 
A ↓ (T ) = ηβH 

H S min ∫ T 
0 ˜ /T (t) . 

Then, by (39) , A ↓ ( T ) ≤ A ( T ), and it can be shown that A ↓ is strictly 
increasing. 

Now define A ∗ = A ↓ (z ∗) . Since A ↓ ( T ) ≤ A ( T ), the inequality A ∗
< A ( T ) holds for T > z ∗. Consequently, the inequality A ( T ) < A ∗
has no solution for T > T ∗. However, since A ( T ) is increasing on 
( T ∗, z ∗], there is a unique solution of the equation A (T ) = ( for 
all ( ∈ (0 , A ∗] , and this solution satisfies T ∗ < T < z ∗. It follows 
from the existence proof that, for ( ≤ A ∗, the autonomous impul- 
sive equation has a unique periodic solution. !

Proof of Corollary 12.1. The result follows directly from 
Theorems 11–12 if the transmission is by mass action. If the 
transmission is by standard incidence, care must be taken to 
ensure that we can indeed allow h , the disease-associated death, 
to be nonzero. However, it can be seen that this is a non-issue, 
since, by Theorem 11 , the periodic solution in the system with 
fixed impulses is hyperbolic in a sufficiently small parameter range 
(where γ , δ, h and α are all small). The only part of the proof 
of Theorem 12 that required h to be identically zero was proving 
that the map X was surjective. Surjectivity is not required for the 
uniqueness of solutions for small (. Indeed, to prove this, we only 
needed to show that X was C 1 at T ∗, X(T ∗) = 0 and X ′ (T ∗) = 0 . 

Smoothness is guaranteed by the hyperbolicity. The condition 
X(T ∗) = 0 remains valid since it depends only on boundedness 
of solutions and convergence of /T to zero as T → T ∗. As for 
the latter, recall that the Leibniz integral formula provided the 
expression 
X ′ (T + ∗ ) = lim 

y → T + ∗

∫ y 
0 

[
d 

dT /(t; y ) ]x 1 (t; ˜ x 0 (y ) , y ) dt 
+ ∫ y 

0 /(t; y ) [ d 
dT x 1 (t; ˜ x 0 (y ) , y ) ]dt 

+ ˜ x 1 (t; ˜ x 0 (y ) , y ) /(y ; y ) . 
However, the convergence to some nonnegative number of each of 
these terms is provided primarily by boundedness results, in con- 
junction with the fact that x 1 (t; ˆ x 0 (T ∗) , T ∗) = π

µH and /(t; T ∗) = 0 . 
None of the proofs need to be modified, since such boundedness 
and convergence results are preserved due to the hyperbolicity, 
which is guaranteed by Theorem 11 . !
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