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Over the past two decades, HIV resistance to antiretroviral drugs (ARVs) has risen to high levels in the
wealthier countries of the world, which are able to afford widespread treatment. We have gained
insights into the evolution and transmission dynamics of ARV resistance by designing a biologically
complex multistrain network model. With this model, we traced the evolutionary history of ARV
resistance in San Francisco and predict its future dynamics. By using classification and regression trees,
we identified the key immunologic, virologic, and treatment factors that increase ARV resistance.
Our modeling shows that 60% of the currently circulating ARV-resistant strains in San Francisco are
capable of causing self-sustaining epidemics, because each individual infected with one of these strains
can cause, on average, more than one new resistant infection. It is possible that a new wave of
ARV-resistant strains that pose a substantial threat to global public health is emerging.

HIVresistance to antiretroviral drugs (ARVs)
is causing serious clinical and public
health problems throughout the United

States and Europe. HIV strains began to acquire
resistance in 1987 when ARVs were introduced
as therapies for HIV-infected individuals (1).
Since then, a multitude of drug-resistant strains
have evolved that differ considerably in their
susceptibility to three major classes of ARVs:
nucleoside reverse-transcriptase inhibitors (NRTIs),
non-nucleoside reverse-transcriptase inhibitors
(NNRTIs), and protease inhibitors (PIs). These
drug-resistant strains are now being transmitted
to individuals who have never received ARVs;
that is, transmitted drug resistance (TDR) has
arisen. TDR is reported to range between 8 and
22% in many HIV-infected communities in
resource-rich countries, and if it continues to
increase, the effectiveness of therapeutic regi-
mens, as well as efforts to control the HIV
pandemic, will be compromised. We have
developed a theoretical model (the amplification
cascade model) to help understand and predict
the evolutionary dynamics of complex transmis-
sion networks composed of multiple ARV-resistant
strains. We calibrated and parameterized the
model to represent the HIV epidemic in San
Francisco in the community of men who have
sex with men (MSM), where TDR is already
high (~13%) (2). The model was able to
reproduce the observed dynamics and evolution

of transmitted resistance in this city over the
past 20 years. We used the model first to predict
the future evolutionary dynamics of TDR. Next,
we determined whether any of the currently
circulating ARV-resistant strains are capable of
generating self-sustaining epidemics. Third, we
identified the key drivers that generate high
levels of TDR. We also discuss here the im-
plications of our results for resource-constrained
countries where ARV treatment programs are
being rolled out.

All of the published HIV transmission
models of ARV resistance are based on simple
biological assumptions and can track only one
resistant strain (3–8). Our amplification cascade
model captures biological complexity by gen-
erating a dynamic network composed of multiple
ARV-resistant strains. We modeled the multistrain
network in San Francisco by classifying ARV-
resistant strains into seven categories; each
category was defined based on the specific class
of drugs to which the strain was resistant
(NRTIs, NNRTIs, or PIs) and the level of
resistance (single-, dual-, or triple-class) (Fig. 1A
and fig. S1). Single-class resistance was to
NRTIs, NNRTIs, or PIs. Dual-class resistance
was to NRTIs and NNRTIs, NRTIs and PIs, or
NRTIs and PIs. Triple-class resistance was to all
three. Each class of ARVs contains several drugs
(table S1) (9). In our modeling framework, if a
strain is classified as resistant to a certain class of
ARVs, then the strain is resistant to at least one
drug in that class.

We modeled treatment effects by specifying
treatment regimens and then assessing the ef-
fects of these regimens on infectivity and the
probability of developing resistance. In the model,
treated individuals receive a regimen to which
their virus is sensitive; hence, we assume that
treated individuals achieve either complete or
partial viral suppression. We consider patients
who achieve complete viral suppression to be
noninfectious and incapable of developing re-
sistance. Patients who achieve only partial viral

suppression retain some degree of infectivity and
are capable of developing resistant strains. When
individuals experience treatment failure (which
is usually determined by viral rebound), they can
be switched to new drugs either in the same class
or in a new class. For example, if a patient (in
themodel) is on a regimen containing zidovudine
(NRTI), lamivudine (NRTI), and nelfinavir (PI)
and develops resistance to nelfinavir, he could be
switched to another PI (for example, indinavir).
Themodel includes amatrix that specifies the rates
at which strains develop resistance; therefore,
strains are directly linked through the acquisition
and amplification of resistance.

In the model, resistant and wild-type strains
are assumed to compete to transmit HIV to un-
infected at-risk MSM. These competitive inter-
actions are mediated through strain-specific
infectivity: The greater the infectivity, the higher
the probability that the strain will be transmitted.
We ascribe a competitive advantage to wild-type
strains by assuming that they are always more
infectious than the resistant strains. Furthermore,
based on available competitive-fitness assays,
replication-capacity assays, and patterns of de-
veloped resistance, we assume that the NNRTI-
resistant strains are more transmissible than the
NRTI-resistant strains, which, in turn, are more
transmissible than the PI-resistant strains (10, 11).
In addition, we assume, based on the available
data, that the transmissibility of virus strains de-
creases as the number of classes of resistance in-
creases (12). Once an individual becomes infected
with a wild-type or resistant strain, the model
tracks viral dynamics, and consequently infectiv-
ity, through four stages of disease progression: (i)
primary infection; (ii) not yet eligible for ARVs
(that is, CD4 count > 350 cells/ml); (iii) eligible
for ARVs (CD4 ≤ 350 cells/ml) but not currently
undergoing ARV treatment; and (iv) ARV treat-
ment. The 33 equations that specify the model, as
well as a more detailed description of the struc-
ture, are given in (9). Parameter estimates are
discussed in section 2 of (9), tables S2 to S11, and
fig. S2. The model can be extended to include
any number of additional drug classes, such as
integrase inhibitors, co-receptor blockers, and fu-
sion inhibitors, as they are introduced into new
therapeutic regimens.

Before making predictions, we used the mod-
el (coupled with an uncertainty analysis) to re-
construct the evolution and transmission dynamics
of the network of ARV-resistant strains (13). We
calibrated the model, using Monte Carlo filtering
techniques, to match the epidemiological condi-
tions in San Francisco in 1987 when ARVs were
first introduced [section 3 of (9)] (table S12). By
the late 1980s, almost half of the MSM com-
munity was infected with HIV (14, 15). After
calibration, we used the model to simulate the
evolutionary dynamics, from 1987 to 2008, of a
network of ~4000 resistant strains, where each
strain differed in drug susceptibility and infectiv-
ity. The history of ARV therapy in San Francisco
can be divided into four eras spanning two decades
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(9, 16) (fig. S3 and table S1). Different regimens
were used in each era. We modeled the specific
regimens that were available in each era by using
data on the proportion of patients achieving viral
suppression (tables S6 to S9), degree of reduction
in viral load in partially virally suppressed pa-
tients (tables S2 and S5), rate of development of
resistance in treated patients (tables S6 to S9),
and treatment-induced increase in survival time
(table S10) (9). Because usage of ARVs has in-
creased over the past two decades, we modeled
era-specific treatment rates (table S4) (9).

The model reproduced and explained the ob-
served evolutionary dynamics of the network of
ARV-resistant strains over the four treatment eras
(Fig. 1B). The first era began in 1987 when AZT
(azidothymidine, an NRTI) was introduced as a
monotherapy. AZTwas used by a high proportion
(36 to 68%) of MSM in San Francisco (17–19).
Single-class resistance to NRTIs arose quickly
(1), because they were ineffective at suppressing
viral loads (19). In 1992, the second era began
when dual therapies (based on two NRTIs) were
introduced. These therapies were substantially
more effective than monotherapies and achieved
30 to 60% viral suppression (20, 21). Single-class
resistance to NRTIs decreased, but dual-class re-
sistance quickly developed, because many indi-
viduals had previously developed resistance to
AZT. In 1996, the third era [early highly active
antiretroviral therapy (HAART)] began when
NNRTIs and PIs were used in triple-therapy
regimens. Resistance to PIs was slow to emerge
and has only risen to low levels, because multiple
mutations are necessary to develop resistance to

most drugs in this class (22). By 2001, more
effective triple therapies (characterized by dual
PIs combined with NRTIs) were developed,
marking the beginning of the fourth era (modern
HAART). During this recent era, the overall level
of TDR appears to have stabilized (2); the model-
generated network also exhibits this behavior (Fig.
1B). Recent empirical data from San Francisco
indicate that transmission of single-class resistance
is high, that of dual-class is moderate, and that of
triple-class is low. In addition, studies indicate that
transmission of NNRTI resistance is greater than
that of NRTI resistance, which is greater than
transmission of PI resistance. The model-generated
transmission network shows these same patterns
(Fig. 1, C and D). Our modeling estimates the
overall level of TDR in 2008 to be 14% [median:
interquartile range (IQR) 11.4 to 16.5%] (Fig.
1C), which is in extremely close agreement with
empirically derived estimates of 13 to 16% (2).

After reconstructing the historical epidemiol-
ogy up to 2008, we simulated the amplification
cascade model for 5 more years to predict the
levels of TDR in 2013. Our simulations revealed
that resistance to single-class NRTIs and PIs will
remain at current levels, but NNRTI resistance will
increase (Fig. 2A). Regression analysis determined
that the degree of increase in NNRTI resistance
will depend (P < 0.05) on the proportion of pa-
tients who are infected with wild-type strains and
are being treated with a regimen of two NRTIs
and one NNRTI and who achieve viral suppres-
sion (Fig. 2B). This proportion depends on the
efficacy of the regimen and adherence to it; thus,
if only 70% are virally suppressed, NNRTI re-

sistance could increase by more than 30% (Fig.
2B). This increase is predicted to be mainly due
to transmission from untreated individuals infected
with NNRTI-resistant strains who are in either the
acute or chronic stage of infection.

The value of a strain’s control reproduction
number Rc specifies the average number, based
on the probability that the individual is treated,
of secondary HIV infections that an individual
generates during their entire infectious period.
Rc is a measure of a strain’s transmission po-
tential. A strain is capable of generating a self-
sustaining epidemic if Rc > 1. The Rcs of the
currently circulating ARV-resistant strains in
San Francisco vary considerably (Fig. 3A).
However, strains fall into three mutually exclu-
sive groups (Fig. 3B) [section 4 of (9)]. Almost
a quarter (24%) of the strains (Fig. 3B) cause
less than one new infection (Rc < 1) and will
eventually be eliminated (blue). Although other
strains (Fig. 3B) also cause, on average, less
than one new infection (Rc < 1), they will
continue to be transmitted, because they evolve
greater levels of resistance (green). We esti-
mated that 60% of resistant strains have an Rc >
1 (Fig. 3B; red). Approximately 75% of these
resistant strains have single-class resistance to
NNRTIs, and 20% have dual-class resistance to
NNRTIs and NRTIs. Although all have the
potential to cause self-sustaining epidemics of
resistance, they are all less infectious than the
wild-type strains in San Francisco (Fig. 3C).

Similar trends for TDR to those observed in
San Francisco and those predicted by our model
have been documented in other cities in the

Fig. 1. (A) Schematic diagram of the multiple pathways in the amplification cascade model by which
strains can acquire resistance. Strains may develop single-class resistance to NRTIs (blue), single-class
resistance to NNRTIs (red), single-class resistance to PIs (purple), dual-class resistance to NRTIs and
NNRTIs (green), dual-class resistance to NRTIs and PIs (orange), dual-class resistance to NNRTIs and PIs
(yellow), or triple-class resistance (brown). Wild-type strains are shown in gray. There are six possible
paths by which strains can develop triple-class resistance. (B) Representative simulation generated by
the amplification cascade model to show the evolution of ARV resistance in the MSM community in
San Francisco. Color coding same as in (A). (C) Estimated levels of TDR in 2008 using Monte Carlo
simulations from the uncertainty analysis of the amplification cascade model. Single-class resistance is
8.5% (median: IQR 6.8 to 9.8%) (red), dual-class resistance is 4.5% (median: IQR 3.5 to 5.8%)
(green), and triple-class resistance is 1.0% (median: IQR 0.7 to 1.3%) (blue); overall levels of TDR are
in black. (D) Box plots of estimated levels of TDR in 2008 based on Monte Carlo simulations from the
uncertainty analysis of the amplification cascade model. Color coding same as in (A). Horizontal black
lines represent medians; boxes show IQR.
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United States and Europe that have analogous
histories of ARV therapy. Potentially NNRTI-
resistant strains similar to those we have identified
in San Francisco may be increasing elsewhere.
Although the NNRTI-resistant strains that we have
identified are causing the rising wave of NNRTI
resistance, they are unlikely to lead to self-
sustaining epidemics in San Francisco or other
communities in resource-rich countries, because
new drugs will continue to become available.
However our results may have important impli-
cations for HIV treatment programs in resource-
constrained countries, where second-line regimens
are not generally available. NNRTI-resistant strains
are already evolving in many of these countries,
because their first-line regimens are based on two
NRTIs plus one NNRTI. Our current predictions
have been obtained by modeling the evolution of
resistance in individuals infected with subtype B
strains. Subtype B accounts for ~12% of world-
wide infections (and persons with subtype B are
the most ARV-experienced), but 50% of preva-
lent HIV infections and 47% of all new HIV
infections worldwide are caused by subtype C
(23). Although information is limited, prelimi-
nary data suggest that treatment response and
resistance patterns for subtype C are similar to
those of subtype B (24). These data suggest that
our results are likely to be generalizable to an
epidemic of HIV-1 resistance among individuals
infected with HIV-1 subtype C, and NNRTI-
resistant strains with Rc > 1 could emerge in
resource-constrained countries. If the Rc of the
wild-type strains is reduced below one, as could
occur by using a universal testing and treatment
strategy (25), self-sustaining epidemics of NNRTI-
resistant strains could arise (Fig. 3B and fig. S5)
[section 5 of (9)].

Current levels of TDR, as well as the bio-
logical composition of the complex multistrain
network, have emerged from two decades of treat-
ment. To identify the key drivers of ARV resist-

ance, we constructed classification and regression
trees (CART) (26) using the 20-year data set (1987
to 2008) that was generated during the uncertainty
analysis of the amplification cascade model. To
build trees, we used the model's estimated level of

TDR for 2008 as the response variable and the
model’s 50 parameters as predictor variables [sec-
tion 6 of (9)]. The optimal tree revealed the hidden
hierarchical structure of the data (Fig. 4). Key
drivers of TDR are the predictor variables with

Fig. 2. (A) Predictions
showing that transmis-
sion of strains that are
resistant to NNRTIs will
increase in San Fran-
cisco over the next 5
years. Predictions were
made using Monte Carlo
simulations from the un-
certainty analysis of the
amplification cascade
model. Red lines show
no increase in NNRTIs or
NRTIs over the next 5
years. Blue line indicates
an equal increase of
NNRTIs and NRTIs over
the next 5 years. (B) Pre-
dicted increase in the lev-
el of transmitted NNRTI
resistance in San Francisco
over the next 5 years as a function of the proportion of patients (who are infected with wild-type strains and are being treated with a regimen of two NRTIs and one
NNRTI) who achieve viral suppression. Predictions were made using Monte Carlo simulations from the uncertainty analysis of the amplification cascade model.

Fig. 3. (A) Box plots of the control reproduction
numbers (Rc) for all seven categories of ARV-
resistant strains in the amplification cascade model.
Color coding is the same as in Fig. 1A. Horizontal
black lines represent medians; boxes show IQR. (B)
Classification of ARV-resistant strains into three
mutually exclusive groups based on their transmis-
sion potential: resistant strains that cause less than
one new infection (Rc < 1) and will eventually be
eliminated (blue), resistant strains that cause less
than one new infection (Rc < 1) but will continue to
be transmitted (green), and resistant strains capable
of causing self-sustaining epidemics (Rc > 1) (red).
(C) Density functions showing the likelihood of
different values of TDR occurring. Dotted curves
show density functions for the relative transmissibil-
ity for all of the strains with single-class resistance to NNRTIs (red: median 86%, IQR 81 to 89%) and
dual-class resistance to NRTIs and NNRTIs (green: median 69%, IQR 60 to 76%) that are circulating in
the current network in San Francisco. Solid curves show density functions for the relative transmissibility
of NNRTI-resistant strains with Rc < 1: single-class NNRTIs (red: median 87%, IQR 83 to 90%) and
dual-class NRTIs and NNRTIs (green: median 82%, IQR 78 to 86%). Transmissibility is defined relative
to the wild type.
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the highest importance scores (IS) (table S13) (9).
The most important driver (IS = 100) is the aver-
age time (at the population level) it takes for CD4
cell counts in infected individuals to fall below
350 cells/ml (v–1) (Fig. 4). TDR was significantly
higher (>15%) when CD4 counts fell to this thresh-
old within ~6 years than when counts fell more
gradually (Fig. 4 and fig. S6A) (9). This occurred
because faster immunological deterioration led to
increased treatment rates and accelerated the ac-
quisition of resistance; hence, TDR increased as
v–1 decreased.

A high proportion of the transmission of
wild-type strains over the past 20 years has
occurred from asymptomatic individuals with a
CD4 count > 350 cells/ml (fig. S6B) (9).
Consequently, aH1 , the infectiousness of strains
in asymptomatic individuals, has been the
second key driver of TDR (IS = 73) (Fig. 4);
infectivity is defined in terms of the probability
of transmitting HIV per sex act. These results
can be understood in terms of classical compe-
tition theory (27): The most infectious wild-type
strains had the greatest advantage over resistant
strains and hence caused the lowest levels of TDR.
A recent review of empirical estimates of the
transmission probability per sex act indicates that

aH1 is likely to be greater than 0.0024 (28). The
tree (Fig. 4) reveals that if wild-type strains had
been less infectious (specifically, aH1 ≤ 0:0024), it
would have been very likely (probability 0.71)
that TDR in San Francisco would be even higher
than the current level (fig. S6C) (9).

We found aT1 , the infectiousness of strains
under treatment pressure, to be the third key
driver of TDR (IS = 60) (Fig. 4). This driver
represents the probability that an individual who
is receiving current ARV regimens transmits
HIV during one sex act. In contrast to our
previous finding for aH1 , TDR was significantly
higher (>15%) when wild-type strains were
more infectious (aT1 > 0:0015) than when they
were less infectious (aT1 ≤ 0:0015) (Fig. 4). This
paradoxical result cannot be understood in terms
of classical competition theory (27). It occurred
because the effect of evolution on network
dynamics was greater than that of competition.
Under treatment pressure, the most infectious
wild-type strains (aT1 > 0:0015) tended to evolve
into the most infectious resistant strains; aT1 only
had a minor effect on competition, because
treated individuals were relatively unimportant
in transmitting wild-type strains (fig. S6D) (9).
The value of aT1 can be translated into viral load

(fig. S2) [section 2 of (9)]; a value of 0.0015
corresponds to a viral load of 20,000 copies/ml.
Effective therapies used in recent years have re-
duced viral loads in patients infected with wild-
type strains to well below 20,000 copies/ml (29),
indicating that aT1 is (and was) significantly less
than 0.0015. Given these effective treatments,
our tree shows it is highly unlikely (probability
0.22) that TDR in San Francisco could have risen
to more than 15% by 2008 (Fig. 4).

Our CART analysis also identified four other
parameters that are important drivers of TDR,
including the relative transmissibility of strains with
single-class resistance to NRTIs (l2) (IS = 51), the
degree of viral suppression in patients who are
infected with wild-type strains and not complete-
ly virologically suppressed (g1) (IS = 45), the
relative transmissibility of strains with dual-class
resistance to NRTIs and NNRTIs (l5) (IS = 40),
and finally the degree of viral suppression in
patients who are infected with strains that have
single-class resistance to NNRTIs and are not
completely virologically suppressed (g3) (IS = 39).
None of the 43 other predictor variables was
found to be important (IS < 30). The tree shows
that TDR has remained below 15% because of
specific immunologic, virologic, and treatment
factors operating in San Francisco (Fig. 4).

The amplification cascade model can be
recalibrated and reparameterized to assess the
dynamics of networks of ARV-resistant strains
of HIV in any setting where ARVs are available.
We have applied it to San Francisco. We have
shown that a complex network of HIV strains
has arisen in this city due to two decades of
sequential selection for resistance; first with
single agents, then dual agents, and, more re-
cently, a combination of multiple-class agents.
By designing a biologically complex multistrain
network model, we have obtained important
insights into the otherwise hidden dynamics of
drug-resistant strains of HIV. We have identified
the key immunological, virological, and treat-
ment variables, as well as the hierarchical
interactions among these variables, which have
had a key role in driving resistance. Our results
have shown that effective treatments have
prevented TDR from increasing to greater than
15% in San Francisco. However, our modeling
shows that the network is continuing to evolve.
We found that the majority of the resistant
strains currently being transmitted in this city
are capable of causing self-sustaining epidemics,
and we have estimated that an individual with
an NNRTI-resistant strain can cause, on average,
more than one new infection. We predict that a
wave of NNRTI-resistant strains will emerge
over the next 5 years in San Francisco due to
transmission from untreated individuals. Our
results also have implications for resource-
constrained countries where first-line regimens
are based on NNRTIs. If the resistant strains we
have identified in our analyses evolve in these
countries, they could substantially compromise
HIV treatment programs. Consequently, current-

Fig. 4. A pruned version of the optimal tree. The root node contains data from the 3827 filtered Monte
Carlo simulations that were generated by the amplification cascade model; filtered simulations are after
model calibration [section 3 of (9)]. Inside each node is the total number of simulations it contains (N),
as well as the distribution of the response variable TDR. Low levels of TDR (<15%) are blue, whereas
high levels of TDR (>15%) are red. The most important variable (IS = 100) is v–1, the average time (at
the population level) it takes for CD4 cell counts in infected individuals to fall below 350 cells/ml. The
variable aH1 reflects the degree of infectivity of wild-type strains during the asymptomatic stage of
infection, where infectivity is specified as the probability of transmitting HIV during one sex act. The
variable aT1 represents the probability that an individual receiving a current ARV regimen transmits HIV
during one sex act. The remaining variables are as follows: the transmissibility of strains (relative to the
wild type) with single-class resistance to NRTIs (l2), the degree of viral suppression in patients who are
infected with wild-type strain and are not completely virologically suppressed (g1), and the degree of
viral suppression in patients who are infected with strains that have single-class resistance to NNRTIs
and are not completely virologically suppressed (g3). Because the pruned tree is a subtree of the
optimal tree, not every variable deemed important appears in it. The optimal tree has 84% predictive
power in correctly identifying which simulations will generate high levels of TDR and 82% predictive
power in correctly identifying which simulations will generate low levels of TDR.
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ly circulating NNRTI-resistant strains in San
Francisco pose a great and immediate threat to
global public health.
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Optimal Localization by
Pointing Off Axis
Yossi Yovel,1 Ben Falk,2 Cynthia F. Moss,2 Nachum Ulanovsky1*
Is centering a stimulus in the field of view an optimal strategy to localize and track it? We
demonstrated, through experimental and computational studies, that the answer is no. We trained
echolocating Egyptian fruit bats to localize a target in complete darkness, and we measured the
directional aim of their sonar clicks. The bats did not center the sonar beam on the target, but instead
pointed it off axis, accurately directing the maximum slope (“edge”) of the beam onto the target.
Information-theoretic calculations showed that using the maximum slope is optimal for localizing the
target, at the cost of detection. We propose that the tradeoff between detection (optimized at
stimulus peak) and localization (optimized at maximum slope) is fundamental to spatial localization and
tracking accomplished through hearing, olfaction, and vision.

Most sensory systems allow some active
control over the information acquired
from the environment (1–6). Nowhere

is this more evident than in echolocating bats
(4, 7–10), which control many aspects of their
sonar signal design (4, 7, 9, 11–16) and use
returning echoes to orient and forage in the dark
(4, 7–16). We trained Egyptian fruit bats to fly
in a large flight room and land on a spherical
target while relying exclusively on sonar (17).
The bats’ three-dimensional (3D) position was
measured with two infrared cameras, and the
shape and direction of their sonar beam pattern
were measured with a 20-microphone array (17)
(Fig. 1, A to D, and movie S1).

At the beginning of each trial, the target was
randomly repositioned. Subsequently, the bat

searched for the target, approached it, and landed
on it, either by a straight flight or a curved
trajectory (Fig. 1C and fig. S1). Unlike micro-
bats (microchiropteran bats), which emit laryn-
geal tonal calls, Egyptian fruit bats are megabats
(megachiropteran bats) that produce very short
(50- to 100-ms) impulse-like tongue clicks, with
frequencies centered at 30 to 35 kHz (fig. S2).
While flying, bats typically emitted pairs of
clicks, with an ~20-ms interval within the click
pair and an ~100-ms interval between the
pairs (Fig. 1A and fig. S3) (18, 19). The bats
pointed their sonar beam toward the left or
the right, in an alternating manner as follows:
left→right→100-ms interval→right→left (Fig. 1D
and movie S1).

We observed two different phases of behav-
ior. During the first stage, the bats did not
necessarily lock their click pairs onto the target,
and the directions of clicks were widely dis-
tributed (the “unlocked” phase). At the final
stage, the bats directed their sonar clicks so that
the vector average of the pair of clicks pointed
toward the target with accuracy better than 30°

(17). We refer to this as the “locked” phase
(Figs. 1E, arrows, and 2A, top, and fig. S1C).
During this phase, 0.5 s before landing, 80% of
the click pairs were locked with accuracy better
than 15° (Fig. 2A, bottom, gray lines). In 10%
of the trials, the bats locked onto the target with
average accuracy better than 5°. The left-right
orientation of the clicks in the locked phase
implies that the bats did not direct the maximum
intensity of the click toward the target, contra-
dicting the common notion that bats steer their
sonar beam in order to maximize the signal-to-
noise ratio (SNR) of the echoes (13, 20).

Another possible strategy would be for the
bats to direct the maximal slope of the beam’s
emission curve toward the target, because this
would maximize changes in reflected echo
energy that result from changes in the relative
position of the bat and the target. Plotting the
directional span of the beams between the right
and left maximum slope (green lines in Fig. 1, E
and F, and fig. S1, C and D) showed that the
bats consistently placed the maximum slope of
their beams onto the target (Fig. 1F and fig.
S1D; the top and bottom of the green lines are
close to direction 0°). Next, we examined the
population distribution of the directions of the
beams’ maximum intensity and maximum slope
(Fig. 2, B and C, top two rows). Before locking,
the bats directed their sonar beams over a wide
range of angles, spanning >100° around the tar-
get (Fig. 2B, top). After locking, however, they
clearly directed their beam so that the maximum
slope of the intensity curve of the beam, and not
its peak, was on the target (Fig. 2C, middle row).
All six bats exhibited this behavior (fig. S4).

When the maximum slope of the beam is di-
rected toward an object, any motion of the object
relative to the bat will result in the largest possible
change in echo intensity. The sign of the energy
change (positive or negative) corresponds to the
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Section 1: Amplification Cascade Model: Structure & Equations 
 
All published HIV transmission models of ARV-resistance are based on simple biological assumptions 
and can only track one resistant strain (S1-S8). These models were useful predictive tools for ARV 
resistance in the early years of treatment, but are now inadequate for predicting the complex dynamics 
of the multitude of ARV-resistant strains circulating in resource-rich countries. Therefore a new 
generation of predictive models is needed. We have designed the first of this generation of 
mathematical models: the Amplification Model. Our innovative model captures a high degree of 
biological complexity by generating by generating a dynamic network composed of multiple strains of 
HIV, both wild type and ARV resistant. 

In the model, susceptible/uninfected individuals ( )S  can become infected with any of the wild-type or 
ARV-resistant strains in the network. Once an individual becomes infected, they progress through four 
stages: (i) primary infection ( , (ii) not yet eligible for ARVs (i.e., CD4 count > 350 cells/microL) )P ( )H , 
(iii) eligible for ARVs (i.e., CD4 ≤ 350 cells/microL) but not on treatment ( )Y , and (iv) treated ( )T . The 
ARV treatment drugs are documented in Table S1. Viral load is modeled (see Section 2 and Table S2) 
such that P  has the highest viral load, H  a low viral load, Y  a higher viral load than the previous state 
and T the lowest viral load. N represents the total number of individuals in the sexually active 
community.  

Resistant strains in the network are grouped into seven categories which are defined based upon the 
specific class of drugs they are resistant to (Nucleoside Reverse Transcriptase Inhibitors (NRTIs), non-
Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Protease Inhibitors (PIs)) and their level of 
resistance (single, dual or triple class). Categories are denoted by subscript : wild-type strains i ( 1)i = , 
single-class resistance to NRTIs ( , single-class resistance to NNRTIs ( , single-class 
resistance to PIs ( , dual-class resistance to NRTIs and NNRTIs (

2i = ) )
)

3=i
5)4i = i = , dual-class resistance to 

NRTIs and PIs , dual-class resistance to NNRTIs and PIs (( 6)=i 7)i = , and triple-class resistance to 
NRTIs, NNRTIs and PIs .  ( 8i = )

We model treatment effects by specifying treatment regimens and then assessing the effects of these 
regimens on both infectivity and the probability of developing resistance. In our modeling, treated 
individuals generally receive a regimen to which their virus is sensitive; hence, we assume treated 
individuals either achieve complete or partial viral suppression. In our model, patients who achieve 
complete viral suppression become uninfectious and are incapable of developing resistance. We 
represent the percentage of patients who achieve viral suppression by (1 - γi). Patients who only 
achieve partial viral suppression retain some degree of infectivity (which is based on the degree of 
treatment-induced reduction in viral load) and are capable of developing resistant strains.   

The amplification cascade model can be extended to include any number of additional drug classes, 
such as integrase inhibitors, co-receptor blockers and fusion inhibitors which are gradually being 
introduced into new therapeutic regimens. These classes are currently used almost exclusively among 
patients who have failed other classes of ARVs. 

A flow diagram of the complete model is shown in Fig. S1. The model consists of 33 ordinary 
differential equations, but using matrix notation (matrices in bold), the model can be written as: 
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The variable state vectors are 
 

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

,  ,  ,  ,

P H Y
P H Y T
P H Y
P H Y T
P H Y T
P H Y T
P H Y T
P H Y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

P H Y T  

 
The parameter matrices are 
 

( ) ( ) ( ) ( ) ( ),  ,  ,  ,  P H Y TP H Y T
i i i idiag diag diag diag diag iβ β β β= = = = =β β β β Γ γ  

( ) ( ) ( ) ( ) ( ) ( ),  ,  ,  ,  ,  Y TY T
i i i i idiag diag diag diag diag diagθ ν ρ ω μ= = = = = =θ ν ρ ω μ μ

{
,  iμ  

where }1, 2,3, 4,5,6,7,8i ∈ . 

Here,  is the rate at which susceptible/uninfected individuals join the sexually active community; 1Ω μ0  
is the average time period for acquiring new sex partners; c  is the average number of new sex partners 
per individual per year; is the per-partnership probability of an individual in the primary stage of 

infection transmitting strains in category i ; is the per-partnership probability of an infected 

individual with a CD4 count greater than 350 cells/microL transmitting strains in category ; is the 
per-partnership probability of an infected untreated individual with a CD4 count less than or equal to 
350 cells/microL transmitting strains in category ; is the per-partnership probability of an individual 
on treatment transmitting strains in category ; 

P
iβ

H
iβ

i

i Y
iβ

i T
iβ

iθ1  is the average duration of primary infection; iν1  is 
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the average time that an infected individual's CD4 counts remain above 350 cells/microL;  1 iρ  is the 

average time an individual spends in the treatment-eligible stage; Y
iμ1  is the average survival time of 

an individual (infected with strains in category i ) who has a CD4 count less than or equal to 350 
cells/microL and is not on treatment; ω i  is the rate at which individuals go off treatment; and T

iμ1  is 
the average survival time of an individual (infected with strains in category ) on treatment.  i

The K  matrix specifies the degree of acquisition and amplification of resistance from one state to the 
next, accounting for the fact that the order in which resistance develops is important.   

 

1 12 1 13 1 14

1 12 2 2 26
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Here, is the per-capita rate at which individuals in treatment class  develop resistance and move 
to treatment class , where . An equivalent, but more physically 

meaningful measure is 1 , which represents the proportion of individuals in treatment class  who 
develop resistance per year.  

'iik iT

'iT , ' {1 ,4,5, 7,8 | '}i i i i∈
'i

, 2,3 6, <
ike− iT

The parameter iγ represents the proportion of treated individuals who are resistant to strains in category 
 and who are not virally suppressed.  i

 

Section 2: Parameter Estimates for Monte Carlo Simulations 

We estimated all model parameters from virologic, epidemiological or clinical data (Tables S2-S11). 

We calculated per-act and per-partner transmission probabilities based on viral load data which was a 
function of the stage of HIV infection. We used a relationship between viral load and the per-act 
transmission probability j

iα (Equation 1) that Smith and Blower (S9) derived based on data from 
references (S10) and (S11).  
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( )10log /( ) 2.45
( )

j
v wi

j
i

v
w

α
α

=       (2) 

 
This relationship, depicted in Fig. S2, enables us to calculate the probability of transmission for an 
individual in disease stage { , , , }j P H Y T∈

( ) 0.0018j
i wα =

 and resistance category i . Equation 2 compares the viral 
load of interest,v , with a baseline viral load, . We used data from Gray et al., which compares viral 
load to per-act transmission probability (S11), to calculate a baseline. Since a range of viral loads were 
given, we used the largest viral load from each range for 25-29 year olds. To test the baseline, we set 

,  and . Applying Equation 2 gives , which is 
close to the actual per-act transmission probability of 0.0026 observed in the Gray et al. study. This 
suggests that these data can be used as a reasonable baseline for Equation 2. 

w

38,500v = 12= ,500w ( ) 0.0028j
i vα =

 
We used a weighting factor iλ  to ensure that resistant strains were less transmissible (per act) than 
wild-type strains and included sampling constraints so that transmissibility decreased as the number of 
classes of resistance increased (i.e., 1 2 3 4 5 6 7, , , , 8

P P P P P P P Pα α α α α α α α> > >  and similar for H
iα  etc). Based 

on available competitive fitness assays, replication capacity assays and patterns of developed 
resistance, we assumed NNRTI-resistant strains were more transmissible than NRTI-resistant strains, 
which in turn were more transmissible than PI-resistant strains (S12-S17). The values for iλ are given in 

Table S3. We then used these estimates to determine the per-partnership transmission probability j
iβ  

as follows: 
/

1 1 ( )
n cj j

i i wβ α⎡ ⎤= − −⎣ ⎦       
 
for an individual in disease stage  transmitting strains in category i . Here, is the 
average number of sex acts per year, c  (as defined previously) is the average number of new sex 
partners per individual per year and is therefore the number of sex acts per partnership. For our 
Monte Carlo simulations, we sampled  from a triangular distribution (1

{ , , , }j P H Y T∈

/n c
c

n

5c< < , with a peak at 1) and 
 from a triangular distribution ( , with a peak at 10).  /n c 5 / 60n c< <

 
Probability density functions (pdfs) for estimates of per-act and per-partnership transmission 
probabilities for individuals infected with wild-type strains are given in Table S2. To estimate 
parameters, we sampled with constraints so that the per-partnership probabilities satisfied the following 
relationships: H P

i iβ β< , H Y
i iβ β<  and T

i
Y
iβ β≤ . These constraints ensured that: (i) individuals had the 

highest viral load (and therefore transmissibility) during primary infection (ii) viral load (and 
transmissibility) decreased after the primary infection stage, (iii) viral load (and transmissibility) 
increased as the individuals CD4 counts fell below 350 cells/microL and (iv) viral load decreased under 
treatment (except in the first treatment era of monotherapy). 
 
In San Francisco, monotherapy began in 1987 with the NRTI Zidovudine (AZT). At this time, almost half 
of the MSM community was estimated to be infected with HIV (S18-S20). In the late eighties ARV 
resistance arose quickly (S21) because AZT was ineffective in suppressing viral loads (S22) and was 
very widely used (S23-S26). In 1992, dual therapy became available, featuring treatment regimens of 
two NRTIs at a time (for example, Zidovudine (then AZT) and Didanosine). Dual therapies were 
substantially more effective than monotherapies and achieved 30-60% viral suppression (S27-S30).  
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In 1996, Highly Active Antiretroviral Therapy (HAART) became available with the arrival of two new 
classes of drugs: NNRTIs and PIs. Due to the different efficacy of treatment regimens, we subdivided 
the HAART era into two: Early HAART (1996-2000) and Modern HAART (2001-2008). The treatment 
eras reflect the approval and rollout of new medications. Fig. S3 shows a detailed timeline of the 
introduction of drugs used to treat HIV infection; these drugs are also categorized under each treatment 
era in Table S1. The specific treatment regimens that we model are given in Tables S6 (for Era 1), S7 
(for Era 2), S8 (for Era 3) and S9 (for the current era of HAART: Era 4).  

For each era, we modeled the impact of the specific regimens that were available by varying: (i) the 
percentage of treatment-eligible individuals who began treatment per year (10 ), (ii) the per-
act and per-partner transmissibility (

0 (1 )ie ρ−⋅ −
j

iα and j
iβ ), (iii) the percentage of patients who were virally 

suppressed (100 (1 )iγ⋅ − ), (iv) the percentage of patients who acquired resistance ( ), and 

(v) the average time spent on treatment (1/

'(1 )iike⋅ −100
T
iμ ). Pdfs for these parameter estimates for the regimens 

used in each era are given in Tables S2-S11. Notably, resistance rates vary considerably for different 
classes of ARVs. The rate at which a strain develops resistance to a drug depends on the genetic 
barrier (i.e., the number of mutations needed to acquire resistance to that specific drug). For example, 
single point mutations lead to resistance for some NRTIs (e.g., lamivudine and emtricitabine); however, 
multiple mutations are necessary to develop resistance to most PIs. 

For each era, we computed 1/ T
iμ , the average time spent in the treatment stage for individuals infected 

with strains in category i (Table S11). To make these computations, we first derived Equation 3. 

'

1 1 1 1

1
Y g T
i iY

i i T
i i iik

μ μ μωμ ρ
μ ω γ

+ = +
⎛ ⎞

+ −⎜ ⎟⎜ ⎟+ +⎝ ⎠∑

    (3) 

 
Here, Y

iμ1  is the average survival time of an individual (infected with strains in category ) who is 

untreated but has a CD4 count less than or equal to 350 cells/microL. 1/ represents the additional 
life years gained due to treatment ( where represents wild-type, b represents single-
class resistance, c represents dual-class resistance and represents triple-class resistance). These 
parameters were estimated in (S31) and appear in Table S10. It should be noted that 1/  + 1/  
represents the average survival time from when a treated individual's CD4 count falls below 350 
cells/microL. We then estimated the average time an infected individual spent in the treatment-eligible 
stage (i.e., with a CD4 count less than 350 cells/microL) before they received treatment. Finally, using 
Equation 3, we calculated the average time spent on treatment (1/

i

Y
iμ

gμ
{ , , , }g a b c d∈ a

d
gμ

T
iμ ) (Table S11).   

 
The remaining parameter estimates that specify the natural history of HIV infection were obtained from 
reference (S32) and are given in Table S10. 
 
To reconstruct the evolution and transmission dynamics of the network of ARV-resistant strains from 
1987 to 2008 (that we present in the main text) we analyzed the amplification cascade model using a 
time-dependent uncertainty analysis, (S33, S34).  
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Section 3: Model Calibration using Monte Carlo filtering 

We calibrated our model using Monte Carlo filtering techniques. We began this calibration process by 
deriving an analytical expression for the Basic Reproduction Number ( 0R ); 0R is the average number of 
secondary infections caused by a single infectious individual in a wholly susceptible population in the 
absence of treatment. It is a threshold condition that determines whether the pathogen will die out or 
become endemic. 

We derived 0R  from the amplification cascade model using the following method (S35, S36): 

Step 1: Construct matrices  and  where F V F  is an 1n×  column vector representing the new 
infections in each infected state and V  is an 1n×  column vector representing the 
transported (non-new infections) in each infected state and where  is the number of 
infected states. 

n

Step 2: Construct matrices F  and , the Jacobian matrices of V F  and V , respectively, evaluated 
at the disease-free equilibrium. 

Step 3: The basic reproduction number 0R  is the maximum eigenvalue of . ( ) 1−⋅ −F V

 
In Step 1, we derived 

( )1 1 1 1 1 1

0

0

P H YcS P H Y
N

β β β⎡ ⎤+ +⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F  

 
where the first row represents new infections in primary infection, the second row represents new 
infections in individuals with a CD4 count greater than 350 cells/microL and the third row represents 
new infections in individuals with a CD4 count less than or equal to 350 cells/microL. Furthermore, 
 

0 1 1 1

1 1 0 1 1 1

1 1 1
Y

P P
P H H

H Y

μ θ
θ μ ν

ν μ

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

V  

where the first row represents infections transported to primary infection, the second row represents 
infections transported to individuals with a CD4 count greater than 350 cells/microL and the third row 
represents infections transported to individuals with a CD4 count less than or equal to 350 cells/microL. 
 
In Step 2, we calculated the Jacobian matrices of F  and V  evaluated at the disease-free equilibrium, 
i.e. , and found that S,0,0,0( )
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1 1 1

0 0 0
0 0 0

P H Yc c cβ β β⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F  and 
0 1

1 0 1

1 1

0 0
0

0 Y

μ θ
θ μ ν

ν μ

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

V . 

 
Lastly, in Step 3, we found that  
 

 

F ⋅ −V( )−1 =

c β1
Pμ1

Y μ0 + ν1( )+ β1
Hθ1μ1

Y + β1
Yθ1ν1( )

μ1
Y μ0 + θ1( )μ1

Y μ0 + ν1( )
c β1

Hθ1μ1
Y + β1

Yθ1ν1( )
μ1

Y μ0 + ν1( )
cβ1

Y

μ1
Y

0 0

0 0

0

0

⎡ 

⎣ 

⎢ 
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⎢ 
⎢ 
⎢ 
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Eigenvalues of this matrix are 0,0,
c β1

Pμ1
Y μ0 + ν1( )+ β1

Hθ1μ1
Y + β1

Yθ1ν1( )
μ1

Y μ0 + θ1( )μ1
Y μ0 + ν1( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
, the greatest of which can be 

rewritten as 

1 1 1 1 1
0

0 1 0 1 0 1 0 1 01

P H Y

Y

c c cR β β θ β θ ν1

1μ θ μ ν μ θ μ θ μ νμ
= + ⋅ + ⋅ ⋅

+ + + + +
 (4)  

 
This expression can be understood biologically as the sum of the following three R0 's:  

1
0

0 1

P
P cR β

μ θ
=

+
, 1 1

0
0 1 0 1

H
H cR β θ

μ ν μ θ
= ⋅

+ +
 and 1 1 1

0
1 0 1 0

Y
Y

Y

cR β θ ν

1μ μ θ μ ν
= ⋅ ⋅

+ +
  

 

1
0

0 1

P
P cR β

μ θ
=

+
 represents the number of infections ( )1

Pcβ  an individual causes throughout the duration 

( )( 0 11/ )μ θ+  of (  (i.e., the primary infection stage). )1P
  

1 1
0

0 1 0 1

H
H cR β θ

μ ν μ θ
= ⋅

+ +
 represents the number of infections ( )1

Hcβ  the individual causes throughout the 

duration (( )0 11/ )μ ν+ of stage (  (i.e., after primary infection but before CD4 counts have fallen 

below 350 cells/microL) multiplied by the probability 

)1H

1

0 1

θ
μ θ

⎛ ⎞
⎟

⎝ ⎠
⎜ +

 they survive to the  stage.  1H
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1 1 1
0

1 0 1 0

Y
Y

Y

cR β θ ν

1μ μ θ μ ν
= ⋅ ⋅

+ +
 represents the number of infections ( )1

Ycβ  the individual causes throughout 

the duration ( )11/ Yμ  of stage (  (i.e., when they are untreated but treatment eligible) multiplied by the 

probability 

)1Y

1

0 1

θ
μ θ

⎛ ⎞
⎜ +⎝ ⎠

⎟  they survive to the  stage and then the probability 1H 1

0 1

ν
μ ν

⎛ ⎞
⎜ +⎝ ⎠

⎟  they survive to 

the  stage. 1Y

We then used the expression that we had derived for R0  to calculate the values of the R0 ’s for wild-type 
strains in San Francisco in the pre-treatment era. We made these calculations using Equation 4, Latin 
Hypercube Sampling (S33) and pdfs for the model's parameter estimates given in Tables S2-S11; each 
pdf was sampled 10,000 times. This procedure resulted in 10,000 parameter sets, which led to a 
median estimate of R0  of 0.84 (Inter-Quartile-Range (IQR) 0.49 to 1.43).     

We then filtered these parameter sets in order to calibrate the model to match the prevalence of HIV in 
the MSM community in San Francisco in 1987 when treatment was first introduced. Prevalence in this 
city in the late eighties has been estimated to be as high as 50% (S18-S20); this corresponds to an R0  
of 2.0. We used the value of R0  as a filtering criterion and determined how many of the 10,000 
parameter sets generated an R0  value between 1 and 3. This Monte Carlo filtering procedure reduced 
our parameter sets from 10,000 to 3,827; after filtering, the median R0  value was 1.5 (Inter-Quartile-
Range (IQR) 1.2 to 2.0). 

We used Kolmogorov-Smirnov tests to compare the distributions of the model's parameters before and 
after filtering. Four of the parameter ranges were statistically different; for these, see Table S12.  

The 3,827 filtered parameter sets were used to conduct the Monte Carlo simulations for our time-
dependent uncertainty analysis and historical reconstructions (S33). For our Monte Carlo simulations, 
we modeled monotherapy for 5 years (1987-1991), dual therapy for 4 years (1992-1995), early HAART 
for 5 years (1996-2000) and modern HAART thereafter.  

 
Section 4: A classification system for ARV-resistant strains 

We derived a classification system for the resistant strains in the network by deriving an analytical 
expression for the Control Reproduction Number, Rc . The quantity Rc  is a measure of the average 
number of secondary HIV infections an individual generates during their entire infectious period; it is 
calculated as a weighted average based on the probability the individual is treated. We used the same 
methods to derive Rc  from the amplification cascade model that we had used previously to derive R0  
(S35, S36). We calculated a Control Reproduction Number ( Rc ) for each of the seven categories of 
ARV resistance included in the model, as well as for wild-type strains. Categories are denoted by 
subscript i : wild-type strains , single-class resistance to NRTIs ( 1)i = ( 2i )= , single-class resistance to 
NNRTIs ( , single-class resistance to PIs (3) )i = 4i = , dual-class resistance to NRTIs and NNRTIs 

, dual-class resistance to NRTIs and PIs ( 5i = ) )( 6i = , dual-class resistance to NNRTIs and PIs 
 and triple-class resistance to NRTIs, NNRTIs and PIs ( 7i = ) (i 8)= .  
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( )( )
( )( )

( )( )
( )( ) ( )( )( )

1 1 1 1 1 12 1 13 1 14 1 1 1 11 1 1 0 11

0 1 0 1 0 1 0 1 1 1 1 12 1 13 1 14 1 1 1

Y TH P

c Y

c k k kc
R

k k k

θν β ω γ γ γ μ γ β ρβ θ β μ ν

μ θ μ ν

T

T Yμ θ μ ν μ ω γ γ γ μ μ ρ

+ + + + ++ +
= +

+ + + + + + + + +
,  (5) 

 

( )( )
( )( )

( )( )
( )( ) ( )(( ))

2 2 2 2 2 25 2 26 2 2 2 22 2 2 0 22

0 2 0 2 0 2 0 2 2 2 2 25 2 26 2 2 2

Y T TH P

c Y T

c k kc
R

k k

θ ν β ω γ γ μ γ β ρβ θ β μ ν

μ θ μ ν Yμ θ μ ν μ ω γ γ μ μ ρ

+ + + ++ +
= +

+ + + + + + + +
 (6) 

 

( )( )
( )( )

( )( )
( )( ) ( )(( ))

3 3 3 3 3 35 3 37 3 3 3 33 3 3 0 33

0 3 0 3 0 3 0 3 3 3 3 35 3 37 3 3 3

Y T TH P

c Y T

c k kc
R

k k

θ ν β ω γ γ μ γ β ρβ θ β μ ν

μ θ μ ν Yμ θ μ ν μ ω γ γ μ μ ρ

+ + + ++ +
= +

+ + + + + + + +
 (7) 

 

( )( )
( )( )

( )( )
( )( ) ( )(( ))

4 4 4 4 4 46 4 47 4 4 4 44 4 4 0 44

0 4 0 4 0 4 0 4 4 4 4 46 4 47 4 4 4

Y T TH P

c Y T

c k kc
R

k k

θ ν β ω γ γ μ γ β ρβ θ β μ ν

μ θ μ ν μ θ μ ν μ ω γ γ μ μ ρ

+ + + ++ +
= +

+ + + + + + + +Y
 (8) 

 

( )( )
( )( )

( )( )
( )( ) ( )(( ))

5 5 5 5 58 5 5 5 55 5 5 0 55

0 5 0 5 0 5 0 5 5 5 5 58 5 5 5

Y T TH P

c Y T Y

c kc
R

k

θ ν β ω γ μ γ β ρβ θ β μ ν

μ θ μ ν μ θ μ ν μ ω γ μ μ ρ

+ + ++ +
= +

+ + + + + + +
   (9) 

 

( )( )
( )( )

( )( )
( )( ) ( )(( ))

6 6 6 6 6 68 6 6 6 66 6 6 0 66

0 6 0 6 0 6 0 6 6 6 6 68 6 6 6

Y T TH P

c Y T Y

c kc
R

k

θ ν β ω γ μ γ β ρβ θ β μ ν

μ θ μ ν μ θ μ ν μ ω γ μ μ ρ

+ + ++ +
= +

+ + + + + + +
 (10) 

 

( )( )
( )( )

( )( )
( )( ) ( )(( ))

7 7 7 7 7 78 7 7 7 77 7 7 0 77

0 7 0 7 0 7 0 7 7 7 7 78 7 7 7

Y T TH P

c Y T Y

c kc
R

k

θ ν β ω γ μ γ β ρβ θ β μ ν

μ θ μ ν μ θ μ ν μ ω γ μ μ ρ

+ + ++ +
= +

+ + + + + + +
 (11) 

 

( )( )
( )( )

( )( )
( )( ) ( )( )

8 8 8 8 8 8 8 88 8 8 0 88

0 8 0 8 0 8 0 8 8 8 8 8 8

Y T TH P

c Y T Y

cc
R

θ ν β ω μ γ β ρβ θ β μ ν

μ θ μ ν μ θ μ ν μ ω μ μ ρ

+ ++ +
= +

+ + + + + +
 (12) 

 
The Control Reproduction Number ( Rc ) for the entire system is defined as max( )i

c cR R= . 

 

Each of the Rc ’s shown in Equations 5-12 can be rewritten in a similar fashion to R0  in Equation 4 and 
thus be understood in biological terms. For example, 1

cR  can be rewritten as:  
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+
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=
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1 13 14 1

1 1 12 1 13 1 14 1

1 12 1 13 1 14 1
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1 1

T

T

T

T

k k
k k k

Y k k k
k k k

μ
ω γ γ γ μ

γ γ γ μ
ω γ γ γ μ

μ ρ

+ +

+ + + +

+ + +

+ + + +
+

 (13) 

 

The terms here are very similar to the ones in Equation 4; however, the duration of time an individual 
spends in state (  is more complex, due to the fact that an individual can go on and off treatment. 

The term 

)1Y
1 12 1 13

1 1 12 1

k k
k k

γ γ 1 14 1

13 1 14 1
1

T

T
k

k
γ μ

ω γ γ μγ
ρ +

+ +

+ +

+ +
 can be interpreted as the probability that an individual moves from state 

 to state  times the probability that the individual does not return to state . It should be noted that 

if there is no backflow from state  to state  (i.e. if 
1Y 1T 1Y

1T 1Y 1 0ω = ) then 1 12 1 13

1 13k kγ
1 14 1

1 1 12 1 14 1
1 1

T

T
k k k

k
γ γ γ μ

ω γ γ μ
ρ+

+ + + +
=+ + . ρ

We used the expressions in Equations 5 through 12 to calculate the values of the Rc ’s for the currently 
circulating wild-type and ARV-resistant strains in San Francisco. We made these calculations using the 
Monte Carlo filtered parameter sets,  Latin Hypercube Sampling (S33) and pdfs for the model's 
treatment parameters given in Tables S2-S11.      

We then classified the resistant strains in the network based on their transmission potential (Fig. 3B in 
the main text). We identified three groups: (i) where the Rc  of the wild type and the ARV-resistant strain 
is less than one (blue data in Fig. 3B in main text) indicating the strains will eventually be eliminated; (ii) 
where the Rc  of the wild-type strain is greater than one but the Rc  of the resistant strain is less than 
one, indicating that the resistant strain is only being sustained through acquired and/or amplified 
resistance (green data in Fig. 3B in main text), and (iii) where both the Rc  of the wild-type strain and the 
Rc  of the resistant strain is greater than one, indicating that the resistant strain is self-sustaining (red 
data in Fig. 3B in main text).   

This analysis also showed us that treatment has significantly reduced the severity of the HIV epidemic 
in the MSM community in San Francisco over the past twenty years. Before treatment, the value of the 
Reproduction Number (i.e., the Basic Reproduction Number, R0 ) was 1.5 (median: IQR 1.2 to 2.0); after 
treatment was introduced, the Reproduction Number (i.e., the Control Reproduction Number, Rc ) was 
reduced to 1.2 (median: IQR 1.0 to 1.6). 
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Section 5: Evaluating the impact of NNRTI-resistant strains in resource-constrained countries 

Although information is limited, preliminary data suggest that treatment response and resistance 
patterns for subtype C are similar to subtype B (S37-S42).  

In resource-constrained countries where ARVs are not widely available, the value of the Basic 
Reproduction Numbers ( R0 ’s) of the wild-type strains and the value of the R0 ’s for the NNRTI-resistant 
strains will determine the effect of the competitive interaction among strains. If wild-type strains are 
more infectious than NNRTI-resistant strains, they will generate (on average) more secondary 
infections than resistant strains and will therefore out-compete them (Fig. S4).  

However, in resource-constrained countries where ARVs are widely available (but second-line 
regimens are not) the outcome of the competitive interaction will depend upon the values of the R0 's of 
the NNRTI-resistant strains and the value of the 's of the wild-type strains. The NNRTI-resistant 
strains will out-compete the wild-type strains if their 

Rc
R0 ’s are greater than the R ’s of the wild-type 

strains. The more effective the treatment regimens and the greater the coverage level of ARVs, the 
lower the value of the ’s of the wild-type strains; hence, the more likely the NNRTI-resistant strains 
will out-compete the wild-type strains. Fig. S5 shows the outcome of the competitive dynamics if a high 
proportion of infected individuals with a CD4 count < 350 cells/mL receive ARVs. Under these 
conditions, the majority of the NNRTI-resistant strains could out-compete the wild-type strains (Fig. S5). 
Many resource-constrained countries are striving to increase access to ARVs; recently, the World 
Health Organization has recommended that all HIV-infected individuals should receive ARVs (S43). If 
this occurs, the ’s of wild-type strains are predicted to fall below one (S43), but the 

c

Rc

Rc R0 ’s of the 
NNRTI-resistant strains will remain above one. Under these conditions, a paradoxical result is likely to 
occur in resource-constrained countries: instead of eliminating the HIV pandemic the NNRTI-resistant 
strains are likely to out-compete wild-type strains and cause self-sustaining epidemics. 
 

Section 6: CART Methods and Results 

CART is a nonlinear, nonparametric regression methodology that uses recursive partitioning and 
pruning to grow trees and produce accurate predictors for model dynamics (S44). It also provides 
insights into the structure of data sets and enables visualization of the key determinants of complex 
systems. To build trees, we used the model's estimated level of TDR for 2008 as the response variable 
and the model’s 50 parameters as predictor variables. We classified simulations (i.e., data) into two 
groups based on the level of TDR that they generated for 2008: greater than 15% (high TDR) and less 
than 15% (low TDR).  Starting from the root node of the tree, data were split into two daughter nodes by 
the predictor variables that produced the most internally homogenous nodes for levels of TDR in 2008. 
The nodes that are not split into daughter nodes are called terminal nodes and it is in these nodes that 
simulations are classified as being high or low TDR. Predictor selection and cutoff values (listed below 
each node being split) were determined by computing node purity for every potential predictor split. 
Node purity was calculated for every possible splitting value of every predictor using the 
entropy/impurity expression P*Log(P)+(1-P)Log(1-P), where P is the probability of a simulation resulting 
in high (>15%) levels of TDR. We determined the split that led to the greatest homogeneity of the 
daughter nodes by maximizing the reduction of impurity when going from the parent node to the 
daughter nodes. 
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We grew the tree by repeating this process until the potential splits had been exhausted (i.e., the tree 
was saturated) (S44). This process led to a large tree with terminal nodes containing very few 
simulations, so we pruned this saturated tree to achieve an optimal tree (Fig. S6). Pruning allowed us to 
simplify our model, increasing interpretability while sacrificing as little predictive power as possible 
(S44). The resulting tree revealed the most important variables (out of the 50 variables used in the 
analysis) for predicting, and therefore generating, TDR (Fig. 4 in the main text: red represents the 
number of simulations with TDR > 15% and blue represents the number of simulations with TDR < 
15%). The optimal tree has 84% predictive power in correctly identifying which simulations will generate 
high levels of TDR and 82% predictive power in correctly identifying which simulations will generate low 
levels of TDR. Our pruned CART tree (Fig. 4 in the main text) shows the conditional hierarchical 
relationships among the six most important drivers; the unpruned tree would show the effects of the 
seventh driver and the other predictor variables. 

The Importance Scores (IS) generated from our CART analysis (shown as a tree in Fig. 4 in the main 
text) are given in Table S13. The value of the IS depends upon the number of times that the predictor 
variable appears in the tree, as well as its position in the tree. Fifty predictor variables were included in 
the CART analysis; only predictor variables with an IS greater than 25 are listed. The fifty predictor 
variables were all of the model’s parameters used in the Monte Carlo simulations. The value of the IS 
depends upon the number of times that the predictor variable appears in the tree, as well as its position 
in the tree. Values for the IS from the CART analysis are given in Table S13. 

It should be noted that 5λ  (the relative transmissibility of strains with dual-class resistance to NRTIs and 
NNRTIs) is important in our analysis (IS = 40) but does not appear in the tree in Fig. 4 of the main text. 
This is because the presented tree is a pruned version of the optimal tree; all presented Importance 
Scores are calculated from the optimal tree.  

As discussed in the main text, the most important drivers of TDR and their hierarchical relationships are 
shown in the optimal tree (Fig. 4 in main text). As the tree shows, the relationship between the drivers 
of TDR can be fairly complex. For example, 2λ  (the relative transmissibility of strains with single-class 
resistance to NRTIs) has an IS of 51. The importance of the value of 2λ  in driving the level of TDR 
depends on the values of other predictor variables. If 1 ν < 6.1 years and 1

Hα < 0.002, TDR is likely to 
be greater than 15% regardless of the value of 2λ  (Fig. 4 in main text).  However, if 1 ν < 6.1 and 1

Hα > 
0.002, TDR is likely to be greater than 15% if 2λ > 0.51 but is likely to be less than 15% if 2λ < 0.51 
(Fig. 4 in main text). The predictor variable 2λ  can also be important in explaining high levels of TDR 
when 1 ν > 6.1 years; however, it can be seen that now four different conditions must hold (Fig. 4 in 
main text).   
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Table S1: ARV treatments 

 
Treatment  Era 1 

1987-92 
Era 2 
1992-96

Era 3 
1996-2001 

Era 4 
2001-08 

ARV Class (medication name) [date of FDA approval]     
nRTI (zidovudine) [03/19/1987] X X X X 
nRTI (didanosine) [09/10/1991]  X X X 
nRTI (zalcitabine) [06/19/1992]  X X X 
nRTI (stavudine) [06/24/1994]  X X X 
nRTI (lamivudine) [11/17/1995]  X X X 

 
PI (saquinavir mesylate) [12/06/1995]   X X 
PI (ritonavir) [03/01/1996]   X X 
PI (indinavir) [03/13/1996]   X X 
nnRTI (nevirapine) [06/21/1996]   X X 
PI (nelfinavir mesylate) [04/14/1997]   X X 
nnRTI (delavirdine) [04/21/1997]   X X 
nRTI (zidovudine+lamivudine) [09/27/1997]   X X 
nnRTI (efavirenz) [09/17/1998]   X X 
nRTI (abacavir) [12/17/1998]   X X 
PI (amprenavir) [04/15/1999]   X X 
PI (lopinavir+ritonavir) [09/15/2000]   X X 
nRTI (zidovudine+lamivudine+abacavir) 
[11/14/2000] 

  X X 

nRTI (tenofovir) [10/26/2001]   X X 
 

Fusion Inhibitor (enfuvirtide) [03/13/2003]#    X 
PI (atazanavir) [06/20/2003]    X 
nRTI (emtricitabine) [07/02/2003]    X 
PI (fosampreavir calcium) [10/20/2003]    X 
nRTI (abacavir+lamivudine) [08/02/2004]    X 
nRTI (tenofovir+emtricitabine) [08/02/2004]    X 
PI (tipranavir) [06/22/2005]    X 
PI (darunavir) [06/23/2006]    X 
nRTI+nnRTI (efavirenz+emtricitabine+ 
tenofovir) [07/12/2006] 

   X 

CCR5 antagonist (maraviroc) [06/08/2007]#    X 
Integrase Inhibitor (raltegravir) [12/10/2007]#     X 
nnRTI (etravirine) [01/18/2008]  
  

   X 

 
# not in the present model 
 



Table S2: Viral load and transmission probabilities for individuals infected with wild-type 
strains. Viral load is high during primary infection, low after primary infection (when the CD4 count is 
greater than 350 cells/microL) and high once the CD4 count drops below 350 cells/microL. During 
monotherapy, when the available drugs were not as effective as current regimens, the average viral 
load on treatment was modeled as being the same as it was for untreated individuals with CD4 counts 
less than or equal to 350 cells/microL. Viral load ranges were estimated from empirical studies (S27, 
S32, S45-S50). Estimates for average viral transmissibility per partnership ( 1

jβ ) were calculated as 
described in Section 2.  
 

Infection stage 
Average viral 

load ( v ) 
(copies/mL) 

Average viral 
transmissibility 

per act ( 1
jα ) 

Average viral 
transmissibility per 

partnership ( 1
jβ ) 

 
Primary infection 

 
Uniform pdf 

50,000-
5,000,000 

 

 
Uniform pdf 

0.0031-0.0185 

0.016-0.659 
median 0.235 

 
Infected (after primary 
infection, CD4 count > 
350 cells/microL) 

Triangular pdf 
10,000-50,000 
(peak 20,000) 

 
0.0017-0.0031 

 

0.008-0.164 
median 0.049 

 
Infected, CD4 count ≤ 
350 cells/microL 

 
Triangular pdf 

35,000-100,000 
(peak 60,000) 

 

 
0.0027-0.0040 

 

0.015-0.204 
median 0.069 

 
On treatment (Era 1) 

 
Triangular pdf 

35,000-100,000 
(peak 60,000) 

 

 
0.0027-0.0040 

 

0.015-0.204 
median 0.069 

P1 

H1 

Y1 

T1 
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Table S3: Resistance categories in the amplification cascade model. Resistant strains in the 
network are grouped into seven categories which are defined based upon their level of resistance 
(single, dual or triple class) and the specific class of drugs they are resistant to (Nucleoside Reverse 
Transcriptase Inhibitors (NRTIs), non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and 
Protease Inhibitors (PIs)). There is in-vitro and in-vivo evidence that transmitted resistant strains persist 
and that the resistant strains will influence the laboratory response to antiretroviral treatment (S15, S51-
S55).   
 
 

 
Resistance Category 

Per-act transmissibility 
relative 

 to wild-type strains ( iλ ) 

Single-class resistance to NRTIs 0.40 – 0.85  (peak 0.6) 

Single-class resistance to NNRTIs 0.70 – 0.95  (peak 0.9) 

Single-class resistance to PIs 0.30 – 0.90  (peak 0.6) 

Dual-class resistance to NRTIs and NNRTIs 0.40 – 0.95  (peak 0.7) 

Dual-class resistance to NRTIs and PIs 0.20 – 0.65  (peak 0.35) 

Dual-class resistance to NNRTIs and PIs 0.40 – 0.95  (peak 0.55) 

Triple-class resistance to NRTIs, NNRTIs and PIs  0.10 – 0.20  (peak 0.1) 
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Table S4: Average rates of individuals going on and off treatment in each of the four treatment 
eras. iρ  is the model parameter representing the average rate at which infected individuals with CD4 ≤ 
350 cells/microL begin treatment per year. This parameter was calculated from the percentage of 
infected individuals with CD4 ≤ 350 cells/microL who begin treatment each year (i.e., from 

). The average rate at which treated individuals stop treatment per year, 100 ( )iρ−1 e⋅ − iω , was 
calculated in a similar manner. 
 

Parameter Definition Era Range 
1 40-60% 
2 50-70% 100 (1 )ie ρ−⋅ −  % of infected individuals with CD4 ≤ 350 cells/microL 

who begin treatment per year 3,4 60-80% 
100 (1 )ie ω−⋅ −  % on treatment who stop treatment per year 1-4 0-15% 
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Table S5: Viral load and transmission probabilities while on treatment in eras 2, 3 and 4. 
Estimates for average viral transmissibility per partnership ( 1

Tβ ) were calculated as described in 
Section 2. Viral loads are not treated individuals who are only partially suppressed. 
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Infection stage 

 
Average viral 
load while in 

stage ( ) v
(copies/mL) 

 

Average viral 
transmissibility 

per act ( 1
Tα ) 

Average viral 
transmissibility per 

partnership ( 1
Tβ ) 

 
On treatment (Era 2) 
 

Not sampled Uniform 
0.0013-0.0026 

 
 

0.007-0.140 
median 0.039 

 
 

 
On treatment (Era 3) 
 
 

Not sampled Uniform 
0.0011-0.0023 

 
0.006-0.123 

median 0.034 
 

 
On treatment (Era 4) 
 

 
Triangular 
75-20,000   

(peak 5,500) 
 

0.0003-0.0022 
median 0.0015 

0.002-0.112 
median 0.030 

T1 

T1 

T1 

 
 



Table S6: Treatment parameters during the era of monotherapy (1987-1991) Estimates of clinical 
parameters were obtained from reference (S32).  
 
 

 

Strains 
causing 
infection 

Drug classes 
included in treatment 

regimen 

% of 
patients on 

regimen 

% of patients 
virally 

suppressed 
100 (1 )iγ⋅ −  

% of patients not virally 
suppressed who 

develop resistance, 
 '100 (1 )iike⋅ −

wild-type 1 NRTI (AZT) 100% 0-5% to NRTIs: 90-100% 
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Table S7: Treatment parameters during the era of dual therapy (1992-1995) During this era, 
patients could have been treated with several different regimens, so the percentage of patients on each 
regimen (column 3) was variable(S56, S57).  Effectively virally suppressed individuals did not develop 
resistance (S58-S60). Once on a specific treatment regimen, a certain percentage of patients 
developed resistance to different classes of ARVs (S61, S62).  
 
 

Strains 
causing 
infection 

Drug classes 
included in treatment 

regimen 

% of 
patients on 

regimen 

% of patients 
virally 

suppressed 
100 (1 )iγ⋅ −  

% of patients not virally 
suppressed who 

develop resistance, 
 '100 (1 )iike⋅ −

2 NRTIs 50-70% 30-60% to NRTIs: 70-100% 
wild-type 

1 NRTI 30-50% 30-60% to NRTIs: 90-100% 

2 NRTIs 50-70% 5-20% to NRTIs: 70-100% single-class 
resistance 
to NRTI 1 NRTI 30-50% 5-20% to NRTIs: 90-100% 
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Table S8: Treatment parameters during the era of triple therapy (1996-2000) Early HAART During 
this era, patients could have been treated with several different regimens, so the percentage of patients 
on each regimen (column 3) was variable(S56, S57).  Effectively virally suppressed individuals did not 
develop resistance (S58-S60). Once on a specific treatment regimen, a certain percentage of patients 
developed resistance to different classes of ARVs (S61, S62).   
 

Strains 
causing 
infection 

Drug classes 
included in treatment 

regimen 

% of 
patients on 

regimen 

% of patients 
virally 

suppressed 
100 (1 )iγ⋅ −  

% of patients not virally 
suppressed who 

develop resistance, 
 '100 (1 )iike⋅ −

to NRTIs: 15-30% 
2 NRTIs and 1 NNRTI 60% 55-75% 

to NNRTIs: 60-80% 

to NRTIs: 15-30% wild-type  

2 NRTIs and 1 PI 40% 

 

55-75% 

 
to PIs: 15-30% 

2 other NRTIs and 1 
NNRTI 30% 50-75% to NNRTIs: 60-80% 

2 other NRTIs and 1 PI 60% 50-75% to PIs: 30-40% 

to NNRTIs: 15-40%   

single-class 
resistance 
to NRTIs 

1 NNRTI and 1 PI 10% 50-75% 
to PIs: 15-30% 

to NRTIs: 15-30%   

 
single-class 
resistance 
to NNRTIs 

2 NRTIs and 1 PI 100% 55-75% 

to PIs: 15-30% 

to NRTIs: 15-40% 
2 NRTIs and a NNRTI 50% 40%-75% 

to NNRTIs: 10-25% 
single-class 
resistance 
to PIs 2 NRTIs and different 

PIs 50% 30-60% to NRTIs: 30-60% 

dual-class 
resistance 
to NRTIs 
and NNRTIs 

2 NRTIs and 1 PI 100% 0-5% 
to PIs: 15-35%  (peak 
30%) 

 

dual-class 
resistance 

2 NRTIs, PI and NNRTI 100% 0-5% to NNRTIs: 20-40%  
(peak 30%) 
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to NRTIs 
and PIs 

 

dual-class 
resistance 
to NNRTIs 
and PIs 

2 NRTIs, PIs and 
NNRTI 100% 0-1% 

to NRTIs: 40-60%  (peak 
60%) 

 

triple-class 
resistance  1 NRTI, 1 PI, 1 NNRTI 100% 0-1% Not Applicable 

 
 
 
 
 
 
 
 
 
 
 



Table S9: Treatment parameters during the era of Triple Therapy (2000-2008) Modern Era 
HAART During this era, patients could have been treated with several different regimens, so the 
percentage of patients on each regimen (column 3) was variable(S56, S57).  Effectively virally 
suppressed individuals did not develop resistance (S58-S60). Once on a specific treatment regimen, a 
certain percentage of patients developed resistance to different classes of ARVs (S61, S62).   
 

Strains 
causing 
infection 

Drug classes 
included in treatment 

regimen 

% of 
patients on 

regimen 

% of patients 
virally 

suppressed 
100 (1 )iγ⋅ −  

% of patients not virally 
suppressed who 

develop resistance, 
 '100 (1 )iike⋅ −

to NRTIs: 15-30% 
2 NRTIs and 1 NNRTI 50% 65-85% 

to NNRTIs: 60-80% 

to NRTIs: 15-30% 
wild-type  

2 NRTIs and boosted 
or dual PIs 50% 70-95% 

to PIs: 5-25% 

2 other NRTIs and 1 
NNRTI 30% 50-75% to NNRTIs: 40-60% 

2 other NRTIs and 
boosted or dual PI 60% 60-80% to PIs: 30-40% 

to NNRTIs: 15-40% 

single-
class 
resistance 
to NRTIs 

1 NNRTI and boosted 
or dual PI 10% 50-75% 

to PIs: 15-30% 

65-85% to NRTIs: 15-30% single-
class 
resistance  
to NNRTIs 

2 NRTIs and boosted 
or dual PI 100% 

70-95% to PIs: 5-25% 

to NRTIs: 15-40% 
2 NRTIs and a NNRTI 50% 65-85% 

to NNRTIs: 10-25% 
single-
class 
resistance 
to PIs 2 NRTIs and different 

PIs in boosted or dual 
therapy 

50% 40-70% to NRTIs: 30-60% 

dual-class 
resistance 
to NRTIs 
and 
NNRTIs 

2 different NRTIs and 
boosted or dual PI 100% 15-30% 

to PIs: 15-35%  (peak 
30%) 
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dual-class 
resistance 
to NRTIs 
and PIs 

2 NRTIs, boosted or 
dual PI and NNRTI 100% 5-20% 

to NNRTIs: 20-40%  
(peak 30%) 

 

dual-class 
resistance 
to NNRTIs 
and PIs 

2 NRTIs, boosted or 
dual PIs and NNRTI 100% 5-20% 

to NRTIs: 40-60%  (peak 
60%) 

 

triple-class 
resistance 

1 NRTI, 1 NNRTI and 
1PI 100% 0-1% Not Applicable 

 
 
 
 
 
 
 
 
 



Table S10: Parameter ranges for the average time spent in different stages of the amplification cascade model  The 
additional survival time was estimated using reference (S31). 

 
Symbol 

 
Definition 

Era 1 
Monotherapy 

Era 2 
Dual therapy 

Era 3 
Early HAART 

Era 4 
Late HAART 

01/ μ  Average time (in years) spent acquiring new 
sex partners 

25-40  
(peak=30) 

25-40  
(peak=30) 

25-40  
(peak=30) 

25-40  
(peak=30) 

1/θ  Average time (in days) of primary infection 15-55 days 15-55 days 15-55 days 15-55 days 
1/ν  Average time (in years) before becoming 

treatment eligible (i.e., with a CD4 count > 350 
cells/microL)  

5-7 5-7 5-7 5-7 

1/ Y
iμ  

 

Average time (in years) with a CD4 count ≤ 
350 cells/microL  1-4 1-4 3-7 3-7 

1/ aμ  Average additional time (in years) gained 
through treatment for individuals infected with 
wild-type strains 

1-3 1-4 4-10 8-15 

1/ bμ  Average additional time (in years) gained 
through treatment for individuals infected with 
strains with single-class resistance 

0.04-1 0.04-1 2-5 2-5 

1/ cμ  Average additional time (in years) gained 
through treatment  for individuals infected with 
strains with dual-class resistance 

N/A N/A 2-6 2-6 

1/ dμ  Average additional time (in years) gained 
through treatment  for individuals infected with 
strains with triple-class resistance 

N/A N/A 0.04-1 0.04-1 
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Table S11: Average time (in years) spent in the treated stage stratified by era and resistance 
category The average time spend in the treated stage was calculated as described in Section 2. 
 
Treatment 

Era Strains causing infection 
First 

Quartile Median 
Third 

Quartile 
Era 1 wild type 3.0 3.7 4.4 
  single-class resistance to NRTIs 1.4 2.0 2.7 
Era 2 wild type 5.5 6.5 7.5 
  single-class resistance to NRTIs 3.5 4.3 5.2 
Era 3 wild type 9.6 11.1 12.7 
  single-class resistance to NRTIs 6.6 7.6 8.6 
  single-class resistance to NNRTIs 6.6 7.6 8.6 
  single-class resistance to PIs 6.6 7.6 8.6 

  
dual-class resistance to NRTIs and 
NNRTIs 7.0 8.2 9.4 

  
dual-class resistance to NRTIs and 
PIs 7.1 8.2 9.4 

  
dual-class resistance to NNRTIs 
and PIs 7.1 8.2 9.3 

  Triple-class resistance 3.7 4.6 5.5 
Era 4 wild type 13.8 15.5 17.3 
  single-class resistance to NRTIs 6.5 7.5 8.6 
  single-class resistance to NNRTIs 6.5 7.5 8.5 
  single-class resistance to PIs 6.6 7.6 8.5 

  
dual-class resistance to NRTIs and 
NNRTIs 7.0 8.1 9.3 

  
dual-class resistance to NRTIs and 
PIs 7.0 8.2 9.3 

  
dual-class resistance to NNRTIs 
and PIs 7.1 8.2 9.3 

  Triple-class resistance 3.7 4.6 5.5 
 
 



Table S12: Parameters with distributions that changed significantly after Monte Carlo filtering 
 
  

Data 
 

1Q 
 

Median 
 

Mean 
 

3Q 
 

 
Filtered 
 

2.1 
 

2.7 
 

2.8 
 

3.4 
 c  

 
Unfiltered 
 

1.5 
 

2.2 
 

2.3 
 

3.0 
 

 
Filtered 
 

62.8 
 

78.4 
 

84.6 
 

101.8 
 n  

 
Unfiltered  
 

24.9 
 

43.5 
 

54.6 
 

73.4 
 

 
Filtered 
 

0.00218 
 

0.00240 
 

0.00241 
 

0.00263 
 H

1
α  

 
Unfiltered  
 

0.00216 
 

0.00238 
 

0.00239 
 

0.00262 
 

 
Filtered 
 
 

1.9 
 

2.7 
 

2.6 
 

3.4 
 1/ Y

iμ (Era 1) 
 
Unfiltered  
 

1.8 
 

2.5 
 

2.5 
 

3.3 
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Table S13: Importance Scores (IS) calculated from CART analysis 
 

Predictor 
Variable 

 

 
Definition 

 

 
IS 
 

 
1 ν  

 
average rate (at the population level) at which CD4 cell 
counts fall to below 350 cells/microL 
 

100 

 

1
Hα  

 
per-act probability that individuals (with CD4 counts > 
350 cells/microL) transmit wild-type strains  

73 

 

1
Tα  

 
per-act probability that treated individuals transmit wild-
type strains 

60 

 
2λ  

 
relative transmissibility (per act) of strains with single-
class resistance to NRTIs 

51 

 
1γ  

% of patients (infected with wild-type strains) not virally 
suppressed 

 
45 

 
5λ  

 
relative transmissibility (per act) of strains with dual-class 
resistance to NRTIs and NNRTIs 

40 

3γ  % of patients (infected with strains with single-class 
resistance to NNRTIs) not virally suppressed 39 
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Fig. S1: The full 33 equation model, showing susceptible individuals (S), individuals with primary infection (P), individuals who are 
not yet eligible for treatment (i.e., with CD4 counts > 350 cells/microL) (H), individuals who are treatment eligible (i.e., with CD4 ≤ 350 
cells/microL) but not on treatment (Y) and individuals receiving treatment (T). Resistant strains in the network are grouped into seven 
categories which are defined based upon their level of resistance (single, dual or triple class) and the specific class of drugs they are 
resistant to (Nucleoside Reverse Transcriptase Inhibitors (NRTIs), non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and 
Protease Inhibitors (PIs)). Categories are denoted by subscript i : wild-type strains ( 1)i = , single-class resistance to NRTIs ( 2)i = , 
single-class resistance to NNRTIs ( 3)i = , single-class resistance to PIs ( 4)i = , dual-class resistance to NRTIs and NNRTIs )( 5i = , 
dual-class resistance to NRTIs and PIs ( 6)i = , dual-class resistance to NNRTIs and PIs ( 7)i =  and triple-class resistance to NRTIs, 
NNRTIs and PIs ( 8)i = .
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Fig. S2: The relationship between transmissibility per act and viral load (on a log scale). 
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Fig. S3: Detailed timeline of drug introduction in San Francisco during the four eras of treatment. Color is used to indicate drug 
classes: light blue/gray for NRTIs, yellow for NNRTIs, red for PIs, blue for fusion inhibitors, green for entry (CCR5 receptor) inhibitors 
and brown for integrase inhibitors. 
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Fig. S4: The Basic Reproduction Number of wild-type strains relative to those of NNRTI-resistant 
strains that have the transmission potential to cause self-sustaining epidemics.  
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Fig. S5: The Control Reproduction Number of wild-type strains relative to the Basic Reproduction 
Number of NNRTI-resistant strains that have the transmission potential to cause self-sustaining 
epidemics.  
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Fig. S6: (A) Density plots illustrate how the most important variable ( , the average time, at the 
population level, it takes for CD4 cell counts in infected individuals to fall below 350 cells/microL) affects 
levels of TDR in 2008. Red data show results from our CART analysis from simulations where  < 

1−ν

1−ν
6.1 years; blue data show results from simulations where  > 6.1 years.  1−ν
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Fig. S6: (B)  Boxplots based on the Monte Carlo simulations from the uncertainty analysis showing the 
contribution to transmission of individuals infected with wild-type strains and with a CD4 count > 350 
cells/microL. All data are from simulations in the CART analysis with ν −1 ≤ 6.1

0.0024

 years (left side of the 
tree in Fig. 4 in the main text); however, a similar effect is seen for simulations with  > 6.1 years 
(right side of the tree in Fig. 4 in the main text). Pink data show results from simulations where 

; blue data show results from simulations where . The variable 

1−ν

1 0.0024Hα > 1
Hα ≤ 1

Hα  reflects 
the degree of infectivity of wild-type strains during the period when the infected individual has a CD4 
count > 350 cells/microL; infectivity is specified as the probability of transmitting HIV during one sex act.  
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Fig. S6: (C) Density plots illustrate how hierarchical relationships among the two most important 
predictor variables determine the level of TDR in 2008. High levels of TDR (red data; median 17%) are 
likely if ≤ 6.1 years and . If > 6.1 years and , then low levels of TDR 
(blue data; median 12%) are likely.  

1−ν 1 0.0024Hα ≤ 1−ν 1 0.0023Hα >
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Fig. S6: (D) Boxplots based on the Monte Carlo simulations from the uncertainty analysis show the 
contribution to transmission of individuals who are infected with wild-type strains and on treatment. All 
data are from simulations in the CART analysis that had a  > 6.1 years and . Pink data 
show results from simulations where ; blue data shows results from simulations where 

. The variable 

1−ν 1 0.0023Hα >

1 0.0015Tα >

1 0.0015Tα ≤ 1
Tα  represents the probability that an individual receiving ARVs during the 

current era of Modern HAART transmits HIV during one sex act.  
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